arXiv:1401.4810v1 [math.NA] 20 Jan 2014

Noname manuscript No.
(will be inserted by the editor)

Error analysis of nonconforming and mixed FEMs for
second-order linear non-selfadjoint and indefinite elliptic
problems

Carsten Carstensen - Asha K. Dond -
Neela Nataraj - Amiya K. Pani

Received: date / Accepted: date

Abstract The state-of-the art proof of a global inf-sup condition on mixed finite
element schemes does not allow for an analysis of truly indefinite, second-order linear
elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element
discretization which converges owing to some a priori L? error estimates even for
reduced regularity on non-convex polygonal domains. An equivalence result of that
nonconforming finite element scheme to the mixed finite element method (MFEM)
leads to the well-posedness of the discrete solution and to a priori error estimates
for the MFEM. The explicit residual-based a posteriori error analysis allows some
reliable and efficient error control and motivates some adaptive discretization which
improves the empirical convergence rates in three computational benchmarks.

Keywords non-selfadjoint, indefinite linear elliptic problems - stability - noncon-
forming FEM - mixed FEM - equivalence of RTFEM and NCFEM - a priori error
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1 Introduction

The general second-order linear elliptic PDE on a simply-connected bounded polyg-
onal Lipschitz domain Q C R? with boundary 0 reads for given right-hand side
fel?(Q)as

Lu:=-V-(AVu+ub)+yu=f inQ u=0 ondQ. (1.1)

The coefficients are all essentially bounded functions and the eigenvalues of the sym-
metric matrix A are all positive and uniformly bounded away from zero. The point
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is that the convective term b and the reaction term y may be arbitrary as long as the
boundary value problem is well-posed in the sense that zero is not an eigenvalue.
In other words, . : H}(Q) — H~!(Q) is supposed to be injective, where H~!(Q)
is the dual space of H} () := {v € H'(Q) : v|yq = 0}. Since .Z is a bounded linear
operator between Hilbert spaces, this is equivalent to assume that . is an isomor-
phism.

It is known since [20] for conforming finite element discretization and it will be
proved in this paper for nonconforming and for mixed finite element methods that
sufficiently fine triangulations allow for unique discrete solution. One key argument
in the proof is some representation formula for the lowest-order Raviart-Thomas so-
lution to (I.I) in terms of the Crouzeix-Raviart solution. This circumvents the extra
conditions on the coefficients from [12] to deduce the solvability of the mixed finite
element scheme and, thereby, allows a numerical analysis of the general linear indefi-
nite problem at hand. The a priori error analysis shows a quasi-optimal error estimate
by best-approximation errors.

The robust a posteriori error control is feasible for sufficiently fine (although un-
structured but shape-regular) meshes on the basis of some a priori L* control for the
nonconforming FEM by duality. This allows for reliable and efficient error estimates
in terms of the explicit residual-based error estimators up to generic constants and
data approximation errors.

This paper is devoted to another approach to generalized saddle-point problems
via an explicit equivalence to nonconforming finite element schemes for general
second-order linear indefinite and non-symmetric elliptic PDEs. The standard gen-
eralization of the Brezzi splitting lemma [5] to more general possibly non-symmetric
bilinear forms in [12] formulates various conditions on several boundedness and inf-
sup constants. Those are essentially sufficient conditions and not equivalent to well-
posedness. Observe that all conditions in [12] hold as well for some bilinear form
which involves a homotopy parameter A which takes away the non-symmetry or in-
definiteness for A = 0 and equals the bilinear form considered in [12] for A = 1.
For such a homotopy and certain critical values of 0 < A < 1, the underlying PDE
may have a zero eigenvalue, while the sufficient condition of [[12] is convex in 4
and so holds for that critical value as well. This illustrates that we may encounter
some general second-order linear PDE, where the conditions in [12]] do not guarantee
any well-posedness of the continuous or the discrete situation, while the continuous
problem is well-posed, and hence, some novel mathematical ideas are required to en-
sure the solvability of the discrete solution in MFEM and their uniform boundedness
a priori for small meshes.

This paper assumes that the parameters in the general second-order linear elliptic
PDE are such that the associated boundary value problem is well-posed on the contin-
uous level and shows with arguments like those in [20]] for the conforming case that
there exists discrete solutions for a first-order nonconforming finite element method
provided the mesh is sufficiently fine. Based on general conforming companions as
part of the novel medius analysis, which utilizes mathematical arguments between
a priori and a posteriori analysis, this paper proves L? error and piecewise H' error
estimates.
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The remaining parts of the paper are organized as follows. Section 2 introduces
the weak and mixed weak formulations and equivalence of primal and mixed meth-
ods. Section 3 presents the Crouzeix-Raviart nonconforming finite element methods
(NCFEM) and discusses the solvability of the discrete problem and the related a pri-
ori and a posteriori error estimates. Section 4 focuses on Raviat-Thomas mixed finite
element methods (RTFEM), the representation of RTFEM solution via NCFEM, and
a priori error estimates for RTFEM. Section 5 establishes a posteriori error estimates
for the discrete mixed formulation and its efficiency. Numerical experiments in Sec-
tion 6 concern to sensitivity of the a priori and a postriori error bounds and study the
performance of the related adaptive algorithms.

This section concludes with some notation used through out this paper. An in-
equality A < B abbreviates A < CB, where C > 0 is a mesh-size independent constant
that depends only on the domain and the shape of finite elements; A ~ B means
A < B < A. Standard notation applies to Lebesgue and Sobolev spaces and ||-|| ab-
breviates ||-|[;2(q) with L? scalar product (-, -) 12(0)- Let H"(£2) denote the Sobolev
spaces of order m with norm given by ||-|,,. The space of R?-valued L? and H' func-
tions defined over the domain Q is denoted by L*(2;R?) and H'(Q;R?) respec-
tively. Let H(div, Q) = {q € L*(2;R?) : div q € L*(Q)} with the norm Nl aiv, )
and its dual space H (div,Q)*.

2 On Weak and Mixed Formulations

This section introduces the minimal assumptions, the weak formulation with a refer-
ence to solvability, and the mixed formulation for the problem (I.T) and their equiv-
alence. Define the bilinear form a(-,-) for u,v € H} (22) by

a(u,v) = (AVu+ub,Vv) 2 gy + (Yu,v)12(q)-

The weak formulation of (1.1) reads: Given f € L?(2), seek a function u € H} (2)
such that
a(u,v) = (f,v)2(@) for all v € H} (Q). (2.1

Throughout this paper, the following assumptions (A1)-(A2) are posed on the coeffi-
cients and solution of the problem (L.T).

(A1) The coefficient matrix A € L“(Q;R%yxmz) is positive definite; that is, there exist
positive numbers o and A such that o|E|> < A(x)E - & < A|E|? forae. x € Q
and for all €& € R?. Further, the coefficient matrix A, vector b and y are Lipschitz
continuous.

(A2) Givenany f € L?(£2), the problem (1.1} has a unique weak solution u € H} ().
The dual problem reads: Given g € L?(Q2), seek a solution @ € H{ () such that

a(v, @) = (8,v)12(q) for all v € H} (Q). (2.2)

The unique solvability of (2.2)) follows by duality from the well-posedness of .Z, in
(A2) and, as a consequence, ||P||; < C||g|l-
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(A3) Suppose that there exist some constants 0 < § < 1 and C(8) < oo such that the
unique solution @ = # g of (2.2) satisfies ® € H'*5(Q)NH} (L) and

1@]l1+5 < C(8)llgll- (2.3)

Since 0 is not part of the spectrum of .Z, the Fredholm alternative [16, Theorem
5 pp. 305-306] proves that the problem (I.I) has a unique weak solution for each
f € L*(£). For more detailed information on existence and uniqueness result of the
weak solution to (I.I) or to (2.2), see [17, Theorem 8.3 pp. 181-182] or [[16, Theorem
4 pp. 303-305]. For (2.3), refer to [15, cf. § 5.e and § 14.A].

Introduce new variables p = —(AVu +ub) and b* = A~'b and rewrite asa
first-order system

A~'p+ub*+Vu=0 and divp+yu=fin Q. (2.4)
The mixed formulation seeks (p,u) € H(div, Q) x L?(£2) such that

(A™'p+ub*,q)12(0) — (div q,u)2(0) =0 forall q € H(div,Q), 2.5)
(div p,v)120) + (Y v)12(0) = (f,V)12(0) forallv € L*(Q). '

Theorem 2.1 (Equivalence of primal and mixed formulation) The pair (p,u) €

H(div, Q) x L*(Q) solves if and only if u € H} (Q) solves and
p=—(AVu+ub).

Proof. Let (p,u) € H(div,Q) x L*>(Q) solve and let ¢ € 2(). Since q :=
Curl ¢ := (—3d¢/dx2,d¢9/dx;) is divergence-free and an admissible test function in
the first equation of (2.5), a formal integration by parts with curl defined for any
smooth vector field r = (ry,r;) by curl r := dr; /dxy — dry/dx; proves

curl (A~'p+ub*) =0in 2'(Q).

The Helmholtz decomposition shows for the simply-connected domain £ that A~ !p+
ub* is the gradient of some v € HOl (), namely;

A~ 'p+ub* =V

The substitution of this in the first equation of (2.5) followed by an integration by
parts shows

(divq,v+u)20)=0 for all q € H(div, Q).

