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Stabilized mixed Ap-BEM for frictional contact problems in linear

elasticity

Lothar Banz*  Heiko Gimperlein' Abderrahman Issaoui Ernst P. Stephan®

Abstract

We investigate hp-stabilization for variational inequalities and boundary element methods
based on the approach introduced by Barbosa and Hughes for finite elements. Convergence
of a stabilized mixed boundary element method is shown for unilateral frictional contact
problems for the Lamé equation. =~ Without stabilization, the inf-sup constant need not be
bounded away from zero for natural discretizations, even for fixed h and p. Both a priori and a
posteriori error estimates are presented in the case of Tresca friction, for discretizations based
on Bernstein or Gauss-Lobatto-Lagrange polynomials as test and trial functions. We also
consider an extension of the a posteriori estimate to Coulomb friction. Numerical experiments
underline our theoretical results.

1 Introduction

Many mechanical applications can be modeled by frictional contact problems. These consist of
a differential equation balancing the forces within the object at hand and special contact and
friction constraints on one part of the object’s boundary. The latter significantly complicates the
numerical analysis and computations.

Following the seminal FEM-paper [2], we investigate the concept of hp-stabilization for vari-
ational inequalities and boundary elements. With this approach we show convergence of the
mixed method which in the non-stabilized approach is not assured as the inf-sup constant need
not be bounded away from zero for natural discretizations, even for fixed h and p. We present a
priori and a posteriori error estimates for the hp-stabilized mixed boundary element method for
Tresca problems. The use of Bernstein polynomials or Gauss-Lobatto-Lagrange polynomials as
test and trial functions proves convenient. Also an extension to Coulomb friction is discussed.
The paper is structured as follows. In Section [2| we introduce a mixed boundary element method
with the help of the Poincaré-Steklov operator which maps the displacement » on the boundary
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into the boundary traction —\. The unique existence of a solution (u, A) of the mixed formula-
tion of the original Tresca friction contact problem is based on the coercivity of the underlying
bilinear form (S-,-) on the trace space H/?(I's;) and the inf-sup condition for A in the dual space
H=Y%(I'¢) (see Theorem . In Section [3| we discretize the mixed formulation in suitable piece-
wise polynomial subspaces of H/?(I'y) and H~'/?(I'¢). On a locally quasi-uniform mesh we use
linear combinations of affinely transformed Bernstein polynomials or Gauss-Lobatto-Lagrange
polynomials, imposing in both cases additional side conditions which reflect the constraints of
non-penetration and stick-slip of the original contact problem. Based on these hp-boundary ele-
ment spaces we present a stabilized mixed method with stabilization parameter v|g ~ h EPZ;2 for
elements E of the subdivision 7j of I'y, into straight line segments. As in [11] for the h-version
FEM, the stabilized discrete mixed scheme admits a unique solution (u?, \¥7). We derive a priori
error estimates for the Galerkin error in the displacement u and the Lagrange multiplier A show-
ing improved convergence rates for higher polynomial degrees p, g. Our results (Theorem [13|and
Theorem include the h-version which is considered for lowest order test and trial functions
in the FEM by [9, [10]. In Section |5 we derive an a posteriori error estimate of residual type.
After discussing implementational challenges in Section [6] we give an extension of our approach
to Coulomb friction in Section [7] by suitably modifying the test and ansatz spaces. Finally, our
numerical experiments in Section [§ underline our theoretical results. They clearly show that the
classical hp-stabilization technique extends to variational inequalities, here for contact problems,

handled with boundary integral equations and hp-BEM.

2 A mixed boundary integral formulation

Let © C R? be a bounded polygonal domain with boundary I' and outward unit normal n.
Furthermore, let I' = T'p ULy UT'¢ be decomposed into non-overlapping homogeneous Dirichlet,
Neumann and contact boundary parts with I'p N T = @ for simplicity. For a given gap function
g € HY2(I'w), friction threshold 0 < F € L%(T'¢), Neumann data t € H~Y/2(T'y) and elasticity
tensor C the considered Tresca frictional contact problem is to find a function u € H%D(Q) =
{ve H(Q): v|p, =0} such that

