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Abstract We develop a Nitsche-based formulation for a general class of stabilized finite element
methods for the Stokes problem posed on a pair of overlapping, non-matching meshes. By ex-
tending the least-squares stabilization to the overlap region, we prove that the method is stable,
consistent, and optimally convergent. To avoid an ill-conditioned linear algebra system, the scheme
is augmented by a least-squares term measuring the discontinuity of the solution in the overlap
region of the two meshes. As a consequence, we may prove an estimate for the condition number
of the resulting stiffness matrix that is independent of the location of the interface. Finally, we
present numerical examples in three spatial dimensions illustrating and confirming the theoretical
results.
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1 Introduction

Overlapping mesh methods offer many advantages over standard finite element methods that re-
quire the generation of a single conforming mesh resolving the full computational domain. With
overlapping mesh methods, the computational domain may instead be described by a set of overlap-
ping and non-matching meshes. In particular, different subdomains may be meshed independently
and then collected to form the full domain. This feature is particularly useful in engineering appli-
cations where meshes for physical components may be reused in different configurations. Another
important example is the simulation of the flow around a complex object embedded in a channel.
One may then create a mesh that discretizes a fixed and simple domain such as a cube or a sphere
surrounding the complex object. This mesh may then be imposed on top of a fixed background
mesh for the simulation of the flow around the object inserted at different locations in a domain
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Fig. 1.1 The stabilized Nitsche overlapping mesh method presented in this work allows the simulation of Stokes flow
around a complex object (here a simple two-dimensional airfoil) described by a matching mesh of its surroundings
imposed on top of a non-matching fixed background mesh.

of interest. A particular advantage of this approach is that it allows the creation of a fixed graded
mesh to resolve boundary layers close to the surface of the complex object. This is illustrated in
Figure 1.1 for a simple two-dimensional airfoil embedded in a channel.

In this work, we introduce an overlapping mesh method for Stokes flow with constant viscosity
across the artificial mesh interface. The Stokes problem reads: find the velocity u : Ω ⊂ Rd → Rd
and the pressure p : Ω → R such that

−∆u+∇p = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

u = g on ∂Ω, (1.1c)

where Ω denotes a bounded domain in Rd, d = 2 or 3, with Lipschitz boundary ∂Ω, and where
f ∈ L2(Ω) and g ∈ H1/2(∂Ω) are given functions. To satisfy (1.1b), we assume that the mean
value of g · n vanishes; n denoting the outward unit normal to ∂Ω.

Our formulation is based on a general stabilized Galerkin finite element method for the Stokes
problem and enforcement of the interface conditions via Nitsche’s method. In order to prove
stability, we let the least-squares stabilization terms extend to all elements that intersect the com-
putational domain. As a result, these terms will appear twice in any overlap regions. In addition,
we include a certain least-squares term penalizing the difference between the velocity solutions in
the overlap region. This allows us to prove stability and optimal order error estimates as well as
to control the condition number of the resulting algebraic problem.

The method proposed here can be viewed as an extension to the Stokes problem of earlier
work by Hansbo et al. [13] who developed a Nitsche overlapping mesh method for a second order
elliptic model problem. Also, Becker et al. [5] presented a Nitsche extended finite element method
for incompressible elasticity based on low-order ([P c1 ]d×P0) elements. Moreover, the least-squares
penalty of the velocity differences is related to the mesh tying approach proposed by Day and
Bochev [7], who formulate a least-squares problem for a system consisting of the partial differential
equation together with the interface conditions. Note that in our method, the interface conditions
are enforced using Nitsche’s method, while the least-squares terms on the overlap are only included
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to prove the stability of the method and to control the condition number. In a related work [23],
we present a stabilized Nitsche fictitious domain method for the Stokes problem.

The implementation of the overlapping mesh method in three space dimensions is a challenging
problem. A realization of the method proposed in this work entails computing the intersection of
arbitrarily superimposed tetrahedral meshes and integration over arbitrarily cut tetrahedra. Such
a realization has been developed as part of the C++ library DOLFIN-OLM (http://launchpad.
net/dolfin-olm) extending the FEniCS Project software [20, 19, 18, 17, 21, 1, 2]. For a discussion
of the computational aspects, we refer to our previous work [22] and the related paper [23].

The remainder of this work is organized as follows. We first summarize our assumptions and
notation in Section 2. The overlapping mesh method is then formulated in Section 3. Sections 4–6
are devoted to the stability and a priori error analysis of the proposed method, while the condition
number estimate is presented in Section 7. Finally, we demonstrate the proposed method for a
sample application in Section 8, and present numerical convergence results and condition number
estimates to support our theoretical results.

2 Preliminaries

In this section, we review the notation used throughout the remainder of this work. We also
summarize a standard stabilized Stokes formulation to lay the foundations for the formulation of
the overlapping mesh method in Section 3.

2.1 Finite element spaces

In what follows, Hs(Ω) denotes the standard Sobolev space of order s ∈ N, defined on an open
and bound domain Ω with Lipschitz boundary ∂Ω. We write (·, ·)s,Ω , ‖ · ‖s,Ω and | · |s,Ω for the
inner product, norm and semi-norm on Hs(Ω), respectively. The index s will be dropped when
s = 0.

For a given, shape-regular tessellation T of Ω, we let the associated discrete velocity space
Vh ⊂ [H1(Ω)]d be the space of continuous piecewise polynomial Rd-valued vector fields of order
k, and let the pressure space Qh ⊂ L2(Ω)∩C0(Ω) consist of continuous piecewise polynomials of
order l. To emphasis the order of the underlying polynomials, we occasionally write V kh and Qlh.

2.2 Stabilized Stokes elements

We recall the definition of consistently stabilized finite element methods for the Stokes problem,
following Franca et al. [10], Barth et al. [4]. We first define the bilinear and linear forms

ah(uh,vh) = (∇uh,∇vh)Ω , (2.1)

bh(vh, ph) = −(∇ · vh, ph)Ω , (2.2)

lh(vh) = (f ,vh)Ω . (2.3)

As categorized by Barth et al. [4], a wide class of consistently stabilized mixed finite element
formulation for the Stokes problem can be recast in the following form: find (uh, ph) ∈ Vh × Qh
such that

Ah(uh, ph;vh, qh) = Lh(vh, qh) ∀ (vh, qh) ∈ Vh ×Qh,

where

Ah(uh, ph;vh, qh) = ah(uh,vh) + bh(vh, ph) + bh(uh, qh)− Sh(uh, ph;vh, qh),

Lh(v, q) = lh(v)− δ
∑
T∈T

h2T (f ,−α∆vh + β∇qh)T ,

http://launchpad.net/dolfin-olm
http://launchpad.net/dolfin-olm
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and where the stabilization is given by

Sh(uh, ph;vh, qh) = δ
∑
T∈T

h2T (−∆uh +∇ph,−α∆vh + β∇qh)T .

The parameters α and β are chosen from the sets {−1, 0, 1} and {−1, 1}, respectively and δ denotes
some positive constant. Barth et al. [4] point out that the choice (α, β) = (1, 1) corresponds to the
classical scheme introduced by Hughes et al. [16], while on the other hand, the method by Douglas
and Wang [8] can be constructed from the parameter choice (α, β) = (−1, 1). In what follows, we
will focus on these two families of stabilized methods for the Stokes problem.

2.3 A domain decomposition model problem for the Stokes problem

Let Ω = (Ω1 ∪Ω2)◦ be a domain in Rd with Lipschitz boundary ∂Ω, consisting of two (open and
bounded) disjoint subdomains Ω1 and Ω2 separated by the interface Γ = ∂Ω1∩∂Ω2. To develop a
Nitsche based overlapping mesh method for the Stokes problem, we consider the following domain
decomposition model problem for (1.1): find u : Ω → R3 and p : Ω → R such that

−∆ui +∇pi = f i in Ωi, i = 1, 2, (2.4)

∇ · ui = 0 in Ωi, i = 1, 2, (2.5)

[u] = 0 on Γ, (2.6)

[∂nu− pn] = 0 on Γ, (2.7)

u = 0 on ∂Ω. (2.8)

Here and in the following, vi = v|Ωi denotes the restriction of a function or vector field v to a
subdomain Ωi. Furthermore, n is the unit normal of Γ directed from Ω2 into Ω1, ∂nu ≡ n · ∇u,
and [v] = v2 − v1 denotes the jump in a function over the interface Γ .

