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Abstract: This paper considers a large class of linear operator emstincluding lin-
ear boundary value problems for partial differential egpreg, and treats them as linear
recovery problems foobjectsfrom theirdata Well-posednessf the problem means
that this recovery is continuouBiscretizationrecovers restrictetlial objects from re-
strictedtestdata, and it is well-posed stableg if this restrictedrecovery is continuous.
After defining a general framework for these notions, thisgrgroves that all well—
posed linear problems have stable and refinable compughtitiscretizations with a
stability that is determined by the well-posedness of tlublem and independent of
the computational discretization. The solutions of diszesl problems converge when
enlarging the trial spaces, and the convergence rate isndieted by how well the full
data of the object solving the full problem can be approxedaty the full data of
the trial objects. This allows very simple proofs of convarge rates for generalized
finite elements, symmetric and unsymmetric Kansa—typ®cation, and other mesh-
free methods like Meshless Local Petrov—Galerkin techegqut is also shown that
for a fixed trial space, weak formulations have a slightlytdretonvergence rate than
strong formulations, but at the expense of numerical idtiégm. Since convergence
rates are reduced to those coming from Approximation Theorg since trial spaces
are arbitrary, this also covers various spectral and pspetdral methods. All of this
is illustrated by examples.

1 Introduction and Summary

This paper focuses on mathematical problems that havei@mdut in some normed
linear spac&) overR satisfying infinitely many linear conditions that we write a

A(uy=f, forallA e ACU” (1.1)

with given real number§, and continuous linear functionalsonU collected into a set
N CU*. We call the real numbefs, }, cx thedatathat hopefully allow to identify the
object y which will in many cases be a multivariate function on soramdin. Solving
(@) foru from given data{ f) },A is arecovery problemand we view it as posed
in an abstract mathematical setting that is not directlyeasible for computation. It
can be called aanalyticalproblem in contrast to theomputationaproblems that will
follow later. The transition from an analytical problem to@nputational problem will
be calleddiscretization

Typical special cases arise when solving partial diffeedrgquations (PDEs). The
objectuto be recovered is always an element of some spagkreal-valued functions
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on a domain, but weak and strong formulations of PDEs use very diffetgmes of
data, namely either integrals against test functions or dexigatalues at evaluation
points, plus boundary conditions of various forms. If twolpems use different data
to identify the same object, we consider them as differerg.he

The PDE applications of (1.1) suggest to view the applicatitthe functionalg\ € A
astestinga trial objectu. Discretizationwill then fix a finite—dimensionatrial sub-
space W C U and a finite sef\y of test functionalérom A. We pursue this distinction
between the trial and the test side[of {1.1) throughout thjzp

If a problem inMathematicalAnalysis is well-posed, it should have a discretization
in Numerical Analysis that is also well-posed. This requires to derivenassort of
numerical stability of well-chosen discretizations frdm tvell-posedness property of
the underlying analytical problem. This paper proves thevalstatement under mild
additional assumptions after stating clearly in Sectidas®4 what is to be understood
by well-posednessf aproblemand itsdiscretization It turns out in Sectiohl5 that one
can choose refinable discretizations that have stabilgpgnties depending only on the
well-posedness of the given problem, not on the discréizsichosen. This depends
crucially on what we call anonotone refinable dense (MR@ikcretization strategy in
Sectior#. In an older discretization theadryl[24] [25, 7]pebounds and convergence
results depended astability inequalitieshat needed complicated proofs[21], while
this paper shows that one can always enforce uniform diabifisufficiently thorough
testing.

The resulting discretized linear problems will be overdaieed due to this stabiliza-
tion, and should be solved approximately by minimizing desis. Sectiofi]7 deals
with this, and shows that the final error bounds and convemeates are determined
by how well the data of the true solution can be approximatethb data of elements
of the trial space. We call thirial Space Data Approximationln particular, error
bounds and convergence rates are independent of the detiEiging.

Section[B extends the previous results to ill-posed probland noisy data, while
Sectiond P anf 10 specialize to recovery in Hilbert spacésrevuniformly stable
and sometimes optimal discretizations are readily aviglahese generalize finite
elements and symmetric collocation, as will be explainegdotiod I3.2 when it comes
to examples.

Stability can be spoiled by bad bases. Therefore this pgperés bases and focuses
on spaces instead, up to Section 11 where the influence of loasthe trial and the
test side is studied. A very common class of bases aradbalbases used in classi-
cal piecewise linear finite elements and various meshlesisads. Many application
papers report good stability properties of these, and @&di2 provides a fairly gen-
eral mathematical proof, showing that convergence in tliea@an be derived from
convergence of th@rial Space Data Approximation

The paper closes with a number of examples that apply theeati@ory. Polyno-
mial interpolation in Sectioh 13.1 illustrates that thebdtaation results of this paper
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imply quite someovertesting, i.e. oversampling on the test side to guarantee uni-
form stability. Furthermore, it points out how spectral hwats are covered and why
weak formulations yield slightly faster convergence thaorgg formulations, though
for weaker norms and at the expense of numerical integration

Sectio I3 deals with the standard setting for finite etemi®r homogeneous bound-
ary conditions, showing that it fits perfectly into the framek, including extension to
other trial spaces and a Petrov—Galerkin treatment.

The remaining examples address the standard Poisson prebtk Dirichlet bound-
ary conditions, for simplicity. Sectidn 13.3 focuses onl@cdtion as a typical strong
problem. This covers various kinds of meshless methodijdimg Kansa’s unsym-
metric collocation, and it is shown how to derive specificv@mgence rates depending
on the trial spaces chosen. The weak Dirichlet case is hdmdlSectiof 134, and a
comparison of convergence rates for the strong and weakulations, using the same
trial spaces, is provided in Sectibn 113.5.

Finally, Atluri's Meshless Local Petrov Galerkin (MLPG)rsame[[4] is treated in Sec-
tion[I3.6. This includes error bounds and convergence fatafifferent variations of
the method, but it was necessary to include a first proof ofrpekedness of the local
weak form behind MLPG.

Summarizing, this paper shows that under mild hypotheses

1. all well-posed problems have uniformly stable discegtons made possible by
sufficiently extensive testing, and

2. convergence rates for such discretizations can be plagekito known conver-
gence rates ofrial Space Data Approximatign.e. the approximation of the
data of the true solution by the data of the trial elementseséhrates depend
on what “data” means and are taken in the norm arising in tHe-p@sedness
condition.

3. Weak and strong formulations of a given background probiél have different
definitions of “data” and will need different versions of Wwglosedness, and
these differences enter into the previous item and influgreeonvergence rates,
even when trial spaces are the same for both formulations.

4. For a given fixed trial space, it is shown that in standarglieations the weak
formulation converges slightly faster than the strong folation.

5. Nodal bases have a stability advantage over other bases.

On the downside, the test strategies guaranteeing uniftaipilisy are only shown to
exist, they are not constructed. Future work needs expligiicient conditions on spe-
cific test strategies to guarantee uniform stability. Tlaie be done bgreedy testing
as touched in earlier papers on adaptivityl [28,[14/19, 28jalfy, emphasis so far is
only on errors, convergence rates, and stability of algor#t, but not on computational
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efficiency. It is a major challenge to relate the achievablevergence rates and stabil-
ity properties to computational efficiency. Anyway, thigppaprovides a starting point
towards these goals.

