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1 INTRODUCTION AND SUMMARY 1
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Abstract: This paper considers a large class of linear operator equations, including lin-
ear boundary value problems for partial differential equations, and treats them as linear
recovery problems forobjectsfrom theirdata. Well–posednessof the problem means
that this recovery is continuous.Discretizationrecovers restrictedtrial objects from re-
strictedtestdata, and it is well–posed orstable, if this restrictedrecovery is continuous.
After defining a general framework for these notions, this paper proves that all well–
posed linear problems have stable and refinable computational discretizations with a
stability that is determined by the well–posedness of the problem and independent of
the computational discretization. The solutions of discretized problems converge when
enlarging the trial spaces, and the convergence rate is determined by how well the full
data of the object solving the full problem can be approximated by the full data of
the trial objects. This allows very simple proofs of convergence rates for generalized
finite elements, symmetric and unsymmetric Kansa–type collocation, and other mesh-
free methods like Meshless Local Petrov–Galerkin techniques. It is also shown that
for a fixed trial space, weak formulations have a slightly better convergence rate than
strong formulations, but at the expense of numerical integration. Since convergence
rates are reduced to those coming from Approximation Theory, and since trial spaces
are arbitrary, this also covers various spectral and pseudospectral methods. All of this
is illustrated by examples.

1 Introduction and Summary

This paper focuses on mathematical problems that have solutions u in some normed
linear spaceU overR satisfying infinitely many linear conditions that we write as

λ (u) = fλ for all λ ∈ Λ ⊆U∗ (1.1)

with given real numbersfλ and continuous linear functionalsλ onU collected into a set
Λ ⊂U∗. We call the real numbers{ fλ}λ∈Λ thedatathat hopefully allow to identify the
object u, which will in many cases be a multivariate function on some domain. Solving
(1.1) for u from given data{ fλ}λ∈Λ is a recovery problem, and we view it as posed
in an abstract mathematical setting that is not directly accessible for computation. It
can be called ananalyticalproblem in contrast to thecomputationalproblems that will
follow later. The transition from an analytical problem to acomputational problem will
be calleddiscretization.

Typical special cases arise when solving partial differential equations (PDEs). The
objectu to be recovered is always an element of some spaceU of real–valued functions
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1 INTRODUCTION AND SUMMARY 2

on a domainΩ, but weak and strong formulations of PDEs use very differenttypes of
data, namely either integrals against test functions or derivative values at evaluation
points, plus boundary conditions of various forms. If two problems use different data
to identify the same object, we consider them as different here.

The PDE applications of (1.1) suggest to view the application of the functionalsλ ∈ Λ
as testinga trial objectu. Discretizationwill then fix a finite–dimensionaltrial sub-
space UM ⊂U and a finite setΛN of test functionalsfrom Λ. We pursue this distinction
between the trial and the test side of (1.1) throughout this paper.

If a problem inMathematicalAnalysis is well–posed, it should have a discretization
in NumericalAnalysis that is also well-posed. This requires to derive some sort of
numerical stability of well–chosen discretizations from the well–posedness property of
the underlying analytical problem. This paper proves the above statement under mild
additional assumptions after stating clearly in Sections 2and 4 what is to be understood
by well–posednessof aproblemand itsdiscretization. It turns out in Section 5 that one
can choose refinable discretizations that have stability properties depending only on the
well–posedness of the given problem, not on the discretizations chosen. This depends
crucially on what we call amonotone refinable dense (MRD)discretization strategy in
Section 4. In an older discretization theory [24, 25, 7], error bounds and convergence
results depended onstability inequalitiesthat needed complicated proofs [21], while
this paper shows that one can always enforce uniform stability by sufficiently thorough
testing.

The resulting discretized linear problems will be overdetermined due to this stabiliza-
tion, and should be solved approximately by minimizing residuals. Section 7 deals
with this, and shows that the final error bounds and convergence rates are determined
by how well the data of the true solution can be approximated by the data of elements
of the trial space. We call thisTrial Space Data Approximation. In particular, error
bounds and convergence rates are independent of the detailsof testing.

Section 8 extends the previous results to ill–posed problems and noisy data, while
Sections 9 and 10 specialize to recovery in Hilbert spaces, where uniformly stable
and sometimes optimal discretizations are readily available. These generalize finite
elements and symmetric collocation, as will be explained inSection 13.2 when it comes
to examples.

Stability can be spoiled by bad bases. Therefore this paper ignores bases and focuses
on spaces instead, up to Section 11 where the influence of bases on the trial and the
test side is studied. A very common class of bases are thenodalbases used in classi-
cal piecewise linear finite elements and various meshless methods. Many application
papers report good stability properties of these, and Section 12 provides a fairly gen-
eral mathematical proof, showing that convergence in the nodes can be derived from
convergence of theTrial Space Data Approximation.

The paper closes with a number of examples that apply the above theory. Polyno-
mial interpolation in Section 13.1 illustrates that the stabilization results of this paper
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imply quite someovertesting, i.e. oversampling on the test side to guarantee uni-
form stability. Furthermore, it points out how spectral methods are covered and why
weak formulations yield slightly faster convergence than strong formulations, though
for weaker norms and at the expense of numerical integration.

Section 13.2 deals with the standard setting for finite elements for homogeneous bound-
ary conditions, showing that it fits perfectly into the framework, including extension to
other trial spaces and a Petrov–Galerkin treatment.

The remaining examples address the standard Poisson problem with Dirichlet bound-
ary conditions, for simplicity. Section 13.3 focuses on collocation as a typical strong
problem. This covers various kinds of meshless methods, including Kansa’s unsym-
metric collocation, and it is shown how to derive specific convergence rates depending
on the trial spaces chosen. The weak Dirichlet case is handled in Section 13.4, and a
comparison of convergence rates for the strong and weak formulations, using the same
trial spaces, is provided in Section 13.5.

Finally, Atluri’s Meshless Local Petrov Galerkin (MLPG) scheme [4] is treated in Sec-
tion 13.6. This includes error bounds and convergence ratesfor different variations of
the method, but it was necessary to include a first proof of well–posedness of the local
weak form behind MLPG.

Summarizing, this paper shows that under mild hypotheses

1. all well–posed problems have uniformly stable discretizations made possible by
sufficiently extensive testing, and

2. convergence rates for such discretizations can be playedback to known conver-
gence rates ofTrial Space Data Approximation, i.e. the approximation of the
data of the true solution by the data of the trial elements. These rates depend
on what “data” means and are taken in the norm arising in the well–posedness
condition.

3. Weak and strong formulations of a given background problem will have different
definitions of “data” and will need different versions of well–posedness, and
these differences enter into the previous item and influencethe convergence rates,
even when trial spaces are the same for both formulations.

4. For a given fixed trial space, it is shown that in standard applications the weak
formulation converges slightly faster than the strong formulation.

5. Nodal bases have a stability advantage over other bases.

On the downside, the test strategies guaranteeing uniform stability are only shown to
exist, they are not constructed. Future work needs explicitsufficient conditions on spe-
cific test strategies to guarantee uniform stability. This can be done bygreedy testing
as touched in earlier papers on adaptivity [28, 14, 19, 26]. Finally, emphasis so far is
only on errors, convergence rates, and stability of algorithms, but not on computational
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efficiency. It is a major challenge to relate the achievable convergence rates and stabil-
ity properties to computational efficiency. Anyway, this paper provides a starting point
towards these goals.

2 Problems, Data, and Well–Posedness

Behind (1.1) there is a lineardata map D : U 7→ R
Λ =: V that takes eachu∈U into

the set of values{λ (u)}λ∈Λ in the data space V. This allows to rewrite (1.1) as an
operator equation

D(u) = f (2.1)

for some givenf in the data spaceV. Each operator equation can be formally inter-
preted this way, e.g. by definingΛ as the set of all functionalsµ ◦D whenµ varies in
the unit sphere ofV∗.

