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Abstract. In this paper, we analyze finite difference schemes for Benjamin–

Ono equation, ut = uux + Huxx, where H denotes the Hilbert transform.
Both the decaying case on the full line and the periodic case are considered. If

the initial data are sufficiently regular, fully discrete finite difference schemes

shown to converge to a classical solution. Finally, the convergence is illustrated
by several examples.

1. Introduction

This paper considers a fully discrete finite difference scheme for the Benjamin–
Ono (BO) equation. The BO equation models the evolution of weakly nonlinear
internal long waves. It has been derived by Benjamin [2] and Ono [12] as an
approximate model for long-crested unidirectional waves at the interface of a two-
layer system of incompressible inviscid fluids, one being infinitely deep. In non-
dimensional variables, the initial value problem associated with the BO equation
reads

(1.1)

{
ut = uux +Huxx, x ∈ R, 0 ≤ t ≤ T,
u|t=0 = u0,

where H denotes the Hilbert transform defined by the principle value integral

Hu(x) := P.V.
1

π

∫
R

u(x− y)

y
dy.

The BO equation is, at least formally, completely integrable [1] and thus possesses
an infinite number of conservation laws. For example, the momentum and the
energy, given by

M(u) :=

∫
u2 dx, and E(u) :=

1

2

∫ ∣∣∣D1/2
x u

∣∣∣2 dx+
1

6

∫
u3 dx,

are conserved quantities for solutions of (1.1).
We also consider the corresponding 2L-periodic problem

(1.2)

{
ut = uux + Hperuxx, x ∈ T, 0 ≤ t ≤ T,
u|t=0 = u0, x ∈ T
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where T := R/2LZ. The periodic Hilbert transform is defined by the principle
value integral

Hperu(x) = P.V.
1

2L

∫ L

−L
cot
( π

2L
y
)
u(x− y) dy.

The initial value problem (1.1) has been extensively studied in recent years. Well-
posedness of (1.1) in Hs(R), for s > 3 was proved by Iorio [9] using purely hyper-
bolic energy methods. Then, Ponce [15] derived a local smoothing effect associated
to the dispersive part of the equation, which combined with compactness methods,
enabled him to prove well-posedness also for s = 3.

By combining a complex version of the Cole–Hopf transform with Strichartz
estimates, Tao [18] was able to show well-posedness of the Cauchy problem (1.1) in
H1(R). This well-posedness was extended to Hs(R) for s > 1 by Burq and Planchon
[4] and for s ≥ 0 by Ionescu and Kenig [8]. In the periodic setting, Molinet [11]
proved well-posedness in Hs(T) for s ≥ 0. For operator splitting methods applied
to the BO equation, see [6].

In this paper, we define a numerical scheme for both (1.1) and (1.2), with the aim
to develop a convergent finite difference scheme. While there are several numerical
methods for the BO equation which perform well in practice, indeed better than the
one presented here, see [3] for a recent comparison of different numerical methods,
we emphasize that we here prove the convergence of our proposed scheme. Having
said this, there are results concerning error estimates for the BO equation in [19,
14, 5]. However, error estimate analysis a priori assumes existence of solutions of
the underlying equation, while our convergence analysis, as a by-product, can be
viewed as a constructive proof for the existence of solutions of the BO equation
(1.1). It is worth mentioning that the scheme under consideration in this paper
is similar to the scheme analyzed in [19], the only difference being that a different
discretization of Hilbert transform is introduced in this paper.

We analyze the fully discrete Crank–Nicolson difference scheme

(1.3) un+1
j = unj + ∆t ũ

n+1/2
j Du

n+1/2
j + ∆tH

(
D+D−u

n+1/2
)
j
, n ∈ N0, j ∈ Z,

where ∆x,∆t are discretization parameters, unj ≈ u(j∆x, n∆t) and un+1/2 =

(un + un+1)/2. Furthermore, D and D± denote symmetric and forward/backward
(spatial) finite differences, respectively, H denotes a discrete Hilbert transform op-
erator, and ũ denotes a spatial average. We show (Theorem 2.9) that for initial data
u0 ∈ H2(R) there exists a finite time T , depending only on the H2(R) norm of the
initial data such that for t ≤ T , the difference approximation (2.4) converges uni-
formly in C(R× [0, T ]) to the unique solution of the BO equation (1.1) as ∆x→ 0
with ∆t = O(∆x). Furthermore, following [19, Theorem 3.2], a second-order er-
ror estimate in both time and space for smooth solutions can be obtained by our
numerical method.

The rest of the paper is organized as follows: In Section 2, we present necessary
notations to introduce the Crank–Nicolson scheme and present the convergence
analysis in the full line case, in Section 3 we present the periodic Hilbert transform
and outline the proofs in the periodic setting, and finally in Section 4, we test our
numerical scheme and provide some numerical results.
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2. The finite difference scheme

Throughout this paper, we use the letters C, K etc. to denote various constants
which may change from line to line. We start by introducing the necessary notation.
Derivatives will be approximated by finite differences, and the basic quantities are
as follows. For any function p : R→ R, we set

D±p(x) = ± 1

∆x

(
p(x±∆x)− p(x)

)
, and D =

1

2
(D+ +D−)

for some (small) positive number ∆x. If we introduce the averages

p̃(x) :=
1

3
(p(x+ ∆x) + p(x) + p(x−∆x)) , p̄(x) :=

1

2
(p(x+ ∆x) + p(x−∆x))

and the shift operator

S±p(x) = p(x±∆x),

we find that

D(pq) = p̄Dq + q̄Dp,

D±(pq) = S±pD±q + qD±p = S±qD±p+ pD±q.

We discretize the real axis using ∆x and set xj = j∆x for j ∈ Z. For a given
function p, we define pj = p(xj). We will consider functions in `2 with the usual
inner product and norm

〈p, q〉 = ∆x
∑
j∈Z

pjqj , ‖p‖ = ‖p‖2 = 〈p, p〉1/2, p, q ∈ `2.

Moreover, we define h2-norm of a grid function as

‖p‖h2 :=
(
‖p‖2 + ‖D+p‖2 + ‖D+D−p‖2

)1/2

.

Observe that

‖p‖∞ := sup
j∈Z
|pj | ≤

1

∆x1/2
‖p‖ .

In the periodic case, let N be a given odd natural number. We divide the periodicity
interval [−L,L] into N sub-intervals [xj , xj+1] using ∆x = 2L

N , where

xj = −L+ j∆x, for j = 0, 1, 2, ....., N.