2 Problems, Data, and Well-Posedness

Behind [11) there is a lineatata map D: U — R =:V that takes each € U into
the set of valuegA (u)},ca in the data space V This allows to rewrite[(1]1) as an
operator equation

D(uy=f (2.1)

for some givenf in the data spac¥. Each operator equation can be formally inter-
preted this way, e.g. by defininy as the set of all functionalg o D whenu varies in
the unit sphere 0¥ *.

Example 2.2. As an illustration, consider the standard Dirichlet proble

—Au = f inQcRY
u = g Inl:=0Q

wheref andg are given functions o andl". A strongformulation writes it in the
form (I.3) with functionals

Ax 1 u—= —Au(x), xeQ
Hy 1 u—u(y), yel

on some space where both types of functionals are continuous. The stahd&M
algorithms useveakfunctionals

Av 1 u (Ou,0v),(q) forallve Hy(Q)

and add the functionals, for points on the boundary. We postpone further details to
section$ 1313 arld 13.4, but remark that the data maps diffesiderably. O

We give the data space a norm structure by requiring that
|Dullv := sup|A (u)| for all u e U (2.3)
AEN

is a norm orD(U) that we assume to be extended/taf notV = D(U). We shall call
this thedata norm and note that it leads to a seminorm

|ullp := ||Dullv = sup|A (u)| forallue U (2.4)

AeN

on the object spacl. This is well-defined if all functionals i\ are uniformly
bounded. We assume existence of the data norm from now onetmirid the reader

that renormalization of functionals changes the data northadl issues depending on
it, like the well-posedness conditions that we introduterla
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Definition 2.5. Ananalytic problenin the sense of this paper consists of
1. alinear normedbjectspace U,
2. a set/ of linear functionals on U leading to data mayD as in [Z.1)
3. with values in a normedata spac¥ such that
4. (Z3) holds andisanormonV.

Unique solvability of the probleni (1.1) dr{2.1) requireatth € U vanishes if all data
A(u) for all A € A vanish, or thaD is injective, or thaf|.||p is @ norm. A somewhat
stronger and quantitative notionvigell-posedness

Definition 2.6. An analytic problem in the sense of Definitlon]2.svisll-posed with
respect to a well-posedness nofinfjwp on U if there is a constant C such that a
well-posedness inequality

|lullwp < C||Du|ly = CJJu||p forallu e U (2.7)
holds.

This means thad ! is continuous as a map(U) — U in the norms|.|jy and||.|jwp.
The well-posedness norin|lwp onU will often be weaker than the north|jy onU
needed to let the data be well-defined.

In the context of Examp[ed.2, the strong problem leads tb+pekedness with.|wp=
[|[|o.2, While the weak form hag. [we = ||.[|L,(q)- Details will follow in[13.3 and 1314,
but we remark here that deriving computationally usefullrymisedness inequalities
is a serious issue that is not satisfactorily addressedday éticians, because they do
not use computationally useful norms on the data space.nBtarice, the continuous
dependence of solutions of elliptic problems on the boundata is often expressed
by taking Sobolev trace spaces of fractional order on thentary, and these spaces
are far from being accessible for computation. The exampikkshed some light on
this issue.

Future research in Applied Mathematics should target jpabtt useful well-posedness
results based on norms that are closer to computation.

3 Trial Space Data Approximation

We now perform the first step afiscretizationby choosing a finite—dimensiongial
space U C U. This allows us to approximate the d&&u*) € V by dataD(uy) for all
trial elementauy € Uy in the data nornj|.|lv, and we denote the best approximation
by uy,, i.e.
|[IDu* — Duy|lv = min ||Du* — Dum||v. (3.1)
Um EUM

We shall rely on Approximation Theory to provide upper bosifat this, and for con-
vergence rates fofDu* — Duy||v — O if the space&)u get larger and larger. These
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rates will crucially depend on the smoothnessigfthe trial spacebly, and the data
mapD. For trial spaces in spectral methods, these convergetesamay be very large,
and there may even be exponential convergence. Welcdll tf®Tyial Space Data
Approximation but we keep in mind that the above approximation problenoispu-
tationally hazardous, because it involves infinitely maatad We can assesg only
in theory, not in practice.

If the problem is well-posed in the sense of Definifiod 2.@, ¢hror bounds and con-
vergence rates of thErial Space Data Approximatiommediately carry over to error
bounds and convergence rates in the well-posedness n@m, vi

[[u* = U lwp < C|[DU” — Duylv,

and independent of the chosen trial space. This means thatRimation Theory
provides convergence rates for certain approximate swisitof certain well-posed
analytic problems, but these approximate solutions arepetationally inaccessible.

In the context of Example—2.2, the functions of the trial sphave to approximate
function values on the boundary in both the strong and thekweae. But for the
strong form we have to approximate second derivativesgnthé weak form only has
to approximate first derivatives. Furthermore, the welkguness norms are different.
This will lead to different convergence rates in Secliorbil 3.

4 MRD Discretizations

In what follows, we shall show how to discretize the test siflan analytic problem
in the sense of Definitidn 2.5 in such a way that a uniformlpkstand finite computa-
tional strategy exists that provides approximatiogs="Uy with

[u* —Gmlwe < 2[|u” — Uy [lwp < 2C||Du” — Duylv.

This implies that Approximation Theory provides convergerates for certaifinitely
and stably computablapproximate solutions of certain well-posed analytic jgois.
The convergence will take place th under the well-posedness nofimiwp, and the
convergence rate will be the convergence rate offtied Space Data Approximation
Our main tool will be amonotonic refinable dense (MRMjscretization of the data
spaceV that we describe now.

No matter what the dataapis, the datapace Vshould allow some form adiscretiza-
tion for computational purposes. We model thisrbgtrictionmaps

Ry : {f/\}AEAH{f/\}/\eAN €Wn :RV\N\

that mapV into finite—dimensionatiata spaces ¥ over R. The discretizations use
restricted databelonging to finite subsetsy of A, and these data enter practical com-
putation.
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On the space¥y we introduce the norm
RN A Taenlive = I A Facny vy = max|f, |
AENN

and we get thenonotonicityproperty
[IRmVlviy < [IRnV]Ivy, forall ve V and allAy C Aw.

Refinementf two discretizations defined by sétg andAyN works by taking\y UAN,
and by the monotonicity property this will weakly increalse tliscrete norms. Finally,
we have
[IV]lv := sup ||[RaV|v, forallveV, 4.2)
RnaWN

following from (2.3).

But there are applications where restrictions are not defiydakingall possiblefinite
subsets of functionals. They might require backgrounch¢pidations, e.g. for finite
elements, and their refinement does not simply involve takionion of two finite sets
of functionals. We can generalize the above notions by iggdunctionals:

Definition 4.2. AnMRD discretizatiorof a data space V consist of a sete$trictions
(Rn, W) with the properties

1. W is a normed linear space wittimVy < c and norm||. |\,

2. Ry :V =W s linear,

3. there is a partially definecefinement relatior< on the restrictions such that
4. (Rw,Vm) = (Rn, W) implies||Ruv|lv, < ||Ruv|jw, forallv eV,
5

. for each two admissible restriction{&u,Vm), (Ry,Wn) there is a restriction
(Rp,Vp) such that(Rv,Viv) = (Re,Vp) and (Ru,Vm) = (Re,Vp),

6. (4.1) is a norm, when the sup is taken over all admissilg#imions.

