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Nonstationary iterated Tikhonov regularization in Banach

spaces with uniformly convex penalty terms

Qinian Jin · Min Zhong

Abstract We consider the nonstationary iterated Tikhonov regularization in Ba-
nach spaces which defines the iterates via minimization problems with uniformly
convex penalty term. The penalty term is allowed to be non-smooth to include
L1 and total variation (TV) like penalty functionals, which are significant in recon-
structing special features of solutions such as sparsity and discontinuities in practical
applications. We present the detailed convergence analysis and obtain the regular-
ization property when the method is terminated by the discrepancy principle. In
particular we establish the strong convergence and the convergence in Bregman
distance which sharply contrast with the known results that only provide weak con-
vergence for a subsequence of the iterative solutions. Some numerical experiments
on linear integral equations of first kind and parameter identification in differential
equations are reported.

Mathematics Subject Classification (2000) 65J15 · 65J20 · 47H17

1 Introduction

We are interested in solving inverse problems which can be formulated as the oper-
ator equation

F (x) = y, (1.1)

where F : D(F ) ⊂ X 7→ Y is an operator between two Banach spaces X and Y with
domain D(F ) ⊂ X ; the norms in X and Y are denoted by the same notation ‖ · ‖
that should be clear from the context. A characteristic property of inverse problems
is their ill-posedness in the sense that their solutions do not depend continuously
on the data. Due to errors in the measurements, one never has the exact data in
practical applications; instead only noisy data are available. If one uses the algo-
rithms developed for well-posed problems directly, it usually fails to produce any
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useful information since noise could be amplified by an arbitrarily large factor. Let
yδ be the only available noisy data to y satisfying

‖yδ − y‖ ≤ δ (1.2)

with a given small noise level δ > 0. How to use yδ to produce a stable approximate
solution to (1.1) is a central topic, and regularization methods should be taken into
account.

When both X and Y are Hilbert spaces, a lot of regularization methods have
been proposed to solve inverse problems in the Hilbert space framework ([4,15]). In
case F : X → Y is a bounded linear operator, nonstationary iterated Tikhonov reg-
ularization is an attractive iterative method in which a sequence {xδ

n} of regularized
solutions is defined successively by

xδ
n := argmin

x∈X

{

1

2
‖Fx− yδ‖2 +

αn

2
‖x− xδ

n−1‖
2

}

,

where xδ
0 := x0 ∈ X is an initial guess and {αn} is a preassigned sequence of positive

numbers. Since {xδ
n} can be written explicitly as

xδ
n = xδ

n−1 − (αnI + F ∗F )−1F ∗(Fxδ
n−1 − yδ),

where F ∗ : Y → X denotes the adjoint of F : X → Y, the complete analysis of the
regularization property has been established (see [8] and references therein) when
{αn} satisfies suitable property and the discrepancy principle is used to terminate
the iteration, This method has been extended in [12,13] to solve nonlinear inverse
problems in Hilbert spaces.

Regularization methods in Hilbert spaces can produce good results when the
sought solution is smooth. However, because such methods have a tendency to
over-smooth solutions, they may not produce good results in applications where
the sought solution has special features such as sparsity or discontinuities. In order
to capture the special features, the methods in Hilbert spaces should be modified
by incorporating the information of suitable adapted penalty functionals, for which
the theories in Hilbert space setting are no longer applicable.

The nonstationary iterated Tikhonov regularization has been extended in [14]
for solving linear inverse problems in Banach spaces setting by defining xδ

n as the
minimizer of the convex minimization problem

min
x∈X

{

1

r
‖Fx− yδ‖r + αn∆p(x, x

δ
n−1)

}

for n ≥ 1 successively, where 1 ≤ r < ∞, 1 < p < ∞ and ∆p(·, ·) denotes the
Bregman distance on X induced by the convex function x → ‖x‖p/p. When X is
uniformly smooth and uniformly convex, and when the method is terminated by
the discrepancy principle, the regularization property has been established if {αn}
satisfies

∑∞
n=1 α

−1
n = ∞. The numerical simulations in [14] indicate that the method

is efficient in sparsity reconstruction when choosing X = Lp with p > 1 close to
1 on one hand, and provides robust estimator in the presence of outliers in the
noisy data when choosing Y = L1 on the other hand. However, since X is required
to be uniformly smooth and uniformly convex and since ∆p(·, ·) is induced by the
power of the norm in X , the result in [14] does not apply to regularization methods
with L1 and total variation like penalty terms that are important for reconstructing
sparsity and discontinuities of sought solutions.
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The total variational regularization was introduced in [18], its importance was
recognized immediately and many successive works were conducted in the last two
decades. In [16] an iterative regularization method based on Bregman distance and
total variation was introduced to enhance the multi-scale nature of reconstruction.
The method solves (1.1) with F : X → Y linear and Y a Hilbert space by defining
{xδ

n} in the primal space X and {ξδn} in the dual space X ∗ via

xδ
n := argmin

x∈X

{

‖Fx− yδ‖2 + αnDξδ
n−1

Θ(x, xδ
n−1)

}

,

ξδn := ξδn−1 −
1

αn
F ∗(Fxδ

n − yδ),
(1.3)

where Θ : X → (−∞,∞] is a proper convex function, xδ
0 ∈ X is an initial guess,

ξδ0 ∈ X ∗ is in the sub-gradient of Θ at xδ
0, and DξΘ(·, ·) denotes the Bregman

distance induced by Θ. This method was extended in [2] to solve nonlinear inverse
problems. Extensive numerical simulations were reported in [16,2] and convergence
analysis was given, with special attention to the case that X = L2(Ω) and Θ(x) =
a‖x‖2L2 +

∫

Ω
|Dx|, where

∫

Ω
|Dx| denotes the total variation, when the iteration is

terminated by a discrepancy principle and {αn} satisfies the condition α ≤ αn ≤ α
for two positive constants α ≥ α > 0. The analysis in [16,2], however, is somewhat
preliminary since it provides only the boundedness of {Θ(xδ

nδ
)} which guarantees

only weak convergence for a subsequence of {xδ
nδ
}, where nδ denotes the stopping

index determined by the discrepancy principle. It is natural to ask if the whole
sequence converges strongly and in Bregman distance.

We point out that the method (1.3) is equivalent to the augmented Lagrangian
method introduced originally in [10,17] and developed further in various directions,
see [11] and reference therein. One may refer to [6] for some results on convergence
and convergence rates of the augmented Lagrangian method applied to linear in-
verse problems in Hilbert spaces with general convex penalty term. When X and
Y are Hilbert spaces and Θ(x) = ‖x‖2, (1.3) is exactly the nonstationary iterated
Tikhonov regularization. In this paper we formulate an extension of the nonstation-
ary iterated Tikhonov regularization in the spirit of (1.3) to solve (1.1) with both X
and Y being Banach spaces and present the detailed convergence analysis when the
method is terminated by the discrepancy principle. In the method we allow {αn}
to vary in various ways so that geometric decreasing sequence can be included; this
makes it possible to terminate the method in fewer iterations. Moreover, we allow
the penalty term Θ to be general uniformly convex functions on X so that the
method can be used for sparsity reconstruction and discontinuity detection. Most
importantly, we obtain

xδ
nδ

→ x†, Θ(xδ
nδ
) → Θ(x†) and Dξδ

nδ

Θ(x†, xδ
nδ
) → 0

and give a characterization of the limit x†, which significantly improve the known
convergence results.

This paper is organized as follows. In section 2 we give some preliminary results
on Banach spaces and convex analysis. In section 3, we then formulate the method in
Banach spaces with uniformly convex penalty term for solving linear and nonlinear
inverse problems, and present the main convergence results. In section 4 we first
prove a convergence result for the method when the data is given exactly; we then
show that, if the data contains noise, the method is well-defined and admits some
stability property; by combining these results we finally obtain the proof of the main
convergence theorems. Finally, in section 5 we present some numerical simulations
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on linear integral equations of first kind and parameter identification problems in
partial differential equations to test the performance of the method.

2 Preliminaries

Let X be a Banach space with norm ‖ · ‖. We use X ∗ to denote its dual space.
Given x ∈ X and ξ ∈ X ∗ we write 〈ξ, x〉 = ξ(x) for the duality pairing. We use
“→” and “⇀” to denote the strong convergence and weak convergence respectively.
If Y is another Banach space and A : X → Y is a bounded linear operator, we use
A∗ : Y∗ → X ∗ to denote its adjoint, i.e. 〈A∗ζ, x〉 = 〈ζ, Ax〉 for any x ∈ X and
ζ ∈ Y∗. We use N (A) = {x ∈ X : Ax = 0} to denote the null space of A and define

N (A)⊥ := {ξ ∈ X ∗ : 〈ξ, x〉 = 0 for all x ∈ N (A)}.

When X is reflexive, there holds

N (A)⊥ = R(A∗), (2.1)

whereR(A∗) denotes the range space of A∗ and R(A∗) denotes the closure ofR(A∗)
in X ∗.

For a convex function Θ : X → (−∞,∞], we useD(Θ) := {x ∈ X : Θ(x) < +∞}
to denote its effective domain. We call Θ proper if D(Θ) 6= ∅. Given x ∈ X we define

∂Θ(x) := {ξ ∈ X ∗ : Θ(x̄)−Θ(x) − 〈ξ, x̄ − x〉 ≥ 0 for all x̄ ∈ X}.