It is known that the divergence operator div : H(div, Q) — L*() is surjective and so
the preceding identity proves u+ v = 0. (A direct proof follows with the test function
q = Vy for the solution y € H} () of the Poisson problem —Ay = u+v in Q.)
This implies u € H} (2) and

A~ 'p+ub* = —Vu. (2.6)

This identity is recast into p = —(AVu + ub) so that the second equation of (2.5)
leads to (L.1).
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Conversely, let u be a solution of (1.1)) and define p := — (AVu+ub) € L*(Q;R?).
Then (1.1) reads
divp+yu=f in2'(Q).
Since f — yu € L*(R2), this implies p € H(div, Q) and the previous identity leads to
divp+yu=f ae.in Q.

Now, an immediate consequence is the second identity in (2.5).

The definition of p is equivalent to (2.6). The multiplication of (2.6) with any
q € H(div, Q) followed by an integration over the domain £ leads on the right-hand
side to the L?(£2) product of —Vu and q. That term allows for an integration by parts
and so leads to the first identity in (2.5). This concludes the proof. O

The well-posedness of states that . : H} () — H~'(Q) is bounded and
has a bounded inverse. This is an assumption on the coefficients which excludes zero
eigenvalues in the Fredholm alternative, see [17, Section 8.2]. The system (IE]) is
equivalent to (2.5)) which implies that the operator

2 {H(div7.Q) x L*(R) — H(div, Q)* x L*(2),

(q,v) = (A"q+vb* + Vv, div q+ pv) @7)

has a range which includes {0} x L?>(Q); that is, for any f € L?(Q) there exists
#~1(0, f), which solves with the zero right-hand side in the first equation of
(2.3). The a posteriori error analysis relies on the well-posedness of the operator .#
even with a general right-hand side g € H(div, )" in the first equation of (2.5).

Theorem 2.2 (Well-posedness of mixed formulation) The linear operator M from
(27 is bounded and has a bounded inverse.

Proof. The injectivity follows from that of .’ and the equivalence of (I.1) and (2.5
in Theorem [2.T|for g = 0. The more delicate surjectivity follows in several steps. The
step one is that for g = 0 and any f € L?(2), there exists some unique . ' (0, f) in

(2.7), because of the equivalence of (I.T) and (2.5).

In step two, let g = Vv be the gradient of some Sobolev function v € Hé (Q),ie.,

< 8,4 >H(div,Q)* xH(div,Q) = /Q Vv-qdx
= —/Q vdiv qdx forall q € H(div, Q).
Then, .# (p,u) = (g, f) is equivalent to
p=AV(v—u)—ub and divp+yu=f.
The substitution of p in the second equation shows

—div(AVu+ub) +yu = f —div(AVv) € H 1 (Q).

Since equation (1.1)) has a unique weak solution for a given right-hand side in H~' ()
(from (A2) and the Fredholm alternative), the previous equation has unique solution

u=2"1(f—div(AVv)) € H}(RQ).
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Since
p:=AV(v—u) —ub € [*(Q; R?)

satisfies div p = f — yu € L*(Q), it follows p € H(div, Q). Altogether,

%(p’u) = (Vv7f)

In step three, let g € L>(Q;R?) C H(div,Q)* and consider the Helmholtz decompo-
sition of g in the format
Ag=AVoa+Curl B

for @ € H}(Q) and B € H'(2)/R. This decomposition follows from the solution
of —div(AVa) = —div(Ag) and the fact that the divergence free function A(g — Vo)
equals a rotation in the simply-connected domain 2.

Since g = Va 4+ A~!'Curl B and from step two, the superposition principle shows
that it remains to verify that

A (p,u) = (A~ 'Curl B,0)
has a unique solution. Since div (Curl 8) = 0, this is equivalent to
A (p—"Curl B,u) =0
with the obvious solution p = Curl € H(div, Q) and u = 0.
In step four, let g = Vv for some v € L?(£) such that

<g,q >H(div,.Q)*><H(div,.Q): — /-QV div qu for all qc H(le,Q)

This generalizes the step two in the sense that v € L?(). The equation .# (p,u) =
(Vv,0) is equivalent to
M (p,u—v)=(—vb*,—).

This has a unique solution (p,u —v) in H(div,Q) x L?(£2), because of step three
(owing to (g, f) € L*(2;R? x R)).

In step five, let G € H(div, )* with its Riesz representation g € H(div, ) in the
Hilbert space H(div, Q), i.e.,

Vq € H(div,Q) G(q) = / (g-q+div gdiv q) dx.
Jo
Then, .# (p1,u1) = (g, ) has aunique solution (p;, u;) from step three and .# (py, up) =
(—Vdiv g,0) has a unique solution (py, ;) from step four with v = div g € L*>(Q). In
conclusion, (p,u) := (p1 +p2,u; +uz) = .#~' (G, f). This concludes the proof. O
3 Non-Conforming Finite Element Methods

This section describes the Crouzeix-Raviart non-conforming finite element methods
(NCFEM) for the problem (2.1)) and discusses a priori error estimates.
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3.1 Regular Triangulation

Let 7 be a regular triangulation of the bounded simply-connected polygonal Lips-
chitz domain 2 C R? into triangles such that Uyc 5T = Q. Let & denote the set of
all edges in .7, &(d ) denote the set of all boundary edges in .7 and let .4 denote
the set of vertices in 7. Let mid(E) denote the midpoint of the edge E and mid(7)
denote the centroid of the triangle 7. The set of edges of the element T is denoted
by &(T). Let hr denote the diameter of the element T € .7 and hy € Py(7) the
piecewise constant mesh-size, h |7 := hr for all T € .7 with h := maxrc 7 hr. Let
|E| be the length of the edge E € & with unit outward normal Vg.
Let ITy be the L? projection onto Py(.7) and define osc(f, 7) := ||ho7(1 —IT) f|,
where
P(T)={veL*(Q):VT € 7,v|r € B(T)}.
Here and throughout this paper, P.(T), denotes the algebraic polynomials of total
degree at most r € .4 as functions on the triangle T € 7. The P; conforming finite
element space reads
V(T):=P(T)NH;(2).
The jump of q across E is denoted by [q]g; that is, for two neighboring triangles T’y
and 7_,
[ale () = (alr. (x) —ql7_ (x)) for x € E = AT, NAT-.
The sign of [q]g is defined by the convention that there is a fixed orientation of vg
pointing outside of 7. Let H"(.7) be the broken Sobolev space of order m with
broken Sobolev norm

12
|- N7y == ( Y I ||%1m(T)> :

TeT

The piecewise gradient Vyc : H' (F) — L*(2;R?) acts as Vycv|r = V|7 forall T €
7. The broken Sobolev norm ||-||y- abbreviates (AVyc -, Ve -)1/2

2(0) based on an
underlying triangulation 7.

3.2 Crouzeix-Raviart Non-Conforming Finite Element Methods

This subsection defines the non-conforming finite element spaces and discusses the
solvability of the discrete problem and the related a priori error estimates.

Given P (.7), the non-conforming Crouzeix-Raviart (CR) finite element space
reads

CRY(7):={veP(T7):VE €&, v is continuous at mid(E) },
CRY(T):={veCR' () :v(mid(E)) =0 forall E € £(dQ)}.
Let

anc(wer,ver) ==Y, /T ((AVWCR +wcrb) - Vveg + VWCRVCR) dx
TeT "

= (AVncwer +werb, Vvever) 2 q) + (YWer, ver) 2 o) (3.1
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The nonconforming finite element method for (2.1) seeks ucg € CR(7) such that

anc(ucr,ver) = (f,ver) forall veg € CRY(T). (3.2)

Note that, ayc(v,w) = a(v,w) forv,w € H'(£). Observe that there are positive con-
stants o4 and M4 such that

O‘A”V”?—[l(y) < H|V|||12\/C < MA”VH?{l(y) forallv e H(% (Q) +CR(1)(<7)-

The assumptions (A1) implies that, the bilinear form ayc(+,-) satisfies the following
properties (i)-(ii).
(i) Boundedness. There exists a positive constant M such that

lanc(v,w)| < M||Vllxc IWllye  for all vw € HY (Q) 4+ CRY(T). (3.3)

(i1) Garding-type inequality. There is a positive constant & and a nonnegative constant
B such that

o H|V|||12vc —BIVII* <anc(v,v) forallve H(Q)+CRY(.T). (3.4)

3.3 Existence and Uniqueness of the Solution of NCFEM

This subsection is devoted to a discussion on the unique solvability of the discrete
problem (3.2). The conforming finite element approximation ®¢ € V(.7) to the prob-
lem (2.2)) seeks ®¢ € V(.T) with

a(ve, Pc) = (g,ve) forall ve € V(7). (3.5

A simple modification of arguments given in [20, Theorem 2] leads to the following
error estimate. Given any € > 0, there exists an i; = hj(€) > 0 such that for 0 < 7 <
hy, if @ € H}(Q) is a solution of (2.2) and ®¢ € V(7)) satisfies , then there
holds

@ —@cl|| <[P — P, (3.6)

and since g € L*(Q),
| — |1 < ellg]- (3.7

The nonconforming finite element method (3.2) is well-posed even for more general
right-hand sides.

Theorem 3.1 (Stability) For sufficiently small maximum mesh size h and for all fy €
L*(Q) and £, € L*(Q;R?), the discrete problem

anc(ucr,ver) = (fo,ver) + (F1, Vever)  for all ver € CRY(T), (3.8)

has a unique solution ucg € CR(I)(ﬂ ). Furthermore, the solution is stable in the sense
that

llucrlllye < Wfoll =+ [If1]]- (3.9)
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One of the key arguments in the proof of Theorem is the following consistency
condition.