This axiomatic framework is open for further discussioncotirse, but we assume it
in what follows. We refer to the last three propertiesramotonicity refinementand

density using the ternMRD discretizatiorfor all six properties. Note that the norm
arising in the density property must be the data norm thatéslin the well-posedness

inequality [2.7).
The discussion preceding Definitibn ¥.2 proved

Theorem 4.3. Each analytical problem of the fora (1.1) in the sense of Dt@fimZ.3
has a MRD discretization via taking finite subsets of fumls. O

For Exampld_212, it is clear that one can focus on finitely miamgctionals when it

comes to finite computations, but it is by no means clear waichhow many are to be
taken to allow a uniformly stable computational method. Téf@mement in the FEM

case is not quite standard, but will satisfy Definitionl4.2cduse it still uses finite
subsets of functionals.
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5 Well-Posedness of Discretized Problems

If we use a MRD restrictioiRy, Viy) on the data together with a chosen trial spdge
we can pose thdiscretized problemas the linear system

RnDuy = RyDU* (5.1)

to be solved foruy € Um, where the computational input data are provided by the
restrictionRyDu* of the data of an exact solutiarf. Such systems will usually be
overdetermined.

Since the well-posedness conditibn[2.7) also holds orridlespace, the discretized
problem[5.1) is automatically well-posedsiablein the sense

||UMHWP < C(UM,VN)HRNDUM ||VN for all uy € Um
if we can prove
HDUMHV < C(UM,VN)HRNDUMHVN for all uy € Um (5.2)

for somestability constant QUw, W).

We now can state our central result, to be proven later in aesgrat more general
form.

Theorem 5.3. Assume an analytic problemn (2.1) with an MRD discretizatlbby, is
an arbitrary finite—dimensional subspace of U, there alwisya restriction(Ry,Vn)
such that

||UM||D < 2||RND(UM)||VN for all uy € Upm. (5.4)

This holds without assuming well-posedness. If the lattassumed by (2.7), we have
||UMHWP < 2C||RND(UM)||VN forall uy € Um (5.5)
with the constant C froni (2.7).

In contrast to[(5]2), the constants [n_(5.4) ahd](5.5) arependent ofJy, andVy,
proving auniformwell-posedness or stability of the discretized problemafoather
sensible choice dfly after an arbitrary selection afy. Sectio 1311 will show that
this uniformity may require some hidden amounbetrsamplingi.e. the dimension
of Vy may be much larger than the dimensiorgf. We call thisovertestingbecause

it occurs on the test side of the problem. Theoken 5.3 doegive@ny practical hints
how to care for uniformly stable testing, it just proves éxige. The necessary amount
of overtesting to achieve uniformly stability is left open.

Itis a common observation that many instabilities ariserfliadly chosen bases. They
sometimes disappear after introduction of better baseslemtify instabilities that can
be blamed to bad bases, we refrain from introducing basearassfpossible in this
paper, focusing on spaces instead of bases.
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6 Well-Posedness of Data Discretizations

Inspection of [[5.4) shows that the analytic problem and i&dl-vposedness are not
relevant for [E.4), because the actual well-posednesstamm@@. 1) enters only into
the trivial transition from[(5}4) to[(515). In fact, everynig follows already from the
notion of a MRD discretization. Well-posedness is a later-aad.

Lemma 6.1. Consider a data space V and associated MRD restrictiétg Vi) sat-
isfying the assumptions of Sectidn 4. Then for each finiteedsional subspacey\of
V there always is a restrictio(Ry, Vi) such that

||WMHV < 2||RNWM||VN for all wy € Wiy

Proof: DefineK C Wy as the unit sphere &fy defined via the nornfj.||v. By com-
pactness, for each> 0 we can coveK by finitely manye—neighborhoods

Ue(yj) :={yeK : [ly—-yjllv<e},1<j<n

with elementsys,...,yn € K. By the density property (4.1) we can find restrictions
R, - -+, Rn, wWith associated spac¥fg, ..., W, such that

Yillv < IR Yillwy, +&1<j<n

and by repeated application of the refinement property wealeéineRy andVy as the
“union” of these, and then

IRyVlivy, < [IRwV]lvy forallve v, 1<j<n
by monotonicity.

We now take an arbitranyy € K and get somg, 1 < j < nwith |jwy —yj[lv < € via
the covering. This implie§Rywu — Rny;j |lvy < € by the density property, and then

IRawmllvy = IRNYjllvg — €
> [RuYilwg —¢
= yilv—2e¢
= [wmllv —3e
= 1-3¢
proving
[IRuwm [[vy = (1 = 3¢)[wi[lv
for all wy € Wi, and the assertion follows far= 1/6. O

The proof of Theorem 513 now follows by settikg, = D(Uy ) with an arbitrary data
mapD. O
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7 Solving Discretized Problems

After choosing a trial spacgy and getting a suitable data restrictioRy, V) for
Theoren{5.B, the discretized recovery probl€ém]|(5.1) regu@gomputation of some
uvw € Uy from the dataRyDu*, whereu® is the true solution to the analytical problem.
This will usually lead to an overdetermined linear systeterafhoosing bases, but we
do not want to consider bases unless absolutely necessary.

The simplest basis—free computational method we couldge®js to minimize the
residual normj|RyD(U* — um) |l over alluy € Um, which is a finite—dimensional ap-
proximation problem. A good candidate in the trial spageis the best approximation

uy, to the solutionu®, and we are free to consider the best approximation in one of
the norms||.|ju, ||-|lwe or ||.||o. We do not insist here on using the data norm and a
bestapproximation, as we did ifi.(3.1). Instead, we keep the ehofciy, free and are
satisfied with computing an elemany; € Uy with

[IRND (U™ —Tim) [viy < CallRND(U" — Uy) [l (7.1)

however it is calculated, with a fixed const&}t > 1 that makes computational life
easier when chosen not too close to one. Weggla comparison trial object It is
usually provided by some result of Approximation Theoryttyialds a useful bound
on the right-hand side of (7.1). Due to the monotonicity aedsity properties, we
also have

[IRND(U” — Gm) fIvy < CallRuD(U” =ty ) [[vy < CallD(U" —up)lv,

such that the bedtrial Space Data Approximatiois always an upper bound.

Anyway, (7.1) implies

2||RuD(Gm — Uy ) [y

2||RuD (v — u)[jvy + 2[[RuD (U™ — uy) [y
(2Ca+2)[[RND (U™ — uy) [lvy
(2Ca+2)[|D(u* — uy)[lv
(2Ca+2)[Ju* — uylo

[[Gm — uy [l

VAR VAR VARVAN

and B

< [[iv — Uy llo + [luy — u*llo

< (2Ca+3)|luy —u*lo,

proving that the error of the computational solutigi i up to a factor the same as the
error of the comparison trial objeay,, evaluated in the data norm.