Fig. 2.1 Decomposition of the domain Ω by introducing the artificial interface Γ . The weak coupling along the
interface Γ by the Nitsche method allows independent meshes for the subdomains Ω1 and Ω2, including overlapping
meshes.

The decomposition of Ω into the two subdomains Ω1 and Ω2 motivates the introduction of the
broken Sobolev spaces

Hs(Ω1 ∪Ω2) = Hs(Ω1)
⊕

Hs(Ω2), s > 0, (2.9)
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endowed with the norm

‖v‖2s,Ω1∪Ω2
= ‖v1‖2s,Ω1

+ ‖v2‖2s,Ω2
.

The key idea in developing in Nitsche-type methods is to now replace the strong continuity
conditions (2.6) and (2.7) by a weak formulation [24, 15, 12, 13, 14]. This approach is analogous
to that of discontinuous Galerkin methods for elliptic equations [3]. Starting with suitable finite
element discretizations of Hs(Ω1) and Hs(Ω2), a weak formulation can be obtained by multiplying
with test functions, integrating by parts and adding certain symmetrization and stabilization
terms. A typical example of the resulting interface form will be given as part of the method we
present in Section 3.

We remark that the introduction of the interface Γ is purely artificial in our application case
and solely serves the purpose of decomposing the domain into suitable subdomains to ease and
decouple the subsequent meshing process.

2.4 Overlapping meshes

We consider a situation where a background mesh T0 is given for Ω = (Ω1 ∪Ω2)◦ and another
mesh T2 is given for the overlapping domain Ω2 (see Figure 2.1). Both meshes are assumed to
consist of shape-regular simplices T . We note that the tessellation T0 of the background domain
Ω may be decomposed into three disjoint subsets:

T0 = T0,1 ∪ T0,2 ∪ T0,Γ , (2.10)

where T0,1 = {T ∈ T0 : T ⊂ Ω1}, T0,2 = {T ∈ T0 : T ⊂ Ω2} and T0,Γ = {T ∈ T0 : |T ∩ Ωi| >
0, i = 1, 2} denote the sets of not, completely and partially overlapped elements relative to Ω2,
respectively. The meshes T ∗1 and T1 are then defined by

T ∗1 = T0,1 ∪ T0,Γ , (2.11)

T1 = {T ∩Ω1 : T ∈ T ∗1 }. (2.12)

Moreover, we introduce the tessellated domain Ω∗1 =
⋃
T∈T ∗

1
T and the overlap region ΩO =

Ω2 ∩Ω∗1 . To ease the notation, we occasionally refer to T2 as T ∗2 and to Ω2 as Ω∗2 . See Figure 2.2
for an illustration of the various mesh parts and regions. Furthermore, we introduce the notation
∂eT ∗j (the exterior facets) and ∂iT ∗j , j = 1, 2 (the interior facets), for the set of facets which

belong to either one or two elements, respectively. Here, a facet means an edge in R2 and face in
R3. In accordance with (2.12), the sets ∂iT1 and ∂iT1 denote the corresponding set of intersected
facets F ∩Ω1.

In addition to the shape-regularity, we require that the mesh sizes are compatible over the
interface Γ . More precisely, we assume that there exist a mesh-independent constant C > 0 such
that for all T ∈ T0 and all T̃ ∈ T2 it holds

C−1hT 6 hT̃ 6 ChT (2.13)

whenever T ∩ T̃ ∩ Γ 6= ∅. Similar assumptions were made in Hansbo et al. [13].
Finally, we compose suitable finite element spaces for the overlapping meshes. For each mesh

T ∗i , i = 1, 2, let Vh,i be a finite element space of continuous fixed-order polynomials on T ∗i . Similar
to the broken Sobolev space (2.9), we introduce the composite finite element space for the whole
domain Ω

Vh = Vh,1
⊕
Vh,2, (2.14)

and define the broken Sobolev space norm as before by

‖vh‖2s,T ∗
1 ∪T2 = ‖vh,1‖2s,T ∗

1
+ ‖vh,2‖2s,T2 . (2.15)
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T0

T2

T0,1

T0,2

T0,Γ

T1 = {T ∩Ω1 : T ∈ T ∗1 }T ∗1 = T0,1 ∪ T0,Γ

TO = {T ∩Ω2 : T ∈ T ∗1 }

Fig. 2.2 Summary of notation for overlapping meshes. The starting point is a background mesh T0 and an over-
lapping mesh T2. The background mesh T0 is then partitioned based on its intersection with the boundary Γ of the
overlapping domain.

for vh ∈ Vh. Note that both vh,1 and vh,2 contribute to the norm in the overlap region ΩO . In
particular, we define the composite finite element spaces Vh and Qh for the velocity and pressure,
respectively, by

Vh = V kh,1
⊕

V kh,2, Qh = Qlh,1
⊕

Qlh,2 (2.16)
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3 A Nitsche overlapping mesh method for the Stokes problem

Given a domain Ω, overlapping meshes T ∗1 and T2 and the composite finite element spaces Vh and
Qh as introduced in (2.16), we define the bilinear form Ah by

Ah(uh, ph;vh, qh) = ah(uh,vh) + bh(vh, ph) + bh(uh, qh)

+sh(uh,vh)− Sh(uh, ph;vh, qh),
(3.1)

where the bilinear forms ah, bh, sh and Sh are given by

ah(uh,vh) = (∇uh,∇vh)Ω1∪Ω2 − (〈∂nuh〉, [vh])Γ (3.2)

− (〈∂nvh〉, [uh])Γ + γ(h−1[uh], [vh])Γ ,

bh(vh, qh) = −(∇ · vh, qh)Ω1∪Ω2
+ (n · [vh], 〈qh〉)Γ , (3.3)

sh(uh,vh) = (∇(uh,1 − uh,2),∇(vh,1 − vh,1))Ω
O
, (3.4)

Sh(uh, ph;vh, qh) = δ
∑

T∈T ∗
1 ∪T2

h2T (−∆uh +∇ph,−α∆vh + β∇qh)T . (3.5)

Here, 〈v〉 denotes a weighted average 〈v〉 = α1v1 + αv2 with α1 + α2 = 1 for a field v defined on
Ω and discontinuous across the interface Γ . In accordance with Hansbo et al. [13] and to simplify
the presentation, we choose 〈v〉 = v2. Finally, the linear form Lh is defined by

Lh(v, q) = (f ,v)− δ
∑

T∈T ∗
1 ∪T2

h2T (f ,−α∆vh + β∇qh)T . (3.6)

With these definitions, the Nitsche based overlapping mesh method for the Stokes problem (1.1)
reads: find (uh, ph) ∈ Vh ×Qh such that

Ah(uh, ph;vh, qh) = Lh(vh, qh) ∀ (vh, qh) ∈ Vh ×Qh. (3.7)

Remark 3.1 The forms sh, Sh and the mesh T ∗1 are defined such that contributions from both
meshes are taken into account in the overlap region Ω

O
. These twice-counted contributions allows

us to obtain stability and condition number estimates; this will be discussed further in Section 5
and 7.

We conclude this section by stating the following Galerkin orthogonality relation.

