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Abstract

We develop a cut finite element method for a second order elliptic coupled bulk-
surface model problem. We prove a priori estimates for the energy and L2 norms of
the error. Using stabilization terms we show that the resulting algebraic system of
equations has a similar condition number as a standard fitted finite element method.
Finally, we present a numerical example illustrating the accuracy and the robustness
of our approach.

1 Introduction

Problems involving phenomena that take place both on surfaces (or interfaces) and in bulk
domains occur in a variety of applications in fluid dynamics and biological applications.
An example is given by the modeling of soluble surfactants. Surfactants are important
because of their ability to reduce the surface tension. Examples of applications where the
effects of surfactants are important in the modelling include detergents, oil recovery, and
the treatment of lung diseases. A soluble surfactant is dissolved in the bulk fluid but also
exists in adsorbed form on the interface. A computational challenge is then to properly
account for the exchange between these two surfactant forms. The coupling between the
dissolved form in the bulk and the adsorbed form on the interface involves computations of
the gradient of the bulk surfactant concentration on a moving interface that may undergo
topological changes, see e.g.[1]. In this context computational methods that allow the
interface to be arbitrarily located with respect to a fixed background mesh are of great
interest.
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We consider a basic model problem of this nature that involves two coupled elliptic
problems one in the bulk and one on the boundary of the bulk domain. The coupling term
is defined in such a way that the overall bilinear form in the corresponding weak statement
is coercive. A finite element method was proposed and analyzed for a similar model problem
in [7]. See also [6], and the references therein for background on finite element methods
for partial differential equations on surfaces. In [7] a polyhedral approximation of the bulk
domain was used and its piecewise polynomial boundary faces served as approximation of
the surface. In this contribution we develop a method that is unfitted, that is, the surface is
allowed to cut through a fixed background mesh in an arbitrary way. Such a finite element
method was proposed in [12] for the Laplace–Beltrami operator. A general framework for
this type of computational methods using finite element methods on cut meshes, co called
CutFEM methods was recently discussed in [3]. The CutFEM approach is convenient
since the same finite element space defined on a background grid can be used for solving
both the partial differential equation in the bulk region and on the surface. However, a
drawback of this type of methods is that the stiffness matrix may become arbitrarily ill
conditioned depending on the position of the surface in the background mesh. In the case
of the Laplace–Beltrami operator this ill conditioning has been addressed in [13] and [5].
For results on the stability of the bulk equation on cut meshes see [4, 10, 11].

We use continuous piecewise linear elements defined on the background mesh to solve
both the problem in the bulk domain and the problem on the surface. To stabilize the
method we add gradient jump penalty terms as in [4, 5] that ensure that the resulting
algebraic system of equations has optimal condition number. We also consider the approx-
imation of the domain and prove a priori error estimates in both the H1– and L2–norms,
taking both the approximation of the domain and of the solution into account.

The remainder of the paper is outlined as follows: In Section 2 we introduce the model
problem and state the weak form, in Section 3 we introduce a discrete approximation of
the domain, in Section 4 we prove a priori estimates for the energy and L2 norm of the
error, in Section 5 we prove an estimate of the condition number, and finally in Section 6
we present a numerical example.

2 The Continuous Coupled Bulk-Surface Problem

2.1 Strong Form

Let Ω be a domain in R3 with smooth boundary Γ and exterior unit normal n. We consider
the following problem: find uB : Ω→ R and uS : Γ→ R such that

−∇ · (kB∇uB) = fB in Ω (2.1)

−n · kB∇uB = bBuB − bSuS on Γ (2.2)

−∇Γ · (kS∇ΓuS) = fS − n · kB∇uB on Γ (2.3)

Here ∇ is the R3 gradient and ∇Γ is the tangent gradient associated with Γ defined by

∇Γ = PΓ∇ (2.4)
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with PΓ = PΓ(x) the projection of R3 onto the tangent plane of Γ at x ∈ Γ, defined by

PΓ = I − n⊗ n (2.5)

Further, bB, bS, kB, and kS are positive constants, and fB : Ω → R and fS : Γ → R
are given functions. As mentioned above, this problem serves as a basic model for the
concentration of surfactants interacting with a bulk concentration; it also models other
processes, e.g., proton transport via a membrane surface [9].

2.2 Weak Form

Multiplying (2.1) by vB ∈ H1(Ω), integrating by parts, and using the boundary condition
(2.2), we obtain

(fB, vB)Ω = (kB∇uB,∇vB)Ω − (n · kB∇uB, vB)Γ (2.6)

= (kB∇uB,∇vB)Ω + (bBuB − bSuS, vB)Γ (2.7)

and thus we have the weak statement

(kB∇uB,∇vB)Ω + (bBuB − bSuS, vB)Γ = (fB, vB)Ω ∀vB ∈ H1(Ω) (2.8)

Next multiplying (2.3) by vS ∈ H1(Γ), integrating by parts, and again using (2.2) we
obtain

(kS∇ΓuS,∇ΓvS)Γ = (fS − n · kS∇uB, vS)Γ (2.9)

= (fS + (bBuB − bSuS), vS)Γ (2.10)

and thus

(kS∇uS,∇vS)Γ − (bBuB − bSuS, vS)Γ = (fS, vS)Γ ∀vS ∈ H1(Γ) (2.11)

We note that the solution to this system of equations is uniquely determined up to a pair
of constant functions (cB, cS) such that bBcB − bScS = 0. To obtain a unique solution we
here choose to enforce

∫
Γ
uS = 0.

Introducing the function spaces

VB = H1(Ω), VS = H1(Γ)/〈1Γ〉, W = VB × VS (2.12)

and choosing the test functions bBvB and bSvS we get the variational problem: find u =
(uB, uS) ∈ W such that

a(u, v) = l(v) ∀v ∈ W (2.13)

Here
a(u, v) = aB(uB, vB) + aS(uS, vS) + aBS(u, v) (2.14)
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with 



aB(uB, vB) = bB(kB∇uB,∇vB)Ω

aS(uS, vS) = bS(kS∇SuS,∇SvS)Γ

aBS(u, v) = (bBuB − bSuS, bBvB − bSvS)Γ = (b · u, b · v)Γ

(2.15)

where we also introduced the notation b = (bB,−bS) and

l(v) = lB(vB) + lS(vS) = bB(fB, vB)Ω + bS(fS, vS)Γ (2.16)

Introducing the energy norm
|||u|||2 = a(u, u) (2.17)

we directly obtain coercivity and continuity of the bilinear form a(·, ·) and continuity of
l(·). Using Lax-Milgram there is a unique solution in W . If Γ is C3 we additionally have
the elliptic regularity estimate

‖uB‖H2(Ω) + ‖uS‖H2(Γ) . ‖fB‖L2(Ω) + ‖fS‖L2(Γ) (2.18)

see [7] for details. Here and below . denotes less or equal up to a constant, ‖ · ‖Hs(ω)

denotes the standard Sobolev norm Hs(ω) norm on the set ω, and ‖ · ‖Lp(ω) denotes the
Lp(ω) norm.