In the periodic case the sum over Z is replaced by a finite sum j = 0, . . . , N . The
various difference operators enjoy the following properties:

〈p,D±q〉 = −〈D∓p, q〉, 〈p,Dq〉 = −〈Dp, q〉, p, q ∈ `2.
Furthermore, using Leibniz rules, the following identities can be readily verified:

〈D(pq), q〉 =
∆x

2
〈D+pDq, q〉+

1

2
〈S−q Dp, q〉,(2.1a)

D+D−(pq) = D−pD+q +D+D−qS
−p+D+pD+q + qD+D−p.(2.1b)

We also need to discretize in the time direction. Introduce (a small) time step
∆t > 0, and use the notation

Dt
+p(t) =

1

∆t

(
p(t+ ∆t)− p(t)

)
,

for any function p : [0, T ] → R. Write tn = n∆t for n ∈ N0 = N ∪ {0}. A fully
discrete grid function is a function u∆x : ∆tN0 → RZ, and we write u∆x(xj , tn) =
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unj . (A CFL-condition will enforce a relationship between ∆x and ∆t, and hence
we only use ∆x in the notation.)

Next we present a lemma, which essentially gives a relation between discrete and
continuous Sobolev norms. Since we shall use this lemma frequently, for the sake
of completeness, we present a proof of this lemma in the full line case.

Lemma 2.1. There exists a constant C such that for all u ∈ H2(R)

‖u∆x‖h2 ≤ C ‖u‖H2 ,

where we identify u∆x with the discrete evaluation {u(xj)}j.

Proof. To begin with, observe that the discrete operator D+D− commutes with
the continuous operator ∂x. A simple use of the Hölder estimate reveals that

‖D+D−u‖2L2(R) = ∆x
∑
j

(
1

∆x
(D−u(xj+1)−D−u(xj))

)2

= ∆x
∑
j

(∫ xj+1

xj

1

∆x
∂xD−u(x) dx

)2

≤ ∆x
∑
j

(∥∥∥∥ 1

∆x

∥∥∥∥
L2([xj ,xj+1])

‖∂xD−u(x)‖L2([xj ,xj+1])

)2

= ‖D−∂xu‖2L2(R) .

Similarly, we can show that

‖D−∂xu‖L2(R) ≤
∥∥∂2

xu
∥∥
L2(R)

.

Furthermore, similar arguments can be used to show

‖D+u‖L2(R) ≤
∥∥∂2

xu
∥∥
L2(R)

, and ‖u‖L2(R) ≤
∥∥∂2

xu
∥∥
L2(R)

.

Combining above results, the result is proved. �

We will now provide details for the discrete Hilbert transform, which is different
in full line and the periodic cases.

Here we concentrate on the full line case, both regarding the Hilbert transform
and the difference scheme. The periodic case is similar, and we will only provide
detailed proofs where the differences are sufficiently important. Thus for the mo-
ment, we consider the non-periodic case, while the results in the periodic case are
outlined in Section 3.

The discrete Hilbert transform on R. Recall that the continuous Hilbert trans-
form H on R is defined by

(2.2)

H(u)(x) = P.V.
1

π

∫
R

u(y)

x− y
dy

= lim
ε↓0

1

π

∫ ∞
ε

1

y
(u(x− y)− u(x+ y)) dy.

As a strategy to discretize the continuous Hilbert transform, we first consider even
j, and write (Hu)(xj) := H(u)j as

H(u)j = P.V.
1

π

∫
R

u(y)

xj − y
dy.
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This can be rewritten as

H(u)j =
1

π

∑
k= even

∫ xk+2

xk

u(y)

xj − y
dy.

Next, we apply the midpoint rule on each of these integrals in the sum, to obtain
the following quadrature formula

H(u)j ≈
2

π

∑
k= odd

uk
j − k

.

Similar arguments can be repeated almost verbatim to deal with odd j, to conclude

H(u)j ≈
2

π

∑
k= even

uk
j − k

.

Therefore, combining the above results, we can define the discrete Hilbert transform
H of a function u as

H(u∆x)j =
1

π

∑
k 6=j

uk
(
1− (−1)j−k

)
j − k

j ∈ Z(2.3)

=
1

π

∞∑
k=1

1

k
(uj−k − uj+k)

(
1− (−1)k

)
=

1

π

∞∑
k=0

∫ x2k+2

x2k

1

x2k+1
(u(xj − x2k+1)− u(xj + x2k+1)) dy.

We now list some useful properties of (2.3) in the following lemma.

Lemma 2.2. The discrete Hilbert transform H on R defined by (2.3) is a linear
operator with the following properties:
(i) (Skew symmetric) For any two grid functions u and v, the discrete Hilbert
transform satisfies

〈Hu, v〉 = −〈u,Hv〉.
(ii) (Translation invariant) The discrete Hilbert transform commutes with discrete
derivatives, i.e.,

H (D±u) = D±H(u).

(iii) (Norm preservation) Finally, it also preserves the discrete L2-norm

‖Hu‖ = ‖u‖ .

Remark 2.3. The continuous Hilbert transform (2.2) satisfies the same properties
with respect to the standard inner product in L2 and ordinary derivatives.

For a proof of the above lemma, we refer to the monograph by King [10, pp. 671–
674]. It is worth mentioning that these properties are essential in order to carry
out the analysis given below. We shall also have use for the following lemma:

Lemma 2.4. Let ϕ be a function in C3
0 (R), and define the piecewise constant

function h∆x by

h∆x(x) = hj = H(ϕ)(xj) for x ∈ [xj , xj+1).

Then
lim

∆x→0
‖H(ϕ)− h∆x‖L2(R) = 0.
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Proof. We define the auxiliary function

h̃(x) = h̃j = H(ϕ)(xj) for x ∈ [xj , xj+1).

Then ∥∥∥H(ϕ)− h̃
∥∥∥2

L2(R)
=
∑
j

∫ xj+1

xj

(H(ϕ)(x)−H(ϕ)(xj))
2
dx

=
∑
j

∫ xj+1

xj

(∫ x

xj

H(ϕ)′(z) dz
)2

dx

=
∑
j

∫ xj+1

xj

(∫ x

xj

H(ϕ′)(z) dz
)2

dx

≤
∑
j

∫ xj+1

xj

∫ xj+1

xj

(H(ϕ′)(z))2 dz (x− xj) dx

=
∆x2

2
‖H(ϕ′)‖2L2(R)

=
∆x2

2
‖ϕ′‖2L2(R) .