Proposition 3.1 Let (u, p) ∈ [H2(Ω)]d × H1(Ω) be a (weak) solution of (1.1) and (uh, ph) ∈
Vh ×Qh the solution of the finite element formulation (3.7). Then

Ah(u− uh, p− ph;vh, qh) = 0 ∀ (vh, qh) ∈ Vh ×Qh. (3.8)

Proof The proof is standard and follows from integration by parts, the continuity conditions (2.6)
– (2.7) and observing that sh(u,vh) ≡ 0 ≡ Sh(u, p;vh, qh) for all (vh, qh) ∈ Vh ×Qh. ut

4 Approximation properties

In this section, we establish the appropriate interpolation operators and provide interpolation
estimates for use in Sections 5–6 for the a priori error analysis of the method proposed in Section 3.

With reference to Section 2.4, Vh will here denote some composite finite element space Vh =
Vh,1

⊕
Vh,2 comprising piecewise polynomial functions or vector fields defined on T ∗i , i = 1, 2. In

particular, we shall let Vh = Vh or Vh = Qh in the subsequent sections. The constants C involved
in the inequalities will depend only on Ωi, the regularity of the function spaces considered, and
possibly the shape-regularity of Ti and the polynomial order of Vh,i, i = 1, 2.
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4.1 Norms

Given the domain Ω = Ω1 ∪ Ω2 and corresponding overlapping meshes T ∗1 and T2, we introduce
the following pairs of mesh-dependent norms for (v, q) ∈ [H2(Ω)]d×H1(Ω) and (vh, qh) ∈ Vh×Qh
(see (2.16) and (2.15)):

|||v|||2 = ‖∇v‖2Ω1∪Ω2
+ ‖〈∂nv〉‖2−1/2,h,Γ + ‖[v]‖21/2,h,Γ , (4.1)

|||v|||2∗ = ‖∇v‖2T ∗
1 ∪T2 + ‖〈∂nv〉‖2−1/2,h,Γ + ‖[v]‖21/2,h,Γ , (4.2)

|||q|||2 = ‖q‖2Ω1∪Ω2
, (4.3)

|||q|||2∗ = ‖q‖2T ∗
1 ∪T2 , (4.4)

where

‖v‖2α,h,Γ =
∑
T∈T2

h−2αT ‖v‖20,Γ∩T , (4.5)

and finally

|||(v, q)|||2 = |||v|||2 + |||q|||2, (4.6)

|||(v, q)|||2∗ = |||v|||2∗ + ‖q‖2∗. (4.7)

Note that ||| · |||∗-norms are defined on the regular meshes T ∗1 and T2 and therefore represent proper
norms for the discrete finite element functions, while ||| · ||| is more suitable for functions defined
on Ω = Ω1 ∪Ω2 only.

4.2 Trace inequalities and inverse estimates

In the following, T ∗ denotes always one of the regular, non-intersected meshes T ∗1 and T ∗2 . We
first recall the following trace inequalities for v ∈ H1(Ω) (or v ∈ [H1(Ω)]d) [13]:

‖v‖∂T 6 C(h
−1/2
T ‖v‖T + h

1/2
T ‖∇v‖T ) ∀T ∈ T ∗, (4.8)

‖v‖T∩Γ 6 C(h
−1/2
T ‖v‖T + h

1/2
T ‖∇v‖T ) ∀T ∈ T ∗. (4.9)

The following inverse estimates for v ∈ Vh = Vh(T ∗) will also be frequently used. See [25, 13, 15])
for proofs.

hT ‖∇vh‖T 6 C‖vh‖T ∀T ∈ T ∗, (4.10)

h
1/2
F ‖∂nvh‖F 6 C‖∇vh‖T ∀T ∈ T ∗, (4.11)

h
1/2
F ‖∂nvh‖Γ∩T 6 C‖∇vh‖T ∀T ∈ T ∗. (4.12)

We emphasize that hF in (4.12) (as in (4.11)) denotes the diameter of the entire facet F as part
of the mesh T ∗. Finally, the estimation of the stabilization terms (3.5) will involve the inverse
estimates ∑

T∈T ∗

h2T ‖∇vh‖2 6 C‖vh‖2T ∗ ∀ vh ∈ Vh, (4.13)∑
T∈T ∗

h2T ‖∆vh‖2 6 C‖∇vh‖2T ∗ ∀ vh ∈ Vh. (4.14)

To the end of this section, we state a Poincaré type inequality for finite element functions on
the overlapped mesh domain T ∗1 . To prove the proposition, we will need the following lemma,
which is stated and proved in [23]:
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Lemma 4.1 Let T = {T} be a mesh consisting of shape-regular elements T and take any two
elements T1 and T2 sharing a face F . Furthermore, let u be a piecewise polynomial function defined
on the macro-element M = T1∪T2. There exists a constant C depending only on the mesh quality
parameters and the maximal polynomial order p of u restricted to each of the elements, such that

‖u‖2T1
6 C(‖u‖2T2

+
∑
j6p

h2j+1
F ([∂jnu], [∂jnu])F ). (4.15)

Also note that the inverse inequalities (4.10) and (4.11) can be generalized, by the standard scaling
argument, to inverse estimates of the type

hjT ‖D
ju‖T 6 Chj−iT ‖D

j−iu‖T for i 6 j, (4.16)

h
1/2
F ‖∂

j
nu‖F 6 C‖Dju‖T , (4.17)

where Dju denotes the j-th total derivative of u.

Proposition 4.1 Let Ω1 be the overlapped domain and T ∗1 be the overlapped mesh, and let Vh,1
be a finite element space on T ∗1 consisting of continuous piecewise polynomials. Then

‖vh‖2T ∗
1
6 C(‖vh‖2Ω1

+
∑
T∈T ∗

1

h2T ‖∇vh‖2T ), (4.18)

‖vh‖2T ∗
1
6 C(‖vh‖2Ω1

+ ‖∇vh‖2T ∗
1

), (4.19)

for all vh ∈ Vh,1.

Proof By definition

‖vh‖2T ∗
1

=
∑

T∈T0,1

‖vh‖2T +
∑

T1∈T0,Γ

‖vh‖2T1
. (4.20)

Applying Lemma 4.1 and subsequently invoking (4.17) and (4.16) give∑
T1∈T0,Γ

‖vh‖2T1
6 C

∑
T∈T ∗

1

(
‖vh‖2T + h2T ‖∇vh‖2T

)
, (4.21)

where the shape-regularity of T ∗1 provides a bound on hF in terms of hT . Combining (4.20)
and (4.21) yields (4.18).

Since hT 6 |Ω∗1 |, the second Poincaré type inequality (4.19) is a simple consequence of the first
one. ut

4.3 Interpolation estimates

The aim of this section is to construct and analyze an interpolation operator πh : L2(Ω)→ Vh and
a corrected interpolation operator πch : [H1(Ω)]d → Vh. The construction is based on extending
the standard Scott–Zhang interpolation operator [26].

First, for s > 0, there exists a linear extension operator Es : Hs(Ω1)→ Hs(Ω∗1) and a constant
C > 0 such that Esv|Ω1

= v and
‖Esv‖s,Ω∗

1
6 C‖v‖s,Ω1 (4.22)

for all v ∈ Hs(Ω1) [27].
Next, for i = 1, 2, let πh,i : L2(Ω∗i ) → Vh,i be the Scott–Zhang interpolation operator and

recall the standard interpolation error estimates [26]:

‖vi − πh,ivi‖r,T 6 Chs−r|vi|s,ω(T ), 0 6 r 6 s ∀T ∈ T ∗i , (4.23)

‖vi − πh,ivi‖r,F 6 Chs−r−1/2|vi|s,ω(F ), 0 6 r 6 s ∀F ∈ ∂iT ∗i , (4.24)

for all vi ∈ Hs(Ω∗i ) for i = 1, 2. Here, ω(T ) is the patch of all elements sharing a vertex with T ;
the patch ω(F ) of a face F is defined analogously.
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Altogether, we define

πh : Hs(Ω1)
⊕

Hs(Ω2)→ Vh, s > 1, (4.25)

by
πhv = πh,1Esv1 ⊕ πh,2v2. (4.26)

The estimate (4.22) together with the interpolation error estimate (4.23) for the Scott–Zhang
interpolation operator imply the following interpolation estimates:

‖v − πhv‖r,T 6 Chs−r|v|s,ω(T ), 0 6 r 6 s ∀T ∈ T1 ∪ T2, (4.27)

‖v − πhv‖r,F 6 Chs−r−1/2|v|s,ω(T ), 0 6 r 6 s ∀F ∈ ∂iT1 ∪ ∂iT2. (4.28)

We now return to our specific finite elements spaces Vh and Qh. We continue writing πh for
both the interpolation operator (4.25) defined for [Hk+1(Ω)]d → V kh and H l+1(Ω) → Qlh. The
following lemma provides an interpolation error estimate in the ||| · ||| norms.