Example 2.2. As an illustration, consider the standard Dirichlet problem

−∆u = f in Ω ⊂ R
d

u = g in Γ := ∂Ω

where f andg are given functions onΩ andΓ. A strong formulation writes it in the
form (1.1) with functionals

λx : u 7→ −∆u(x), x∈ Ω
µy : u 7→ u(y), y∈ Γ

on some spaceU where both types of functionals are continuous. The standard FEM
algorithms useweakfunctionals

λv : u 7→ (∇u,∇v)L2(Ω) for all v∈ H1
0(Ω)

and add the functionalsµy for points on the boundary. We postpone further details to
sections 13.3 and 13.4, but remark that the data maps differ considerably.

We give the data space a norm structure by requiring that

‖Du‖V := sup
λ∈Λ

|λ (u)| for all u∈U (2.3)

is a norm onD(U) that we assume to be extended toV, if not V = D(U). We shall call
this thedata norm, and note that it leads to a seminorm

‖u‖D := ‖Du‖V = sup
λ∈Λ

|λ (u)| for all u∈U (2.4)

on the object spaceU . This is well–defined if all functionals inΛ are uniformly
bounded. We assume existence of the data norm from now on, butremind the reader
that renormalization of functionals changes the data norm and all issues depending on
it, like the well–posedness conditions that we introduce later.
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Definition 2.5. Ananalytic problemin the sense of this paper consists of

1. a linear normedobjectspace U,

2. a setΛ of linear functionals on U leading to adata mapD as in (2.1)

3. with values in a normeddata spaceV such that

4. (2.3) holds and is a norm on V.

Unique solvability of the problem (1.1) or (2.1) requires thatu∈U vanishes if all data
λ (u) for all λ ∈ Λ vanish, or thatD is injective, or that‖.‖D is a norm. A somewhat
stronger and quantitative notion iswell–posedness:

Definition 2.6. An analytic problem in the sense of Definition 2.5 iswell–posed with
respect to a well–posedness norm‖.‖WP on U if there is a constant C such that a
well–posedness inequality

‖u‖WP≤C‖Du‖V =C‖u‖D for all u ∈U (2.7)

holds.

This means thatD−1 is continuous as a mapD(U)→U in the norms‖.‖V and‖.‖WP.
The well–posedness norm‖.‖WP onU will often be weaker than the norm‖.‖U onU
needed to let the data be well–defined.

In the context of Example 2.2, the strong problem leads to well–posedness with‖.‖WP=
‖.‖∞,Ω, while the weak form has‖.‖WP= ‖.‖L2(Ω). Details will follow in 13.3 and 13.4,
but we remark here that deriving computationally useful well–posedness inequalities
is a serious issue that is not satisfactorily addressed by theoreticians, because they do
not use computationally useful norms on the data space. For instance, the continuous
dependence of solutions of elliptic problems on the boundary data is often expressed
by taking Sobolev trace spaces of fractional order on the boundary, and these spaces
are far from being accessible for computation. The exampleswill shed some light on
this issue.

Future research in Applied Mathematics should target practically useful well–posedness
results based on norms that are closer to computation.

3 Trial Space Data Approximation

We now perform the first step ofdiscretizationby choosing a finite–dimensionaltrial
space UM ⊂U . This allows us to approximate the dataD(u∗)∈V by dataD(uM) for all
trial elementsuM ∈ UM in the data norm‖.‖V , and we denote the best approximation
by u∗M, i.e.

‖Du∗−Du∗M‖V = min
uM∈UM

‖Du∗−DuM‖V . (3.1)

We shall rely on Approximation Theory to provide upper bounds for this, and for con-
vergence rates for‖Du∗−Du∗M‖V → 0 if the spacesUM get larger and larger. These
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rates will crucially depend on the smoothness ofu∗, the trial spacesUM, and the data
mapD. For trial spaces in spectral methods, these convergence rates may be very large,
and there may even be exponential convergence. We call (3.1)the Trial Space Data
Approximation, but we keep in mind that the above approximation problem is compu-
tationally hazardous, because it involves infinitely many data. We can assessu∗M only
in theory, not in practice.

If the problem is well–posed in the sense of Definition 2.6, the error bounds and con-
vergence rates of theTrial Space Data Approximationimmediately carry over to error
bounds and convergence rates in the well–posedness norm, via

‖u∗−u∗M‖WP≤C‖Du∗−Du∗M‖V ,

and independent of the chosen trial space. This means that Approximation Theory
provides convergence rates for certain approximate solutions of certain well–posed
analytic problems, but these approximate solutions are computationally inaccessible.

In the context of Example 2.2, the functions of the trial space have to approximate
function values on the boundary in both the strong and the weak case. But for the
strong form we have to approximate second derivatives, while the weak form only has
to approximate first derivatives. Furthermore, the well–posedness norms are different.
This will lead to different convergence rates in Section 13.5.

4 MRD Discretizations

In what follows, we shall show how to discretize the test sideof an analytic problem
in the sense of Definition 2.5 in such a way that a uniformly stable and finite computa-
tional strategy exists that provides approximations ˜uM ∈UM with

‖u∗− ũM‖WP≤ 2‖u∗−u∗M‖WP≤ 2C‖Du∗−Du∗M‖V .

This implies that Approximation Theory provides convergence rates for certainfinitely
and stably computableapproximate solutions of certain well–posed analytic problems.
The convergence will take place inU under the well–posedness norm‖.‖WP, and the
convergence rate will be the convergence rate of theTrial Space Data Approximation.
Our main tool will be amonotonic refinable dense (MRD)discretization of the data
spaceV that we describe now.

No matter what the datamapis, the dataspace Vshould allow some form ofdiscretiza-
tion for computational purposes. We model this byrestrictionmaps

RN : { fλ}λ∈Λ 7→ { fλ}λ∈ΛN
∈VN = R

|ΛN|

that mapV into finite–dimensionaldata spaces VN overR. The discretizations use
restricted databelonging to finite subsetsΛN of Λ, and these data enter practical com-
putation.



4 MRD DISCRETIZATIONS 7

On the spacesVN we introduce the norm

‖RN{ fλ}λ∈Λ‖VN = ‖{ fλ}λ∈ΛN
‖VN := max

λ∈ΛN

| fλ |

and we get themonotonicityproperty

‖RMv‖VM ≤ ‖RNv‖VN for all v∈V and allΛM ⊆ ΛN.

Refinementof two discretizations defined by setsΛM andΛN works by takingΛM ∪ΛN,
and by the monotonicity property this will weakly increase the discrete norms. Finally,
we have

‖v‖V := sup
RN,VN

‖RNv‖VN for all v∈V, (4.1)

following from (2.3).

But there are applications where restrictions are not defined by takingall possiblefinite
subsets of functionals. They might require background triangulations, e.g. for finite
elements, and their refinement does not simply involve taking a union of two finite sets
of functionals. We can generalize the above notions by ignoring functionals:

Definition 4.2. AnMRD discretizationof a data space V consist of a set ofrestrictions
(RN,VN) with the properties

1. VN is a normed linear space withdimVN < ∞ and norm‖.‖VN ,

2. RN : V →VN is linear,

3. there is a partially definedrefinement relation� on the restrictions such that

4. (RM,VM)� (RN,VN) implies‖RMv‖VM ≤ ‖RNv‖VN for all v ∈V,

5. for each two admissible restrictions(RM,VM), (RN,VN) there is a restriction
(RP,VP) such that(RM,VM)� (RP,VP) and(RM,VM)� (RP,VP),

6. (4.1) is a norm, when the sup is taken over all admissible restrictions.

This axiomatic framework is open for further discussion, ofcourse, but we assume it
in what follows. We refer to the last three properties asmonotonicity, refinement, and
density, using the termMRD discretizationfor all six properties. Note that the norm
arising in the density property must be the data norm that is used in the well–posedness
inequality (2.7).

The discussion preceding Definition 4.2 proved

Theorem 4.3. Each analytical problem of the form (1.1) in the sense of Definition 2.5
has a MRD discretization via taking finite subsets of functionals.