Next,∥∥∥h− h̃∥∥∥2

L2(R)
= ∆x

∑
j

(hj − h̃j)2 ≤ ∆x
∑
|j|≤J

(hj − h̃j)2 + 2∆x
∑
|j|>J

h2
j + h̃2

j

=: S1 + S2.

Now we have that

hj − h̃j =
∑
k≥0

(∫ x2k+2

x2k

ψ(xj , x2k+1) dy −
∫ x2k+2

x2k

ψ(xj , y) dy
)
,

where ψ(x, y) = (ϕ(x − y) − ϕ(x + y))/y. By the error formula for the midpoint
quadrature rule we have that∣∣∣∫ x2k+2

x2k

ψ(xj , x2k+1) dy −
∫ x2k+2

x2k

ψ(xj , y) dy
∣∣∣ ≤ C∆x3

∥∥∥ϕ(3)
∥∥∥
L∞(R)

.

Furthermore, since the support of ϕ is bounded, the above sum over k contains
only a finite number of terms, namely Mϕ/∆x, independently of j. Therefore,∣∣∣hj − h̃j∣∣∣ ≤MϕC∆x2

∥∥∥ϕ(3)
∥∥∥
L∞(R)

,

and

S1 ≤MϕC∆x4
∥∥∥ϕ(3)

∥∥∥
L∞(R)

2J.

Since
∑
j h

2
j and

∑
j h̃

2
j are finite, we can choose J large to make S2 small, and

then ∆x small to make S1 small. Hence
∥∥∥h− h̃∥∥∥

L2
converges to zero as ∆x → 0.

By the triangle inequality ‖H(ϕ)− h‖L2 ≤
∥∥∥H(ϕ)− h̃

∥∥∥
L2

+
∥∥∥h− h̃∥∥∥

L2
→ 0. �
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The difference scheme. We propose the following Crank–Nicolson implicit scheme
to generate approximate solutions of the BO equation (1.1)

(2.4) un+1
j = unj + ∆tG(un+1/2)j + ∆tH(D+D−u

n+1/2)j , n ∈ N0, j ∈ Z,

where we have used the following notations:

un+1/2 :=
1

2
(un + un+1), and G(u) := ũDu.

For the initial data we have

u0
j = u0(xj), j ∈ Z.

Note that since the scheme (2.4) is implicit, we must guarantee that the scheme is
well-defined, i.e., that it admits a unique solution. Assuming this for the moment,
we show that the implicit scheme is L2-conservative, by simply taking inner product

of the scheme (2.4) with u
n+1/2
j . This yields

1

2
〈un+1 − un, un+1 + un〉 = ∆t〈un+1/2,Gun+1/2〉+ ∆t〈un+1/2,H(D+D−u

n+1/2)〉.

A simple calculation, using Lemma 2.2, reveals that

(2.5) 〈H (D+D−u) , u〉 = 0, and 〈G(u), u〉 = 0.

Thus, we conclude that

(2.6)
∥∥un+1

∥∥ = ‖un‖ .

To solve (2.4), we use a simple fixed point iteration, and define the sequence {w`}`≥0

by letting w`+1 be the solution of the linear equation

(2.7)

{
wl+1 = v + ∆tG

(
v+wl

2

)
+ 1

2∆tH
(
D+D− (v + wl+1)

)
,

w0 = v := un.

See also [19, Lemmas 3.3 and 3.5].
The following stability lemma serves as a building block for the subsequent con-

vergence analysis.

Lemma 2.5. Choose a constant L such that 0 < L < 1 and set

K =
6− L
1− L

> 6.

We consider the iteration (2.7) with w0 = un, and assume that the following CFL
condition holds

(2.8) λ ≤ L/ (K ‖un‖h2) , with λ = ∆t/∆x.

Then there exists a function un+1 which solves (2.4), and lim`→∞ w` = un+1.
Furthermore, the following estimate holds:

(2.9)
∥∥un+1

∥∥
h2 ≤ K ‖un‖h2 ,

where K depends only on given L.

Proof. Define ∆wl := wl+1 − wl, a straightforward calculation using (2.7) returns

(2.10)
(

1− 1

2
∆tHD+D−

)
∆wl = ∆t

[
G
(
v + wl

2

)
−G

(
v + wl−1

2

)]
=: ∆t∆G.
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Next, applying the discrete operatorD+D− to (2.10), then multiplying the resulting
equation by ∆xD+D−∆wl, and subsequently summing over j ∈ Z, we conclude

‖D+D−∆wl‖2 = ∆t〈D+D−∆G, D+D−∆wl〉 ≤ ∆t ‖D+D−∆G‖ ‖D+D−∆wl‖ .
After some calculations, we find that

∆G =
1

4

[
∆̃wl−1D (v + wl−1) + ˜(v + wl)D (∆wl−1)

]
.

Next, in order to calculate D+D−∆G, we use the identity (2.1b) and discrete
Sobolev inequalities (cf. [7, Lemma A.1]). This results in∥∥∥D+D−

(
∆̃wl−1D (v + wl−1)

)∥∥∥ ≤ 1

∆x
max

{
‖v‖h2 , ‖wl−1‖h2

}
‖∆wl−1‖h2 ,

and similarly∥∥∥D+D−

(
˜(v + wl)D (∆wl−1)

)∥∥∥ ≤ 1

∆x
max

{
‖v‖h2 , ‖wl‖h2

}
‖∆wl−1‖h2 .

Combining the above results, we obtain

(2.11) ‖D+D−∆wl‖ ≤ λmax
{
‖v‖h2 , ‖wl‖h2 , ‖wl−1‖h2

}
‖∆wl−1‖h2 .

Observe that an appropriate inequality like (2.11) can be obtained for ‖D+∆wl‖
and ‖∆wl‖, which in turn can be used, along with (2.11), to conclude

‖∆wl‖h2 ≤ λmax
{
‖v‖h2 , ‖wl‖h2 , ‖wl−1‖h2

}
‖∆wl−1‖h2 .

To proceed further, we need to estimate ‖D+D−wl‖. In that context, we first
observe that w1 satisfies the following equation

w1 = v + ∆tG(v) +
1

2
∆tH

(
D+D−(v + w1)

)
.

Applying the discrete operator D+D− to the equation satisfied by w1, and subse-
quently taking the inner product with D+D−(v + w1), we get

‖D+D−w1‖2 = ‖D+D−v‖2 + ∆t〈D+D−G(v), D+D−(v + w1)〉)

= ‖D+D−v‖2 + ∆t〈(D+D−G(v), D+D−w1〉

≤ ‖D+D−v‖2 + ∆t2 ‖D+D−G(v)‖2 +
1

4
‖D+D−w1‖2 .