3 The Finite Element Method

3.1 Approximation of the Domain

Let p : R3 3 x 7→ argminy∈Γ|y−x| ∈ Γ denote the closest point mapping. Then there is an
open neighborhood U(Γ) of Γ such that for each x ∈ U(Γ) there is a uniquely determined
p(x) ∈ Γ. We let ρ be the signed distance function, ρ(x) = |p(x) − x| in R3 \ Ω and
ρ(x) = −|p(x) − x| in Ω. We define the extension of any function define on Γ to U(Γ) as
follows

ve = v ◦ p (3.1)

Let Ω0 be a domain in R3 that contains Ω∪U(Γ) and let K0,h be a quasiuniform partition
of Ω0 into shape regular tetrahedra with mesh parameter h. See Fig. 1 for an illustration
of the different domains. We consider a continuous piecewise linear approximation Γh of Γ
such that Γh ∩K is a subset of a hyperplane in R3 for each K ∈ K0,h.

We assume that Γh ⊂ U(Γ) and that the following approximation assumptions hold:

‖ρ‖L∞(Γh) . h2 (3.2)

and
‖ne − nh‖L∞(Γh) . h (3.3)

where nh denotes the piecewise constant exterior unit normal to Γh. Finally, we define Ωh

as the domain enclosed by Γh. These assumptions are consistent with the piecewise linear
nature of the discrete surface.
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Ω

Γ

Ω0

U(Γ)

Figure 1: Illustration of the domain Ω, Ω0, U(Γ), and Γ. The domain U(Γ) is the yellow
region where for each x ∈ U(Γ) there is a unique closest point on Γ.

3.2 Finite Element Spaces

We define the following sets of elements

KB,h = {K ∈ Kh,0 : K ∩ Ωh 6= ∅}, KS,h = {K ∈ Kh,0 : K ∩ Γh 6= ∅} (3.4)

and the corresponding sets

NB,h =
⋃

K∈KB,h

K, NS,h =
⋃

K∈KS,h

K (3.5)

We let V0,h be the space of piecewise linear continuous functions defined on K0,h. Next let

VB,h = V0,h|NB,h , VS,h = V0,h|NS,h/〈1Γh〉, Wh = VB,h × VS,h (3.6)

be the spaces of continuous piecewise linear polynomials defined on NB,h and NS,h, respec-
tively, where we also enforced

∫
Γh
vS = 0 for v ∈ VS,h.

3.3 The Finite Element Method

The finite element method takes the form: find uh = (uB,h, uS,h) ∈ Wh such that

Ah(uh, v) = lh(v) ∀v ∈ Wh (3.7)
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Here the bilinear form is defined by

Ah(v, w) = ah(v, w) + jh(v, w) (3.8)

with
ah(v, w) = aB,h(vB, wB) + aS,h(vS, wS) + aBS,h(v, w) (3.9)

and 



aB,h(uB, vB) = bB(kB∇uB,∇vB)Ωh

aS,h(uS, vS) = bS(kS∇SuS,∇SvS)Γh

aBS,h(u, v) = (bBuB − bSuS, bBvB − bSvS)Γh = (b · u, b · v)Γh

(3.10)

where ∇Γh = Ph∇ and Ph = I − nh ⊗ nh. Next jh(v, w) is a stabilizing term of the form

jh(v, w) = τBh
3jB(vB, wB) + τSjS(vS, wS) (3.11)

where τB, τS are positive parameters and, letting [x]|F denote the jump of x over the face
F ,

jB(vB, wB) =
∑

F∈FB,h

([nF · ∇vB], [nF · ∇wB])F (3.12)

jS(vS, wS) =
∑

F∈FS,h

([nF · ∇vS], [nF · ∇wS])F (3.13)

with FS,h the set of internal faces (i.e. faces with two neighbors) in KS,h and FB,h denotes
the set of faces that are internal in KB,h and belong to an element in KS,h. Finally, the
right hand side is defined by

lh(v) = lB,h(vB) + lS,h(vS) = bB(fB,h, vB)Ωh + bS(fS,h, vS)Γh (3.14)

with fB,h and fS,h discrete approximations of fB and fS that will be specified more precisely
below.

The purpose of the stabilization terms is to ensure that the resulting algebraic system
of equations is well conditioned.

4 A Priori Error Estimates

Outline of the proof. To prove a priori error estimates we first construct a bijective
mapping Fh that maps the exact domain to the approximate domain. The mapping is
used to lift the discrete solution onto the exact domain where the error is evaluated. The
construction of the mapping is based on a representation of the discrete boundary Γh as a
normal function over the exact boundary Γ together with an extension to a small tubular δ
neighborhood of the boundary. In the remainder of the domain Fh is the identity mapping.
Next a Strang type lemma relates the error in the computed solution to an interpolation
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error and quadrature errors emanating from the approximation of the domain. Using the
assumptions on the approximation properties of the discrete surface we derive bounds on
the quadrature errors. The surface quadrature errors are O(h2) while the bulk quadrature
error is O(h) in the δ neighborhood and zero elsewhere. To establish an optimal order
energy norm error estimate only first order estimates of the quadrature errors are needed
but for L2 error estimates second order estimates are necessary. To achieve a second order
estimate of the quadrature error we utilize the fact that δ can be chosen in the form δ = Ch
with a sufficiently large C.

4.1 Mapping the Exact Domain to the Approximate Domain

The Mapping Fh: For δ > 0 let Uδ(Γ) be the open tubular δ neighborhood

Uδ(Γ) = {x ∈ R3 : |ρ(x)| < δ} (4.1)

For 0 < δ ≤ δ0, where δ0 is a constant, that only depend on the domain, chosen such that
Uδ0(Γ) ⊂ U(Γ), the mapping

Uδ(Γ) 3 x 7→ (p(x), ρ(x)) ∈ Γ× (−δ, δ) (4.2)

is a bijection with inverse

Γ× (−δ, δ) 3 (x, z) 7→ x+ zn(x) ∈ Uδ(Γ) (4.3)

We next note that there is a function γh : Γ→ R such that

qh : Γ 3 x 7→ x+ n(x)γh(x) ∈ Γh (4.4)

is a bijection. Since for x ∈ Γh there holds p(x) = x−ne(x)ρ(x) we may deduce that qh(x)
is the inverse mapping to p(x) : Γh 7→ Γ. Using the assumptions on the approximation
properties (3.2) and (3.3) we obtain the following estimates (see Appendix)

‖γh‖L∞(Γ) . h2, ‖∇Γγh‖L∞(Γ) . h (4.5)

Assuming that h is sufficiently small so that Γh ⊂ Uδ/3(Γ) we may define the mapping