Lemma 4.2 There is a constant C > 0 such that for all v ∈ [Hk+1(Ω)]d, q ∈ H l+1(Ω) it holds
that

|||v − πhv||| 6 Chk|v|k+1,Ω , (4.29)

|||q − πhq||| 6 Chl+1|q|l+1,Ω , (4.30)

|||(v − πhv, q − πhq)||| 6 C(hk|v|k+1,Ω + hl+1|q|l+1,Ω). (4.31)

Proof For the proof of (4.29) we refer to Hansbo et al. [13]. The estimate (4.30) follows from the
definition of πh, the interpolation estimate (4.23) and the continuity of the extension operator
Es. ut

We conclude the section by referring to a modified Scott–Zhang interpolation operator intro-
duced by Becker et al. [5] to establish a Nitsche extended finite element method for incompressible
elasticity. There, the standard Scott-Zhang interpolant was corrected to gain some additional or-
thogonality properties on the interface. Although only used for continuous piecewise linear velocity
fields in combination with piecewise constant pressures in Becker et al. [5], we will show in the
next section that the interpolant can be utilized to prove a sufficient inequality for bh(·, ·) adapted
to the case of overlapping meshes.

To construct the corrected interpolant, Becker et al. [5] regrouped the elements T ∈ T0,Γ into
a collection Γω of patches ωi in such a way that each patch can be associated with a hat function
Φi constructed from the finite element functions defined on elements T ⊂ ωi. Moreover, ωi and Φi
have the following three properties: there are constants c, C > 0 such that

(i) ch 6 diam(ωi) 6 Ch
(ii) ch 6

∫
Γ∩ωi Φi 6 Ch

(iii) ch−1 6 |∇Φi(x)| 6 Ch−1

Loosely speaking, these properties guarantee that patches and hat functions behave as standard
elements and shape functions. Although Becker et al. [5] only elaborate on the construction in
two dimension and for a non-fitting interface, a similar construction is possible in any spatial
dimension d and for the case where the interface is defined by the boundary of another mesh.

By adjusting the degrees of freedom associated with the hat functions {Φi}, an interpolation
operator

πch,1 : [H1(Ω∗1)]d → Vh,1

can be defined that satisfies an orthogonality property of the form

(v1 − πch,1v1,n)Γ∩ωi = 0 ∀ωi, (4.32)

and an interpolation estimate of the form

‖v1 − πch,1v1‖0,Ω∗
1

+ h‖∇(v1 − πch,1v1)‖0,Ω∗
1
6 Ch‖∇v‖0,Ω∗

1
. (4.33)
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Finally, we can construct a corrected Scott–Zhang interpolation operator πch for the composite
velocity spaces Vh by

πch : [H1(Ω)]d → Vh,1
⊕

Vh,2

πch(v) = πch,1E1v1 ⊕ πh,2v2
(4.34)

where πh,2 is the standard Scott–Zhang operator on Ω∗2 .
We will need the following continuity property of the corrected interpolation operator πch with

respect to different norms.

Lemma 4.3 Let v ∈ [H1(Ω)]d. There exists a constant C > 0 such that

|||πchv|||∗ 6 C‖v‖1,Ω1∪Ω2
. (4.35)

Proof By definition,

|||πchvh|||2∗ = ‖∇πchvh‖2T ∗
1 ∪T2 + ‖〈∂nπchvh〉‖2−1/2,h,Γ + ‖[πchvh]‖21/2,h,Γ .

The estimate for the first term follows directly from the definition (and boundedness) of πch and the
continuity of the extension operator E . Using the inverse estimate (4.12), the bound for the second
follows from the bound of the first. To estimate the last term, we first note that ‖[πchv]‖1/2,h,Γ =
‖[πchv − v]‖1/2,h,Γ since [v] = 0 for v ∈ H1(Ω) and thus

‖[πchv]‖21/2,h,Γ 6 ‖πchv − v1‖21/2,h,Γ + ‖πchv − v2‖21/2,h,Γ .

Another application of the trace inequality (4.9) combined with interpolation estimates (4.33)
yields for i = 1, 2:

‖πchv − vi‖2−1/2,h,Γ 6
∑
T∈T ∗

i

h−1T ‖π
c
hv − v‖2Γ∩T

6
∑
T∈T ∗

i

h−1(h−1‖πchv − v‖2T + h‖∇(πchv − v)‖2T )

6 ‖v‖21,T ∗
i
6 C‖v‖21,Ω1∪Ω2

.

ut

5 Stability estimates

In this section, we first prove that the form ah + sh is continuous and coercive with respect to the
||| · |||∗ norm in Proposition 5.1; that bh is continuous with respect to both the ||| · ||| and the ||| · |||∗
norms in Proposition 5.2; and an additional inequality for bh in Proposition 5.3. Subsequently, these
estimates are used to show that the complete stabilized Nitsche form Ah satisfies the Babuška–
Brezzi inf-sup condition in Theorem 5.1.

We begin by demonstrating that ah + sh is continuous and stable with respect to the norm
||| · |||∗.

Proposition 5.1 Let ah and sh be defined by (3.2) and (3.4). There are constants c > 0 and
C > 0 such that

ah(uh,vh) + sh(uh,vh) 6 C|||uh|||∗ |||vh|||∗ ∀uh,vh ∈ Vh, (5.1)

c|||vh|||2∗ 6 ah(vh,vh) + sh(vh,vh) ∀vh ∈ Vh. (5.2)

Proof A proof in the absence of the term sh and with ||| · |||∗ replaced by ||| · ||| is given in Hansbo
et al. [13]. Since by definition |||vh|||2∗ = |||vh|||2 + ‖∇vh‖2Ω

O
the estimates (5.1) and (5.2) follow

directly from the equivalence ‖∇vh‖2T ∗
1 ∪T2

∼ ‖∇vh‖2Ω1∪Ω2
+‖∇(vh,1−vh,2)‖2Ω

O
and the definition

of sh. ut
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Next, we state the continuity properties of bh with respect to the various norms.

Proposition 5.2 Let bh be defined by (3.3). There exists a constant C > 0 such that

bh(v, q) 6 C|||v||| |||q||| ∀ (v, q) ∈ [H1(Ω)]3 × L2(Ω), (5.3)

bh(vh, qh) 6 C|||vh|||∗|||qh|||∗ ∀ (vh, qh) ∈ Vh ×Qh. (5.4)

Proof The first inequality is a trivial consequence of the fact that the interface term [v] vanishes
for v ∈ [H1(Ω)]3. To prove the second estimate, it is enough to estimate the interface term
(n · [vh], 〈qh〉)Γ . Recall that we chose 〈qh〉 = qh,2. We combine the Cauchy–Schwarz inequality
with (4.9), (4.10) and (4.12) to obtain

(〈qh〉,n · [vh])Γ 6 |(qh,2,n · vh,1)Γ |+ |(qh,2,n · vh,2)Γ |
6 ‖qh,2‖−1/2,h,Γ

(
‖vh,1‖1/2,h,Γ + ‖vh,2‖1/2,h,Γ

)
6 C‖qh,2‖T2

(
‖∇vh,1‖T ∗

1
+ ‖∇vh,2‖T2

)
6 C(|||qh|||∗|||vh|||∗).

ut

The proof of the inf-sup condition for stabilized Stokes elements often involves an inequality
known as Verfürths trick [28]. In the next proposition, we present a version adapted to the case
of overlapping meshes.