Next, a simple calculation along with discrete Sobolev inequalities (cf. [7, Lemma
A.1]) confirms that

‖D+D−G(v)‖ = ‖D+D−(ṽ Dv)‖ ≤ 2

∆x
‖v‖2h2 .

Hence

(2.12) ‖D+D−w1‖ ≤
√

4

3

(
1 + 4λ2 ‖v‖2h2

)1/2

‖v‖h2 .

Now choose a constant L ∈ (0, 1), and define K by

K =
6− L
1− L

> 6.

Therefore, it is clear that if λ satisfies the CFL condition (2.8), then√
4

3

√
1 + 4λ2 ‖v‖2h2 ≤ 4.
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Hence from (2.12), making use of the interpolation inequality, we conclude that

‖w1‖h2 ≤ K ‖v‖h2 .

At this point, we assume inductively that

‖wl‖h2 ≤ K ‖v‖h2 , for l = 1, . . . ,m,(2.13a)

‖∆wl‖h2 ≤ L ‖∆wl−1‖h2 , for l = 2, . . . ,m.(2.13b)

We have already shown (2.13a) for m = 1. To show (2.13b) for m = 2, note that

‖∆w2‖h2 ≤ λmax
{
‖v‖h2 , ‖w1‖h2

}
‖∆w1‖h2 ≤ 4λ ‖v‖h2 ‖∆w1‖h2 ≤ L ‖∆w1‖h2 ,

by CFL condition (2.8). To show (2.13a) for m > 1,

‖wm+1‖h2 ≤
m∑
l=0

‖∆wl‖h2 + ‖v‖h2 ≤ ‖(w1 − v)‖h2

m∑
l=0

Ll + ‖v‖h2

≤ (‖w1‖h2 + ‖v‖h2)
1

1− L
+ ‖v‖h2 ≤

4 + 2− L
1− L

‖v‖h2 = K ‖v‖h2 .

Then

‖∆wm+1‖h2 ≤ λK ‖v‖h2 ‖∆wm‖h2 ≤ L ‖∆wm‖h2 ,

if the CFL condition (2.8) holds.
To sum up, if L ∈ (0, 1), and K is defined by K = (6−L)/(1−L), and λ satisfies

the CFL-condition

λ ≤ L

K ‖v‖h2

,

then we have the desired estimate (2.9). Finally, using (2.13b), one can show that
{w`} is Cauchy, hence {w`} converges. This completes the proof. �

Remark 2.6. Observe that the above result guarantees that the iteration scheme
converges for one time step under CFL condition (2.8), where the ratio between
temporal and spatial mesh sizes must be smaller than an upper bound that depends
on the computed solution at that time, i.e., un. Since we want the CFL-condition
only to depend on the initial data u0, we have to derive local a priori bounds for
the computed solution un. This will be achieved in Theorem 2.8 to conclude that
the iteration scheme (2.7) converges for sufficiently small ∆t.

The following lemma is the most important step towards stability, and the very
heart of this paper:

Lemma 2.7. Let the approximate solution un be generated by the Crank–Nicolson
scheme (2.4), where ∆t and ∆x are such that (2.8) holds. Then we have that

Dt
+ (‖un‖h2) ≤

√
3

2

∥∥∥un+1/2
∥∥∥2

h2
.

Proof. If D+D−u
n = 0, then un = 0 and un+1 = 0 since un, un+1 ∈ `2, so that the

lemma trivially holds. Therefore we can assume that D+D−u
n 6= 0.

Applying the discrete operator D+D− to (2.4), and subsequently taking inner
product with D+D−u

n+1/2 yields

1

2

∥∥D+D−u
n+1
∥∥2

=
1

2
‖D+D−u

n‖2 + ∆t〈D+D−G(un+1/2), D+D−u
n+1/2〉,
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using (2.5), which implies

(2.14) Dt
+ (‖D+D−u

n‖) = 2
〈D+D−G(un+1/2), D+D−u

n+1/2〉
‖D+D−un+1‖+ ‖D+D−un‖

.

For the moment we drop the superscript n + 1/2 from our notation, and use the
notation u for un+1/2, where n is fixed. We use the product rule (2.1b) to write

〈D+D−G(u), D+D−u〉 = 〈D+D− (ũDu) , D+D−u〉
= 〈D−ũD+(Du), D+D−u〉+ 〈S−ũD+D−(Du), D+D−u〉

+ 〈D+ũD+(Du), D+D−u〉+ 〈D+D−ũDu,D+D−u〉
=: E1(u) + E2(u) + E3(u) + E4(u),

in the obvious notation. By the discrete Sobolev inequality (cf. [7, Lemma A.1])

‖D−u‖∞ ≤
√

3

2
(‖D+D−u‖+ ‖u‖) ,

and the relation ‖D+D−u‖ =
∥∥D2

+u
∥∥, we apply the Cauchy–Schwarz inequality to

obtain ∣∣E1(u)
∣∣ ≤ ‖D−ũ‖∞ ‖D+Du‖ ‖D+D−u‖

≤ ‖D−ũ‖∞
1

2

( ∥∥D2
+u
∥∥+ ‖D+D−u‖

)
‖D+D−u‖

= ‖D−u‖∞ ‖D+D−u‖2

≤
√

3

2
(‖D+D−u‖+ ‖u‖) ‖D+D−u‖2

≤
√

3

2
‖D+D−u‖ ‖u‖2h2 .

Similar arguments show that∣∣E3(u)
∣∣ ≤√3

2
‖D+D−u‖ ‖u‖2h2 , and

∣∣E4(u)
∣∣ ≤√3

2
‖D+D−u‖ ‖u‖2h2 .

To estimate the last term, we proceed as follows:

E2(u) := 〈S−ũD+D−(Du), D+D−u〉
= 〈S−ũD(D+D−u), D+D−u〉
= 〈S−uD+D−u,D(D+D−u)〉
= −〈D

(
S−ũD+D−u

)
, D+D−u〉

= −∆x

2
〈D+(S−ũ)D(D+D−u), D+D−u〉

− 1

2
〈S−D+D−uD(S−ũ), D+D−u〉 by (2.1a)

=: E21(u) + E22(u).