—divo(u) =0 in Q (1a)

o(u) =C:e(u) in (1b)

u=20 onT'p (1c)

o(u)n =t on I'y (1d)

on <0, up, <g, op(up, —g) =0 on ' (le)
ol < F, orur + Fljug] =0 on I'e. (1f)

Here, 0, o4 are the normal and tangential components of o(u)n, respectively and (1bf) describes
Hooke’s law with the linearized strain tensor e(u) = 3 (Vu+ Vu'). Often is written in the
form

ol < F, llotll < F = ug =0, lotll = F = 3Ja>0:u = —aoy. (2)



Testing with vq € Kq := {’UQ € H%D(Q) : (va)n < g a.e. on Fc} and introducing the friction
functional j(v) := fl“c F ||vg|| ds yields the (domain) variational inequality formulation:
ug € Ko : (0(u), e(va —uq))yq + j(va) — j(uq) > (t,vg —ua)r, Vo € Ko (3)

where (u,v)y o = [quv dz and (t,v)p, =[5 tv ds are defined by duality.
Boundary integral formulatlons can be advantageous for problems with non-linear boundary
conditions and with no source terms in ). For that let

/ Gl n()dsy,  Ko(w) = /F (T,G(x,9)) " v(y)ds, (4)
=7 [ Gaands,  Wow) = T, [ (TG s, 6)

be the single layer potential V', double layer potential K, adjoined double layer potential K ' and
hypersingular integral operator W with the fundamental solution for the Lamé equation in R?

A+ (x—y)(rv—y)T}
A3 |-yl

A+ 3

Gla.y) = Amp(A + 2p)

{log |z —y|I +

and traction operator (Tu); = An;divu + pdyu; + p <87,n> (see [8]). The Poincaré-Steklov

operator S :=W + (K + 1)V 1(K + 3), which is Hs (T")-continuous and I:I%(I‘E)—coercive is a
Dirichlet-to-Neumann mapping [4].

(Su,v) = (Opu,v) = (U(UQ)aG(UQ))o,Q

Hence the (domain) variational inequality immediately yields the (boundary) variational inequal-
ity formulation: Find v € K with K := {v € H'/2(I'y) : u, < g a.e. on FC} such that

(Su,v —u)p, +7(0) —j(u) > v —uyp, YveEK (6)

where I's, ;= I'y UT¢. It is well known, e.g. [5, Theorems 3.13 and 3.14], [6] that there exists a
unique solution to @ Since neither K is trivial to discretize nor is the non-differentiable friction
function j(v) easy to handle it may be favorable to use an equivalent mixed formulation. To do
so, let

MHF) = {pe HVAT0) (v, < (F e, Yo € (D) va <0} (1)

be the set of admissible Lagrange multipliers, in which the representative A\ = —o(u)n is sought.
Then, the mixed method is to find the pair (u, ) € HY/2(I's) x M*(F) such that (see [1])

(Su,v)p, + (A v)p, = (V) Vo € HY?(T'y) (8a)
(b= A)p,, (g pn = An)p, Vi€ MT(F). (8b)

Theorem 1. There hold the following results:



1. The inf-sup condition is satisfied with a constant 8 > 0, i.e.

= <:U’7U>F
Blillgororgy € sup c

ey, e g o)
vein2ronoy 1Vl g,

2. Any solution of s also a solution of @

3. For the solution uw € K of (6) there exists a X\ € M (F) such that (u,\) is a solution of

4. There exists a unique solution to

Proof. 1. The inf-sup condition has been proven in [5, Theorem 3.2.1].

2. and 3. follow as in [17, Section 3] with (Su,v)p, = (0(uq),€(va))y o for volume force fo = 0.
4. follows from the equivalence results 2. and 3., the inf-sup condition 1. and from the unique
existence of the solution of (6) proven in [5, Theorems 3.13 and 3.14]. O

3 Stabilized mixed hp-boundary element discretization including
Lagrange multiplier

Let 73 be a subdivison of I'y; into straight line segments. Furthermore, let p be a distribution of
polynomial degrees over 7;, which on each element specifies the polynomial degree on the reference
interval. We consider the ansatz spaces

Vi i= {v/? € HY2(Ds) : 07| € [P, (E)PVE € To} | (10)

VD . {W e HVY2(Iy) : ¢ € [By, 1 (E)*VE € Th} . (11)

