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Abstract We present a first step towards the spectral analysis of matrices arising from IgA

Galerkin methods based on hyperbolic and trigonometric GB-splines. Second order differ-

ential problems with constant coefficients are considered and discretized by means of se-

quences of both nested and non-nested spline spaces. We prove that there always exists an

asymptotic eigenvalue distribution which can be compactly described by a symbol, just like

in the polynomial case. There is a complete similarity between the symbol expressions in the

hyperbolic, trigonometric and polynomial cases. This results in similar spectral features of

the corresponding matrices. We also analyze the IgA discretization based on trigonometric

GB-splines for the eigenvalue problem related to the univariate Laplace operator. We prove

that, for non-nested spaces, the phase parameter can be exploited to improve the spectral ap-

proximation with respect to the polynomial case. As part of the analysis, we derive several

Fourier properties of cardinal GB-splines.

Mathematics Subject Classification (2010) 15A18 · 65N30 · 41A15 · 15B05 · 65L10

1 Introduction

Isogeometric Analysis (IgA) is a technology introduced nearly a decade ago in a seminal

paper by Hughes et al. [19] that unifies Computer Aided Design (CAD) and Finite Ele-

ment Analysis (FEA). CAD software, used in industry for geometric modeling, typically

describes physical domains by means of tensor-product B-splines or Non-Uniform Ratio-

nal B-Splines (NURBS). Such geometries are then further processed in the analysis phase.

One of the key concepts in IgA is to use the same discretization and representation tools

for the design as well as for the analysis (in an isoparametric environment), providing a
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true design-through-analysis methodology [7,19]. The isogeometric approach based on B-

splines/NURBS results in some important advantages with respect to classical finite element

approaches. The geometry of the physical domain is exactly described, so the interaction

with the CAD system during any further refinement process in the analysis phase is elimi-

nated. In addition, B-spline and NURBS spaces possess an inherent higher smoothness than

those in classical FEA, leading to a higher accuracy per degree-of-freedom [3]. The success

of IgA roots in the above properties, and this technology has been shown to be superior in

various engineering application fields.

Even though NURBS are the de facto standard in CAD systems, they suffer from a few

major drawbacks. For example, they lack an exact description of transcendental curves of

interest in applications, and their parameterization of conic sections does not correspond

to the arc length. In addition, NURBS behave poorly with respect to differentiation and

integration, which are crucial operators in analysis.

The so-called Generalized B-splines (GB-splines) are smooth functions belonging piece-

wisely to more general spaces than algebraic polynomial spaces. Suitable selections of such

section spaces – typically including polynomial and hyperbolic/trigonometric functions –

allow for an exact representation of polynomial curves, conic sections, helices and other pro-

files of salient interest in applications. In particular, conic sections are exactly parameterized

by hyperbolic/trigonometric generalized splines with respect to the arc length. GB-splines

possess all fundamental properties of classical (polynomial) B-splines; we highlight their

recurrence relation, minimum support and local linear independence. Moreover, contrarily

to NURBS, they behave completely similar to B-splines with respect to differentiation and

integration. For more details we refer to [6,22,23] and references therein.

Thanks to their structural similarity with (polynomial) B-splines, GB-splines are plug-

to-plug compatible with B-splines in IgA. Moreover, their section spaces can be selected

according to a problem-oriented strategy taking into account the geometrical and/or analyt-

ical peculiar issues of the specific addressed problem. The fine-tuning of the section spaces

generally results in a gain from the accuracy point of view. These two aspects make hy-

perbolic and trigonometric GB-splines a flexible and interesting tool in IgA approximation

methods [23,24,25]. Other main application areas of GB-splines are computer aided geo-

metric design [4,35] and signal processing [34].

The Galerkin formulation has been intensively employed in the IgA context. Like any

discretization technique, isogeometric Galerkin methods require to solve large linear sys-

tems. It turns out, however, that iterative solvers like classical multigrid methods are not

always effective in this context (as illustrated and explained in [9]).

The spectral behavior of matrices arising from IgA discretization methods with (poly-

nomial) B-splines has been deeply analyzed in a recent sequel of papers [11,14,15]. This

spectral analysis is based on the notion of a spectral symbol, and exploits the properties

of Generalized Locally Toeplitz (GLT) sequences [28,29] and of the B-spline basis. Such

a spectral information plays a fundamental role in the convergence analysis of (precondi-

tioned) Krylov methods (see, e.g., [2,21] and references therein) and is even more impor-

tant in the design and in the theoretical analysis of effective preconditioners [27,30] and

fast multigrid solvers [1]. In the IgA context with B-splines, the obtained spectral informa-

tion has been exploited in [9,10] for devising optimal and totally robust multigrid solvers.

The spectral symbol also provides a theoretical tool to analyze the spectral results obtained

solving discrete generalized eigenvalue problems [13].

In this paper we present a first step towards the spectral analysis of matrices arising

from IgA Galerkin methods based on GB-splines by addressing mainly the one-dimensional

setting, with constant coefficients and no geometry map. Like in the (polynomial) B-spline
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case, these one-dimensional results are crucial building blocks in the treatment of the mul-

tivariate problem [14]. Indeed, thanks to the tensor-product structure of the approximation

spaces, the univariate results can be directly extended to the multivariate setting, see Sec-

tion 6. It is likely that the spectral distribution of GB-spline discretization matrices corre-

sponding to the general multivariate setting, with non-constant coefficients and geometry

maps, can be addressed with similar techniques as those used in the polynomial case [15].

Because of their interest in practical applications, we mainly focus on hyperbolic and

trigonometric GB-splines. We analyze the spectral behavior of the discretization matrices

corresponding to a sequence of both nested and non-nested spaces. In particular, we prove

that an asymptotic eigenvalue distribution always exists when the matrix-size tends to infin-

ity and is compactly described by a symbol. Although the precise expressions of the symbols

depend on the characteristics of the sequence of GB-spline spaces used in the discretization

process, there is a complete similarity between the polynomial, hyperbolic and trigonometric

cases. Therefore, the corresponding matrices possess similar spectral features: the presence

of canonical small eigenvalues associated with low frequencies, but also the presence of

small eigenvalues associated with high frequencies especially as the spline degree increases,

see [11,12]. We point out that in the case of nested GB-spline spaces the corresponding

symbols are exactly the same as in the case of (polynomial) B-spline spaces.

As a main consequence of the above results, we expect that the same techniques based on

the symbol for the design of robust and optimal multigrid solvers derived in the polynomial

spline case [9,10] can also be applied in the generalized spline setting as well.

In addition, we analyze the Galerkin IgA discretization based on trigonometric splines

for the eigenvalue problem related to the univariate Laplace operator, a common problem

considered in the IgA literature (see, e.g., [7,8,13,20]). It turns out that polynomial and

trigonometric spline discretizations produce comparable approximations of the global spec-

trum, but the phase parameter of trigonometric splines is a flexible tool to locally improve

the obtained approximation. In particular, if non-nested spaces are used, the phase parameter

can be selected to minimize user specified measures of the relative spectral error.

All the results in this paper also hold for (polynomial) B-splines, as a limit configuration

of both hyperbolic and trigonometric GB-splines. Therefore, the paper provides an extension

of the spectral analysis recently presented in the B-spline literature [13,14], framing the

polynomial case in a wider setting, and gives a further evidence of the structural similarities

between polynomial, hyperbolic and trigonometric GB-splines.

The analysis carried out in this paper deeply relies on certain Fourier properties of (car-

dinal) GB-splines, which are not yet known in the literature. They are combined with the

powerful theory of GLT sequences (also used in [13] and in a simplified form in [14]). This

theory can be applied to any local discretization technique for differential problems [16,29],

and turns out to be very effective in the IgA GB-spline setting.

The paper is organized as follows. Section 2 presents the univariate problem setting and

provides some preliminaries on GB-splines and on the corresponding Galerkin discretiza-

tions. Section 3 is devoted to the definition and main properties of cardinal GB-splines and

of some functions (which will play the role of symbols) based on them. These functions

are used in Section 4 to describe the spectral distribution of the stiffness and mass matrices

arising from Galerkin IgA discretizations based on hyperbolic and trigonometric splines,

considering both nested and non-nested spaces. The Galerkin approximation of the eigen-

values of the univariate Laplace operator by means of trigonometric splines is addressed

in Section 5, with a special focus on non-nested spaces and on the selection of their phase

parameter. In Section 6 we study the spectral distribution of the stiffness matrices in the

multivariate setting. Some concluding remarks are collected in Section 7.
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2 Problem setting and preliminaries

In this section we describe our univariate model differential problems and the Galerkin ap-

proximation based on generalized spline spaces. To make the paper as self-contained as

possible, we also briefly recall some definitions and theorems on spectral analysis which

will be used later on to derive our main results.

2.1 Model problems

In this paper two univariate model problems are considered: a second order linear elliptic

differential problem with constant coefficients and an eigenvalue problem for the Laplace

operator.

2.1.1 Linear elliptic differential problem

As our first model problem we consider the following second order linear elliptic differential

equation with constant coefficients and homogeneous Dirichlet boundary conditions:


− u′′ + βu′ + γu = f, 0 < x < 1,

u(0) = 0, u(1) = 0,
(1)

with f ∈ L2((0,1)), β ∈ R, γ ≥ 0. The weak form of problem (1) reads as follows: find

u ∈ V := H1
0

((0,1)) such that

a(u,v) = F(v), ∀v ∈ V , (2)

where

a(u,v) :=

∫ 1

0

(u′(x)v′(x) + βu′(x)v(x) + γu(x)v(x)) dx, F(v) :=

∫ 1

0

f(x)v(x) dx.

Following the Galerkin approach, we choose a finite dimensional subspaceW ⊂ V and we

look for a function uW ∈ W such that

a(uW ,v) = F(v), ∀v ∈ W . (3)

If we fix a basis {ϕ1, . . . , ϕN } forW where N := dimW , then each element inW can be

written as a linear combination of this basis. So, the Galerkin problem (3) is equivalent to

finding a vector u ∈ RN such that

Au = f, (4)

where A :=
[
a(ϕ j , ϕi )

]N
i, j=1

is the stiffness matrix and f :=
[

F(ϕi )
]N
i=1. The matrix A is

positive definite in the sense that vT Av > 0, ∀v ∈ RN \{0}. In particular, A is non-singular

and so there exists a unique solution u of (4). Note that A is symmetric only when β = 0.
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The matrix A can be decomposed into a sum of three matrices related to the diffusion,

advection and reaction terms. More precisely, A = K + βH + γM , where

K :=

[∫ 1

0

ϕ′j (x)ϕ′i (x) dx

] N

i, j=1

, (5)

H :=

[∫ 1

0

ϕ′j (x)ϕi (x) dx

] N

i, j=1

, (6)

M :=

[∫ 1

0

ϕ j (x)ϕi (x) dx

]N

i, j=1

. (7)

The matrices K and M are symmetric non-singular matrices and the matrix H is a skew-

symmetric matrix.

In IgA the space W is usually chosen as a spline space with high (often maximal)

continuity. In this paper we are going to construct the matrix A in the case where W is

the space spanned by GB-splines. After the construction of the matrix A, we will study its

spectral properties.

2.1.2 An eigenvalue problem

As our second model problem we consider the following eigenvalue problem for the uni-

variate Laplace operator:

− u′′ = ω2u, 0 < x < 1,

u(0) = 0, u(1) = 0,
(8)

whose non-trivial exact solutions are

uk (x) := sin(ωk x), ωk := kπ, k = 1,2, . . .

The weak form of problem (8) reads as follow: find non-trivial u ∈ V and ω2 such that

∫ 1

0

u′(x)v′(x) dx − ω2

∫ 1

0

u(x)v(x) dx = 0, ∀v ∈ V .

Following the Galerkin approach, we choose a subspace W of V spanned by the basis

{ϕ1, . . . , ϕN }, and using the same notation as in (4)–(7), we find approximate values ω2
W

to

ω2 by solving

Ku = ω2
W

Mu.

