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Abstract

When the worst case integration error in a family of functions decays
as n−α for some α > 1 and simple averages along an extensible sequence
match that rate at a set of sample sizes n1 < n2 < · · · < ∞, then these
sample sizes must grow at least geometrically. More precisely, nk+1/nk ≥
ρmust hold for a value 1 < ρ < 2 that increases with α. This result always
rules out arithmetic sequences but never rules out sample size doubling.
The same constraint holds in a root mean square setting.

1 Introduction

For both Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling, Sobol’
(1998) recommends that the number n of sample points should be increased
geometrically, not arithmetically. Specifically, he recommends using a sequence
like n1, 2n1, 4n1, etc., instead of n1, 2n1, 3n1 and so on. For either MC or QMC,
the estimate of an integral is a simple unweighted average of the integrand at n
points.

In the case of Monte Carlo sampling with its slow n−1/2 convergence rate, if
n is too small to get a good answer then taking n+k sample points for k � n is
unlikely to bring a meaningful improvement in accuracy. Sobol’ (1993) studies
the correlations among Monte Carlo estimates along sample sizes nk = 2k−1n1.

In quasi-Monte Carlo sampling, much better convergence rates are some-
times possible, depending particularly on the smoothness and dimension of the
problem space. Novak and Wozniakowski (2010) provide a comprehensive trea-
tise on error rates for numerical integration. In favorable cases, a small change
in n might make a meaningful reduction in the error bound. What we show here
is that rate-optimal sample sizes are widely spaced in those favorable cases.

Sobol’ (1998) showed that a better rate than 1/n cannot hold uniformly for
all n. Hickernell et al. (2012) extended this finding to arithmetic sequences of
sample sizes. They also showed that unequally weighted averages of function
evaluations can attain a better than 1/n rate at all values of n. Suppose for
instance that the first n sample points are partitioned into blocks of nj points, for
j = 1, . . . , J where the estimate from block j has error O(n−αj ). Then weighting
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those within block estimates proportionally to naj , with a ≥ α, attains an error
O((J/n)α). One can commonly arrange J = O(log n) and then the error is
o(n−α+ε) for any ε > 0.

It remains interesting to consider equal weight rules. For a complicated prob-
lem with weighted points from multiple spaces, keeping track of the weights be-
comes cumbersome. Also, there are quasi-Monte Carlo methods such as higher
order digital nets (Dick, 2011), that are simultaneously rate optimal for more
than one class of functions, each with its own rate. In such settings we might
want to use the same weights for multiple integrands, but no single weighing
might serve them all best. Finally, if the constraints we find here on equal
weight rules are unpalatable for some given problem, it provides motivation to
switch to an unequally weighted rule.

An outline of this note is as follows. Section 2 presents the insight from
the appendix of Sobol’ (1998) and the extension by Hickernell et al. (2012). If
a QMC rule has worst case error o(1/n) holding for all n, then the points xi
must have some very strange limit properties and the class of functions involved
is odd enough that we could do very well using only one point xn for very
large n. A generalization of that argument shows that an o(1/n) rate along an
arithmetic sequence of sample sizes raises similar problems. Section 3 shows
that if quadrature error in a class F of functions has a worst case lower bound
mn−α for α > 1 and a specific sequence xi is rate optimal at sample sizes
n1 < n2 < · · · , then necessarily nk+1/nk ≥ ρ for some constant 1 < ρ < 2
depending on α and on how close the sequence comes to having the optimal
constant. Section 4 considers root mean squared error for sequences of sample
points incorporating some randomness. The same constraints hold in this setting
as in the worst case setting.

2 Ruling out arithmetic sequences

It is not reasonable to expect a QMC rule to have errors of size o(1/n) for all
values of n ≥ N0 for some N0 > 0. Intuitively, adding a single point makes a
change of order 1/n to the estimated integral. Therefore two consecutive values
of the integral estimate are ordinarily an order of magnitude farther apart from
each other than they could be by the triangle inequality, with the true integral
value making the third corner of the triangle. This idea is made precise in the
appendix of Sobol’ (1998), as we outline here.

Let µ = µ(f) =
∫
f(x) dx and µ̂n = µ̂n(f) = (1/n)

∑n
i=1 f(xi). The integral

is over [0, 1]d and xi ∈ [0, 1]d for i ≥ 1. Let

ηn = ηn(f) =
1

n

n∑
i=1

f(xi)− µ

and suppose that the points xi are chosen such

sup
f∈F
|ηn(f)| ≤ ε(n)
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where ε(n) = o(1/n), and F is a class of integrands. Sobol’ considered ε(n) =
O(n−α) for some α > 1. The classes F that we study are usually balls with
respect to a seminorm, such as the standard deviation in Monte Carlo and the
total variation in the sense of Hardy and Krause, for quasi-Monte Carlo.