Lemma 3.2 (Consistency) Let @ be the unique solution of (2.2). For € > 0, there
exists some hy > 0 such that for 0 < h < hy it holds

a, vV, ,¢ - »V
wp lanc(ver, @) — (8,ver) 12 (q) | < el|g|| forall g e L*(). (3.10)

0#£vcRECRY(T) |||VCR|||Nc

Proof. Given v¢cg € CR(l)(ﬂ ), define a conforming approximation by the averaging of
the possible values (also known as the precise representation)

vi(z) == vep(z) == é;n}) B0 /B(z.,5) Verdx

of the (possibly) discontinuous vcg at any interior node z € 4", where B(z,0) is a ball
of radius § at z. Linear interpolation of those values defines v € V(.7). The second
step defines v, € P,(.7) NCy () which equals v; at all nodes ./ and satisfies

/VCRdSZ/vzds forall E € &.
E E

The third step adds the cubic bubble-functions to v, such that the resulting function
v3 € P3(.7)NCy(2) equals v along the edges and satisfies

/VCRdx:/V3dx forall T € 7. (3.11)
JT JT
An integration by parts shows
/ Vverdx = / Visdx forall T € 7. (3.12)
T T

The approximation and stability properties of v3 has been studied in former work of
preconditioners for nonconforming FEM [4] (called enrichment therein). This along
with standard arguments also proves approximation properties and stability in the
sense that

[1h5' (vs =ver)l| +[3lllve < Crllverlllve - (.13)

With (3.1), 2.2), (-I1)-(3.12) and the definition of ITy, it follows that

anc(ver, P) — (8:ver) 20
(AV(D VNCVCR)LZ( Q) (b -V 4 yd — g,VCR)Lz(Q)
(ITo(AV D), Vv3)2(0) + (b- VP + yP — g, vcr) 2 (@)
—((1=Io)(AVP),Vv3),2 ()
+((1=Io)(b- VP +yP —g),vcr — v3)12(0)-
The Cauchy-Schwarz inequality with (3:13)) yields

anc(ver, @) — (8 ver) 12 (@)
< |[|(1=Io)(AV®) | {31 + Crosc(g = Y@ —b - VP,.T) |[verllc -
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This and the aforementioned stability ||v3|1 < Ci ||vcrl|yc prove

lanc(ver, P) — (8,Ver) 12(a)l

sup
0£veR€CRY(T) Iverllne

<C||(1 =) (AV®) |+ Crosc(g — y® —b- VD, 7). (3.14)

The approximation property of Iy proves that the first term on the right-hand side of
(3:14) is bounded by
11 = o) (AV)| < 2]/(1 — IT)Al|- [ VD] + | A]l]|(1 — ) VeD|
< 2C||(1 = o)Al |lgll + [|All [ (1 = IT) V. (3.15)

Given € > 0, from (3.7) there exists i3 = h3(€) > 0 such that for 0 < h < h3

€
1-IH)VP| <||P—Pc|1 £ ———
(- To)¥| < @ @l < g rer sl

and ||(1 —ITy)A||~ < g, - The boundedness of ® € H}(2) by ||g|| shows

osc(g—yP—b-V&,7) <|h(g—yP—b-VP)| < Cohlg]|.
For € > 0, there exists an /4 > 0 such that for 0 < i < ha, 0sc(g—yP—b-VP,.T) <

€/2||g||. Alltogether for € > 0, there exists 0 < hy < min{hs,h4} such that (3.10)
holds. This concludes the proof. O

Proof of Theorem[3.1} The choice veg = ucg in (3.8), the Gérding’s inequality (3.4),
and the discrete Friedrich inequality [3l pp 301] ||ucr|| < Cyr ||ucrl|| ye imply

2
alluckllve < Blluckl + (Car I foll + I 1) Nuclle (3.16)
Hence,

CarB

1
llucrlle < =5 lucall +— (Car I foll + I ). (3.17)

The Aubin-Nitsche duality argument allows for an estimate of ||ucg||. Since .Z is
an isomorphism, the dual problem has a unique solution @ € H} (L), which
satisfies ||®||; < C||g||- The conforming finite element solution ®¢ of satisfies
for all g € L*(R). Since V(.7) C CRY(T), (3.8) shows for vcg = P that

anc(ucr, Pc) = (fo, Pc) + (f1, Ve c). (3.18)
Elementary algebra and (3.18) show

(8,ucr)2(0) = anc(ucr, P — Pc) + (8 ucr) 12 (o) — anc(ucr, P)
+(fo, @c) + (f1, Ve Pe)
< M llucrlle 19 = @clls + (Car I foll + 1) 1 e

lanc(ver, P) — (8,ver) 12 ()

+ |lucrlllve sup llverll
0#vcrECRY(T) verlive
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For € > 0, there exists an h5 = hs(€) > 0 such that the first term on the right-hand
side is made < ms llucrllye llgll and from Lemma the third can be made

o

< 2c.pE lucr|lyc llgll - The choice of g = ucg proves

(02
[lucr]| < CorB llucklye +C(Carll foll + (11 1])-

For 0 < € < 1, (3:17) results in

llucklllve < Nlfoll+ lIf -

This proves the stability estimate (3.9) under the assumption that (3.8)) has a solution.
The bound (3.9) implies also the uniqueness of solution of (3.8). In fact, if the linear
system of equations had a non-trivial kernel, there would exist unbounded solutions
in contradiction to (3.9). 0

3.4 A Priori Error Estimates for NCFEM

This subsection discusses a priori error bounds for the non-conforming finite element
solution. For related estimates, see [[L1]. The following [? error control for noncon-
forming FEMs has been observed in [[10, Eq. (3.6)] but is left without a proof and
stated under the restrictive assumption y > 0.

Theorem 3.3 (L* and H' error) Let u € H}(Q) be the unique weak solution of
(2:1), let ucg be the solution of (3.2). Then, for € > 0, there exists sufficiently small
mesh-size h such that

Ju— el < & — ucllye (3.19)

and for f € L*(Q)
llw = ucrlllye < €l £1]- (3.20)

Proof. The Aubin-Nitsche duality technique for g € L?(£2) plus (2.2) and (3.7) and
some direct calculations prove, for any v¢ € V(.7), that

(g:u—ucr)r2(q)
= anc(u—ucr,® — Pc) + (aNc(MCR —ve, ) — (g, ucr — Vc)L2(9)>
<M |||u—ucrllne 1P — Pell:

lanc(Wer, @) — (8, Wer) 12 (q)

+ [lucr —vellve sup werll
0Awer€CRY(T) WeRrlline
€
< 5 e = ucrllve N8l
_ lanc(wer, @) — (8, wer) 2
+ inf_Jlucr—vellye  sup ” ’ WL 321
ve€eV(T) 0#£wer€CRY(T) werllve
Since [9]]

inf u — < Callu—u
vce\/(y)'” cr —vcllye < Gl crllne
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for sufficiently small mesh size &, the consistency condition (3.10) in (3:21)) imply
(gu—ucr)2q) < € [lu—ucrllyc lgll-
Hence,

‘(g7 u-— MCR)LZ(Q)|

[u—ucr|| = sup < € f|u—ucrllyc- (3.22)

0£g€L2(Q) ll&ll

This concludes the proof of (3.19)
Given any vc € V() C CR{(7), the Garding-type inequality (3.4) shows

o ||ucg — vellye — Blluck — vel* < anc(ucg — ve,uck — ve)

= anc(u—ve,ucr —ve) + ((f, Ucr = ve) 2 () — anc (s ucg — VC)) :
The discrete Friedrichs inequality ||ucg — vel| < Car [|ucr — vel| v leads to

allucr —vcllye < CarBlluck —vel|l +M|lu—velly

lanc (u,wer) — (f, WCR)LZ(Q)|
+ sup
0#£wcRr€CRY(T) H|WCR|||NC

Write u — ucg := (u—v¢) — (ucgr — ve) for an arbitrary ve in V(7). The preceding
estimates plus triangle inequality show

C,
CarB 1y g+

C M .
Nl —ucrlle < b My Tlu=vel,

o (04 vCGV(y

anc(u,wer) — (fow
Ly Jawcleren) Z Uizl g o

& 0twereCRY(T) lwerllye

The last term is controlled with Lemma [3.2{ which remains valid for u € H} () and
for all f € L*(Q).

The error analysis of [20, Theorem 2], shows for any € > 0, that there exists an hg =
he(€) > 0 such that for 0 < h < hg, the conforming finite element solution uc € V()

of (2:1) satisfies

inf — < ||lu— <e . 3.24
Lt vl < el <€) (.24

The combination of (3:22), (3.24) and (3.10) implies (3:20) for sufficiently small A.
This concludes the proof. a
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3.5 A Posteriori Error Analysis for NCFEM

This subsection is devoted to a posteriori error analysis of NCFEM with the residual

Resnc(w) = (f,w)Lz(Q) —anc(ucr,w) forallw € V—l—CR(l)(?). (3.25)

Theorem 3.4 (A posteriori error control) Provided the mesh-size is sufficiently small,
it holds

llu = ucrlllye < | Zesnellg-1(a) + Ivlél‘l} lluck = vilnc - (3.26)

Proof. The proof utilizes the nonconforming interpolant Iyc : H'(2) — CR'(.7)
defined by

1
Iycv(mid(E)) ::|E—|/Evds forallve H'(Q).

The Gérding’s inequality (3.4) for e := u — ucg plus elementary algebra with the
bilinear forms a and ayc plus 1)) for v := u —v4 with v4 € V and (3.2)) for veg :=
Incu — ucg shows that w := u — v4 + ucg — Incu satisfies

alllelle = Bllell* < (f,w)r2(a) — anc(ucr. w) +anc(e,vs —ucg).  (3.27)

Given vcg, design v4 € P4(7)NCo(2) CV with

VpePR(T) /VV4'de:/VVCR‘de»
o Q

VYweP(T) /V4~wdx=/VCR-wdx.
Q Q

The choice of the P4-conforming companion v4 € P4(7) NCy(2) with Iycva = veg
allows for C,,y =~ 1 with

llucr = vallye < Capeminlluce —vlinc- (3.28)

The proof of (3.28) follows from the analogous arguments for v3 in Lemma[3.2} (3:27)
shows

lelfic < £ el + > peswc ) + ¥ fellyclluce —wllye - 329
with the nonconforming residual Zesyc(w) of . Note that implies
P(T)NCy(R) CCRY(.T) C H erResc. (3.30)
The dual norm and triangle inequality imply
Fesnc(w) = Reswc(u—vs) < | Zesnclly-1(a) (lellye + luck — vallyc)-
This and (3:29) prove
2B

(04

2M?