Proposition 5.3 There are constants C1 > 0 and C2 > 0 such that for all qh ∈ Qh:

sup
vh∈Vh

b(vh, qh)

|||vh|||∗
> C1‖qh‖Ω1∪Ω2

− C2(
∑

T∈T ∗
1 ∪T2

h2T ‖∇qh‖2T )1/2. (5.5)

Proof Let qh ∈ Qh be given. The div-operator maps [H1(Ω)]d onto L2(Ω) and there is a constant
C > 0 such that ‖v‖1,Ω 6 C‖div v‖Ω [11] for all v. Choosing v ∈ [H1(Ω)]d such that div v = −qh
thus gives

bh(v, qh) = ‖qh‖2Ω > C−1‖qh‖Ω‖v‖1,Ω , (5.6)

where we have also used the fact that [v] = 0.
Next, we take vh = πchv, where πch is the corrected Scott–Zhang interpolant introduced in

Section 4.3. It follows that

bh(vh, qh) ≡ bh(πchv, qh) = bh(πchv − v, qh) + b(v, qh) (5.7)

> bh(πchv − v, qh) + C−1‖qh‖Ω‖v‖1,Ω . (5.8)

To proceed further, we recall that 〈qh〉 ≡ qh,2, n ≡ n2 and observe that

2∑
i=1

(ni · (πch,ivi − vi), qh,i)Γ = (n · [πchv − v], qh,2)Γ + (n · (πch,1v1 − v1), [qh])Γ .

Using this identity and integrating the first term in (5.8) by parts, we derive that

bh(πchv − v, qh) ≡ −(∇ · (πchv − v), qh)Ω1∪Ω2
+ (n · [πchv − v], qh,2)Γ

=

2∑
i=1

∑
T∈Ti

(πchv − v,∇qh)T∩Ωi︸ ︷︷ ︸
I

− (n · (πch,1v1 − v1), [qh])Γ︸ ︷︷ ︸
II

.

Rewriting (πchv − v,∇qh)T∩Ω = (h−1T (πchv − v), hT∇qh)T∩Ω and applying the interpolation esti-
mates (4.27) and (4.33), the first term I can be bounded from below by

|I| > −‖∇v‖T ∗
1 ∪T2

( ∑
T∈T ∗

1 ∪T2

h2T ‖∇qh‖2
)1/2

.



A stabilized Nitsche overlapping mesh method for the Stokes problem 13

To estimate the second term II, we exploit the orthogonality property (4.32) and write

(n · (πch,1v1 − v1), [qh])Γ =
∑
ω∈Γω

(n · (πch,1v1 − v1), qh,2 − q̄h,2)Γ∩ω

−
∑
ω∈Γω

(n · (πch,1v1 − v1), qh,1 − q̄h,1)Γ∩ω,
(5.9)

where q̄h,i|ω = 1
|ω|
∫
ω
qh,i dx, i = 1, 2. Now each contribution in the sum (5.9) can bounded by

(n · (πch,1v1 − v1), qh,i − q̄h,i)Γ∩ω
6 ‖n · (πch,1v1 − v1)‖1/2,h,Γ∩ω‖qh,i − q̄h,i‖−1/2,h,Γ∩ω

(5.10)

Using again the trace inequality (4.9), the last factor can estimated by

‖qh,i − q̄h,i‖−1/2,h,Γ∩ω 6 C|ω|‖∇qh,i‖ω 6 ChT ‖∇qh,i‖ω,

since qh,i − q̄h,i has mean value zero on ω and so ‖qh,i − q̄h,i‖ω 6 |ω|‖∇qh,i‖ω. To arrive at
an estimate for first factor in (5.10), we use the trace inequality (4.9) in combination with the
interpolation estimate (4.33) and the continuity of the extension operator:

‖n · (πch,1v1 − v1)‖1/2,h,Γ∩ω 6 ‖∇v1‖ω∩Ω1
.

Thus

|(n · (πch,1v1 − v1), [qh])Γ | 6
∑
ω∈Γω

hT (‖∇qh,1‖ω + ‖∇qh,2‖ω)‖∇v1‖ω∩Ω1

6 C(
∑

T∈T ∗
1 ∪T2

h2T ‖∇qh‖2T )1/2‖∇v‖Ω1 .

Putting I and II together, we see that

|bh(πchv − v, qh)| 6 C(
∑

T∈T ∗
1 ∪T2

h2T ‖∇qh‖2T )1/2‖∇v‖Ω ,

which together with (5.8) gives the estimate

b(πchv, qh)

‖v‖Ω
> C̃1‖qh‖Ω1∪Ω2

− C̃2(
∑

T∈T ∗
1 ∪T2

h2T ‖∇qh‖2T )1/2

Now the estimate follows from the continuity (4.35) of the operator πch. ut

Remark 5.1 Although looking very similar to the standard “bad-inequality”, the inequality (5.5)
bears some subtle differences. Note that we count contributions ‖∇qh‖T twice in the overlap
domain ΩO. This is mainly a consequence of the trace inequality (4.9). The L2-norm of qh on the
other hand is only taken on Ω1 ∪Ω2; thus requiring special consideration in the subsequent proof
of the inf-sup estimate for Ah using the norm |||qh|||∗ = ‖qh‖T ∗

1 ∪T2 .

We conclude the section by proving the inf-sup condition for the bilinear form Ah with respect
to the norm |||(·, ·)|||∗.

Theorem 5.1 Let Ah be defined by (3.1)–(3.5) and assume that either {α, β} = {1, 1} or {α, β} =
{−1, 1}. Then there is a constant c such that

sup
(vh,qh)∈Vh×Qh

Ah(uh, ph;vh, qh)

|||(vh, qh)|||∗
> c|||(uh, ph)|||∗ ∀ (uh, ph) ∈ Vh ×Qh. (5.11)
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Proof The proof follows the presentation given in Franca et al. [10]. Let (uh, ph) be given and
consider the case {α, β} = {1, 1}.

Step 1 : Choose vh = −w such that the supremum in (5.5) is attained. By scaling w, we
can assume that |||w|||∗ = ‖ph‖Ω1∪Ω2

. Inserting (vh, qh) = (−w, 0) into Ah, we obtain via (5.1)
and (5.5):

Ah(uh, ph;vh, qh) = −ah(uh,w)− sh(uh,w)− bh(w, ph) + Sh(uh, ph;w, 0)

> −Ca|||uh|||∗‖ph‖Ω1∪Ω2

+ {C1‖ph‖Ω1∪Ω2
− C2(

∑
T∈T ∗

1 ∪T2

h2T ‖∇qh‖2T )1/2}‖ph‖Ω1∪Ω2

+ δ
∑

T∈T ∗
1 ∪T2

h2T (−∆uh +∇ph,−∆w)T︸ ︷︷ ︸
I

. (5.12)

We estimate I using Cauchy–Schwarz and the inverse inequality (4.14):

I > −CIδ‖∇w‖T ∗
1 ∪T2

(
‖∇uh‖T ∗

1 ∪T2 +
( ∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖T
)1/2)

> −CIδ‖ph‖Ω1∪Ω2

(
|||uh|||∗ +

( ∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖T
)1/2)

where the last inequality above follows as ‖∇v‖T ∗
1 ∪T2 6 |||v|||∗ for all v and |||w|||∗ = ‖ph‖Ω1∪Ω2

.
Inserting this final estimate for I into (5.12) and using the inequality ab 6 εa2 + (4ε)−1b2 for any
ε > 0, we arrive at