Again using the discrete Sobolev inequality (cf. [7, Lemma A.1]) we see that∣∣E21(u)
∣∣ ≤ ∆x

2

∥∥D+(S−ũ)
∥∥
∞ ‖DD+D−u‖ ‖D+D−u‖

= ‖D−u‖∞ (∆x ‖DD+D−u‖) ‖D+D−u‖
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≤ ‖D−u‖∞ ‖D+D−u‖ ‖D+D−u‖

≤
√

3

2
‖D+D−u‖ ‖u‖2h2 .

Similarly, ∣∣E22(u)
∣∣ ≤√3

2
‖D+D−u‖ ‖u‖2h2 .

Therefore, we conclude ∣∣E2(u)
∣∣ ≤√3

2
‖D+D−u‖ ‖u‖2h2 .

Hence

2
〈D+D−G(un+1/2), D+D−u

n+1/2〉
‖D+D−un+1‖+ ‖D+D−un‖

≤ 2

√
3

2

∥∥D+D−u
n+1/2

∥∥ ∥∥un+1/2
∥∥2

h2

‖D+D−un+1‖+ ‖D+D−un‖

≤
√

3

2

∥∥∥un+1/2
∥∥∥2

h2
,

which by (2.14) implies that

(2.15)
∣∣Dt

+ (‖D+D−u
n‖)
∣∣ ≤√3

2

∥∥∥un+1/2
∥∥∥2

h2
.

In the same manner, applying the operator D+ to (2.4), and subsequently taking
the inner product with D+u

n+1/2, yields

Dt
+ (‖D+u

n‖) = 2
〈D+G(un+1/2), D+u

n+1/2〉
‖D+un+1‖+ ‖D+un‖

.

Using the discrete Sobolev inequality ‖u‖∞ ≤ ‖u‖h1

|〈D+G(u), D+u〉| = |〈ũDu,D−D+u〉|
≤ ‖u‖∞ ‖Du‖ ‖D+D−u‖

≤ ‖D+u‖ ‖u‖2h2 .

Thus, we obtain

(2.16)
∣∣Dt

+ (‖D+u
n‖)
∣∣ ≤√3

2

∥∥∥un+1/2
∥∥∥2

h2
.

Furthermore, the conservative property (2.6) implies that

(2.17) Dt
+ (‖un‖) = 0.

Combining (2.15), (2.16), and (2.17) concludes the proof. �

We can now state the following stability result:

Theorem 2.8. If the initial function u0 is in H2, then there exist a time T > 0
and a constant C, both depending only on ‖u0‖H2 , such that

‖un‖h2 ≤ C, for tn ≤ T

for all sufficiently small λ = ∆t/∆x.
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Proof. Set yn = ‖un‖h2 . By Lemma 2.5, we have
∥∥un+1/2

∥∥ ≤ K ‖un‖, so that
Lemma 2.7 gives

yn+1 ≤ yn +

√
3

2
(Kyn)

2

for all ∆t/∆x ≤ λn = L/(K ‖un‖h2). We choose a time discretization ∆tn. Let

w(t) solve the differential equation w′(t) =
√

3/2K2w(t)2, w(0) = ‖u0‖H2 . This

equation has a blow up time T̂ = 1/(
√

3/2K2 ‖u0‖H2), and for t < T , w is strictly

increasing. Choose T < T̂ , we have that w(t) ≤ w(T ), and we claim that also
yn ≤ w(tn) ≤ w(T ) for tn ≤ T . This claim is true for n = 0, and we inductively
assume that it is true for n = 0, . . . , N . Then

yN+1 = yN + ∆tnCK
2y2
N ≤ w(tN ) +

∫ tN+1

tN

√
3

2
K2w(tN )2 dt

≤ w(tN ) +

∫ tN+1

tN

w′(s) ds = w(tN+1).

This proves that yn ≤ w(T ) for all n such that tn ≤ T , thus ‖un‖h2 ≤ C = w(T ).
We can now use a uniform spacing, and let ∆t/∆x ≤ λ ≤ L/(KC). �

Now we turn to the estimate of the temporal derivative of approximate solution
un. This bound will enable us to apply the Arzelà–Ascoli theorem in order to prove
the convergence of an approximate solution un. From the scheme (2.4), using the
propety ‖D+D−u‖ = ‖H(D+D−u)‖, we see that∥∥Dt

+u
n
∥∥ ≤ ∥∥∥G(un+1/2)

∥∥∥ +
∥∥∥D+D−u

n+1/2
∥∥∥ .

By the discrete Sobolev inequality∥∥∥G(un+1/2)
∥∥∥ ≤ ∥∥∥un+1/2

∥∥∥
∞

∥∥∥Dun+1/2
∥∥∥ ≤ C ∥∥∥un+1/2

∥∥∥2

h2
.

Therefore Theorem 2.8 implies that
∥∥Dt

+u
n
∥∥ ≤ C.

Thus, we can follow Sjöberg [17] to prove convergence of the scheme (2.4) for
t < T . We reason as follows: We construct the piecewise quadric continuous
interpolation u∆x(x, t) in two steps. First we make a spatial interpolation for each
tn:

(2.18)

un(x) = unj + (x− xj)Dunj

+
1

2
(x− xj)2D+D−u

n
j , x ∈ [xj , xj+1), j ∈ Z.

Next we interpolate in time:
(2.19)
u∆x(x, t) = un(x) + (t− tn)Dt

+u
n(x), x ∈ R, t ∈ [tn, tn+1], (n+ 1)tn+1 ≤ T.

Observe that
u∆x(xj , tn) = unj , j ∈ Z, n ∈ N0.

Note that u∆x is continuous everywhere and continuously differentiable in space.
The function u∆x satisfies for x ∈ [xj , xj+1) and t ∈ [tn, tn+1]

∂xu∆x(x, t) = Dunj + (x− xj)D+D−u
n
j(2.20)

+ (t− tn)Dt
+

(
Dunj + (x− xj)D+D−u

n
j

)
,

∂2
xu∆x(x, t) = D+D−u

n
j + (t− tn)Dt

+D+D−u
n
j ,(2.21)
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∂tu∆x(x, t) = Dt
+u

n(x),(2.22)

which implies

‖u∆x( · , t)‖L2(R) ≤ ‖u0‖L2(R) ,(2.23)

‖∂xu∆x( · , t)‖L2(R) ≤ C,(2.24)

‖∂tu∆x( · , t)‖L2(R) ≤ C,(2.25) ∥∥∂2
xu∆x( · , t)

∥∥
L2(R)