P
In particular, the displacement field u/? is sought in Vhps V,% is used to construct the standard
approximation [4] Sy, == W + (K" + 3) Vh;)l (K + 3) of S, where Vj,, is the Galerkin realization
of the single layer potential over V,g,. For the discrete Lagrange multiplier let 75 be an additional
subdivision of I'c. The discrete Lagrange multiplier is sought in

M (F) o= {ph € LA(To) : i) p = ZuEquE P, (E)]*VE € T, (12)
(1F)n = 0, —F(¥p(igs")) < (uF) < f(%(z’qgl))} (13)

where quE is the i-th Bernstein polynomial of degree gp affinely transformed onto the interval
E. Vg is the affine mapping from [0, 1] onto E € Ty Since the Bernstein polynomials are non-
negative and form a partition of unity, it is straight forward to show that M ,jq(]—" ) is conforming,
ie. M,:;(]: ) C MT(F), if F is linear. Since M,:;(]: ) is chosen independently of V, it cannot
be expected that the discrete inf-sup condition holds uniformly, i.e. independently of h, k, p
and ¢, or at all if T, = Thlr,. To circumvent the need to restrict the set M,;Z(]: ), the discrete



mixed formulation is stabilized analogously to [2] for FEM. That is, find the pair (u?, \k?) ¢
Vhp X M,;;(]—") such that

<Shpuhp, vhp> + <)\kq, vhp> — <'y </\kq + Shpuhp) ,Shpvhp> = <t, vhp> Vol? e Vhp
I's I'c e I'n
(14a)
<qu — M uhp> - <7 (ukq - A’“’) AR Shpuhp> < <g, gt — A’fﬂ> vuht e Ml (F)
I'c NG} e P
(14b)

Here, 7 is a piecewise constant function on I'c such that v|g = ’yohEpEQ with constant v9 > 0 for
all elements E € Ty,

Remark 2. Often Mt (F) is discretized such that the constraints are only satisfied in a discrete
set of points, namely
31 (F) = {0 € I2(Tc) 1) € [Pug (B)F, ii(2) 2 0, —F < uf(x) < F for v € Gy}
(15)

where Giq s a set of discrete points on I'c, e.g. affinely transformed Gauss-Lobatto points.

Unless specifically stated otherwise, the proven results are true for both discretizations M ,;Z(]-" )
and M ,:;1(]: ).

In the following we collect some results on Sy, which allow to prove existence and uniqueness
of the solution of the mixed formulation .

Lemma 3 (Lemma 15 in [I5]). There holds:

1. Sy, is continuous from HY*(Ts) into H-'/?(I's) and coercive on H'/?(I's) x H'Y/?(I'y)
with constants Cs and ag.

2. Epy := S — Shy is bounded from H'/?(T'y) into H/*(T'y), and there exists constants Cp,
C > 0 such that

. _ 1
IBrgtll-sreey < Coollngryy and sl < € i, V2205 + 3o =)

¢€V,f; H-1/2(T'y)

Lemma 4 (Lemma 3.2.7 in [5]). Let ip, : V,g) +— H1/2(T'g) be the canonical embedding and Thp
its dual. Furthermore, let

1 1k 1
Syuh?, PP = zthhplzhp(K + §)uhp. (16)

1 * -1
7)“7 whp =V (K + 2

_ 1
Y=V K + 5

Then there holds

(VWi = 0"),6"7) =0 W' e Vh,

b3



Theorem 5. Let T, be a locally quasi-uniform mesh. Then there holds

2
B2 )
S [P Sp0t <c |, Ve, (17)
pet, || PE L2(E) H/2(I's)

Proof. From the definition of Sy, follows that Sp,v"? = Wo? + (KT + %)nhp with n? = Vh;l (K+
F)P e V,g). In [I4, Theorem 4.4] it is shown that

2 2

B2 ) pL/2 )
> Ewel <o X PEET <,
Eer, || PP 12(B) H'/2(I's) pet, || PE 12(B) H=1/2(I's)

for the boundary integral operators associated to the Laplacian. For the integral operators ,
of the Lamé equation this can be done analogously. The assertion follows with the mapping
properties of Vh? (K +13). O

Lemma 6 (Coercivity). For vy sufficiently small, there exists a constant o > 0 independent of
h, p, k and q, such that