[|Gm — u*|lp

Theorem 7.2. Assume an MRD discretization of an analytic problem aloreglithes
of the previous sections. Then each computational teclertiojsolve the discretized
problem approximatively by an eleméijt € Uy such that[(Z11) holds, will also guar-
antee

[[Gm — u[lp < (2Ca+3)[[|uy — u7[|p

for any comparison trial object.
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Corollary 7.3. Adding well-posedness to Theollen 7.2 yields
[[u” = Gw[lwp < C(2Ca+ 3) [uy — U'[|p

proving that convergence rates in the data norm transfeh&same convergence rates
in the norm||.|lwp on U arising in the well-posedness conditibn12.3). O

We summarize what we have so far, for easy reference in thapea.

Theorem 7.4. Assume a well-posed analytic problem with an MRD discrétinas in
Definitiond 2.5 216, and 4.2. Then for arbitrary trial spaaane can choose uniformly
stable test discretizations to get uniformly stable corapomal methods based on some
form of residual minimization. The convergence rates, medkin the well-posedness
norm, are given by the convergence rate ofthial Space Data Approximatione. the
rate in which the data of the true solution are approximatgdte data of comparison
trial objects, measured in the data norm. O

This will be applied in the following way. First, one assunaelgitional regularity of
the solution objecti and fixes a well-known approximation procestlithat provides
good comparison trial objectg, for these trial spaces, and with a very good conver-
gence ratelf;, — u* that may even be spectral in a weak norm ljkgyp. Then these
approximations are used for comparison in the above thaad/the convergence rate
in the data norm is calculated from what is known about the@pmation process.
Then we know that this rate is the one that arises when sothi@gnalytic problem,
and it arises in the well-posedness norm. This may even gj@dtral convergence,
and we shall provide examples. But note that the rate of agevee of our discretized
solutions of the analytical problems is only the rate theveogence obtainedfter
the data map is applied, and it involves the ndfiwp used in the well-posedness
condition.

The above approach applies to a large variety of well-posedy/tic problems, and
shows that for properly chosen scales of trial spazgand properly chosen test strate-
gies depending on eadhy one gets uniformly stable and convergent computational
methods with convergence rates that can be derived fronitsesuApproximation
Theory. These rates normally improve with the smoothneghetrue solution, but
they also depend on the data map and the well-posedness manma given PDE
problem like in Exampl&2]2, the convergence rates of stamdyweak formulations
will be different, even if the trial spaces are the same. Thidue to the fact that the
data maps, data norms, and well-posedness norms are wliffBxetails will follow in

Sectiof 13b.

If the true solution necessarily has certain singularibes known type, like in elliptic
PDE problems on domains with incoming corners, one showeys add the correct
singular functions to the trial space. Then the approxiomegjuality of the singular so-
lution in the augmented trial space is the same as the appatixin quality of a regular
solution in the original trial space, and this quality witiprove with the smoothness of
the regular solution. In this sense, going over to extendealdspaces like in the XFEM
or GFEM does not need a new theory here.
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8 Noisy Data

Corollary[7.3 showed that ill-posed problems can be treataxhe is satisfied with
reproducing the data well. But so far we always have assummedthe input data
are given exactly as data of an existing solution. If this @ tnue, a few changes
are necessary. We assume that the data hegpalways exact, but the input data for
computations are assumed to be polluted by either noiseansen evaluating the data
functionals. This also handles the error committed by nizakintegration when the
data functionals of weak PDE problems are considered.

The data now consist of a general eleménof the data space, and we assume that
there is an objeat* € U such that|D(u*) —v*||v is small, and we want to recover this
object well, or others with a similarly good data reprodomstiWe choose a trial space
Um C U as before, and we defivéy := D(Um) C V as at the end of Sectidh 6. Clearly,
(Z2) now has to be replaced by

|‘RNW—RNDUM||VN SCAHRNVK—RNDUKAHVN, (8.1)
because there are no other data at hand. Then

Theorem 8.2. Assume an MRD discretization of an analytic problem alorgglithes
of the previous sections. Then each computational teclertigjsolve the discretized
problem approximatively by an eleméiyt € Uy such that[(8.11) holds, will guarantee

[[tm —U*[p < (2Ca+3)|[luy — u”[lo + (2Ca+2) ||V — DUl (8.3)
forany u e U.

Proof: We proceed like above, via

[ —Uyllo < 2||RuD(Tv — uy) v
< 2||RuDiiv — Ruv* [[vy + 2/[Rnv* — RuDUgy [lvy
< (2Ca+2)||Ruv* — RuDuy) llvy
< (2Ca+2) (||Rnv" — RuDU™ [y + [[RDU™ — RuDUy vy )
< (2Ca+2) (|lv' = Du)lv + | D(u” = uy)lv)
< (2Ca+2)([lv' = Du)llv + [lu* — uyllp)
and get

[Om —ullo < [|Gv — Uy llo + [Juy — u™llo

< (2Ca+3)||uyy — U*|lp + (2Ca+2) ||V —Du*|y. O

The inequality[(8.8) shows that errors in the data funcli®ne.g. integration errors
for weak data, can spoil the convergence unless they arasttds small as the error
committed by the comparison objeagj, in the data norm. For trial spaces that allow
fast convergence, the admissible errors in the data fumeiare severely restricted by
this observation.
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One can go into[{811) by choosing, as the minimizer of|v* — D(um)||v over all
uv € Um. Then

[[RNV" — RuD(Tim) [Ivyy < CallRnv" = RuD (U [[vy < CallV" = Duylv,

and the proof of Theorem 8.2 yields

[Gm —uyllo < (2Ca+2)||[RnV' — RuDuy ) [l
< (2Ca+2)|lv' = Duy)llv,

[v'=Dlm[o < |[Iv'—Duyllo+ |[Duy —Dlwm|p
< (2Ca+3)|lv' —Dugllp.

Corollary 8.4. Assume an analytic problem that has a MRD discretizatiomauit
being well-posed, and assume that the given data do not sedgcome from some
solution u. Then there is a uniformly stable computational strategst fhrovides
trial elements that reproduce the given data at the qualityhe Trial Space Data
Approximation This reduces the error and convergence analysis to an aqpetion
problem for a data element\e V by a data subspace(Dy) in V under the norm in
V. O

If there is no well-posedness, there still issckward error analysisinstead of solving
the problem with dat&*, which may be unsolvable or ill-posed, one can come up with
an elementy from the trial space which has data that are close to the glaéam and
roughly as close as possible for the given trial space. FdE B@lving, this usually
means that one has an exact solution of a PDE with perturbeddaoy data and a
perturbation in the inhomogeneity of the PDE. If these péstions are calculated
and turn out to be tolerable, the user might be satisfied wgjth Many application
papers proceed this way, unfortunately, but users showlalyalkeep in mind that there
may be very different trial elements that reproduce the degly, if there is no well—-
posedness.

9 Discretization in Hilbert Spaces

We now assume thét is a Hilbert space with inner product. )y and that the data map
is composed of continuous functiondlss A C U* like in the beginning of sectidn 4.
The Riesz map allows a transition from functionals to fuoresi, and thus we can fix a
finite subsef\ny = {A1,...,An} C A and consider the Riesz representgrs..,uy €U

of these functionals. If linear independence is assumedthaveN—dimensional spaces
Ly € U* andUy C U by taking the spans, and the spakeis RN as the range of the
restrictionRy with RyDu = (A1(u),...,An(u))T which just is the usual projection from
V =R toVy ;=R =RN. If orthonormal bases are chosen, we have the 2—norm of
coefficients agjul|y for all u € U, but in order to comply with Sectidd 4, we have to
take the sup—norm in the range of the data map, which is theiigéf discretized in
that basis. But then the identity map is not well-posed, Haehoice of norms which
is not adequate for Hilbert spaces.
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We thus have to change the setting, taking the norrig i RN as 2-norms, assuming
A\ to be countable and total, taking orthonormal bases, andestactions as projec-
tions focusing on finite subsets of indices in the expansibosthe choice ofJy and
V\ as above, we then haJe (b.4) ahd15.5) with the constant 1.

