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ADDITIVE AVERAGE SCHWARZ METHOD FOR A

CROUZEIX-RAVIART FINITE VOLUME ELEMENT DISCRETIZATION

OF ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS

ATLE LONELAND, LESZEK MARCINKOWSKI, AND TALAL RAHMAN

Abstract. In this paper we introduce an additive Schwarz method for a Crouzeix-Raviart
Finite Volume Element (CRFVE) discretization of a second order elliptic problem with dis-
continuous coefficients, where the discontinuities are both inside the subdomains and across
and along the subdomain boundaries. We show that, depending on the distribution of the
coefficient in the model problem, the parameters describing the GMRES convergence rate of
the proposed method depend linearly or quadratically on the mesh parameters H/h. Also,
under certain restrictions on the distribution of the coefficient, the convergence of the GM-
RES method is independent of jumps in the coefficient.

1. Introduction

In this paper we introduce an additive Schwarz method for a second order elliptic problem
with discontinuous coefficients inside the subdomains and across and along the subdomain
boundaries. Problems of this type play a crucial part in the field of scientific computation
For example, simulation of fluid flow in porous media are often affected by discontinuities in
the permeability of the porous media. Discontinuities or jumps in the coefficient cause the
performance of standard iterative methods to deteriorate as the discontinuities or the jumps
increase.

The finite volume (FV) method is one of the most versatile discretization techniques used
in computational fluid dynamics. It is widely used for the approximation of conservation
laws, nonlinear problems and in convection-diffusion problems. The finite volume divides the
domain into control volumes where the nodes from the finite difference or the finite element
discretization are located in the control volume. Unlike the finite difference and the finite
element method, the solution to the finite volume method satisfies conservation of certain
quantities such as mass, momentum, energy and species. This property is exactly satisfied
for every control volume in the domain and also for the whole computational domain. An
attractive feature of this method is that it is directly connected to the physics of the system.
There are two types of finite volume methods: One which is based on the finite difference
discretization, called the finite volume method and one which is based on the finite element
discretization named the finite volume element (FVE) method. In the later the approximation
of the solution is sought in a finite element space and can therefore be considered as a Petrov-
Galerkin finite element method.

Due to the popularity of the finite volume element method in science and engineering, many
results on the analysis of the FVE method have been published, cf. [21, 15, 25, 9, 10] and
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many more. In [1], the authors proved that for the Poisson equation on a polygonal domain in
two dimension, the stiffness matrix of the FVE method is equal to the stiffness matrix of the
FE method for very general grids. In [19], the authors proved that for the general elliptic case
for polygonal domains in two dimensions, the error between the FE solution and the FVE
solution is of first order in the general case and of second order for some special FVE schemes.
Thus, some superconvergence results valid for the finite element method is also valid for the
finite volume element method, cf. [8, 31]. Finite volume element methods based on the lowest
order nonconforming Crouzeix-Raviart elements have been studied in [9], where the author
proves optimal order error estimates in the L2-norm and a mesh dependent H1-norm for the
FVE solution of elliptic problems. Later, the authors in [15] showed that the accuracy of the
FVE method for linear conforming elements can be affected by the regularities of the exact
solution and the source term. They also developed an error estimation framework for the
FVE method which treats the FVE method as a perturbation of the Galerkin finite element
method. For an overview over recent developments of FVE methods, cf. [21] and references
therein.

Additive Schwarz Methods (ASM) for solving elliptic problems discretized by the finite
element method have been studied thoroughly, cf. [28, 30], but ASMs for conforming finite
volume element (FVE) discretization have only been consider in [11, 32]. For the CR finite
element discretization, there exist several results for second order elliptic problems; cf. [27,
24, 3, 22], but for the CRFVE discretization, no ASMs have been studied.

In recent years, many results regarding ASMs for problems with discontinuities coefficient,
both across and along subdomain boundaries, have been studied. In [18], the authors proposed
a two level additive Schwarz method where the coarse space is based on the multiscale finite
element functions introduced in [20]. Later, several authors have proposed two level additive
Schwarz methods with coarse spaces based on spectral basis functions constructed from solving
different types of generalized eigenvalue problems, cf. [16, 17, 12, 29] and many more. These
method are all overlapping methods based on the conforming finite element discretization
with exotic coarse spaces where the coarse basis functions are discrete harmonic functions or
spectral basis functions.

The ASM we consider in this paper differs from methods mentioned above in the sense
that it is a non-overlapping method and the discretization is done using nonconforming finite
volume elements. Also, the average coarse space employed in our method is based on approx-
imate discrete harmonic functions. Therefore, the average coarse space is a computationally
cheap approximation to the full discrete harmonic function space. Also, the method does not
require a coarse grid triangulation, i.e. we are free to use arbitrary irregular subdomains.

The variant of the additive Schwarz method we consider in this paper was first intro-
duced for conforming P1 elements in [2] and later formulated for a mortar method with the
Crouzeix-Raviart elements in [24]. In [13] the authors analyzed the method for a discontin-
uous Galerkin discretization. In this paper we consider the same additive Schwarz method
for the Crouzeix-Raviart FVE method introduced in [9] and show that the method depends
linearly or quadratically on the mesh parameters H/h, i.e., depending on the distribution
of the coefficient in the model problem, the parameters describing the convergence of the
GMRES method used to solve the preconditioned system depends linearly or quadratically
on the mesh parameters. Under certain restrictions on the distribution of the coefficient, the
convergence of the GMRES method is independent of jumps in the coefficient. Also, using
the framework developed in [15], we prove the H1 error estimates using the same techniques
as in [15, 25]. This estimate is of optimal order if the exact solution of the elliptic problem
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under consideration is of the H2 regularity. Last, we show both theoretically and numerically
that, in general, for varying coefficients the finite volume element bilinear form, and hence
the resulting finite volume element stiffness matrix, is non-symmetric.

The rest of this paper is organized as follows. In Section 2 we define the differential problem
and the discrete problem, both for the nonconforming finite element and the nonconforming
finite volume element discretization. In Section 3 we introduce the GMRES method for the
preconditioned system and the corresponding parameters describing the convergence rate. In
Section 4 we introduce the additive Schwarz methods and give a detailed convergence analysis
of the GMRES convergence rate. In Section 5 we show some numerical results which confirms
the theory developed in the previous sections.

2. Prelimenaries

2.1. The Model Problem. We consider the following elliptic boundary value problem

−∇ · (α(x)∇u) = f in Ω,(1)

u = 0 on ∂Ω.

Where Ω is a bounded convex domain in R2 and f ∈ L2(Ω).
The corresponding standard variational (weak) formulation is: Find u ∈ H1

0 (Ω) such that

(2) a(u, v) =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω),

where

a(u, v) =

∫

Ω
α(x)∇u · ∇v dx.