Ah(uh, ph;−w, 0) > (C1 − ε(Ca + C2 + δCI))‖ph‖2Ω1∪Ω2

− (Ca + δCI)(4ε)
−1|||uh|||2∗

− (C2 + δCI)(4ε)
−1

∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖2T

> C̃1‖ph‖2Ω1∪Ω2
− C̃2|||uh|||2∗ − C̃3

∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖2T

with positive constants C̃1, C̃2, C̃3 for an appropriate choice of ε.
Step 2 : Now choose (vh, qh) = (uh,−ph). Proposition 5.1 and subsequently (4.14) give that

Ah(uh, ph;uh,−ph) = ah(uh,uh) + sh(uh,uh)− Sh(uh, ph;uh,−ph)

> ca|||uh|||2∗ − δ
∑

T∈T ∗
1 ∪T2

h2T (−∆uh +∇ph,−∆uh −∇ph)T

> (ca − δCI)|||uh|||2∗ + δ
∑

T∈T ∗
1 ∪T2

h2T ‖∇ph‖2T

> C̃|||uh|||2∗ + δ
∑

T∈T ∗
1 ∪T2

h2T ‖∇ph‖2T

with positive C̃ as long as 0 < δ < caC
−1
I .

Step 3 : To complete the proof, we combine step 1 and step 2 by taking (vh, qh) = (uh−ηw,−ph)
for some η > 0. By choosing η sufficiently small,

A(uh, ph;vh, qh) > C1|||uh|||2∗ + C2‖ph‖2Ω1∪Ω2
+ C3

∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖2T

> C1|||uh|||2∗ + C̃2|||ph|||2∗ > min(C1, C̃2)|||(uh, ph)|||2∗,
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for some constants C1, C2, C3 > 0 where we used Proposition 4.1 to find that for some constant
C̃2 > 0

C2‖ph‖2Ω1∪Ω2
+ C3

∑
T∈T ∗

1 ∪T2

h2T ‖∇ph‖2T > C̃2|||ph|||2∗.

Since |||(vh, qh)|||∗ 6 |||(uh, ph)|||∗ + η|||w|||∗ 6 (1 + η)|||(uh, ph)|||∗, the estimate (5.11) follows.
The proof for {α, β} = {−1, 1} differs only in the derivation of the final estimate in step 2

and can be taken from Franca et al. [10] with the presented adaption to the overlapping meshes
formulation. ut

Remark 5.2 We would like to comment on the role of the different ghost-penalties. As remarked
earlier, the bad-inequality 5.5 “mixes domains” in the sense that it the contributions ‖∇qh‖T
are taken from the elements in T ∗1 ∪ T2, so that the contributions from the overlap region ΩO

are counted twice, while ‖qh‖ is evaluated only once on Ω1 ∪ Ω2. The role of the pressure terms
in the least-squares ghost-penalty

∑
T∈T ∗

1 ∪T2
h2T (−∆uh +∇ph,−∆vh +∇qh)T is two-fold. First,

they compensate the negative contributions −
∑
T∈T ∗

1
h2T ‖∇qh‖2T in the bad-inequality. Secondly,

they allow in combination with Lemma 4.1 to pass from ‖qh‖Ω1∪Ω2
to ‖qh‖T ∗

1 ∪T2 . We further
note that the velocity terms in the least-squares ghost-penalty make it necessary (via the inverse
inequality (4.14)) to control ‖∇uh,1‖Ω

O
. This is precisely the role of sh(uh,vh) = (∇(uh,1 −

uh,2),∇(vh,1 − vh,2))Ω
O

.

6 A priori error estimate

The previous results on the interpolation errors, the Galerkin orthogonality of the discretization
and its stability enable us to state the following a priori estimate for the error in the discrete
solution.

Theorem 6.1 Let k, l > 1 and (α, β) = (±1, 1). Assume that (u, p) ∈ [Hk+1(Ω)]d×H l+1(Ω) is a
(weak) solution of the Stokes problem (1.1). Then the finite element solution (uh, ph) ∈ V kh ×Qlh
defined in (3.7) satisfies the following error estimate:

|||(u− uh, p− ph)||| 6 C
(
hk|u|k+1,Ω + hl+1|p|l+1,Ω

)
. (6.1)

Proof By applying the triangle inequality, we have

|||(u− uh, p− ph)||| 6 |||(u− πhu, p− πhp)|||+ |||(πhu− uh, πhp− ph)|||∗.

Given the interpolation estimate (4.31), it is suffices to bound the discretization error (πhu −
uh, πhp− p). By Theorem 5.1, there exists a (vh, ph) such that |||(vh, ph)|||∗ 6 1 and

c|||(πhu− uh, πhp− ph)|||∗ 6 Ah(uh − πhu, p− πhp;vh, qh).

Thus, the Galerkin orthogonality (3.8) and the definition of Ah give

c|||(πhu− uh, πhp− ph)|||∗ 6 Ah(u− πhu, p− πhp;vh, qh)

= ah(u− πhu,vh) + sh(u− πhu,vh)︸ ︷︷ ︸
I

+ bh(vh, p− πhp)︸ ︷︷ ︸
II

+ bh(u− πhu, qh)︸ ︷︷ ︸
III

−Sh(u− πhu; p− πhp,vh, qh)︸ ︷︷ ︸
IV

.

To estimate the first term, we use (5.1) and the interpolation estimate (4.29) to obtain

|I| 6 C|||u− πhu|||∗|||vh|||∗ 6 Chk|u|k+1,Ω |||vh|||∗ 6 Chk|u|k+1,Ω .
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Recalling that 〈p〉 = p2, the second term II can be estimated by

|II| = |(∇ · v, p− πhp)Ω1∪Ω2
+ (n · [v], 〈p− πhp〉)Γ |

6 |||v||| |||p− πhp|||+ ‖[v]‖1/2,h,Γ ‖p2 − πh,2p2‖−1/2,h,Γ
6 |||v||| |||p− πhp|||+ C‖[v]‖1/2,h,Γ (‖p2 − πh,2p2‖Ω2

+ h‖∇(p2 − πh,2p2)‖Ω2
)

6 C|||v|||hl+1|p|l+1,Ω 6 Chl+1|p|l+1,Ω ,

where we used the trace inequality (4.8) in the penultimate step and finally (4.10) in combination
with the interpolation estimate (4.30). The third term can be treated similarly to obtain

|III| 6 Chk+1|u|k+1,Ω |||qh|||∗ 6 Chk+1|u|k+1,Ω .

For the last term IV , several applications of Cauchy–Schwarz yield

|IV | = δ|
∑

T∈T ∗
1 ∪T2

h2T (−∆(u− πhu),+∇(p− πhp),±∆vh +∇qh)T |

6 C
( ∑
T∈T ∗

1 ∪T2

h2T ‖∆(u− πhu)‖2T ∗
1 ∪T2 + h2T ‖∇(p− πhp)‖2T ∗

1 ∪T2
)1/2

×
( ∑
T∈T ∗

1 ∪T2

h2T ‖∆vh‖2T ∗
1 ∪T2 + h2T ‖∇qh‖2T ∗

1 ∪T2
)1/2

After applying the inverse inequalities (4.14) and (4.13) to the second term, the interpolation
estimate (4.27) implies

|IV | 6 C(hk|u|k+1,Ω + hl+1|p|l+1,Ω)|||(vh, qh)||| 6 C(hk|u|k+1,Ω + hl+1|p|l+1,Ω).

Summing up, we obtain that

|||(u− uh, p− ph)||| 6 |||(u− πhu, p− πhp)|||+ |I|+ |II|+ |III|+ |IV |
6 C(hk|u|k+1,Ω + hl+1|p|l,Ω),

which concludes the proof. ut

7 Condition number estimate

To conclude the analysis of the discretization presented in Section 3, we here show that the
condition number of the associated stiffness matrix is uniformly bounded by Ch−2 independently
of the location of the overlapping mesh T2. The proof of the condition number estimate follows
the approach of Ern and Guermond [9].