For Example 2.2, it is clear that one can focus on finitely manyfunctionals when it
comes to finite computations, but it is by no means clear whichand how many are to be
taken to allow a uniformly stable computational method. Therefinement in the FEM
case is not quite standard, but will satisfy Definition 4.2, because it still uses finite
subsets of functionals.
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5 Well–Posedness of Discretized Problems

If we use a MRD restriction(RN,VN) on the data together with a chosen trial spaceUM,
we can pose thediscretized problemas the linear system

RNDuM = RNDu∗ (5.1)

to be solved foruM ∈ UM, where the computational input data are provided by the
restrictionRNDu∗ of the data of an exact solutionu∗. Such systems will usually be
overdetermined.

Since the well–posedness condition (2.7) also holds on the trial space, the discretized
problem (5.1) is automatically well–posed orstablein the sense

‖uM‖WP≤C(UM,VN)‖RNDuM‖VN for all uM ∈UM

if we can prove

‖DuM‖V ≤C(UM,VN)‖RNDuM‖VN for all uM ∈UM (5.2)

for somestability constant C(UM,VN).

We now can state our central result, to be proven later in a somewhat more general
form.

Theorem 5.3. Assume an analytic problem (2.1) with an MRD discretization. If UM is
an arbitrary finite–dimensional subspace of U, there alwaysis a restriction(RN,VN)
such that

‖uM‖D ≤ 2‖RND(uM)‖VN for all uM ∈UM. (5.4)

This holds without assuming well–posedness. If the latter is assumed by (2.7), we have

‖uM‖WP≤ 2C‖RND(uM)‖VN for all uM ∈UM (5.5)

with the constant C from (2.7).

In contrast to (5.2), the constants in (5.4) and (5.5) are independent ofUM andVM,
proving auniformwell–posedness or stability of the discretized problem fora rather
sensible choice ofVN after an arbitrary selection ofUM. Section 13.1 will show that
this uniformity may require some hidden amount ofoversampling, i.e. the dimension
of VN may be much larger than the dimension ofUM. We call thisovertesting, because
it occurs on the test side of the problem. Theorem 5.3 does notgive any practical hints
how to care for uniformly stable testing, it just proves existence. The necessary amount
of overtesting to achieve uniformly stability is left open.

It is a common observation that many instabilities arise from badly chosen bases. They
sometimes disappear after introduction of better bases. Toidentify instabilities that can
be blamed to bad bases, we refrain from introducing bases as far as possible in this
paper, focusing on spaces instead of bases.
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6 Well–Posedness of Data Discretizations

Inspection of (5.4) shows that the analytic problem and its well–posedness are not
relevant for (5.4), because the actual well–posedness condition (2.7) enters only into
the trivial transition from (5.4) to (5.5). In fact, everything follows already from the
notion of a MRD discretization. Well–posedness is a later add–on.

Lemma 6.1. Consider a data space V and associated MRD restrictions(RN,VN) sat-
isfying the assumptions of Section 4. Then for each finite–dimensional subspace WM of
V there always is a restriction(RN,VN) such that

‖wM‖V ≤ 2‖RNwM‖VN for all wM ∈WM.

Proof: DefineK ⊂WM as the unit sphere ofWM defined via the norm‖.‖V . By com-
pactness, for eachε > 0 we can coverK by finitely manyε–neighborhoods

Uε(y j) := {y∈ K : ‖y− y j‖V ≤ ε}, 1≤ j ≤ n

with elementsy1, . . . ,yn ∈ K. By the density property (4.1) we can find restrictions
RN1, . . . ,RNn with associated spacesVN1, . . . ,VNn such that

‖y j‖V ≤ ‖RNj y j‖VNj
+ ε, 1≤ j ≤ n

and by repeated application of the refinement property we candefineRN andVN as the
“union” of these, and then

‖RNj v‖VNj
≤ ‖RNv‖VN for all v∈V, 1≤ j ≤ n

by monotonicity.

We now take an arbitrarywM ∈ K and get somej, 1≤ j ≤ n with ‖wM − y j‖V ≤ ε via
the covering. This implies‖RNwM −RNy j‖VN ≤ ε by the density property, and then

‖RNwM‖VN ≥ ‖RNy j‖VN − ε
≥ ‖RNj y j‖VNj

− ε
≥ ‖y j‖V −2ε
≥ ‖wM‖V −3ε
= 1−3ε

proving
‖RNwM‖VN ≥ (1−3ε)‖wM‖V

for all wM ∈WM, and the assertion follows forε = 1/6.

The proof of Theorem 5.3 now follows by settingWM = D(UM) with an arbitrary data
mapD.
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7 Solving Discretized Problems

After choosing a trial spaceUM and getting a suitable data restriction(RN,VN) for
Theorem 5.3, the discretized recovery problem (5.1) requires computation of some
uM ∈UM from the dataRNDu∗, whereu∗ is the true solution to the analytical problem.
This will usually lead to an overdetermined linear system after choosing bases, but we
do not want to consider bases unless absolutely necessary.

The simplest basis–free computational method we could propose is to minimize the
residual norm‖RND(u∗−uM)‖VN over alluM ∈UM, which is a finite–dimensional ap-
proximation problem. A good candidate in the trial spaceUM is the best approximation
u∗M to the solutionu∗, and we are free to consider the best approximation in one of
the norms‖.‖U , ‖.‖WP or ‖.‖D. We do not insist here on using the data norm and a
bestapproximation, as we did in (3.1). Instead, we keep the choice of u∗M free and are
satisfied with computing an element ˜uM ∈UM with

‖RND(u∗− ũM)‖VN ≤CA‖RND(u∗−u∗M)‖VN , (7.1)

however it is calculated, with a fixed constantCA ≥ 1 that makes computational life
easier when chosen not too close to one. We callu∗M a comparison trial object. It is
usually provided by some result of Approximation Theory that yields a useful bound
on the right–hand side of (7.1). Due to the monotonicity and density properties, we
also have

‖RND(u∗− ũM)‖VN ≤CA‖RND(u∗−u∗M)‖VN ≤CA‖D(u∗−u∗M)‖V ,

such that the bestTrial Space Data Approximationis always an upper bound.

Anyway, (7.1) implies

‖ũM −u∗M‖D ≤ 2‖RND(ũM −u∗M)‖VN

≤ 2‖RND(ũM −u∗)‖VN +2‖RND(u∗−u∗M)‖VN

≤ (2CA+2)‖RND(u∗−u∗M)‖VN

≤ (2CA+2)‖D(u∗−u∗M)‖V

= (2CA+2)‖u∗−u∗M‖D

and
‖ũM −u∗‖D ≤ ‖ũM −u∗M‖D + ‖u∗M −u∗‖D

≤ (2CA+3)‖u∗M −u∗‖D,

proving that the error of the computational solution ˜uM is up to a factor the same as the
error of the comparison trial objectu∗M, evaluated in the data norm.

Theorem 7.2. Assume an MRD discretization of an analytic problem along the lines
of the previous sections. Then each computational technique to solve the discretized
problem approximatively by an elementũM ∈UM such that (7.1) holds, will also guar-
antee

‖ũM −u∗‖D ≤ (2CA+3)‖‖u∗M −u∗‖D

for any comparison trial object u∗M.
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Corollary 7.3. Adding well–posedness to Theorem 7.2 yields

‖u∗− ũM‖WP≤C(2CA+3)‖u∗M −u∗‖D

proving that convergence rates in the data norm transfer to the same convergence rates
in the norm‖.‖WP on U arising in the well–posedness condition (2.3).

We summarize what we have so far, for easy reference in the examples.

Theorem 7.4.Assume a well-posed analytic problem with an MRD discretization as in
Definitions 2.5, 2.6, and 4.2. Then for arbitrary trial spaces one can choose uniformly
stable test discretizations to get uniformly stable computational methods based on some
form of residual minimization. The convergence rates, measured in the well–posedness
norm, are given by the convergence rate of theTrial Space Data Approximation, i.e. the
rate in which the data of the true solution are approximated by the data of comparison
trial objects, measured in the data norm.