Sobol’ observed that

|f(xn+1)− µ| = |(n+ 1)ηn+1 − nηn|
≤ (n+ 1)ε(n+ 1) + nε(n)

→ 0

as n → ∞. As a result limn→∞ f(xi) = µ(f) for all f ∈ F . The set F cannot
be very rich in this case. As Sobol’ noted, for d = 1, if F contains x it cannot
also contain x2.

If we had such a sequence xi and a class F we might simply estimate µ
by f(xn) for one extremely large n, perhaps the largest one for which we can
compute xn. Alternatively, when f ∈ F are all known to be integrable and
anti-symmetric functions on [0, 1]d we can take x1 = (1/2, . . . , 1/2) and have a
zero error. This is the most favorable case for antithetic sampling (Hammersley
and Morton, 1956). MC and QMC methods are ordinarily designed for more
general purpose use, and so such special settings are of limited importance.

Hickernell et al. (2012) extend Sobol’s argument to show that we should not
expect ε(nk) = o(1/n) as n→∞ for any integer k ≥ 1. We would then have a
class of functions F with

lim
n→∞

1

k

k∑
i=1

f(xnk+i)→ µ(f)

for all f ∈ F . That is a very limited class, and once again, we could solve the
problem uniformly over that class simply by taking k points xnk+1, . . .x(n+1)k

for some very large n.

3 Geometric spacing for the worst case setting

The class F of real-valued functions on [0, 1]d has a superlinear worst case lower
bound if

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)− µ(f)

∣∣∣∣ > mn−α (1)

holds for some α > 1, m > 0, all n ≥ 1 and all xi ∈ [0, 1]d. There is a uniformly
rate optimal sequence for this class, if for some xi ∈ [0, 1]d and a sequence of
sample sizes n1 < n2 < · · · ,

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)− µ(f)

∣∣∣∣ ≤Mn−α, ∀n ∈ {n1, n2, . . . } (2)

3



holds, where m ≤M <∞.
The proof of Theorem 1 below makes use of some basic facts about fixed-

point iterations. Let g(x) be a continuous function on the interval [a, b] taking
values in [a, b]. Then g has at least one fixed point x∗ ∈ [a, b], with g(x∗) = x∗.
If also, g has Lipschitz constant λ < 1 for all x ∈ [a, b], then the fixed point
x∗ is unique. Now consider the fixed point iteration xn+1 = g(xn). Under the
Lipschitz condition, xn converges to x∗ from any x1 ∈ [a, b]. These facts are
consequences of Kelley (1999, Theorem 4.2.1). When g has derivative g′ with
0 < g′(x) < 1 on [a, b], then the convergence to x∗ is monotone: if x1 < x∗ then
xn < xn+1 < x∗ for all n ≥ 1, or if x1 > x∗, then xn > xn+1 > x∗ for all n ≥ 1
(Ackleh et al., 2009, Remark 2.6).

Theorem 1. Let F have a worst case lower bound given by (1) with α > 1
and 0 < m ≤ M < ∞. Suppose that there also exists a uniformly rate optimal
sequence xi satisfying (2). If ρ = ρk = nk+1/nk, then

ρ ≥ 1 +

[
m

M
(1 + ρ1−α)−1

]1/(α−1)
> 1 +

( m

2M

)1/(α−1)
. (3)

Proof. From the lower bound (1), there is an f ∈ F with

m(nk+1 − nk)−α ≤
∣∣∣∣ 1

nk+1 − nk

nk+1∑
i=nk+1

(f(xi)− µ)

∣∣∣∣
= (nk+1 − nk)−1

∣∣∣∣nk+1∑
i=1

(f(xi)− µ)−
nk∑
i=1

(f(xi)− µ)

∣∣∣∣
≤M(nk+1 − nk)−1(n1−αk+1 + n1−αk ), (4)

where we have applied upper bounds from (2). Writing ρ = nk+1/nk and
rearranging (4), yields the first inequality in (3).

Next we define g(ρ) = 1+((m/M)(1+ρ1−α)−1)1/(α−1), the middle quantity
in (3). It has derivative

g′(ρ) =
(m
M

)1/(α−1)(
1 + ρ1−α

)−1/(α−1)−1
ρ−α

which is positive for ρ ∈ [1, 2]. Therefore 1 < g(1) ≤ g(ρ) ≤ g(2) < 2 and so g
maps [1, 2] into [1, 2]. Because g′ ≤ λ ≡ (m/M)1/(α−1)2−1/(α−1)−1 the Lipschitz
constant for g is at most λ < 1. Thus g has a unique fixed point ρ∗ ∈ (1, 2)
with g(ρ∗) = ρ∗. If ρ satisfies the first inequality in (3), then ρ ≥ ρ∗. By the
monotone convergence of this iteration, ρ∗ > g(1) = 1 + (m/(2M))1/(α−1).