≤ C,(2.26)

for t ≤ T and for a constant C which is independent of ∆x. The bound on ∂tu∆x

also implies that u∆x ∈ Lip([0, T ];L2(R)). Then an application of the Arzelà–
Ascoli theorem using (2.23) shows that the set {u∆x}∆x>0 is sequentially compact

in C([0, T ];L2(R)). Thus there exists a sequence
{
u∆xj

}
j∈N which converges uni-

formly in C([0, T ];L2(R)) to some function u.
Next we show that the limit u is a weak solution of the Cauchy problem (1.1),

i.e., u satisfies

(2.27)

∫ T

0

∫ ∞
−∞

(
uψt −

u2

2
ψx − uH(ψxx)

)
dxdt+

∫ ∞
−∞

ψ(x, 0)u0(x) dx = 0,

for all test functions ψ ∈ C∞0 (R× [0, T )).
To do this, we start by noting that the piecewise constant function

ū∆x(x, t) = unj for (x, t) ∈ [xj , xj+1)× [tn, tn+1),

also converges to u in L∞([0, T ];L2
loc(R)). It is more convenient to apply a Lax–

Wendroff type argument to ū∆x than to u∆x.
Let ψ ∈ C∞0 (R × [0, T )) be any test function and denote ψnj = ψ(xj , tn). Mul-

tiplying the scheme (2.4) by ∆x∆tψnj , and subsequently summing over all j and n
yields

∆x∆t
∑
j

∑
n

ψnj D
t
+u

n
j = ∆x∆t

∑
j

∑
n

ψnj G(un+1/2)j

−∆x∆t
∑
j

∑
n

ψnj H(D+D−u
n+1/2)j .

It is straightforward to show that

∆x∆t
∑
j

∑
n

ψnj D
t
+u

n
j = −∆x∆t

∑
j

∑
n

unj D
t
−ψ

n
j −∆x

∑
j

ψ0
j u

0
j

→ −
∫
R

∫ T

0

uψt dx dt−
∫
R
ψ(x, 0)u0(x) dx as ∆x ↓ 0.

Next, for the nonlinear term, we proceed as follows:

∆x∆t
∑
j

∑
n

ψnj G(un+1/2)j = ∆x∆t
∑
j

∑
n

ψnj ũ
n+1/2
j Du

n+1/2
j

= ∆x∆t
∑
j

∑
n

ψnj

[
1

3
D
(
u
n+ 1

2
j

)2

+
1

3
u
n+1/2
j Du

n+1/2
j

]
.
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A simple summation-by-parts formula yields

1

3
∆x∆t

∑
j

∑
n

ψnj D
(
u
n+1/2
j

)2

= −1

3
∆x∆t

∑
j

∑
n

(
u
n+1/2
j

)2

Dψnj

→ −1

3

∫
R

∫ T

0

u2 ψx dx dt, as ∆x ↓ 0.

Again, using summation-by-parts

1

3
∆x∆t

∑
j

∑
n

ψnj u
n+1/2
j Du

n+1/2
j = − 1

12
∆x∆t

∑
j

∑
n

u
n+1/2
j u

n+1/2
j−1 D−ψ

n
j

− 1

12
∆x∆t

∑
j

∑
n

u
n+1/2
j u

n+1/2
j+1 D+ψ

n
j

→ −1

6

∫
R

∫ T

0

u2 ψx dx dt as ∆x ↓ 0.

Here we have used the general formula

〈p, qDq〉 = −1

4
〈qS−q,D−p〉 −

1

4
〈qS+q,D+p〉.

Hence, we conclude

∆x∆t
∑
j

∑
n

ψnj G(u
n+1/2
j )→ −1

2

∫
R

∫ T

0

u2 ψx dx dt as ∆x ↓ 0.

We are left with the term involving the Hilbert transform. With a slight abuse
of notation we identify a sequence {vj} with a piecewise constant function, and
use the notation 〈 · , · 〉 for the `2 inner product as well as for the inner product in
L2(R). Then

−∆x∆t
∑
j

∑
n

ψnj H(D+D−u
n+1/2)j = ∆t

∑
n

〈un+1/2,H(D+D−ψ
n)〉.

Next,∣∣∣〈un+1/2,H(D+D−ψ
n)〉 − 〈u,H(ψxx( · , tn)〉

∣∣∣ ≤ ∣∣∣〈un+1/2 − u,H(D+D−ψ
n)〉
∣∣∣

+ |〈u,H(D+D−ψ
n)−H(ψxx( · , tn))〉|

≤
∥∥∥un+1/2 − u

∥∥∥ ‖D+D−ψ
n‖

+ ‖u‖ ‖H(D+D−ψ
n)−H(ψxx( · , tn))‖ .

The first term on the right will tend to zero, since un+1/2 converges to u in L2.
Regarding the second term we have that the piecewise constant function D+D−ψ

n

will converge to ψxx( · , tn) since ψ is smooth, as will the piecewise constant function
vnj := ψxx(xj , tn). Using these observations

‖H(D+D−ψ
n)−H(ψxx( · , tn))‖ ≤ ‖H(D+D−ψ

n − vn)‖+ ‖H(vn)−H(ψxx( · , tn))‖
≤ ‖D+D−ψ

n − vn‖+ ‖H(vn)−H(ψxx( · , tn))‖ .

We have already observed that the first term on the right will tend to zero as ∆x
to zero, and the second term will vanish by Lemma 2.4 since ψxx is smooth. Thus
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we have established that

∆x∆t
∑
j

∑
n

ψnj H(D+D−u
n+1/2)j → −

∫ T

0

∫
R
uH(ψxx) dxdt as ∆x ↓ 0,

which shows that u is a weak solution.
The bounds (2.24), (2.25), and (2.26) mean that u is actually a strong solution

such that (1.1) holds as an L2 identity. Thus the limit u is the unique solution to
the BO equation (1.1) taking the initial data u0.

Summing up, we have proved the following theorem:

Theorem 2.9. Assume that u0 ∈ H2(R). Then there exists a finite time T , de-
pending only on ‖u0‖H2(R), such that for t ≤ T , the difference approximations

defined by (2.4) converge uniformly in C(R × [0, T ]) to the unique solution of the
Benjamin–Ono equation (1.1) as ∆x→ 0 with ∆t = O (∆x).