This is the standard situation in Rayleigh—Ritz—Galerketimods. It might be surpris-
ing that everything is perfectly well-conditioned heret, this is no miracle because we
focused on spaces, not on bases, and used an optimal basis theoretical analysis.
The usual problems with conditions of stiffness matrices ate basis—dependent, not
space—dependent.

10 Optimal Recovery in Hilbert Spaces

When starting from a finite sety of functionals providing the data;(u*) of a true
solution of the analytic problem, the above choice of a Bfalce as the space spanned
by the representers of the functionals is optimal underthitiochoices of trial spaces.
This is a standard result in the theory of Reproducing KeHikldert Spaces, but we
include it here in a general form, because of its central itgmze within the context
of studying all possible discretizations.

Theorem 10.1. Assume that we have a computational problem posed in a Hilber
space U, and the only available data are of the forpiu*),...,An(u*) for N linearly
independent data functionals in*Uand an unknown object*ue U. Then, for any
linear functionaly € U* , consider all possible linear computational procedures fo
calculating good approximations @f(u*) using only the above values. Then there is a
unique error—optimal strategy that works as follows:

1. Use the representergu..,uy € U of the functionalg\y, ..., Ay € U™.

2. Calculate the interpolani to U in the span of the representers, i.e. solve the
system

N N N
A(u™) = Z Cj/\k(Uj) = Z cj(uk,uj)u = Z Cj(/\k,)\j)u*, 1<k<N
=1 =1 =1

and define

3. For each data functiongl € U*, use the value

p() = > cju(u))
J:

as an approximation t:(u*).
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This approximation has minimal error under all other lineamputational procedures
using the same data for calculating approximationg i), in the sense that the error
functional has minimal norm. O

This technique is independent of well-posedness and madtesal use of the avail-
able data, error—wise. From the previous section we coedhat it is uniformly stable
when considered in terms of spaces, not bases. If applie®@B$lving, it is real-
ized bysymmetric collocatioffi26]. It can also be applied to numerical integration and
numerical differentiation, see e.g. [10] 27].

In the context of this paper, the above result shows that tiestqfor good trial spaces
and well-posed discretizations has a simple solution inHilteert space situation. We

shall come back to this in Sectibn 18B.5 when we look at theedifices between weak
and strong formulations.

11 Bases

We now assume that we have a well-posed analytic probleneisghse of Sectidg 2
with an MRD discretization, and by a proper choice of retitiits (Ry, Vi) according
to Theoreni 513, we have uniform stability in the form [of {5.8)e specialize here to
the case of Theorem 4.3 where we have functiohads/A and restrictions working via
subsetd\n C A selecting finitely many data. We now choose a basis. . ,uy of Uy
and take the functionalk,, ..., Ay from the setA\y. Then we consider the discretized
system

M
Zaj)\k(uj)z fa = A&(U"),1<k<N (11.1)
=1

that we solve approximatively by residual minimizatiorelikn Sectioril7. Clearly, a

bad choice of bases will spoil stability, but we want to stdidig effect in detail. We
quantify the stability of the object basis by norm equivaken

cmlluallwp < Jlalm < Cwumlluallwp forallac RM,

with an unspecified normj.||m on RM that is used in computation. With théx M
matrix A = (Ax(Uj))1<j<m,1<k<n. @nd the basis representation

with coefficient vectora € RM, we see thafa= RyDus holds. and get

Cw|uallwp
CCu||uallp

2CCwu ||RnDUalvy
2CCwu [|Aa|vy

l[al[m

[ IAIAIA

by (Z.7), and[(G}4).
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Theorem 11.2.Under the above assumptions, the sysfem[11.1) has thétgtplop-
erty
|aljm < 2CCyu||Aally, forallac RM. O

In Sectiorl ¥, we minimizefRy(Du* — Duwm) ||\, Over alluy € Uy. After introducing
a basis inUp, this is the same as minimization ¢f — Aally,, with f := RyDu* =
(Ar(u),...,An(u"))T € RN over alla € RM. We are satisfied with a vectar< RM
such that
If — Adly, < min || —Aal, < Callf — Aajvy, (11.3)
acRM

wherea* is a good coefficient vector for the direct approximationtwd true solution
u* by elements of the trial spatéy. We usea® in the way we usedy, in Sectior ¥

as a competitor that may come from some special approximgichnique. Then we
form the elementay := us, Uy = Us- € Uv and see thal(7].1) is satisfied.

This lets us arrive at Theorem V.2, implying that the coneacg rate is the same as
the rate for theTrial Space Data Approximatigrbut this does not yield error bounds
in terms of coefficients. However, we can proceed by

1
* 5 < x_ A
< Aa = vy + [ f — Adllvy
< (1+Ca)l|Aa — fllv

and get
2" —&llm < (1+Ca)(2CCw)[|Aa" — flvy.

The norm inVy must be chosen to comply with Sectibh 4, and this works for the
discrete sup norm. But if users do not want to minimfze Aain the sup norm, an
additional norm equivalence comes into play, nowgnand this will often depend on
dimVy. In detail, norm equivalence M is assumed as

CNHRNVHVN < HRNVHN < CNHRNVHVN forallveV.
and minimization in the new norih||y will replace [I1.8) by

[I[f —A&||n < min ||f —Adl|n < Callf —Ad||n,
acRM

and our above argumentation now yields

M > N

[|Aa" — f||N-
If bases are chosen badly, the quotiégt/cy can be extremely large and will spoil the
uniformity that we had so far.

Users can check their stiffness matridesomputationally for stability, but Theorem
[I1:2 indicates that there may be a strong influence due to eHmack of the trial basis.
Even a calculation of a Singular Value Decomposition wilt be completely basis—
independent, since it only eliminatesthogonalbasis transformations in the domain
and range oA.
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12 Nodal Bases

In meshless methodi$ is customary to write everything “entirely in terms ofdes”
[6], which means that the functionsy in the trial spacé)y are parametrized by their
values at certainodes x,...,Xwv, i.e.

M
um(X) = Z sj(X)um(x;j) for all uy € Um
=1

with shape functions;sthat are usually localized aroungl and have the Lagrange
propertysj(xx) = djk, 1 < j,k < M. We prefer the ternmodal basis because there is
nothing meshless in the above representation, and theasthfidite elements, which

nobody would call meshless, are nodal as well in the aboveesedany application

papers report experimentally that these bases have fdecstability properties, and
we shall now show why.