The coefficient α(x) has the property α ∈ W 1,∞(Dj) with respect to a nonoverlapping
partitioning of Ω into open, connected Lipschitz polytopes D := {Dj : j = 1, . . . , n}, that is,

Ω̄ =
n⋃

j=1

D̄j .

We require that |α|1,∞,Dj
≤ C for j = 1, . . . , n and that α ≥ α0 for some positive constant

α0. For simplicity of presentation we also require that α0 ≥ 1. This last property can always
be achieved by scaling of (1).

2.2. Basic notation. Throughout this paper we will use standard notations for the Sobolev
spaces. We denote the space of functions that have weak derivatives of order s in the space
L2(Ω), as Hs(Ω). The norm on the space Hs(Ω) is defined by

‖u‖s,Ω = ‖u‖s =



∫

Ω

∑

|α|≤s

|Dαu|2 dx




1/2

.

The space of functions with bounded weak derivatives of order s is denoted by W s,∞(Ω) with
the corresponding norm defined as

‖u‖s,∞,Ω = ‖u‖s,∞ = max
0≤|α|≤s

‖Dαu‖2.

The subspace of H1(Ω) with functions vanishing on the boundary ∂Ω in the sense of traces,
is denoted by H1

0 (Ω). The duality pairing between H−1(Ω) and H1
0 (Ω), denote by (f, u) is

the action of a functional f ∈ H−1(Ω) on a function u ∈ H1
0 (Ω).
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Consider a triangulation Th of Ω, consisting of closed triangle elements K such that Ω̄ =⋃
K∈Th

K. Let hK be the diameter of K and let h = maxK∈Th hK be the largest diameter of
the triangles K ∈ Th.

We assume that the triangulation is defined in such way that ∂K’s are aligned with ∂Dj ’s.
This implies that the coefficient α(x) has the property that α ∈ W 1,∞(K) for all K ∈ Th. In
addition, we also require the triangulation Th(Ω) to be quasiuniform [4].

We define the broken H1(Ω)-norm and H1(Ω)-seminorm respectively as

‖v‖s,h,Ω =


∑

K∈Th

‖v‖2s,K




1/2

and |v|s,h,Ω =


∑

K∈Th

|v|2s,K




1/2

.

We also introduce the energy seminorm

‖u‖2a,G =

∫

G
α(x)|∇u|2 dx

for any G ⊂ Ω and let ‖u‖a = ‖u‖a,Ω.
Let Eh(K) be the set of edges of K ∈ Th and Eh = ∪K∈ThEh(K), i.e. the union of all edges

in the triangulation Th. Also, define E
in
h as the set of interior edges of the triangulation Th, i.e.

e ∈ Ein
h if and only if e ∈ Eh and e 6⊂ ∂Ω. For every edge e ∈ Ein

h we identify a region Ve as the
union of the two triangles K+e and K−e ∈ Th sharing e as their common edge. Associated
with this region, let Th(Ve) be the set of the triangles of Ve and me the middle point of the
edge e ∈ Eh (cf. Figure 1).

Based on this triangulation Th, we introduce a dual mesh T ∗
h consisting of elements called

the control volumes. There are several ways to construct the dual mesh. We choose here
to construct the dual mesh in the following way. Let zk be an interior point of K ∈ Th,
we connect it with straight lines to the vertices of K such that K is partitioned into three

subtriangles, Ke for each edge e ∈ Eh(K). Denote this new finer triangulation of Ω by T̃h
and let, for every K ∈ Th, T̃h(K) = {K̃ ∈ T̃h : K̃ subtriangle of K} be the set of subtriangles
of K.

We now associate with each edge e ∈ Ein
h a corresponding control volume be consisting of

the two subtriangles of T̃h which have e as an common edge. Define Be = {be : e ∈ Ein
h } to

be the set of all such control volumes, and let ne be the normal vector corresponding to the
edge e in K+e of the two triangles K+e and K−e sharing e.

We assume that there exists another nonoverlapping partitioning of Ω into open, connected
Lipschitz polytopes Ωi such that Ω =

⋃N
i=1Ωi . We also assume that these subdomains form

a coarse triangulation of the domain which is shape regular as in [5] and that the boundaries
of elements in Th are aligned with the boundaries of any Ωj.

For notational convenience, we denote the CR nodal points, i.e. the midpoints of edges
e ∈ Eh, belonging to Ω,Ωi, ∂Ω and ∂Ωi by ΩCR

h ,ΩCR
ih , ∂ΩCR

h and ∂ΩCR
ih , respectively. Cor-

respondingly, the set of P1 conforming nodal points, i.e., vertices of elements in Th(Ω) are
denoted by Ωh,Ωih, ∂Ωh and ∂Ωih, respectively. To simplify the presentation, we let C be a
generic positive constant independent of the mesh sizes h and H, and of the functions under
consideration. C may be different at different occurrences.

2.3. The CRFVE method. Let Vh be the nonconforming CR finite element space defined
on the triangulation Th,

Vh = Vh(Ω) := {v ∈ L2(Ω) : v|K ∈ P1, K ∈ Th v(m) = 0 m ∈ ∂ΩCR
h },
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Figure 1. The control volume be for an edge e which is the common edge
to the triangles K+e and K−e. Here me is the midpoint of e, ne normal unit
vector to e, zK+e and zK−e are the interior points of the the triangles K+e and
K−e which share the edge e.

and let V ∗
h be its dual control volume space

V ∗
h = V ∗

h (Ω) := {v ∈ L2(Ω) : v|be ∈ P0, be ∈ T ∗
h v(m) = 0 m ∈ ∂ΩCR

h }.

Obviously, Vh = span{φe(x) : e ∈ Eh} and V ∗
h = span{χe(x) : e ∈ Eh}, where {φe} are the

standard nonconforming nodal basis functions and {χe} are the characteristic functions of
the control volume {be}. Now, we introduce two interpolation operators, Ih and I∗h, defined

for any function with properly defined and unique values at each midpoint m ∈ ΩCR
h :, i.e.

Ihu =
∑

e∈Ein
h

u(me)φe and I∗hu =
∑

e∈Ein
h

u(me)χe.

We may then define the CRFVE approximation uFV
h of (1) as the solution to the following

problem: Find uFV
h ∈ Vh such that

(3) aFV
h (uFV

h , I∗hv) = (f, I∗hv) , v ∈ Vh

or equivalently

(4) aFV
h (uFV

h , v) = (f, v) , v ∈ V ∗
h ,

where the bilinear form is defined as

aFV
h (u, v) = −

∑

e∈Ein
h

v(me)

∫

∂be

α(s)∇u · n ds u ∈ Vh, v ∈ V ∗
h .(5)

The corresponding nonconforming finite element problem is defined as: Find uFE
h ∈ Vh such

that

(6) aFE
h (uFE

h , v) = (f, v) , v ∈ Vh,

where the CRFE bilinear form a(·, ·) is

aFE
h (u, v) =

∑

K∈Th

∫

K
α(x)∇u · ∇v dx, u, v ∈ Vh.(7)
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From the last bilinear form above we define a corresponding energy norm induced by aFE
h (·, ·)

as ‖ · ‖a =
√

aFE
h (·, ·).