3
2 2 2
llellye < > elP+ 5 liResncllf- oy + (S + 1) lluck = vallie
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Theorem|3.3|shows |le]|| < g‘—g [lelll yc and hence, for € > 0 with 0 < € < 1, there exists
a sufficiently small mesh-size [|h7 ;= (q) << 1 such that (3.28) shows

3 2M?
2 2 2 . 2
llelle < oz l1Zesnclli 1) +Cap Tz + 1) minfluck —vl[ic-

This implies and concludes the proof. |
The analysis of the residual Zesyc € H~! () with the kernel property is by
now standard [7,8]]. With pcg := —(AVycucr + ucgb), the explicit residual-based
error estimator of [7]] reads

N(7) = |hz (f — yucr — divieper) | + 1y [PerlE - VEl 2(0E)- (3.31)

Further details are, therefore, omitted. The residual min,cy ||ucg — ||y is easily
estimated by v4.

Remark 3.5 The general a posteriori error control can be contrasted with [ 10, The-
orem 3.1] for v > 0, where normal jumps arise which do not play any role in this

paper.

4 Mixed Finite Element Methods

This section discusses the lowest-order Raviart-Thomas mixed finite element formu-
lation and its equivalence to the NCFEM solution and derives a priori error estimates
for the mixed method.

4.1 Raviart-Thomas Finite Element Methods (RTFEM)

With respect to the shape-regular triangulation .7, the lowest-order Raviart-Thomas
space reads

RT)(7) :={qe H(div,Q):VT € 7 IccR*3IdcR Vx T, q(x) =c+d x
and VE € &(Q),[q]g - ve =0}.

Throughout this paper, Aj, := IhA, by, := Ilyb, b}, := A;lbh, Y := Iyy, and fj, :=
IIyf denote the respective piecewise constant approximations of A, b, b*, ¥ and
/- The discrete mixed finite element problem (RTFEM) for 2.3) seeks (pm,um) €
RTo(y) X Po(y) with

(A;]pM +uMbZ;qRT)L2(_Q) — (diV qRT;MM)LZ(Q) =0 forallqgr € RTQ(?),(4.])
(div Pm, Vi) 12(0) + (T, Vi) 12(@) = (fis Vi) 2(g) for all vy € Po( 7). (4.2)



Nonconforming and Mixed FEMs 15

4.2 Equivalence of RTFEM and NCFEM

The piecewise constant approximations Ay and by, of A and b and

-1
iy (X) = (1 + S(4T)Yh> (HoﬂCR+ S(4T>fh) forxeTeZ, (43
S(T) = / (x—mid(T)) A, ' (x —mid(T))dx for T € 7, (4.4)
JT

define a modified nonconforming FEM problem

(ARVNciicr + iipbp, Vvever) +(Yhity, ver)
= (fn,ver) forall veg € CRY(.T).  (4.5)

Theorem 4.1 (Stability) For sufficiently small mesh-size h, there exists a unique so-
lution iicg € CRY(T) to discrete problem with

llcrllne < Nlfall- (4.6)
Proof. A substitution of iy in (4.3)) leads to
anciicr,ver) = (fa,ver) for all veg € CRY(T) 4.7)

with S(.77)|r = S(T) and

anc(iicr,ver) = (ApVciicr +bp(1+

S(T)
4

1 W)~ (Toiicr), Vacver) 2 (o)

+ (m(1+

)~ (IMofick), ver) 2 (q)»

(fh7VCR)L2(,Q) = (ﬁl?VCR)LZ(Q) — (bh(] + @Vh)il S(f)

4
I CAMELICS

4 4 ﬁzaVCR)L2(9)~

The stiffness matrix related to is very similar to that of (3.2)) except for some
data perturbation and the substitution of Ilyiicr instead of ucg in two lower-order
terms. The last substitution models one-point integration, and since the variable iicg
is controlled in the energy norm |[|-|||yc, it acts as some perturbation as well. All
these perturbations tends to zero as the maximal mesh-size tends to zero and hence,
the existence, uniqueness and stability results may be deduced as in Subsection 3.3.

To be more specific, the choice veg = ficg in implies

lacrllne < lldcrll + 17l (4.8)

The Aubin-Nitsche duality argument allows for an estimate of ||éicg||. Recall that for
given g € L*(Q), & € H} () is the unique solution of the dual problem a(v,®) =
(g,v) from Subsection 3.3 and the conforming finite element solution $¢ of
satisfies the estimate (3.7).

Tis VNCVER)12(q)
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Since V(7) C CR}(.7), the choice of vcg = Pc in (4.7) yields
anc(fick, @c) = (fn, Pc)- 4.9)
An elementary algebra with (#.9) and the discrete Friedrich inequality shows

(8, icr)2(q) = dnciicr, ® — Pc) + (fu, Pc) + (8, licr) 12 (@) — anc (iick, P)
() (Q)
< lacrlllye |2 — Pellr + 1 7all | Pell
_ lanc(ver, @) — (g, ver)|
+ |||MCRH|NC sup ||| |||
0£vcRECRY(T) VCrllinc

(4.10)

The last term on the right-hand side of (4.10) is

anc(ver, P) — (8 ver) 2 (o)
= anc(ver, P) — (8:ver)12(q) — (Vnever, (A —Ap) VD) 12 (g
— (ver, (b—bp) - VO + (Y= %) P) 12() — (ver — Hover, by - VP +%P) 12 (q)
_ (5(9) 5(7)
4 4

(1 + ’)/h)ilnoch,bh~V(P+Yh€b)L2<Q).
The Cauchy-Schwarz inequality, the approximation property of ITy and S(T) ~ h?
lead to

|lanc(ver, @) — (8,ver) 12 ()|
sup

0£vcRECRY(T) |HVCR|||NC

lanc(ver, @) — (8, ver)12(q) |
< sup

- 0£vcRECRY(T) |||VCR|||NC

+ (h+ |A = An|leo + b= bn oo + 17— %) [| P[]

Lemma[3.2} |A — Apllw < &, [[b—bp|[w <&, [[¥— 7illw < € for € > 0 and || @]} <
C||gl| result in

lanc(ver, @) — (8,ver) 12 ()|

sup
0#£vcRECRY(T) lverllne

The combination with (3.7) and (4.10)-(@.11) leads to (g,iicg) < (& |ldcrllyc +
l7n1) |lg]|- Hence, the boundedness of || f,]| < || £ || yields

S ellell- (4.11)

lacr|l < € llicrllye + I1fall-
A substitution in (#.8) for sufficiently small A results in

e < 1.7al-

Since fj, = 0 shows that éicg = 0, uniqueness follows. This also implies existence of
the discrete solution. O
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Theorem 4.2 ( Equlvalence of RTFEM and NCFEM) Recall iiy and S(T) from (@E3)-
@34 and let iicg € CRY(T) solve (4.5 (.) Then

— mid(T
P (x) = — (A Vnciicr + iiby) + (fi — Vulin) w forxeT €T (4.12)

defines py € RTo () C H(div, Q) and the palr pM, uM sattsﬁes . Con-

versely, for any solution (Pyr,iiy) in RT X Py(T) of (4.1] (.) the solunon
iicr € CR T) of (.) sansﬁes 3 and

Proof. Note that the continuity of the normal components on the boundaries of the
triangles T € .7 reflects the conformity RTp(.7) C H(div, ). Given an interior edge
E shared by neighboring triangles T'y,7_ € .7 with unit normal vg pointing from 7
to Ty, let yg denote the non-conforming basis function defined on an interior edge
such that g (mid(E)) = 1, while yg(mid(F)) =0forall F € &\ {E}. A piecewise
integration by parts shows

(Pr, VNCYE) 12(0) + (divie Py, WE) 12(0) = / Py - VVEds
JT+UdT-

= /E(f)M\u “Vlr, +Pumlr_ - v|r_)weds = |E|[pu] - VE, (4.13)
where divycv|r = div v|7. The definition of pys, (4.5) and the fact

((fa = Yatiar) (X —mid(T)) /2, Ve WE) 12 (0) = 0,
imply
(Bu VNCWE) 12(0) + (divve By, WE)12(q) = 0.