3. The periodic case

To keep the presentation fairly short we have only provided details in the full
line case. However, the same proofs apply also in the periodic case but the discrete
Hilbert transform is defined differently. In this case it should be an approximation
of the singular integral

(3.1) Hperu(x) = P.V.
1

2L

∫ L

−L
cot
( π

2L
(x− y)

)
u(y) dy,

such that Lemma 2.2 holds. A simple use of the trigonometric identity

2 cot(θ) = cot

(
θ

2

)
− tan

(
θ

2

)
,

helps use to rewrite (3.1) as

Hperu := T1u− T2u,

where

(3.2) T1u(x) = P.V.
1

4L

∫ L

−L
cot
( π

4L
(x− y)

)
u(y) dy,

and

(3.3) T2u(x) = P.V.
1

4L

∫ L

−L
tan

( π
4L

(x− y)
)
u(y) dy.

Let n be an even integer such that 0 ≤ n ≤ N − 1. For this n, we have

T1u(xn) = P.V.
1

4L

∫ xN

x0

cot
( π

4L
(xn − y)

)
u(y) dy

=
1

4L

N−3
2∑
j=0

∫ x2j+2

x2j

cot
( π

4L
(xn − y)

)
u(y) dy

+
1

4L

∫ xN

xN−1

cot
( π

4L
(xn − y)

)
u(y) dy.
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We apply the midpoint rule on each of these integrals in the sum and endpoint rule
for the last integral, and we obtain the following quadrature formula:

(3.4)

T1u(xn) =
1

4L

∑
j= odd

2∆x u(xj) cot
( π

4L
(xn − xj)

)
+

1

4L
∆x u(xN ) cot

( π
4L

(xn − xN )
)
.

Using the identity ∆x = 2L/N , we define

(3.5) T1un =
1

N

∑
j= odd

uj cot

(
π(n− j)

2N

)
+

1

2N
u(xN ) cot

( π
4L

(xn − xN )
)
.

Next we write T2u(xn) as

T2u(xn) = P.V.
1

4L

∫ xN

x0

tan
( π

4L
(xn − y)

)
u(y) dy

=
1

4L

∑
j= odd

∫ xj+2

xj

tan
( π

4L
(xn − y)

)
u(y) dy

+
1

4L

∫ x1

x0

tan
( π

4L
(xn − y)

)
u(y) dy.

To obtain the quadrature formula, we use the midpoint rule on each of the integral
in the sum and endpoint rule on the last integral,

(3.6)

T2u(xn) =
1

4L

∑
j= even,j 6=0

2∆x u(xj) tan
( π

4L
(xn − xj)

)
+

1

4L
∆x u(x0) tan

( π
4L

(xn − x0)
)
.

Using the identity ∆x = 2L/N , we have

(3.7) T2un =
1

N

∑
j= even, j 6=0

uj tan

(
π(n− j)

2N

)
+

1

2N
u(x0) tan

( π
4L

(xn − x0)
)
.

Since u is N -periodic grid function, we have

u(xN ) cot
( π

4L
(xn − xN )

)
= −u(x0) tan

( π
4L

(xn − x0)
)
.

Therefore, adding (3.7) and (3.5) we have, for even n

(Hperu)n =
1

N

∑
j= odd

uj cot

(
π(n− j)

2N

)
− 1

N

∑
j= even

uj tan

(
π(n− j)

2N

)
.

Similarly, we have for odd n

(Hperu)n =
1

N

∑
j= even

uj cot

(
π(n− j)

2N

)
− 1

N

∑
j= odd

uj tan

(
π(n− j)

2N

)
.

Combining above two relations, we conclude

(3.8) Hperu = c ∗ u,
where the vector c is given by

(3.9) cn =
1− (−1)n

2N
cot
( πn

2N

)
− 1 + (−1)n

2N
tan

( πn
2N

)
.
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Next we prove the following properties of discrete Hilbert transform Hper defined
by (3.8)–(3.9):

Lemma 3.1. The discrete Hilbert transform is skew symmetric. Moreover, it sat-

isfies ‖Hperu‖ ≤ ‖u‖ and ‖u‖ = ‖Hperu‖ provided
∑N−1
j=0 uj = 0. Furthermore, we

have

‖HperD+D−u‖ = ‖D+D−u‖ .

Proof. The skew-symmetric property of Hper follows from the fact that c−n = −cn,
for any n. Furthermore, we use the discrete Fourier transform (DFT) to prove that
Hper preserves the `2-norm.

First we recall the definition of discrete Fourier transform. For a givenN -periodic
grid function u, we define the DFT by

ûk =

N−1∑
n=0

un e
−i 2πknN , k = 0, 1, 2, ..., N − 1,

and the inversion formula is then

uk =
1

N

N−1∑
n=0

ûn e
i 2πknN , k = 0, 1, 2, ..., N − 1.

Then the Parseval formula reads

‖û‖ =
√
N ‖u‖ .

Next we compute the DFT of c. We claim that the Fourier transform of c is
given by

(3.10) ĉn =


−i for n = 1, 2, ..., N−1

2 ,

0 for n = 0,

i for n = N+1
2 , ....., N − 2, N − 1.

To prove this we use inverse discrete Fourier transform. From (3.10), we see that

N−1∑
k=0

ĉke
i 2πknN = −i

(N−1)/2∑
k=1

ĉke
i 2πknN + i

N−1∑
k=(N+1)/2

ĉke
i 2πknN

= 2

(N−1)/2∑
k=1

sin

(
2πkn

N

)

= 2 Im

(N−1)/2∑
k=1

exp

(
2πikn

N

)
= 2 Im

(
ei

2πn
N

N−1
2 − 1

ei
2πn
N − 1

ei
2πn
N

)

= −Im

(
i
ei

2πn
N

N−1
2 − 1

sin(πnN )
ei
πn
N

)

= −Im

(
i
(−1)ne−i

πn
N − 1

sin(πnN )
ei
πn
N

)
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= −Im

(
i
(−1)n − eiπnN

sin(πnN )

)
= cot

(πn
N

)
− (−1)n

sin(πn/N)

=
cos2( πn2N )− sin2( πn2N )

2 sin( πn2N ) cos( πn2N )
−

(−1)n
(

cos2( πn2N ) + sin2( πn2N )
)

2 sin( πn2N ) cos( πn2N )

= N
(1− (−1)n

2N
cot
( πn

2N

)
− 1 + (−1)n

2N
tan

( πn
2N

))
= Ncn.

This proves the claim. Therefore, we have

Ĥperun = ĉn ûn.

Now using Parseval’s formula we have

‖Hperu‖ =
∥∥∥Ĥperu

∥∥∥
= ‖ĉ û‖

=
(N−1∑
n=1

|û|2n
)1/2

≤ ‖û‖
= ‖u‖ .