Fh : Ω0 3 x 7→ x+ χ(ρ(x))ne(x)γeh(x) ∈ Ω0 (4.6)

where χ : (−δ, δ) → [0, 1] is a smooth cut off function that equals 1 on (−δ/3, δ/3) and 0
on (−δ, δ) \ (−2δ/3, 2δ/3) and the derivative Dχ satisfies the estimate

‖Dχ‖L∞(−δ,δ) . δ−1 (4.7)

We note that by construction Fh : Ω0 → Ω0 is a bijection such that

Fh(Ω) = Ωh, Fh(Γ) = Γh (4.8)

and
Fh = I in Ω0 \ Uδ(Γ) (4.9)
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The Derivative DFh: The derivative DFh(x) ∈ L(R3,R3) of Fh at x ∈ Ω0 is given by

DFh(x) = I +
(
χ(ρ(x))ne(x)

)
D(γeh(x)) (4.10)

+
(
D(χ(ρ(x))ne(x))

)
γeh(x)

= I +
(
χ(ρ(x))ne(x)

)
(Dγh)

e(x)Dp(x) (4.11)

+
(

(Dχ)(ρ(x))Dρ(x)ne(x)
)
γeh(x)

+
(
χ(ρ(x))(Dn)e(x)Dp(x)

)
γeh(x)

Next we note that

Dρ = ne, Dn = HΓ, Dp = P e
Γ − ρHΓ (4.12)

where we used the identity p(x) = x − ρ(x)Dρ(x) = x − ρ(x)ne(x) and introduced the
curvature tensor HΓ(x) = ∇ ⊗∇ρ(x), x ∈ Γ. Note that it holds ‖HΓ‖L∞(Uδ(Γ)) . 1 for δ
small enough. Thus we have

DFh(x) = I + χ(ρ(x))ne(x)⊗ (∇Γγh)
e(x)(P e

Γ(x)− ρ(x)HΓ(x)) (4.13)

+ γeh(x)(Dχ)(ρ(x))ne(x)⊗ ne(x)

+ χ(ρ(x))γeh(x)He
Γ(x)(P e

Γ(x)− ρ(x)HΓ(x))

On the surface Γ we have the simplified expression

DFh(x) = I + n(x)⊗∇Γγh(x) + γh(x)HΓ(x) (4.14)

since χ = 1 and Dχ = 0 in a neighborhood of Γ and ρ(x) = 0 for x ∈ Γ. We note that
DFh(x) maps the tangent space Tx(Γ) into the piecewise defined tangent space TFh(x)(Γh).
In other words we have the identity

DFhPΓ = (PΓh ◦ Fh)DFhPΓ (4.15)

and the mapping

DFh,Γ(x) : Tx(Γ) 3 y 7→ (PΓh ◦ Fh)DFhPΓy ∈ TFh(x)(Γh) (4.16)

is invertible. Observing that by (4.5), DFh = I + O(h), for small enough h we have the
bounds

‖DFh‖L∞(Ω0,L(R3,R3)) . 1, ‖DF−1
h ‖L∞(Ω0,L(R3,R3)) . 1 (4.17)

and

‖DFh,Γ‖L∞(Γ,L(Tx(Γ),TFh(x)(Γh)) . 1, ‖DF−1
h,Γ‖L∞(Γ,L(TFh(x)(Γh),Tx(Γ)) . 1 (4.18)

Below we simplify the notation as follows ‖DFh‖L∞(Ω0) = ‖DFh‖L∞(Ω0,L(R3,R3)) for the
mappings DFh and DFh,Γ and their inverses.
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The Jacobian Determinants JFh and JFh,Γ: We have the following relations be-
tween the measures on the exact and approximate surface and domain

dΩh = JFhdΩ, dΓh = JFh,ΓdΓ (4.19)

where the Jacobian determinants are defined by

JFh(x) = |det(DFh(x))| (4.20)

JFh,Γ(x) = |DFh,Γ(x)ξ1 ×DFh,Γ(x)ξ2| (4.21)

and {ξ1, ξ2} is an orthonormal basis in Tx(Γ). We note that JFh = 1 on Ω0 \ Uδ(Γ) and
recall that DFh = I +O(h). Thus we have the following estimates in the bulk

‖JFh‖L∞(Ω0) . 1, ‖JF−1
h ‖L∞(Ω0) . 1, ‖1− JFh‖L∞(Uδ(Γ)) . h (4.22)

since the determinant is a third order polynomial of the elements in DFh. On the surface
we note that

DFh,Γ(x)ξ = ξ + n(ξ · ∇Γγh) + γhHΓ · ξ ∀ξ ∈ Tx(Γ) (4.23)

where the last term is O(h2). The Jacobian determinant JFh,Γ is the norm of the cross
product

|DFh,Γ(x)ξ1 ×DFh,Γ(x)ξ2| = |(ξ1 + n(ξ1 · ∇Γγh))× (ξ2 + n(ξ2 · ∇Γγh))|+O(h2)

= |n− ξ1(ξ1 · ∇Γγh)− ξ2(ξ2 · ∇Γγh)|+O(h2)

=
(

1 + (ξ1 · ∇Γγh)
2 + (ξ2 · ∇Γγh)

2
)1/2

+O(h2)

= 1 +O(h2) (4.24)

where we used the identities ξ1 × ξ2 = n, n× ξ2 = −ξ1, ξ1 × n = −ξ2, n× n = 0, the fact
that {ξ1, ξ2, n} is a positively oriented orthonormal basis in R3 to compute the norm, and
finally the estimate (1 + δ)1/2 ≤ 1 + δ/2, δ > 0 in the last step. We thus have the following
estimates for the surface Jacobian

‖JFh,Γ‖L∞(Γ) . 1, ‖JF−1
h,Γ‖L∞(Γ) . 1, ‖1− JFh,Γ‖L∞(Γ) . h2 (4.25)

4.2 Lifting to the Exact Domain

We define the lifting or pullback of vL with respect to Fh of a function v defined on Ω0 as
follows

vL := v ◦ Fh (4.26)

We note in particular that any function defined on Ωh and Γh may be lifted to a function
on Ω and Γ. Using the chain rule

DvL = D(v ◦ Fh) = (Dv ◦ Fh)DFh = (Dv)LDFh (4.27)
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and thus we obtain the identities

∇vL = DF T
h (∇v ◦ Fh) = DF T

h (∇v)L (4.28)

∇Γv
L = PΓ∇vL = PΓDF

T
h (∇v)L

= PΓDF
T
h P

L
Γh

(∇v)L = (PΓDF
T
h P

L
Γh

)(∇Γhv)L = DF T
h,Γ(∇Γhv)L (4.29)

where DFh,Γ was defined in (4.16). Summarizing, we have the relations

∇vL = DF T
h (∇v)L, (∇v)L = DF−Th ∇vL (4.30)

and
∇Γv

L = DF T
h,Γ(∇Γhv)L, (∇Γhv)L = DF−Th,Γ∇Γv

L (4.31)

Using the bounds (4.17) and (4.18) we conclude that the following equivalences hold