Any element ξ ∈ ∂Θ(x) is called a subgradient of Θ at x. The multi-valued mapping
∂Θ : X → 2X

∗

is called the subdifferential of Θ. It could happen that ∂Θ(x) = ∅
for some x ∈ D(Θ). Let

D(∂Θ) := {x ∈ D(Θ) : ∂Θ(x) 6= ∅}.

For x ∈ D(∂Θ) and ξ ∈ ∂Θ(x) we define

DξΘ(x̄, x) := Θ(x̄)−Θ(x) − 〈ξ, x̄− x〉, ∀x̄ ∈ X

which is called the Bregman distance induced by Θ at x in the direction ξ. Clearly
DξΘ(x̄, x) ≥ 0. By straightforward calculation one can see that

DξΘ(x2, x)−DξΘ(x1, x) = Dξ1Θ(x2, x1) + 〈ξ1 − ξ, x2 − x1〉 (2.2)

for all x, x1 ∈ D(∂Θ), ξ ∈ ∂Θ(x), ξ1 ∈ ∂Θ(x1) and x2 ∈ X .
A proper convex function Θ : X → (−∞,∞] is called uniformly convex if there

is a continuous function h : [0,∞) → [0,∞), with the property that h(t) = 0 implies
t = 0, such that

Θ(λx̄ + (1− λ)x) + λ(1 − λ)h(‖x̄− x‖) ≤ λΘ(x̄) + (1− λ)Θ(x) (2.3)

for all x̄, x ∈ X and λ ∈ (0, 1). If h in (2.3) can be taken as h(t) = ctp for some c > 0
and p ≥ 2, then Θ is called p-uniformly convex. It can be shown ([20, Theorem
3.5.10]) that Θ is uniformly convex if and only if there is a strictly increasing
continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

DξΘ(x̄, x) ≥ ϕ(‖x̄− x‖) (2.4)

for all x̄ ∈ X , x ∈ D(∂Θ) and ξ ∈ ∂Θ(x).
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On a Banach space X , we consider for 1 < r < ∞ the convex function x →
‖x‖r/r. Its subdifferential at x is given by

Jr(x) :=
{

ξ ∈ X ∗ : ‖ξ‖ = ‖x‖r−1 and 〈ξ, x〉 = ‖x‖r
}

which gives the duality mapping Jr : X → 2X
∗

with gauge function t → tr−1. We
call X uniformly convex if its modulus of convexity

δX (t) := inf{2− ‖x̄+ x‖ : ‖x̄‖ = ‖x‖ = 1, ‖x̄− x‖ ≥ t}

satisfies δX (t) > 0 for all 0 < t ≤ 2. If there are c > 0 and r > 1 such that
δX (t) ≥ ctr for all 0 < t ≤ 2, then X is called r-uniformly convex. We call X
uniformly smooth if its modulus of smoothness

ρX (s) := sup{‖x̄+ x‖+ ‖x̄− x‖ − 2 : ‖x̄‖ = 1, ‖x‖ ≤ s}

satisfies limsց0
ρX (s)

s = 0. One can refer to [1,3] for many examples of Banach
spaces, including the sequence spaces lr, the Lebesgue spaces Lr, the Sobolev spaces
W k,r and the Besov spaces Bs,r with 1 < r < ∞, that are both uniformly convex
and uniformly smooth.

It is well known that any uniformly convex or uniformly smooth Banach space is
reflexive. On a uniformly smooth Banach space X , every duality mapping Jr with
1 < r < ∞ is single valued and uniformly continuous on bounded sets; for each
1 < r < ∞ we use

∆r(x̄, x) =
1

r
‖x̄‖r −

1

r
‖x‖r − 〈Jr(x), x̄ − x〉, ∀x̄, x ∈ X

to denote the Bregman distance induced by the convex function Θ(x) = ‖x‖r/r.
Furthermore, on a uniformly convex Banach space, any sequence {xn} satisfying

xn ⇀ x and ‖xn‖ → ‖x‖ must satisfy xn → x as n → ∞. This property can be
easily generalized for uniformly convex functions which we state in the following
result.

Lemma 2.1 Let Θ : X → (−∞,∞] be a proper, weakly lower semi-continuous, and
uniformly convex function. Then Θ admits the Kadec property, i.e. for any sequence
{xn} ⊂ X satisfying xn ⇀ x ∈ X and Θ(xn) → Θ(x) < ∞ there holds xn → x as
n → ∞.

Proof Assume the result is not true. Then, by taking a subsequence if necessary,
there is an ǫ > 0 such that ‖xn−x‖ ≥ ǫ for all n. In view of the uniformly convexity
of Θ, there is a γ > 0 such that Θ ((xn + x)/2) ≤ (Θ(xn) +Θ(x)) /2 − γ. Using
Θ(xn) → Θ(x) we then obtain

lim sup
n→∞

Θ

(

xn + x

2

)

≤ Θ(x) − γ.

On the other hand, observing that (xn + x)/2 ⇀ x, we have from the weakly lower
semi-continuity of Θ that

Θ(x) ≤ lim inf
n→∞

Θ

(

xn + x

2

)

.

Therefore Θ(x) ≤ Θ(x) − γ, which is a contradiction. ✷
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In many practical applications, proper, weakly lower semi-continuous, uniformly
convex functions can be easily constructed. For instance, consider X = Lp(Ω),
where 2 ≤ p < ∞ and Ω is a bounded domain in R

d. It is known that the functional
Θ0(x) :=

∫

Ω
|x(ω)|pdω is uniformly convex on Lp(Ω) (it is in fact p-uniformly

convex). Consequently we obtain on Lp(Ω) the uniformly convex functions

Θ(x) := µ

∫

Ω

|x(ω)|pdω + a

∫

Ω

|x(ω)|dω + b

∫

Ω

|Dx|, (2.5)

where µ > 0, a, b ≥ 0, and
∫

Ω |Dx| denotes the total variation of x over Ω that is
defined by ([7])

∫

Ω

|Dx| := sup

{
∫

Ω

xdivfdω : f ∈ C1
0 (Ω;RN ) and ‖f‖L∞(Ω) ≤ 1

}

.

For a = 1 and b = 0 the corresponding function is useful for sparsity reconstruction
([19]); while for a = 0 and b = 1 the corresponding function is useful for detecting
the discontinuities, in particular, when the solutions are piecewise-constant ([18]).

3 The method and main results

We now return to (1.1), where F : X → Y is an operator between two Banach
spaces X and Y. We will always assume that X is reflexive, Y is uniformly smooth,
and (1.1) has a solution. In general, the equation (1.1) may have many solutions. In
order to find the desired one, some selection criteria should be enforced. Choosing
a proper convex function Θ, we pick x0 ∈ D(∂Θ) and ξ0 ∈ ∂Θ(x0) as the initial
guess, which may incorporate some available information on the sought solution.
We define x† to be the solution of (1.1) with the property

Dξ0Θ(x†, x0) := min
x∈D(Θ)∩D(F )

{Dξ0Θ(x, x0) : F (x) = y} . (3.1)

We will work under the following conditions on the convex function Θ and the
operator F .

Assumption 3.1 Θ is a proper, weakly lower semi-continuous and uniformly con-
vex function such that (2.4) holds, i.e. there is a strictly increasing continuous func-
tion ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

DξΘ(x̄, x) ≥ ϕ(‖x̄− x‖)

for x̄ ∈ X , x ∈ D(∂Θ) and ξ ∈ ∂Θ(x).

Assumption 3.2 (a) D(F ) is convex, and F is weakly closed, i.e. for any se-
quence {xn} ⊂ D(F ) satisfying xn ⇀ x ∈ X and F (xn) ⇀ v ∈ Y there hold
x ∈ D(F ) and F (x) = v;

(b) There is ρ > 0 such that (1.1) has a solution in Bρ(x0)∩D(F )∩D(Θ), where
Bρ(x0) := {x ∈ X : ‖x− x0‖ ≤ ρ};

(c) F is Fréchet differentiable on D(F ), and x → F ′(x) is continuous on D(F ),
where F ′(x) denotes the Fréchet derivative of F at x;

(d) There exists 0 ≤ η < 1 such that

‖F (x̄)− F (x) − F ′(x)(x̄ − x)‖ ≤ η‖F (x̄)− F (x)‖

for all x̄, x ∈ B3ρ(x0) ∩D(F ).
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When X is a reflexive Banach space, by using the weakly closedness of F and
the weakly lower semi-continuity and uniformly convexity of Θ it is standard to
show that x† exists. The following result shows that x† is in fact uniquely defined.

Lemma 3.1 Let X be reflexive, Θ satisfy Assumption 3.1, and F satisfy Assump-
tion 3.2. If x† is a solution of F (x) = y satisfying (3.1) with

Dξ0Θ(x†, x0) ≤ ϕ(ρ), (3.2)

then x† is uniquely defined.

Proof Assume that (1.1) has two distinct solutions x̂ and x† satisfying (3.1). Then
it follows from (3.2) that

Dξ0Θ(x̂, x0) = Dξ0Θ(x†, x0) ≤ ϕ(ρ).