Thus we have ‖Hperu‖ ≤ ‖u‖, and ‖Hperu‖ = ‖u‖ provided û(0) = 0, that is,

N−1∑
j=0

uj = 0.

�

Keeping in mind the above discretization for the Hilbert transform, we propose
the following implicit scheme to generate approximate solutions to the BO equation
(1.2)

(3.11) un+1
j = unj + ∆tG(un+1/2)j + ∆tHper(D+D−u

n+1/2)j ,

for n ≥ 0 and j = 0, . . . , N − 1. Regarding u0 we set

u0
j = u0(xj), j = 0, . . . , N − 1.

Using the properties of the discrete Hilbert transform (3.8)–(3.9), and using identi-
cal arguments to those used in the proof of Theorem 2.9, we can proove the following
theorem:

Theorem 3.2. Assume that u0 ∈ H2(T). Then there exists a finite time T , de-
pending only on ‖u0‖H2(T), such that for t ≤ T , the difference approximations

defined by (3.11) converge uniformly in C(T× [0, T ]) to the unique solution of the
Benjamin–Ono equation (1.2) as ∆x→ 0 with ∆t = O (∆x).
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4. Numerical experiments

The fully-discrete scheme given by (2.4) has been tested on suitable test cases,
namely soliton interactions, in order to demonstrate its effectiveness. It is well-
known that a soliton is a self-reinforcing solitary wave that maintains its shape
while traveling at constant speed. Solitons are the result of a delicate cancellation of
nonlinear and dispersive effects in the medium. Several authors, see, e.g., [3, 19, 13]
have studied the soliton interactions for the BO equation.

A one-soliton solution. The Benjamin–Ono equation (1.2) has one-periodic wave
solution that tend towards the one-soliton in the long wave limit, i.e., when the wave
number goes to zero. It is given by

(4.1) u(x, t) = − 2cδ2

1−
√

1− δ2 cos(cδ(x− ct))
, with δ =

π

cL
,

where L denotes the period and c is the wave speed.
We have applied scheme (3.11) to simulate the periodic one wave solution (4.1)

with L = 15, c = 0.25 and initial data u0(x) = u(x, 0). The exact solution is
periodic in time with the period p = 120. In Figure 4.1 we show the approximate
and exact solution at t = 4p = 480. We have also computed numerically the error

−15 −10 −5 0 5 10 15
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
One Soliton

x

u
(x

,t
)

 

 

exact
approximate

Figure 4.1. Comparison of exact and numerical solutions with
initial data (4.1).

for a range of ∆x, where the relative L2 error at time T is defined by

E1(T ) = 100
‖u− u∆x‖2
‖u‖2

where the norms were computed using the trapezoid rule on the points xj , and the
relative L∞ error is defined by

E2(T ) = 100
‖u− u∆x‖∞
‖u‖∞

.
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In Table 4.1, we show L2 relative errors as well as L∞ relative errors for this example
at time T = 480. The computed solution in Figure 4.1 looks quite well and the

N E1 rate E2 rate

33 21.24 23.35
65 5.76

1.9
6.75

1.8

129 1.46
2.0

1.71
2.0

257 0.39
1.9

0.49
1.8

513 9.75e-2
2.0

1.21e-1
2.0

1025 3.34e-2
1.5

4.70e-2
1.4

2049 7.50e-3
2.1

1.07e-2
2.1

Table 4.1. E1 and E2 for the one-soliton solution at time T = 480.

errors are also quite low and the convergence rate seems to converge to 2.

4.1. A two-soliton solution. The velocity of a soliton depends on its amplitude;
the higher the amplitude, the faster it moves. Thus a fast soliton will overtake a
slower soliton moving in the same direction. After the interaction, the solitons will
reappear with the same shape, but possibly with a change in phase. As explicit
formulas are available, they provide excellent test cases for numerical methods.

Inspired by [19] we use the exact solution

(4.2) w(x, t) = −
4c1c2

(
c1λ

2
1 + c2λ

2
2 + (c1 + c2)3c−1

1 c−1
2 (c1 − c2)−2

)
(c1c2λ1λ2 − (c1 + c2)2(c1 − c2)−2)

2
+ (c1λ1 + c2λ2)2

,

where λj = λj(x, t) = x− cjt, j = 1, 2, and c1, c2 are arbitrary constants. Explicit
periodic two-soliton solutions exist, but the exact formula is complicated. See, e.g.,
[16] for a more detailed discussion. In what follows, we have computed the two-
soliton solution (4.2) of the unrestricted Cauchy problem (1.2). Moreover, we have
used the initial value u0(x) = w(x,−10) on an interval (−30, 30) as initial values.
and c1 = 2, c1 = 1. Since we compute on a finite line we have used the periodic
continuation, and used the scheme for the periodic case. Since w(±30, t) remains
very small in the time interval [−10, 10] we believe that the computed solution is
very close to w(t− 10, x) for t ≤ 20, and we use w(10, x) as a reference solution.

Computationally, this is a much harder problem than the one-soliton solution
due to the fact that in this case the errors stem from both the approximation
of the unrestricted initial-value problem by a periodic one, and by the numerical
approximation of the latter. In Figure 4.2 we show the exact solution and the
approximate solutions at t = 20 computed using 257 and 513 grid points in the
interval [−30, 30]. As the Figure 4.2 exhibits, the scheme performs well in the sense
that after the interaction, the two soliton have the same shapes and velocities as
before the interaction. In Table 4.2, we show the relative errors E1 and E2 as well
as numerical rate of convergence for the computed solutions. The large errors and
the slow convergence rate both indicate that we are not yet in asymptotic regime.

To sum up, our conservative scheme performs very well in practice and proven
to converge, whereas to the best of our knowledge, there is no constructive proof of
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approx: N = 513
u0

exact

Figure 4.2. The numerical solution u∆x(x, 20) with initial data w(x,−10).

N E1 rate E2 rate

65 125.12 113.07
129 124.76

0.0
97.26

0.2

257 108.74
0.2

93.99
0.0

513 71.34
0.6

71.20
0.4

1025 25.28
1.5

29.20
1.3

2049 6.87
1.9

7.98
1.9

4097 2.16
1.7

2.52
1.7

Table 4.2. E1 and E2 for the two-soliton solution at time T = 20
with initial data w(−10, x).

convergence, for the other schemes associated to (1.1) or (1.2), except [19] for some
partial result (existence of solution has been assumed) in the periodic case (1.2).
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