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A ROBUST MULTIGRID METHOD FOR DISCONTINUOUS GALERKIN
DISCRETIZATIONS OF STOKES AND LINEAR ELASTICITY EQUATIONS

QINGGUO HONG, JOHANNES KRAUS, JINCHAO XU, AND LUDMIL ZIKATANOV

Abstract. We consider multigrid methods for discontinuous Galerkin (DG) H(div, Ω)-conforming
discretizations of the Stokes equation. We first describe a simple Uzawa iteration for the solution
of the Stokes problem, which requires a solution of a nearly incompressible linear elasticity prob-
lem on every iteration. Then, based on special subspace decompositions of H(div, Ω), as intro-
duced in [J. Schöberl. Multigrid methods for a parameter dependent problem in primal variables.
Numerische Mathematik, 84(1):97–119, 1999], we analyze variable V-cycle and W-cycle multigrid
methods with nonnested bilinear forms. We prove that these algorithms are robust, and their con-
vergence rates are independent of the material parameters such as Poisson ratio and of the mesh
size.

1. Introduction

In this paper we present a multigrid method for a family of discontinuous Galerkin H(div; Ω)-
conforming discretizations of the Stokes problem and the linear elasticity problem. The discretiza-
tion for the Stokes problem preserves divergence-free velocity fields and was first introduced in [1].
The same method was also used in [2].

In general, the numerical discretization of the Stokes problem produces systems of linear algebraic
equations of saddle-point type. Solving such systems has been the subject of extensive research
work and at present several different approaches can be used to solve them efficiently (see [3] and
references cited therein).

One widely used approach is to construct a block diagonal preconditioner with two blocks: one
containing the inverse or a preconditioner of the stiffness matrix of a vector Laplacian and one
containing the inverse of a lumped mass matrix for the pressure. The resulting preconditioned
system can then be solved by means of the preconditioned MINRES (minimum residual) method.

Recently, an auxiliary space preconditioner for an H(div)-conforming DG discretization of the
Stokes problem was proposed in [4]. The auxiliary space preconditioning techniques were introduced
in [5] as generalizations of the fictitious space methods (see [6]). Since the solution of the Stokes
system has divergence-free velocity component, the problem can easily be reduced to a “second-
order” problem in the space Range(curl). In order to apply the preconditioner one needs to solve
four elliptic problems, for details, see [4].

There are other multigrid methods which can roughly be classified into two categories: coupled
and decoupled methods, cf. [7]. A well-known coupled approach is based on solving small saddle
point systems at every grid point or on appropriate patches, cf. [8]. The Schur complement of each
small saddle point system can be formed explicitly, and hence it is easy to solve the local problems.
However, it is not straightforward to choose appropriate patches when the pressure is discretized
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by continuous elements. Further, when used as a smoothing iteration, this so-called Vanka method
needs a proper damping parameter.

One classical decoupled approach is the Uzawa method [9]. A crucial point in applying this
method is the right choice of a damping parameter for solving the arising linear elasticity system.
As proved in [9] the Uzawa method is very efficient for solving the Stokes problem when the
damping parameter is very large. In this case it is important to have a robust solver for the linear
elasticity problem, that is, an iterative method that converges uniformly with respect to the Lamé
parameters, or equivalently with respect to the Poisson ratio.

In [10], the author proposed and analyzed robust and optimal multigrid methods for the param-
eter dependent problem of nearly incompressible materials for the P2 − P0 finite element scheme
for the mixed system and for the corresponding non-conforming finite element scheme in primal
variables. This approach relies on constructing a locally supported basis for the weakly divergence-
free functions. In the present paper we construct suitable subspace decompositions of H(div,Ω),
as suggested in [10], in order to design and analyze robust multigrid algorithms with nonnested
(non-inherited) bilinear forms related to H(div; Ω)-conforming DG discretizations. Similar ideas
were used to build a robust subspace correction method for the system of linear algebraic equa-
tions arising from non-conforming finite element discretization based on reduced integration in [11].
An alternative approach is based on using augmented Lagrangian formulations for nearly singular
systems, cf. [12].

The computationally most expensive part of the Uzawa algorithm for the Stokes problem is the
solution of a nearly incompressible linear elasticity problem. The Uzawa iteration converges rapidly
if the damping parameter is very large. However, in this case an efficient multilevel solver is needed
for the linear elasticity problem which is uniform with respect to the Lamé parameters. A key
component of such a solver is an overlapping block-smoother which corresponds to an appropriate
splitting of the space of divergence-free functions, cf. [13]. At the same time, noting that a truly
divergence-free function on the coarse grid is also divergence-free on the fine grid, the transfer
operator prolongating coarse-grid divergence-free functions to fine grid divergence-free functions
is as simple as an inclusion operator. In this paper, we first show that the discretization of the
linear elasticity system and the corresponding Stokes problem is locking-free and then establish the
approximation and smoothing properties necessary for the multigrid analysis [14, 15].

The layout of the paper is as follows. In Section 2 we state the Stokes problem and the linear
elasticity problem. The discontinuous Galerkin discretization for the Stokes and the corresponding
linear elasticity problem is given in Section 3. We further prove the stability and approximation
of the discretization and show that for the linear elasticity problem it is locking-free. In Section 4,
we propose the multigrid method and prove its robust and optimal convergence. Finally, we give
some concluding remarks in Section 5.

2. Problem formulation

In this section, we give the formulation of the Stokes and the linear elasticity problem. Let
Ω ⊂ Rd (d = 2, 3) be a polygonal domain with boundary ∂Ω, f ∈ L2(Ω)d, and H1

0 (Ω) = {u ∈
L2(Ω) : ∇u ∈ L2(Ω), u|∂Ω = 0}. We also need the standard Sobolev spaces H1(Ω), H2(Ω), and the
corresponding norms

‖u‖2 =
( ∑
|α|≤2

∫
Ω
|∂
αu

∂xα
|2dx

)1/2
, ‖u‖1 =

( ∑
|α|≤1

∫
Ω
|∂
αu

∂xα
|2dx

)1/2
, ‖u‖ =

( ∫
Ω
u2dx

)1/2
.

The variational formulation of the Stokes and the mixed formulation of the elasticity problem
can be written as: Find (u, p) ∈ H1

0 (Ω)d × L2
0(Ω) such that

(2.1)
{
a(u,v) + b(v, p) = (f ,v), for all v ∈ H1

0 (Ω)d,
b(u, q)− (ρp, q) = 0, for all q ∈ L2

0(Ω),
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Here, with the usual notation, u is the velocity field (displacement in the case of elasticity), p
is the pressure, and ε(u) ∈ L2(Ω)d×dsym is the symmetric (linearized) strain rate tensor defined by
ε(u) = ∇u+∇uT

2 . For the Stokes equation, one takes ρ = 0, and for elasticity equation, we have
ρ = λ−1, with λ being the Lamè parameter defined as λ = ν

1−2ν , 0 ≤ ν < 1
2 and ν is the Poisson

ratio.
The bilinear forms a(·, ·), b(·, ·), and (·, ·) are defined by

a(u,v) :=
∫

Ω
ε(u) : ε(v)dx, , for all u,v ∈ H1

0 (Ω)d,

b(u, q) :=
∫

Ω
q divudx, for all u ∈ H1

0 (Ω)d, q ∈ L2
0(Ω).

(p, q) :=
∫

Ω
pq dx, for all p, q ∈ L2

0(Ω).