This will be applied in the following way. First, one assumesadditional regularity of
the solution objectu∗ and fixes a well–known approximation process inU that provides
good comparison trial objectsu∗M for these trial spaces, and with a very good conver-
gence rateu∗M → u∗ that may even be spectral in a weak norm like‖.‖WP. Then these
approximations are used for comparison in the above theory,and the convergence rate
in the data norm is calculated from what is known about the approximation process.
Then we know that this rate is the one that arises when solvingthe analytic problem,
and it arises in the well–posedness norm. This may even yieldspectral convergence,
and we shall provide examples. But note that the rate of convergence of our discretized
solutions of the analytical problems is only the rate the convergence obtainedafter
the data map is applied, and it involves the norm‖.‖WP used in the well–posedness
condition.

The above approach applies to a large variety of well–posed analytic problems, and
shows that for properly chosen scales of trial spacesUM and properly chosen test strate-
gies depending on eachUM one gets uniformly stable and convergent computational
methods with convergence rates that can be derived from results of Approximation
Theory. These rates normally improve with the smoothness ofthe true solution, but
they also depend on the data map and the well–posedness norm.For a given PDE
problem like in Example 2.2, the convergence rates of strongand weak formulations
will be different, even if the trial spaces are the same. Thisis due to the fact that the
data maps, data norms, and well–posedness norms are different. Details will follow in
Section 13.5.

If the true solution necessarily has certain singularitiesof a known type, like in elliptic
PDE problems on domains with incoming corners, one should always add the correct
singular functions to the trial space. Then the approximation quality of the singular so-
lution in the augmented trial space is the same as the approximation quality of a regular
solution in the original trial space, and this quality will improve with the smoothness of
the regular solution. In this sense, going over to extended trial spaces like in the XFEM
or GFEM does not need a new theory here.
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8 Noisy Data

Corollary 7.3 showed that ill–posed problems can be treated, if one is satisfied with
reproducing the data well. But so far we always have assumed that the input data
are given exactly as data of an existing solution. If this is not true, a few changes
are necessary. We assume that the data mapD is always exact, but the input data for
computations are assumed to be polluted by either noise or errors in evaluating the data
functionals. This also handles the error committed by numerical integration when the
data functionals of weak PDE problems are considered.

The data now consist of a general elementv∗ of the data spaceV, and we assume that
there is an objectu∗ ∈U such that‖D(u∗)−v∗‖V is small, and we want to recover this
object well, or others with a similarly good data reproduction. We choose a trial space
UM ⊂U as before, and we defineWM :=D(UM)⊂V as at the end of Section 6. Clearly,
(7.1) now has to be replaced by

‖RNv∗−RNDũM‖VN ≤CA‖RNv∗−RNDu∗M‖VN , (8.1)

because there are no other data at hand. Then

Theorem 8.2. Assume an MRD discretization of an analytic problem along the lines
of the previous sections. Then each computational technique to solve the discretized
problem approximatively by an elementũM ∈UM such that (8.1) holds, will guarantee

‖ũM −u∗‖D ≤ (2CA+3)‖‖u∗M −u∗‖D+(2CA+2)‖v∗−Du∗‖V (8.3)

for any u∗ ∈U.

Proof: We proceed like above, via

‖ũM −u∗M‖D ≤ 2‖RND(ũM −u∗M)‖VN

≤ 2‖RNDũM −RNv∗‖VN +2‖RNv∗−RNDu∗M‖VN

≤ (2CA+2)‖RNv∗−RNDu∗M)‖VN

≤ (2CA+2)(‖RNv∗−RNDu∗‖VN + ‖RNDu∗−RNDu∗M‖VN)
≤ (2CA+2)(‖v∗−Du∗)‖V + ‖D(u∗−u∗M)‖V)
≤ (2CA+2)(‖v∗−Du∗)‖V + ‖u∗−u∗M‖D)

and get

‖ũM −u∗‖D ≤ ‖ũM −u∗M‖D + ‖u∗M −u∗‖D

≤ (2CA+3)‖u∗M −u∗‖D +(2CA+2)‖v∗−Du∗‖V .

The inequality (8.3) shows that errors in the data functionals, e.g. integration errors
for weak data, can spoil the convergence unless they are at least as small as the error
committed by the comparison objectu∗M in the data norm. For trial spaces that allow
fast convergence, the admissible errors in the data functionals are severely restricted by
this observation.
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One can go into (8.1) by choosingu∗M as the minimizer of‖v∗ −D(uM)‖V over all
uM ∈UM. Then

‖RNv∗−RND(ũM)‖VN ≤CA‖RNv∗−RND(u∗M)‖VN ≤CA‖v∗−Du∗M‖V ,

and the proof of Theorem 8.2 yields

‖ũM −u∗M‖D ≤ (2CA+2)‖RNv∗−RNDu∗M)‖VN

≤ (2CA+2)‖v∗−Du∗M)‖V ,
‖v∗−DũM‖D ≤ ‖v∗−Du∗M‖D+ ‖Du∗M −DũM‖D

≤ (2CA+3)‖v∗−Du∗M‖D.

Corollary 8.4. Assume an analytic problem that has a MRD discretization without
being well–posed, and assume that the given data do not necessarily come from some
solution u∗. Then there is a uniformly stable computational strategy that provides
trial elements that reproduce the given data at the quality of the Trial Space Data
Approximation. This reduces the error and convergence analysis to an approximation
problem for a data element v∗ ∈V by a data subspace D(UM) in V under the norm in
V.

If there is no well–posedness, there still is abackward error analysis. Instead of solving
the problem with datav∗, which may be unsolvable or ill–posed, one can come up with
an element ˜uM from the trial space which has data that are close to the givendata, and
roughly as close as possible for the given trial space. For PDE solving, this usually
means that one has an exact solution of a PDE with perturbed boundary data and a
perturbation in the inhomogeneity of the PDE. If these perturbations are calculated
and turn out to be tolerable, the user might be satisfied with ˜uM. Many application
papers proceed this way, unfortunately, but users should always keep in mind that there
may be very different trial elements that reproduce the datanicely, if there is no well–
posedness.

9 Discretization in Hilbert Spaces

We now assume thatU is a Hilbert space with inner product(., .)U and that the data map
is composed of continuous functionalsλ ∈ Λ ⊂U∗ like in the beginning of section 4.
The Riesz map allows a transition from functionals to functions, and thus we can fix a
finite subsetΛN = {λ1, . . . ,λN}⊂ Λ and consider the Riesz representersu1, . . . ,uN ∈U
of these functionals. If linear independence is assumed, wehaveN–dimensional spaces
LN ⊂ U∗ andUN ⊂ U by taking the spans, and the spaceVN is R

N as the range of the
restrictionRN with RNDu=(λ1(u), . . . ,λN(u))T which just is the usual projection from
V :=R

Λ to VN :=R
ΛN =R

N. If orthonormal bases are chosen, we have the 2–norm of
coefficients as‖u‖U for all u∈ U , but in order to comply with Section 4, we have to
take the sup–norm in the range of the data map, which is the identity if discretized in
that basis. But then the identity map is not well–posed, due the choice of norms which
is not adequate for Hilbert spaces.



10 OPTIMAL RECOVERY IN HILBERT SPACES 14

We thus have to change the setting, taking the norms inVN =R
N as 2-norms, assuming

Λ to be countable and total, taking orthonormal bases, and therestrictions as projec-
tions focusing on finite subsets of indices in the expansions. For the choice ofUN and
VN as above, we then have (5.4) and (5.5) with the constant 1.

This is the standard situation in Rayleigh–Ritz–Galerkin methods. It might be surpris-
ing that everything is perfectly well–conditioned here, but this is no miracle because we
focused on spaces, not on bases, and used an optimal basis forthe theoretical analysis.
The usual problems with conditions of stiffness matrices etc. are basis–dependent, not
space–dependent.