<Sh VP vh”> — <75h oS, vhp> > o thl’Hz Yo € Vip. (18)
P ’ I's, P » M hp o — H1/2(FE) p
Proof. From Theorem [5] it follows that
2
S )., < 0C o]
<’yShpU , Shpv >Fc < C' ||v f/2(rs) (19)

with C' > 0 independent of of h, p, k and g. Hence, from the coercivity of Sy, there holds

<Sh P vhp> — <7Sh " S, vhp> > (as — 70) thpH2 . (20)
e s e e ™ H/2(I'y)

O]

In the following it is assumed, that ¢ is sufficiently small and, therefore, Lemma [f] is always
applicable.

Theorem 7 (Existence / Uniqueness). For ~g sufficiently small, the discrete, stabilized problem
has a unique solution.

Proof. In the standard manner it can be shown that is equivalent to the saddle-point problem:
Find (uh?, \¥9) € Wy, x M,:;(]:) such that
Loy(u?, pF0) < Ly (uP? M) < £, (0", AR) P € Wy, Vit e MiE(F), (21)
with
1 1
Lo, 1) = S (S 0P = L) + (b0, 0M7) = 2 (15 + Sy, 1+ Sy )
C
(22)

T'e



Due to

1 1 o 2
hp gy = = hp . hp _ hpy _ — hpy2 ZA|phe —
L£:(w™,0) = 5(Sppv™?, 0™ )1y — L(0™?) = /FC V(Sppv™?)ds 2 5 HU Hgl/z(rz) [l zr-172(r ) HU
and £(0, ") = —3 I'e v(u*)2ds, L., is strictly convex in v and strictly concave in p*9. Since

it is also continuous on Vp, x M,;Z(]: ) and Vpp, M,;Z(]-" ) are non-empty convex sets (standard
arguments) provide the existence of the solution.

Let (u1,A1) and (ug, A2) be two solutions of (14)). Then, choosing p1 = A2 and pp = Ay in (14D)
yields after adding these two inequalities

<)\1 — Ao, Uy — UQ>FC — <’7()\1 — )\2),)\1 — Ao+ Shp(u1 — UQ)>FC > 0. (23)

Furthermore, inserting u; and ug in (14a)) respectively and subtracting the two resulting equations,
setting v"P = u; — uy implies

|

0= (Shp(ur —u2),ur —uz)p, + (A1 = Az, ur —u2)p, — (7 (A1 = Az 4 Spp(ur — uz)) , Shp(ur — u2))p,,

Vv

(Shp(ur —uz), ur — ug)p . — (YShp(ur — u2), Shp(ur —u2))p,, + (v(A1 = A2), A — Ao)p,,
2

L3(Tc)

> affur = sl aqryy + [17200 = Xa)]

This yields the asserted uniqueness of the solution. O

Due to the conformity in the primal variable there trivially holds the following Galerkin
orthogonality.

Lemma 8. Let (u,A), (u"?, \*9) be the solution of (§), respectively. Then there holds
(St = Supt, 0" )py + (A= NLP) o (YO 4 Sul), Sp") =0 W' €V,
Y] ¥}

The next result will be used in our error analysis in Section

Lemma 9 (Stability). There ezists a constant C' > 0, independent of h, p, k and q, such that

2 2

o ey + 12

~ _ hp
ey, vy < (Ol + N g-2e)) [0 e, 29
kq

+lgllmrzwe) (25)

H-1/2(T'¢)

Proof. Choosing pf? = 0,2\ and ,u,f = )\f % in ((14D) yields

<A1;Lq7u2p>r a <fy)‘?k;q’ )‘Zq + (Shpuhp)n>r - <gv /\fzq> )

c c Te

whereas ph? = A\¥ and qu = 0 yields

<—AfQ,u§‘p>Fc + (A AT+ (S,wuhp)t>F <0.