This means that ω2
W

is an eigenvalue of the matrix L := M−1K . Therefore, the N eigenval-

ues of the matrix L, denoted by

ω2
k,W

, k = 1, . . . ,N,

are an approximation of the first N eigenvalues of the problem (8), namely

ω2
k = (kπ)2, k = 1, . . . ,N. (9)

In this paper we will consider a Galerkin discretization based on GB-splines and we

will analyze the resulting approximate solution by means of the spectral properties of the

matrices K and M already considered in the Galerkin discretization of (2).
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2.2 GB-splines

For p,n ≥ 1, we consider the uniform knot set

{t1, . . . , tn+2p+1} :=

{

0, . . . ,0
︸  ︷︷  ︸

p+1

,
1

n
,
2

n
, . . . ,

n − 1

n
,1, . . . ,1
︸  ︷︷  ︸

p+1

}

, (10)

and the space

PU,V
p := 〈1, x, . . . , xp−2,U (x),V (x)〉, x ∈ [0,1]. (11)

The functions U,V ∈ Cp−1[0,1] are such that {U (p−1) , V (p−1) } is a Chebyshev system on

[ti , ti+1], i.e., any non-trivial element in the space 〈U (p−1) ,V (p−1)〉 has at most one zero in

[ti , ti+1], i = p + 1, . . . ,p + n. We denote by Ũi ,Ṽi the unique elements in 〈U (p−1) ,V (p−1)〉

satisfying

Ũi (ti ) = 1, Ũi (ti+1) = 0, Ṽi (ti ) = 0, Ṽi (ti+1) = 1, i = p + 1, . . . ,p + n.

Popular examples of such a space (11) are

Pp := 〈1, x, . . . , xp−2, xp−1, xp〉, (12)

Hp,α := 〈1, x, . . . , xp−2,cosh(αx),sinh(αx)〉, 0 < α ∈ R, (13)

Tp,α := 〈1, x, . . . , xp−2,cos(αx),sin(αx)〉, 0 < α(ti+1 − ti ) < π. (14)

We are interested in spaces of smooth functions belonging piecewisely to spaces of the

form (11). Therefore, the space (11) is referred to as section space. The generalized spline

space of degree p over the knot set (10) with sections in (11) is defined by

SU,V
n,p :=

{

s ∈ Cp−1([0,1]) : s |[ i
n
, i+1

n

) ∈ PU,V
p , i = 0, . . . ,n − 1

}

. (15)

Generalized spline spaces consisting of the particular section spaces (12), (13) and (14) are

referred to as polynomial, hyperbolic (or exponential) and trigonometric spline spaces (with

phase α), respectively.

Hyperbolic and trigonometric splines allow for an exact representation of conic sec-

tions as well as some transcendental curves (helix, cycloid, . . . ). They are attractive from a

geometrical point of view. Indeed, they are able to provide parameterizations of conic sec-

tions with respect to the arc length so that equally spaced points in the parameter domain

correspond to equally spaced points on the described curve.

For fixed values of the involved parameters, the spaces (13) and (14) have the same

approximation power as the polynomial space Pp , see [6, Section 3].

Definition 1 The GB-splines of degree p over the knot set (10) with sections in (11) are

denoted by N
U,V
i,p

: [0,1]→ R, i = 1, . . . ,n + p, and are defined recursively as follows1. For

p = 1,

N
U,V

i,1
(x) :=



Ṽi (x), if x ∈ [ti , ti+1),

Ũi+1 (x), if x ∈ [ti+1, ti+2),

0, elsewhere,

1 The functions N
U,V
i,1

may also depend on p because of the definition of Ũi, Ṽi , but we omit the param-

eter p in order to avoid a heavier notation. Moreover, in the most interesting cases (polynomial, hyperbolic

and trigonometric GB-splines) the functions N
U,V
i,1

are independent of p.
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and for p ≥ 2,

N
U,V
i,p

(x) := δ
U,V

i,p−1

∫ x

0

N
U,V

i,p−1
(s) ds − δ

U,V

i+1,p−1

∫ x

0

N
U,V

i+1,p−1
(s) ds,

where

δ
U,V
i,p

:=

(∫ 1

0

N
U,V
i,p

(s) ds

)−1

.

Fractions with zero denominators are considered to be zero, and N
U,V
i,p

(1) := limx→1− N
U,V
i,p

(x).

It is well known (see, e.g., [23]) that the GB-splines N
U,V

1,p
, . . . ,N

U,V
n+p,p form a basis for the

generalized spline space S
U,V
n,p . The functions N

U,V
i,p

are non-negative and locally supported,

namely

supp
(

N
U,V
i,p

)

= [ti , ti+p+1], i = 1, . . . ,n + p.

Moreover,

N
U,V
i,p

(0) = N
U,V
i,p

(1) = 0, i = 2, . . . ,n + p − 1.

For p ≥ 2 the GB-splines N
U,V
i,p

, i = 1, . . . ,n + p, form a partition of unity on [0,1].

Remark 1 Hyperbolic and trigonometric GB-splines (with sections in the spaces (13) and

(14), respectively) approach the classical (polynomial) B-splines of the same degree and

over the same knot set when the phase parameter α approaches 0.

Remark 2 GB-splines can be defined in a more general setting than Definition 1. In partic-

ular, completely general knot sets can be considered and the section space can be chosen

differently on each knot interval [ti , ti+1]; see, e.g., [23].

2.3 Galerkin GB-spline approximation

We approximate the weak solution u of our problems (1) and (8) by means of the Galerkin

method, and we choose the approximation space W to be a space of smooth generalized

spline functions as in (15) vanishing at the two ends of the unit interval. More precisely, for

p ≥ 2, n ≥ 1 we set

WU,V
n,p :=

{
s ∈ SU,V

n,p : s(0) = s(1) = 0
}
. (16)

We have dimW
U,V
n,p = n + p − 2, and the spaceW

U,V
n,p is spanned by the set of GB-splines

{N
U,V

2,p
, . . . ,N

U,V

n+p−1,p
}.

The stiffness matrix A in (4) identified by such a basis is the object of our interest and,

from now onwards, will be denoted by A
U,V
n,p in order to emphasize its dependence on n, p

and on the functions U,V :

AU,V
n,p := A =

[
a
(

N
U,V
j+1,p

,N
U,V
i+1,p

)]n+p−2

i, j=1
. (17)

Due to the compact support of the GB-spline basis, the matrix A
U,V
n,p has a (2p + 1)-band

structure. Referring to (5)–(7), we consider the following decomposition of the matrix,

AU,V
n,p = nKU,V

n,p + βHU,V
n,p +

γ

n
MU,V

n,p ,
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where

nKU,V
n,p :=

[∫ 1

0

(

N
U,V

j+1,p

) ′
(x)

(

N
U,V

i+1,p

) ′
(x) dx

]n+p−2

i, j=1

, (18)

HU,V
n,p :=

[∫ 1

0

(

N
U,V
j+1,p

) ′
(x) N

U,V
i+1,p

(x) dx

]n+p−2

i, j=1

, (19)

1

n
MU,V

n,p :=

[∫ 1

0

N
U,V

j+1,p
(x) N

U,V

i+1,p
(x) dx

]n+p−2

i, j=1

. (20)

In view of the eigenvalue problem (8), we need to determine the values ω2
k,W

, k =

1, . . . ,n + p − 2, as the eigenvalues of the matrix

LU,V
n,p := n2 (MU,V

n,p

)−1
KU,V
n,p . (21)

The goal of this paper is to analyze the spectral properties of the matrices A
U,V
n,p and

L
U,V
n,p , mainly in the special case of hyperbolic and trigonometric splines.

2.4 Preliminaries on spectral analysis

For any matrix X ∈ Cm×m , σ(X ) is the collection of its eigenvalues and ρ(X ) is its spec-

tral radius. The 2-norm of X is given by ‖X ‖ :=
√

ρ(X∗X ) = s1(X ), where s1(X ) is

the maximum singular value of X . The trace norm (or Schatten 1-norm of X) is given by

‖X ‖1 :=
∑m

j=1 s j (X ), i.e., the sum of the singular values of the matrix. Since the number

of non-zero singular values of X is precisely rank(X ), it follows that, for all X ∈ Cm×m ,

‖X ‖1 ≤ rank(X )‖X ‖ ≤ m‖X ‖.

We now introduce some fundamental definitions and theorems for developing our spec-

tral analysis. We first define the concept of (asymptotic) spectral distribution of a sequence

of matrices. We denote by µd the Lebesgue measure in Rd , and by Cc (C,C) the space of

continuous functions F : C→ C with compact support.

Definition 2 Let {Xn } be a sequence of matrices with strictly increasing dimension dn ,

and let f : D → C be a measurable function, with D ⊂ Rd measurable and such that

0 < µd (D) < ∞. We say that {Xn } is distributed like f in the sense of the eigenvalues, and

we write {Xn } ∼λ f , if

lim
n→∞

1

dn

dn∑

j=1

F(λ j (Xn )) =
1

µd (D)

∫

D

F( f (x1, . . . , xd )) dx1 · · · dxd , ∀F ∈ Cc (C,C).

The function f is referred to as the symbol of the sequence of matrices {Xn }.

Remark 3 The informal meaning behind the above definition is the following. If f is con-

tinuous and n is large enough then the spectrum of Xn behaves like a uniform sampling of

f over D. For instance, if d = 1, dn = n, and D = [a,b], then the eigenvalues of Xn are

approximately equal to f (a + j (b − a)/n), j = 1, . . . ,n, for n large enough.

In the next definition we consider the concept of spectral clustering of a sequence of

matrices at a subset of C.
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Definition 3 Let {Xn } be a sequence of matrices with strictly increasing dimension, and let

S ⊆ C be a non-empty closed subset of C. We say that {Xn } is strongly clustered at S if the

following condition is satisfied:

∀ε > 0, ∃Cε and ∃nε : ∀n ≥ nε , qn (ε) ≤ Cε ,

where qn (ε) is the number of eigenvalues of Xn lying outside the ε-expansion Sε of S, i.e.,

Sε :=
⋃

s∈S

[Re s − ε,Re s + ε] × [Im s − ε, Im s + ε].

The next theorem gives sufficient conditions for a sequence of matrices to have a given

spectral distribution and to be strongly clustered [17].

Theorem 1 Let f : D ⊂ Rd → R be a measurable function defined on the measurable set

D with 0 < µd (D) < ∞. Let {Xn } and {Yn} be two sequences of matrices with Xn ,Yn ∈

Cdn×dn , and dn < dn+1 for all n, such that

– Xn is Hermitian for all n;

– {Xn } ∼λ f and {Xn } is strongly clustered at the essential range of f ;

– there exists a constant C so that ‖Xn ‖, ‖Yn‖1 ≤ C for all n.

Set Zn := Xn + Yn. Then, {Zn } ∼λ f , and {Zn } is strongly clustered at the essential

range of f .

A Toeplitz matrix is a square matrix whose entries are constant along each diagonal.

Given a univariate function f : [−π,π] → R belonging to L1([−π,π]), we can associate to

f a family (sequence) of Hermitian Toeplitz matrices {Tm ( f )} parameterized by the integer

index m and defined for all m ≥ 1 in the following way:

Tm ( f ) :=



f0 f−1 · · · · · · f−(m−1)

f1

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . f−1

fm−1 · · · · · · f1 f0



∈ Cm×m ,

where

fk :=
1

2π

∫ π

−π

f (θ)e−ikθdθ, k ∈ Z,

are the Fourier coefficients of f . The function f is called the generating function of Tm ( f ).

The next theorem is one of the most important results concerning sequences of Toeplitz

matrices. The second statement was originally proved by Szegö [18] and generalized in [32],

by using linear algebra tools.

Theorem 2 Let f ∈ L1([−π,π]) be a real-valued function, and let m f := ess inf f , Mf :=

ess sup f , and suppose m f < Mf . Then,

– σ(Tm ( f )) ⊂ (m f ,Mf ), ∀m ≥ 1;

– {Tm ( f )} ∼λ f .
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Finally, we recall the following result about the 2-norm and the trace norm of Toeplitz

matrices. This is a simplified version of [31, Corollary 4.2] where general Schatten q-norms

of Toeplitz matrices are addressed.

Theorem 3 If f ∈ L∞([−π,π]) then

‖Tm ( f )‖ ≤ ‖ f ‖L∞([−π,π]) .

If f ∈ L1([−π,π]) then

‖Tm ( f )‖1 ≤ m‖ f ‖L1([−π,π]) .

3 Cardinal GB-splines and symbols

In this section we focus on the space

〈1, t, . . . , tp−2,U (t),V (t)〉, t ∈ [0,1], (22)

where U,V ∈ Cp−1[0,p + 1] are such that {U (p−1) , V (p−1) } is a Chebyshev system on [0,1].