Let (vh, qh) =
∑N
i=1 Viϕi where {ϕi}Ni=1 is a basis for the element space Vh×Qh; V = {Vi}i thus

denotes the expansion coefficients of (vh, qh) in the given basis. Similarly, let W label the expansion

coefficients of fields denoted (wh, rh). Denote the inner product in RN by (V,W )N =
∑N
i=1 ViWi

and the corresponding norm by |V |2N = (V, V )N . The stiffness matrix A associated with the
form (3.1) is then defined as:

(AV,W )N = Ah(vh, qh;wh, rh) ∀vh,wh ∈ Vh,∀ qh, rh ∈ Qh. (7.1)

Since essential boundary conditions are applied for the velocity on the whole of ∂Ω, the discrete
pressure is only determined up to a constant, and so the matrix A has one zero eigenvalue.
Throughout the remainder of this section, we therefore instead interpret A as A : RN/ ker(A)→
ker(A)⊥, which is a bijective linear mapping by definition. The condition number of the matrix A
is then defined by

κ(A) = |A|N |A−1|N , (7.2)
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with

|A|N = sup
x∈R̂N\0

|Ax|N
|x|N

. (7.3)

We now state some estimates that will be needed in the derivation of the estimate of the
condition number. First, for a conforming, quasi-uniform mesh T with mesh size h and a finite
element space Vh defined on T , it is well known that there are positive constants cM and CM
only depending on the quasi-uniformness parameters and the polynomial order of Vh such that
the following equivalence holds:

cMh
d/2|V |N 6 ‖vh‖ 6 CMh

d/2|V |N ∀ vh ∈ Vh. (7.4)

A second ingredient is an inverse estimate and a Poincaré inequality in the appropriate norms
which we state in the following two lemmas.

Lemma 7.1 There is a constant CI such that

|||vh|||∗ 6 CIh
−1‖vh‖T ∗

1 ∪T2 , ∀vh ∈ Vh, (7.5)

|||(vh, qh)|||∗ 6 CIh
−1‖(vh, qh)‖T ∗

1 ∪T2 ∀ (vh, qh) ∈ Vh ×Qh. (7.6)

Proof By definition

|||vh|||2∗ = ‖∇vh‖2T ∗
1 ∪T2 + ‖〈∂nvh〉‖2−1/2,h,Γ + ‖[vh]‖21/2,h,Γ .

Applying the standard inverse inequality (4.10) on each mesh T ∗1 and T2 separately, the first term
is bounded by Ch−2‖vh‖2T ∗

1 ∪T2
. A similar bound can be derived for the second term by (4.11)

and (4.10). The estimate for the remaining term follows in the similar manner by a combination
of (4.9) and again (4.10).

The second estimate (7.6) is an immediate consequence of the first and the fact that 1 = C 6
h−1 diam(Ω). ut

Lemma 7.2 There is a constant C such that

‖v‖T ∗
1 ∪T2 6 CP |||v|||∗, ∀v ∈ Vh. (7.7)

Proof By Proposition 4.1, we have

‖v‖2T ∗
1 ∪T2 = ‖v‖2T ∗

1
+ ‖v‖2T2 6 ‖v‖2Ω1

+ C(‖∇v‖2T ∗
1

+ ‖v‖2Ω2
)

6 C(|||v|||2∗ + ‖v‖2Ω1∪Ω2
),

for all v ∈ Vh. Hence, it remains to derive a bound for a ‖v‖Ω1∪Ω2
.

We use a duality argument to estimate ‖v‖Ω1∪Ω2
. Let φ ∈ H2(Ω) be the solution of the dual

problem −∆φ = v with boundary conditions φ = 0 on ∂Ω. Multiplying with vh and integrating
by parts we get by using the Cauchy-Schwarz inequality and the trace inequality (4.9) for φ:

‖v‖2Ω1∪Ω2
=
∑
T∈T1

(∇v,∇φ)T∩Ω1
+
∑
T∈T2

(∇v,∇φ)T − ([v],n · ∇φ)Γ

6

h−1‖[v]‖2Γ +
∑

T∈T ∗
1 ∪T2

‖∇v‖2T

 1
2

×

 ∑
T∈T ∗

1 ∪T2

‖∇φ‖2T +
∑

T∈T0,Γ

C(‖∇φ‖2T + h2|∇φ|21,T )

 1
2

6 |||v|||∗ ‖φ‖2,Ω .

Finally, using standard elliptic regularity [6] ‖φ‖2,Ω 6 ‖v‖Ω and division by ‖v‖Ω , the estimate
follows. ut
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Theorem 7.1 The condition number of the stiffness matrix satisfies the estimate

κ(A) 6 Ch−2. (7.8)

Proof Recalling the definition of the condition number in (7.2), the proof consists of deriving
estimates of |A|N and |A−1|N . In the following, we use the following well-known equivalence for
the Euclidean norm |x|N :

|V |N = sup
W 6=0

(V,W )N
|W |N

.

Estimate of |A|N . We have by the definition of A

|AV |N = sup
W 6=0

(AV,W )N
|W |N

(7.9)

= sup
W 6=0

Ah(vh, qh;wh, rh)

|W |N
(7.10)

6 CA sup
W 6=0

|||(vh, qh)|||∗ · |||(wh, rh)|||∗
|W |N

(7.11)

6 CAC
2
I sup
W 6=0

h−1‖(vh, qh)‖T ∗
1 ∪T2 · h

−1‖(wh, rh)‖T ∗
1 ∪T2

|W |N
(7.12)

6 CAC
2
IC

2
M |V |N . (7.13)

Here, inequality (7.11) follows by the continuity of Ah with respect to the norm |||·|||∗, (7.12) follows
by using the inverse estimate (7.6) twice, and finally (7.13) results by applying (7.4). Dividing by
|V |N and taking the supremum over all V 6= 0, we conclude that

|A|N 6 CAC
2
IC

2
M . (7.14)

Estimate of |A−1|N . Starting with (7.4) and sequentially using the Poincaré inequality (7.7) (ex-
tended to the product space), the inf-sup stability (5.11) of Ah and finally the Poincaré inequality
again, we arrive at the following chain of estimates:

hd/2|V |N 6 c−1M ‖(vh, qh)‖T ∗
1 ∪T2 6 c−1M CP |||(vh, qh)|||∗

6 c−1M CP c
−1
A

A(vh, qh;wh, rh)

|||(wh, rh)|||∗
= c−1M CP c

−1
A

(AV,W )N
|||(wh, rh)|||∗

6 c−1M CP c
−1
A |AV |N

|W |N
|||(wh, rh)|||∗

6 c−2M CP c
−1
A |AV |N h

−d/2 ‖(wh, rh)‖T ∗
1 ∪T2

|||(wh, rh)|||∗
6 c−2M C2

P c
−1
A |AV |N h

−d/2

Setting V = A−1W we haveW = AV and the inequality now reads |A−1W |N 6 c−2M C2
P c
−1
A h−d|W |N

for all W 6= 0, or in other words

|A−1|N 6 c−2M C2
P c
−1
A h−d. (7.15)

Finally, combining (7.14) and (7.15) yields (7.8). ut
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Fig. 8.1 Mesh configuration and magnitude of velocity approximation corresponding to this mesh resolution for
the numerical convergence test.

8 Numerical examples

We conclude this paper with three numerical tests; all in three spatial dimensions. The numer-
ical experiments were carried out using the DOLFIN-OLM library (http://launchpad.net/
dolfin-olm). We first corroborate the theoretical a priori error estimate with a convergence
experiment. Second, we numerically examine how the location of the overlapping mesh in relation
to the background mesh affects the condition number. Finally, we demonstrate how the method
presented and the features provided by DOLFIN-OLM can be applied to the flow around an airfoil
in a three dimensional channel. The experiments were performed with Vh = V 1

h , Qh = Q1
h and

β = 1.