By using Assumption 3.1 on Θ we obtain ‖x̂ − x0‖ ≤ ρ and ‖x† − x0‖ ≤ ρ. Since
F (x̂) = F (x†), we can use Assumption 3.2 (d) to derive that F ′(x†)(x̂ − x†) = 0.
Let xλ = λx̂ + (1 − λ)x† for 0 < λ < 1. Then xλ ∈ Bρ(x0) ∩ D(Θ) ∩ D(F ) and
F ′(x†)(xλ − x†) = 0. Thus we can use Assumption 3.2 (d) to conclude that

‖F (xλ)− F (x†)‖ ≤ η‖F (xλ)− F (x†)‖.

Since 0 ≤ η < 1, this implies that F (xλ) = F (x†) = y. Consequently, by the
minimal property of x† we have

Dξ0Θ(xλ, x0) ≥ Dξ0Θ(x†, x0). (3.3)

On the other hand, it follows from the strictly convexity of Θ that

Dξ0Θ(xλ, x0) < λDξ0Θ(x̂, x0) + (1− λ)Dξ0Θ(x†, x0) = Dξ0Θ(x†, x0)

for 0 < λ < 1 which is a contradiction to (3.3). ✷

We are now ready to formulate the nonstationary iterated Tikhonov regulariza-
tion with penalty term induced by the uniformly convex function Θ. For the initial
guess xδ

0 := x0 ∈ D(∂Θ) ∩D(F ) and ξδ0 := ξ0 ∈ ∂Θ(x0), we take a sequence of pos-
itive numbers {αn} and define the iterative sequences {xδ

n} and {ξδn} successively
by

xδ
n ∈ arg min

x∈D(F )

{

1

r
‖F (x)− yδ‖r + αnDξδ

n−1
Θ(x, xδ

n−1)

}

,

ξδn = ξδn−1 −
1

αn
F ′(xδ

n)
∗Jr(F (xδ

n)− yδ)

(3.4)

for n ≥ 1, where 1 < r < ∞ and Jr : Y → Y∗ denotes the duality mapping of Y
with gauge function t → tr−1 which is single-valued and continuous because Y is
assumed to be uniformly smooth. At each step, the existence of xδ

n is guaranteed by
the reflexivity of X and Y, the weakly lower semi-continuity and uniformly convexity
of Θ, and the weakly closedness of F . However, xδ

n might not be unique when F is
nonlinear; we will take xδ

n to be any one of the minimizers. In view of the minimality
of xδ

n, we have ξδn ∈ ∂Θ(xδ
n). From the definition of xδ

n, it is straightforward to see
that

‖F (xδ
n)− yδ‖ ≤ ‖F (xδ

n−1)− yδ‖, n = 1, 2, · · · . (3.5)
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We will terminate the iteration by the discrepancy principle

‖F (xδ
nδ
)− yδ‖ ≤ τδ < ‖F (xδ

n)− yδ‖, 0 ≤ n < nδ (3.6)

with a given constant τ > 1. The output xδ
nδ

will be used to approximate a solution
of (1.1).

In order to understand the convergence property of xδ
nδ
, it is necessary to con-

sider the noise-free iterative sequences {xn} and {ξn}, where each xn and ξn with
n ≥ 1 are defined by (3.4) with yδ replaced by y, i.e.,

xn ∈ arg min
x∈D(F )

{

1

r
‖F (x)− y‖r + αnDξn−1Θ(x, xn−1)

}

,

ξn = ξn−1 −
1

αn
F ′(xn)

∗Jr(F (xn)− y) ∈ ∂Θ(xn).

(3.7)

In section 4.1 we will give a detailed convergence analysis on {xn}; in particular, we
will show that {xn} strongly converges to a solution of (1.1). In order to connect such
result with the convergence property of xδ

nδ
, we will make the following assumption.

Assumption 3.3 xn is uniquely defined for each n.

We will give some sufficient condition for the validity of Assumption 3.3. This
assumption enables us to establish some stability results connecting xδ

n and xn so
that we can finally obtain the convergence property of xδ

nδ
in the following result.

Theorem 3.1 Let X be reflexive and Y be uniformly smooth, let Θ satisfy As-
sumption 3.1, and let F satisfy Assumptions 3.2 and 3.3. Assume that 1 < r < ∞,
τ > (1 + η)/(1 − η) and that {αn} is a sequence of positive numbers satisfying
∑∞

n=1 α
−1
n = ∞ and αn ≤ c0αn+1 for all n with some constant c0 > 0. Assume

further that

Dξ0Θ(x†, x0) ≤
τr − 1

τr − 1 + c0
ϕ(ρ). (3.8)

Then, the discrepancy principle (3.6) terminates the method (3.4) after nδ < ∞
steps. Moreover, there is a solution x∗ ∈ D(Θ) of (1.1) such that

xδ
nδ

→ x∗, Θ(xδ
nδ
) → Θ(x∗) and Dξδ

nδ

Θ(x∗, x
δ
nδ
) → 0 (3.9)

as δ → 0. If, in addition, N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩D(F ), then
x∗ = x†.

In this result, the closeness condition (3.8) is used to guarantee that xδ
n is in

B3ρ(x0) for 0 ≤ n ≤ nδ so that Assumption 3.2 (d) can be applied. This issue
does not appear when F : X → Y is a bounded linear operator. Furthermore,
Assumption 3.3 holds automatically for linear problems when Θ is strictly convex.
Consequently, we have the following convergence result for linear inverse problems.

Theorem 3.2 Let F : X → Y be a bounded linear operator with X being reflexive
and Y being uniformly smooth, let Θ be proper, weakly lower semi-continuous, and
uniformly convex, let 1 < r < ∞, and let {αn} be such that

∑∞
n=1 α

−1
n = ∞ and

αn ≤ c0αn+1 for all n with c0 > 0. Then, the discrepancy principle (3.6) with τ > 1
terminates the method after nδ < ∞ steps. Moreover, there hold

xδ
nδ

→ x†, Θ(xδ
nδ
) → Θ(x†) and Dξδ

nδ

Θ(x†, xδ
nδ
) → 0

as δ → 0.
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In the next section, we will give the detailed proof of Theorem 3.1. It should
be pointed out that the convergence xδ

nδ
→ x∗ does not imply Θ(xδ

nδ
) → Θ(x∗)

directly since Θ is not necessarily continuous. The proof of Θ(xδ
nδ
) → Θ(x∗) relies

on additional observation.
When applying our convergence result to the situation that X = L2(Ω) and

Θ(x) = µ
∫

Ω |x(ω)|2dω +
∫

Ω |Dx| with µ > 0, we can obtain

‖xδ
nδ

− x†‖L2(Ω) → 0 and

∫

Ω

|Dxδ
nδ
| →

∫

Ω

|Dx| as δ → 0.

This significantly improves the result in [2] in which only the boundedness of Θ(xδ
nδ
)

was derived and hence only weak convergence for a subsequence of {xδ
nδ
} can be

guaranteed.
We conclude this section with some sufficient condition to guarantee the validity

of Assumption 3.3.

Assumption 3.4 There exist C0 ≥ 0 and 1/r ≤ κ < 1 such that

‖F (x̄)− F (x)− F ′(x)(x̄ − x)‖ ≤ C0 [DξΘ(x̄, x)]
1−κ

[∆r(F (x̄)− y, F (x)− y)]
κ

for all x̄, x ∈ B3ρ(x0)∩D(Θ)∩D(F ) with x ∈ D(∂Θ) and ξ ∈ ∂Θ(x), where ∆r(·, ·)
denotes the Bregman distance on Y induced by the convex function ‖y‖r/r.

When Y is a r-uniformly convex Banach space, Θ is a p-uniformly convex func-
tion on X with p ≥ 2, and 1/p+ 1/r ≤ 1, Assumption 3.4 holds with κ = 1 − 1/p
if there is a constant C1 ≥ 0 such that

‖F (x̄)− F (x)− F ′(x)(x̄ − x)‖ ≤ C1‖x̄− x‖‖F (x̄)− F (x)‖ (3.10)

for x̄, x ∈ B3ρ(x0) ∩ D(F ), which is a slightly strengthened version of Assump-
tion 3.2 (d).

Lemma 3.2 Let X be reflexive and Y be uniformly smooth, let 1 < r < ∞, let Θ
satisfy Assumption 3.1, let F satisfy Assumptions 3.2 and 3.4, and let {αn} satisfy
∑∞

n=1 α
−1
n = ∞. Assume that

Dξ0Θ(x†, x0) ≤ ϕ(ρ) and C̄0

[

Dξ0Θ(x†, x0)
]1− 1

r < 1 (3.11)

with C̄0 := C0κ
κ(1− κ)1−κ(1 − η)

1−r

r α
κ− 1

r

1 . Then Assumption 3.3 holds, i.e. xn is
uniquely defined for each n.

We will prove Lemma 3.2 at the end of Section 4.1 by using some useful estimates
that will be derived during the proof of the convergence of {xn}.