‖∇vL‖L2(Ω) . ‖(∇v)L‖L2(Ω) . ‖∇vL‖L2(Ω) (4.32)

and
‖∇Γv

L‖L2(Γ) . ‖(∇Γhv)L‖L2(Γ) . ‖∇Γv
L‖L2(Γ) (4.33)

4.3 Interpolation

Let EB : H2(Ω)→ H2(Ω0) be an extension operator such that

‖EBv‖H2(Ω0) . ‖v‖H2(Ω) (4.34)

and ES : H2(Γ) → H2(U(Γ)) be the extension operator such that ESv = v ◦ p. Then we
have the estimate

‖ESv‖H2(Uδ(Γ)) . δ1/2‖v‖H2(Γ) (4.35)

for any δ > 0 such that Uδ(Γ) ⊂ U(Γ). We finally define the extension operator

E : H2(Ω)×H2(Γ) 3 (uB, uS) 7→ (EBuB, ESuS) ∈ H2(Ω0)×H2(U(Γ)) (4.36)

When suitable we simplify the notation and write u = Eu. We let πSZ,h : L2(Ω0) → V0,h

denote the standard Scott-Zhang interpolation operator and recall the interpolation error
estimate

‖v − πSZ,hv‖Hm(K) ≤ Ch2−m‖v‖H2(N (K)), m = 1, 2, K ∈ K0,h (4.37)

where N (K) ⊂ Ωh is the union of the neighboring elements of K. We then define the
interpolant

πhu = (πB,huB, πS,huS) (4.38)

where
πB,huB = (πSZ,hEBuB)|NB,h ∈ VB,h (4.39)
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and
πS,huS = (πSZ,hESuS)|NS,h ∈ VS,h (4.40)

We use the notation
πLhu = (πhu)L = (πhu) ◦ Fh (4.41)

for the pullback of πhu to Ω by Fh. With these definitions we have the following lemma:

Lemma 4.1 The following estimate holds

|||u− πLhu||| . h‖u‖H2(Ω)×H2(Γ) (4.42)

Proof. Using a trace inequality we obtain

|||u− πLhu|||2 = bBkB‖∇(uB − πLB,huB)‖2
L2(Ω) + bSkS‖∇(uS − πLS,huS)‖2

L2(Γ)

+ ‖bB(uB − πLB,huB)− bS(uS − πLS,huS)‖2
L2(Γ)

. ‖uB − πLB,huB‖2
H1(Ω) + ‖uS − πLS,huS‖2

H1(Γ)

= I + II (4.43)

Term I. The first term may be estimated as follows

I = ‖uB − πLB,huB‖H1(Ω) = ‖uB − (πSZ,hEBuB|Ωh)L‖H1(Ω)

≤ ‖uB − (EBuB|Ωh)L‖H1(Ω) + ‖((I − πSZ,h)EBuB|Ωh)L‖H1(Ω)

. h‖uB‖H2(Ω) (4.44)

Here we used the Sobolev Taylor’s formula, see [2], to estimate the first term: consider
first a function v ∈ H2(Ω0); then we have

‖v − v ◦ Fh‖L2(Ω0) . ‖I − Fh‖L∞(Ω0)‖∇v‖L2(Ω0) . h2‖v‖H1(Ω0) (4.45)

and for the derivative

‖∇(v − v ◦ Fh)‖L2(Ω0)

= ‖∇v −DF T
h (∇v ◦ Fh)‖L2(Ω0)

≤ ‖∇v − (∇v ◦ Fh)‖L2(Ω0) + ‖(DF T
h − I)(∇v ◦ Fh)‖L2(Ω0)

. ‖I − Fh‖L∞(Ω0)‖∇v‖H1(Ω0) + ‖(DF T
h − I)‖L∞(Ω0)‖∇v‖L2(Ω0)

. h2‖v‖H2(Ω0) + h‖∇v‖L2(Ω0)

. h‖v‖H2(Ω0) (4.46)

Now we may apply these inequalities with v = EBuB and finally use the stability (4.34) of
the extension operator EB.

The second term in (4.44) is estimated by mapping to the discrete domain using the
interpolation estimate (4.37) and then using the stability estimate (4.34).
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Term II. Changing domain of integration from Γ to Γh and then using an element–wise
trace inequality we obtain

‖∇Γ(uS − πLS,huS)‖2
L2(Γ) = ‖DF T

h,Γ∇Γh(ueS − πS,huS)|JFh,Γ|−1/2‖2
L2(Γh)

.
∑

K∈KS,h

h−1‖ueS − πS,huS‖H1(K) + h‖ueS − πS,huS‖2
H2(K)

.
∑

K∈KS,h

h‖ueS‖2
H2(N (K))

. h2‖uS‖2
H2(Γ) (4.47)

Here we used the interpolation estimate (4.37) followed by the stability estimate (4.35)
for the extension operator with δ ∼ h, which is possible since there is δ . h such that
KS,h ⊂ Uδ(Γ).

We also need the face norm

|||v|||2F = h3jB(vB,h, vB,h) + jS(vS,h, vS,h) (4.48)

=
∑

F∈FB,h

h3‖[nF · ∇vB]‖2
L2(F ) +

∑

F∈FS,h

‖[nF · ∇vS‖2
L2(F ) (4.49)

for which we have the following interpolation error estimate.

Lemma 4.2 The following estimate holds

|||u− πhu|||F . h‖u‖H2(Ω)×H2(Γ) (4.50)

Proof. This estimate follows directly by using an element wise trace inequality, followed
by the interpolation estimate (4.37), and finally the stability estimates (4.34) and (4.35)
for the extension operators.

4.4 Strang’s Lemma

Lemma 4.3 The following estimate holds

(
|||u− uLh |||2 + |||u− uh|||2F

)1/2

.
(
|||u− πLhu|||2 + |||u− πhu|||2F

)1/2

(4.51)

+ sup
v∈Wh

a(uLh , v
L)− ah(uh, v)

|||vL|||

+ sup
v∈Wh

l(vL)− lh(v)

|||vL|||
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Proof. Adding and subtracting an interpolant πLhu, defined by (4.41), and using the
triangle inequality we obtain

(
|||u− uLh |||2 + |||u− uh|||2F

)1/2

≤
(
|||u− πLhu|||2h + |||u− πhu|||2F

)1/2

(4.52)

+
(
|||πLhu− uLh |||h + |||πhu− uh|||2F

)1/2

To estimate the second term we start from the coercivity
(
|||πLhu− uLh |||2 + |||πhu− uh|||2F

)1/2

≤ sup
v∈Wh\{0}

a(πLhu− uLh , vL) + jh(πhu− uh, v)
(
|||vL|||2 + |||v|||2F

)1/2
(4.53)

Adding and subtracting the exact solution, and using Galerkin orthogonality the numerator
may be written in the following form

a(πLhu− uLh , vL) + jh(πhu− uh, v)

= a(πLhu− u, vL) + a(u− uLh , vL) + jh(πhu− uh, v)

= a(πLhu− u, vL) + l(vL)− a(uLh , v
L) + jh(πhu− uh, v)

= a(πLhu− u, vL) + l(vL)− lh(v)

+ ah(uh, v) + jh(uh, v)− a(uLh , v
L) + jh(πhu− uh, v)

= a(πLhu− u, vL) + jh(πhu− u, v)

+
(
ah(uh, v)− a(uLh , v

L)
)

+
(
l(vL)− lh(v)

)
(4.54)

Using (4.53) and estimating the first term using the Cauchy-Schwarz inequality the lemma
follows directly.