Now we state a lemma which is needed to prove the relationship between the CRFVE- and
CRFE-bilinear forms for piecewise constant coefficients α(x).

Lemma 2.1. Let α be piecewise constant over each element, i.e., αK = α(x)|K is constant
for each K ∈ Th(Ω), e ∈ Ein

h ∩Eh(K) and v ∈ Vh. Then

(8)

∫

be

α(s)
∂u

∂n
ds = −

∫

e

[
∂u

∂ne

]

α

ds.

where
[

∂u
∂ne

]
α
= αK+e

∂u
∂ne

− αK−e
∂u
∂ne

and ne is the normal vector of K to e.

Proof. Let v ∈ Vh, K ∈ Th(Ω), e ∈ Ein
h ∩ Eh(K) and ne external normal vector of K to e.

Then we have
∫

∂be

α(s)
∂v

∂n
ds =

∫

∂(be∩K+e)
αK+e

∂v

∂n
ds+

∫

∂(be∩K−e)
αK−e

∂v

∂n
ds −

∫

e

[
∂u

∂ne

]

α

ds.

Using Green’s formula and the fact that ∆v = 0 over be ∩K+e and be ∩K−e for any e ∈ Ein
h

we have ∫

∂(be∩K+e)

∂v

∂n
ds =

∫

be∩K+e

△v ds = 0,

and analogously for ∂(be ∩K−e). From this we obtain (8). �

The next lemma is a classical result:

Lemma 2.2. There exists a constant C independent of h such that

C−1|v|21,h ≤
∑

K∈Th(Ω)

∑

e,l∈Eh(K)

(v(me)− v(ml))
2 ≤ C|v|21,h, ∀v ∈ Vh.

The next lemma shows that if α is piecewise constant over fine elements then the CRFVE
bilinear form is equal to the CRFE bilinear form, and in particular it is symmetric.

Lemma 2.3. Let u, v ∈ Vh, and let αK be piecewise constant over each element K ∈ Th(Ω),
then

(9) aFE
h (u, v) = aFV

h (u, I∗hv).

Proof. We express v as a linear combination of the basis elements of Vh, i.e. v =
∑

e∈Ein
h
v(me)φe.

We may then write

aFE
h (u, v) =

∑

K∈Th

αK

∫

K
∇u · ∇v dx

=
∑

e∈Ein
h

v(me)
∑

K∈Th(Ve)

αK

∫

K
∇u · ∇φe dx(10)



ADDITIVE AVERAGE SCHWARZ METHOD FOR CRFVE DISCRETIZATION 7

For each e ∈ Ein
h and u ∈ Vh, we have

∑

K∈Th(Ve)

αK

∫

K
∇u · ∇φe dx =

∑

K∈Th(Ve)

αK

∫

∂K

∂u

∂n
φe ds

= αK+e

∫

∂K+e

∂u

∂n
φe ds+ αK−e

∫

∂K−e

∂u

∂n
φe ds

= αK+e

∫

∂K+e\e

∂u

∂n
φe ds + αK−e

∫

∂K−e\e

∂u

∂n
φe ds

+αK+e

∫

e

∂u

∂ne
φe ds− αK−e

∫

e

∂u

∂ne
φe ds

Using the fact that φe is a linear polynomial and ∂u
∂n is constant on every side of K ∈ Th(Ve)

we get

(11)
∑

K∈Th(Ve)

αK

∫

K
∇u · ∇φe dx =

∫

e

[
∂u

∂ne

]

α

ds,

Combining (10) and (11) we obtain

aFE
h (u, v) =

∑

e∈Ein
h

v(me)

∫

e

[
∂u

∂ne

]

α

ds

= −
∑

e∈Ein
h

v(me)

∫

be

α(s)
∂u

∂n
ds = aFV

h (u, I∗hv).(12)

which completes the proof. �

For varying coefficients in general, the FVE bilinear form is non-symmetric. This is easily
seen by looking at aFV

h (φi, I
∗
hφj) and aFV

h (φj , I
∗
hφi). We state this as a remark.

Remark 2.4. For varying coefficients in (1), i.e. for a coefficient α which are not piecewise
constant over each element, the FVE bilinear form is non-symmetric and hence in general we
have

aFV
h (φi, I

∗
hφj) 6= aFV

h (φj , I
∗
hφi),

for two nodal basis functions φj, φi ∈ Vh(Ω).

Proof. Let i, j, l be the three indices for the edges of a triangle K ∈ Th, then we have for
aFV
h (φi, I

∗
hφj)

aFV
h (φi, I

∗
hφj) = −

∫

∂bj

α(s)∇φi · n ds = −

∫

∂(bj∩K)∩∂bj

α(s)∇φi · n ds

= −∇φi · njl

∫

∂(bj∩bl)
α(s) ds−∇φi · nji

∫

∂(bj∩bi)
α(s) ds(13)

similarly for aFV
h (φj , φi) we have

aFV
h (φj , I

∗
hφi) = −

∫

∂bi

α(s)∇φj · n ds = −

∫

∂(bi∩K)∩∂bi

α(s)∇φj · n ds

= −∇φj · nil

∫

∂(bi∩bl)
α(s) ds−∇φj · nij

∫

∂(bi∩bj)
α(s) ds(14)
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where nij, nji ,njl and nil are the corresponding normal vectors w.r.t. the edges of the control
volumes bi, bj and bl corresponding to the edges ei, ej , el ∈ Eh(K). Comparing the terms of
(13) and (14) we see that in the last term of each equation the integral is over the same edge,
but in the first term the integral of the coefficient is over different edges. Since α may be
arbitrarily different at those edges, the first terms of (13) and (14) will also be arbitrarily
different at thus in general we will have that

aFV
h (φi, I

∗
hφj) 6= aFV

h (φj , I
∗
hφi).

This completes the proof. �

The next lemma is crucial for the analysis of our method. It relates the CRFVE and CRFE
bilinear forms.

Lemma 2.5. For the bilinear forms aFE
h (u, v) and aFV

h (u, v) the following estimates holds

|aFE
h (u, v) − aFV

h (u, I∗hv)| ≤ Ch‖u‖a‖v‖a, ∀u, v ∈ Vh.(15)

and

(16) aFV
h (u, I∗hu) ≤ C1‖u‖a‖v‖a

(17) aFV
h (u, I∗hu) ≥ C0‖u‖

2
a

where C,C0, C1 are positive constants independent of h.

Proof. Similar results can be found in [25, 11] in the case of standard FVE method. For all
α(x) ∈ W 1,∞(K), define

αK =
1

|K|

∫

K
α(x) dx, K ∈ Th

and for all u, v ∈ Vh define

a(u, v) =
∑

K∈Th

∫

K
αK∇u · ∇v dx,

and

ah(u, I
∗
hv) = −

∑

e∈Ein
h

v(me)

∫

∂be

αK∇u · n ds.