We denote by Ũ ,Ṽ the unique elements in the space 〈U (p−1) ,V (p−1)〉 satisfying

Ũ (0) = 1, Ũ (1) = 0, Ṽ (0) = 0, Ṽ (1) = 1. (23)

Definition 4 The (normalized) cardinal GB-spline of degree p ≥ 1 over the uniform knot

set {0,1, . . . ,p + 1} with sections in (22) is denoted by φ
U,V
p and is defined recursively as

follows. For p = 1,

φ
U,V

1
(t) := δ

U,V

1



Ṽ (t), if t ∈ [0,1),

Ũ (t − 1), if t ∈ [1,2),

0, elsewhere,

(24)

where δ
U,V
1

is a normalization factor given by

δ
U,V

1
:=

(∫ 1

0

Ṽ (s) ds +

∫ 2

1

Ũ (s − 1) ds

)−1

.

For p ≥ 2,

φU,V
p (t) :=

∫ t

0

(φ
U,V

p−1
(s) − φ

U,V

p−1
(s − 1)) ds. (25)

The cardinal GB-splines of degree p are the set of integer translates of φ
U,V
p , namely

{φ
U,V
p (· − k), k ∈ Z}.

If the space (22) is the space of algebraic polynomials of degree less than or equal to

p, i.e. U (t) = tp−1 and V (t) = tp , then the function defined in Definition 4 is the classical

(polynomial) cardinal B-spline of degree p, denoted by φp . The properties of the cardinal

GB-spline listed in the next subsection generalize those of φp ; see, e.g., [14, Section 3.1].



Spectral analysis of matrices in Galerkin methods based on GB-splines 11

3.1 Properties of cardinal GB-splines

The cardinal GB-spline φ
U,V
p is globally of class Cp−1, and possesses some fundamental

properties. Many of them are well established in the literature (see, e.g., [23]), so we prove

only the less known ones:

– Positivity:

φU,V
p (t) > 0, t ∈ (0,p + 1).

– Minimal support:

φU,V
p (t) = 0, t < (0,p + 1). (26)

– Partition of unity:

∑

k ∈Z

φU,V
p (t − k) =

p∑

k=1

φU,V
p (k) = 1, p ≥ 2. (27)

– Recurrence relation for derivatives:

(

φU,V
p

) (r )
(t) =

(

φ
U,V

p−1

) (r−1)
(t) −

(

φ
U,V

p−1

) (r−1)
(t − 1), 1 ≤ r ≤ p − 1. (28)

Proof Differentiating once the recurrence formula gives

(

φU,V
p

) (1)
(s) = φ

U,V

p−1
(s) − φ

U,V

p−1
(s − 1).

The formula (28) simply follows by differentiating r times. ⊓⊔

– Conditional symmetry with respect to
p+1

2
:

φU,V
p

(
p + 1

2
+ t

)

= φU,V
p

(
p + 1

2
− t

)

if φ
U,V

1
(1 + t) = φ

U,V

1
(1 − t). (29)

Proof For p = 1 there is nothing to prove. We proceed by induction on p. By using the

recurrence formula in (25), we get

φU,V
p

(
p + 1

2
+ t

)

− φU,V
p

(
p + 1

2
− t

)

=

∫ p+1
2
+t

0

φ
U,V

p−1
(s) − φ

U,V

p−1
(s − 1) ds −

∫ p+1
2
−t

0

φ
U,V

p−1
(s) − φ

U,V

p−1
(s − 1) ds =

∫ p+1
2
+t

p+1
2
−t

φ
U,V
p−1

(s) − φ
U,V
p−1

(s − 1) ds = 0.

The last equality follows from the induction hypothesis that φ
U,V

p−1
is symmetric with

respect to p/2. ⊓⊔

– Convolution relation:

φU,V
p (t) =

(

φ
U,V

p−1
∗ φ0

)

(t) :=

∫

R

φ
U,V

p−1
(t − s)φ0(s) ds =

∫ 1

0

φ
U,V

p−1
(t − s) ds, p ≥ 2,

(30)

where φ0(t) := χ[0,1) (t). Moreover,

φU,V
p (t) =

(

φ
U,V
1
∗ φ0 ∗ · · · ∗ φ0

︸         ︷︷         ︸
p−1

)

(t), φp (t) =
(

φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p+1

)

(t), p ≥ 1. (31)
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Proof By comparing the recurrence formula (25) with the relation (30), it is equivalent

to prove that

∫ 1

0

φ
U,V

p−1
(t − s) ds =

∫ t

0

(

φ
U,V

p−1
(s) − φ

U,V

p−1
(s − 1)

)

ds.

Moreover, for every f integrable, it holds

∫ 1

0

f (t − s) ds −

∫ t

0

( f (s) − f (s − 1)) ds =

∫ 0

−1

f (s) ds.

The GB-spline has its support contained in the positive semi-axis (see (26)), so we have
∫ 0

−1
φ
U,V

p−1
(s) ds = 0, which completes the proof of (30). Since φ1(t) = φ0(t) ∗ φ0(t) and

applying recursively (30), we immediately get the relations in (31). ⊓⊔

– Inner products:
∫

R

φU1,V1
p1

(t) φU2,V2
p2

(t + k) dt =
(

φ
U1,V1

1
∗ φ

U2,V2

1
∗ φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p1+p2−2

)

(p2 + 1 − k), (32)

if φ
U2,V2

1
(1 + t) = φ

U2,V2

1
(1 − t). In particular,

∫

R

φU,V
p1

(t) φp2
(t + k) dt =

(

φ
U,V

1
∗ φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p1+p2

)

(p2 + 1 − k) = φ
U,V

p1+p2+1
(p2 + 1 − k),

∫

R

φp1
(t) φp2

(t + k) dt =
(

φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p1+p2+2

)

(p2 + 1 − k) = φp1+p2+1(p2 + 1 − k).

Proof These results follow immediately from the symmetry property (29) and the con-

volution relation (31) of cardinal GB-splines. More precisely,
∫

R

φU1,V1
p1

(t) φU2,V2
p2

(t + k) dt =

∫

R

φU1,V1
p1

(t) φU2,V2
p2

(p2 + 1 − t − k) dt

=
(

φU1,V1
p1

∗ φU2,V2
p2

)

(p2 + 1 − k)

=
(

φ
U1,V1

1
∗ φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p1−1

∗φ
U2,V2

1
∗ φ0 ∗ · · · ∗ φ0
︸         ︷︷         ︸

p2−1

)

(p2 + 1 − k),

which implies (32). ⊓⊔

– Unity of integral:
∫ p+1

0

φU,V
p (t) dt = 1. (33)

Proof For p = 1 it is true by construction. We proceed by induction on p. For p ≥ 2 we

set

δU,V
p :=

(∫

R

φU,V
p (t) dt

)−1

,

and we need to prove that δ
U,V
p = 1, which is equivalent to (33) due to the local support

property (26). Using the convolution relation (30) we can write

(

δU,V
p

)−1
=

∫

R

φU,V
p (t) dt =

∫

R

∫ 1

0

φ
U,V

p−1
(t − s) dsdt .
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Thanks to the local support of the cardinal GB-spline, we can swap the order of the

integrals and we get

(

δU,V
p

)−1
=

∫ 1

0

∫

R

φ
U,V

p−1
(t − s) dtds =

∫ 1

0

∫

R

φ
U,V

p−1
(z) dzds.

From the definition of δ
U,V
p and the inductive hypothesis, it follows that

(

δU,V
p

)−1
=

∫ 1

0

(

δ
U,V

p−1

)−1
ds = 1.

⊓⊔

In the following, we will focus in particular on hyperbolic and trigonometric cardinal

GB-splines with real phase parameters α. The hyperbolic cardinal GB-spline is denoted by

φ
Hα
p and is defined by taking U (t) := cosh(αt) and V (t) := sinh(αt). In this case, we have

Ũ (t) =
sinh(α(1 − t))

sinh(α)
, Ṽ (t) =

sinh(αt)

sinh(α)
, (34)

satisfying (23). The trigonometric cardinal GB-spline is denoted by φ
Tα
p and is defined by

taking U (t) := cos(αt) and V (t) := sin(αt). In this case, we have

Ũ (t) =
sin(α(1 − t))

sin(α)
, Ṽ (t) =

sin(αt)

sin(α)
, (35)

satisfying (23). To simplify the notation, we will also use the notation φ
Qα
p if a statement

holds for both φ
Hα
p and φ

Tα
p , but not necessarily for an arbitrary φ

U,V
p .

Remark 4 Referring to Remark 1, hyperbolic and trigonometric cardinal GB-splines ap-

proach the (polynomial) cardinal B-spline of the same degree as the phase parameter α

approaches 0, i.e.,

lim
α→0

φ
Qα
p (t) = φp (t), Q = H,T.

Remark 5 The symmetry requirement φ
U,V
1

(1 + t) = φ
U,V
1

(1 − t) in (29) is equivalent to

Ṽ (t) = Ũ (1 − t), t ∈ [0,1].

This requirement is satisfied for hyperbolic and trigonometric cardinal GB-splines, see (34)–

(35), as well as for (polynomial) cardinal B-splines.

Remark 6 Taking into account the local support (26) and the unity of integral (33), we see

that Definition 4 is in agreement with Definition 1 for p ≥ 2. In particular, let

{

N
Qα

i,p
: i = 1, . . . ,n + p

}

, Q = H,T,

be a set of either hyperbolic or trigonometric GB-splines of degree p defined over the knot

set (10) with sections in either (13) or (14), respectively. Then we have

N
Qα

i,p
(x) = φ

Qα/n

p (nx − i + p + 1), i = p + 1, . . . ,n, p ≥ 2.

This equality does not hold for p = 1 because of the integral normalization factor δ
U,V
1

in

(24). However, this normalization factor ensures that the convolution relation (30) holds for

all cardinal GB-splines.
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3.2 Fourier transform of cardinal GB-splines

The Fourier transform of φ0(t) := χ[0,1) (t) is given by

φ̂0(θ) =
1 − e−iθ

iθ
,

and by using the convolution relation (31), we can write the Fourier transform of the cardinal

GB-spline φ
U,V
p as

φ̂
U,V
p (θ) = φ̂

U,V

1
(θ)

(

1 − e−iθ

iθ

)p−1

. (36)

Moreover, for the hyperbolic case, it can be checked that

φ̂
Hα

1
(θ) =

(

α2

cosh(α) − 1

) (

cosh(α) − cos(θ)

θ2 + α2

)

e−iθ , α ∈ R, (37)

and for the trigonometric case,

φ̂
Tα

1
(θ) =

(

α2

1 − cos(α)

) (

cos(α) − cos(θ)

θ2 − α2

)

e−iθ , α ∈ (0, π), (38)

in which, if θ = α, we take the limit θ → α. Note that

φ̂1(θ) =

(

1 − e−iθ

iθ

)2

= 2

(

1 − cos(θ)

θ2

)

e−iθ = lim
α→0

φ̂
Qα

1
(θ), (39)

which is in agreement with Remark 4.

We now provide some lower bounds on the modulus of the Fourier transforms of the

hyperbolic and trigonometric cardinal GB-splines, which will be useful later on.

Lemma 1 We have

���φ̂
Hα
p (θ)

���
2
≥

(

α2

cosh(α) − 1

)2 (

cosh(α) + 1

π2 + α2

)2 (

4

π2

)p−1

, (40)

and

���φ̂
Tα
p (θ)

���
2
≥

(

α2

1 − cos(α)

)2 (

cos(α) + 1

π2 − α2

)2 (

4

π2

)p−1

. (41)

Proof We just prove the hyperbolic case, because the trigonometric case can be addressed

with similar arguments. From (37) we obtain

���φ̂
Hα

1
(θ)

���
2
≥

(

α2

cosh(α) − 1

)2 (

cosh(α) + 1

π2 + α2

)2

.

Moreover, since

��φ̂0(θ)��2 =
2 − 2 cos(θ)

θ2
≥

4

π2
,

we deduce the lower bound (40) from (36). ⊓⊔

Taking into account (39), for α → 0 the lower bounds (40)–(41) reduce to the lower

bound for the polynomial case considered in [14, Eq. (24)].
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3.3 Symbols

In this subsection we study the properties of the generating functions of some Toeplitz ma-

trices which will play an important role in later sections.

We define the following functions in terms of cardinal GB-splines:

fU,V
p : [−π,π]→ R, fU,V

p (θ) :=

p∑

k=−p

(∫

R

φ̇U,V
p (t) φ̇U,V

p (t − k) dt

)

eikθ , (42)

hU,V
p : [−π,π]→ R, hU,V

p (θ) :=

p∑

k=−p

(∫

R

φU,V
p (t) φU,V

p (t − k) dt

)

eikθ , (43)

where φ̇
U,V
p (t) denotes the derivative of φ

U,V
p (t) with respect to t. Note that both functions

f
U,V
p and h

U,V
p are even real trigonometric polynomials. They can also be expressed in the

following form

fU,V
p (θ) =

p∑

k=−p

(∫

R

φ̇U,V
p (t) φ̇U,V

p (t − k) dt

)

cos(kθ),

hU,V
p (θ) =

p∑

k=−p

(∫

R

φU,V
p (t) φU,V

p (t − k) dt

)

cos(kθ).