4 Convergence analysis

We prove Theorem 3.1 in this section. We first obtain a convergence result for the
noise-free iterative sequences {xn} and {ξn}. We then consider the sequences {xδ

n}
and {ξδn} corresponding to the noisy data case, and show that the discrepancy prin-
ciple indeed terminates the iteration in finite steps. We further establish a stability
result which in particular implies that xδ

n → xn as δ → 0 for each fixed n. Combining
all these results we finally obtain the proof of Theorem 3.1.
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4.1 Convergence result for noise-free case

We first consider the noise-free iterative sequences {xn} and {ξn} defined by (3.7)
and obtain a convergence result that is crucial for proving Theorem 3.1. Our proof
is inspired by [9,14].

Theorem 4.1 Let X be reflexive and Y be uniformly smooth, let 1 < r < ∞,
let Θ satisfy Assumption 3.1, let F satisfy Assumption 3.2, and let {αn} satisfy
∑∞

n=1 α
−1
n = ∞. Assume that

Dξ0Θ(x†, x0) ≤ ϕ(ρ). (4.1)

Then there exists a solution x∗ of (1.1) in B3ρ(x0) ∩D(Θ) such that

lim
n→∞

‖xn − x∗‖ = 0, lim
n→∞

Θ(xn) = Θ(x∗) and lim
n→∞

DξnΘ(x∗, xn) = 0.

If in addition N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩D(F ), then x∗ = x†.

Proof We first show by induction that for any solution x̂ of (1.1) in B3ρ(x0)∩D(Θ)
there holds

DξnΘ(x̂, xn) ≤ Dξ0Θ(x̂, x0), n = 0, 1, · · · . (4.2)

This is trivial for n = 0. Assume that it is true for n = m− 1 for some m ≥ 1, we
will show that it is also true for n = m. From (2.2) we have

DξmΘ(x̂, xm)−Dξm−1Θ(x̂, xm−1) = −Dξm−1Θ(xm, xm−1) + 〈ξm−1 − ξm, x̂− xm〉.

By dropping the first term on the right which is non-positive and using the definition
of ξm we can obtain

DξmΘ(x̂, xm)−Dξm−1Θ(x̂, xm−1) ≤
1

αm
〈Jr(F (xm)− y), F ′(xm)(x̂− xm)〉.

In view of the properties of the duality mapping Jr it follows that

DξmΘ(x̂, xm)−Dξm−1Θ(x̂, xm−1)

≤ −
1

αm
‖F (xm)− y‖r +

1

αm
‖F (xm)− y‖r−1‖F (xm)− y + F ′(xm)(x̂− xm)‖.

(4.3)

In order to proceed further, we need to show that xm ∈ B3ρ(x0) so that Assumption
3.2 (d) on F can be employed. Using the minimizing property of xm, the induction
hypothesis, and (4.1) we obtain

Dξm−1Θ(xm, xm−1) ≤ Dξm−1Θ(x†, xm−1) ≤ Dξ0Θ(x†, x0) ≤ ϕ(ρ).

With the help of Assumption 3.1 on Θ, we have

‖xm − xm−1‖ ≤ ρ, ‖x† − xm−1‖ ≤ ρ and ‖x† − x0‖ ≤ ρ.

Therefore xm ∈ B3ρ(x0). Thus we may use Assumption 3.2 (d) to obtain from (4.3)
that

DξmΘ(x̂, xm)−Dξm−1Θ(x̂, xm−1) ≤ −
1− η

αm
‖F (xm)− y‖r. (4.4)

This and the induction hypothesis imply (4.2) with n = m.
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As an immediate consequence of (4.2), we know that (4.4) is true for all m.
Consequently

DξnΘ(x̂, xn) ≤ Dξn−1Θ(x̂, xn−1), n = 1, 2, · · · (4.5)

and

1− η

αn
‖F (xn)− y‖r ≤ Dξn−1Θ(x̂, xn−1)−DξnΘ(x̂, xn). (4.6)

By using the monotonicity of ‖F (xn)− y‖ with respect to n, we obtain

‖F (xn)− y‖r
n
∑

j=1

1

αj
≤

n
∑

j=1

1

αj
‖F (xj)− y‖r ≤

1

1− η
Dξ0Θ(x̂, x0).

Since
∑n

j=1 α
−1
j → ∞ as n → ∞, we have ‖F (xn)− y‖ → 0 as n → ∞.

Next we show that {xn} converges to a solution of (1.1). To this end, we show
that {xn} is a Cauchy sequence in X . For 0 ≤ l < m < ∞ we have from (2.2) that

DξlΘ(xm, xl) = DξlΘ(x̂, xl)−DξmΘ(x̂, xm) + 〈ξm − ξl, xm − x̂〉.

By the definition of ξn we have

|〈ξm − ξl, xm − x̂〉| =

∣

∣

∣

∣

∣

m
∑

n=l+1

〈ξn − ξn−1, xm − x̂〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

n=l+1

1

αn
〈Jr(F (xn)− y), F ′(xn)(xm − x̂)〉

∣

∣

∣

∣

∣

≤
m
∑

n=l+1

1

αn
‖F (xn)− y‖r−1‖F ′(xn)(xm − x̂)‖. (4.7)

By using Assumption 3.2 (d) on F and the monotonicity of ‖F (xn) − y‖ we can
obtain

‖F ′(xn)(xm − x̂)‖ ≤ ‖F ′(xn)(xn − x̂)‖+ ‖F ′(xn)(xm − xn)‖

≤ (1 + η) (‖F (xn)− y‖+ ‖F (xm)− F (xn)‖)

≤ 3(1 + η)‖F (xn)− y‖. (4.8)

Therefore, by using (4.6), we have with c0 := 3(1 + η)/(1− η) that

|〈ξm − ξl, xm − x̂〉| ≤ 3(1 + η)

m
∑

n=l+1

1

αn
‖F (xn)− y‖r

≤ c0 (DξlΘ(x̂, xl)−DξmΘ(x̂, xm)) . (4.9)

Consequently

DξlΘ(xm, xl) ≤ (1 + c0) (DξlΘ(x̂, xl)−DξmΘ(x̂, xm)) .

Since {DξnΘ(x̂, xn)} is monotonically decreasing, we obtain DξlΘ(xm, xl) → 0 as
l,m → ∞. In view of the uniformly convexity of Θ, we can conclude that {xn}
is a Cauchy sequence in X . Thus xn → x∗ for some x∗ ∈ X as n → ∞. Since
‖F (xn)−y‖ → 0 as n → ∞, we may use the weakly closedness of F to conclude that
x∗ ∈ D(F ) and F (x∗) = y. We remark that x∗ ∈ B3ρ(x0) because xn ∈ B3ρ(x0).
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Next we show that

x∗ ∈ D(Θ), lim
n→∞

Θ(xn) = Θ(x∗) and lim
n→∞

DξnΘ(x∗, xn) = 0.

From the convexity of Θ and ξn ∈ ∂Θ(xn) it follows that

Θ(xn) ≤ Θ(x̂) + 〈ξn, xn − x̂〉. (4.10)

In view of (4.9) we have

Θ(xn) ≤ Θ(x̂) + 〈ξ0, xn − x̂〉+ c0Dξ0Θ(x̂, x0).

Since xn → x∗ as n → ∞, by using the weakly lower semi-continuity of Θ we obtain

Θ(x∗) ≤ lim inf
n→∞

Θ(xn) ≤ Θ(x̂) + 〈ξ0, x∗ − x̂〉+ c0Dξ0Θ(x̂, x0) < ∞. (4.11)

This implies that x∗ ∈ D(Θ). We next use (4.9) to derive for l < n that

|〈ξn, xn − x∗〉| ≤ c0 (DξlΘ(x∗, xl)−DξnΘ(x∗, xn)) + |〈ξl, xn − x∗〉|.

By taking n → ∞ and using xn → x∗ we can derive that

lim sup
n→∞

|〈ξn, xn − x∗〉| ≤ c0 (DξlΘ(x∗, xl)− ε0) ,

where ε0 := limn→∞ DξnΘ(x∗, xn) whose existence is guaranteed by the monotonic-
ity of {DξnΘ(x∗, xn)}. Since the above inequality holds for all l, by taking l → ∞
we obtain

lim sup
n→∞

|〈ξn, xn − x∗〉| ≤ c0 (ε0 − ε0) = 0. (4.12)

Using (4.10) with x̂ replaced by x∗ we thus obtain lim supn→∞ Θ(xn) ≤ Θ(x∗).
Combining this with (4.11) we therefore obtain limn→∞ Θ(xn) = Θ(x∗). This to-
gether with (4.12) then implies that limn→∞ DξnΘ(x∗, xn) = 0.

Finally we prove x∗ = x† under the additional condition N (F ′(x†)) ⊂ N (F ′(x))
for x ∈ B3ρ(x0) ∩D(F ). We use (4.10) with x̂ replaced by x† to obtain

Dξ0Θ(xn, x0) ≤ Dξ0Θ(x†, x0) + 〈ξn − ξ0, xn − x†〉. (4.13)

By using (4.9), for any ε > 0 we can find l0 such that

∣

∣〈ξn − ξl0 , xn − x†〉
∣

∣ <
ε

2
, n ≥ l0.