Since αK is piecewise constant we have from Lemma 2.3

a(u, v) = ah(u, I
∗
hv),

which gives us

aFE
h (u, v) − aFV

h (u, I∗hv) = [aFE
h (u, v) − a(u, v)] + [ah(u, I

∗
hv)− aFV

h (u, I∗hv)]

= I + II.

Since ∇u and ∇v are constant over each element K, we have

I = 0.

Write II as

II =
∑

e∈Ein
h

v(me)

∫

∂be

(α(s)− αK)∇u · n ds



ADDITIVE AVERAGE SCHWARZ METHOD FOR CRFVE DISCRETIZATION 9

Define γel = ∂be ∩ ∂bl. The Cauchy-Schwarz inequality and Bramble-Hilbert give us

|II| =

∣∣∣∣∣∣

∑

K∈Th

∑

e,l∈Eh(K)

(v(me)− v(ml)

∫

γel

(α(s)− αK)∇u · nγel ds

∣∣∣∣∣∣

≤
∑

K∈Th

∑

e,l∈Eh(K)

‖(α(s) − αK)∇u‖0,∞,Khk|(v(me)− v(ml)|

≤ C


∑

K∈Th

∑

e,l∈Eh(K)

‖(α(s) − αK)∇u‖20,∞,Kh2k




1/2
∑

K∈Th

∑

e,l∈Eh(K)

|v(me)− v(ml)|
2




1/2

≤ C


∑

K∈Th

C2h2K |α(s)|21,∞,K‖∇u‖20,K




1/2
∑

K∈Th

∑

e,l∈Eh(K)

|v(me)− v(ml)|
2




1/2

≤ Ch|u|1,h|v|1,h ≤ Ch‖u‖a‖v‖a.

Above we have used the shape regular and quasi-uniform property of the triangulation and
the fact that α ≥ 1 and |α(x)|1,∞,K is uniformly bounded over Ω. The estimates (16) and
(17) then follow directly from (15), cf. [23] for details. �

If we define for u, v ∈ Vh

aFV
h (u, I∗hv) = aFE

h (u, v) + Eh(u, v)(18)

then, in the the proof of Lemma 2.5, we see that there exists a constant independent of h,
such that

(19) Eh(u, v) ≤ Ch‖u‖1,h‖v‖1,h.

For the CRFVE solution, uFV
h , we also have

aFE
h (uFV

h , v) = (f, I∗hv)− Eh(u
FV
h , v).(20)

The lemma above and the resulting properties are crucial in the analysis of our additive
Schwarz method. By applying them and using the framework developed in [15] we are able
to prove the H1 error estimates formulated in the following theorem:

Theorem 2.6. For an exact solution u ∈ H1+β(Ω) of (2), with 1/2 < β ≤ 1, f ∈ L2(Ω),
α(x) ∈ W 1,∞(K) and for the CRFVE solution uFV

h , we have

‖u− uFV
h ‖1,h ≤ Chβ(‖f‖0 + ‖u‖1+β),(21)

where the constant C = C(α) is independent of h.

Proof. A similar proof is given in [25, 15].
Let Ihu ∈ Vh be the CRFE interpolant of u and let I∗hu ∈ V ∗

h be the CRFVE interpolant

of u. We start the proof by estimating ‖uFV
h − Ihu‖1,h. From the coercivity property (17) we

have
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C0‖u
FV
h − Ihu‖

2
1,h ≤ aFV

h (uFV
h − Ihu, I

∗
h(u

FV
h − Ihu))

= aFV
h (uFV

h , I∗h(u
FV
h − Ihu))− aFV

h (Ihu, I
∗
h(u

FV
h − Ihu))

= (f, I∗h(u
FV
h − Ihu))− aFE

h (uFE
h , uFV

h − Ihu)

− aFE
h (Ihu− uFE

h , uFV
h − Ihu)− Eh(Ihu, u

FV
h − Ihu).(22)

In the equations above we have used (20) and (18). For clarity of presentation we will split
equation (22) into three parts and estimate each part independently. Using (6) and Lemma
5.1 in [10] the two first terms of (22) may be estimated by

(f, I∗h(u
FV
h − Ihu))− aFE

h (uFE
h , uFV

h − Ihu) = (f, I∗h(u
FV
h − Ihu)− (uFV

h − Ihu))

≤ Ch‖f‖0‖u
FV
h − Ihu‖1,h.

From approximation theory, cf. [4], we have that

‖u− Ihu‖1,h ≤ Chβ‖u‖1+β(23)

‖Ihu‖1,h ≤ C‖u‖1+β(24)

which together with the continuity of the finite element bilinear form let us bound the second
last remaining term by

aFE
h (Ihu− uFE

h , uFV
h − Ihu) ≤ C‖Ihu− uFE

h ‖1,h‖u
FV
h − Ihu‖1,h

≤ C
(
‖Ihu− u‖1,h + ‖u− uFE

h ‖1,h
)
‖uFV

h − Ihu‖1,h

≤ Chβ‖u‖1+β‖u
FV
h − Ihu‖1,h.

In the second line above we have used the finite element error estimate given below [4]

‖u− uFE
h ‖1,h ≤ Chβ‖u‖1+β .

The last term follows straightforwardly from (19)

Eh(Ihu, u
FV
h − Ihu) ≤ Ch‖Ihu‖1,h‖u

FV
h − Ihu‖1,h

≤ Ch‖u‖1+β‖u
FV
h − Ihu‖1,h.

Now, combining the estimates above with the results from approximation theory (23)–(24),
we get

‖u− uFV
h ‖1,h = ‖u− Ihu− (uFV

h − Ihu)‖1,h

≤ ‖u− Ihu‖1,h + ‖uFV
h − Ihu‖1,h

≤ Chβ‖u‖1+β + Chβ(‖f‖0 + ‖u‖1+β).(25)

This completes the proof. �

The main idea in the above proof is motivated by [25, 15] which in turn was motivated
by [9]. One of the advantage is that the estimate for ‖uFV

h − Ihu‖1,h is not needed, and the
approach is more direct and simpler and allows us to apply standard CR finite element error
estimation techniques.
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3. The GMRES Method

The linear system of equations which arises from problem (3) is in general non-symmetric.
A popular method for solving such systems is the preconditioned GMRES method; cf. Saad
and Schultz [26] and Eistenstat, Elman and Schultz [14]. This method has proven to be quite
powerful for a large class of non-symmetric problems. The theory originally developed for
L2(Ω) in [14] can easily be extended to an arbitrary Hilbert space; cf. [6], see also [7].