The corresponding functions in terms of (polynomial) cardinal B-splines are denoted by f p
and hp (see also [14]), that is

f p (θ) :=

p∑

k=−p

(∫

R

φ̇p (t) φ̇p (t − k) dt

)

eikθ =

p∑

k=−p

(∫

R

φ̇p (t) φ̇p (t − k) dt

)

cos(kθ),

hp (θ) :=

p∑

k=−p

(∫

R

φp (t) φp (t − k) dt

)

eikθ =

p∑

k=−p

(∫

R

φp (t) φp (t − k) dt

)

cos(kθ).

We also recall the following result from [5, Theorem 2.28].

Theorem 4 Let ψ ∈ L2(R) and its Fourier transform ψ̂ satisfy

ψ(t) = O( |t |−a ), a > 1, as |t | → ∞, (44)

and

ψ̂(θ) = O( |θ |−b ), b >
1

2
, as |θ | → ∞. (45)

Then,
∑

k ∈Z

(∫

R

ψ(t − k)ψ(t) dt

)

eikθ =
∑

k ∈Z

|ψ̂(θ + 2kπ) |2, ∀θ ∈ [−π,π]. (46)

In the following, we will assume that U and V are chosen such that (44) and (45) are

satisfied for both ψ = φ
U,V
p and ψ = φ̇

U,V
p . The hyperbolic case (34) and the trigonometric

case (35) satisfy these conditions.

The next two lemmas provide some properties of the functions defined in (42) and (43).

Lemma 2 Let p ≥ 2 and let h
U,V
p be defined as in (43). Then the following properties hold.
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1. ∀θ ∈ [−π,π],

hU,V
p (θ) =

∑

k ∈Z

���φ̂
U,V
p (θ + 2kπ)

���
2
. (47)

2. For Q = H,T,

min
θ∈[−π,π]

h
Qα
p (θ) ≥ CQα

(

4

π2

)p−1

, (48)

where

CHα :=

(

α2

cosh(α) − 1

)2 (

cosh(α) + 1

π2 + α2

)2

,

CTα :=

(

α2

1 − cos(α)

)2 (

cos(α) + 1

π2 − α2

)2

.

3.

max
θ∈[−π,π]

hU,V
p (θ) = hU,V

p (0) = 1. (49)

Proof The first statement immediately follows from (43) and (46) with ψ = φ
U,V
p . To obtain

the second statement, we simply observe that from (47) we have

hU,V
p (θ) ≥

���φ̂
U,V
p (θ)

���
2
.

Then the lower bound in (48) is obtained by means of (40)–(41). Finally, we prove the third

statement. Combining (46), the partition of unity (27) and the unity of integral (33) gives

��hU,V
p (θ)�� ≤

p∑

k=−p

(∫

R

φU,V
p (t) φU,V

p (t − k) dt

)

|eikθ |

=

p∑

k=−p

∫ p+1

0

φU,V
p (t) φU,V

p (t − k) dt

=

∫ p+1

0

φU,V
p (t)

p∑

k=−p

φU,V
p (t − k) dt =

∫ p+1

0

φU,V
p (t) dt = 1.

Moreover, with the same line of arguments, it is easy to check that h
U,V
p (0) = 1. ⊓⊔

Remark 7 The properties stated in Lemma 2 extend to h
Qα

1
, Q = H,T as follows:

– the relation (47) holds for h
Qα

1
;

– the lower bound (48) holds for h
Qα

1
because (40) and (41) are still valid;

– the partition of unity (27) does not hold for p = 1 in general, but maxθ∈[−π,π] h
Qα

1
(θ) =

h
Qα

1
(0), and by direct computation we get the bounds

1 < h
Hα

1
(0) ≤ 1 +

α4

720
, 1 < h

Tα

1
(0) ≤ 1 +

α4

π4

(

π2

8
− 1

)

.

Figure 1 (left) shows some examples of hp , h
Hα
p and h

Tα
p . In the following, we will also

use the notation

m
h
Qα
p

:= min
θ∈[−π,π]

h
Qα
p (θ), Q = H,T.
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Fig. 1 From Top to Bottom. Left: plots of hp , h
H10
p , h

Tπ/2
p . Right: normalized plots of fp , f

H10
p , f

Tπ/2
p .

Black: p = 2, blue: p = 3, red: p = 4, magenta: p = 5.

Lemma 3 Let p ≥ 3 and let f
U,V
p be defined as in (42). Then the following properties hold.

1. ∀θ ∈ [−π,π],

fU,V
p (θ) = (2 − 2 cos(θ))

∑

k ∈Z

���φ̂
U,V

p−1
(θ + 2kπ)

���
2
= (2 − 2 cos(θ)) h

U,V

p−1
(θ). (50)

2. For Q = H,T,

f
Qα
p (θ) ≥ (2 − 2 cos(θ)) CQα

(

4

π2

)p−2

, (51)

f
Qα
p (θ) ≤ min

(

2 − 2 cos(θ), (2 − 2 cos(θ))p−1

(

1

θ2p−4
+

1

6π2p−6

))

, (52)

where CQα is specified in (48).
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3. minθ∈[−π,π] f
Qα
p (θ) = f

Qα
p (0) = 0, and θ = 0 is the unique zero of f

Qα
p over [−π,π].

4. maxθ∈[−π,π] f
Qα
p (θ) → 0 as p→ ∞.

Proof The first equality in (50) can be proved as follows. From (36) we obtain for p ≥ 2,

φ̂
U,V
p (θ) =

(

1 − e−iθ

iθ

)

φ̂
U,V

p−1
(θ),

and by using the derivative rule of the Fourier transform, we get

̂̇
φ
U,V
p (θ) = iθ φ̂

U,V
p (θ) = (1 − e−iθ ) φ̂

U,V
p−1

(θ).

By taking squared moduli and summing, this yields

∑

k ∈Z

���
̂̇
φ
U,V
p (θ + 2kπ)

���
2
= (2 − 2 cos(θ))

∑

k ∈Z

���φ̂
U,V

p−1
(θ + 2kπ)

���
2
. (53)

Then the first equality in (50) follows from (53) and (46) with ψ = φ̇
U,V
p . The second

equality can be immediately seen from (47).

Let us now consider the second statement. The lower bound in (51) follows from (50)

and (48). Similarly, the upper bound 2− 2 cos(θ) in (52) follows from (50) and (49). For the

other upper bound, we use the first expression of f
U,V
p in (50) together with (36)–(37) for

the hyperbolic case. More precisely, we have

���
E
φ
Hα

p−1
(θ + 2kπ)

���
2
=

(

2 − 2 cos(θ)

(θ + 2kπ)2

)p−2 (

α2

cosh(α) − 1

)2 (

cosh(α) − cos(θ)

(θ + 2kπ)2 + α2

)2

≤

(

2 − 2 cos(θ)

(θ + 2kπ)2

)p−2

,

resulting in

f Hα
p (θ) ≤

∑

k ∈Z

(2 − 2 cos(θ))p−1

(θ + 2kπ)2p−4
≤ (2 − 2 cos(θ))p−1

(

1

θ2p−4
+

1

6π2p−6

)

.

The trigonometric case can be addressed with a similar computation.

The third statement follows from the inequalities in (51)–(52). Finally, from the upper

bound in (52) we also obtain the fourth statement. ⊓⊔

Remark 8 The properties stated in Lemma 3 extend to f
Qα

2
, Q = H,T as follows:

– the relation (50) holds for f
Qα

2
;

– lower and upper bounds for f
Qα

2
can be obtained by considering the relation f

Qα

2
(θ) =

(2 − 2 cos(θ)) h
Qα

1
(θ) together with the bounds for h

Qα

1
given in Remark 7;

– the third statement holds for f
Qα

2
.
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Taking into account (36) together with the explicit expressions in (37)–(39), formula

(50) gives in the polynomial, hyperbolic and trigonometric case:

f p (θ) =
∑

k ∈Z

(2 − 2 cos(θ))p+1

(θ + 2kπ)2p
, (54)

f Hα
p (θ) =

∑

k ∈Z

(2 − 2 cos(θ))p−1

(θ + 2kπ)2p−4

(

α2

cosh(α) − 1

)2 (

cosh(α) − cos(θ)

(θ + 2kπ)2 + α2

)2

, (55)

f Tα
p (θ) =

∑

k ∈Z

(2 − 2 cos(θ))p−1

(θ + 2kπ)2p−4

(

α2

1 − cos(α)

)2 (

cos(α) − cos(θ)

(θ + 2kπ)2 − α2

)2

. (56)

Figure 1 (right) shows some examples of f p/Mfp , f
Hα
p /M

f
Hα
p

and f
Tα
p /M

f
Tα
p

, where

Mfp := max
θ∈[−π,π]

f p (θ), M
f
Qα
p

:= max
θ∈[−π,π]

f
Qα
p (θ), Q = H,T.

Referring to Remark 4, the results provided in Lemmas 2 and 3 also hold in the poly-

nomial case taking α → 0. Indeed, they generalize the results provided in [14, Lemmas 7

and 6]. From [14, Lemma 7] we recall that

(

4

π2

)p+1

≤ hp (θ) ≤ hp (0) = 1,

and from [14, Eq. (28)] that

f p (θ) ≥ (2 − 2 cos(θ))

(

4

π2

)p

, (57)

f p (θ) ≤ min

(

2 − 2 cos(θ), (2 − 2 cos(θ))p+1

(

1

θ2p
+

1

6π2p−2

))

. (58)

Lemma 4 The ratio f
Qα
p (π)/M

f
Qα
p

, Q = H,T converges exponentially to zero as p → ∞.

In particular, for p ≥ 3 it holds

f
Hα
p (π)

M
f
Hα
p

≤
f
Hα
p (π)

f
Hα
p (π/2)

≤

(

cosh(α) + 1

π2 + α2

)2 (

(π/2)2 + α2

cosh(α)

)2
π2

4
23−p ,

f
Tα
p (π)

M
f
Tα
p

≤
f
Tα
p (π)

f
Tα
p (π/2)

≤

(

cos(α) + 1

π2 − α2

)2 (

(π/2)2 − α2

cos(α)

)2
π2

4
23−p .

Proof We just prove the hyperbolic case, because the trigonometric case can be addressed

with similar arguments. From (55) we get

f Hα
p

(
π

2

)

=
23p−5

π2p−4

(

α2

cosh(α) − 1

)2 ∑

k ∈Z

1

(4k + 1)2p−4

(

cosh(α)

(π/2 + 2kπ)2 + α2

)2

≥
23p−5

π2p−4

(

α2

cosh(α) − 1

)2 (

cosh(α)

(π/2)2 + α2

)2

,
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and

f Hα
p (π) =

22p−2

π2p−4

(

α2

cosh(α) − 1

)2 ∑

k ∈Z

1

(2k + 1)2p−4

(

cosh(α) + 1

(π + 2kπ)2 + α2

)2

≤
22p−2

π2p−4

(

α2

cosh(α) − 1

)2 (

cosh(α) + 1

π2 + α2

)2 ∑

k ∈Z

1

(2k + 1)2p−4
.

Since
∑

k ∈Z(2k+1)−2p+4 ≤
∑

k ∈Z(2k+1)−2 = π2

4
for p ≥ 3, we obtain the stated bound. ⊓⊔

The exponential convergence to zero of f p (π) was already observed in [12]. In particu-

lar, an exact relation was provided for the polynomial case:

f p (π) = 22−p f p (π/2), p ≥ 1. (59)

Lemma 5 For p ≥ 2 and sufficiently large n, it holds

 f
Qα/n

p − f p
L1 ([−π,π])

≤ C n−2, Q = H,T, (60)

where C is a constant independent of n.

Proof We just prove the hyperbolic case, because the trigonometric case can be addressed

with similar arguments. From (54)–(55) we obtain

��� f
Hα/n

p (θ) − f p (θ)
��� ≤ (2 − 2 cos(θ))

∑

k ∈Z

(

2 − 2 cos(θ)

(θ + 2kπ)2

)p−2 ����r
H

(
α

n
, θ + 2kπ

) ���� ,

where

rH(ε,η) :=

(

ε2

cosh(ε) − 1

)2 (

cosh(ε) − cos(η)

η2 + ε2

)2

−

(

2 − 2 cos(η)

η2

)2

.