We next consider 〈ξl0 − ξ0, xn − x†〉. According to the definition of ξn we have
ξj − ξj−1 ∈ R(F ′(xj)

∗). Since X is reflexive and N (F ′(x†)) ⊂ N (F ′(xj)), we have

from (2.1) that R(F ′(xj)∗) ⊂ R(F ′(x†)∗). Thus we can find vj ∈ Y∗ and βj ∈ X ∗

such that

ξj − ξj−1 = F ′(x†)∗vj + βj and ‖βj‖ ≤
ε

3l0M
, 1 ≤ j ≤ l0,
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where M > 0 is a constant such that ‖xn − x†‖ ≤ M for all n. Consequently

∣

∣〈ξl0 − ξ0, xn − x†〉
∣

∣ =

∣

∣

∣

∣

∣

∣

l0
∑

j=1

〈ξj − ξj−1, xn − x†〉

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

l0
∑

j=1

[

〈vj , F
′(x†)(xn − x†)〉+ 〈βj , xn − x†〉

]

∣

∣

∣

∣

∣

∣

≤
l0
∑

j=1

(

‖vj‖‖F
′(x†)(xn − x†)‖+ ‖βj‖‖xn − x†‖

)

≤ (1 + η)

l0
∑

j=1

‖vj‖‖F (xn)− y‖+
ε

3
.

Since ‖F (xn)− y‖ → 0 as n → ∞, we can find n0 ≥ l0 such that

|〈ξl0 − ξ0, xn − x†〉| <
ε

2
, ∀n ≥ n0.

Therefore |〈ξn − ξ0, xn − x†〉| < ε for all n ≥ n0. Since ε > 0 is arbitrary, we obtain
limn→∞〈ξn−ξ0, xn−x†〉 = 0. By taking n → ∞ in (4.13) and using Θ(xn) → Θ(x∗)
we obtain

Dξ0Θ(x∗, x0) ≤ Dξ0Θ(x†, x0).

According to the definition of x† we must have Dξ0Θ(x∗, x0) = Dξ0Θ(x†, x0). A
direct application of Lemma 3.1 gives x∗ = x†. ✷

As a byproduct, now we can use some estimates established in the proof of
Theorem 4.1 to prove Lemma 3.2.

Proof of Lemma 3.2. We assume that the minimization problem in (3.7) has two
minimizers xn and x̂n. Then it follows that

0 =
1

r
‖F (x̂n)− y‖r + αnDξn−1Θ(x̂n, xn−1)−

1

r
‖F (xn)− y‖r

− αnDξn−1Θ(xn, xn−1)

= ∆r (F (x̂n)− y, F (xn)− y) + 〈Jr(F (xn)− y), F (x̂n)− F (xn)〉

+ αn (Θ(x̂n)−Θ(xn)− 〈ξn−1, x̂n − xn〉) .

With the help of the definition of ξn we can write

Θ(x̂n)−Θ(xn)− 〈ξn−1, x̂n − xn〉

= Θ(x̂n)−Θ(xn)− 〈ξn, x̂n − xn〉+ 〈ξn − ξn−1, x̂n − xn〉

= DξnΘ(x̂n, xn)−
1

αn
〈Jr(F (xn)− y), F ′(xn)(x̂n − xn)〉.

Therefore

0 = ∆r (F (x̂n)− y, F (xn)− y) + αnDξnΘ(x̂n, xn)

+ 〈Jr(F (xn)− y), F (x̂n)− F (xn)− F ′(xn)(x̂n − xn)〉.



14 Qinian Jin, Min Zhong

Since xn, x̂n ∈ B3ρ(x0) as shown in the proof of Theorem 4.1, we may use Assump-
tion 3.4 and the Young’s inequality to obtain

0 ≥ ∆r (F (x̂n)− y, F (xn)− y) + αnDξnΘ(x̂n, xn)

− C0‖F (xn)− y‖r−1 [DξnΘ(x̂n, xn)]
1−κ [∆r(F (x̂n)− y, F (xn)− y)]κ

≥ αnDξnΘ(x̂n, xn)− (1 − κ)κ
κ

1−κC
1

1−κ

0 ‖F (xn)− y‖
r−1
1−κDξnΘ(x̂n, xn).

Recall that in the proof of Theorem 4.1 we have established

‖F (xn)− y‖r ≤
1

1− η
s−1
n Dξ0Θ(x†, x0) with sn :=

n
∑

j=1

α−1
j .

Since s−1
n ≤ min{α1, αn} and κ ≥ 1/r, we therefore obtain

0 ≥

(

1− C̄
1

1−κ

0 Dξ0Θ(x†, x0)
r−1

r(1−κ)

)

αnDξnΘ(x̂n, xn)

with C̄0 := C0κ
κ(1− κ)1−κ(1− η)

1−r

r α
κ− 1

r

1 . Thus we may use the second condition
in (3.11) to conclude that DξnΘ(x̂n, xn) = 0 and hence x̂n = xn. ✷

4.2 Justification of the method

In this subsection we show that the method is well-defined, in particular we prove
that, when the data contains noise, the discrepancy principle (3.6) terminates the
iteration in finite steps, i.e. nδ < ∞.

Lemma 4.1 Let X be reflexive and Y be uniformly smooth, let Θ satisfy Assump-
tion 3.1, and let F satisfy Assumption 3.2. Let 1 < r < ∞ and τ > (1+ η)/(1− η),
and let {αn} be such that

∑∞
n=1 α

−1
n = ∞. Assume that (4.1) holds. Then the dis-

crepancy principle (3.6) terminates the iteration after nδ < ∞ steps. If nδ ≥ 2,
then for 1 ≤ n < nδ there hold

Dξδ
n
Θ(x̂, xδ

n) ≤ Dξδ
n−1

Θ(x̂, xδ
n−1), (4.14)

1

αn
‖F (xδ

n)− yδ‖r ≤ C1

(

Dξδ
n−1

Θ(x̂, xδ
n−1)−Dξδ

n
Θ(x̂, xδ

n)
)

. (4.15)

If, in addition, αn ≤ c0αn+1 for all n with some constant c0 > 0 and

Dξ0Θ(x†, x0) ≤
τr − 1

τr − 1 + c0
ϕ(ρ), (4.16)

then there holds

Dξδ
nδ

Θ(x̂, xδ
nδ
) ≤ Dξδ

nδ−1
Θ(x̂, xδ

nδ−1) + (1 + η)τr−1 δr

αnδ

, (4.17)

where x̂ denotes any solution of (1.1) in B3ρ(x0) ∩D(Θ) and C1 := τ/[(1 − η)τ −
1− η].
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Proof To prove the first part, we first show by induction that

xδ
n ∈ B2ρ(x0) and Dξδ

n
Θ(x†, xδ

n) ≤ Dξ0Θ(x†, x0), 0 ≤ n < nδ. (4.18)

This is trivial for n = 0. Next we assume that (4.18) is true for n = m− 1 for some
m < nδ and show that (4.18) is also true for n = m. By the minimizing property of
xδ
m and the induction hypothesis we have

1

r
‖F (xδ

m)− yδ‖r + αmDξδ
m−1

Θ(xδ
m, xδ

m−1) ≤
1

r
δr + αmDξδ

m−1
Θ(x†, xδ

m−1)

≤
1

r
δr + αmDξ0Θ(x†, x0). (4.19)

Since ‖F (xδ
m)− yδ‖ > τδ, we can obtain

τr

r
δr + αmDξδ

m−1
Θ(xδ

m, xδ
m−1) ≤

1

r
δr + αmDξ0Θ(x†, x0).

Because τ > 1, this implies that

αm ≥
(τr − 1)δr

rDξ0Θ(x†, x0)
and Dξδ

m−1
Θ(xδ

m, xδ
m−1) ≤ Dξ0Θ(x†, x0). (4.20)

By Assumption 3.1 and the condition (4.1), we can derive that ‖xδ
m−xδ

m−1‖ ≤ ρ. In
view of the induction hypothesis we also have ‖xδ

m−1−x0‖ ≤ 2ρ. Thus xδ
m ∈ B3ρ(x0).

We are now able to use Assumption 3.2 (d) and the similar argument for deriving
(4.3) to obtain that

Dξδ
m
Θ(x̂, xδ

m)−Dξδ
m−1

Θ(x̂, xδ
m−1)

≤ 〈ξδm − ξδm−1, x
δ
m − x̂〉 = −

1

αm
〈Jr(F (xδ

m)− yδ), F ′(xδ
m)(xδ

m − x̂)〉

≤ −
1

αm
‖F (xδ

m)− yδ‖r +
1

αm
‖F (xδ

m)− yδ‖r−1
(

δ + η‖F (xδ
m)− y‖

)

≤ −
1− η

αm
‖F (xδ

m)− yδ‖r +
1 + η

αm
‖F (xδ

m)− yδ‖r−1δ. (4.21)

Using again ‖F (xδ
m)− yδ‖ > τδ, we can conclude that

Dξδ
m
Θ(x̂, xδ

m)−Dξδ
m−1

Θ(x̂, xδ
m−1) ≤ −

1

αm

(

1− η −
1 + η

τ

)

‖F (xδ
m)− yδ‖r.

(4.22)

Since τ > (1 + η)/(1 − η), we obtain

Dξδ
m
Θ(x̂, xδ

m) ≤ Dξδ
m−1

Θ(x̂, xδ
m−1).