(2.2)

For the linear elasticity problem, we also have the corresponding primal formulation, which is:
Find u in H1

0 (Ω)d such that

(2.3) (ε(u) : ε(v)) + λ(divu, div v) = (f ,v), for all v ∈ H1
0 (Ω)d.

The conditions for the existence and uniqueness of the solution (u, p) of (2.1) are well known
and understood, see, e.g. [16]. For the relationship between the inf-sup condition for the Stokes
problem and the Korn’s inequality which guarantees the solvability of the elasticity equations see
also [17]. For convenience, in this paper, we assume that the domain Ω is such that the following
regularity estimate holds (see e.g. [18] for the limiting case of the Stokes equation and [19, Lemma
2.2] for the corresponding result in linear elasticity):

(2.4) ‖u‖2 + ‖p‖1 . ‖f‖.

Here, in Equation (2.4) and throughout the presentation that follows, the hidden constants in
., & and h are independent of λ and the mesh size h.

3. Discontinuous Galerkin discretization

In this section, we first give some preliminaries and notation for the DG formulations. Next, we
derive the DG discretization of the Stokes problem and the equations of linear elasticity and show
the relationship between the two problems by the Uzawa method. Finally, we analyze the stability
and approximation properties of the discretization.

3.1. Preliminaries and notation. We denote by Th a shape-regular triangulation of mesh-size
h of the domain Ω into triangles {K}. We further denote by EIh the set of all interior edges (or
faces) of Th and by EBh the set of all boundary edges (or faces); we set Eh = EIh ∪ EBh .

For s ≥ 1, we define

Hs(Th) = {φ ∈ L2(Ω), such that φ|K ∈ Hs(K) for all K ∈ Th}.

The vector functions are represented column-wise. And, we recall the definitions of the spaces
to be used herein:

H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},
with the norm

‖v‖2H(div;Ω) := ‖v‖2 + ‖ div v‖2.

As is usual in the DG approach, we now define some trace operators. Let e = ∂K1 ∩ ∂K2 be the
common boundary (interface) of two subdomains K1 and K2 in Th , and n1 and n2 be unit normal
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vectors to e pointing to the exterior of K1 and K2, respectively. For any edge (or face) e ∈ EIh and
a scalar q ∈ H1(Th), vector v ∈ H1(Th)d and tensor τ ∈ H1(Th)d×d, we define the averages

{v} =
1
2

(v|∂K1∩e · n1 − v|∂K2∩e · n2), {τ} =
1
2

(τ |∂K1∩en1 − τ |∂K2∩en2),

〈τ 〉 =
1
2

(τ |∂K1∩e + τ |∂K2∩e),

and jumps

[q] = q|∂K1∩e − q|∂K2∩e, [v] = v|∂K1∩e − v|∂K2∩e, [[v]] = v|∂K1∩e � n1 + v|∂K2∩e � n2,

where v � n = 1
2(vnT + nvT ) is the symmetric part of the tensor product of v and n.

When e ∈ EBh then the above quantities are defined as

{v} = v|e · n, {τ} = τ |en, 〈τ 〉 = τ |e,

and
[q] = q|e, [v] = v|e, [[v]] = v|e � n.

Since n1 = −n2, {ε(u)} = 〈ε(u)〉n1 and [[v]] = [v]� n1, it follows that

〈ε(u)〉 : [[v]] = trace([[v]]T 〈ε(u)〉) = trace([v]{ε(u)}T )

= {ε(u)} · [v], for all u,v ∈ H1(Th)d.
(3.1)

If we denote by nK the outward unit normal to ∂K, it is easy to check that

(3.2)
∑
K∈Th

∫
∂K
v · nKqds =

∑
e∈Eh

∫
e
{v}[q]ds, for all v ∈ H(div; Ω), for all q ∈ H1(Th).

Also for τ ∈ H1(Ω)d×d and for all v ∈ H1(Th)d, we have

(3.3)
∑
K∈Th

∫
∂K

(τnK) · vds =
∑
e∈Eh

∫
e
{τ} · [v]ds.

The finite element spaces are denoted by

Vh = {v ∈ H(div; Ω) : v|K ∈ V (K), K ∈ Th; v · n = 0 on ∂Ω},

Sh = {q ∈ L2(Ω) : q|K ∈ Q(K), K ∈ Th;
∫

Ω
qdx = 0}.

For the DG method, we use the RT pair RTl(K)/Pl(K) or the BDM pair BDMl(K)/Pl−1(K) or the
BDFM pair BDFMl(K)/Pl−1(K) as V (K)/Q(K) which satisfy divV (K) = Q(K) and preserve
the divergence-free velocity fields, (see [4]).

We recall the basic approximation properties of these spaces: for all K ∈ Th and for all v ∈
Hs(K)d, there exists vI ∈ V (K) such that

(3.4) ‖v − vI‖0,K + hK |v − vI |1,K + h2
K |v − vI |2,K . hsK |v|s,K , 2 ≤ s ≤ l + 1.

3.2. DG formulations. We note that according to the definition of Vh, the normal component of
any v ∈ Vh is continuous on the internal edges and vanishes on the boundary edges. Therfore, by
splitting a vector v ∈ Vh into its normal and tangential components vn and vt

(3.5) vn := (v · n)n, vt := v − vn,

we have

(3.6) for all e ∈ Eh
∫
e
[vn] · τds = 0, for all τ ∈ H1(Th)d,v ∈ Vh,
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implying that

(3.7) for all e ∈ Eh
∫
e
[v] · τds =

∫
e
[vt] · τds = 0, for all τ ∈ H1(Th)d,v ∈ Vh.

A direct computation, similar to the one given in (3.1), shows that

[ut]� n : [vt]� n = (([ut]� n)n) · [vt] =
1
2
(
([ut]nT + n[ut]T ) · n

)
· [vt]

=
1
2

([ut] + ([ut] · n)n) · [vt] =
1
2

[ut] · [vt],

implying that

(3.8) [[ut]] : [[vt]] =
1
2

[ut] · [vt].

Therefore, the discretization of the Stokes problem (2.1) is given by: Find (uh, ph) ∈ Vh ×
Sh such that

(3.9)
{
ah(uh,vh) + bh(vh, ph) = (f ,vh) , for all vh ∈ Vh,
bh(uh, qh) = 0 , for all qh ∈ Sh,

where

ah(u,v) =
∑
K∈Th

∫
K
ε(u) : ε(v)dx−

∑
e∈Eh

∫
e
{ε(u)} · [vt]ds(3.10)

−
∑
e∈Eh

∫
e
{ε(v)} · [ut]ds+

∑
e∈Eh

∫
e
ηh−1

e [ut] · [vt]ds,

bh(u, q) =
∫

Ω
∇ · uqdx,(3.11)

and η is a properly chosen penalty parameter independent of the mesh size h and so that ah(·, ·) is
positive definite.

Remark 3.1. Noting the identities (3.1) and (3.8), we can rewrite ah(·, ·) as

ah(u,v) =
∑
K∈Th

∫
K
ε(u) : ε(v)dx−

∑
e∈Eh

∫
e
〈ε(u)〉 : [[vt]]ds

−
∑
e∈Eh

∫
e
〈ε(v)〉 : [[ut]]ds+

∑
e∈Eh

∫
e

2ηh−1
e [[ut]] : [[vt]]ds,

which matches the bilinear form in [1] by noting that the normal component of u ∈ Vh is continuous.
When compared to the bilinear form in [4], we can see that the jumps of ut on the boundary edges
are included for the Dirichlet condition based on the fact that the condition u ·n = 0 is included in
the definition of the space Vh.