We consider the Taylor expansion of rH with respect to ε up to the second degree at the

point 0, i.e.,

ε2 (2 − 2 cos(η))(5η2 + (η2 + 12) cos(η) − 12)

3η6
=: ε2r̃H(η).

It can be verified that |r̃H(η) | ≤ 8 min(1, η−4). As a consequence, we have for sufficiently

small ε,

|rH(ε,η) | ≤ ε2C̃ min(1, η−4),

for some positive constant C̃ independent of ε and η. Moreover, we have

2 − 2 cos(θ) ≤ 4,
2 − 2 cos(θ)

(θ + 2kπ)2
≤

2 − 2 cos(θ)

θ2
≤ 1.

Using the previous bounds, we obtain for sufficiently large n,

��� f
Hα/n

p (θ) − f p (θ)
��� ≤ 4

( ����r
H

(
α

n
, θ

) ���� +
∑

k,0

����r
H

(
α

n
, θ + 2kπ

) ����

)

≤ 4

(
α

n

)2

C̃

(

1 +
∑

k,0

1

(θ + 2kπ)4

)

≤ 4

(
α

n

)2

C̃

(

1 +
2

π4

∑

k≥1

1

(2k − 1)4

)

≤ qCn−2,

which implies (60). ⊓⊔
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4 Spectral analysis in case of our linear differential problem

In this section we determine the (asymptotic) spectral distribution of the sequence of nor-

malized matrices
1

n
AU,V
n,p ,

as the mesh size 1/n tends to zero. We only consider hyperbolic and trigonometric GB-

spline discretizations because of their practical relevance. For the classical (polynomial)

B-spline case we refer the reader to the spectral analysis in [14]. To simplify the notation, in

agreement with the previous section, we denote by

{

N
Hα

i,p
: i = 1, . . . ,n + p

}

and
{

N
Tα

i,p
: i = 1, . . . ,n + p

}

the hyperbolic and trigonometric GB-splines of degree p defined over the knot set (10) with

sections in (13) and (14), respectively. A completely similar notation will be used for the

corresponding space (16) and the matrices in (17)–(20).

As already described in Remark 6, for Q = H,T the central basis functions N
Qµ

i,p
,i =

p + 1, . . . ,n can be expressed in terms of cardinal GB-splines, i.e.,

N
Qµ

i,p
(x) = φ

Qµ/n

p (nx − i + p + 1), i = p + 1, . . . ,n, p ≥ 2, (61)

and as a consequence,

(

N
Qµ

i,p

) ′
(x) = nφ̇

Qµ/n

p (nx − i + p + 1), i = p + 1, . . . ,n, p ≥ 2. (62)

In view of (61) two choices for the parameter µ are of interest when considering a

sequence of spacesW
Qµ

n,p , n → ∞.

– µ = α where α is a given real value. This is the most natural choice for Galerkin IgA

discretizations, because it generates a sequence of nested spacesW
Qα
n,p given a sequence

of nested knot sets. The basis functions in (61) are a scaled shifted version of a sequence

of cardinal hyperbolic/trigonometric GB-splines identified by a sequence of parameters

approaching 0 as n increases.

– µ = nα where α is a given real value. In this case, the basis functions in (61) are a scaled

shifted version of the same cardinal hyperbolic/trigonometric GB-spline for all n. The

corresponding spaces W
Qnα
n,p are not nested. Nevertheless, this discretization presents

some advantages for the treatment of eigenvalue problems, see Section 5. Moreover,

the analysis of the spectral properties of the sequence of matrices in (17) gives some

interesting insights into the spectrum of the corresponding matrices in the above (nested)

case for finite n, see Section 4.4.

In the following, we will address these two choices and will refer to them as the nested

and non-nested case, respectively. We recall that the parameter µ is constrained by the

Chebyshev structure of the section spaces (see (13) and (14)).

4.1 Galerkin matrices based on hyperbolic and trigonometric GB-splines

In view of the spectral analysis we intend to develop, we start by collecting some properties

of the stiffness matrix (17) in case of hyperbolic and trigonometric GB-splines.
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The central part of the matrix A
Qµ

n,p is only determined by the cardinal GB-splines in-

volved in (61). More precisely, for each k = 0,1, . . . ,p and i = 2p, . . . ,n−p−1, the non-zero

element in A
Qµ

n,p at row i and column i ± k can be expressed by

(

A
Qµ

n,p

)

i,i±k = a
(

N
Qµ

i+1±k,p
(x),N

Qµ

i+1,p
(x)

)

= a
(

φ
Qµ/n

p (nx − i + p ∓ k), φ
Qµ/n

p (nx − i + p)
)

= n
(

K
Qµ

n,p

)

i,i±k + β
(

H
Qµ

n,p

)

i,i±k +
γ

n

(

M
Qµ

n,p

)

i,i±k , (63)

where, from (18)–(20) and (61)–(62), we obtain for k = 0,1, . . . ,p and i = 2p, . . . ,n− p−1,

(

K
Qµ

n,p

)

i,i±k =

∫ p+1

0

φ̇
Qµ/n

p (t ∓ k)φ̇
Qµ/n

p (t) dt, (64)

(

H
Qµ

n,p

)

i,i±k =

∫ p+1

0

φ̇
Qµ/n

p (t ∓ k)φ
Qµ/n

p (t) dt, (65)

(

M
Qµ

n,p

)

i,i±k =

∫ p+1

0

φ
Qµ/n

p (t ∓ k)φ
Qµ/n

p (t) dt . (66)

The central rows of A
Qµ

n,p are defined as the rows with index ranging from 2p to n − p − 1.

These are the rows considered in (63). Since A
Qµ

n,p is of size (n + p − 2) × (n + p − 2), we

have to require n ≥ 3p + 1 if we want to ensure there is at least one central row.

Following the same line of arguments as in [14, Section 4.4], for every n ≥ 3p + 1, we

decompose the matrix K
Qµ

n,p into

K
Qµ

n,p = B
Qµ

n,p + R
Qµ

n,p , (67)

where B
Qµ

n,p is the symmetric (2p + 1)-band Toeplitz matrix whose generic central row is

given by (64). The matrix R
Qµ

n,p := K
Qµ

n,p − B
Qµ

n,p is a low-rank correction term. Indeed, R
Qµ

n,p

has at most 2(2p − 1) non-zero rows and so

rank
(

R
Qµ

n,p

)

≤ 2(2p − 1). (68)

In the next lemma we analyze the spectral properties of B
Qµ

n,p .

Lemma 6 For p ≥ 2 and n ≥ 3p + 1, it holds

B
Qµ

n,p = Tn+p−2

(

f
Qµ/n

p

)

with σ
(

B
Qµ

n,p

)

⊂
(

0,M
f
Qµ/n
p

)

, Q = H,T.

Proof From the definitions of B
Qµ

n,p and f
Qµ/n

p it follows that B
Qµ

n,p = Tn+p−2( f
Qµ/n

p ) for any

n ≥ 3p + 1. Hence, the statements are consequences of Theorem 2 and Lemma 3. ⊓⊔

We also recall that the matrix K
Qµ

n,p is symmetric, the matrix H
Qµ

n,p is skew-symmetric and

the matrix M
Qµ

n,p is symmetric. The next lemma gives a bound for the infinity norm of these

matrices. It extends the results in [14, Lemma 8] to the case of hyperbolic and trigonometric

GB-splines.
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Lemma 7 For p ≥ 2, it holds


1

n
M

Qµ

n,p
∞ ≤

p + 1

n
,

H
Qµ

n,p
∞ ≤ 2,

nK
Qµ

n,p
∞ ≤ Cp,α n, Q = H,T, µ = α,nα,

where Cp,α is a constant independent of n.

Proof The knot set (10) implies that the maximum length of the support of any N
Qµ

i,p
is

p+1

n
.

By the positivity property and the partition of unity property of GB-splines, we obtain


1

n
M

Qµ

n,p
∞ = max

i=1, ...,n+p−2

n+p−2∑

j=1

∫ 1

0

N
Qµ

j+1,p
(x) N

Qµ

i+1,p
(x) dx

= max
i=1, ...,n+p−2

∫ 1

0

(n+p−2∑

j=1

N
Qµ

j+1,p
(x)

)

N
Qµ

i+1,p
(x) dx

≤ max
i=1, ...,n+p−2

∫ 1

0

N
Qµ

i+1,p
(x) dx ≤

p + 1

n
.

Since H
Qµ

n,p is skew-symmetric, its infinity norm is equal to the infinity norm of its transpose.

Therefore, from Definition 1 we obtain

H
Qµ

n,p
∞ = max

i=1, ...,n+p−2

n+p−2∑

j=1

�����

∫ 1

0

N
Qµ

j+1,p
(x)

(

N
Qµ

i+1,p

) ′
(x) dx

�����

= max
i=1, ...,n+p−2

n+p−2∑

j=1

�����

∫ 1

0

N
Qµ

j+1,p
(x)

(

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) − δ

Qµ

i+2,p−1
N

Qµ

i+2,p−1
(x)

)

dx
�����

≤ max
i=1, ...,n+p−2

n+p−2∑

j=1

∫ 1

0

N
Qµ

j+1,p
(x)

(

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) + δ

Qµ

i+2,p−1
N

Qµ

i+2,p−1
(x)

)

dx.

Using the partition of unity property of GB-splines, we deduce

n+p−2∑

j=1

∫ 1

0

N
Qµ

j+1,p
(x)δ

Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx

=

∫ 1

0

(n+p−2∑

j=1

N
Qµ

j+1,p
(x)

)

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx ≤

∫ 1

0

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx = 1.

Moreover, by repeating the argument for the other term, we get ‖H
Qµ

n,p ‖∞ ≤ 2. Finally,

nK
Qµ

n,p
∞ = max

i=1, ...,n+p−2

n+p−2∑

j=1

�����

∫ 1

0

(

N
Qµ

j+1,p

) ′
(x)

(

N
Qµ

i+1,p

) ′
(x) dx

�����

= max
i=1, ...,n+p−2

n+p−2∑

j=1

�����

∫ 1

0

(

δ
Qµ

j+1,p−1
N

Qµ

j+1,p−1
(x) − δ

Qµ

j+2,p−1
N

Qµ

j+2,p−1
(x)

)

·
(

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) − δ

Qµ

i+2,p−1
N

Qµ

i+2,p−1
(x)

)

dx
�����
.
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Since the GB-splines of degree 1 are bounded as

N
Hµ

j,1
(t) ≤ 1, N

Tµ

j,1
(t) ≤


1, if µ/n ∈ (0, π/2],

1/ sin(µ/n), if µ/n ∈ (π/2, π),

and using again the partition of unity property of GB-splines (for degree ≥ 2), we deduce

that

n+p−2∑

j=1

∫ 1

0

δ
Qµ

j+1,p−1
N

Qµ

j+1,p−1
(x)δ

Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx

=

∫ 1

0

(n+p−2∑

j=1

δ
Qµ

j+1,p−1
N

Qµ

j+1,p−1
(x)

)

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx

≤ qCp,α max
j=1, ...,n+p−2

δ
Qµ

j+1,p−1

∫ 1

0

δ
Qµ

i+1,p−1
N

Qµ

i+1,p−1
(x) dx = qCp,α max

j=1, ...,n+p−2
δ
Qµ

j+1,p−1
,

where qCp,α is a constant independent of n. We can use a similar reasoning for the other three

terms in the expression of ‖nK
Qµ

n,p ‖∞. It remains to prove that

max
j=1, ...,n+p−2

δ
Qµ

j+1,p−1
≤ C̃p,α n,

for some constant C̃p,α independent of n. We first observe that for i = p, . . . ,n,

1

δ
Qµ

i,p−1

=

∫ 1

0

N
Qµ

i,p−1
(s) ds =

∫ 1

0

φ
Qµ/n

p−1
(ns − i + p)ds =

1

n

∫ p

0

φ
Qµ/n

p−1
(z)dz =

1

n
.

For i ∈ I := {2, . . . ,p − 1,n + 1, . . . ,n + p − 1}, we address the nested and non-nested cases

separately.

– Case µ = α: δ
Qα

i,p−1
= k

α,n
i,p−1

n, where k
α,n
i,p−1

is dependent on n but can be bounded above

by a constant independent of n. Indeed, because of its convergence to the polynomial

setting and the explicit B-spline integral formula (see, e.g., [14]) we have

lim
n→∞

k
α,n

i,p−1
= lim

n→∞

p

n(ti+p − ti )
≤ p.