10 Optimal Recovery in Hilbert Spaces

When starting from a finite setΛN of functionals providing the dataλ j(u∗) of a true
solution of the analytic problem, the above choice of a trialspace as the space spanned
by the representers of the functionals is optimal under all other choices of trial spaces.
This is a standard result in the theory of Reproducing KernelHilbert Spaces, but we
include it here in a general form, because of its central importance within the context
of studying all possible discretizations.

Theorem 10.1. Assume that we have a computational problem posed in a Hilbert
space U, and the only available data are of the formλ1(u∗), . . . ,λN(u∗) for N linearly
independent data functionals in U∗ and an unknown object u∗ ∈ U. Then, for any
linear functionalµ ∈ U∗ , consider all possible linear computational procedures for
calculating good approximations ofµ(u∗) using only the above values. Then there is a
unique error–optimal strategy that works as follows:

1. Use the representers u1, . . . ,uN ∈U of the functionalsλ1, . . . ,λN ∈U∗.

2. Calculate the interpolant̃u to u∗ in the span of the representers, i.e. solve the
system

λk(u
∗) =

N

∑
j=1

c jλk(u j) =
N

∑
j=1

c j(uk,u j)U =
N

∑
j=1

c j(λk,λ j)U∗ , 1≤ k≤ N

and define

ũ=
N

∑
j=1

c ju j .

3. For each data functionalµ ∈U∗, use the value

µ(ũ) =
N

∑
j=1

c j µ(u j)

as an approximation toµ(u∗).
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This approximation has minimal error under all other linearcomputational procedures
using the same data for calculating approximations ofµ(u∗), in the sense that the error
functional has minimal norm.

This technique is independent of well–posedness and makes optimal use of the avail-
able data, error–wise. From the previous section we conclude that it is uniformly stable
when considered in terms of spaces, not bases. If applied to PDE solving, it is real-
ized bysymmetric collocation[26]. It can also be applied to numerical integration and
numerical differentiation, see e.g. [10, 27].

In the context of this paper, the above result shows that the quest for good trial spaces
and well–posed discretizations has a simple solution in theHilbert space situation. We
shall come back to this in Section 13.5 when we look at the differences between weak
and strong formulations.

11 Bases

We now assume that we have a well–posed analytic problem in the sense of Section 2
with an MRD discretization, and by a proper choice of restrictions(RN,VN) according
to Theorem 5.3, we have uniform stability in the form of (5.5). We specialize here to
the case of Theorem 4.3 where we have functionalsλ ∈ Λ and restrictions working via
subsetsΛN ⊂ Λ selecting finitely many data. We now choose a basisu1, . . . ,uM of UM

and take the functionalsλ1, . . . ,λN from the setΛN. Then we consider the discretized
system

M

∑
j=1

a jλk(u j)≈ fλk
= λk(u

∗), 1≤ k≤ N (11.1)

that we solve approximatively by residual minimization like in Section 7. Clearly, a
bad choice of bases will spoil stability, but we want to studythis effect in detail. We
quantify the stability of the object basis by norm equivalence

cM‖ua‖WP ≤ ‖a‖M ≤ CM‖ua‖WP for all a∈ R
M,

with an unspecified norm‖.‖M on R
M that is used in computation. With theN×M

matrixA= (λk(u j))1≤ j≤M,1≤k≤N. and the basis representation

ua :=
M

∑
j=1

a ju j

with coefficient vectorsa∈ R
M, we see thatAa= RNDua holds. and get

‖a‖M ≤ CM‖ua‖WP

≤ CCM‖ua‖D

≤ 2CCM‖RNDua‖VN

= 2CCM‖Aa‖VN

by (2.7), and (5.4).
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Theorem 11.2.Under the above assumptions, the system (11.1) has the stability prop-
erty

‖a‖M ≤ 2CCM‖Aa‖VN for all a ∈ R
M.

In Section 7, we minimized‖RN(Du∗−DuM)‖VN over alluM ∈UM. After introducing
a basis inUM, this is the same as minimization of‖ f −Aa‖VN with f := RNDu∗ =
(λ1(u∗), . . . ,λN(u∗))T ∈ R

N over all a ∈ R
M. We are satisfied with a vector ˜a ∈ R

M

such that
‖ f −Aã‖VN ≤ min

a∈RM
‖ f −Aa‖VN ≤CA‖ f −Aa∗‖VN , (11.3)

wherea∗ is a good coefficient vector for the direct approximation of the true solution
u∗ by elements of the trial spaceUM. We usea∗ in the way we usedu∗M in Section 7
as a competitor that may come from some special approximation technique. Then we
form the elements ˜uM := uã, u∗M = ua∗ ∈UM and see that (7.1) is satisfied.

This lets us arrive at Theorem 7.2, implying that the convergence rate is the same as
the rate for theTrial Space Data Approximation, but this does not yield error bounds
in terms of coefficients. However, we can proceed by

1
2CCM

‖a∗− ã‖M ≤ ‖A(a∗− ã)‖VN

≤ ‖Aa∗− f‖VN + ‖ f −Aã‖VN

≤ (1+CA)‖Aa∗− f‖VN

and get
‖a∗− ã‖M ≤ (1+CA)(2CCM)‖Aa∗− f‖VN .

The norm inVN must be chosen to comply with Section 4, and this works for the
discrete sup norm. But if users do not want to minimizef −Aa in the sup norm, an
additional norm equivalence comes into play, now onVN, and this will often depend on
dimVN. In detail, norm equivalence inVN is assumed as

cN‖RNv‖VN ≤ ‖RNv‖N ≤CN‖RNv‖VN for all v∈V.

and minimization in the new norm‖.‖N will replace (11.3) by

‖ f −Aã‖N ≤ min
a∈RM

‖ f −Aa‖N ≤CA‖ f −Aa∗‖N,

and our above argumentation now yields

‖a∗− ã‖M ≤
(1+CA)(2CCM)

cN
‖Aa∗− f‖N.

If bases are chosen badly, the quotientCM/cN can be extremely large and will spoil the
uniformity that we had so far.

Users can check their stiffness matricesA computationally for stability, but Theorem
11.2 indicates that there may be a strong influence due to a badchoice of the trial basis.
Even a calculation of a Singular Value Decomposition will not be completely basis–
independent, since it only eliminatesorthogonalbasis transformations in the domain
and range ofA.
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12 Nodal Bases

In meshless methods, it is customary to write everything “entirely in terms of nodes”
[6], which means that the functionsuM in the trial spaceUM are parametrized by their
values at certainnodes x1, . . . ,xM, i.e.

uM(x) =
M

∑
j=1

sj(x)uM(x j) for all uM ∈UM

with shape functions sj that are usually localized aroundx j and have the Lagrange
propertysj (xk) = δ jk, 1≤ j,k ≤ M. We prefer the termnodal basis, because there is
nothing meshless in the above representation, and the standard finite elements, which
nobody would call meshless, are nodal as well in the above sense. Many application
papers report experimentally that these bases have favorable stability properties, and
we shall now show why.

Theorem 12.1. Assume a well–posed problem in the sense of (2.7), where U is a
space of functions on some domainΩ. Furthermore, assume that the point evaluation
functionalsδx are uniformly bounded byγ > 0 in the norm‖.‖WP. Finally, assume
that the data space V and the restrictions VN are normed via supremum norms, as
mentioned in Section 4 and Theorem 4.3 as a special case. Thenfor each trial space
UM ⊂U with a nodal basis s1, . . . ,sM using nodes x1, . . . ,xM ∈ Ω one can find a finite
set of functionalsλ1, . . . ,λN such that the N×M stiffness matrixA with entriesλ j(sk)
has the uniform stability property

‖a‖∞ ≤ 2γC‖Aa‖∞ for all a ∈ R
M. (12.2)

Proof: We apply Theorem 5.3. Then

|uM(x j)| ≤ γ‖uM‖WP≤ 2γC‖RND(uM)‖VN = 2γC max
λk∈ΛN

∣

∣

∣

∣

∣

M

∑
j=1

λk(sj )uM(x j)

∣

∣

∣

∣

∣

and if we denote the vector of nodal values byuX ∈ R
M, we see that

‖uX‖∞ ≤ 2γC‖AuX‖∞

with thestiffness matrix Awith entriesλk(sj).