In view of this inequality with x̂ = x† and the induction hypothesis, we obtain the
second result in (4.18) with n = m. By using again Assumption 3.1 and (4.1) we
have ‖xδ

m−x†‖ ≤ ρ and ‖x†−x0‖ ≤ ρ which imply that xδ
m ∈ B2ρ(x0). We therefore

complete the proof of (4.18). As a direct consequence, we can see that (4.22) holds
for all 1 ≤ m < nδ which implies (4.14) and (4.15).

In view of (4.15) and the monotonicity (3.5) of ‖F (xδ
n)− yδ‖ with respect to n,

it follows that

‖F (xδ
n)− yδ‖r

n
∑

j=1

1

αj
≤

n
∑

j=1

1

αj
‖F (xδ

j)− yδ‖r ≤
τ

(1− η)τ − 1− η
Dξ0Θ(x̂, x0).
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Since ‖F (xδ
n) − yδ‖ > τδ for 1 ≤ n < nδ and

∑n
j=1 α

−1
j → ∞ as n → ∞, we can

conclude that nδ is a finite integer.
Finally we prove the second part, i.e. the inequality (4.17). Since (4.19) is true

for m = nδ, we have

Dξδ
nδ−1

Θ(xδ
nδ
, xδ

nδ−1) ≤
δr

rαnδ

+Dξ0Θ(x†, x0).

Recall from (4.20) that αnδ−1 ≥ (τr − 1)δr/(rDξ0Θ(x†, x0)). Since αnδ−1 ≤ c0αnδ
,

we can derive that

Dξδ
nδ−1

Θ(xδ
nδ
, xδ

nδ−1) ≤
τr − 1 + c0

τr − 1
Dξ0Θ(x†, x0).

It then follows from Assumption 3.1 and (4.16) that ‖xδ
nδ

− xδ
nδ−1‖ ≤ ρ. Since

xδ
nδ−1 ∈ B2ρ(x0) we obtain xδ

nδ
∈ B3ρ(x0). Thus we can employ Assumption 3.2 (d)

to conclude that (4.21) is also true for m = nδ. By setting m = nδ in (4.21) and
using ‖F (xδ

nδ
)− yδ‖ ≤ τδ, we can obtain (4.17). ✷

As a byproduct of the proof of Lemma 4.1, we have the following result which
will be used to show limδ→0 Θ(xδ

nδ
) = Θ(x∗) in the proof of Theorem 3.1.

Lemma 4.2 Let all the conditions in Lemma 4.1 hold, and let x̂ be any solution of
(1.1) in B3ρ(x0) ∩D(Θ). Then for all 0 ≤ l < nδ there holds

∣

∣〈ξδnδ
− ξδl , x̂− xδ

nδ
〉
∣

∣ ≤ C2
δr

αnδ

+ C3Dξδ
l

Θ(x̂, xδ
l ), (4.23)

where C2 := 3(1 + η)τr−1(1 + τ) and C3 := 3(1 + η)(1 + τ)/[(1− η)τ − 1− η].

Proof By the definition of ξδn and the property of the duality mapping Jr, we can
obtain, using the similar argument for deriving (4.7), that

∣

∣〈ξδnδ
− ξδl , x̂− xδ

nδ
〉
∣

∣ ≤
nδ
∑

n=l+1

1

αn
‖F (xδ

n)− yδ‖r−1‖F ′(xδ
n)(x̂ − xδ

nδ
)‖.

With the help of Assumption 3.2 (d) and the monotonicity (3.5) of ‖F (xδ
n) − yδ‖

with respect to n, similar to the derivation of (4.8) we have for n ≤ nδ that

‖F ′(xδ
n)(x̂ − xδ

nδ
)‖ ≤ 3(1 + η)

(

‖F (xδ
n)− yδ‖+ δ

)

.

Therefore

∣

∣〈ξδnδ
− ξδl , x̂− xδ

nδ
〉
∣

∣ ≤ 3(1 + η)

nδ
∑

n=l+1

1

αn
‖F (xδ

n)− yδ‖r−1
(

‖F (xδ
n)− yδ‖+ δ

)

.

Since ‖F (xδ
nδ
)− yδ‖ ≤ τδ and ‖F (xδ

n)− yδ‖ > τδ for 0 ≤ n < nδ, we thus obtain
∣

∣〈ξδnδ
− ξδl , x̂− xδ

nδ
〉
∣

∣

≤ 3(1 + η)τr−1(1 + τ)
δr

αnδ

+
3(1 + η)(1 + τ)

τ

nδ−1
∑

n=l+1

1

αn
‖F (xδ

n)− yδ‖r. (4.24)

In view of (4.15) in Lemma 4.1, we can see that

nδ−1
∑

n=l+1

1

αn
‖F (xδ

n)− yδ‖r ≤
τ

(1− η)τ − 1− η
Dξδ

l

Θ(x̂, xδ
l ).

Combining this inequality with (4.24) gives the desired estimate. ✷
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4.3 Stability

We will prove some stability results on the method which connect {xδ
n} with {xn}.

These results enable us to use Theorem 4.1 to complete the proof of Theorem 3.1.

Lemma 4.3 Let X be reflexive and Y be uniformly smooth, let Θ satisfy Assump-
tion 3.1, and let F satisfy Assumptions 3.2 and 3.3. Then for each fixed n there
hold

xδ
n → xn, Θ(xδ

n) → Θ(xn) and ξδn → ξn (4.25)

as yδ → y.

Proof We show this result by induction. It is trivial when n = 0 since xδ
0 = x0 and

ξδ0 = ξ0. In the following we assume that the result is proved for n = m − 1 and
show that the result holds also for n = m.

We will adapt the argument from [5]. Let {yδi} be a sequence of data satisfying
‖yδi − y‖ ≤ δi with δi → 0. By the minimizing property of xδi

m we have

1

r
‖F (xδi

m)− yδi‖r + αmD
ξ
δi

m−1

Θ(xδi
m, xδi

m−1) ≤
1

r
‖F (xδi

m−1)− yδi‖r.

By the induction hypothesis, we can see that the right hand side of the above in-
equality is uniformly bounded with respect to i. Therefore both {‖F (xδi

m) − yδi‖}
and {D

ξ
δi

m−1

Θ(xδi
m, xδi

m−1)} are uniformly bounded with respect to i. Consequently

{F (xδi
m)} is bounded in Y and {xδi

m} is bounded in X ; here we used the uniformly
convexity of Θ. Since both X and Y are reflexive, by taking a subsequence if nec-
essary, we may assume that xδi

m ⇀ x̄m ∈ X and F (xδi
m) ⇀ ȳm ∈ Y as i → ∞. Since

F is weakly closed, we have x̄m ∈ D(F ) and F (x̄m) = ȳm. In view of the weakly
lower semi-continuity of Banach space norm we have

‖F (x̄m)− y‖ ≤ lim inf
i→∞

‖F (xδi
m)− yδi‖. (4.26)

Moreover, by using xδi
m ⇀ x̄m, the weakly lower semi-continuity of Θ, and the

induction hypothesis, we have

lim inf
i→∞

D
ξ
δi

m−1

Θ(xδi
m, xδi

m−1) = lim inf
i→∞

Θ(xδi
m)−Θ(xm−1)− 〈ξm−1, x̄m − xm−1〉

≥ Θ(x̄m)−Θ(xm−1)− 〈ξm−1, x̄m − xm−1〉

= Dξm−1Θ(x̄m, xm−1). (4.27)

The inequalities (4.26) and (4.27) together with the minimizing property of xδi
m and

the induction hypothesis imply

1

r
‖F (x̄m)− y‖r + αmDξm−1Θ(x̄m, xm−1)

≤ lim inf
i→∞

{

1

r
‖F (xδi

m)− yδi‖r + αmD
ξ
δi

m−1

Θ(xδi
m, xδi

m−1)

}

≤ lim sup
i→∞

{

1

r
‖F (xδi

m)− yδi‖r + αmD
ξ
δi

m−1

Θ(xδi
m, xδi

m−1)

}

≤ lim sup
i→∞

{

1

r
‖F (xm)− yδi‖r + αmD

ξ
δi

m−1

Θ(xm, xδi
m−1)

}

=
1

r
‖F (xm)− y‖r + αmDξm−1Θ(xm, xm−1).
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According to the definition of xm and Assumption 3.3, we must have x̄m = xm.
Therefore xδi

m ⇀ xm, F (xδi
m) ⇀ F (xm), and

lim
i→∞

{

1

r
‖F (xδi

m)− yδi‖r + αmD
ξ
δi

m−1

Θ(xδi
m, xδi

m−1)

}

=
1

r
‖F (xm)− y‖r + αmDξm−1Θ(xm, xm−1). (4.28)

Next we will show that

lim
i→∞

D
ξ
δi

m−1

Θ(xδi
m, xδi

m−1) = Dξm−1Θ(xm, xm−1). (4.29)

Let

a := lim sup
i→∞

D
ξ
δi

m−1

Θ(xδi
m, xδi

m−1) and b := Dξm−1Θ(xm, xm−1).

In view of (4.27), it suffices to show a ≤ b. Assume to the contrary that a > b. By
taking a subsequence if necessary, we may assume that

a = lim
i→∞

D
ξ
δi

m−1

Θ(xδi
m, xδi

m−1).