We will in this paper use GMRES to solve the linear system of equations

(26) Tu = g,

where T is a non-symmetric, nonsingular operator, g ∈ Vh is the right hand side and u ∈ Vh

is the solution vector.
The core of the GMRES method is to solve a least square problem in each iteration, i.e. at

step m we approximate the exact solution u∗ = T−1g by a vector um ∈ Km which minimizes
the norm of the residual, where Km is the m-th Krylov subspace defined as

Km = span
{
r0, T r0, · · · T

m−1r0
}

and r0 = g − Tu0. In other words, zm solves

min
z∈Km

‖g − T (u0 + z)‖a.

Hence, the m-th iterate is um = u0 + zm.
The convergence rate of the GMRES method is usually expressed in terms of the following

two parameters

cp = inf
u 6=0

a(Tu, u)

‖u‖2a
and Cp = sup

u 6=0

‖Tu‖a
‖u‖a

,

where cp corresponds to the smallest eigenvalue of 1
2(T

t+T ) the symmetric part of T and Cp

corresponds to the square root of the largest eigenvalue of T tT . Here T t is the transpose of
T with respect to the inner product a(·, ·).

The main results regarding the convergence of the GMRES method is stated in the next
theorem. It describes the decrease of the norm of the residual in a single step.

Theorem 3.1 (Eisenstat-Elman-Schultz). If cp > 0, then the GMRES method converges and
after m steps, the norm of the residual is bounded by

(27) ‖rm‖a ≤

(
1−

c2p
C2
p

)m/2

‖r0‖a,

where rm = g − Tum.

In the next section we will in Theorem 4.7 estimate the two parameters describing the con-
vergence rate of the GMRES method once the proposed domain decomposition preconditioner
corresponding to the operator T is defined and analyzed.

4. An Additive Average Method

In this section we introduce the additive method for the discrete problem (3) and provide
bounds on the convergence rate, both for the solution of the symmetric and non-symmetric
problem.
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4.1. Decomposition of Vh(Ω). We decompose the original space into

Vh(Ω) = V0(Ω) + V1(Ω) + · · ·+ VN (Ω),(28)

where for i = 1, . . . , N we have defined Vi(Ω) as the restriction of Vh(Ω) to Ωi with functions
vanishing on ∂ΩCR

ih and as well as on the other subdomains. The coarse space V0(Ω) is defined
as the range of the interpolation operator IA. For u ∈ Vh(Ω), we let IAu ∈ Vh(Ω) be defined
as

(29) IAu :=

{
u(x), x ∈ ∂ΩCR

ih

ûi, x ∈ ΩCR
ih

where

(30) ûi :=
1

ni

∑

x∈∂ΩCR
ih

u(x).

Here ni is the number of nodal points of ∂ΩCR
ih .

We also assume that Th(Ωi) inherits the shape regular and quasi-uniform triangulation for
each Ωi with mesh parameters hi and Hi = diam(Ωi). The layer along ∂Ωi consisting of
unions of triangles K ∈ T (Ωi) which touch ∂Ωi is denoted as Ωδ

i .
The local bilinear form is chosen as the CRFE symmetric bilinear form aFE

h (u, v) or as the

non-symmetric CRFVE bilinear form aFV
h (u, v).

For i = 0, · · · , N we define the projection like operators Ti : Vh → Vi as

(31) aFE
h (T

(1)
i u, v) = aFE

h (u, v) ∀v ∈ Vi(Ω),

for the symmetric problem (6). For the non-symmetric problem (3) we introduce two similar
projection like operators. The first one which is symmetric is defined as

(32) aFE
h (T

(2)
i u, v) = aFV

h (u, I∗hv) ∀v ∈ Vi(Ω),

and the second one which is non-symmetric is defined as

(33) aFV
h (T

(3)
i u, v) = aFV

h (u, I∗hv) ∀v ∈ Vi(Ω).

Each of these problems have a unique solution. We now introduce

(34) T
(k)
A := T

(k)
0 + T

(k)
1 + · · ·+ T

(k)
N , k = 1, 2, 3

which allow us to replace the original problem (3) for k = 1 or (6) for k = 2, 3 by the equation

(35) T
(k)
A u = g(k),

where g(k) =
∑N

i=0 gi and g
(k)
i = T

(k)
i u. Note that g

(k)
i may be computed without knowing

the solution u of (3) or (6), respectively.

4.2. Analysis. Let V quad
h (Ωi) be the space of continuous piecewise quadratic functions on

Th(Ωi). We introduce a local equivalence mapping Mi : Vh(Ωi) → V quad
h (Ωi) in a similar way

as in [3]. Let mx be an adjacent midpoint of a vertex x if both points belong to the same
edge in Th(Ωi). The choice of the midpoint is not unique and this fact will be used below.

Note that the degrees of freedom of V quad
h (Ωi) is the sum of Ω̄CR

ih and x ∈ Ω̄ih.
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Definition 4.1. For u ∈ Vh(Ωi),

(36) Miu(m) =

{
u(m), m ∈ Ω̄CR

ih ,

u(mx) x ∈ Ω̄ih

The properties of such equivalence mapping, which we are going to use later, are given in
the following lemma.

Lemma 4.2. Let Mi : Vh(Ωi) → V quad
h (Ωi) be the local equivalence mapping defined above.

The adjacent midpoint mx is picked as the one whose distant to ∂Ωi is the smallest, in
particular if x ∈ ∂Ωih then the adjacent midpoint is in ∂ΩCR

ih .
Then, for any u ∈ Vh(Ωi) we have

|u|1,h,Ωi
≤ |Miu|1,Ωi

≤ C|u|1,h,Ωi
,(37)

‖u−Miu‖0,Ωi
≤ Chi|u|1,h,Ωi

,(38)

|Miu|
2
1,∂Ωi

≤ Ch−1
i |u|2

1,h,Ωδ
i

(39)

Here Ωδ
i is the sum of all triangles K ∈ Th(Ωi) such that K has an edge or a vertex on ∂Ωi.

Proof. The first two statements can be proven in the same way as in [3].
We will prove the last one only.

|Miu|
2
1,∂Ωi

=
∑

e∈Eh(∂Ωi)

|Miu|
2
1,e ≤ C

∑

e∈Eh(∂Ωi)

∑

x∈∂e

1

|e|
|Miu(x)−Miu(me)|

2

where me ∈ ∂ΩCR
ih is the midpoint of an edge e.