Note that divVh = Sh means that the approximate velocity uh of the discrete problem (3.9)
satisfies divuh = 0. Hence, we can rewrite the above system as the following equivalent system:
Find (uh, ph) ∈ Vh × Sh such that

(3.12)
{
ah(uh,vh) + λbh(uh, div vh) + bh(vh, ph) = (f ,vh) , for all vh ∈ Vh,
bh(uh, qh) = 0 , for all qh ∈ Sh.

Application of the Uzawa method to (3.12) with damping parameter λ reads: Given (ulh, p
l), the

new iterate (ul+1
h , pl+1) is obtained by solving the following system:{

ah(ul+1
h ,vh) + λbh(ul+1

h ,div vh) = (f ,vh)− bh(vh, plh) , for all vh ∈ Vh,
pl+1
h = plh − λ divul+1

h .
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By the definition of bh(·, ·), namely (3.11), the Uzawa method is just the following: Given (ulh, p
l),

the new iterate (ul+1
h , pl+1) is obtained by solving the following system:

(3.13)
{
ah(ul+1

h ,vh) + λ(divul+1
h , div vh) = (f ,vh)− bh(vh, plh) , for all vh ∈ Vh,

pl+1
h = plh − λ divul+1

h .

Convergence of the this method has been discussed in several works, see, e.g., [9, 12, 20, 21]
indicating that for large λ, the iterates converge rapidly to the solution of problem (3.9). As
a consequence, the major computational cost lies in solving the discrete problem of the linear
elasticity equations (2.3) which reads: Find uh ∈ Vh such that

Ah(uh,vh) = (f ,vh), for all vh ∈ Vh,(3.14)

where Ah(·, ·) reads

Ah(uh,vh) = ah(uh,vh) + λ(divuh, div vh),(3.15)

and ah(uh,vh) is defined by (3.10). Noting that divVh = Sh, it is immediately seen that the
problem (3.15) is equivalent to the discretization of the problem (2.1) as follows: Find (uh, ph) ∈
Vh × Sh such that

(3.16)
{
ah(uh,vh) + bh(vh, ph) = (f ,vh) , for all vh ∈ Vh,
bh(uh, qh)− (λ−1ph, qh) = 0 , for all qh ∈ Sh,

where ah(uh,vh) is defined by (3.10) and bh(uh, qh) is defined by (3.11).

3.3. Approximation and stability properties. In this subsection, we analyze the approxima-
tion and stability properties of the discrete problems (3.9) and (3.15).

For any u ∈ H1(Th)d, we now define the mesh dependent norms:

‖u‖2h =
∑
K∈Th

‖ε(u)‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e,

‖u‖21,h =
∑
K∈Th

‖∇u‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e,

Next, for u ∈ H2(Th)d, we define the “DG”-norm

(3.17) ‖u‖2DG =
∑
K∈Th

‖∇u‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e +

∑
K∈Th

h2
K |u|22,K .

From the discrete version of the Korn’s inequality (see [22, Equation (1.12)]) we have the following
norm equivalence result.

Lemma 3.1. The norms ‖ · ‖DG, ‖ · ‖h, and ‖ · ‖1,h are equivalent in Vh, namely

(3.18) ‖u‖DG h ‖u‖h h ‖u‖1,h, for all u ∈ Vh.

Proof. By the inverse inequality, we clearly have that ‖u‖DG h ‖u‖1,h. We now focus on proving
that ‖u‖h h ‖u‖1,h. From the definitions we immediately get ‖u‖h ≤ ‖u‖1,h.

To prove the inequality in the other direction, we use [22, Equation (1.12)], namely,∑
K∈Th

‖∇u‖20,K .
( ∑
K∈Th

‖ε(u)‖20,K + sup
m∈RM(Ω)

‖m‖L2(∂Ω)=1

(
∫
∂Ω
u ·mds)2

+
∑
e∈EIh

h−1
e ‖πe[u]e‖20,e

)
.(3.19)
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Here RM(Ω) denotes the space of rigid body motions,

RM(Ω) =
{
a+Ax

∣∣ a ∈ IRd, A ∈ IRd×d, A = −AT
}
,

and the operator πe is the L2(e)-orthogonal projection operator onto (P1(e))d, the space of vector
valued linear polynomial functions on e.

For the second term on the right hand side of (3.19) we have

sup
m∈RM(Ω)

‖m‖L2(∂Ω)=1

(
∫
∂Ω
u ·mds)2 ≤

∫
∂Ω
u2ds =

∑
e∈EBh

‖u‖20,e ≤
∑
e∈EBh

h−1
e ‖[u]e‖20,e.

Since πe is an orthogonal projection for the third term on the right hand side of (3.19) we obtain∑
e∈EIh

h−1
e ‖πe[u]e‖20,e ≤

∑
e∈EIh

h−1
e ‖[u]e‖20,e.

Finally, combining the two inequalities above completes the proof. �

Both bilinear forms, ah(·, ·) and bh(·, ·), introduced above are continuous and we have

|ah(u,v)| . ‖u‖DG‖v‖DG , for all u, v ∈ H2(Th)d,

|bh(u, q)| ≤ ‖u‖1,h‖q‖ , for all u ∈ H1(Th)d, q ∈ L2
0(Ω).

For our choice of the finite element spaces Vh and Sh we have the following inf-sup condition for
bh(·, ·) (see, e.g., [4, 23])

Lemma 3.2. There exits a constant β > 0 independent of the mesh size h, such that

(3.20) inf
qh∈Sh

sup
uh∈Vh

(divuh, qh)
‖uh‖1,h‖qh‖

≥ β.

As expected, we can also show that ah(·, ·) is coercive, namely, we have the following Lemma
whose proof is based on similar proofs in [4, 24].

Lemma 3.3. For sufficiently large η, independent of the mesh size h, we have

(3.21) ah(uh,uh) & ‖uh‖2h, for all uh ∈ Vh.

By the equivalence of the norms shown in (3.18) and also by the standard theory for solvability
of mixed problems [25], we obtain the following theorem.

Theorem 3.1. The discrete problem (3.9) has a unique solution (uh, ph) ∈ Vh × Sh that satisfies

(3.22) div uh = 0 in Ω.

Moreover, for every vh ∈ Vh with div vh = 0 and for every qh ∈ Sh the following estimates hold:

(3.23) ‖u− uh‖DG . ‖u− vh‖DG, ‖p− ph‖ . (‖p− qh‖+ ‖u− vh‖DG)

with (u, p) being the solution of (2.1).

The bilinear forms ah(·, ·) and Ah(·, ·) are coercive and also define norms on Vh, i.e.,

‖u‖2ah = ah(u,u), ‖u‖2Ah = Ah(u,u).

We now introduce the canonical interpolation operators Πdiv
h : H1(Ω)d 7→ Vh. We also denote

the L2-projection on Sh by Qh. The following Lemma summarizes some of the properties of Πdiv
h

and Qh needed later.
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Lemma 3.4. For all w ∈ H1(K)d we have

div Πdiv
h = Qh div ; |Πdiv

h w|1,K . |w|1,K ;

‖w −Πdiv
h w‖20,∂K . hK |w|21,K ; ‖ div(w −Πdiv

h w)‖−1 . hK‖ divw‖,

where ‖r‖−1 = supχ∈H1
(χ,r)
‖χ‖1 .