Theorem 12.1. Assume a well-posed problem in the sensd of (2.7), where U is a
space of functions on some dom&in Furthermore, assume that the point evaluation
functionalsdy are uniformly bounded by > 0 in the norm||.|jwp. Finally, assume
that the data space V and the restrictiong ®re normed via supremum norms, as
mentioned in Sectidd 4 and Theorem| 4.3 as a special case. fdheach trial space

Um C U with a nodal basiss...,sy using nodesx...,xy € Q one can find a finite

set of functionalg\y, ..., An such that the N« M stiffness matrixA with entriesA;(sc)

has the uniform stability property

la]le < 2yC||Aal| for all a € RM. (12.2)

Proof: We apply Theoremi 513. Then

M

lum (Xj)| < Vl[umllwp < 2yC|[RuD(um) [[vy = 2yC max

Ak(Si ) um (Xi
max1 2, k(sj)um(X;)

J:
and if we denote the vector of nodal valuesugye RM, we see that
[Jux|le> < 2yC]| At |eo

with thestiffness matrix Avith entriesAy(s;). O

This means that all trial spaces with nodal bases can beranifctabilized by taking
good and large selections of test functionals. Furtherp®eetior ¥ provides conver-
gence proofs and convergence rates for such techniques.

We now go closer to what user would do. In the notation of 8e¢fil they would
invoke a least—squares solver minimizihg— Aal|, instead of minimizind|RyD(u* —
um)|lvy Whichis||f — Adl|. in terms of linear algebra. In the notation of Secfioh 11, we
then hava. [ = |-z, [1-In = |2 Ot = V. [y = |-, & = 1, leading
to

o — & < 2yC(1+Ca)[Aa" — f2
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for any reference approximati@. In this case, we may take& as the vector of nodal
values of the true solution, and then

* N . < * gk .
Q%IU (xj) uM(xJ)I_2yC(1+CA)1r§nk§>,§|Ak(u )| (12.3)

wheres" is the trial function with the nodal values of the true saluti

Corollary 12.4. Assume a well-posed analytic problem with an MRD discritiaa
and assume that a trial space is parametrized by a nodal ba&ien the error of a
computational procedure as in Sect[dn 7, evaluated on tliesds pointwise bounded
by the error of theTrial Space Data Approximatione. the approximation of the data
of the true solution by the data of trial elements, measungtié data norm. O

This means that using a nodal basis transfers the resulthedrén{ 7Y directly to
a convergence on the nodes. This is a very useful result foymeeshless methods
using nodal bases, e.g. when applying Moving Least Squecksigues.

13 Examples

13.1 Interpolation

For illustration, we start with the rather simple case obrexring a functioru on some
compact domaiQ c RY from data ofu that do not involve derivatives. Atrong
formulation takes\ = {& : x € Q} on a spacé&) on which these functionals are
continuous, e.gU = C(Q) under the sup norm. Aveakformulation uses different
data, e.g. functionals

Av(U) == (U,V) () forallu,ve U == L(Q)

and
N=A{A 1 IVl = 1AVl o) = 13-

The strong case tak&:= C(Q) = U under the sup norm, while the weak case uses
V :=L,(Q) =U under theL, norm. In both cases, the data map is the identity, and we
have well-posedness in the norihgwp = ||.||u in both cases, but the norms differ.

The restrictions can work by selection of finitely many fuanals in both cases, and
all axioms of Sectiohl4 are satisfied.

We now fix an arbitrary finite—dimensional trial spdég c U, and Theorem5l3 yields
that there is a restriction that makes the linear sysfen (Hiformly stable in the sense

(G3) withC = 1.

The computational procedures of Secfibn 7 can use a coropadrial objectuy, that is
the best approximation to the true solutighin the norm|.||ju = ||.|lwp = |-|p, and
Theoreni ZR then shows that the computational solutiphds the same convergence
rate as the best approximatiaf).
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The computational solutiony”is obtained via[{7]1) from a stably discretized linear
system, and we assume that we perform inexact minimizafigfRe(u* — um) vy -

In the strong case, this is best linear discrete Chebyshawzimation on sufficiently
many points, i.e. a linear optimization problem. In the aniate case withly being a
trial space of polynomials of degré&— 1 on an interval, a discretization oiN > M
test points forming a sé will always have a stability inequality

[[Ulleos < C(M, N){|Uf| o,

of the form [5.2), but the stability constant varies. kb= N equidistant points, the
constantC(M,M) grows exponentially witiM, and for Chebyshev—distributed test
points it still grows like logM. Uniform stability holds forN = ¢/(M?) equidistant
points, as follows from a standard argument going back tati®n of norming sets
[15] and using Markov’s inequality [33, Ch. 3.3]. TheorEm bnly provesxistence
of a uniformly stable discretization, but this example skdhat there may be a con-
siderable amount of oversampling or overtesting behinddeae.

If stability is uniform, nodal bases written in terms of vaduatM nodes; will trivially
lead to|u(x;j)| < ||ullew, < CJ|U]|eo,p for all u € Un, which is [12.2).

The weak case discretizes BMywell-chosen normalized test functionals with nor-
malized Riesz representarse L»(Q), and the quantity Ry (u* — um) ||y, to be mini-
mized is
. *

Jmax [(Vj, U — Um)Ly(0) -
Our theory shows that the test functionals can be chosemttereiniform stability, but
there is a trivial standard choice via thefunctionals represented by an orthonormal
basisvi,..., v of Uy. Then the above minimization produces the best approximati
uy, to u* from Uy without any oversampling.

In both cases, Theordm¥.4 is applicable, and we see thateds, thr L, convergence
rates of the non—discrete best approximations carry owbetdiscrete approximations.

To compare the difference of convergence rates between arehktrong formulations
for a given fixed trial spacty, we see immediately that tHe convergence rate is
never worse than the, rate, but it is taken in a weaker norm. If users insist on the
best possible convergence ratd jn they should take a weak form, at the expense of a
sufficiently good numerical integration. But the error of their solution will clearly
not have a bettdr., convergence rate than the strong solution.

Both computational approximations, weak or strong, cogwéke the best approxima-
tions in the respective data norm, and this is a fair deal.vE€@ences can be spectral
in certain cases, e.g. in case of univariate functions ont@miall that have a complex
extension that is analytic in a region of the complex plangaiaingl in its interior.
This shows how the theory applies to spectral convergeheatisins without change.
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But, of course, there is the extreme case where the solwionly inL, and not in
C(Q). Then the strong technique is undefined. But then the wedkigge is forced
to have the weak data given directly, without numericalgnéion, because the latter
is as unfeasible as the strong technique.

All other examples will show a very similar behavior, diffeg only in their data maps.

13.2 Standard Homogeneous Weak Poisson Problem

We fix a bounded Lipschitz domaid c RY and consider the weak Dirichlet problem
—Au = f with homogeneous boundary conditions. This works on thédttilspace
U := H3(Q) with the inner product

(u,v)g = /Q O"u(x)Ov(x)dx for all u,v e U,
and the standard (global) weak formulation asks for a fomatic U with
(U, V)1 = (f,V) () forallve U = Hg(Q).
In the sense of this paper, the functionals are
Av i U= Ay(u) = (u,v) forallu,ve U
and the problem takes the form ({1.1) with

AN = {A:veU, |V|y=1} cU*
fa, = (U V)1=(f,V),q foralA, €A

v

whereu* € U is the true solution.

To check the well-posedness in the sense of selction 2, we get

[IDullv = sup|Ay(u)[ = sup  |(u,v)u|=[lullu =:[lullwp
AvEN veU, |lvju=1

proving well-posedness, and the data rap an isometry.