4.5 Estimate of the Quadrature Errors

Lemma 4.4 If h . δ ≤ δ0 and h is small enough. Then it holds

|a(vL, wL)− ah(v, w)| . h2‖∇Γv
L
S‖L2(Γ)‖∇Γw

L
S‖L2(Γ) (4.55)

+ h2‖b · vL‖L2(Γ)‖b · wL‖L2(Γ)

+ h‖∇vLB‖L2(Uδ(Γ)∩Ω)‖∇wLB‖L2(Uδ(Γ)∩Ω) ∀v, w ∈ Wh

Proof. Using the definition of the bilinear forms we have

a(vL, wL)− ah(v, w) = aB(vLB, w
L
B)− aB,h(vB, wB)︸ ︷︷ ︸

I

+ aS(vLS , w
L
S )− aS,h(vS, wS)︸ ︷︷ ︸

II

+ aBS(v, w)− aBS,h(v, w)︸ ︷︷ ︸
III

= I + II + III (4.56)
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We now proceed with estimates of the three terms.

Term I. Starting from the definition of the forms (2.15) and (3.10), changing domain of
integration to Ω, and using (4.30), we obtain the following identity

(bBkB)−1(aB(vLB, w
L
B)− aB,h(vB, wB))

= (DF T
h (∇vB)L, DF T

h (∇wB)L)Ω − (∇vB,∇wB)Ωh

= (DF T
h (∇vB)L, DF T

h (∇wB)L)Ω − ((∇vB)L, (∇wB)LJFh)Ω

= ((DFhDF
T
h − JFhI)(∇vB)L, (∇wB)L)Ω

= (Ah,Ω(∇vB)L, (∇wB)L)Ω (4.57)

In order to estimate Ah,Ω = DFhDF
T
h − JFhI we note that Ah,Ω = 0 in Ω0 \ Uδ(Γ) and

in Uδ(Γ) we have the identity

Ah,Ω = DFhDF
T
h − JFhI

= (DFh − I)(DFh − I)T + (DFh +DF T
h )− I − JFhI

= (DFh − I)(DFh − I)T + (DFh − I) + (DFh − I)T + (1− JFh)I (4.58)

and therefore we have the estimate

‖Ah,Ω‖L∞(Uδ(Γ)∩Ω) . ‖DFh − I‖2
L∞(Uδ(Γ)∩Ω) (4.59)

+ ‖DFh − I‖L∞(Uδ(Γ)∩Ω) + ‖1− JFh‖L∞(Uδ(Γ)∩Ω)

This estimate holds for any 0 < δ ≤ δ0 and h such that

Γh ⊂ Uδ/3(Γ) (4.60)

Recall that (4.60) is required in the definition (4.6) of the mapping Fh. Now using the
assumption that there is a constant C1 > 0 such that C1h < δ ≤ δ0, there is a constant
h0 > 0, independent of δ, such that (4.60) holds for 0 < h ≤ h0, since we have the
estimate ‖γh‖L∞(Γ) ≤ C2h

2 ≤ (C2h0)h < C1h/3 < δ/3, where we may choose h0 such that
C2h0 < C1/3.

Proceeding with the estimate of ‖DFh− I‖L∞(Uδ(Γ)∩Ω) for C1h < δ ≤ δ0 and 0 < h ≤ h0

we start from the identity (4.13) and then using the estimates ‖χ‖L∞(−δ,δ) = 1, 0 < δ ≤ δ0

and ‖P e
Γ − ρHΓ‖L∞(Uδ0 (Γ)) . 1 we obtain

‖DFh − I‖L∞(Uδ(Γ)∩Ω) . ‖∇Γγh‖L∞(Γ)

+ ‖γh‖L∞(Γ)‖Dχ‖L∞(−δ,δ) + ‖γh‖L∞(Γ)

. h+ h2δ−1 + h2

. h (4.61)
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where we used (4.5) and (4.7) and C1h < δ. This estimate holds for all δ and h such that
C1h < δ ≤ δ0 and 0 < h ≤ h0. Combining (4.61) with the estimate for the Jacobian
determinant (4.22) we obtain the estimate

‖Ah,Ω‖L∞(Uδ(Γ)∩Ω) . h (4.62)

and we also recall that
Ah,Ω = 0 in Ω \ Uδ(Γ) (4.63)

Using the bound (4.62) for Ah,Ω we obtain the estimate

|aB(vL, wL)− aB,h(v, w)| . h‖(∇v)L‖L2(Uδ(Γ))‖(∇w)L‖L2(Uδ(Γ))

. h‖∇vL‖L2(Uδ(Γ))‖∇wL‖L2(Uδ(Γ)) (4.64)

At last we used the estimate

‖(∇v)L‖L2(Uδ(Γ)) = ‖DF−Th (∇vL)‖L2(Uδ(Γ)) (4.65)

= ‖DF−Th ‖L∞(Uδ(Γ))‖∇vL‖L2(Uδ(Γ)) . ‖∇vL‖L2(Uδ(Γ))

where we employed (4.17).

Term II. Proceeding in the same way and using (4.31) we obtain

(bSkS)−1
(
aS(vLS , w

L
S )− aS,h(vS, wS)

)

= (∇Γv
L
S ,∇Γw

L
S )Γ − (∇ΓhvS,∇ΓhwS)Γh

= (DF T
h,Γ(∇ΓhvS)L, DF T

h,Γ(∇ΓhwS)L)Γ − ((∇ΓhvS)L, (∇ΓhwS)LJFh,Γ)Γ

= ((DFh,ΓDF
T
h,Γ − PL

Γh
JFh,Γ)(∇ΓhvS)L, (∇ΓhwS)L)Γ

= (AΓ,h(∇ΓhvS)L, (∇ΓhwS)L)Γ (4.66)

where we introduced

AΓ,h = DFh,ΓDF
T
h,Γ − PL

Γh
JFh,Γ (4.67)

Using the definition (4.16) of DFh,Γ and the expression (4.14) for DFh we have the identity

DFh,Γ = PL
Γh
DFhPΓ

= PL
Γh

(I + n⊗∇Γγh + γhHΓ)PΓ

= PL
Γh
PΓ + (PL

Γh
n)⊗∇Γγh + γhP

L
Γh
HΓPΓ (4.68)