Proof. The proof of the commutativity of Πdiv
h and div and the first two inequalities are well known

and we refer the reader to [26] for the details.
The last inequality follows from the approximation properties of the L2-orthogonal projection

‖divw − div Πdiv
h w‖−1 = sup

χ∈H1

((I −Qh) divw, χ)
‖χ‖1

= sup
χ∈H1

(divw, (I −Qh)χ)
‖χ‖1

. sup
χ∈H1

‖ divw‖‖(I −Qh)χ)‖
‖χ‖1

. hK‖divw‖.

�

The following approximation result shows that the discretization we consider is locking-free.

Theorem 3.2. Let (u, p) be the solution of (2.1) and (uh, ph) be the solution of (3.16). Then we
have the following estimate

‖u− uh‖2DG + λ−1‖p− ph‖2 . inf
v∈Vh,q∈Sh

(
‖u− v‖2DG + λ−1‖p− q‖2

)
.

Proof. If (u, p) is the solution of the continuous problem (2.1) and (uh, ph) is the solution of
the discrete problem (3.16) we have that p = λdivu, and, since divVh = Sh we also have that
ph = λ divuh. The left hand side of the first equation in (3.16) then is given by the bilinear
form (3.15), and, since this discrete problem is consistent, we have

Ah(u− uh,v) = 0, for all v ∈ Vh.

Consider now the interpolation Πdiv
h u ∈ Vh of u and we set q = λ div Πdiv

h u. Recall that p = λ divu,
and ph = λ divuh and hence (by Lemma 3.4) q = λQh divu = Qhp. We set eh = (uh−Πdiv

h u) and
from the coercivity of ah(·, ·) we have

‖eh‖21,h + λ−1‖ph − q‖2 = ‖eh‖21,h + λ‖ div eh‖2

. Ah(eh, eh) = Ah(u−Πdiv
h u, eh)

. ‖u−Πdiv
h u‖DG‖eh‖1,h + λ(div(u−Πdiv

h u), div eh)

= ‖u−Πdiv
h u‖DG‖eh‖1,h.

(3.24)

The last identity above follows from div(u−Πdiv
h u) = (I−Qh) divu and div eh ∈ Sh. By Lemma 3.4,

we get

(3.25) ‖uh −Πdiv
h u‖1,h = ‖Πdiv

h (uh − u)‖1,h . ‖uh − u‖1,h,

and hence, the right hand side of (3.24) is bounded by a multiple of ‖u − Πdiv
h u‖DG‖uh − u‖DG.

As for any ε > 0 we have ab ≤ εa2 + ε−1b2 and using Lemma 3.4 we have for any v ∈ Vh and any
q ∈ Sh,

‖u− uh‖2DG + λ−1‖p− ph‖2 . ‖u−Πdiv
h u‖2DG + λ−1‖p−Qhp‖2

= ‖u− v −Πdiv
h (u− v)‖2DG + λ−1‖p− q −Qh(p− q)‖2.

(3.26)

Using Lemma 3.4 and taking the infimum over v and q then gives the desired result. �
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Remark 3.2. Let u be the solution of (2.3) and uh be the solution of (3.15). From theorem 3.2
and the regularity estimate (2.4), we obtain the following estimate

(3.27) ‖u− uh‖DG . h‖f‖.

Remark 3.3. Let us set

Bλ((uh, ph), (vh, qh)) = ah(uh,vh)− (divuh, qh)− (div vh, ph)− λ−1(ph, qh).

Then for any given (uh, ph), choosing (vh, qh) = (uh,−ph), by the coercivity of ah(·, ·), it is straight-
forward to show that the inf-sup condition for Bλ(·, ·) holds, namely, for any (uh, ph) ∈ Vh×Sh we
have

(3.28) sup
(vh,qh)∈Vh×Sh

Bλ((uh, ph), (vh, qh))
‖vh‖1,h + λ−1/2‖qh‖

& (‖uh‖1,h + λ−1/2‖ph‖).

For the Stokes equation, we have from [25, Theorem 8.2.1] and [27, 28] that

(3.29) sup
(vh,qh)∈Vh×Sh

B∞((uh, ph), (vh, qh))
‖vh‖1,h + ‖qh‖

& ‖uh‖1,h + ‖ph‖.

3.4. An a priori estimate for the discrete problem. Next lemma is an a priori estimate
on the L2 norm of the solution of a discrete problem which is later used to prove the so called
“smoothing property” – an essential part of the multigrid convergence analysis. We state and
prove this estimate here (before any multigrid analysis), since it could be of independent interest.

We consider the finite element spaces introduced earlier: Vh ⊂ H(div; Ω) and Sh ⊂ L2
0(Ω). Let

w1 ∈ Vh and w2 ∈ Vh be given and let ũ ∈ Vh, p̃ ∈ Sh solve the discrete problem

(3.30)
ah(ũ,v)− (div v, p̃) = ah(w1,v), for all v ∈ Vh,

(div ũ, q) = (divw2, q), for all q ∈ Sh.

We note that the inf-sup condition given in (3.29) implies that

‖ũ‖1,h + ‖p̃‖ . sup
(v,q)∈Vh×Sh

a(ũ,v)− (div v, p̃)− (div ũ, q)
‖v‖1,h + ‖q‖

(3.31)

= sup
(v,q)∈Vh×Sh

ah(w1,v)− (divw2, q)
‖v‖1,h + ‖q‖

. ‖w1‖1,h + ‖ divw2‖.

Lemma 3.5. For the solution of (3.30) we have the following estimate:

(3.32) ‖ũ‖ . ‖w1‖+ ‖ divw2‖−1.

Proof. We consider the following dual problem: Find φ ∈ (H1
0 (Ω))d and θ ∈ L2

0(Ω) such that

(3.33)
a(v,φ)− (div v, θ) = (ũ,v), for all v ∈ (H1

0 (Ω))d,

(divφ, q) = 0, for all q ∈ Sh.

Let Πdiv
h be the interpolation operator introduced earlier in Section 3.3. Recall that divφ = 0 and

hence (div Πdiv
h φ, p̃) = 0. From equations (3.30) we then have

0 = ah(w1,Πdiv
h φ)− ah(ũ,Πdiv

h φ) + (div Πdiv
h φ, p̃)(3.34)

= ah(w1,φ)− ah(w1,φ−Πdiv
h φ)− ah(ũ,Πdiv

h φ).

Observing that a(φ,v) = ah(φ,v) for all v ∈ Vh, from (3.33) and (3.34) we obtain

‖ũ‖2 = ah(φ, ũ)− (div ũ, θ)(3.35)

+ah(w1,φ)− ah(w1,φ−Πdiv
h φ)− ah(ũ,Πdiv

h φ)
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Combining the first and the last term, using the triangle inequality and the continuity of ah(·, ·)
then shows that

‖ũ‖2 ≤ |(div ũ, θ)|+ |ah(w1,φ)|
+|ah(w1,φ−Πdiv

h φ)|+ |ah(ũ,φ−Πdiv
h φ)|

. |(div ũ, θ)|+ |ah(w1,φ)|+ (‖w1‖1,h + ‖ũ‖1,h)‖φ−Πdiv
h φ‖1,h.

As we have that div ũ = divw2 for the first term on the right side we get

|(div ũ, θ)| = |(divw2, θ)| ≤ ‖θ‖1 sup
χ∈H1

(divw2, χ)
‖χ‖1

= ‖ divw2‖−1‖θ‖1.