It then follows from (4.28) that

1

r
lim
i→∞

‖F (xδi
m)− yδi‖r =

1

r
‖F (xm)− y‖r + αm(b − a) <

1

r
‖F (xm)− y‖r

which is a contradiction to (4.26). We therefore obtain (4.29).
By using the induction hypothesis and xδi

m ⇀ xm, we obtain from (4.29) that

lim
i→∞

Θ(xδi
m) = Θ(xm).

Since xδi
m ⇀ xm and since Θ has the Kadec property, see Lemma 2.1, we obtain that

xδi
m → xm as i → ∞. Finally, from the definition of ξδim, the induction hypothesis,

and the continuity of the map x → F ′(x), and the continuity of the duality mapping
Jr, it follows that ξ

δi
m → ξm as i → ∞.

The above argument shows that for any sequence {yδi} converging to y, the
sequence {xδi

m} always has a subsequence, still denoted as xδi
m, such that xδi

m → xm,
Θ(xδi

m) → Θ(xm) and ξδim → ξm as i → ∞. Therefore, we obtain (4.25) with n = m
as yδ → y. The proof is complete. ✷

4.4 Proof of Theorem 3.1

Since other parts have been proved in Lemma 4.1, it remains only to show the
convergence result (3.9), where x∗ is the limit of {xn} which exists by Theorem 4.1.

Assume first that {yδi} is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → n0 as i → ∞ for some integer n0. We may assume nδi = n0 for all i.
From the definition of nδi = n0, we have

‖F (xδi
n0
)− yδi‖ ≤ τδi.

Since Lemma 4.3 implies xδi
n0

→ xn0 , by letting i → ∞ we have F (xn0) = y. This
together with the definition of xn implies that xn = xn0 for all n ≥ n0. Since
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Theorem 4.1 implies xn → x∗ as n → ∞, we must have xn0 = x∗. Consequently, we
have from Lemma 4.3 that xδi

nδi

→ x∗, Θ(xδi
nδi

) = Θ(xδi
n0
) → Θ(xn0 ) = Θ(x∗) and

D
ξ
δi
nδi

Θ(x∗, x
δi
nδi

) = D
ξ
δi
n0

Θ(xn0 , x
δi
n0
) → 0

as i → ∞.
Assume next that {yδi} is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such

that ni := nδi → ∞ as i → ∞. We first show that

D
ξ
δi

ni−2

Θ(x∗, x
δi
ni−2) → 0 as i → ∞. (4.30)

Let ǫ > 0 be an arbitrary number. Since Theorem 4.1 implies DξnΘ(x∗, xn) → 0 as
n → ∞, there exists an integer n(ǫ) such that Dξn(ǫ)

Θ(x∗, xn(ǫ)) < ǫ/2. On the other

hand, since Lemma 4.3 implies xδi
n(ǫ) → xn(ǫ), Θ(xδi

n(ǫ)) → Θ(xn(ǫ)) and ξδin(ǫ) → ξn(ǫ)
as i → ∞, we can pick an integer i(ǫ) large enough such that for all i ≥ i(ǫ) there
hold ni − 2 ≥ n(ǫ) and

∣

∣

∣

∣

D
ξ
δi

n(ǫ)

Θ(x∗, x
δi
n(ǫ))−Dξn(ǫ)

Θ(x∗, xn(ǫ))

∣

∣

∣

∣

<
ǫ

2
.

Therefore, it follows from Lemma 4.1 that

D
ξ
δi

ni−2

Θ(x∗, x
δi
ni−2) ≤ D

ξ
δi

n(ǫ)

Θ(x∗, x
δi
n(ǫ)) ≤ Dξn(ǫ)

Θ(x∗, xn(ǫ)) +
ǫ

2
< ǫ

for all i ≥ i(ǫ). Since ǫ > 0 is arbitrary, we thus obtain (4.30). With the help of
(4.14), we then obtain

D
ξ
δi

ni−1

Θ(x∗, x
δi
ni−1) → 0 as i → ∞. (4.31)

In view of (4.15) we have

1

αni−1
‖F (xδi

ni−1)− yδi‖r ≤
τ

(1− η)τ − 1− η
D

ξ
δi

ni−2

Θ(x∗, x
δi
ni−2).

Since ‖F (xδi
ni−1) − yδi‖ > τδi, we can conclude from (4.30) that δri /αni−1 → 0.

Since αni−1 ≤ c0αni
, we must have δri /αni

→ 0 as i → ∞. In view of (4.17) and
(4.31), we can obtain

D
ξ
δi
ni

Θ(x∗, x
δi
ni
) → 0 as i → ∞, (4.32)

which together with the uniformly convexity of Θ implies that xδi
ni

→ x∗ as i → ∞.
Finally we show that Θ(xδi

ni
) → Θ(x∗) as i → ∞. In view of (4.32), it suffices to

show that

〈ξδini
, x∗ − xδi

ni
〉 → 0 as i → ∞. (4.33)

Recall that Θ(xn) → Θ(x∗) and 〈ξn, x∗ − xn〉 → 0 as n → ∞ which have been
established in Theorem 4.1 and its proof. Thus, for any ǫ > 0, we can pick an
integer l0 such that

|Θ(xl0 )−Θ(x∗)| < ǫ and |〈ξl0 , x∗ − xl0〉| < ǫ. (4.34)



20 Qinian Jin, Min Zhong

Then, using (4.23) in Lemma 4.2, we can derive

∣

∣〈ξδini
, x∗ − xδi

ni
〉
∣

∣ ≤
∣

∣

∣
〈ξδil0 , x∗ − xδi

ni
〉
∣

∣

∣
+
∣

∣

∣
〈ξδini

− ξδil0 , x∗ − xδi
ni
〉
∣

∣

∣

≤
∣

∣

∣
〈ξδil0 , x∗ − xδi

ni
〉
∣

∣

∣
+ C2

δri
αni

+ C3Dξ
δi

l0

Θ(x∗, x
δi
l0
).

By using the definition of Bregman distance and (4.34) we have

D
ξ
δi

l0

Θ(x∗, x
δi
l0
) = [Θ(x∗)−Θ(xl0 )] +

[

Θ(xl0 )−Θ(xδi
l0
)
]

− 〈ξl0 , x∗ − xl0〉

− 〈ξl0 , xl0 − xδi
l0
〉 − 〈ξδil0 − ξl0 , x∗ − xδi

l0
〉

≤ 2ǫ+
∣

∣

∣
Θ(xl0 )−Θ(xδi

l0
)
∣

∣

∣
+
∣

∣

∣
〈ξl0 , xl0 − xδi

l0
〉
∣

∣

∣
+
∣

∣

∣
〈ξδil0 − ξl0 , x∗ − xδi

l0
〉
∣

∣

∣
.

Therefore

∣

∣〈ξδini
, x∗ − xδi

ni
〉
∣

∣ ≤ 2C3ǫ+ C2
δri
αni

+
∣

∣

∣
〈ξδil0 , x∗ − xδi

ni
〉
∣

∣

∣
+ C3

∣

∣

∣
Θ(xl0 )− Θ(xδi

l0
)
∣

∣

∣

+ C3

∣

∣

∣
〈ξl0 , xl0 − xδi

l0
〉
∣

∣

∣
+ C3

∣

∣

∣
〈ξδil0 − ξl0 , x∗ − xδi

l0
〉
∣

∣

∣
.

In view of Lemma 4.3 and the facts that δri /αni
→ 0 and xδi

ni
→ x∗ as i → ∞ which

we have established in the above, we can conclude that there is an integer i0(ǫ) such
that for all i > i0(ǫ) there hold ni > l0 and

∣

∣〈ξδini
, x∗ − xδi

ni
〉
∣

∣ ≤ 3C3ǫ. Since ǫ > 0 is
arbitrary, we thus obtain (4.33).

4.5 A variant of the discrepancy principle

When nδ denotes the integer determined by the discrepancy principle (3.6), from
Lemma 4.1 we can see that the Bregman distance Dξδ

n
Θ(x†, xδ

n) is decreasing up
to n = nδ − 1. This monotonicity, however, may not hold at n = nδ. Therefore, it
seems reasonable to consider the following variant of the discrepancy principle.

Rule 4.1 Let τ > 1 be a given number. If ‖F (x0) − yδ‖ ≤ τδ, we define nδ := 0;
otherwise we define

nδ := max
{

n : ‖F (xδ
n)− yδ‖ ≥ τδ

}

,

i.e., nδ is the integer such that

‖F (xδ
nδ+1)− yδ‖ < τδ ≤ ‖F (xδ

n)− yδ‖, 0 ≤ n ≤ nδ.

We point out that the argument for proving Theorem 3.1 can be used to prove
the convergence property of xδ

nδ
for nδ determined by Rule 4.1, we can even drop

the condition αn ≤ c0αn+1 on {αn} in Theorem 3.1. In fact we have the following
result.