A rate optimal sequence nk must be spread out at least geometrically, with
a ratio nk+1/nk ≥ ρ where ρ is now the smallest number satisfying the first
inequality in (3). This ρ depends on m/M and on α. By definition ρ > 1. Also
we can find by inspection that ρ = 2 satisfies the first inequality in (3) and so
Theorem 1 never rules out a doubling of the sample size. The lower bound on
the critical extension factor nk+1/nk always satisfies 1 < ρ < 2.
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Figure 1: For worst case rates n−α this figure shows a lower bound on the
extension factor nk+1/nk in a uniformly rate-optimal integration sequence.

Figure 1 shows this extension bound as a function of α for various levels of
the ratio m/M . The values there were computed via Brent’s algorithm (Brent,
1973). The case m/M = 1 is of special interest. It describes a rate-optimal rule
that also attains the optimal constant. That case has the highest bound on the
extension factor.

If the rate n−α is generalized to n−α log(n)β for α > 1 and β > 0, then a
geometric spacing is still necessary. For any 1 < γ < α and large enough nk it
is necessary to have ρk = nk+1/nk ≥ 1 + (m/2M)1/(1−γ).

4 The root mean square error setting

The class F of real-valued functions on [0, 1]d has a superlinear root mean square
lower bound if

sup
f∈F

E
(∣∣∣∣ 1n

n∑
i=1

f(xi)− µ(f)

∣∣∣∣2)1/2

> mn−α (5)

holds for some α > 1, m > 0, all n ≥ 1 and any random xi ∈ [0, 1]d. Here
E(·) denotes expectation with respect to the randomness in xi. The sequence of
random xi ∈ [0, 1]d is uniformly rate-optimal for this class if there is a sequence
of sample sizes n1 < n2 < · · · , for which

sup
f∈F

E
(∣∣∣∣ 1n

n∑
i=1

f(xi)− µ(f)

∣∣∣∣)1/2

≤Mn−α, ∀n ∈ {n1, n2, . . . } (6)
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holds, where m ≤M <∞.
The same theorem holds for the root mean square error case as holds for

the worst case. It is not necessary to assume that any of f(xi) are unbiased or
to make any assumption about the correlation structure among the f(xi). We
only need to square one of the identities in Theorem 1 and then use standard
moment inequalities from probability theory.

Theorem 2. Let F have a root mean square lower bound given by (5) with
α > 1 and 0 < m ≤ M < ∞. Suppose that there also exists a uniformly rate
optimal sequence of random xi satisfying (6). If ρ = ρk = nk+1/nk, then

ρ ≥ 1 +

[
m

M
(1 + ρ1−α)−1

]1/(α−1)
≥ 1 +

( m

2M

)1/(α−1)
. (7)

Proof. To shorten some expressions, let ∆k = nk+1 − nk and recall that ηn =
(1/n)

∑n
i=1(f(xi)− µ(f)). We begin with the identity,

1

∆k

nk+1∑
i=nk+1

(f(xi)− µ) =
1

∆k

(
nk+1ηnk+1

− nkηnk

)
. (8)

The expected square of the left side of (8) is no smaller than m2/∆2α
k . The

expected square of the right side of (8) is

1

∆2
k

[
n2k+1E(η2nk+1

)− 2nk+1nkE(ηnk+1
ηnk

) + n2kE(η2nk
)
]

≤ 1

∆2
k

[
n2k+1E(η2nk+1

) + 2nk+1nk

√
E(η2nk+1

)E(η2nk
) + n2kE(η2nk

)
]

≤ M2

∆2
k

[
n
2(1−α)
k+1 + 2n1−αk+1n

1−α
k + n

2(1−α)
k

]
.

As a result,

m2

∆2α
k

≤ M2

∆2
k

[
n1−αk+1 + n1−αk

]2
. (9)

Taking the square root of both sides of (9) and rearranging, yields (4), from
which the theorem follows just as it did for the worst case analysis.

5 Discussion

We have found a constraint on the spacings of a rate-optimal equal-weight exten-
sible MC or QMC sequence. The constraint only applies when the convergence
is better than O(1/n).

We can use that constraint in reverse as follows. Suppose that a rate-optimal
sequence nk includes sample sizes with nk+1/nk = ρ ∈ (1, 2) and attains the
error rate O(n−α) for α > 1. Then from (3) we obtain

M

m
≥ (1 + ρ1−α)−1/(α−1)

ρ− 1
.

6



As we approach an arithmetic progression by letting ρ ↓ 1, the inefficiency in
the constant factor increases without bound.

The constraint only applies to rate-optimal sequences. In particular it does
not apply to an extensible sequence that may be inefficient by a logarithmic
factor.
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