Hence, shows |E|[py] - v = 0. Since the edge E is arbitrary in &(Q), py €
RTy)(7) C H(div, ). Since the distributional divergence is the piecewise one, (4.12)
proves divye Pu(X) = fi — Yaily- Hence, is satisfied. A use of the definition of
Iy, an application of element-wise integration by parts, some elementary properties
of elements in RTy(7), CRY(.7), and @12) yield

(A}, 'Pur + dwby, Qrr)12(0) — (div Qer, Todick)2(g)
= (A, "Pu + by, Qrr)12(0) — (div Qrr, dcr)2(0)
= (A, "Pu + itnbj,, Qrr) 1200y + (Vaclicr, 9rr)2(0)
= (A, (fu— Witnr) (0 —mid(F)) /2, QrT)2(0)-
Recall S(.7)|7 = S(T) and the definition of S(T') from (@4). Some algebraic calcu-
lations with qrr € RTy(.7") and /T(x —mid(7))dx = 0 yield

(A, "By +iinb, arr)12(0) — (div qrr, Iodcr) 12 (q)

= ((fi — mitnr) A, (0 —mid (7)) /2), (o —mid(7))/2 div qrr) 20

— (S(y)(fh — Wilm), div qRT>

4 12(Q)
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An appropriate re-arrangement shows that the pair (Pys, ify) satisfies . This con-
cludes the proof of the first part.

To prove the converse implication, let (Py, i) in RTo(.7) x Py(.7) be some solu-
tion of (.I)-(#.2). The discrete Helmholtz decomposition [1]] states for the simply-
connected domain £ that the piecewise constant vector function —Ho(A,jlf)M +
iyby) e Py (T ;IR?) equals a discrete gradient Vycotcg of some nonconforming func-
tion acg € CR(I)(ﬂ ) plus the Curl . of some piecewise affine conforming function

Be € Pi(T)NC(Q); that is,

—(ITyA,, ' Py + iimb;;) = Vcocg + Curl B..
The argument to verify this is to define 0 as the solution of a Poisson problem of
a nonconforming FEM with the right-hand side —(pys + ﬁMbh,AZIVNCVCR)Lz(Q) as
a functional in vcg € CR(I)(ﬁ ). Once ocg is determined, the difference Vycocr +
IHA, Py + iiybj is L*(Q) orthogonal onto VycCR)(.7). Hence, it equals the Curl
of some Sobolev functions so that Curl B, := ( 9p. 9P <) is piecewise constant. This

. - dxp ? dx| L
concludes the proof of the above discrete Helmholtz decomposition.

Since Curl B, =: qgr is a divergence free Raviart-Thomas function, (4.1)) implies

|Curl B.||> = *(A,Zlf)MJrﬂMbZ,(IRT)B(_Q) =0.
Consequently,
IoPpyr = —A,VncOcr — fiyby,.

The Raviart-Thomas function allows for div pys = divye Py € Po(77) and hence (in
2D),

Py = Iopy + (diVNC f.)M)(O — m1d(9))/2
The equation {@.2) is equivalent to divyc Py = fi — Yuiin- The combination of the

previous identities proves {#.12)) for iicg := otcr. A piecewise integration by parts of
the product of Py for (@.12) with Vycveg leads to

—(divne Py ver) 2 (@) = (Pm; Vvever) 2 ()-
The aforementioned identities for ITypys and divyc pys show that this equals
—(fh = Wllm, ver) 12(@) = — (AnVNcOcr + dmbr, Vever) 2 o).
This proves (@.3)) for iick = ocg. To verify (@.3), the identity @.12) is substituted in
(@.1)) for some general
qrr = IMyqrr + (divye qrr) (e —mid(.7))/2 € RTy (7).

This shows

. _ _ _ S(9) ..
(divne Qrr,itn)12(0) = (= Vnciicr, Qrr ) 12(q) + (fa — Yallm, % divne Qrr)2(q)-

A piecewise integration by parts shows (—Vcilcr, 4rr) 2 (o) = (ficr, divhe QrT) 12 (q)
and hence,

(i 1 +7h@) - @fk —dcr, divagr) , =0,

12(Q)
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Since the divergence operator is surjective from RTy(.7) onto Py(.7) and since the
previous identity holds for all qgr € RTy(7)), it follows

S(7 S(7
iy (1 +7h7(4 )) = 7(4 )fh+HoﬁCR-
This is equivalent to (4.3) and concludes the proof. |

4.3 A Priori Error Estimates for RTFEM

This subsection establishes well-posedness of the mixed finite element method (@.1)-
(@2) and a priori error estimates for mixed formulation (2.3) via the equivalence of
RTFEM and NCFEM.

The following theorem deals with the well-posedness of the mixed finite element
method (#.I)-(@.2) with a more general right hand side.

For given gpt € RTy(7 ), define g € RTH(7)* by

g(q) == (A, 'grr, Q) 12(0) + (div grr,div @) 2(q) forallq € RTH(F).  (4.14)

For fj, € Py(7), and g € RTp(.7)* a modified mixed finite element method reads as:
seek (pm,um) € RTH(T) x Py(.7) such that
(A, 'PM + unby, rT) 12 () — (diV drT M) 2 (o) = 8(arT)
for all qgr € RTH(7), (4.15)
(div PM,Vh)LZ(Q) + (’)/huM,Vh)Lz(Q) = (fh,w,)Lz(Q) for all v, € Py(7).(4.16)

Theorem 4.3 (Stability) For all g € RTy(.7)* given by and f, € Py(7), the
modified mixed finite element problem (@) has a unique solution (P, uy) €

RTy(T)x € Py(T) with
1o n) || 1 aiv,0) x22(@) < 118 fi) l maiv, ) x12()- (4.17)

As in Subsection 4.2, the solution of modified RTFEM (@.I3)-@.16) is repre-
sented in terms of the solution of a suitable NCFEM.

Proof. Since g(q) is given by (4.14), the equation (4.13) is written equivalently

(A, (pv — gr7) + umbjy, rT) 12(0) = (AV Qrr, up + div gr7)12(0)
for allqgr € RTH( 7). (4.18)

Since —ITy(A, ' (pm — grr) + umb};) € Py(.7;R?), the discrete Helmholtz decompo-
sition states

—ITH(A, ' (pm — grr) + umb}) = Vcacr + Curl e (4.19)

for some nonconforming function acg € CR}(.7) and some B¢ € Pi(7) NC(RQ).
The choice of qgr = Curl B¢ in (4.18) shows that Curl B¢ = 0. Hence,

Ilo(pm — gr7) = — (AhVNC OcRr + MMbh> .
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Equation (#.16) implies
divne (Pm — grr) = fi — Yattm — divne grr- (4.20)
and
(Par — grr) = Io(pyr — grr) + (divie (Py — grr)) (e —mid(.7))/2.
Hence,
(Pm —grr) = — (AhVNCOCCR + uMbh)
+(fn — Yhup — divye grr) (e —mid(7)) /2. 4.21)

For all vcg € CR)(7), the last term on the right hand-side of (4.21) is orthogonal to
Vncver with respect to L2(€2) inner product. This leads to

(AnVncacr +umbp, Vever) = —(pm — 8rr, VNCVCR)-
For the last term on the right-hand side, a piecewise integration with (#.20) yields
(AnVncocr +upby, Vyever) + (Yattmr,ver) = (fi — divae grr,ver). (4.22)

A substitution of (4.21) in (4.18) with qrr := Ioqrr + (divye qrr) (e —mid(.7))/2
and piecewise integration (—VycOcg, qrr) @)= (ocr,divye qrr) 2(Q) yields after
some direct calculation

. S(7 . .
(divye qrr(1+ %)),leNc 8r7)12(0) + (UM, divne Qrr)
. S(7 .
= (acr,divne QrT)12() + (%(fh — Yuun), divne Grr) 2(q)-

Since this holds for all qgr € RTH(7), it follows immediately

uy = (1 —H/h@)il(_ (1+ %ﬂ)) divye grr + S(f)

The stability result (3.9) of Theorem [3.T]applies to (#.22). This implies

S+ Totcr). (423)

llacrllye < llgrr [l v, @) + I1fnll- (4.24)

From the representations (4.23)) and @.21)) of us and pwm, (#.24) proves stability result
(4.17). This concludes the proof. a
Theorem [4.3] implies the well-posedness of the mixed finite element method (@.)-

#.2).
Corollary 1 (Stability) There exists a unique solution (pm,up) € RTo(T ) X Py(T)

to the problem ([#.1)-[#.2) with

||(pM=MM)||H(div;_Q)><L2(Q) S HthLZ(Q)- (4.25)

Below, the main theorem of this section is discussed.



Nonconforming and Mixed FEMs 21

Theorem 4.4 (a priori error control of RTFEM ) Under the assumption (A1)-(A2)
with u € Hé (Q) for f € L*(Q) and for € > 0 with sufficiently small maximal mesh-
size h, there exists a unique solution (py,uy) € RTo(T) x Py(T) of the mixed
method @1)-[@#2). Further, it holds

Ju—uml S (h+€)|If], (4.26)
lp—pmll < (A+€)|If]l, (4.27)
Idiv (p—pwm) || < 1 = full + (R + €D £]- (4.28)

The remaining parts of this subsection are devoted to the proof which starts with an
error estimate of € := ucg — ficg.