We now consider fairly arbitrary trial spacdg C U = Hol(Q) to allow standard or ex-

tended or generalized finite elements, or even certainigpewtthods of Galerkin type.

Theoreni 7} is applicable, and we see that we get the com@zgate of approxima-

tions to the true solution i) = H}(Q). This is well-known from finite elements, but
it holds in general, provided that MRD testing is done. Itlagspto Petrov—Galerkin

methods and spectral techniques of Galerkin type. The raialyndepends on the

smoothness of the solution and on the trial space chosen.

For the standard finite—element situation with piecewigedr elements, this yields
0 (h) convergence it}(Q), as usual for that regularity. To reaci{h?) convergence
in L2(Q) underH?(Q) regularity, the Aubin—Nitsche trick is an add-on that is not
covered by our theory. But it follows from the fact that thesbapproximation tas*

in H}(Q) automatically hag’(h?) convergence i, underH?(Q) regularity. This is
independent of PDE solving, it is a property of Approximatitheory.
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13.3 Collocation Methods
We now want to focus on the general statement

All linear PDE or ODE problems can be numerically solved bilamation in
sufficiently many points in such a way that the convergente irathe well—
posedness norm is at least the rate ofttta space data approximatian

This, of course, includes pseudospectral methods. But we taeadd more details to
show how it follows from Theorefn 7.4. We only have to show tt@tocation is an
MRD discretization and pick a suitable form of well-poseshe

The spacé) should be a normed linear space of functions on a dofairth bound-
aryI, for instance a Sobolev space. To keep things simple, werasthat the analytic
problemis posed in strong form by evaluating a linear etlipecond—order differential
operatolL on points of the domain and a linear boundary operton the boundary,
ie.
Luix) = f(x), forallxeQ
Buly) = g(y), forallyerl

where f andg are given functions o andl". Introducing continuous functionals
Ax(u) := Lu(x) = & oL and py(u) := Bu(y) = é,o B onU one gets a problem of the
form (1) with

(13.1)

N={A 1 xeQ}U{uy : yerl} (13.2)

and it should be clear that one can allow more than two opes;aaad combinations of
different boundary conditions.

From here there are different ways to proceed towards weslegness, but we can
ignore well-posedness for a moment. We normalize all fonetis as elements of
U* and pose the problem in the forfa(L.1) with := A(u*) forall A € A. Then
|A(u)] < |lullu forallu€ U, A € A, and there is no problem to define the spice
and the restrictions via taking suprema. We can apply Tes[fEe3 and 712 without
assuming well-posedness, and we see that we can work oni@rspticdJy, but all
results only hold in the data norm. Comparing with any emgtjood approximation
uy tou* fromUy, we get someiy € Uy by a discrete computational method such that

SUp|A (Tim — u™)| < (2Ca+ 3) SUP|A (uy — u*)| < (2Ca+ 3)||uy — U [l
AEN AEN

due to normalization of the functionals, and if we use sogpevith small||uy, — u*||u,
we get the above statement. The backward error analysictib8& will be applicable
here.

In the above setting, the most natural well-posedness tondvould be of the form
[[ullwe < Cmax(|[Lullw.q, [[BUfler) (13.3)

for a suitable nornj.|\wp onU. This holds folU := C?(Q) NC(Q) with the sup norm
in U [8] (2.3), p. 14] for uniformly elliptic operators and Dirichlet boundary data.
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This implies by Theorem 7.4 that for such problems the cayemce rate of thérial
Space Data Approximatiocarries over to the convergence rate of collocation in the
sup norm.

As a special example we consider unsymmetric collocafidh by translates of the
kernelK of a Hilbert spacéJ, applied to a Dirichlet problem of the forra (I8.1) on a
domainQ c RY. The trial spac&)y is spanned by kernel translatgs=K(-,X;j), 1 <

j <M for nodesxy,...,xy € Q, but this is not a stable basis. Wodal basisin the
sense of Sectidn_ 12 consists of the Lagrange hasis. ,uy spanning the same trial
space. Collocation is done via the functionals defined[f8t4) and to make them
continuous we can take a space Illke= H™(Q) with somem > 2+ d/2. We have
well-posedness in the sense[of (13.3) in the sup—norm.

Theorem 13.4. Unsymmetric collocation in the sense of E. Karisa [17] hasptlog-
erty that for each possible trial space spanned by kerneldiaes there is a selection
of test functionals such that the stiffness matrix, whentevriin terms of the nodal
basis, has a uniform stability properfy (1R.2). If solvedésidual minimization along
the lines of Sectidn] 7, error bounds follow from Corollardg or (I2.3). Convergence
rates in the sup norm are obtained from the rate of convergaficecond derivatives
in the sup norm of interpolants of the true solution by thaltspace. O

This provides many explicit convergence rates via standzsdlts on interpolation by
translates of kernel§[33, Chapter 11]. For instance, tmeagence for the Whittle—
Matérn kernel reproducing™(RY) for m > 2+d/2 is like ¢(h™2-9/2) in terms of
thefill distance hi= sug.cq Mini<j<wm [ly — X||2, while the convergence is exponential
for kernels like the Gaussian or multiquadrics.

The functionals in[(13]2) are a mixture of two kinds, but Tieen[5.3 and Lemma
do not say how to achieve a uniformly stable balance lExvtestingB on the
boundary and testing in the interior. Future work should address this problend an
Sectior I3 suggests that there might be quite some otiegereded for uniform
stability. Square collocation systems can even be sing@iBly such that overtesting is
necessary in general.

All of this readily generalizes to plenty of other linear Wwglosed PDE problems, and
readers can use the tools of this paper to assemble what ¢eely INote that unsym-

metric collocation is a pseudospectral method in the seh#eediterature (see e.g.

[11,[12,9]) on spectral methods, and this paper providesxargéway to assess con-
vergence of pseudospectral methods. Since we write thgtarehd the computational

problems in terms of arbitrary functionals, this approaslb @overs spectral methods
in Tau form.

13.4 Weak Dirichlet Problems

The standard finite element procedures for solving Dirichteblems for the Laplace
operator on bounded domaifisc RY use strong data on the boundary and weak data
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in the interior. The data functionals are

A1 = {Av  ue (Ou,0v),) forallve HY(Q), [|0V]| ) = 1},
N = {& :yel:=0Q},
N = NUANo.

This leads to the data norm

[[ullo = max({[ulle,r | OUl|Ly0))

if we take the sup over all functionals as in Secfidn 4. It idlxdefined on the space
U :=HY(Q)NC(Q). Using the Poincaré inequality and the Maximum Princip] [1
after splittingu into a harmonic part with boundary conditions and a funciridﬁ&(fz)
satisfying the differential equation, we get a well-posesininequality

[UllLy@) < Cllullo = Cmax([ufler, |DUlL,(q)) forallue U.

Note that the Sobolev inequality forbids to use the sup namrthe left—hand side for
space dimensiod > 1.

Whatever the chosen trial spaceslimre, Theorerm 714 shows that the convergence rate
in L, of uniformly stabilized computational methods will be ttemeergence rate of the
Trial Space Data Approximatigme. with respect tu|e,- and||Oul|_,(q)- If the trial
space is spanned by translates of the Whittle—Matérn keepebducingd™(RY) for

m> 1+d/2, the rate ig/(h™1-9/2) in terms of the fill distance of the trial nodés[33].