This implies the existence of an integer n0 for which k
α,n

i,p−1
≤ 2p for every n > n0.

– Case µ = nα: δ
Qnα

i,p−1
= k

α,n

i,p−1
n, where k

α,n

i,p−1
is independent of n for n ≥ p − 1. This

holds because the integrals
∫ 1

0
N

Qnα

i,p−1
(s) ds are proportional to the support of N

Qnα

i,p−1
(s),

and so to 1/n. More precisely, fixing 1 < i < p, it can be proved by induction that

the GB-spline N
Qn1α

i,p−1
defined over the knot set (10) with n1 intervals and the GB-spline

N
Qn2α

i,p−1
defined over the knot set (10) with n2 intervals are related by

N
Qn1α

i,p−1
(n2x) = N

Qn2α

i,p−1
(n1 x).

By taking into account their local supports, we get

n1

δ
Qn1α

i,p−1

= n1

∫ i/n1

0

N
Qn1α

i,p−1
(s) ds = n2

∫ i/n2

0

N
Qn2α

i,p−1
(s) ds =

n2

δ
Qn2α

i,p−1

.

⊓⊔



Spectral analysis of matrices in Galerkin methods based on GB-splines 25

We are now ready to determine the spectral distribution of the sequence of (normalized)

matrices 1
n

A
Qµ

n,p , Q = H,T, both for the nested and non-nested case. We will first address

the nested case in Section 4.2 and then the non-nested case in Section 4.3.

4.2 Spectral distribution: sequences of nested spaces

In this subsection we focus on the spectral distribution of the sequence of matrices

1

n
A
Qα
n,p = K

Qα
n,p +

β

n
H

Qα
n,p +

γ

n2
M

Qα
n,p , Q = H,T, (69)

where α is a real positive parameter not depending on n. We first show that both sequences

{K
Qα
n,p } and {B

Qα
n,p }, see (67), share the same spectral distribution.

Lemma 8 Let α be a real parameter independent of n. For p ≥ 2, it holds

{

B
Qα
n,p

}

∼λ f p ,
{

K
Qα
n,p

}

∼λ f p , Q = H,T.

Moreover, both sequences are strongly clustered at [0,Mfp ].

Proof We first prove the spectral distribution of {B
Qα
n,p }. By Lemma 6 we have

B
Qα
n,p = Tn+p−2

(

f
Qα/n

p

)

= Tn+p−2( f p ) + Tn+p−2

(

f
Qα/n

p − f p
)

,

and we apply Theorem 1, with

Zn := B
Qα
n,p , Xn := Tn+p−2( f p ), Yn := Tn+p−2

(

f
Qα/n

p − f p
)

.

From Theorem 3 it follows

‖Tn+p−2( f p )‖ ≤ ‖ f p ‖L∞ ([−π,π]) , (70)

and Tn+p−2

(

f
Qα/n

p − f p
)1
≤ (n + p − 2)

 f
Qα/n

p − f p
L1 ([−π,π])

. (71)

The matrix Xn is Hermitian by construction, and so Theorem 2 implies that {Xn } ∼λ f p
and {Xn } is strongly clustered at [0,Mfp ], which is the essential range of f p . From (70)

and (58) we obtain that ‖Xn ‖ can be bounded by a constant independent of n. Moreover, by

combining the result in Lemma 5 with (71) we see that ‖Yn‖1 can be bounded by a constant

independent of n. Therefore, all the hypotheses of Theorem 1 are satisfied, and we have that

{B
Qα
n,p } ∼λ f p and {B

Qα
n,p } is strongly clustered at [0,Mfp ].

To prove the spectral distribution of {K
Qα
n,p }, we consider again Theorem 1, but now with

Zn := K
Qα
n,p , Xn := B

Qα
n,p , Yn := R

Qα
n,p .

Recalling that K
Qα
n,p is symmetric and using Lemma 6 and Theorem 3, we have

K
Qα
n,p

 ≤ K
Qα
n,p

∞, B
Qα
n,p

 ≤  f
Qα/n

p
L∞ ([−π,π])

, (72)

which can be both bounded independently of n, thanks to the upper bounds in Lemma 7 and

Lemma 3, respectively. Moreover, from (67) and (68) we obtain

R
Qα
n,p

1 ≤ 2(2p − 1)R
Qα
n,p

, R
Qα
n,p

 = K
Qα
n,p − B

Qα
n,p

 ≤ B
Qα
n,p

 + K
Qα
n,p

,
which can also be bounded independently of n, thanks to (72). Therefore, both ‖Xn ‖ and

‖Yn‖1 can be bounded by a constant independent of n, and all the hypotheses of Theorem 1

are satisfied. This completes the proof. ⊓⊔



26 Fabio Roman et al.

Finally, the next theorem states the spectral distribution result for { 1
n

A
Qα
n,p }.

Theorem 5 Let α be a real parameter independent of n. For p ≥ 2 and Q = H,T, the

sequence of matrices { 1
n

A
Qα
n,p } is distributed like the function f p given in (54) in the sense

of the eigenvalues and it is strongly clustered at [0,Mfp ].

Proof According to the matrix decomposition in (69), we consider Theorem 1 with

Zn :=
1

n
A
Qα
n,p , Xn := K

Qα
n,p , Yn :=

β

n
H

Qα
n,p +

γ

n2
M

Qα
n,p .

From Lemma 8 and its proof we know that {K
Qα
n,p } ∼λ f p , {K

Qα
n,p } is strongly clustered

at [0,Mfp ] and ‖K
Qα
n,p ‖ can be bounded independently of n. Moreover, H

Qα
n,p and M

Qα
n,p are

normal matrices, so

‖Yn‖1 ≤
| β |

n
H

Qα
n,p

1 +
γ

n2
M

Qα
n,p

1

≤ | β |
n + p − 2

n
H

Qα
n,p

 + γ
n + p − 2

n2
M

Qα
n,p



≤ | β |
n + p − 2

n
H

Qα
n,p

∞ + γ
n + p − 2

n2
M

Qα
n,p

∞,

which can be bounded independently of n, thanks to the upper bounds in Lemma 7. So all

the hypotheses of Theorem 1 are satisfied and the result follows. ⊓⊔

Remark 9 From (57)–(58) it follows that the symbol f p (θ) of the sequence { 1
n

A
Qα
n,p } has a

unique zero at θ = 0. Moreover, from (59) we see that f p (π) converges exponentially to

zero with respect to p, so f p (π) is very small for large p and will behave numerically like a

zero.

Remark 10 As pointed out in [9,10] for the (polynomial) B-spline case, the ‘numerical zero’

of f p at θ = π (for larger values of p) negatively affects the convergence rate of standard

multigrid methods. This leads to an unsatisfactory behavior of standard multigrid methods,

even for moderate values of p and not only for unrealistically large values of p. For instance,

looking at [9, Table 4], we see that in the Galerkin formulation with B-splines of degree p,

the convergence rate of standard multigrid methods (using Richardson smoothing) is already

very slow for p ≥ 6, and a similar – even worse – phenomenon is observed in higher

dimensionality d > 1. We expect that the same unsatisfactory multigrid behavior also occurs

in the hyperbolic/trigonometric GB-spline case.

Remark 11 The intrinsic difficulty for larger values of p, described in Remark 10, can be

addressed by following the multi-iterative idea from [26]. Indeed, in [9] and [10], a standard

multigrid method was successfully combined with a smoother of preconditioned Krylov

type (namely PCG and PGMRES, respectively), where the preconditioner was suggested by

the symbol. This results in a robust and optimal multi-iterative multigrid solver. We expect

that a similar technique can also be used in the hyperbolic/trigonometric GB-spline case.
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4.3 Spectral distribution: sequences of non-nested spaces

In this subsection we focus on the spectral distribution of the sequence of matrices

1

n
A
Qnα
n,p = K

Qnα
n,p +

β

n
H

Qnα
n,p +

γ

n2
M

Qnα
n,p , Q = H,T, (73)

where α is a real positive parameter not depending on n. The next lemma provides the

spectral distribution of the sequences {K
Qnα
n,p } and {B

Qnα
n,p }.

Lemma 9 Let α be a real parameter independent of n, For p ≥ 2, it holds

{

B
Qnα
n,p

}

∼λ f
Qα
p ,

{

K
Qnα
n,p

}

∼λ f
Qα
p , Q = H,T.

Moreover, both sequences are strongly clustered at [0,M
f
Qα
p

].

Proof From Lemma 6 we know

B
Qnα
n,p = Tn+p−2

(

f
Qα
p

)

.

Therefore, Theorem 2 implies that {B
Qnα
n,p } ∼λ f

Qα
p and {B

Qnα
n,p } is strongly clustered at

[0,M
f
Qα
p

]. The spectral distribution of {K
Qnα
n,p } can be shown by following the same line of

arguments as in the proof of Lemma 8. ⊓⊔

The spectral distribution of the sequence of matrices (73) can be obtained with the same

arguments as for Theorem 5. The results are stated in the next theorem.

Theorem 6 Let α be a real parameter independent of n. For p ≥ 2 and Q = H,T, the

sequence of matrices { 1
n

A
Qnα
n,p } is distributed like the function f

Qα
p given in (55)–(56) in the

sense of the eigenvalues and it is strongly clustered at [0,M
f
Qα
p

].

Remark 12 From Lemma 3 we know that the symbol f
Qα
p (θ) of the sequence { 1

n
A
Qnα
n,p } has

a (theoretical) zero at θ = 0, and from Lemma 4 it follows that this symbol has a ‘numerical

zero’ at θ = π for large p, see also Remark 9. We expect that the same unsatisfactory

multigrid behavior described in Remark 10 also occurs in this hyperbolic/trigonometric GB-

spline case, with a possible multi-iterative remedy as suggested in Remark 11.

4.4 Spectral approximation for finite dimensional matrices

The spectral analysis in Section 4.2 shows that the stiffness matrices corresponding to a

Galerkin discretization based on a sequence of nested generalized hyperbolic/trigonometric

spaces of degree p (with fixed phase parameter α) have the same (asymptotic) spectral distri-

bution as the matrices resulting from a Galerkin discretization based on classical polynomial

spline spaces of the same degree. This distribution is described by the function f p . As men-

tioned in Remark 3, this means that the spectrum of these matrices behaves like a uniform

sampling of f p when their size increases.

Due to (61), however, it is reasonable to expect that the function f
Qα/n

p provides a more

accurate description of the spectrum of K
Qα
n,p , and so of 1

n
A
Qα
n,p (see Theorem 5), for finite

(small) values of n. This is actually the case as illustrated in the following examples.
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Fig. 2 Sorted eigenvalues of K
Tα
n,p with α = 4π, p = 2 (red ∗) compared with sorted uniform samples of

f
Tα/n
p (blue line) and fp (black line). Left: n = 10. Right: n = 20.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Fig. 3 Left: sorted eigenvalues of K
Hα
n,p with α = 100, p = 3 and n = 10 (red ∗) compared with sorted

uniform samples of f
Hα/n
p (blue line) and fp (black line). Right: a magnified version.

Figures 2–4 illustrate the eigenvalues of the matrix K
Qα
n,p for different values of the pa-

rameters p and n, for hyperbolic and trigonometric spline spaces with various choices of the

phase parameter α. The values of the parameters in Figure 3 are inspired by those in [24, Ex-

ample 3], whereas the parameters considered in Figure 4 are taken from [25, Section 4.2.2].

We compared the eigenvalues of K
Qα
n,p with the functions f p and f

Qα/n

p over (0, π). More

precisely, we considered equispaced samples of f p and f
Qα/n

p at the points

{

kπ

m + 1
: k = 1, . . . ,m

}

, m = 1000.

To make a fair comparison we sorted the three sets of values. Except for possibly few out-

liers, we see an extremely good match between the function f
Qα/n

p and the spectrum. Note

that the presence of two outliers for p = 3,4 (clearly depicted in Figures 3–4 (left)) is in a

complete agreement with the fact that the sequence of matrices {K
Qα
n,p } is strongly clustered

at [0,Mfp ], see Definition 3 and Theorem 5.

We may conclude that the analysis of the symbols f
Qα/n

p presented in Section 3.3 is of

interest not only to describe the spectral distribution of the matrices arising from Galerkin

discretizations based on non-nested spaces, but also because they provide a precise descrip-

tion of the spectrum of the matrices obtained in the case of nested spaces for finite (small)

values of n.
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Fig. 4 Left: sorted eigenvalues of K
Hα
n,p with α = 1000, p = 4 (red ∗) compared with sorted uniform samples

of f
Hα/n
p (blue line) and fp (black line). Right: a magnified version. Top: n = 10. Bottom: n = 50.