Lemma 4.5 (An intermediate estimate) Let ucg and iicg be the solutions of (3.2)
and (#.3)), respectively. Then, for sufficiently small maximal mesh-size h

lluck = acrllye + lluck = dcell < Al f1]- (4.29)

Proof. A substitution of in (4.5) and (3.2) lead for any vcg € CRY(7) to

y 5(7) y
anc(é,ver) = (f = fuver) 2 (o) + (=, mAnViciicr, Vcver) 2 a)
S(7) ) )
+ (b 1 i Vnever)2q) — (Wliicr — Hodicr), ver — Hover) 2 o)
— ((A=Ap)Vciicr, Vnever) 2 (q) — (b —bg)icr, Vever) 2 (o)

— ((v—W)iicr, ver) 12 () (4.30)

Note that the first term on the right-hand side can be rewritten with I'ly and then equals
(f = fu,ver — Hover) 2 )- The choice of vcg = &'in li with an application of
Garding’s inequality (3.4), S(.7) < h? and ||iicg|| < |ldcr|| e yields

alelye —Blel* < (OSC(f, )+ 12 (|| Anllo [ %lleo + 17 ]1) Nliicrlllye
+ ([[A = Apfleo + b =Dy [e) [l crllve

+h2||bhHw||fh||) llellne + 1Y = mll-lldcrll ]l (4.31)

Since ||é]| < [|é]|y¢ » an application of (4.6) shows

lellye S 0se(f, ) + (B + 1A= Anlle+ b=yl + 7=l ) el + ]
(4.32)
It therefore, remains to estimate ||é]|. An appeal to Aubin-Nitsche duality argument

applied to the dual problem (2:2) plus (3.7) and (3.10) lead to
(8:9)12(0) = anc(é,P — Pc) +(8,8)2(q) — anc(é, P) +anc(é, Pc)
S lellne |2 = @clh + lanc (8, c)|
lanc(wer, @) — (8, Wer) 12(q)|

0£WeR€CRY(T) CRllINC
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For the second last term on the right-hand side, recall (#.30) with vcg = ®¢ and
proceed as in the proof of the estimate (#.31)) to obtain

lanc(é, Pc)| S (OSC(ﬂ )+ (1> + | A~ Aplleo+ b= b+ | = 1l|) H|ﬁCR|||)||¢CH1-
(4.33)
Since ||Pc|l1 S|Pl < ||gll, a substitution of (3.7), (3.10) and (4.33) in the previous

estimates yields
. (8,8)12(0)|
e = sup ————
ogerr@) el

+ (W4 1A = Aull+ b =bullo+ 7=l ikl . (434

Sosc(f, 7))+ eleélle

since [lackllvc S I1fill with Il S 1711, @32) results in
lllye S ose(f, 7)
(74 A = Ao+ D= bpllo [y =l ) 11+ . 435)

For sufficiently small A,
leads to

A—Apllo Shy [b=bplleo SRy [[Y = Nillo S hin (@.34)

le

| S elllellye +A A1 (4.36)

A substitution of (#.36) in (#.32) results for sufficiently small / in
llélle < A I1LF1-

This and ([#.36) prove @#.29). O

Proof of Theoremd.4] Uniqueness of a discrete solution follows from the stability
result (4.25)) with fj, = 0. In order to estimate ||u — up||, the definition of uy in (4.3)
implies

| = 0+ (7)) (1408 4~ (W + ) )
sl + e — el + e~ Mol + 12 (f~ )l
Since |iicg — Myiicr|| < h||iicr||ye and S(7) < k2, this yields
= upa[| S llu — ucwl| + |luck — dc || + hllickllye + Bl fo = Youll . (4.37)

A substitution of (#.6) in (#37) with Lemma[4.3]and Theorem [3:3]results in
lu—up | S 0se(f, )+ (€2 +h) | £1I-
The definition of p and (#.12)) imply

P—Pm= —(AVM =+ ub) + (AhVNCﬁCR + uMbh) — (fh — }/huM) (0 — mld(y))/z
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Hence,

Ip—pm|| < [[—(A—Ap)Vu—u(b—by) —Au(Vu—Viciicr) — (u—up)bp||
+ || fo — Vatp]|- (4.38)

The substitution of u — iicg = (u — ucg) + (ucr — ficg) in (4.38)) results in

[P —pmll S [|A = Aplloouel| 1 + [[b =Byl le]] + [t — ucrlye
+ lluck — dicrlll e + llu— wm || + Al fio = Youl| + Al — up .

For sufficiently small 2, Lemma[4.5] Theorem [3.3] and @.3)) imply
I —pwml| S osc(f, 7) + € || f].
In order to prove the estimate of ||div(p — pa)|| and together lead to
div(p —pm) = f = fir = Yu+ Yhttas
Hence,
[div(p —pm) | < 1F = fall 17 = Yalloo l[ell = 1 Vil o |2t — weas ] (4.39)
A substitution of [@.3) in (#.39) yields (#.28) and this concludes the proof. O

Remark 4.6 With the regularity result u € H'*%(Q) NH} () and & = O(h%), the
error estimates in Theorem .4 read

lu—up|| < B 200 ]l (4.40)
Ip—pmll < |11, (4.41)
[div (p—pwm)|| S |1 — fill + ™29 | 7] (4.42)

For related error estimates, when 6 = 1 see [[13[14]] and [11]).

Remark 4.7 Note that for our analysis, only regularity estimate for the dual prob-
lem in the broken Sobolev H'*%(T), for some 8 with 0 < 8 < 1, is required and
hence, the assumptions on A , b and 'y may be weakened in the sense that A €
Wl*“(ﬁ;REanf) , b e WL (7:R?) and y € W'=(T;R). Such conditions are more
relevant for elliptic interface problems, when the interfaces are aligned to element
faces, ( cf. [19 Sect. 2.4]).

5 A Posteriori Error Control

This section is devoted to the a posteriori error analysis of the mixed finite element
scheme ([@.I)-(#2) to generalize [6] via the unified approach of [7].

Define ep := p — pm, and e, := u — uy. Then, @ and @—@ lead to
(A "ep+eub”,q)12(q) — (div q,e.)12(q) = Z1(q) forall q € H(div,2), (5.1)
(div ep,v)12(0) + (Yeu:v)12(q) = #2(v) forallve L2(Q). (5.2)
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Here and throughout this paper %;(q) and % (v) read

%#1(q) = Z1(q) +Z%12(q), (5.3)
o (v) == (f — (div pm + Yaunr) — (V= V) um,v) 120
= ((f_'yuM)—HO(f—'}/MM)ﬂ})LZ(Q), (54)

where  Z211(q) == —(A; ' pm+ b, Q)20 + (div @, um) 12 ),
Z12(q) = (A~ = A, )pm +un (b* —b;), @) 2(q)-

5.1 Unified A Posteriori Analysis

Theorem 2.1} 2.2 imply the well-posedness of the system (2.5) and so the residuals
X1, %> of (5.3)-(5.4) allow for the equivalence [7]

[P — ™l iv.e) + lu —umll 2 @) = |21 |5 @v.0) + 12212 () (5.5
The estimate for % (v) reads
|22 = || f — (div pm + v um) — (Y= )um| < [[(1 = Io)(f —yum)[|.  (5.6)

Recall that f}, = div pm + ¥, up denotes a piecewise polynomial approximation of f.

Fortin interpolation operator [5, pp 124,128]. There exists an interpolation op-
erator
Ir : H'(2;R?) — RTy(7)

with the orthogonality condition
/ w div(¢—Ir@)dx—0  forall ¢ € H'(Q;R?) 5.7)
Q

and the approximation property

175 (9 —1r @) S 181111 (@) - (5.8)

Lemma 5.1 (Regular Split) For any q € H(div, Q), there exist ¢ € H'(Q;R?) and
v € HY(Q) such that q = ¢ + Curl v in Q and

[div @[l + Vvl < llalluaiv.o)- (5.9)

Proof . Let q € H(div,2). Extend div q|o by zero in some ball #Z D> Q. Letz €
H*(%) N H{ (%) be the unique solution of —Az = div q in Q with z|5 = 0. Also,
let ¢ = —Vz, so that

[div @] < [lzll2 < lldiv gl < [l aiv,0)-

Since ¢ = —Vz, div (q— @) =0 in 2, and hence, q = ¢ + Curl y with |Vy| =
[Curl y|| = [[q— @ < llqllagiv.Q)- U
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Lemma 5.2 There holds

121 || (aiv.0) S I (A pv+unby) || + effrllli?Q)HA;?lpMJruMbZ—VVH
Vet

— -1 * *
(AT = Ay pwml| + [luse (b" = ).

Proof. For the residual % (q) from (5.3)), the regular decomposition of q € H(div, Q)
from Lemma and the interpolation operator Ir¢ € RTy(7) C Ker Z1,, lead to

Z1(q) = Z11(9 + Curl ) = Z11(¢ — Ir @ + Curl y)
= — (A}, 'Pv + umbj, @ —Ir @) 12 o) + (unr, div (9 —Ir9))12(q)
— (Curl y, A, 'pm +umby)2(q) + (um, div (Curl ) 2.
This and imply

Z11(a) = —(A;, 'pm+unbj, ¢ —Ir )12 (o)
—(Curl y, A}, ' pym + umb}) 20 (5.10)

The first term on the right-hand side of (5.10)) is bounded by
(A, P+ by, @ — 1) 12| < IIA, o+ unby |16 —1r 9.