Theorem 4.2 Let X be reflexive and Y be uniformly smooth, Θ satisfy Assumption
3.1, and F satisfy Assumptions 3.2 and 3.3. Let 1 < r < ∞ and τ > (1+η)/(1−η),
and let {αn} be such that

∑∞
n=1 α

−1
n = ∞. Assume further that

Dξ0Θ(x†, x0) ≤ ϕ(ρ).
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Then, the integer nδ defined by Rule 4.1 is finite. Moreover, there is a solution
x∗ ∈ D(Θ) of (1.1) such that

xδ
nδ

→ x∗, Θ(xδ
nδ
) → Θ(x∗) and Dξδ

nδ

Θ(x∗, x
δ
nδ
) → 0 (4.35)

as δ → 0. If, in addition, N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩D(F ), then
x∗ = x†.

Proof The proof of Lemma 4.1 can be used without change to show that nδ < ∞
and that (4.14) and (4.15) hold for 1 ≤ n ≤ nδ. Consequently, (4.23) in Lemma 4.2
becomes

∣

∣〈ξδnδ
− ξδl , x∗ − xδ

nδ
〉
∣

∣ ≤
3(1 + η)(1 + τ)

(1 − η)τ − 1− η
Dξδ

l

Θ(x∗, x
δ
l ), 0 ≤ l < nδ. (4.36)

In order to prove the convergence result (4.35), as in the proof of Theorem 3.1
we consider two cases.

Assume first that {yδi} is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → n0 as i → ∞ for some integer n0. We may assume nδi = n0 for all i.
By Rule 4.1 we always have ‖F (xδi

n0+1) − yδi‖ ≤ τδi. By letting i → ∞, we obtain
F (xn0+1) = y. This together with the definition of xn implies that xn = xn0+1 for
all n ≥ n0 + 1. It then follows from Theorem 4.1 that x∗ = xn0+1. We claim that
xn0+1 = xn0 . To see this, by using the definition of ξn0+1, we have

ξn0+1 = ξn0 −
1

αn0+1
F ′(xn0+1)

∗Jr(F (xn0+1)− y) = ξn0 .

Therefore

Dξn0
Θ(xn0+1, xn0) ≤ Dξn0

Θ(xn0+1, xn0) +Dξn0+1Θ(xn0 , xn0+1)

= 〈ξn0+1 − ξn0 , xn0+1 − xn0 〉 = 0.

This and the strictly convexity of Θ imply that xn0+1 = xn0 . Consequently xn0 =
x∗. A simple application of Lemma 4.3 then gives the desired conclusion.

Assume next that {yδi} is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → ∞ as i → ∞. We can follow the argument for deriving (4.30) to show
that D

ξ
δi
ni

Θ(x∗, x
δi
ni
) → 0 which in turn implies that xδi

ni
→ x∗ by the uniformly

convexity of Θ. Then we can use (4.36) and follow the same procedure in the proof
of Theorem 3.1 to obtain Θ(xδi

ni
) → Θ(x∗) as i → ∞. ✷

5 Numerical examples

In this section we present some numerical simulations to test the performance of our
method by considering a linear integral equation of the first kind and a nonlinear
problem arising from the parameter identification in partial differential equations.

Example 5.1 We consider the linear integral equation of the form

Ax(s) :=

∫ 1

0

K(s, t)x(t)dt = y(s) on [0, 1], (5.1)
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where

K(s, t) =

{

40s(1− t), s ≤ t,
40t(1− s), s ≥ t.

It is clear that A : X := L2[0, 1] → Y := L2[0, 1] is a compact operator. Our goal is
to find the solution of (5.1) by using some noisy data yδ instead of y. We assume
that the exact solution is

x†(t) =















0.5, t ∈ [0.292, 0.300],
1, t ∈ [0.500, 0.508],
0.7, t ∈ [0.700, 0.708],
0, elsewhere

Let y = Ax† which is the exact data. For a given noise level δ > 0, we add random
Gaussian noise to y to obtain yδ satisfying ‖y − yδ‖L2[0,1] = δ which is used to

reconstruct x† when the iteration is terminated by the discrepancy principle (3.6).
In our numerical simulations, we take x0 = 0 and ξ0 = 0, we divide [0, 1] into

N = 400 subintervals of equal length, approximate any integrals by the trapezoidal
rule, and solve the involved minimization problems by the modified Fletcher-Reeves
CG method in [21]. In Figure 5.1 we present the reconstruction results by taking
δ = 0.5 × 10−3 and αn = 2−n with τ = 1.02 in the discrepancy principle (3.6).
Figure 5.1(a) reports the result via the method with Θ(x) = ‖x‖2L2. It is clear that
the reconstructed solution is rather oscillatory and fails to capture the sparsity of
the exact solution x†. Figure 5.1(b) gives the result of the method with Θ(x) =
µ‖x‖2L2 + ‖x‖L1 and µ = 0.01. During the computation, ‖x‖L1 is replaced by a

smooth one
∫ 1

0

√

|x|2 + ǫ with ǫ = 10−6. The sparsity reconstruction is significantly
improved.

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) nδ=16

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) nδ=15

Fig. 5.1 Reconstruction results for Example 5.1: (a) Θ(x) = ‖x‖2
L2 ; (b) Θ(x) = µ‖x‖2

L2 + ‖x‖
L1

with µ = 0.01.
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Example 5.2 We next consider the identification of the parameter c in the boundary
value problem

{

−△u+ cu = f in Ω,
u = g on ∂Ω

(5.2)

from an L2(Ω)-measurement of the state u, where Ω ⊂ R
d, d ≤ 3, is a bounded

domain with Lipschitz boundary, f ∈ L2(Ω) and g ∈ H3/2(∂Ω). We assume that the
sought solution c† is in L2(Ω). This problem reduces to solving an equation of the
form (1.1) if we define the nonlinear operator F : L2(Ω) → L2(Ω) by F (c) := u(c),
where u(c) ∈ H2(Ω) ⊂ L2(Ω) denotes the unique solution of (5.2). This operator
F is well defined on

D(F ) :=
{

c ∈ L2(Ω) : ‖c− ĉ‖L2(Ω) ≤ γ0 for some ĉ ≥ 0 a.e.
}

for some positive constant γ0 > 0. It is well known that F is Fréchet differentiable;
the Fréchet derivative of F and its adjoint are given by

F ′(c)h = −A(c)−1(hF (c)) and F ′(c)∗w = −u(c)A(c)−1w

for h,w ∈ L2(Ω), where A(c) : H2 ∩ H1
0 → L2 is defined by A(c)u = −△u + cu

which is an isomorphism uniformly in a ball Bρ(c0)∩D(F ) for any c0 ∈ D(F ) with
small ρ > 0. It has been shown (see [4]) that for any c̄, c ∈ Bρ(c0) there holds

‖F (c̄)− F (c)− F ′(c)(c̄ − c)‖L2(Ω) ≤ C‖c̄− c‖L2(Ω)‖F (c̄)− F (c)‖L2(Ω).

Therefore, Assumption 3.2 and the condition (3.10) hold if ρ > 0 is small enough.
In our numerical simulation, we consider the two dimensional problem with

Ω = [0, 1]× [0, 1] and

c†(x, y) =







1, if (x − 0.3)2 + (y − 0.7)2 ≤ 0.22;
0.5, if (x, y) ∈ [0.6, 0.8]× [0.2, 0.5];
0, elsewhere.

We assume u(c†) = x + y and add noise to produce the noisy data uδ satisfying
‖uδ − u(c†)‖L2(Ω) = δ. We take δ = 0.1 × 10−3 and αn = 2−n. The partial differ-
ential equations involved are solved approximately by a finite difference method by
dividing Ω into 40× 40 small squares of equal size. and the involved minimization
problems are solved by the modified nonlinear CG method in [21]. we take the initial
guess c0 = 0 and ξ0 = 0, and terminate the iteration by the discrepancy principle
(3.6) with τ = 1.05.

Figure 5.2(a) plots the exact solution c†(x, y). Figure 5.2(b) shows the result for
the method with Θ(c) = ‖c‖2L2. Figure 5.2 (c) and (d) report the reconstruction
results for the method with Θ(c) = µ‖c‖2L2 +

∫

Ω
|Dc| for µ = 0.01 and µ = 1.0

respectively; the term
∫

Ω
|Dc| is replaced by a smooth one

∫

Ω

√

|Dc|2 + ǫ with
ǫ = 10−6 during computation. The reconstruction results in (c) and (d) significantly
improve the one in (b) by efficiently removing the notorious oscillatory effect and
indicate that the method is robust with respect to µ. We remark that, due to the
smaller value of µ, the reconstruction result in (d) is slightly better than the one
in (c) as can be seen from the plots; the computational time for (d), however, is
longer.

Acknowledgements Q Jin is partly supported by the grant DE120101707 of Aus-
tralian Research Council, and M Zhong is partly supported by the National Natural
Science Foundation of China (No.11101093).



24 Qinian Jin, Min Zhong

0
0.5

1

0
0.5

1

0

0.5

1

(d) nδ=28

0
0.5

1

0
0.5

1

0

0.5

1

(d) nδ=30

0
0.5

1

0
0.5

1

0

0.5

1

(d) nδ=23

0
0.5

1

0
0.5

1

0

0.5

1

(a) Exact solution

Fig. 5.2 Reconstruction results for Example 5.2: (a) Exact solution; (b) Θ(c) = ‖c‖2
L2 ; (c) and

(d) Θ(c) = µ‖c‖2
L2 +

∫
Ω
|Dc| with µ = 0.01 and µ = 1 respectively.
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