5 Spectral analysis in case of our eigenvalue problem

In this section we address the eigenvalue problem (8). Due to the structure of the problem,

it is natural to consider an approximation based on trigonometric GB-splines. So, we are

interested in the eigenvalues of the matrices in (21) where the Galerkin discretization is

based on trigonometric GB-splines, i.e.,

L
Tµ

n,p := n2 (M
Tµ

n,p

)−1
K

Tµ

n,p . (74)

As mentioned in Section 2.1.2, the N := n+ p− 2 eigenvalues of the matrix (74) are used to

approximate the first N eigenvalues ωk in (9) associated with the eigenfunctions

uk (x) = sin(ωk x), k = 1, . . . ,N.

This means that higher frequencies are addressed as the dimension of the discretization

spaceW
Tµ

n,p increases. As a consequence, it is natural to consider trigonometric spline spaces

whose phase increases linearly with respect to their dimension. This motivates the interest

in Galerkin discretizations based on the space W
Tnα
n,p where α is a fixed real parameter

belonging to (0, π). Equivalently, this means that we will consider generalized spline spaces

over the knot set (10) with sections in

〈1, x, . . . , xp−2,cos(nαx),sin(nαx)〉.

Note that the assumption nα(ti+1 − ti ) < π is satisfied because ti+1 − ti ≤
1
n

.
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5.1 Spectral distribution of {n−2L
Tnα
n,p }

We now investigate the spectral distribution of the sequence {n−2L
Tnα
n,p }. To this end, we first

look at the spectral distribution of the sequence {M
Tnα
n,p }, for which we can follow the same

strategy as for the sequence {K
Qnα
n,p } considered in Sections 4.1 and 4.3. We decompose the

matrix M
Tnα
n,p into

MTnα
n,p = CTnα

n,p + STnα
n,p , (75)

where C
Tnα
n,p is the symmetric (2p + 1)-band Toeplitz matrix whose generic central row is

given by (66). The matrix S
Tnα
n,p := M

Tnα
n,p −C

Tnα
n,p is a low-rank correction term analogous to

R
Tnα
n,p and so

rank
(

STnα
n,p

)

≤ 2(2p − 1). (76)

The following spectral properties of {C
Tnα
n,p } and {M

Tnα
n,p } can be obtained by using the same

line of arguments as for Lemmas 6 and 9. We omit the proofs for the sake of brevity.

Lemma 10 Let α be a real parameter in (0, π) independent of n. For p ≥ 1 and n ≥ 3p+ 1,

it holds

CTnα
n,p = Tn+p−2

(

hTα
p

)

with σ
(

CTnα
n,p

)

⊂
(

m
h
Tα
p
,1

)

.

Lemma 11 Let α be a real parameter in (0, π) independent of n. For p ≥ 1, it holds

{

CTnα
n,p

}

∼λ hTα
p ,

{

MTnα
n,p

}

∼λ hTα
p .

Moreover, both sequences are strongly clustered at [m
h
Tα
p
,1].

The spectral distribution of the sequence {n−2L
Tnα
n,p } can be derived by exploiting the

powerful theory of GLT sequences [16,29]. A GLT sequence {Xn } is a specific sequence

of matrices with size(Xn ) → ∞, equipped with a function κ (the symbol of the sequence),

see [29, Definition 1.5]. GLT sequences form an algebra and possess several remarkable

properties [16,29]:

– If {Xn } is a GLT sequence of Hermitian matrices with symbol κ, then {Xn } ∼λ κ.

– For every f ∈ L1([−π,π]), the Toeplitz sequence {Tn ( f )} is a GLT sequence with sym-

bol f .

– If {Xn } is a GLT sequence with symbol κ and limn→∞ ‖En ‖ = limn→∞ rank(Rn )/size(Xn ) =

0, then {Xn + En + Rn } is a GLT sequence with symbol κ.

– If {X
(i)
n } are GLT sequences with symbols κi , for i = 1, . . . ,r , then {X

(1)
n · · · X

(r )
n } is a

GLT sequence with symbol κ1 · · · κr .

– If {Xn } is a GLT sequence of invertible matrices with symbol κ and κ , 0 a.e., then

{X−1
n } is a GLT sequence with symbol κ−1.

– If {Xn } is a GLT sequence of Hermitian matrices with symbol κ, then {g(Xn )} is a GLT

sequence with symbol g(κ) for all continuous functions g : R→ R.

From (67), (75) and from Lemmas 6, 10 it follows that K
Tnα
n,p and M

Tnα
n,p are Hermitian

perturbations of the Hermitian Toeplitz matrices Tn+p−2( f
Tα
p ) and Tn+p−2(h

Tα
p ), respec-

tively. Moreover, from (68) and (76) we see that the rank of the perturbation matrices R
Tnα
n,p

and S
Tnα
n,p is bounded by a constant independent of n. Therefore, {K

Tnα
n,p } and {M

Tnα
n,p } are

simple instances of GLT sequences with symbols given by f
Tα
p and h

Tα
p , respectively. Fi-

nally, by (48) we have h
Tα
p > 0, and (M

Tnα
n,p )−1K

Tnα
n,p is similar to the Hermitian matrix

(M
Tnα
n,p )−1/2K

Tnα
n,p (M

Tnα
n,p )−1/2. This leads to the following important result, see also [13].
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Theorem 7 Let α be a given real parameter in (0, π). Then the sequence of matrices

{n−2L
Tnα
n,p } := {(M

Tnα
n,p )−1K

Tnα
n,p } is distributed like the function

(

hTα
p

)−1
f Tα
p (77)

in the sense of the eigenvalues.

Thanks to this theorem, for large n, the eigenvalues of the matrix n−2L
Tnα
n,p can be approxi-

mately seen as a uniform sampling of the even function in (77).

Remark 13 For the sake of simplicity, we just formulated and proved the above results in

case of a sequence of trigonometric spline spacesW
Tnα
n,p , but similar results hold in a more

general setting. In particular, using the same notation as in Section 4, we have for Q = H,T,

{

M
Qµ

n,p

}

∼λ


h
Qα
p , if µ = nα,

hp , if µ = α,

and

{

n−2L
Qµ

n,p

}

∼λ


(h

Qα
p )−1 f

Qα
p , if µ = nα,

(hp )−1 f p , if µ = α.

This can be proved with similar arguments as used in this and the previous section.

5.2 Approximating eigenvalues by means of non-nested spaces

Let us denote by

(ω
Tnα

k
)2, k = 1, . . . ,n + p − 2

the eigenvalues of the matrix L
Tnα
n,p , i.e., the computed approximations of the first N :=

n + p − 2 eigenvalues of (8). We assume they are sorted according to their modulus. A

popular way to measure the accuracy of these approximations is given by the following

relative error (see, e.g., [7,13,20]):

(ω
Tnα

k
)2 − (ωk )2

(ωk )2
=

(ω
Tnα

k

kπ

)2

− 1, k = 1, . . . ,N. (78)

From Theorem 7 we know that (ω
Tnα

k
)2 can be approximately seen, for large n, as a uniform

sampling of the function n2 (h
Tα
p )−1 f

Tα
p . Let θk := kπ/n, we get

(ω
Tnα

k

kπ

)2

− 1 ≃
f
Tα
p (θk )

h
Tα
p (θk )

n2

k2π2
− 1 =

f
Tα
p (θk )

h
Tα
p (θk )

1

θ2
k

− 1, k = 1, . . . ,n.

Hence, the relative spectral error in (78) can be approximated by a uniform sampling over

(0, π) of the function

eTα
p (θ) :=

f
Tα
p (θ)

h
Tα
p (θ)

1

θ2
− 1. (79)

This function has the following properties.
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Lemma 12 Let e
Tα
p be defined as in (79). Then

eTα
p (θ) ≥ 0, θ ∈ (0, π), p ≥ 2, (80)

and

lim
θ→0

eTα
p (θ) = 0, p ≥ 3, (81)

lim
θ→α

eTα
p (θ) = 0, p ≥ 2. (82)

Proof Since h
Tα
p (θ) > 0, the inequality (80) is equivalent to

f Tα
p (θ) ≥ hTα

p (θ)θ2, θ ∈ (0, π), p ≥ 2.

Using (36) and (38) we obtain

���φ̂
Tα
p (θ + 2kπ)

���
2
=

(

2 − 2 cos(θ)

(θ + 2kπ)2

)p−1 (

α2

1 − cos(α)

)2 (

cos(α) − cos(θ)

(θ + 2kπ)2 − α2

)2

. (83)

Then, from (50) and (47) we deduce

f Tα
p (θ) = (2 − 2 cos(θ))

∑

k ∈Z


E
φ
Tα

p−1
(θ + 2kπ)


2
=

∑

k ∈Z

(θ + 2kπ)2φ̂
Tα
p (θ + 2kπ)


2

≥
∑

k ∈Z

θ2φ̂
Tα
p (θ + 2kπ)


2
= hTα

p (θ)θ2.

To prove (81), we recall that h
Tα
p is continuous and h

Tα
p (0) = 1 for p ≥ 2. Hence, we get

lim
θ→0

f
Tα
p (θ)

h
Tα
p (θ)

1

θ2
= lim

θ→0

h
Tα

p−1
(θ)

h
Tα
p (θ)

(2 − 2 cos(θ))

θ2
= 1, p ≥ 3.

Finally, to prove (82), we first note from (83) that

���φ̂
Tα
p (α + 2kπ)

���
2
= 0, k , 0.

Then, by taking into account the uniform convergence of the series in (47), we obtain

lim
θ→α

f
Tα
p (θ)

h
Tα
p (θ)

1

θ2
= lim

θ→α

∑

k ∈Z(θ + 2kπ)2φ̂
Tα
p (θ + 2kπ)


2

θ2
∑

k ∈Z
φ̂

Tα
p (θ + 2kπ)


2

= lim
θ→α

θ2φ̂
Tα
p (θ)


2

θ2φ̂
Tα
p (θ)


2
= 1.

⊓⊔
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Fig. 5 From left to right: ‖e
Tα
p ‖L∞([0,π]) and ‖e

Tα
p ‖L1 ([0,π]) as a function of the parameter α over [0, π).

Black: p = 2, blue: p = 3, red: p = 4, magenta: p = 5.

5.3 Numerical results

We now illustrate the performance of the Galerkin approximation using trigonometric spline

spacesW
Tnα
n,p for the eigenvalue problem (8).

The selection of the parameter α is crucial in this approximation strategy. Two reason-

able selection criteria are minimizing the L∞-norm or the L1-norm of the function e
Tα
p in

(79) which approximates the relative error given in (78). The graphs of these norms, as a

function of the parameter α ∈ (0, π), are depicted in Figure 5 for different degrees.

In Figure 6 we plot the relative spectral error values

(

k

n
,

(ω
Tnα

k

kπ

)2

− 1

)

, k = 1, . . . ,n, (84)

together with the graph of the function e
Tα
p in (79). For comparison, we also plot the relative

spectral error values and the graph of the corresponding function ep in case of polynomial

B-splines, i.e.,

ep (θ) :=
f p (θ)

hp (θ)

1

θ2
− 1. (85)

Both the functions are rescaled over the interval [0,1]. The values of α are selected to (nu-

merically) minimize ‖e
Tα
p ‖L∞ ([0,π]) . Figure 7 shows the analogous results in case the values

of α are selected to (numerically) minimize ‖e
Tα
p ‖L1([0,π]) . Finally, in Figure 8 we depict the

results obtained by selecting α according to the heuristic suggestion2 in [25, Eq. (18)].