For standard finite elements, the above approach yiglds convergence ihp. This
is without the Aubin—Nitsche trick, and it does not i€ regularity.

The Aubin—Nitsche trick has nothing to do with finite elenseahd weak problems. It
is a feature of Approximation Theory, doubling a convergerate for certain nested
approximationsin Hilbert spaces under additional regiylassumptions. This is well—
known from splines(]i, 5.10] and kernel-based methbds [B8]the context of this
paper, one considers the best approximation to the truéieolim H(Q), and it will
automatically yieldZ (h?) convergence undét? regularity, but only for zero boundary
conditions.

13.5 Weak-Strong Comparison

If we compare with what we had in the strong case, the sitndtiofixed trial spaces
is roughly as follows:

1. The weak case has convergence at the convergence rate for first derivatives,

2. the strong case has, convergence at the convergence rate for second deriva-
tives.
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This usually yields a slightly better rate for the weak casewe saw when compar-
ing 0(h™1-9/2) with ¢(h™2-9/2) for the trial space spanned by translates of the
Whittle—Matérn kernel. On the downside, weak methods Ushalve to perform nu-
merical integration at an accuracy that complies with theveogence rate, and they
converge in a weaker norm.

If one fixes the available finite data and then looks for anreoptimal solution in a
fixed Reproducing Kernel Hilbert Space, the above discasalmut differences be-
tween strong and weak methods becomes obsolete. The ostilugion is always
the one described in Sectiénl10, and it is furnished by symmesllocation [26].
Since it allows arbitrary evaluation functionalsin Theoreni I011, it is pointwise and
Lo—optimal by taking functionalgt = J, andL,—optimal by taking all functionals

U=Av = (.,V)L,(Q)-

13.6 MLPG

We stay with the Dirichlet problem for the Laplacian, for giicity, and describe the
standard variation of thieleshless Local Petrov—Galerls,[4] method. The difference
to the standard weak formulation is that the integrals atcaliped and the boundary
integrals are kept. This means that on small subdom@jps Q with boundaries
I, C Q the strong equation-Au = f is integrated against a test functignto define
functionals of the form

-1
U’—)AQh’Vh(U):i)/ Vh-Au

that are continuous dd := C?(Q)NC(Q), and the probleni{13.1) takes the fofm{1.1)
via

_
downl® = oran /thh-f for all Qn C Q, viy € C(Qn) (13.5)
S (u) = gy forallyerl

for given continuous functionson Q andg onl". One can restrict the domaif, and
the test functions, further, and allow other ways of handling the boundary ctos.
Furthermore, the above functionals are usually transfdrime integration by parts
before they are implemented, but we deal with this later.

The goal is to prove some form of well-posedness for the #inglyoblem, and this
seems to be missing completely in the rich literature on thé>® method. On the
spacdJ = C?(Q)NC(Q) we know that[[T313) holds fdf.|jwp = |-/l 55- @nd we assert

Jul,g<C (sup |AQuv, (U)| + |u|m’r> forallueU. (13.6)
’ o)

h>Vh

But this follows from [I3.B) by settindg := Auin
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Lemma 13.7. For each continuous function f on some compact dor@ain RY the
[fllo=1fli:= sup

norms _
— f
,ca Vol(Qn) -/Qh ‘

coincide, where the diameter of the admissible €gtsan be bounded above by some
arbitrary r > 0, if required. One can also restrict the subdomatisto balls or cubes
intersected withQ.

Proof: Clearly || f||i < |/f|loq holds. To prove|f||j > || f|l«q, assumef # 0 with
If]lo.0 = f(X) > 0 for somexe Q. Then pick an arbitrarg < f(X)/2 and an arbitrary
r > 0 and choos&, to be a subdomain of the set of poirts Q with

0< (1—6)f(R) < f(X) < f(R), [x—Kl2<r.

For instance, one can take the intersection of sufficiemtiglsballs or cubes around ~
with the domainQ, or if X is on the boundary, one may move slightly into the interior
and ensur&y, to be in the interior of the domain. Then

1-8)lffoa = 1L-£)1® < g [ 110 = [floa. O

Note that this proves well-posedness onlyoa C?(Q) NC(Q), not on a larger space,
but for all possible test functions and domain shapes ares sithe boundary condi-
tions can be rephrased by weak functionals taking meansg wsmmd_13]7 again,
now settingf := g and working on the boundary.

Any a—priori renormalization odll available functionals will possibly spoil this argu-
ment. But as soon as finitely many functionals are selecteddimputation, one can
renormalize for the computational procedure.

If integration by parts is applied to the functionals, théyege their computational

form without changing their value, and this is used in thevimoariations of the

MLPG technique. For instance,
1

' 1 Jdu

f— —_— T . —_——_— _

Agnn (W) = voI(Qh).QhD Yh- DU vol(Qp) /rhvhdn
1

— _7/ AV u-+ 1 u%_;/ Vi @
~ovol(Qn) Jo, o T vol(Qn) Jr, o on - vol(Qn) Jr, Mon

are two ways to rewrite the functionals on different domaiith different admissible
test functions. The basic well-posednestloa C?(Q) NC(Q) will stay as is, because
the sup of all these functionals will be bounded abovéidwy||. o, as long as there are
no other upper bounds proven.

The method called MLPG5 uses constant test functions likeemmd13.7. Then the
functionals take the extremely simple form

1 "~ du

Aguv, (U) = ~vol(Qn) Jr, an’
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i.e. they are only integrals of the normal derivative on sarhdin boundaries. Nev-
ertheless, Lemmia_13.7 holds, and there is well-posednése isup norm ot =
C?(Q)NC(Q). Itis an open problem to prove other well-posedness inétpsahfter
fixing a special form of the functionals. The above technigiad_.emmd131]7 always
goes back td (13]3), whatever the form of the functionaldtir antegration by parts.
Therefore the convergence theory for given trial spacekbeilthe same as for the
strong collocation methods in Section 13.3.

Theorem 13.8. If the Meshless Local Petrov—Galerkin method is carried out
1. for a well-posed second-order elliptic problem,

2. using sufficiently many well-chosen test functiohalg)lsong the lines of The-
orem5.3,

3. and applying a residual minimization algorithm as in $&tf for solving the
overdetermined system approximatively,

the algorithm is convergent with uniform stability, and ttenvergence rate in the sup
norm is the rate of th@rial Space Data ApproximatiorThis rate is at least as good
as for strong collocation using the same trial spaces. O

Depending on the PDE problem, the smoothness of the tru¢i@oland the trial
space chosen, this yields various convergence result®) spetctral convergence. In
most applications, the trial functions are shape functiprvided by Moving Least
Squares, and raising the degree of the local polynomialsneilease the convergence
rate appropriately [18, 32 2] 3]. Readers are encouragegyty the framework of
this paper to derive special convergence results for varioal spaces and different
variations of the MLPG technique. In particular, an extengio elasticity problems
should be quite useful.

But the methods of this paper always assume the functioodde given exactly, not
approximately. Only their values can be noisy, as in Se@iomhis excludes various
interesting applications, namely the Direct Meshless LBetrov Galerkin (DMLPG)

technique[[2D] and localized kernel-based methods thatgesparse stiffmess ma-

trices [30/ 22 31, 29, 34].
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