For the second term, by the regularity estimate (2.4) we have that φ ∈ (H2(Ω))d, and, thus, φ
is continuous and [φ] = 0. Now, integrating by parts and combining the interface terms from
neighboring elements then shows that

ah(φ,w1) =
∑
K∈Th

∫
K
ε(φ) : ε(w1)dx−

∑
e∈Eh

∫
e
{ε(φ)} · [(w1)t]ds

−
∑
e∈Eh

∫
e
{ε(w1)} · [φt]ds+

∑
e∈Eh

∫
e
ηh−1

e [φt] · [(w1)t]ds,

=
∑
K∈Th

∫
K
ε(φ) : ε(w1)dx−

∑
e∈Eh

∫
e
{ε(φ)} · [(w1)t]ds

= −
∑
T∈Th

∫
T

div ε(φ) ·w1 ≤ ‖φ‖2‖w1‖.

Finally, the desired result follows from the interpolation estimates in Lemma 4.3, the reg-
ularity estimate ‖φ‖2 + ‖θ‖1 . ‖ũ‖, inequality (3.31) and the inverse inequalities ‖w1‖1,h .
h−1‖w1‖ and ‖divw2‖ . h−1‖divw2‖−1. �

4. Multigrid method

In this section, we design a multigrid algorithm to solve the discrete system (3.15) arising from
the DG discretization of the linear elasticity problem. We will show that the algorithm is robust
with respect to the parameter λ. Hence, by combining it with the Uzawa method and choosing λ
to be large enough, we can also solve the discrete system (3.9) arising from the DG discretization
of the Stokes problem very efficiently.

4.1. Preliminaries. Let us denote by {Tk}Jk=0 the partition on every level and denote the finest
partition Th = TJ . The edges (faces) of Tk are denoted by Ek. We assume that all the partitions
{Tk}Jk=0 are quasi-uniform with characteristic mesh size hk and hk = γhk−1, γ ∈ (0, 1) and h0 =
O(1). Noting that the last term (the penalty term) in the bilinear form ah(·, ·) depends on the
mesh size of the partition.

Thus, for every partition Tk we have discretized the equation (2.3) and we need to specify the
space Vh on level k. A natural choice for Vh on level k is Mk defined as follows:

Mk = {v ∈ H(div; Ω) : v|K ∈ V (K), K ∈ Tk; v · n = 0 on ∂Ω}.

Moreover, we denote the pressure space Sh on level k by

Sk =
{
q ∈ L2(Ω) : q|K ∈ Q(K), K ∈ Tk;

∫
Ω
qdx = 0

}
.
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Thus, corresponding to the set of refined triangulations {Tk}Jk=0, we also have a sequence of nested,
H(div,Ω)-conforming finite element vector spaces

M0 ⊆M1 ⊆M2 ⊆ · · · ⊆MJ ⊆ H(div,Ω).

With every space we associate a bilinear form ak(·, ·) which discretizes the first term on the left
hand side of (2.3) on Mk, i.e.,

ak(u,v) =
∑
K∈Tk

∫
K
ε(u) : ε(v)dx−

∑
e∈Ek

∫
e
{ε(u)} · [vt]ds

−
∑
e∈Ek

∫
e
{ε(v)} · [ut]ds+

∑
e∈Ek

∫
e
ηh−1

k [ut] · [vt]ds.

Adding the divergence term then gives the bilinear form used to discretize (2.3) on Mk, i.e.,

Ak(u,v) = ak(u,v) + λ(divu,div v), for all u,v ∈Mk.

Our goal is to analyze the V -cycle and W -cycle multigrid algorithms for the solution of the problem:
Given f ∈MJ , find v ∈MJ satisfying

(4.1) AJ(v,φ) = (f ,φ), for all φ ∈MJ .

To define the algorithm, we need several auxiliary notions. For k = 0, · · · , J , define the operator
Ak : Mk →Mk by

(Akw,φ) = Ak(w,φ), for all φ ∈Mk.

The norms on Mk induced by the Ak(·, ·) and ak(·, ·) are denoted by ‖ · ‖2Ak , and ‖ · ‖2ak respectively

‖u‖2Ak = Ak(u,u), for all u ∈Mk.

We also need the L2-orthogonal projections on Mk, and Sk, denoted by Qk : L2(Ω) 7→ Mk and
the operators Qk : L2(Ω) 7→ Sk and the canonical interpolation Πk : [H1

0 (Ω)]2 7→Mk. According
to the notation of the previous section, Πk and Qk are just a shorthand for Πdiv

hk
and Qhk , and we

recall that Qk div = div Πk. Further, we introduce the operators Pk−1 : Mk →Mk−1 defined as

(4.2) Ak−1(Pk−1w,φ) = Ak(w,φ), for all φ ∈Mk−1.

Finally, we denote the norm ‖ · ‖1,h on the level k as ‖ · ‖1,k and give the following lemmas.
To define the smoothing process, we require linear operators Rk : Mk →Mk for k = 1, · · · , J .

These operators may be symmetric or nonsymmetric with respect to the inner product (·, ·). If Rk
is nonsymmetric, then we define Rtk to be its adjoint and set

R
(l)
k =

 Rk if l is odd,

Rtk if l is even.

4.2. Multigrid algorithm. The multigrid operator Bk : Mk →Mk is defined by induction and
is given as follows, see, e.g., [15].
Multigrid algorithm Set B0 = A−1

0 . Assume that Bk−1 has been defined and define Bkg for
g ∈Mk as follows:

(1) Set x0 = 0 and q0 = 0.
(2) Define xl for l = 1, · · · ,m(k) by

(4.3) xl = xl−1 +R
(l+m(k))
k (g − Akx

l−1).

(3) Define ym(k) = xm(k) + qp, where qi for i = 1, · · · , p is defined by

(4.4) qi = qi−1 + Bk−1[Qk−1(g − Akx
m(k))− Ak−1q

i−1].
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(4) Define yl for l = m(k) + 1, · · · , 2m(k) by

yl = yl−1 +R
(l+m(k))
k (g − Aky

l−1).

(5) Set Bkg = y2m(k).
In this algorithm, m(k) is a positive integer which may vary from level to level and determines

the number of smoothing iterations on that level, p is a positive integer. We shall study the cases
p = 1 and p = 2, which correspond respectively to the symmetric V and W cycles of multigrid.

4.3. Multigrid convergence. Set Kk = I−RkAk, then K∗k = I−RtkAk is the adjoint with respect
to Ak(·, ·). Further, set

K̃
(m)
k =

 (K∗kKk)m/2 if l is odd,

(K∗kKk)(m−1)/2K∗k if l is even,

and denote by (K̃(m)
k )∗ the adjoint of K̃(m)

k with respect to Ak(·, ·).
For convergence estimates, we shall make a priori assumptions. First we make the following basic

assumption:
• (A0) The spectrum of K∗kKk is in the interval [0, 1).

In order to analyze the approximation property and the smoothing property of the multigrid
algorithm, we need to define a norm on level k as follows (cf. [10]),

(4.5) ‖u‖2k,0 := ‖u‖2 + λh2
k‖ divu‖2 + λ2h2

k‖Qk−1 divu‖2, u ∈Mk.

The second assumption is an approximation assumption in ‖ · ‖k,0 norm (known as approximation
and regularity assumption in [15]),

• (A1) ‖(I − Pk−1)u‖k,0 . hk‖u‖Ak , for all u ∈Mk.
The third assumption is a requirement on the smoother,

• (A2) ‖(K̃(m)
k )∗u‖Ak . m−1/4h−1

k ‖u‖k,0, for all u ∈Mk.
Next Lemma is an analogue of a result given in Bramble, Pasciak, Xu [15, Lemma 4.1].