We note that

– there is a very good match between the function e
Tα
p in (79) obtained by our theoreti-

cal spectral analysis (blue line) and the computed relative error in (84) of the Galerkin

approximation of the spectrum based on non-nested trigonometric spline spacesW
Tnα
n,p

(red ∗);

– from Lemma 12 we know that e
Tα
p (θ) is non-negative and attains the value zero at θ = 0

and θ = α; in addition, we observe in the figures that e
Tα
p (π) is very close to zero;

– as explained in [13], the relative error of the Galerkin approximation of the spectrum

based on polynomial spline spaces (black ◦) is accurately described by the function ep
in (85) which can be derived by a similar theoretical spectral analysis (black line);

2 For polynomial B-splines, a degree p in Galerkin approximation corresponds to a degree 2p + 1 in

collocation, see [11, Remark 3.2]. We have followed the same rule here.
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Fig. 6 Plot of the relative spectral error values in the trigonometric case (red ∗) and the polynomial case

(black ◦) for n = 80, together with the scaled graphs of e
Tα
p (blue line) and ep (black line). The values of α

are taken to (numerically) minimize ‖e
Tα
p ‖L∞([0,π]). Left: p = 3, α = 2.80. Right: p = 4, α = 2.92.
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Fig. 7 Plot of the relative spectral error values in the trigonometric case (red ∗) and the polynomial case

(black ◦) for n = 80, together with the scaled graphs of e
Tα
p (blue line) and ep (black line). The values of α

are taken to (numerically) minimize ‖e
Tα
p ‖L1([0,π]) . Left: p = 3, α = 2.48. Right: p = 4, α = 2.69.
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Fig. 8 Plot of the relative spectral error values in the trigonometric case (red ∗) and the polynomial case

(black ◦) for n = 80, together with the scaled graphs of e
Tα
p (blue line) and ep (black line). Left: p = 3,

α = 7
11π. Right: p = 4, α = 9

13π.

– since trigonometric GB-splines approach classical (polynomial) B-splines when the

phase parameter approaches 0 (see Remark 1) and since the sequences {K
Qα
n,p }, {M

Qα
n,p }

are distributed like f p , hp respectively in the sense of eigenvalues, the relative error of

the Galerkin approximation of the spectrum based on nested trigonometric spline spaces

W
Tα
n,p is accurately described by the function ep in (85). The corresponding plots are
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omitted because they are indistinguishable from the polynomial case for the considered

values of n; we also refer to [25] for analogous results in case of collocation methods.

As a consequence, the use of non-nested trigonometric spline spacesW
Tnα
n,p results in

a more flexible approximation tool for the eigenvalue problem than the classical (polyno-

mial) B-spline discretization and the discretization by means of nested trigonometric spline

spacesW
Tα
n,p . The minimization of the L∞-norm or the L1-norm can be valid criteria for the

selection of the parameter α. Nevertheless, other alternative criteria can be more appropriate

according to the demands of the user.

6 The multivariate setting

In this section we outline the extension of the spectral results given in Section 4 to the

multi-dimensional version of the linear elliptic differential problem (1), i.e.,


−∆u + β∇u + γu = f, in Ω,

u = 0, on ∂Ω.
(86)

where Ω := (0,1)d , β := (β1, . . . , βd ) ∈ Rd , γ ≥ 0, f ∈ L2(Ω). The weak form of (86)

consists in finding u ∈ H1
0

(Ω) such that

∫

Ω

(∇u)T∇v + (∇u)T βv + γuv =

∫

Ω

fv, ∀v ∈ H1
0 (Ω).

Following the Galerkin approach, we look for an approximation uW =
∑N

j=1 u jϕ j of u

belonging to a finite dimensional approximation spaceW ⊂ H1
0

(Ω) spanned by the basis

{ϕ1, . . . , ϕN }. This is equivalent to solving the linear system Au = f,where

A :=

[∫

Ω

(∇ϕ j )
T∇ϕi + (∇ϕ j )

T βϕi + γϕ jϕi

]N

i, j=1

. (87)

We are interested in the spectral distribution of the matrices in (87) in the case of hyperbolic

and trigonometric tensor-product GB-splines.

For a compact and clean description of the results, throughout this section, we use the

multi-index notation, see [33, Section 6] (or [15, Section 2.1]). A multi-index m ∈ Zd is a

(row) vector in Zd and its components are denoted by m1, . . . ,md . We indicate by 0, 1, 2

the vectors consisting of all zeros, all ones, all twos, respectively. We set N (m) :=
∏d

i=1 mi

and jk := ( j1k1, . . . , jdkd ). The inequality j ≤ k means that ji ≤ ki for i = 1, . . . ,d, and

the multi-index range j, . . . ,k is the set {i ∈ Zd : j ≤ i ≤ k}. We assume for this set the

standard lexicographic ordering:

[
. . .

[
[ (i1, . . . ,id ) ]id= jd, ...,kd

]
id−1= jd−1, ...,kd−1

. . .

]
i1= j1, ...,k1

. (88)

We write i = j, . . . ,k to denote that the multi-index i varies in the multi-index range j, . . . ,k

taking all the values from j to k following the ordering in (88). For example, if m ∈ Nd

and x := [xi ]
m
i=1

, then x is a vector of length N (m) whose components xi , i = 1, . . . ,m, are

ordered according to (88): the first component is x1 = x (1, ...,1,1) , the second component is

x (1, ...,1,2) , and so on.
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6.1 Multi-dimensional GB-spline basis functions and IgA Galerkin matrices

Let p := (p1, . . . ,pd ) and n := (n1, . . . ,nd ) be multi-indices such that pi ≥ 2, ni ≥ 1,

i = 1, . . . ,d. Let U := (U1, . . . ,Ud ) and V := (V1, . . . ,Vd ) be vectors of functions such that

for i = 1, . . . ,d the pair of functions {U
(p−1)

i
,V

(p−1)

i
} is a Chebyshev system on [ti, j , ti, j+1],

j = pi + 1, . . . ,pi + ni , where

{ti,1, . . . , ti,ni+2pi+1} :=

{

0, . . . ,0
︸  ︷︷  ︸

pi+1

,
1

ni
,

2

ni
, . . . ,

ni − 1

ni
,1, . . . ,1
︸  ︷︷  ︸

pi+1

}

.

The tensor-product GB-splines N
U,V

i,p
: [0,1]d → R are defined by

N
U,V

i,p
:= N

U1,V1

i1,p1
⊗ · · · ⊗ N

Ud,Vd

id,pd
, i = 2, . . . ,n + p − 1. (89)

In the framework of IgA based on (uniform) GB-splines, the functions ϕi , i = 1, . . . ,N , in

(87) are chosen as the tensor-product GB-splines in (89), so that N = N (n+p−2). We adopt

for the tensor-product GB-splines (89) the lexicographic ordering3 in (88), and we follow

this ordering when assembling the matrix in (87), which from now on will be denoted by

A
U,V
n,p . In multi-index notation it is expressed by

A
U,V
n,p = K

U,V
n,p + R

U,V
n,p , (90)

where

K
U,V
n,p :=

[∫

[0,1]d

(

∇N
U,V

j+1,p

)T
∇N

U,V

i+1,p

]n+p−2

i, j=1

is the matrix resulting from the discretization of the diffusive term in (86), and

R
U,V
n,p :=

[∫

[0,1]d

((

∇N
U,V

j+1,p

)T
β N

U,V

i+1,p
+γN

U,V

j+1,p
N

U,V

i+1,p

)
]n+p−2

i, j=1

is the matrix resulting from the discretization of the terms in (86) with lower order deriva-

tives. Moreover, it follows from (18)–(20) that

K
U,V
n,p =

d∑

i=1

( i−1⊗

r=1

1

nr
MUr ,Vr

nr ,pr

)

⊗ niK
Ui ,Vi
ni,pi

⊗

( d⊗

r=i+1

1

nr
MUr ,Vr

nr ,pr

)

, (91)

where for every X ∈ Cm1×m1 and Y ∈ Cm2×m2 , the tensor product X ⊗ Y is the matrix in

Cm1m2×m1m2 given by

X ⊗ Y :=



x11Y x12Y · · · x1m1
Y

x21Y x22Y · · · x2m1
Y

...
...

...

xm11Y xm12Y · · · xm1m1
Y



.

Like in the one-dimensional setting, we denote by A
QQQµ

n,p the stiffness matrix in (90) when

hyperbolic or trigonometric GB-splines with parameters µ := (µ1, . . . , µd ) are considered

in (89). Note that different section spaces can be used in different directions.

3 A different ordering has been used in [14] in the bivariate setting.
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6.2 Multi-dimensional symbol of the normalized IgA Galerkin matrices

From now on, we assume that ni = νin ∈ N for each i = 1, . . . ,d, i.e., n = νn for a

fixed vector ν := (ν1, . . . , νd ). The next two theorems provide the spectral distribution of the

normalized stiffness matrices in the multi-dimensional setting, in the nested and in the non-

nested case, respectively. These results are a consequence of the one-dimensional results in

Lemma 5 and Theorems 5–6. They can be proved by using the same line of arguments as

in [14, Theorem 18] and by taking into account (90)–(91). In both cases, we assume that

α := (α1, . . . ,αd ) is a suitable sequence of real, fixed parameters not depending on n.

Theorem 8 The sequence of normalized matrices {nd−2 A
QQQα

n,p }n is distributed, in the sense

of the eigenvalues, like the function f p,ν : [−π,π]d → R,

f p,ν (θ) :=
1

N (ν)

d∑

i=1

ν2
i

(

hp1
⊗ · · · ⊗ hpi−1

⊗ f pi
⊗ hpi+1

⊗ · · · ⊗ hpd

)

(θ).

Theorem 9 The sequence of normalized matrices {nd−2 A
QQQ

nα

n,p }n is distributed, in the sense

of the eigenvalues, like the function f
QQQα

p,ν : [−π,π]d → R,

f
QQQα

p,ν (θ) :=
1

N (ν)

d∑

i=1

ν2
i

(

h
Qα1
p1
⊗ · · · ⊗ h

Qαi−1
pi−1

⊗ f
Qαi
pi
⊗ h

Qαi+1
pi+1

⊗ · · · ⊗ h
Qαd
pd

)

(θ).

Remark 14 Like in the univariate case, for nested GB-spline spaces (Theorem 8) the symbol

is the same as for polynomial B-spline spaces, see [15, Eq. (4.18)].

Remark 15 From Theorems 8–9 and from Lemmas 2–3 we know that the symbols of the

sequences {nd−2 A
QQQα

n,p }n , {nd−2 A
QQQ

nα

n,p }n have a (theoretical) zero at θ = 0. Moreover, from

(59) and Lemma 4 it follows that these symbols have also ‘numerical zeros’ for large p at

the points θ := (θ1, . . . , θd ) with θi = π for some i, see also Remarks 9 and 12. This peculiar

behavior has already been pointed out for the (polynomial) B-spline case in [9,10,15]. We

expect that the same unsatisfactory multigrid behavior described in Remark 10 also occurs in

the multivariate hyperbolic/trigonometric GB-spline setting, with a possible multi-iterative

remedy as suggested in Remark 11.

7 Conclusions

We have presented a spectral analysis of matrices arising from IgA Galerkin methods based

on GB-splines, focusing on hyperbolic and trigonometric GB-splines because of their rel-

evance in applications. A deep understanding of the spectral properties is a fundamental

ingredient in the design of robust and optimal multigrid solvers for the corresponding linear

systems.

The univariate setting has been investigated in detail. We have shown that the stiffness

and mass matrices possess an asymptotic eigenvalue distribution when the matrix-size tends

to infinity or, equivalently, the fineness parameter of the discretization tends to zero. This

distribution is compactly described by a function (the symbol). The symbols in the hyper-

bolic, trigonometric and polynomial case are very similar, and they are exactly the same

when considering sequences of nested spaces. Therefore, the corresponding sequences of

GB-spline matrices present similar spectral features (in the nested and non-nested cases)
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as the polynomial B-spline matrices. In particular, the symbols have a unique (theoretical)

zero at θ = 0. However, there is also an exponential decay to 0 at θ = π for large degrees,

and this reveals the existence of a subspace of high frequencies where these matrices are

ill-conditioned. This surprising fact has already been observed, analyzed, and exploited for

designing robust and optimal multigrid solvers in the polynomial spline case, see [9,10].

Thanks to the tensor-product structure of the approximation spaces, the univariate results

extend directly to the multivariate setting.

The results on the spectral distribution of the stiffness and mass matrices have been used

to analyze the performance of the spectral Galerkin approximation based on trigonometric

B-splines for the univariate Laplace operator. It turns out that non-nested spaces are of par-

ticular interest in this context because their phase parameters can be fine-tuned to improve

the relative spectral error according to user predefined criteria.

As a first step, we have only addressed problems with constant coefficients and no ge-

ometry map. Nevertheless, due to the similarity with the polynomial case, it is reasonable

to expect that the general setting, with non-constant coefficients and geometry maps, can

be treated with similar techniques as those used in the polynomial case starting from the

univariate results [15].

The presented spectral analysis strengthens the similarity between classical (polyno-

mial) B-splines and hyperbolic/trigonometric GB-splines, and confirms that B-splines and

GB-splines are plug-to-plug compatible also from the linear algebra point of view.
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