Here the second term can be estimated as follows

‖(PL
Γh
n)⊗∇Γγh‖L∞(Γ) . ‖PL

Γh
n‖L∞(Γ)‖∇Γγh‖L∞(Γ) . h2 (4.69)

15



where we used the estimate

‖PL
Γh
n‖L∞(Γ) = ‖PL

Γh
(n− nLh )‖L∞(Γ) . ‖n ◦ p− nh‖L∞(Γh) . h (4.70)

For the third term we have the estimate

‖γhPL
Γh
HΓPΓ‖L∞(Γ) . ‖γh‖L∞(Γ)‖PL

Γh
‖L∞(Γ)‖HΓ‖L∞(Γ)‖PΓ‖L∞(Γ) . h2 (4.71)

Thus we conclude that
DFh,Γ = PL

Γh
PΓ +O(h2) (4.72)

Inserting this identity into the expression (4.67) for AΓ,h and using the identity

PL
Γh
JFh,Γ = PL

Γh
+ PL

Γh
(JFh,Γ − 1) = PL

Γh
+O(h2) (4.73)

where we used (4.25), we obtain

AΓ,h = PL
Γh
PΓP

L
Γh
− PL

Γh
+O(h2) (4.74)

Now the following identity holds

PL
Γh
PΓP

L
Γh
− PL

Γh
= PL

Γh
(PΓ − PL

Γh
)(PΓ − PL

Γh
)PL

Γh
(4.75)

which leads to the estimate

‖PL
Γh
PΓP

L
Γh
− PL

Γh
‖L∞(Γ) ≤ ‖PL

Γh
‖2
L∞(Γ)‖PΓ − PL

Γh
‖2
L∞(Γ) . h2 (4.76)

where we used the bound

‖PΓ − PL
Γh
‖L∞(Γ) = ‖n⊗ n− nLh ⊗ nLh‖L∞(Γ)

. ‖(n− nLh )⊗ n‖L∞(Γ) + ‖nLh ⊗ (n− nLh )‖L∞(Γ)

. ‖ne − nh‖L∞(Γh)

. h

Thus we finally arrive at
‖AΓ,h‖L∞(Γ) . h2 (4.77)

and therefore we have the estimate

|aS(vL, wL)− aS,h(v, w)| . h2‖(∇Γhv)L‖L2(Γ)‖(∇Γhw)L‖L2(Γ)

. h2‖∇Γv
L‖L2(Γ)‖∇Γw

L‖L2(Γ) (4.78)

where at last we used (4.18).
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Term III. We have

aBS(vL, wL)− aBS,h(v, w) = (b · vL, b · wL)Γ − (b · v, b · w)Γh

= ((1− JFΓ,h)b · vL, b · wL)Γ (4.79)

and thus we obtain the estimate

|aBS(vL, wL)− aBS,h(v, w)| . h2‖b · vL‖L2(Γ)‖b · wL‖L2(Γ) (4.80)

Lemma 4.5 If fh = (fB,h, fS,h) satisfies the estimate

‖fB − fLB,h‖L2(Ω) + ‖fS − fLS,h‖L2(Γ) . h2 (4.81)

Then it holds
|l(vL)− lh(v)| . h2‖vL‖L2(Ω)×L2(Γ) ∀v ∈ Wh (4.82)

Proof. We have

l(vL)− lh(v) = bB(fB, v
L
B)Ω − bB(fB,h, vB)Ωh + bS(fS, v

L
S )Γ − bS(fS,h, vS)Γh

= bB(fB − fLB,hJFh, vLB)Ω + bS(fS − fLS,hJFh, vLS )Γ (4.83)

which immediately leads to the estimate

|l(vL)− lh(v)| . h2‖vL‖L2(Ω)×L2(Γ) (4.84)

4.6 Error Estimates

Theorem 4.1 The following error estimate holds
(
|||u− uLh |||2 + |||u− uh|||2F

)1/2

. h‖u‖H2(Ω)×H2(Γ) (4.85)

for small enough mesh parameter h.

Proof. Using the Strang Lemma, Lemma 4.3, in combination with the quadrature error
estimates in Lemma 4.4 and 4.5, we obtain
(
|||u− uLh |||2 + |||u− uh|||2F

)1/2

.
(
|||u− πLhu|||2 + |||u− πhu|||2F

)1/2

+ sup
v∈Wh

a(uLh , v
L)− ah(uh, v)

|||vL||| + sup
v∈Wh

l(vL)− lh(v)

|||vL|||

.
(
|||u− πLhu|||2 + |||u− πhu|||2F

)1/2

+ h|||uLh |||+ h2

. h (4.86)
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Here we used the interpolation error estimates in Lemma 4.1 and Lemma 4.2, and the
stability estimate

|||uLh ||| . ‖f‖L2(Ω)×L2(Γ) (4.87)

in the last inequality.

Theorem 4.2 The following error estimate holds

‖u− uLh‖L2(Ω)×L2(Γ) . h2‖u‖H2(Ω)×H2(Γ) (4.88)

for small enough mesh parameter h.

Proof. Let φ be the solution to the dual problem: find φ ∈ W such that

a(v, φ) = (v, ψ)L2(Ω)×L2(Γ) ∀v ∈ W (4.89)

where ψ = (ψB, ψS) ∈ L2(Ω)× L2(Γ). Then we have the regularity estimate

‖φ‖H2(Ω)×H2(Γ) . ‖ψ‖L2(Ω)×L2(Γ) (4.90)

Setting v = u− uLh , and adding and subtracting suitable terms we obtain

(uB − uLB,h, ψB)Ω + (uS − uLS,h, ψS)Γ = a(u− uLh , φ)

= a(u− uLh , φ− πLhφ) + a(u− uLh , πLhφ)

= a(u− uLh , φ− πLhφ)︸ ︷︷ ︸
I

+
(
l(πLhφ)− lh(πhφ)

)

︸ ︷︷ ︸
II

+
(
ah(uh, πhφ)− a(uLh , π

L
hφ)
)

︸ ︷︷ ︸
III

+ jh(uh, πhφ)︸ ︷︷ ︸
IV

= I + II + III + IV (4.91)

Term I. Using Cauchy-Schwarz, the energy norm estimate (4.85), the interpolation es-
timate (4.42) we obtain

|I| ≤ |||u− uLh ||| |||φ− πLhφ||| . h2‖ψ‖L2(Ω)×L2(Γ) (4.92)

Term II. Using Lemma 4.5 we immediately get

|II| . h2‖ψ‖L2(Ω)×L2(Γ) (4.93)
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Term III. Using Lemma 4.4 we obtain

|a(uLh , π
L
hφ)− ah(uLh , πLhφ)| . h2‖∇Γu

L
S,h‖L2(Γ)‖∇Γπ

L
S,hφS‖L2(Γ)

+ h2‖b · uLh‖L2(Γ)‖b · πLhφ‖L2(Γ)