Lemma 4.1. Assume that (A0), (A1) and (A2) hold and let ũ = K̃
(m)
k u. Then we have the

estimate
−Ak((I − Pk−1)ũ, ũ) . m−1/4‖u‖2Ak , for all u ∈Mk,

Proof. By the Cauchy-Schwarz inequality and assumption (A2), we have

−Ak((I − Pk−1)ũ, ũ) = −Ak((I − Pk−1)K̃(m)
k u, K̃

(m)
k u)

= −Ak((K̃
(m)
k )∗(I − Pk−1)K̃(m)

k u,u)

≤ ‖(K̃(m)
k )∗(I − Pk−1)ũ‖Ak‖u‖Ak

. m−1/4h−1
k ‖(I − Pk−1)ũ‖k,0‖u‖Ak .

Next, by assumptions (A1) and (A0) (applied in that order) we have

−Ak((I − Pk−1)ũ, ũ) . m−1/4h−1
k ‖(I − Pk−1)ũ‖k,0‖u‖Ak

. m−1/4‖ũ‖Ak‖u‖Ak . m
−1/4‖u‖2Ak .

�

The estimate in Lemma 4.1 provides the prerequisite to apply the general theory in [15]. Indeed,
according to [15], assumptions (A0), (A1) and (A2) and Lemma 4.1 are sufficient to show spectral
equivalence for the V -cycle multigrid preconditioner (Theorem 4.1) and uniform convergence result
for the W -cycle multigrid method (Theorem 4.2). The first result is just a restatement of [15,
Theorem 6] with full regularity.
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Theorem 4.1 (Theorem 6 in [15]). Assume that (A0), (A1) and (A2) hold and define Bj in
Algorithm 4.2 with p = 1. Further assume that the number of smoothing steps m(k) satisfy
β0m(k) ≤ m(k − 1) ≤ β1m(k) with β0 ≥ 1 and β1 > 1 independent of k. Then the following
spectral equivalence holds

(4.6) η0Ak(u,u) ≤ Ak(BkAku,u) ≤ η1Ak(u,u) for all u ∈Mk.

with constants η0 and η1 such that

η0 ≥
m(k)α

M +m(k)α
and η1 ≤

M +m(k)α

m(k)α
,

where M is independent of λ and h where α is the regularity index.

The convergence of the W cycle is also obtained via the analysis in [15].

Theorem 4.2 (Theorem 4 in [15]). Assume that (A0), (A1) and (A2) hold and that the number
of smoothing steps m(k) = m is constant for all k. Then, for sufficiently large m, Bk defined via
the W-cycle algorithm satisfies

|Ak((I − BkAk)u,u)| ≤ M

M +mα
‖u‖2Ak for all u ∈Mk.

with M , independent of λ and h where α is the regularity index.

We remark here that modifying assumption (A1) one can prove the results above for the case of
less than full elliptic regularity. For details we refer to Bramble, Pasciak and Xu [15].

As we have seen, the estimates in Theorems 4.1-4.2 are valid if assumptions (A0), (A1) and (A2)
are verified. In the next subsections we show that these assumptions hold in our case.

4.4. Approximation property. In this subsection, we verify (A1). One of the difficulties in the
analysis is that the bilinear forms Ak(·, ·), k = 1, · · · , J are not nested. We now prove a simple
relation between Ak(·, ·) and Ak−1(·, ·).

Lemma 4.2. If hk = γhk−1, γ ∈ (0, 1), then

(4.7) ‖u‖2Ak−1
≤ ‖u‖2Ak . ‖u‖

2
Ak−1

, for all u ∈Mk−1.

Proof. Let u ∈Mk−1. Observe that [ut]e = 0 for edges e ∈ Ek which are interior to the elements in
Tk−1, because u is a continuous, in fact a polynomial, function in each element from Tk−1. Hence,∑

e∈Ek−1

∫
e
ηγ−1h−1

k−1|[ut]|
2ds =

∑
e∈Ek

∫
e
ηh−1

k |[ut]|
2ds, for all u ∈Mk−1

and we have

Ak(u,u) = Ak−1(u,u) +
∑
e∈Ek

∫
e
ηh−1

k |[ut]|
2ds−

∑
e∈Ek−1

∫
e
ηh−1

k−1|[ut]|
2ds

= Ak−1(u,u) + (γ−1 − 1)
∑

e∈Ek−1

∫
e
ηh−1

k−1|[ut]|
2ds.

The estimates in (4.7) then easily follow from the identity above. �

Remark 4.1. From Lemma 4.2, for any given u ∈Mk, we also have

‖Pk−1u‖2Ak−1
≤ ‖Pk−1u‖2Ak = Ak(u, Pk−1u) ≤ ‖u‖Ak‖Pk−1u‖Ak
. ‖u‖Ak‖Pk−1u‖Ak−1

,

namely,

(4.8) ‖Pk−1u‖Ak−1
. ‖u‖Ak .
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We now introduce the dual problem (which is the same as the primal one in (2.3) because the
bilinear form is symmetric): Find w ∈ H1

0 (Ω)d such that

(4.9) (ε(v) : ε(w)) + λ(div v, divw) = (g,v), for all v ∈ H1
0 (Ω)d.

From the definitions of the bilinear forms Ak−1(·, ·) and Ak(·, ·) we have the following simple identity
for the solution w of (4.9):

(4.10) Ak(v,w) = Ak−1(v,w), for all v ∈Mk−1.

This follows immediately, since both Ak−1(·, ·) and Ak(·, ·) are consistent. Indeed, for any v ∈
Mk−1 ⊂Mk we have Ak(v,w) = (g,v) = Ak−1(v,w), which proves (4.10).

The next lemma provides estimates on the interpolation error.

Lemma 4.3. Let w ∈ H l+1(Ω)d, l = 0, 1, and Πk−1w be the interpolant of w in Mk−1, then

‖w −Πk−1w‖2Ak−1
. h2l

k−1(|w|2l+1 + λ|divw|2l ),

‖w −Πk−1w‖2Ak . h
2l
k−1(|w|2l+1 + λ|divw|2l ).

(4.11)

Proof. By the continuity of ak(·, ·), the trace theorem and the interpolation error estimate (3.4),
we have

‖w −Πk−1w‖2ak−1
. ‖w −Πk−1w‖2DG . h2l

k−1|w|2l+1.

Noting div Πk−1w = Qk−1 divw, by the standard approximation error estimate of the projection
Qk−1, we have

‖div(w −Πk−1w)‖2 = ‖divw −Qk−1 divw‖2 . h2l
k−1|divw|2l .

Combining the above two inequalities and noting the definition of norm ‖ · ‖Ak−1
, we get the

first inequality in (4.11). The proof of the second inequality in (4.11) is carried out in a similar
fashion. �

We now prove a two-level estimate in L2.

Theorem 4.3. For all u ∈Mk the following estimate holds

(4.12) ‖(I − Pk−1)u‖ . hk‖u‖Ak .

Proof. We estimate ‖(I − Pk−1)u‖ using a standard duality argument. Let w ∈ H1
0 (Ω)d be the

solution of the dual problem (4.9) with g = u−Pk−1u. Since, Ak(·, ·) is a consistent bilinear form,
we have

Ak(w,v) = (u− Pk−1u,v), for all v ∈Mk.