The approximation property (5.8) and Lemma 5.1 result in

|<Ah 1PM lthZ,(P IF¢)12 Q | 5 H”?(Ah lpM+UMbZ)||‘| v ¢||
(Q)
§||’19(Ah1PM+”Mb2)||\|(l|\ﬂ(div,g)~ (5.11)

Given any v € H} (), the second term on the right-hand side of (5.10) is bounded
by

—(Curl w, A, 'pm +umb},) 120y = —(Curl W, A, pm+umb}) 12 )
+ (Curl y,Vv) 12
< | A}, 'Pm + uabj, — V|| |[Curl |
SIA;, v+ uwb; — V| )l v, o). (5:12)

The combination of (5.11)-(5.12) shows
(@) 5 (IIh7 (Ay "o+ by |

+ min (A Py = Vo) lallsa.e) (513)
vEH, ()

The Cauchy-Schwartz inequality leads to

_ -1 * *
Z2(@) S (1A =&, Ipall+ g b)) a0 (5:14)
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The estimate (5.3) follows from (5.13)-(5.14) as
21(a) S (Ilh7 (A7 pat by + min A Pyt + by, — V]
VEH(; ()
— -1 * *
+[I(A ! — A, )pm|l + [[um (b _bh)”)HqHH(div,_Q)- O
Lemma [5.2] and Equation (5.6) result in the following reliable a posteriori estimate
n.
Theorem 5.3 (a posteriori error control) Let (p,u) and (pm,up) solve and

@1)-([@2). Then, it holds

P —Pmllaaiv.e) + lu—umll < 1 :=[[(1—=To)(f — v um)|
+ |k (A, 'pv +umb})||+ min [|A, 'pm + umbj — V||
VEH&(Q)

— -1 * *
+I(A™" = Ay, )pml| + [|us (b* — b} (5.15)

The following lemma enables a refined a posteriori error analysis for ||u — up|| and
I —pull.

Lemma 5.4 Let iicg and (pwm,upm) solve and [@#.1)-(#.2), respectively. Then it
holds
(x —mid(T))

T2} < A7 o+ b

max { | Vcicrll, | (i — ) A,

Proof. From @.12)),

(x —mid(T))
—

Since ((f, — Wiim) (x —mid(T)) /2, Vnciicg) = 0, the Pythagoras theorem yields

A;lpM + uMbZ = —Viciicgr + (fh — ’YhMM) A;l

(x —mid(T)) ||2

g
2

A, "oy + uabj 1> = [ Vnciicr|* + | (fs — V) A,

A consequence of the Lemma [5.4] and the structure of py and uy is the following
bound.

Corollary 2 It holds

Ihg pmll + lhz unl S 1K fill + ha (A, Py + unb})]).

The following theorem concerns on an improved error estimate of e, := u — uyy in
L?-norm.
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Theorem 5.5 (Refined error estimates) Let u € H(; () be the unique weak solution

of and let (pyr,upm) be the solution of -. For sufficiently small maximum
mesh size h, it holds

|72 (p— )| S o5c(f. T) +-ose(f —yuw, 7)

+ A7 Pyt s, = V]| + (14115 (A= A oo+ (115 (=) |-
ve

+ihg (v =m) Hoo) 1.7 (A oyt + s D)L+ 7% fill +[1hz (fi = 2 )|
(A" = A, Dpwmll + [luar (b = b)) (5.16)
Provided u € H'*%(Q) for some 0 < § < 1, it holds
=) S osc(f, 7) + ose(f — Yy, 7)
+ min ||h (A ' py + b — V)| + (1 5 (A=Al

vEHO
+[[hZ (b—=bp) e+ IIh}'(V—Yh)Hw) Ih (A, 'pm + unb}) || + 1hS fill
H1RS (=t ) [+ (11 (A" = A, pmll + 15 use (b™ =) ). (5.17)

Proof. Consider the Helmholtz decomposition e, = AVz+ Curl 8 for z € H} (€2) and
B eH'(Q)/R withe, =p—pm
(A" ep,€p);2(q) = (€, V2)12(0) + (A e, Curl B) 2 ) (5.18)

For the first term on the right-hand side of (5.18)), an integration by parts plus (5.2))
lead to

(ep,V2)12(0) = (div ep,2) = () — (Y(u — unm),2)2(q)
= (f = fo = (Y= m)urs, 2 — Thoz) ;2 0) — (Yeu,2) 2 ()
sc(f = yum, 7) ||zl + [lewlll|2]]- (5.19)
Given any v € H} (), equation (2.5) shows
(A e, Curl B);2(9)
= — (A, 'pm + umbj;, Curl B)i2(a) — (b, Curl B);2 g
— (A7 = A, pwm A+ up (b* —bj;), Curl B),2(0) + (Vv, Curl B)2(q)

< min_ [|A; "y + upby — V|| [[Curl B[+ leu|]|Curl B
vEHl(.Q

+(1(A™" = Ay )pwml| + s (0" =) )| Curl B (5.20)

The substitution of (5.19)-(5.20) in (5.18) plus ||z|| < [|zll1 < |lepll < [|A~1/2ep]| with
ICurl B|| < llepl| < [[A~"/?ep]| result in

|A™"2e|| S ose(f —yuw, 7)+ min |[A; Pyt +upbj = Vo] +leu]
vEH(}(Q)

+[(A" = A, Y pml| + [|up (b =B} |- (5.21)
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The estimate of ||e, || starts with a triangle inequality
lewll < llu— dicrl| + [|dcr — upl|- (5.22)
With & = ucg — iicr, @.34) and (#.32) yield (for sufficiently small mesh size h) that

ellne +llell < ose(f, 7))+ (thllooJr 1n5 (A = &)l + (1A (b —Dy) |-

115 (=)l ) el + 1A% fill (5.23)

The estimates for ||u — iicg|| are derived with the help of (3.20) and (5.23) and a
repeated use of triangle inequality. This proves

| —dicg|| < ||u— ucrl| + ||ucr — dicrl|
S e([lJu — dicrll e + ldcr — ucrllye) + lluck — dicr||
< €| Ve (u—iicr)|| +osc(f, 7) + % full

(7l + 15 (A = &)+ 5 (b =)
HIZ (7= )l 7 icllye (5.24)

Define pcg := — (A, Vnciicr + uyby) and p = —(AVu + bu) along with an addition
and subtraction of the term pyp, upb®, A;lpM. This shows

IVve(u—dcr)|| < A ep | + (A~ = A, Dpwmll +[|A, ' (Pvt —Bg)l

+ [|eud™ || 4 [luar (™ —bj) || (5.25)
For the third term on the right-hand side of (5.23)), .12)) leads to
v — Per |l < [1(fn — Wuar) (x — mid(T)) || < (|2 (fo — Vi uma) |- (5.26)

The combination of (5.24)-(5.26) results in
el Sose(f, 7)+e (1A epll + lleul) + 1 full -+ €llhr o~ )|
(Wl 15 (A = Ao 15 (0 =) oo+ (15 (=) )
Il aicrllne + & (I (A™" = Ay )pal + lluas (0" = b))

To bound ||iicg — up|| in (5.22), use (4.3) to obtain

S(7) \7! S(7
el < (145 79)  laen— Moca+ > (hen )l

Wiice||| ye + 105 fall-

The combination of the previous estimates with (5.22) and Lemma [5.4]leads to
leull S ose(f, 7)+e (1A 2epll + lleull) + 113 fill +€llhr (fi — i )|
(115 (A = Ao+ 115 (0 =1 oo+ 15 (v =)

I (A7 o+ sy [+ & (1A = A7 pall + e (0" =B} (5.27)

< ||z Vcicr|| + ||
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For sufficiently small mesh size &, (5.27) and (5.21)) prove (5.16)). The proof of (5.17)
utilizes the additional regularity with € = O(h°). O

Remark 5.6 Corollary2land (5-16)-(5.17) yield
1A = A pul + e (0" = B3) | S (15 AT = AT |+ 15 (6" = b} )

(1% Fall+ 107 (A7 P+ b))

Then, estimates can be used in (5.16)-(5.17) to provide better estimates in Theorem
5.5

5.2 Efficiency

This section is devoted to prove that the error estimator 7 yields lower bounds for the
error in the mixed finite element approximation.

Theorem 5.7 (Efficiency) Under the assumptions (A1)-(A2) it holds

min_{|A; 'y + uagby — Vv + A7 (A} Py + by |
vEHd(Q)

< =l + o = pwall + 1 (A7 = Ay Dpa | + luas (b* = B)]].

Proof. Step 1 of the proof utilizes v := —u, and the definition p = —AVu +bu to
verify

min_ A, 'pm + uubj — V|| < [|A; ' py + umb, + V|
veEH] (Q)

= A, (0 —p) |+ 11— g )b+ ([ (A7 = Ay o |+ [lena (b — b7 )|

S o=l -+l — weaa ||+ | (A7 = A Dpna |+ luas (b* = ).
In step 2, define the function q; := br (A, 'pm +umb;,) € Py(T) ﬂWOI’N(T) and the
cubic bubble function br = 27414243 € P3(T) NCy(T) in terms of the barycentric

coordinates A;,A>,A3 of T € Z[21]]. Since A;lpM +uybj is affine on T € 7, an
equivalence of norm argument shows

||A;IDM + upby, ||22(T) < /TqT . (A;IPM + uybj)dx.
The definition of p and (2.4) show that
1A, P+ by |72 ) S /TqT (A7 (pv —p) — (u—up)b") dx

+/Tqr . ((A;l _A*l)pM_uM(b* _b2)> dx

—/qT~Vudx.
T
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The Cauchy inequality and ||qr||;2(7) < A, 'pm + upby|| 12(r) is employed in the
first two terms. An integration by parts with Vi, |7 = 0 shows in the last term that
Hz || AL Py unbillz oy S hr||Ay P+ by 2 ) (hT P —pmll2(r)
+hr||u—uml| 2y +hrl| (A" = AL Dpm|

+hr||up (b* —by,) ||L2(T)) +h /T(u — upy)div qrdx.
Since q7 € P4(T), an inverse estimate yields

hrlldiv ar |2y S Azl S HAEIPM+“M1’;HL2(T)~

Since Ay < 1, it follows

hTHAZlPM‘WMbZHH(T) S H”—MMHLz(T) + HP—PMHL2(T)
+IAT = A Dpml () + e (0 = b))

The sum over all triangles implies

ha||A; oy + uabyl| Sl —pg |+ [0 — P
+I(AT = AL pmll + [luas (b = by

This concludes the rest of the proof. O

6 Computational Experiments

This section is devoted to validation of theoretical results by numerical experiments
and to test the performance of the adaptive algorithm.