+ h‖∇uLB,h‖L2(Uδ(Γ)∩Ω)‖∇πLB,hφB‖L2(Uδ(Γ)∩Ω) (4.94)

for h . δ ≤ δ0 and h small enough. To show that the third term is actually of second order
we shall use the Poincaré inequality

‖v‖L2(Uδ(Γ)∩Ω) . (δ/δ0)1/2‖v‖H1(Uδ0 (Γ)∩Ω), 0 < δ ≤ δ0 (4.95)

See [7] for a proof of this inequality. We proceed in the following way

‖∇πLB,hφB‖L2(Uδ(Γ)∩Ω) ≤ ‖∇(πLB,hφB − φB)‖L2(Uδ(Γ)∩Ω) + ‖∇φB‖L2(Uδ(Γ))

. (h+ δ1/2)‖φB‖H2(Uδ0 (Γ)∩Ω)

. (h+ h1/2)‖φB‖H2(Ω) (4.96)

where we used the fact that δ can actually be chosen such that δ ∼ h, see Lemma 4.4, and
the interpolation error estimate (4.42). The term ‖∇uLB,h‖L2(Uδ(Γ)) can be estimated using
the same technique but we employ the energy norm error estimate (4.85) instead

‖∇uLB,h‖L2(Uδ(Γ)∩Ω) . ‖∇(uLB,h − uB)‖L2(Uδ(Γ)∩Ω) + ‖∇uB‖L2(Uδ(Γ)∩Ω)

. |||u− uh|||+ δ1/2‖∇uB‖L2(Uδ(Γ)∩Ω)

. (h+ h1/2‖u‖H2(Ω)×H2(Γ) (4.97)

Combining (4.96) and (4.97) we obtain

III . (h2 + h(h+ h1/2)2)‖ψ‖L2(Ω)×L2(Γ) . h2‖ψ‖L2(Ω)×L2(Γ) (4.98)

Term IV . Using the fact that the jump term is consistent we obtain

|IV | = |jh(u− uh, φ− πhφ)| ≤ |||u− uh|||F |||φ− πhφ|||F . h2‖ψ‖L2(Ω)×L2(Γ) (4.99)

where we used the energy estimate in Theorem 4.1 and the interpolation estimate in Lemma
4.1.

We conclude the proof by collecting the estimates of Terms I − IV and taking the
supremum over all ψ such that ‖ψ‖L2(Ω)×L2(Γ) = 1.

5 Estimate of the Condition Number

Due to the different dimensions of the two coupled differential equations at the surface we
shall see that it is natural to precondition the system in such a way that we seek (vB,h, vS,h)
such that the solution (uB,h, uS,h) of (3.7) is given by

(uB,h, uS,h) = (vB,h, h
1/2vS,h) (5.1)
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The corresponding variational problem for vh = (vB,h, vS,h) takes the form: find v =
(vB, vS) ∈ Wh such that

Ãh(v, w) = L̃h(w) ∀w ∈ Wh (5.2)

where the bilinear forms are defined by

Ãh(v, w) = Ah((vB, h
1/2vS), (wB, h

1/2wS)), L̃h(w) = Lh((wB, h
1/2wS)) (5.3)

We shall now estimate the condition number of the stiffness matrix Ã associated with
the bilinear form Ãh(·, ·). Let {ϕB,i}NBi=1 and {ϕS,i}NSi=1 be the standard piecewise linear
basis functions in VB,h and VS,h ⊕ 〈1Γh〉, respectively. Note that we have added the one
dimensional space 〈1Γh〉 of constant functions on Γh. Define the following basis in the
product space VB,h × VS,h ⊕ 〈1S,h〉:

ϕi =

{
(ϕB,i, 0) 1 ≤ i ≤ NB

(0, ϕS,i−NB) 1 +NB ≤ i ≤ N = NB +NS

(5.4)

The expansion v =
∑N

i=1 v̂iϕi defines an isomorphism

VB,h × VS,h/〈1Γh〉 ⊕ 〈1S,h〉 → RNB × RNS/〈1RNS 〉 ⊕ 〈1RNS 〉 (5.5)

(vB, vS ⊕ vS1S,h) 7→ (v̂B, v̂S ⊕ vS1RNS ) (5.6)

where vS is the unique element in the equivalence classes of VS,h/〈1Γh〉 with
∫

Γh
vS = 0 and

vS = |Γh|−1
∫

Γh
vS is the meanvalue of vS. If we introduce the mesh dependent L2-norm

‖v‖2
h = ‖vB‖2

L2(NB,h) + ‖vS‖2
L2(NS,h) (5.7)

where the sets NB,h and NS,h are defined in (3.5), we have the following standard estimate

ch−d‖v‖2
h . |v̂|2N . Ch−d‖v‖2

h (5.8)

Let Ã be the stiffness matrix with elements aij = Ãh(ϕi, ϕj) + Jh(ϕi, ϕj). The stiffness
matrix is symmetric and has a one dimensional kernel consisting of a constant functions
v = (vB, vS), that satisfy b · v = bBvB − bSvS = 0. We shall estimate the condition number
of Ã as an operator on the invariant space V = RNB × RNS/〈1RNS 〉 defined by

κ(Ã) = |Ã|V |Ã−1|V (5.9)

where |x|2N =
∑N

i=1 x
2
i for x ∈ RN and |Ã|V = supX∈V \{0}

|Ãx|N
|x|N

for Ã ∈ RN×N . Next we
introduce the discrete energy norm

|||v|||2h = Ah(v, v) = ah(v, v) + jh(v, v) (5.10)

The proof of the estimate of the condition number follow the approach presented in [8] and
rely on a Poincaré and an inverse inequality which we prove next.
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Lemma 5.1 (Poincaré inequality) Independently of the mesh/boundary intersection it holds
that

‖(vB, vS)‖h . |||(vB, h1/2vS)|||h ∀(vB, vS) ∈ Wh (5.11)

Proof. Using Lemma 3.3 in [5] and then adding and subtracting suitable terms and using
the triangle inequality followed by a Poincaré inequality we obtain

‖vS‖2
L2(NS,h) . h‖vS‖2

L2(Γh) + hjS(vS, vS)

. h‖∇ΓhvS‖2
L2(Γh) + jS(h1/2vS, h

1/2vS)

. |||(vB, h1/2vS)|||2h (5.12)

Note that the Poincaré inequality is applicable on Γh since
∫

Γh
vS = 0.