Now let v = u − Pk−1u and Πk−1w be the interpolant of w in Mk−1. Noting that Ak(·, ·), k =
1, · · · , J are symmetric, (4.10) and the definition of operator Pk−1, we have

‖u− Pk−1u‖2 = Ak(w,u− Pk−1u)
= Ak(u,w)−Ak(w, Pk−1u) = Ak(u,w)−Ak−1(w, Pk−1u)
= Ak(u,w)−Ak−1(Pk−1u,w −Πk−1w)−Ak−1(Pk−1u,Πk−1w)(4.13)
= Ak(u,w)−Ak−1(Pk−1u,w −Πk−1w)−Ak(u,Πk−1w)
= Ak(u,w −Πk−1w)−Ak−1(Pk−1u,w −Πk−1w).

Applying the Cauchy-Schwarz inequality to the right hand side of the identity above and using the
approximation estimates given in (4.11), the inequality (4.8) and the regularity estimate (2.4) then
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lead to

‖u− Pk−1u‖2 ≤ ‖u‖Ak‖w −Πk−1w‖Ak + ‖Pk−1u‖Ak−1
‖w −Πk−1w‖Ak−1

. hk−1(‖u‖Ak + ‖Pk−1u‖Ak−1
)(|w|22 + λ| divw|21)1/2

. hk−1‖u‖Ak(|w|22 + λ| divw|21)1/2 . hk−1‖u‖Ak‖u− Pk−1u‖.
which completes the proof. �

The next two Lemmas verify the approximation property (A1).

Lemma 4.4. For all u ∈Mk we have the estimate

(4.14) λ‖Qk−1 div(u− Pk−1u)‖ . ‖u‖Ak .

Proof. For any given u ∈Mk and any v ∈Mk−1, from the definition of Pk−1 in (4.2), we have

ak−1(Pk−1u,v) + λ(div(Pk−1u), div v) = ak(u,v) + λ(divu,div v),

or, equivalently,

λ(Qk divu, Qk−1 div v)− λ(Qk−1 div(Pk−1u), Qk−1 div v) = ak(u,v)− ak−1(Pk−1u,v).

By the properties of the L2-projections on Sk and Sk−1 and the fact that Sk−1 ⊂ Sk we have
Qk−1Qk = Qk−1 and Q2

k−1 = Qk−1. Therefore,

(4.15) (Qk−1 div(u− Pk−1u), div v) = λ−1(ak(u,v)− ak−1(Pk−1u,v)).

Note that the continuity of the bilinear form ak(·, ·) implies that ‖v‖ak . ‖v‖1,k−1 and ‖v‖ak−1
.

‖v‖1,k−1. Using now the trivial bound ak−1(w,w) ≤ Ak−1(w,w), which holds for all w ∈Mk−1,
and the inequality (4.8) for the right hand side of (4.15) we obtain

ak(u,v)− ak−1(Pk−1u,v) . (‖u‖ak + ‖Pk−1u‖ak−1
)‖v‖1,k−1

. ‖u‖Ak‖v‖1,k−1.

The inf-sup condition (3.20) and the inequality above then show that

‖Qk−1 div(u− Pk−1u)‖ . sup
v∈Mk−1

(Qk−1 div(u− Pk−1u), div v)
‖v‖1,k−1

= λ−1 sup
v∈Mk−1

ak(u,v)− ak−1(Pk−1u,v)
‖v‖1,k−1

. λ−1‖u‖Ak .
The proof is complete. �

Next lemma estimates the last term in the definition of ‖u− Pk−1u‖k,0.

Lemma 4.5. If λ & 1, then the following estimate holds for all u ∈Mk.

(4.16) λ‖ div(u− Pk−1u)‖2 . ‖u‖2Ak .

Proof. We observe that Qk−1 divPk−1u = divPk−1u and then, by the triangle inequality and
Lemma 4.4, we have

‖div(u− Pk−1u)‖ ≤ ‖ divu−Qk−1 divu‖+ ‖Qk−1 div(u− Pk−1u)‖
. ‖ divu‖+ λ−1‖u‖Ak .

The proof is completed by first squaring both sides, then multiplying by λ and finally using the
inequality (a+ b)2 ≤ 2(a2 + b2) and the fact that λ & 1. We have,

λ‖ div(u− Pk−1u)‖2 . λ‖ divu‖2 + λ−1‖u‖2Ak . ‖u‖
2
Ak
.

�
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Combining the L2-estimate (4.12), and the estimates given in Lemma 4.4, and Lemma 4.5, we
obtain the following theorem, which verifies (A1).

Theorem 4.4. The following approximation estimate holds for λ & 1 and for all u ∈Mk.

‖(I − Pk−1)u‖k,0 . hk‖u‖Ak .

4.5. Smoothing property. In this subsection, we verify the smoothing property (A2). We only
consider the 3-dimensional case because the 2-dimensional case is similar and simpler. We denote
by Vk, and Ek the sets of vertices and edges, respectively, of the partition Tk. For ν ∈ Vk ∪ Ek we
define

T νk = {K ∈ Tk : ν ⊂ K}, Ω̄ν
k = ∪K∈T νk K̄, Ων

k = interior( Ω̄ν
k).

Thus Ων
k is the subdomain of Ω formed by the patch of elements meeting at ν, and T νk is the

restriction of the mesh partition Tk to Ων
k.

We now consider the decomposition of these spaces as sums of spaces supported in small patches
of elements. Define

Mν
k = {r ∈Mk : supp r ⊂ Ω̄ν

k}, ν ∈ Vk ∪ Ek.
Then

Mk =
∑
i∈Vk

M i
k =

∑
e∈Ek

M e
k .

For each of these decompositions there is a corresponding estimate on the sum of the squares of
the L2-norms of the summands. For example, we can decompose an arbitrary element u ∈Mk as
u =

∑
i∈Vk u

i with ui ∈M i
k so that the estimate

(4.17)
∑
i∈Vk

‖ui‖2 . ‖u‖2

holds with a constant depending only on the shape regularity of the mesh.
Since the kernel basis functions of the operator div are captured by the above subspaces M i

k,
we must use a block damped Jacobi smoother or a block Gauss-Seidel smoother where the blocks
correspond to one of the above L2-decompositions in order to preserve the structure of the kernel.
For example, we can use a vertex block damped Jacobi smoother, a vertex block Gauss-Seidel
smoother, an edge block damped Jacobi smoother, or an edge block Gauss-Seidel smoother.

Remark 4.2. We should point out that the block Gauss-Seidel smoother satisfies the assumption
(A0). But for the block damped Jacobi smoother, we need to choose the damping parameter such
that the basic assumption (A0) is satisfied. A damped Richardson smoother I − τAk would need a
damping parameter τ proportional to λ−1. Thus the components of the error in the kernel of Ak
would be smoothed out very slow as λ is large. We should also point out that in the 2-dimensional
case, we can only use vertex block smoothers.

In the rest of this subsection, we only consider the vertex block damped Jacobi smoother since
the others are similar, and define the operator Pk,i : Mk →M i

k for i ∈ Vk by

Ak(Pk,iu,vi) = Ak(u,vi) for all u ∈Mk,vi ∈M i
k.

We use exact local solvers and hence the block damped Jacobi smoother Rk is given by Rk =
τ
∑

i∈Vk Pk,iA
−1
k := τD−1

k , where τ is the damping parameter such that (A0) is satisfied. In this

case, K∗k = Kk and K̃
(m)
k = Km

k . By the assumption (A0), the estimate

(4.18) ‖Km
k u‖2Ak = (D−1

k AkK
2m
k u,u)Dk . m

−1‖u‖2Dk
is well known in multigrid theory (see e.g. Hackbusch [14]).
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By additive Schwarz techniques [29, 30] the induced norm ‖u‖Dk = (Dku,u)1/2 can be written
as

(4.19) ‖u‖2Dk = inf
u=

P
uik

∑
i∈Vk

‖uik‖2Ak .