This means that all trial spaces with nodal bases can be uniformly stabilized by taking
good and large selections of test functionals. Furthermore, Section 7 provides conver-
gence proofs and convergence rates for such techniques.

We now go closer to what user would do. In the notation of Section 11 they would
invoke a least–squares solver minimizing‖ f −Aa‖2 instead of minimizing‖RND(u∗−
uM)‖VN which is‖ f −Aa‖∞ in terms of linear algebra. In the notation of Section 11, we
then have‖.‖M = ‖.‖∞,RM , ‖.‖N = ‖.‖ℓ2,RN , CM = γ, ‖.‖VN = ‖.‖∞,RN , cN = 1, leading
to

‖a∗− ã‖∞ ≤ 2γC(1+CA)‖Aa∗− f‖2



13 EXAMPLES 18

for any reference approximationa∗. In this case, we may takea∗ as the vector of nodal
values of the true solution, and then

max
1≤ j≤M

|u∗(x j)− ũM(x j)| ≤ 2γC(1+CA) max
1≤k≤N

|λk(u
∗− s∗)| (12.3)

wheres∗ is the trial function with the nodal values of the true solution.

Corollary 12.4. Assume a well–posed analytic problem with an MRD discretization,
and assume that a trial space is parametrized by a nodal basis. Then the error of a
computational procedure as in Section 7, evaluated on the nodes, is pointwise bounded
by the error of theTrial Space Data Approximation, i.e. the approximation of the data
of the true solution by the data of trial elements, measured in the data norm.

This means that using a nodal basis transfers the results of Theorem 7.4 directly to
a convergence on the nodes. This is a very useful result for many meshless methods
using nodal bases, e.g. when applying Moving Least Squares techniques.

13 Examples

13.1 Interpolation

For illustration, we start with the rather simple case of recovering a functionu on some
compact domainΩ ⊂ R

d from data ofu that do not involve derivatives. Astrong
formulation takesΛ = {δx : x ∈ Ω} on a spaceU on which these functionals are
continuous, e.g.U = C(Ω) under the sup norm. Aweakformulation uses different
data, e.g. functionals

λv(u) := (u,v)L2(Ω) for all u,v∈U := L2(Ω)

and
Λ := {λv : ‖v‖L2(Ω) = ‖λv‖L∗2(Ω) = 1}.

The strong case takesV := C(Ω) = U under the sup norm, while the weak case uses
V := L2(Ω) =U under theL2 norm. In both cases, the data map is the identity, and we
have well–posedness in the norms‖.‖WP= ‖.‖U in both cases, but the norms differ.

The restrictions can work by selection of finitely many functionals in both cases, and
all axioms of Section 4 are satisfied.

We now fix an arbitrary finite–dimensional trial spaceUM ⊂U , and Theorem 5.3 yields
that there is a restriction that makes the linear system (5.1) uniformly stable in the sense
(5.5) withC= 1.

The computational procedures of Section 7 can use a comparison trial objectu∗M that is
the best approximation to the true solutionu∗ in the norm‖.‖U = ‖.‖WP= ‖.‖D, and
Theorem 7.2 then shows that the computational solution ˜uM has the same convergence
rate as the best approximationu∗M.
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The computational solution ˜uM is obtained via (7.1) from a stably discretized linear
system, and we assume that we perform inexact minimization of ‖RN(u∗−uM)‖VN .

In the strong case, this is best linear discrete Chebyshev approximation on sufficiently
many points, i.e. a linear optimization problem. In the univariate case withUM being a
trial space of polynomials of degreeM−1 on an intervalI , a discretization onN ≥ M
test points forming a setPN will always have a stability inequality

‖u‖∞,I ≤C(M,N)‖u‖∞,PN

of the form (5.2), but the stability constant varies. ForM = N equidistant points, the
constantC(M,M) grows exponentially withM, and for Chebyshev–distributed test
points it still grows like logM. Uniform stability holds forN = O(M2) equidistant
points, as follows from a standard argument going back to thenotion of norming sets
[15] and using Markov’s inequality [33, Ch. 3.3]. Theorem 5.3 only provesexistence
of a uniformly stable discretization, but this example shows that there may be a con-
siderable amount of oversampling or overtesting behind thescene.

If stability is uniform, nodal bases written in terms of values atM nodesx j will trivially
lead to|u(x j)| ≤ ‖u‖∞,I ≤C‖u‖∞,PN for all u∈UM, which is (12.2).

The weak case discretizes byN well–chosen normalized test functionalsλvj with nor-
malized Riesz representersv j ∈ L2(Ω), and the quantity‖RN(u∗−uM)‖VN to be mini-
mized is

max
1≤ j≤N

|(v j ,u
∗−uM)L2(Ω)|.

Our theory shows that the test functionals can be chosen to render uniform stability, but
there is a trivial standard choice via theM functionals represented by an orthonormal
basisv1, . . . ,vM of UM. Then the above minimization produces the best approximation
u∗M to u∗ fromUM without any oversampling.

In both cases, Theorem 7.4 is applicable, and we see that we theL∞ or L2 convergence
rates of the non–discrete best approximations carry over tothe discrete approximations.

To compare the difference of convergence rates between weakand strong formulations
for a given fixed trial spaceUM, we see immediately that theL2 convergence rate is
never worse than theL∞ rate, but it is taken in a weaker norm. If users insist on the
best possible convergence rate inL2, they should take a weak form, at the expense of a
sufficiently good numerical integration. But theL∞ error of their solution will clearly
not have a betterL∞ convergence rate than the strong solution.

Both computational approximations, weak or strong, converge like the best approxima-
tions in the respective data norm, and this is a fair deal. Convergences can be spectral
in certain cases, e.g. in case of univariate functions on an intervalI that have a complex
extension that is analytic in a region of the complex plane containingI in its interior.
This shows how the theory applies to spectral convergence situations without change.
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But, of course, there is the extreme case where the solution is only in L2 and not in
C(Ω). Then the strong technique is undefined. But then the weak technique is forced
to have the weak data given directly, without numerical integration, because the latter
is as unfeasible as the strong technique.

All other examples will show a very similar behavior, differing only in their data maps.

13.2 Standard Homogeneous Weak Poisson Problem

We fix a bounded Lipschitz domainΩ ⊂ R
d and consider the weak Dirichlet problem

−∆u = f with homogeneous boundary conditions. This works on the Hilbert space
U := H1

0(Ω) with the inner product

(u,v)1 :=
∫

Ω
∇Tu(x)∇v(x)dx for all u,v∈U,

and the standard (global) weak formulation asks for a functionu∈U with

(u,v)1 = ( f ,v)L2(Ω) for all v∈U = H1
0(Ω).

In the sense of this paper, the functionals are

λv : u 7→ λv(u) = (u,v)1 for all u,v∈U

and the problem takes the form (1.1) with

Λ := {λv : v∈U, ‖v‖U = 1} ⊂U∗

fλv = (u∗,v)1 = ( f ,v)L2(Ω) for all λv ∈ Λ

whereu∗ ∈U is the true solution.

To check the well–posedness in the sense of section 2, we get

‖Du‖V = sup
λv∈Λ

|λv(u)|= sup
v∈U,‖v‖U=1

|(u,v)U |= ‖u‖U =: ‖u‖WP

proving well–posedness, and the data mapD is an isometry.