Next using the control provided by the jump term JB(·, ·) followed by a Poincaré in-
equality we obtain

‖vB‖2
L2(NB,h) . ‖vB‖2

L2(Ωh) + h3jB(vB, vB)

. ‖P0vB‖2
L2(Ωh) + ‖∇vB‖2

L2(Ωh) + h3JB(vB, vB)

. ‖P0vB‖2
L2(Γh) + |||(vB, h1/2vS)|||2h

. ‖(I − P0)vB‖2
L2(Γh) + ‖vB‖2

L2(Γh) + |||(vB, h1/2vS)|||2h
. ‖∇vB‖2

L2(Ωh) + b−2
B ‖bBvB − bSh1/2vS‖2

L2(Γh)

+ b−2
B b2

S‖h1/2vS‖2
L2(Γh) + |||(vB, h1/2vS)|||2h

. b−2
B ‖h1/2vS‖2

L2(Γh) + |||(vB, h1/2vS)|||2h (5.13)

Here P0vB is the L2-projection of vB onto constant functions on Ωh and we added and sub-
tracted suitable functions to control P0vB using the coupling term together with the control
of ‖h1/2vS‖2

Γh
provided by (5.12) and the fact that the constant bB > 0. Furthermore, the

first inequality in (5.13) is a consequence of the inverse inequality

‖v‖2
L2(K1) . ‖v‖2

L2(K2) + h3‖[nF · ∇v]‖2
L2(F ) ∀v ∈ VB,h (5.14)

that holds for each pair of elements K1 and K2 that share a face F . Iterating the inequality
(5.14) we may control the elements at the boundary in terms of the elements in the interior
of Ωh as follows

‖v‖2
L2(K1) . ‖v‖2

L2(KN ) +
N−1∑

i=1

h3‖[nF · ∇v]‖2
L2(Fi)

∀v ∈ VB,h (5.15)

see [11] for further details. Note that for sufficiently small mesh size the length N of
the shortest chain of elements that share an edge between an element that intersects the
boundary and an interior element is uniformly bounded.

Combining the two estimates (5.12) and (5.13) the lemma follows directly.
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Lemma 5.2 (Inverse inequality) Independently of the mesh/boundary intersection it holds
that

|||(vB, h1/2vS)|||2h . h−2‖(vB, vS)‖2
h ∀(vB, vS) ∈ Wh (5.16)

Proof. Using standard estimates we obtain the following three estimates

bBkB‖∇vB‖2
L2(Ωh) + τBh

3jB(vB, vB) . h−2‖vB‖2
L2(NB,h) . h−2‖(vB, vS)‖2

h (5.17)

‖bBvB − bSh1/2vS‖2
L2(Γh) . h−1bB‖vB‖2

L2(NS,h) + bS‖vS‖2
L2(NS,h) . h−2‖(vB, vS)‖2

h (5.18)

bSkSh‖∇ΓhvS‖2
L2(Γh) + τShjS(vS, vS)) . (bSkS + τS)‖∇vS‖2

L2(NS,h) . h−2‖vS‖2
L2(NS,h)

and thus the proof is complete.

Finally, we are ready to prove our final estimate of the condition number.

Theorem 5.1 The following estimate of the condition number of the stiffness matrix holds
independently of the mesh/boundary intersection

κ(Ã) . h−2 (5.19)

Proof. We need to estimate |Ã|V and |Ã−1|V . Starting with |Ã|V we have

|Ãv̂|V = sup
ŵ∈RN

(ŵ, Ãv̂)N
|ŵ|N

= sup
w∈Wh

Ah((vB, h
1/2vS), (wB, h

1/2wS))

|||(wB, h1/2wS)|||h
|||(wB, h1/2wS)|||h
‖(wB, wS)‖h

‖(wB, wS)‖h
|ŵ|N

. h(d−2)/2|||(vB, h1/2vS)|||h

. hd−2|v̂|N (5.20)

where at last we used the estimate

|||(vB, h1/2vS)|||h . h−1‖(vB, vS)‖h . h(d−2)/2|v̂|N (5.21)

together with (5.16) and (5.8). Thus

|Ã|V . hd−2 (5.22)

Next we turn to the estimate of |Ã−1|V . Using (5.8) and (5.11), we get

|v̂|2N . h−d|||(vB, h1/2vS)|||2h . h−dAh((vB, h
1/2vS), (vB, h

1/2vS))

. h−d(v̂, Ãv̂)N . h−d|v̂|N |Ãv̂|N (5.23)

and thus we conclude that |v̂|N ≤ Ch−d|Ãv̂|N . Setting v̂ = Ã−1ŵ we obtain

|Ã−1|N . h−d (5.24)

Combining estimates (5.22) and (5.24) of |Ã|N and |Ã−1|N the theorem follows.
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Figure 2: The solution uS,h with h = 0.13125.

6 Numerical results

We consider an example where the domain Ω is the unit sphere, kB = kS = 1, bB = bS = 1,
and fB and fS are choosen such that the exact solution is as in [7] given by

uB = e(−x(x−1)−y(y−1))

uS = (1 + x(1− 2x) + y(1− 2y))e(−x(x−1)−y(y−1)) (6.1)

We study the convergence rate of the numerical solution uh = (uB,h, uS,h) and the condition
number of the system matrix using the proposed finite element method. A direct solver is
used to solve the linear systems. The stabilization parameters τB = τS = 10−2. We use a
structured mesh for Ω0 and the mesh parameter h = hx = hy = hz.

To represent the boundary Γ we use the standard level set method. We define a
piecewise linear approximation to the distance function on K0,h and Γ is approximated
as the zero level set of this approximate distance function. Thus, Γh is represented by
linear segments on K0,h. The normal vectors are computed from the linear segments.

The solution uS,h with h = 0.13125 and the triangulation of Γh are shown in Fig. 2.
The convergence of uh in both the L2 norm and the H1 norm are shown in Fig. 3. We
have as expected first order convergence in the H1 norm and second order convergence in
the L2 norm. The spectral condition number of the matrix Ã associated with the bilinear
form Ãh(·, ·) (see equation (5.3)) is shown for different mesh sizes in Fig. 4.
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Figure 3: Convergence of uB and uS. Upper panel: The error measured in the L2 norm
versus mesh size. Lower panel: The error measured in the H1 norm versus mesh size.
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Figure 4: The spectral condition number of the matrix Ã versus mesh size. The dashed
line is proportional to h−2.

Appendix

Here we will give some details on the inequalities (4.5). First we recall that

qh(x) = x+ γh(x)n(x) x ∈ Γ (6.2)

Now using the defintion of the closest point mapping

y = p(y) + ρ(y)ne(y) y ∈ Γh (6.3)

Setting x = p(y) in (6.2) we have

y = p(y) + γh(p(y))ne(y) y ∈ Γh (6.4)

and therefore, by uniqueness, ρ(y) = γh(p(y)), ∀y ∈ Γh. Thus we have γh = ρL and we
immediately obtain the first inequality in (4.5) since

‖γh‖L∞(Γ) = ‖ρL‖L∞(Γ) = ‖ρ‖L∞(Γh) . h2 (6.5)

Next using (4.31) we have the identity

∇Γγh = ∇Γρ
L = DF T

h,Γ(∇Γhρ)L = DF T
h,Γ(PΓhn

e)L (6.6)

Estimating the right hand side using (4.18) and (4.70) we finally obtain

‖∇Γγh‖Γ . ‖∇Γhρ‖Γh . ‖PΓhn
e‖Γh . h (6.7)

which is the second bound in (4.5).
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