Remark 4.3. If the estimate ‖u‖Dk . h−1
k ‖u‖k,0 would be true, the assumption (A2) would be

proved. Unfortunately, the proof of Lemma 4.9 suggests that it is not true.

On the other hand, choosing τ sufficiently small it is obvious that ‖Km
k u‖Ak ≤ ‖u‖Ak (the

assumption (A0) holds). Then an interpolation between this estimate and the estimate (4.18) gives

‖Km
k u‖Ak . m

−1/4‖u‖[Dk,Ak],

where ‖u‖[Dk,Ak] is the interpolation norm between ‖ · ‖Dk and ‖ · ‖Ak with parameter 1/2. Thus,
one way to verify assumption (A2), is to show that

(4.20) ‖u‖[Dk,Ak] . h
−1
k ‖u‖k,0,

and the rest of this section is devoted to this. We now define a decomposition of u ∈Mk which is
stable in ‖ · ‖k,0 norm and then show the estimates.

We consider three solutions of problem (3.30) defined as follows:

(u1, p1) is the solution of (3.30) with w1 = u, w2 = 0.(4.21)
(u2, p2) is the solution of (3.30) with w1 = 0, w2 = u−Πk−1u.(4.22)
(u3, p3) is defined as the solution of (3.30) with w1 = 0, w2 = Πk−1u.(4.23)

It is straightforward to check that u − u1 − u2 − u3 and p1 + p2 + p3 satisfy the equation (3.30)
with w1 = 0 and w2 = 0 and therefore u1 + u2 + u3 = u. With these settings in hand, we have
the following stability result.

Lemma 4.6. For the decomposition given in (4.21)–(4.23) we have

‖u1‖k,0 + ‖u1‖k,0 + ‖u3‖k,0 . ‖u‖k,0,(4.24)

‖u2‖ . λ−1‖u‖k,0.(4.25)

Proof. Computing ‖ · ‖k,0 for all the components shows that

‖u1‖k,0 = ‖u1‖,(4.26)

‖u2‖k,0 = ‖u2‖+ λh−1
k ‖ div(u−Πk−1u)‖,(4.27)

‖u3‖k,0 = ‖u3‖+ λ2h−1
k ‖div Πk−1u‖.(4.28)

The rest of the proof is immediate from the definitions of the components (4.21)–(4.22), the defi-
nition of the ‖ · ‖k,0 norm, Lemma 3.5 and Lemma 3.4. �

4.6. Smoothing property via interpolation. Define the H(curl; Ω)-conforming finite element
space on level k (see, e.g., [13])

Wk = {w ∈ H(curl,Ω) : w|K ∈W (K),K ∈ Tk,w × n|∂Ω = 0},
and the three spaces Mk, Sk and Wk are related by the exact sequences ([13])

0 −→Wk
curl−−→Mk

div−−→ Sk −→ 0.

Furthermore, we define

W ν
k = {r ∈Wk : supp r ⊂ Ω̄ν

k}, ν ∈ Vk ∪ Ek.
Then

Wk =
∑
i∈Vk

W i
k =

∑
e∈Ek

W e
k .



18 QINGGUO HONG, JOHANNES KRAUS, JINCHAO XU, AND LUDMIL ZIKATANOV

Note that for any v ∈Mk, we have that ‖v‖Ak . ‖v‖Dk and ‖v‖Dk ≤ ‖v‖Dk and this implies
that

(4.29) ‖v‖[Dk,Ak] . ‖v‖Dk .
The next two lemmas bound only the ‖ · ‖Dk -norm, which is sufficient in view of (4.29).

Lemma 4.7. Let u1 defined as in (4.21). Then

(4.30) ‖u1‖Dk . h
−1
k ‖u1‖k,0.

Proof. Since divu1 = 0, we have u1 = curlwk (see [13]), where wk ∈Wk.
Noting that wk =

∑
i∈Vk w

i
k, where wi

k ∈ W i
k and curlwi

k ∈ M i
k, by identity (4.19) and

inequality (4.17), we have

‖u1‖2Dk = inf
u1=

P
ui1

∑
i∈Vk

‖ui1‖2Ak ≤
∑
i∈Vk

‖ curlwi
k‖2Ak =

∑
i∈Vk

‖ curlwi
k‖2ak

=
∑
i∈Vk

‖ui1‖2ak . h
−2
k

∑
i∈Vk

‖ui1‖2 . h−2
k ‖u1‖2 = h−2

k ‖u1‖2k,0.

The proof of the lemma is complete. �

Lemma 4.8. Let u2 be defined as in (4.22). Then

(4.31) ‖u2‖Dk . h
−1
k ‖u‖k,0.

Proof. By the identity (4.19) and Lemma 4.6, we have

‖u2‖2Dk = inf
u2=

P
ui2

∑
i∈Vk

‖ui2‖2Ak .
∑
i∈Vk

h−2
k λ‖ui2‖2 . h−2

k λ‖u2‖2 . h−2
k ‖u‖

2
k,0.

The proof is complete. �

Corollary 4.1. From the inequality (4.29) and the Lemmas 4.7 and 4.8, we immediately have

‖u1‖[Dk,Ak] . h
−1
k ‖u1‖k,0,

‖u2‖[Dk,Ak] . h
−1
k ‖u‖k,0.

(4.32)

Lemma 4.9. Let u3 be defined as in (4.23). Then

(4.33) ‖u3‖[Dk,Ak] . h
−1
k ‖u‖k,0.

Proof. By the inf-sup condition (3.31) we have ‖u3‖1,k + ‖p3‖ . ‖Qk−1 divu‖. Furthermore,
divu3 = Qk−1 divu by definition. These together with the identity (4.19) give

‖u3‖2Ak . (‖u3‖21,k + λ‖ divu3‖2)

. ‖Qk−1 divu‖2 + λ‖Qk−1 divu‖2 . λ−1h−2
k ‖u‖

2
k,0.

On the other hand, we have

‖u3‖2Dk = inf
u3=

P
ui3

∑
i∈Vk

‖ui3‖2Ak .
∑
i∈Vk

h−2
k λ‖ui3‖2 . h−2

k λ‖u3‖2

. λh−2
k ‖u3‖2k,0 . λh−2

k ‖u‖
2
k,0.

A standard interpolation argument, see, e.g., [31], concludes the proof. �

We close this subsection by the following theorem which verifies (A2).

Theorem 4.5. The following estimate holds for all u ∈Mk.

(4.34) ‖(K̃(m)
k )∗u‖Ak . m

−1/4h−1
k ‖u‖k,0.

Proof. By Lemma 4.6, inequalities (4.32) and (4.33), we obtain the smoothing property (4.34). �
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5. Conclusions

We presented a multigrid algorithm for discontinuous Galerkin H(div; Ω)-conforming discretiza-
tions of the Stokes and linear elasticity equations. A variable V-cycle and a W-cycle are designed
to solve the linear elasticity problem in the present situation of nonnested bilinear forms. The
convergence rate of the algorithm is proved to be independent of the Lamè parameters (or, equiv-
alently, the Poisson ratio) and of the mesh size, which shows that the multigrid method is robust
and optimal. Combining the multigrid method for the linear elasticity problem together with the
Uzawa method, we can also solve the Stokes problem efficiently. The numerical experiments to
verify the theoretical results are the future work to do.
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