We now consider fairly arbitrary trial spacesUM ⊂U = H1
0(Ω) to allow standard or ex-

tended or generalized finite elements, or even certain spectral methods of Galerkin type.
Theorem 7.4 is applicable, and we see that we get the convergence rate of approxima-
tions to the true solution inU = H1

0(Ω). This is well–known from finite elements, but
it holds in general, provided that MRD testing is done. It applies to Petrov–Galerkin
methods and spectral techniques of Galerkin type. The rate mainly depends on the
smoothness of the solution and on the trial space chosen.

For the standard finite–element situation with piecewise linear elements, this yields
O(h) convergence inH1

0(Ω), as usual for that regularity. To reachO(h2) convergence
in L2(Ω) underH2(Ω) regularity, the Aubin–Nitsche trick is an add–on that is not
covered by our theory. But it follows from the fact that the best approximation tou∗

in H1
0(Ω) automatically hasO(h2) convergence inL2 underH2(Ω) regularity. This is

independent of PDE solving, it is a property of Approximation Theory.
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13.3 Collocation Methods

We now want to focus on the general statement

All linear PDE or ODE problems can be numerically solved by collocation in
sufficiently many points in such a way that the convergence rate in the well–
posedness norm is at least the rate of thetrial space data approximation.

This, of course, includes pseudospectral methods. But we have to add more details to
show how it follows from Theorem 7.4. We only have to show thatcollocation is an
MRD discretization and pick a suitable form of well–posedness.

The spaceU should be a normed linear space of functions on a domainΩ with bound-
aryΓ, for instance a Sobolev space. To keep things simple, we assume that the analytic
problem is posed in strong form by evaluating a linear elliptic second–order differential
operatorL on points of the domain and a linear boundary operatorB on the boundary,
i.e.

Lu(x) = f (x), for all x∈ Ω
Bu(y) = g(y), for all y∈ Γ (13.1)

where f andg are given functions onΩ andΓ. Introducing continuous functionals
λx(u) := Lu(x) = δx ◦L andµy(u) := Bu(y) = δy ◦B on U one gets a problem of the
form (1.1) with

Λ := {λx : x∈ Ω}∪{µy : y∈ Γ} (13.2)

and it should be clear that one can allow more than two operators, and combinations of
different boundary conditions.

From here there are different ways to proceed towards well–posedness, but we can
ignore well–posedness for a moment. We normalize all functionals as elements of
U∗ and pose the problem in the form (1.1) withfλ := λ (u∗) for all λ ∈ Λ. Then
|λ (u)| ≤ ‖u‖U for all u ∈ U, λ ∈ Λ, and there is no problem to define the spaceV
and the restrictions via taking suprema. We can apply Theorems 5.3 and 7.2 without
assuming well–posedness, and we see that we can work on any trial spaceUM, but all
results only hold in the data norm. Comparing with any existing good approximation
u∗M to u∗ fromUM, we get some ˜uM ∈UM by a discrete computational method such that

sup
λ∈Λ

|λ (ũM −u∗)| ≤ (2CA+3) sup
λ∈Λ

|λ (u∗M −u∗)| ≤ (2CA+3)‖u∗M −u∗‖U

due to normalization of the functionals, and if we use someu∗M with small‖u∗M −u∗‖U ,
we get the above statement. The backward error analysis of Section 8 will be applicable
here.

In the above setting, the most natural well–posedness condition would be of the form

‖u‖WP≤Cmax(‖Lu‖∞,Ω,‖Bu‖∞,Γ) (13.3)

for a suitable norm‖.‖WP onU . This holds forU :=C2(Ω)∩C(Ω) with the sup norm
in U [8, (2.3), p. 14] for uniformly elliptic operatorsL and Dirichlet boundary data.
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This implies by Theorem 7.4 that for such problems the convergence rate of theTrial
Space Data Approximationcarries over to the convergence rate of collocation in the
sup norm.

As a special example we consider unsymmetric collocation [17] by translates of the
kernelK of a Hilbert spaceU , applied to a Dirichlet problem of the form (13.1) on a
domainΩ ⊂R

d. The trial spaceUM is spanned by kernel translatesv j := K(·,x j ), 1≤
j ≤ M for nodesx1, . . . ,xM ∈ Ω, but this is not a stable basis. Anodal basisin the
sense of Section 12 consists of the Lagrange basisu1, . . . ,uM spanning the same trial
space. Collocation is done via the functionals defined for (13.2), and to make them
continuous we can take a space likeU := Hm(Ω) with somem> 2+ d/2. We have
well–posedness in the sense of (13.3) in the sup–norm.

Theorem 13.4. Unsymmetric collocation in the sense of E. Kansa [17] has theprop-
erty that for each possible trial space spanned by kernel translates there is a selection
of test functionals such that the stiffness matrix, when written in terms of the nodal
basis, has a uniform stability property (12.2). If solved byresidual minimization along
the lines of Section 7, error bounds follow from Corollary 7.3 or (12.3). Convergence
rates in the sup norm are obtained from the rate of convergence of second derivatives
in the sup norm of interpolants of the true solution by the trial space.

This provides many explicit convergence rates via standardresults on interpolation by
translates of kernels [33, Chapter 11]. For instance, the convergence for the Whittle–
Matérn kernel reproducingHm(Rd) for m> 2+d/2 is like O(hm−2−d/2) in terms of
thefill distance h:= supy∈Ω min1≤ j≤M ‖y− x‖2, while the convergence is exponential
for kernels like the Gaussian or multiquadrics.

The functionals in (13.2) are a mixture of two kinds, but Theorem 5.3 and Lemma
6.1 do not say how to achieve a uniformly stable balance between testingB on the
boundary and testingL in the interior. Future work should address this problem, and
Section 13.1 suggests that there might be quite some overtesting needed for uniform
stability. Square collocation systems can even be singular[13], such that overtesting is
necessary in general.

All of this readily generalizes to plenty of other linear well–posed PDE problems, and
readers can use the tools of this paper to assemble what they need. Note that unsym-
metric collocation is a pseudospectral method in the sense of the literature (see e.g.
[11, 12, 9]) on spectral methods, and this paper provides a general way to assess con-
vergence of pseudospectral methods. Since we write the analytic and the computational
problems in terms of arbitrary functionals, this approach also covers spectral methods
in Tau form.

13.4 Weak Dirichlet Problems

The standard finite element procedures for solving Dirichlet problems for the Laplace
operator on bounded domainsΩ ⊂ R

d use strong data on the boundary and weak data
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in the interior. The data functionals are

Λ1 := {λv : u 7→ (∇u,∇v)L2(Ω) for all v∈ H1
0(Ω), ‖∇v‖L2(Ω) = 1},

Λ2 := {δy : y∈ Γ := ∂Ω},
Λ := Λ1∪Λ2.

This leads to the data norm

‖u‖D = max(‖u‖∞,Γ,‖∇u‖L2(Ω))

if we take the sup over all functionals as in Section 4. It is well-defined on the space
U := H1(Ω)∩C(Ω). Using the Poincaré inequality and the Maximum Principle [16]
after splittingu into a harmonic part with boundary conditions and a functionin H1

0(Ω)
satisfying the differential equation, we get a well–posedness inequality

‖u‖L2(Ω) ≤C‖u‖D =Cmax(‖u‖∞,Γ,‖∇u‖L2(Ω)) for all u∈U.

Note that the Sobolev inequality forbids to use the sup norm on the left–hand side for
space dimensiond > 1.

Whatever the chosen trial spaces inU are, Theorem 7.4 shows that the convergence rate
in L2 of uniformly stabilized computational methods will be the convergence rate of the
Trial Space Data Approximation, i.e. with respect to‖u‖∞,Γ and‖∇u‖L2(Ω). If the trial
space is spanned by translates of the Whittle–Matérn kernelreproducingHm(Rd) for
m> 1+d/2, the rate isO(hm−1−d/2) in terms of the fill distance of the trial nodes [33].

For standard finite elements, the above approach yieldsO(h) convergence inL2. This
is without the Aubin–Nitsche trick, and it does not useH2 regularity.