Note that by the definition of Miu we get that Miu(x) = Miu(mx) where mx is the
adjacent midpoint in ∂ΩCR

ih , i.e. its left or right neighbor point.
Thus by the quasiuniformity of the triangulation and the definition of the equivalence

mapping we get

|Miu|
2
1,∂Ωi

≤
1

hi

∑

m,s∈∂ΩCR
ih

|Miu(m)−Miu(s)|
2 =

1

hi

∑

m,s∈∂ΩCR
ih

|u(m)− u(s)|2

where m and s are neighboring CR points on ∂Ωi. Let x ∈ ∂Ωih denote the vertex lying
between them, and let {mx,k} ⊂ ΩCR

k,h be adjacent midpoints numbered in such a way that two
successive ones are in one closed element. Then from the shape regularity of the triangulation
the number of those midpoints is bounded and a triangle inequality yields that

|u(m)− u(s)| ≤ |u(m)− u(m1)|+ |u(m1)− u(m2)| . . . + |u(mk)− u(s)|

Thus, using this and Lemma 2.2 yields that

|u(m)− u(s)|2 ≤ C
∑

x∈∂K

|u|2H1(K).

where the sum is taken over all elements K in Ωk which has x as a vertex.
Summing the above estimates over all edges yields the following bound:

|Miu|
2
1,∂Ωi

≤ Ch−1
i |u|2

1,h,Ωδ
i
.

�

We are now ready to prove two lemmas for the interpolation-like operator IA which will
help us analyze and prove the main theorems of our proposed method.
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Lemma 4.3. For any u ∈ Vh the following holds:

(40) aFE
h (IAu, IAu) ≤ Cmax

i

(
αi

αi

H2
i

h2i

)
aFE
h (u, u),

where αi := sup
x∈Ω̄δ

i

α(x), αi := inf
x∈Ω̄δ

i

α(x) and C is a positive constant independent of α,αi

αi
,Hi

and hi.

Proof. The idea behind the proof comes from [13]. We start the proof by estimating

‖IAu‖
2
a,Ωi

= ‖IAu‖
2
a,Ωδ

i

≤ αi|IAu|
2
1,h,Ωδ

i

≤ Cαi

∑

K∈Th(Ω
δ
i )

∑

e,l∈Eh(K)

(IAu)(me)− (IAu)(ml))
2

≤ Cαi

∑

x∈∂ΩCR
ih

(u(x)− ûi)
2

= Cαi

∑

x∈∂ΩCR
ih

(Miu(x)− M̂iu)
2

≤ C
αi

hi
‖Miu− M̂iu‖

2
0,∂Ωi

,

Applying the the Poincare inequality and (39) of Lemma 4.2 we may write

C
αi

hi
‖Miu− M̂iu‖

2
0,∂Ωi

≤ Cαi
H2

i

hi
|Miu|

2
1,∂Ωi

≤ C

(
αi

H2
i

h2i

)
|u|2

1,h,Ωδ
i

≤ C

(
αi

αi

H2
i

h2i

)
‖u‖2

a,Ωδ
i
.

Summing over all the subdomains and introducing maxi

(
αi

αi

H2
i

h2
i

)
we prove (40). �

Under certain assumptions on the lower bound of α(x) in the interior of each Ωi we may

improve the above estimate with respect to Hi

hi
.

Lemma 4.4. Let αi ≤ α(x) in Ωi \ Ω
δ
i . For any u ∈ Vh the following holds:

(41) aFE
h (IAu, IAu) ≤ Cmax

i

(
αi

αi

Hi

hi

)
aFE
h (u, u),

where αi := sup
x∈Ω̄δ

i

α(x), αi := inf
x∈Ω̄δ

i

α(x) and C is a positive constant independent of α,αi

αi
,Hi

and hi.

Proof. From the proof of Lemma 4.3 we have that

‖IAu‖
2
a,Ωi

≤ C
αi

hi
‖Miu− M̂iu‖

2
0,∂Ωi

.
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Using a scaling argument and a trace theorem we may write:

‖IAu‖
2
a,Ωi

≤ C
αi

hi
‖Miu− M̂iu‖

2
0,∂Ωi

≤ Cαi
Hi

hi

{
|Miu|

2
1,h,Ωi

+H−2
i ‖Miu− M̂iu‖

2
0,Ωi

}
(42)

≤ Cαi
Hi

hi
|Miu|

2
1,h,Ωi

= Cαi
Hi

hi
|u|21,h,Ωi

≤ C
αi

αi

Hi

hi
‖u‖2a,Ωi

where we have used the properties of Mi, and Poincare’s inequality on the last term in the

curly brackets. Summing over all the subdomains and introducing maxi

(
αi

αi

Hi

hi

)
completes

the proof. �

Using the two lemmas above we may now state two theorems and two propositions for the
convergence rate of our proposed preconditioner applied to the linear system arising from the
symmetric problem (6) and for the linear system arising from the non-symmetric problem
(3). We first prove the convergence rate for our ASM applied to the symmetric problem (6)

Theorem 4.5. For any u ∈ Vh the following holds:

(43) C1β
−1
1 aFE

h (u, u) ≤ aFE
h (T

(1)
A u, u) ≤ C2a

FE
h (u, u),

where β1 = maxi

(
αi

αi

H2
i

h2
i

)
and the positive constants C1 and C2 is independent of α,αi

αi
,Hi

and hi for i = 1, · · · , N .

Proof. Following the general theory of ASMs, we need to check the three key assumptions
([28, 30]).

Assumption (1). For all u ∈ Vh there exists a representation u =
∑N

i=0 ui, ui ∈ Vi, such
that

(44)
N∑

i=0

aFE
h (ui, ui) ≤ Cβ1a

FE
h (u, u).

Let u0 = IAu for u ∈ Vh(Ω) and ui := u − u0 on Ωi and ui = 0 outside of Ωi. Obviously

ui ∈ Vi(Ω) for i = 0, . . . , N , and u =
∑N

i=0 ui. We then have

N∑

i=1

aFE
h (ui, ui) + aFE

h (u0, u0) =
N∑

i=1

aFE
h (u− u0, u− u0) + aFE

h (u0, u0)

≤ 2

N∑

i=1

{aFE
h (u, u) + aFE

h (u0, u0)}+ aFE
h (u0, u0)

= 2aFE
h (u, u) + 3aFE

h (u0, u0).(45)

Using Lemma 4.3 on the last term we obtain β1 in (44) immediately.
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Assumption (2). Let 0 ≤ Eij ≤ 1 be the minimal values that satisfy

aFE
h (ui, uj) ≤ Eija

FE
h (ui, ui)

1/2aFE
h (uj , uj)

1/2, ∀ui ∈ V, ∀uj ∈ Vj i, j = 1, . . . , N

Define ρ(E) to be the spectral radius of E = {Eij}.

In our case Vi and Vj are orthogonal for i 6= j, thus ρ(E) = 1.
Since we are using exact bilinear forms the next assumption is trivially satisfied with ω = 1

for i = 1, . . . , N .

Assumption (3). Let ω > 0 be the minimal constant such that

aFE
h (u, u) ≤ ωaFE

h (u, u), u ∈ Vi.

�

This results may be improved if the condition on the distribution of α in Lemma 4.4 is
satisfied as shown in the next Proposition.