8.1 Convergence test

We let Ω = [0, 1]3 and choose the overlapping domain Ω1 to be a rotation along the y-axis of

the domain Ω̃1 = [0.3331, 0.6669]3 as illustrated in Figure 8.1. To examine the convergence of the
methods, we apply the method of manufactured solutions: let u(x, y, z) = (sin(πy) sin(πz), 0, 0)
and p(x, y, z) = cos(πx)+1. The right-hand side f is defined accordingly so that (1.1a) is satisfied,
and the corresponding Dirichlet boundary conditions are strongly imposed on the entire boundary
∂Ω. The numerical approximation corresponding to (3.7) is then computed on a sequence of
overlapping uniform meshes {(T N0 , T N2 )}5N=0. The mesh size of the initial meshes T 0

0 and T 0
2 is

hmax ≈ 1/3 and each subsequent pair (T N0 , T N2 ) is generated from the previous one by uniformly
refining each mesh.

The stabilization parameters were set to γ = 10 and δ = 0.05. To solve the linear system of
equations, we apply a transpose-free quasi-minimal residual solver with an algebraic multigrid pre-
conditioner, filtering out the constant pressure mode in the iterative solver. The solves converged
to a tolerance of 10−8 in between 34 and 47 iterations.

The resulting errors for the sequence of refined meshes are given in Figure 8.2. Theorem 6.1
predicts first order convergence for both the H1-norm of the velocity error and the L2-norm of
the pressure error. This is also (at least) observed in the numerical results, thus corroborating the

http://launchpad.net/dolfin-olm
http://launchpad.net/dolfin-olm
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Fig. 8.2 Convergence of the stabilized Nitsche overlapping mesh method for V 1
h ×Q

1
h. The legend gives the fitted

slope for each configuration. Top: H1-error ||u − uh||1,T ∗
1 ∪T2 for the velocity versus maximal element diameter

hmax. Bottom: L2-error ||p− ph||T ∗
1 ∪T2 for the pressure versus hmax.

theoretical estimate. We additionally observe that the pressure approximation seems to converge
at a higher order (≈ 1.5) for the range of meshes investigated here.

8.2 Condition number tests

The next numerical example demonstrates that the condition number of the matrix A defined
by (7.1) is bounded independently of the position of the overlapping mesh relative to the back-
ground mesh. This bound can be attributed to the term (3.4) defined on the overlap region: we
also illustrate that the condition number seems unbounded if this term is not included.

Let Ω = [0, 1]3 be tessellated by N3 cubes, each cube divided into six tetrahedra. Define the
overlapping domain by Ω2 = Ω2(l) = [l, 1− l]3 for a parameter l ∈ (0, 1), and tessellate Ω2 in the
same manner as Ω, but with M3 cubes. We will consider two cases of mesh sizes: (i) N = 5,M = 3,
and (ii) N = 10,M = 6. For both cases, l approaching 0.2 from above corresponds to a limiting
case: a few of the degrees of freedom in the overlapped mesh will only receive a contribution from
the integrals defined over the overlap region while the cell and interface contributions vanish. Here,
we therefore examine l ∈ (0.2, 0.21]. For each l and choice of (N,M), we compute the condition
number κ of the corresponding matrix A as the ratio of the absolute values of the largest (in
modulus) eigenvalue and the smallest (in modulus), nonzero, eigenvalue.

Let δ = 0.05 and γ = 10.0 as before. The resulting condition numbers, scaled by the square
mesh size of the overlapping mesh, are given in Table 8.1. We observe that for each l, the difference
in the condition number between the two mesh sizes is small, as expected in view of Theorem 7.1.
Moreover, for both the case N = 5 and N = 10, the scaled condition numbers seem clearly
bounded as l→ 0.2. In contrast, the scaled condition number grows significantly as l→ 0.2 when
the overlap integrals sh are not included.

Case l = 0.21 0.201 0.2001 0.20001 0.200001

N = 5 (h ≈ 0.33) 1076 1207 1220 1222 1222
N = 10 (h ≈ 0.17) 955 1149 1170 1173 1174

N = 5 without sh 583 643 958 9715 110636

Table 8.1 Scaled condition numbers κh2 where h is the minimal cell diameter of the overlapping mesh. Each
column to corresponds one overlapping domain Ω(l) for l = 0.21, l = 0.201 etc. The bottom row corresponds to the
matrix induced by the form Ah without the overlap integrals sh.
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8.3 Flow around an airfoil in a channel

Finally, we illustrate that the method and technology developed here can be successfully applied
to more realistic numerical simulations. In particular, we consider the flow around an airfoil in a
channel.

As T2 we take a tetrahedral mesh approximation of a sphere surrounding an airfoil, discretizing
the boundary layer around the airfoil with a higher mesh resolution than the remainder of the
domain. As T0 we take a tessellation of [−3, 3]3\O where the interior domain O is contained in
the convex hull of T2. (In total, T0 ∪ T2 is a mesh of a [−3, 3]3 box with an airfoil removed.)

The stabilization parameters and choice of finite element spaces are as before: V 1
h ×Q1

h, β = 1,
δ = 0.05 and γ = 10. We enforce a parabolic velocity profile at the inflow boundary, no slip
conditions for the velocity on the outer walls and the airfoil boundary, and stress-free boundary
conditions at the outflow boundary and take f = 0.

The flow patterns around the airfoil can now be studied for instance for different angles of
attack by rotating T2 while keeping T0 fixed. The velocity and pressure approximations for a series
of mesh pairs, in which T2 was first rotated around the z-axis with angle θ and then around the
y-axis with the same angle, are visualized in Figures 8.3 and 8.4. We especially note the smooth
transition of the solution from T0 to T2; the interface is not visible.

9 Conclusions

We have presented and analyzed a general class of stabilized finite element methods for the Stokes
problem posed on overlapping, non-matching meshes. The interface conditions are enforced using
Nitsche’s method, yielding a provably optimally convergent method. In addition, a least-squares
term on the overlap region is included to control the condition number of the stiffness matrix.

The theoretical results have been verified numerically for a test problem consisting of Stokes
flow through a channel described by a sphere superimposed on a tetrahedral mesh of the unit
cube. We have further verified that the condition number of the stiffness matrix remains bounded,
independently of the location of the overlapping mesh relative to the background mesh. Finally,
we have demonstrated the applicability of the proposed method and our implementation to the
simulation of Stokes flow around a three-dimensional airfoil with a fitted mesh superimposed on
a non-matching background mesh.

A natural extension of the work presented in this paper is to the simulation of fluid–structure
interaction problems where a fluid mesh of the surroundings of an elastic body is superimposed
on a background fluid mesh as in Figure 1.1. The fluid–structure interaction may then be handled
via a standard arbitrary Lagrangian–Eulerian (ALE) approach on the overlapping mesh, while the
Nitsche overlapping mesh method analyzed in this paper is used to enforce the interface conditions
across the fluid–fluid boundary. We explore this technique further in ongoing work.

While all software used in this work is available as free/open-source, additional work is required
to create interfaces and documentation that make the software useful to a general audience. This
issue will be addressed in the near future, with the goal to provide an easy-to-use programming
environment for overlapping mesh methods as part of the FEniCS software suite.
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Fig. 8.3 Velocity streamlines (left) and pressures in the plane defined by the z-axis (right) for different angles of
attack θ: from top to bottom: θ = 20◦, 0◦,−20◦.
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Fig. 8.4 Velocity streamlines and magnitude in a cross-section for angle of attack θ = −20◦. Top: The solution
on the background mesh T ∗1 . It can clearly be seen that the streamlines stop close to the interface zone. Bottom:
The solution on the overlapping mesh T2 superimposed on the solution on the background mesh T ∗1 , indicating a
smooth transition of the solution from T ∗1 to T2.
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