The Aubin–Nitsche trick has nothing to do with finite elements and weak problems. It
is a feature of Approximation Theory, doubling a convergence rate for certain nested
approximations in Hilbert spaces under additional regularity assumptions. This is well–
known from splines [1, 5.10] and kernel–based methods [23].In the context of this
paper, one considers the best approximation to the true solution in H1

0(Ω), and it will
automatically yieldO(h2) convergence underH2 regularity, but only for zero boundary
conditions.

13.5 Weak–Strong Comparison

If we compare with what we had in the strong case, the situation for fixed trial spaces
is roughly as follows:

1. The weak case hasL2 convergence at the convergence rate for first derivatives,

2. the strong case hasL∞ convergence at the convergence rate for second deriva-
tives.
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This usually yields a slightly better rate for the weak case,as we saw when compar-
ing O(hm−1−d/2) with O(hm−2−d/2) for the trial space spanned by translates of the
Whittle–Matérn kernel. On the downside, weak methods usually have to perform nu-
merical integration at an accuracy that complies with the convergence rate, and they
converge in a weaker norm.

If one fixes the available finite data and then looks for an error–optimal solution in a
fixed Reproducing Kernel Hilbert Space, the above discussion about differences be-
tween strong and weak methods becomes obsolete. The optimalsolution is always
the one described in Section 10, and it is furnished by symmetric collocation [26].
Since it allows arbitrary evaluation functionalsµ in Theorem 10.1, it is pointwise and
L∞–optimal by taking functionalsµ = δx, andL2–optimal by taking all functionals
µ = λv = (.,v)L2(Ω).

13.6 MLPG

We stay with the Dirichlet problem for the Laplacian, for simplicity, and describe the
standard variation of theMeshless Local Petrov–Galerkin[5, 4] method. The difference
to the standard weak formulation is that the integrals are localized and the boundary
integrals are kept. This means that on small subdomainsΩh ⊂ Ω with boundaries
Γh ⊂ Ω the strong equation−∆u= f is integrated against a test functionvh to define
functionals of the form

u 7→ λΩh,vh(u) =
−1

vol(Ωh)

∫

Ωh

vh ·∆u

that are continuous onU :=C2(Ω)∩C(Ω), and the problem (13.1) takes the form (1.1)
via

λΩh,vh(u) =
1

vol(Ωh)

∫

Ωh

vh · f for all Ωh ⊂ Ω, vh ∈C(Ωh)

δy(u) = g(y) for all y∈ Γ
(13.5)

for given continuous functionsf onΩ andg onΓ. One can restrict the domainsΩh and
the test functionsvh further, and allow other ways of handling the boundary conditions.
Furthermore, the above functionals are usually transformed by integration by parts
before they are implemented, but we deal with this later.

The goal is to prove some form of well–posedness for the analytic problem, and this
seems to be missing completely in the rich literature on the MLPG method. On the
spaceU =C2(Ω)∩C(Ω) we know that (13.3) holds for‖.‖WP= ‖.‖∞,Ω, and we assert

‖u‖∞,Ω ≤C

(

sup
Ωh,vh

|λΩh,vh(u)|+ ‖u‖∞,Γ

)

for all u∈U. (13.6)

But this follows from (13.3) by settingf := ∆u in
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Lemma 13.7. For each continuous function f on some compact domainΩ ⊂ R
d the

norms

‖ f‖∞,Ω = ‖ f‖I := sup
Ωh⊂Ω

1
vol(Ωh)

∣

∣

∣

∣

∫

Ωh

f

∣

∣

∣

∣

coincide, where the diameter of the admissible setsΩh can be bounded above by some
arbitrary r > 0, if required. One can also restrict the subdomainsΩh to balls or cubes
intersected withΩ.

Proof: Clearly ‖ f‖I ≤ ‖ f‖∞,Ω holds. To prove‖ f‖I ≥ ‖ f‖∞,Ω, assumef 6= 0 with
‖ f‖∞,Ω = f (x̃)> 0 for some ˜x∈ Ω. Then pick an arbitraryε < f (x̃)/2 and an arbitrary
r > 0 and chooseΩh to be a subdomain of the set of pointsx∈ Ω with

0< (1− ε) f (x̃)≤ f (x) ≤ f (x̃), ‖x− x̃‖2 ≤ r.

For instance, one can take the intersection of sufficiently small balls or cubes around ˜x
with the domainΩ, or if x̃ is on the boundary, one may move slightly into the interior
and ensureΩh to be in the interior of the domain. Then

(1− ε)‖ f‖∞,Ω = (1− ε) f (x̃)≤
1

vol(Ωh)

∫

Ωh

f ≤ f (x̃) = ‖ f‖∞,Ω.

Note that this proves well–posedness only onU =C2(Ω)∩C(Ω), not on a larger space,
but for all possible test functions and domain shapes and sizes. The boundary condi-
tions can be rephrased by weak functionals taking means, using Lemma 13.7 again,
now settingf := g and working on the boundary.

Any a–priori renormalization ofall available functionals will possibly spoil this argu-
ment. But as soon as finitely many functionals are selected for computation, one can
renormalize for the computational procedure.

If integration by parts is applied to the functionals, they change their computational
form without changing their value, and this is used in the known variations of the
MLPG technique. For instance,

λΩh,vh(u) =
1

vol(Ωh)

∫

Ωh

∇Tvh ·∇u−
1

vol(Ωh)

∫

Γh

vh
∂u
∂n

=
−1

vol(Ωh)

∫

Ωh

∆vh ·u+
1

vol(Ωh)

∫

Γh

u
∂vh

∂n
−

1
vol(Ωh)

∫

Γh

vh
∂u
∂n

are two ways to rewrite the functionals on different domainswith different admissible
test functions. The basic well–posedness onU =C2(Ω)∩C(Ω) will stay as is, because
the sup of all these functionals will be bounded above by‖∆u‖∞,Ω, as long as there are
no other upper bounds proven.

The method called MLPG5 uses constant test functions like inLemma 13.7. Then the
functionals take the extremely simple form

λΩh,vh(u) =−
1

vol(Ωh)

∫

Γh

∂u
∂n

,
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i.e. they are only integrals of the normal derivative on subdomain boundaries. Nev-
ertheless, Lemma 13.7 holds, and there is well–posedness inthe sup norm onU =
C2(Ω)∩C(Ω). It is an open problem to prove other well–posedness inequalities after
fixing a special form of the functionals. The above techniquevia Lemma 13.7 always
goes back to (13.3), whatever the form of the functionals is after integration by parts.
Therefore the convergence theory for given trial spaces will be the same as for the
strong collocation methods in Section 13.3.

Theorem 13.8. If the Meshless Local Petrov–Galerkin method is carried out

1. for a well–posed second–order elliptic problem,

2. using sufficiently many well–chosen test functionals (13.5) along the lines of The-
orem 5.3,

3. and applying a residual minimization algorithm as in Section 7 for solving the
overdetermined system approximatively,

the algorithm is convergent with uniform stability, and theconvergence rate in the sup
norm is the rate of theTrial Space Data Approximation. This rate is at least as good
as for strong collocation using the same trial spaces.

Depending on the PDE problem, the smoothness of the true solution, and the trial
space chosen, this yields various convergence results, up to spectral convergence. In
most applications, the trial functions are shape functionsprovided by Moving Least
Squares, and raising the degree of the local polynomials will increase the convergence
rate appropriately [18, 32, 2, 3]. Readers are encouraged toapply the framework of
this paper to derive special convergence results for various trial spaces and different
variations of the MLPG technique. In particular, an extension to elasticity problems
should be quite useful.

But the methods of this paper always assume the functionals to be given exactly, not
approximately. Only their values can be noisy, as in Section8. This excludes various
interesting applications, namely the Direct Meshless Local Petrov Galerkin (DMLPG)
technique [20] and localized kernel–based methods that provide sparse stiffmess ma-
trices [30, 22, 31, 29, 34].
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