Proposition 4.6. Let αi ≤ α(x) in Ωi \ Ω
δ
i . For any u ∈ Vh the following holds:

(46) C1β
−1
1 aFE

h (u, u) ≤ a(T
(1)
A u, u) ≤ C2a

FE
h (u, u),

where β1 = maxi

(
αi

αi

Hi

hi

)
and the positive constants C1 and C2 is independent of α,αi

αi
,Hi and

hi for i = 1, · · · , N .

Proof. The proof is completely analogous to Theorem 4.5, but Lemma 4.4 is applied instead
of Lemma 4.3. �

The main theorem for the GMRES convergence rate of our ASM applied to the non-
symmetric problem (3) is stated below

Theorem 4.7. There exists h0 > 0 such that for all h < h0, k = 2, 3, and u ∈ Vh, we have

‖T (k)u‖a ≤ C‖u‖a,

aFE
h (T (k)u, u) ≥ cmax

i

αi

αi

(
Hi

hi

)−2

aFE
h (u, u),

where C, c are positive constants independent of α, αi

αi
, hi and Hi for i = 1, . . . , N.

Proof. Following the framework of [23] we need to prove three assumptions.

Assumption (1). For all u, v ∈ Vh the following holds

|aFE
h (u, v) − aFV

h (u, I∗hv)| ≤ Ch‖u‖a‖v‖a,(47)

Assumption (2). For all u ∈ Vh there exists a representation u =
∑N

i=0 ui, ui ∈ Vi, such
that

(48)

N∑

i=0

aFE
h (ui, ui) ≤ Cβ1a

FE
h (u, u).

Assumption (3). Let 0 ≤ Eij ≤ 1 be the minimal values that satisfy

aFE
h (ui, uj) ≤ Eija

FE
h (ui, ui)

1/2aFE
h (uj , uj)

1/2, ∀ui ∈ V, ∀uj ∈ Vj i, j = 1, . . . , N

Define ρ(E) to be the spectral radius of E = {Eij}.
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These assumptions have been proven in Theorem 4.5 and Lemma 2.5.
�

In the same way as for the convergence rate of our ASM applied to the symmetric problem
we may improve the estimate of the last theorem if the condition of the distribution of α in
Lemma 4.4 are satisfied.

Proposition 4.8. There exists h0 > 0 such that for all h < h0, k = 2, 3,, u ∈ Vh and
αi ≤ α(x) in Ωi \ Ω

δ
i , we have

‖T (k)u‖a ≤ C‖u‖a,

aFE
h (T (k)u, u) ≥ cmax

i

αi

αi

(
Hi

hi

)−1

aFE
h (u, u) ∀u ∈ Vh,

where C, c are positive constants independent of α, αi

αi
, hi and Hi for i = 1, . . . , N.

Proof. The proof is completely analogous to Theorem 4.7. The only difference is that the
assumptions here have been proven in Lemma 2.5 and Proposition 4.6 instead of in Theorem
4.5. �

5. Numerical results

In this section we present some numerical results using the proposed method. All experi-
ments are done for the Problem (1) on a unit square domain Ω = (0, 1)2. The coefficient α
is equal to 2 + sin(100πx) sin(100πy) except for the areas marked with red where α equals
α1(2 + sin(100πx) sin(100πy)) and α1 is a parameter describing the discontinuities in the
distribution of the coefficient. The right hand side is chosen to be f = 1.

The numerical solution is obtained by solving the preconditioned system (35) for k equal
2 using the generalized minimal residual method (GMRES). We run the method until the l2
norm of the residual is reduced by a factor 106, i.e., when ‖ri‖2/‖r0‖2 ≤ 10−6, ri being the
i-th residual.

In the first four examples we subdivide Ω into 4 × 4 subdomains and test the method
for various distributions of the coefficient α. For example 1, we consider a distribution of α
consisting of channels and inclusions in the interior of the subdomains, i.e. α has jumps only
in the interior of subdomains (cf. Figure 2a). For Example 2 and 4, we consider distributions
where α has jumps along subdomain interfaces (cf. Figure 2b and 3b) and therefore jumps
also on the subdomain layers. In Example 3, we consider the case where α has jumps over
substructures. For each of the examples above, the number of iterations until convergence for
different values of α1, are shown in Table 3.

In Table 4 and 5 we report the iteration number for decreasing values of Hi and hi for two
test cases where the coefficient α is equal to 2+sin(10πx) sin(10πy) and 2+sin(100πx) sin(100πy),
respectively. In the parentheses we report an estimate of the smallest eigenvalue of the sym-

metric part of the preconditioned operator T
(2)
A , i.e., the smallest eigenvalue of 1

2

(
T
(2)
A

t
+ T

(2)
A

)
,

which corresponds to the parameter cp in Theorem 3.1.
In Table 6, we report the iteration number and estimate of the smallest eigenvalue for the

symmetric part of the non-symmetric preconditioner for decreasing values of Hi and hi, i.e.,
for k equal 3. The distribution of α is here the same as for the problem in Table 5.

We do not report any estimates of the parameter Cp of Theorem 3.1, which is defined

as the square root of the largest eigenvalue of the normal matrix, T
(2)
A

t
T
(2)
A , since both our
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convergence analysis and numerical results show that this is a constant independent of the
coefficient α and the mesh parameters.

The magnitude of the non-symmetry and non-normality of the CRFVE stiffness matrix A
with respect to α1 are shown in Table 1 and the distributions of the eigenvalues of stiffness

matrix A and the corresponding preconditioned operator, T
(2)
A , are shown in Figure 4 and 5,

respectively. The difference between the finite element and the finite volume element stiffness
matrices measured in the matrix 2-norm is shown in Table 2, for three different distributions
of the coefficient α.

(a) Example 1. (b) Example 2.

Figure 2. Two geometries with 32 × 32 fine mesh and 4 × 4 coarse mesh
showing the distribution of α. The regions marked with red are where α1 has
a large value.

(a) Example 3. (b) Example 4.

Figure 3. (A) Geometry with 16×16 fine mesh and 4×4 coarse mesh showing
the distribution of α for the third example. (B) Geometry with 32 × 32 fine
mesh and 4 × 4 coarse mesh showing the distribution of α for the fourth
example. The regions marked with red are where the coefficient has jumps.

The iteration numbers in Table 3 supports our theoretical results developed in Section 4.2.
We see no dependency on the contrast in α when the jumps are in the interior of subdomains,
cf. Figure 2a. If the coefficient has jumps in the subdomain layer, Ωδ

i corresponding to Ωi,
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Figure 4. Eigenspectrum of the CRFVE stiffness matrix A for the distribu-
tion of α given in Example 4 with α1 = 1e6.
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Figure 5. Eigenspectrum of the preconditioned operator, T
(2)
A , for the distri-

bution of α given in Example 4 with α1 = 1e6.
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α1 ‖A−At‖2 ‖AAt −AtA‖2
100 4.0e-1 6.48e0
101 3.96e0 6.03e2
102 3.96e1 6.06e4
103 3.96e2 6.06e6
104 3.96e3 6.06e8
105 3.96e4 6.06e10
106 3.96e5 6.06e12

Table 1. 2-norm measures of the non-symmetry and non-normality of the
CRFVE stiffness matrix A with the distribution of α given in Example 4.