6.1 Practical Implementation

The adaptive finite element algorithm starts with the initial coarse triangulation %,
followed by the procedures SOLVE, ESTIMATE, MARK and REFINE for differ-
entlevels ¢ =0,1,2,---.

SOLVE. The discrete solution (pg,us) € RTo(.7;) x Po(F;) of is computed
on each level ¢ with the corresponding triangulation .7, and basis functions as pre-
scribed in [2].

ESTIMATE. The estimator 7 is defined in . In the estimator term ||A;, 'p, +
usb; — Vv||, the function v is chosen by post processing iicg, that is v = —oicg,
where the averaging operator &7 : CR'(.7) — P1(.7) [9] is defined by

v(z) = Hiicr(z) :== Z fice|r(z) forallze 4.

TET(2) |7 ()
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|7 (z)| denote the cardinality of the triangles sharing node z.
MARK. For 0 < 8 < 1, compute a minimal subset .#; C 9 for red refinement such
that

on; <ni(#)="Y, ni,.
Te

REFINE. The new triangulation .7 is generated using red-blue-green refinement
of the marked elements.

Remark 6.1 In the process of computation of the solution, the given function f over
each element is approximated by the integral mean fj, = ‘—%‘ J7 f(x)dx. The integrals
Jr f(x)dx are computed by one-point numerical quadrature rule over the element,
that is, |T|f(mid(T)), where |T| denotes an area of element T and mid(T) is the
centroid of the element. For the edge integral with Dirichlet condition up simple one
point integration reads [y upds =~ |E|up(mid(E)), where |E| denotes the length of
edge and (mid(E)), the midpoint of the edge.

Remark 6.2 Let (p,u) and (pm,up) solve and @1)-[@.2) and let e, := ||u—

up || and ep := ||p — pm||. With the number of unknowns Ndof () and the error e(()
on the level U, the experimental order of convergence is defined by

log(e(£—1)/e(?))
CR(e) = dn.
(©) = Tog(Ndof (¢) /Naof(£— 1) 1" €w e and
Example 6.1 Consider the PDE (1.1)) with coefficients A =1, b= (rcos,rsin6)
and y = —4 with Dirichlet boundary condition on the L-shaped domain Q = (—1,1) x
(—=1,1)\ [0, 1] x [—1,0] and the exact solution (given in polar coordinates)

u(r,0) = r*/*sin (26/3).

For the given parameters, conditions of [[12, Theorem 3.1] are not satisfied. Utilizing
their notation, b1(q,v) := —(v,div q);2(g) + (bv,q),2(q) With b = A~ 'b, for v =

Q2
di b -
qeH (div,2)/{0} ”q”H(div,.Q) JQ

since |x| < v/2 for all x € Q. It is relatively straightforward to verify o < ||a|| = 1 (in
the notation of [12]]) and hence a||a| 7287 — ¥ < 3 —4 < 0 (notice that the coefficient
Y= —4in [12, pp 224-225] is different from the parameter ¥y = 4 in [12, Equation
(3.3)] and this might give reasons for confusion). This violates the (implicit) condition
61 > 01in [12, Equation (3.1)].
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[ N ] ey [ CR(ew) | ep [ CR(ep) | n [ CR(n) ]
68 0.16656920 0.26578962 1.01064602
256 | 0.08258681 | 0.5292 | 0.19505767 | 0.2333 | 0.52572088 | 0.4930
992 | 0.04098066 | 0.5173 | 0.12772995 | 0.3125 | 0.27713363 | 0.4726
3904 | 0.02034316 | 0.5111 | 0.08188794 | 0.3244 | 0.14883131 | 0.4537
15488 | 0.01011251 | 0.5072 | 0.05215656 | 0.3273 | 0.08185377 | 0.4338
61696 | 0.00503450 | 0.5046 | 0.03310369 | 0.3289 | 0.04621899 | 0.4135

Table 1: Errors and the experimental convergence rates for uniform mesh refinement

LN ] ew | CReu) | ep | CR(ep) | n___[CR() |
68 0.16656920 0.265789390 1.01064602
196 0.09911109 | 0.4904 | 0.196603070 | 0.2848 | 0.63780403 | 0.4348
453 0.06588355 | 0.4874 | 0.128212606 | 0.5102 | 0.41616295 | 0.5096
987 0.04198085 | 0.5786 | 0.089068850 | 0.4677 | 0.27834036 | 0.5164
2348 | 0.02897814 | 0.4277 | 0.057982998 | 0.4953 | 0.18977893 | 0.4419
5039 | 0.01921399 | 0.5380 | 0.040735672 | 0.4617 | 0.12698725 | 0.5261
11342 | 0.01265778 | 0.5144 | 0.026826168 | 0.5154 | 0.08633161 | 0.4756
24118 | 0.00874275 | 0.4905 | 0.018141078 | 0.5185 | 0.05808281 | 0.5253
50952 | 0.00583392 | 0.5408 | 0.012484994 | 0.4999 | 0.04006535 | 0.4965

Table 2: Errors and the experimental convergence rates for adaptive mesh refinement

[ik=)

i3

04

02

02 4

04 4

06 4

08 4

-1 -08 06 04 02 o 0z 04 06 08 1

" —o_ep {uniforrm)
o —+—1 (uniform)
—e—Cyy {uniformy
+ep(adapnve)
—+— (adaptive)

- —&—Cy (adaptive) ‘ ——

Fig. 1: (a) Initial triangulation %y (b) Discrete solution uy, for adaptive mesh-
refinement (c) Ndof vs. ep, 1 and C,;
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Tables 1 and 2 show the errors and experimental convergence rate for uniform
and adaptive mesh-refinements. Figure 1(a) denotes the initial triangulation % with
h=0.5. Figure 1(b) depicts the discrete solution u;; and illustrates the adaptive mesh-
refinement near the singularity. In Figure 1(c), a convergence history for the error e,
and the estimator 1 is plotted as a function of the number of degrees of freedom
for the cases of uniform and adaptive mesh-refinement of the non-convex L-shaped
domain. Adaptive mesh refinement gives an optimal empirical convergence rate of
order 0.5 for ep, while standard uniform refinement achieves suboptimal empirical
convergence rate ~ 0.33 as expected from the theory. For both the cases, C,;, the
ratio between the error and the estimator is also plotted.

Example 6.2 Crack problem: Consider the PDE with coefficients A =1, b =
(x—1,y+1)and y=0o0n Q = {(x,y) € R?: |x| < 1\ [0, 1] x {0}} with Dirichlet
boundary condition and exact solution u(r,8) = r'/2sin6 /2 — 12 /2sin’(6) ( in polar
coordinates).

The problem is called non-coercive [18]], since (y — %V -b) < 0. Figure 2(a) shows
the discrete solution uy; along with the adaptive mesh-refinement. Note that the mesh
is strongly refined near the singularity at the origin. The results are summarized in
Figure 2(b) and displays convergence rates for the error e, and the a posteriori es-
timator 7. It is observed that a suboptimal empirical convergence rate of 0.25 for
uniform mesh-refinement and an improved optimal empirical convergence rate of 0.5
for adaptive mesh-refinement are achieved. In this case, C,,; is close to 0.5.

= —a—e, (uniform) = =

—+— {uniform) - = -

+Cre\ (uniform) "
e_(adaptive s.

—e—e, (adaptive) Tk

—8—1 (adaptive)

+Cr5\ (adaptive) ) 1

08 06 04 02 0 02 04 06 08 1 10 10 10 10
(@ (b)

Fig. 2: (a) Discrete solution uy; for adaptive refinement (b) Ndof vs ep, 1) and Cy

Example 6.3 Consider the PDE (1.1)) with coefficients A =1, b = (0,0) for different
values of y and Dirichlet boundary conditions on the L-shaped domain.

Since the first Laplace eigenvalue for the L-shaped domain A ~ 9.6397238440219,
the coefficients lead to the Laplace operator with positive and negative eigenvalues.
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10 10° 10t 10’ 10’ 10° 10 10t 10
Ndof (unifrom refinment) Ndof (uniform refinement)

(@) (b)

Fig. 3: (a) e, and (b) n for different y with uniform refinement

Nedof

Fig. 4: C,,; for different y with adaptive refinement

The fact that the convergence is sensitive to the smallness of the discretization param-
eter & is clearly observed in Figure 3(a). This observation holds true for conforming,
nonconforming and mixed finite element methods. Figure 3(b) depicts that the esti-
mator mirrors the error behavior.This is also true for the case of adaptive refinement.
Figure 4 plots the reliability constant C,,; for various values of ¥ close to the eigen-
value A; vs the number of degrees of freedom. Note that C,,; is sensitive to the dis-
cretization parameter h especially when 7 is closer to A;. Thus, a sufficiently small
mesh-size is a crucial requirement for the well-posedness and the convergence of the
solution.

6.2 Conclusions

From the numerical experiments, it is observed that efficiency index lies between 2
and 3.5 for both uniform and adaptive triangulations. This confirms the efficiency of
a posteriori error control for non-smooth problems defined in non-convex domains.
The overall assumption on the mesh-size to be sufficiently small is in fact crucial in
practice, as shown in the third example empirically.
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