‖AFE −AFV E‖2 ‖AFE −AFV E‖2 ‖AFE −AFV E‖2
h α = 2 + sin(100πx) sin(100πy) α = 2 + sin(10πx) sin(10πy) α = 2 + sin(πx) sin(πy)
1/8 7.16e-1 4.10e0 5.35e-1
1/16 1.02e-1 2.31e0 2.82e-1
1/32 1.52e0 1.16e0 1.44e-1
1/64 4.05e0 6.52e-1 7.28e-2
1/128 3.16e0 3.47e-1 3.65e-2
1/256 1.41e0 1.79e-1 1.84e-2
1/512 7.91e-1 9.09e-2 9.22e-3

Table 2. 2-norm measures of the difference between the finite element and
the finite volume element stiffness matrix for decreasing h for three different
distributions of α.

Average ASM
Example 1: Example 2: Example 3: Example 4:

α1 ♯ iter. ♯ iter. ♯ iter. ♯ iter.
100 40 40 31 40
101 38 66 32 52
102 37 108 36 92
103 37 177 36 140
104 37 233 38 178
105 37 276 39 214
106 37 316 39 249

Table 3. Number of iterations until convergence for the solution of (1) with
different values of α1 in the distributions of the coefficient α given in Figures
2a, 2b, 3a, 3b.

the method is dependent on the ratio αi

αi
, i.e., the ratio of the largest and smallest value of

α in the layer, cf. Figure 2b and 3b. When the jumps are only across the substructures,
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h/H 1/4 1/8 1/16 1/32 1/64 1/128
1/8 22(1.89e-1)
1/16 32(8.80e-2) 25(1.67e-1)
1/32 44(4.22e-2) 37(7.74e-2) 24(1.79e-1)
1/64 63(2.08e-2) 52(3.78e-2) 35(8.60e-2) 23(1.82e-1)
1/128 89(1.03e-2) 74(1.87e-2) 49(4.21e-2) 33(8.95e-2) 21(1.83e-1)
1/256 126(5.12e-3) 106(9.30e-2) 69(2.09e-2) 46(4.42e-2) 29(9.05e-2) 18(1.83e-1)

Table 4. Number of iterations for the symmetric preconditioner for decreas-
ing values of h and H with α = 2 + sin(10πx) sin(10πy). Estimates of the
smallest eigenvalue of the symmetric part of the preconditioned system are
reported in the parentheses.

h/H 1/4 1/8 1/16 1/32 1/64 1/128
1/8 20(1.90e-1)
1/16 30(9.24e-2) 24(1.79e-1)
1/32 40(4.54e-2) 33(9.01e-2) 24(1.81e-1)
1/64 59(2.24e-2) 47(4.45e-2) 35(8.76e-2) 26(1.80e-1)
1/128 83(1.11e-2) 68(2.19e-2) 49(4.37e-2) 39(8.76e-2) 28(1.70e-1)
1/256 116(5.50e-3) 95(1.09e-2) 68(2.16e-2) 55(4.29e-2) 41(8.21e-2) 27(1.78e-1)

Table 5. Number of iterations for the symmetric preconditioner for decreas-
ing values of h and H with α = 2 + sin(100πx) sin(100πy). Estimates of the
smallest eigenvalue of the symmetric part of the preconditioned system are
reported in the parentheses.

h/H 1/4 1/8 1/16 1/32 1/64 1/128
1/8 19(1.91e-1)
1/16 27(9.23e-2) 22(1.83e-1)
1/32 35(4.54e-2) 32(8.94e-2) 23(1.79e-1)
1/64 52(2.24e-2) 46(4.40e-2) 35(8.45e-2) 25(1.79e-1)
1/128 75(1.11e-2) 62(2.20e-2) 46(4.38e-2) 37(8.73e-2) 28(1.70e-1)
1/256 107(5.50e-3) 89(1.10e-2) 64(2.16e-2) 53(4.28e-2) 40(8.23e-2) 26(1.77e-1)

Table 6. Number of iterations for the non-symmetric preconditioner for de-
creasing values of h and H with α = 2 + sin(100πx) sin(100πy). Estimates
of the smallest eigenvalue of the symmetric part of the preconditioned system
are reported in the parentheses.

as in Figure 3a, the iteration numbers show that the method is robust with respect to the
discontinuities in α.

The numerical results also show that the proposed method is asymptotically stable and
scalable with respect to the dependence on Hi

hi
, and depends linearly on Hi

hi
for the test
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cases under consideration as shown in Table 4 and 5. The coefficient α is here equal to
2+sin(10πx) sin(10πy) and 2+sin(100πx) sin(100πy), respectively. By comparing Table 5 and
6, we see that the difference in behavior of the symmetric and non-symmetric preconditioner
is negligible.

The distribution of the eigenvalues of the stiffness matrix A, as depicted in Figure 4,
include several complex eigenvalues with the magnitude of their complex part being close to
zero, and two eigenvalues with multiplicity eight with a clearly visible complex part in the
figure. The eigenvalues of the preconditioned operator, as depicted in Figure 5, are all real
and positive. Numerical testing have also shown that for the test cases where our theory
predicts dependency on the coefficient jump in α, the smallest eigenvalues of the symmetric

part of the preconditioned operator, T
(2)
A , are inversely proportional to the ratio αi

αi
.

In Figure 6–9 we have plotted the relative residuals and the relative preconditioned residuals
measured in the l2 norm. These plots show that if the stopping criteria is based on the
preconditioned residual the method will in the worst case converge to the prescribed tolerance
even though the resulting GMRES solution of the linear system is far from the exact solution.
Hence, using a stopping criteria based on the l2 norm of the residual instead of the more
commonly used l2 norm of the preconditioned residual is in our case a much more viable
choice.

Finally, we conclude this section by stating that the numerical results presented here con-
firm the theory developed in the previous sections regarding the non-symmetry of the finite
volume element stiffness matrix, the estimate for the convergence rate of the GMRES method
applied to our preconditioned systems (35) for k = 2, 3 and the convergence estimate for the
difference between the FE and the FVE bilinear form, cf. Equation (15).
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(a) Example 2. Relative residual norms for GM-
RES minimizing the a-norm for different α1.
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ferent α1.

Figure 7

0 10 20 30 40 50

10
−10

10
−5

10
0

Iteration

R
el

at
iv

e 
l 2−

no
rm

 r
es

id
ua

l

 

 

α
1
=1e0

α
1
=1e1

α
1
=1e2

α
1
=1e3

α
1
=1e4

α
1
=1e5

α
1
=1e6

(a) Example 3. Relative residual norms for GM-
RES minimizing the a-norm for different α1.
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norms for GMRES minimizing the a-norm for dif-
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