C

Hl/Q(FE)



Hence, yields with v = v? and Lemma |§|
<t,uhp> = <Shpuhp,uhp> - <'yShpuhp, Shpuhp> + <)\kq,uhp> — <'y)\kq, Shpuhp>
I'n I's I'ec T'c r
> <Shpuhp, uhp> — <75hpuhp, Shpuhp> + <’y)\kq, )\kq> + <g, )\’fﬂ>
I's I'c I'c le
1/2 kq) < )\kq>
L2(T¢) A9 I¥e

On the other hand from the with v = u"? € Vy, ¢ HY/?(T's) follows

<t,u"p>FN < (CHUHHW(FE) + ||’\||ﬁ—1/2(Fc)) Huth

which completes the proof. O

C

2
> o]
H'Y/2(I's)

|

A1/2(Dy,) ’

Corollary 10. If \* ¢ M,;Z(f) or N ¢ M,;;(}") with ¢ = 1, i.e. A\e? >0, and if g > 0, then
there exists a constant C > 0, independent of h, p, k and q, such that

2 2
hp 1/2 kq hp
oo e, + P oy < (Ol + Nz meey) [ ey, - 26)
Proof. The assertion follows directly from Lemma [J] O

4 A priori error estimates

Lemma 11. Let (u,\) € H'(T's) x L*(T¢), (u"P, A*) be the solutions of (8), respectively.
There holds

where for any p € L2(Tc) N M (F), u*d ¢ M];Z(}") we define

Y3 (A - w)]

</\ ke P u> R (27)

LQ(FC) I'c

R = <)\kq — I, u>F + <)\ — ,ukq, u? + 'y(—/\kq — Suhp)>r — <'y()\ — )\kq), S(u— uhp)>
C C

- <’y(u'“’ — M), Ehpuhp>r + <g, pn = Apd - fn — )‘n>r : (28)
C

C

Te

Proof. First note that

‘ 7O~ )‘kq)‘ ;(rc)

Rearranging (14b]) we get for all p*? ¢ MI;Z(]: )

<7/\’“q, A’“q> < <7A’“q, u’“’> - <qu — Ak uh”> + <'y(u'“’ — Ak, Shpuh”> + <g,uf‘éq - Aff">
T'c T'c r T'c

C

— (YA Np, — 2 <7>\, A'W>FC + <7Akq, A’W>F . (29)

C

o]

and from with A = —Su in L?(T'¢) if A € L?(T'¢) we get

<fy>‘7 )\>1"C < </7)‘7N>1"C - <M - >‘7u>1"c + <"}/(/1, - )‘)7 Su>1"c + <g7,u”n - An>1"o VN € LZ(FC) N MJF(F)



This gives

|

= (y(u— A™), A>FC + <'v(//“q -\, A’“q> + (A= pu)p,, + (v = ), Su)r,,

T'e

+ (k- u’“q)ﬂ~thp>F (g 1T — AT+ — )‘n>r (b1 = N9, Sutr

C C

— <7(qu _ /\kq)7Ehpuhp>F

2
< _ kg kq _ kq —
LQ(FC)_<V(H A ),/\>FC+<V(/~L ), A >FC+<A U

+{(v( = X), Su)r,, + <A'“q - ,ﬁq,uhp>r + <’Y(qu — Aka), Shpuhp>r + <g, Pt = AR+ iy, — /\n>F

C C

YE(A - Akq))

C

Pe

C

O

Theorem 12. Let (u, ), (u"?, \*) be the solutions of (§), (I4), respectively. If u € H'(T's)
and A € L*(T¢), then there holds with arbitrary v" € Vy,, v € H'Y?(Ty), ¢ € V,gj, JTS

MY (F)NL*(T¢)

1
aallu— w2y raal = Iy rasllyd = XDl

(
1,1
< ayllu — "2 +as|[Y — ¢hp”ir% z)+EH72S<U - Uhp)”%%Fc)

HE(Iy) (r
[t = Sull gy (1 = ol 2yl = 0"l p2rg)) + (A — u"hrg — (N1 = 0") g + (9 — gy
+ (YA 4 Su), S(u? —v"P))p = (YA + Su'P), Epp(u'? — o"))p,,
HA = gLy (AR — SuPP))re - (7 By (uP), S(u? = 0"P)) g, 4 (7 Bap (u?), Epp (u"? — ")) 1,

+ (Y(A® = p*9), Epp (u)) e + <g, ppd = AN+ i — /\n>F
C
cz  Cf
where the constants a1 = 2Cw — 3¢, ag = 20y —€, a3 =2 —¢, g = =2 + —2 4+ Cp, a5 =
Co + %(CK + %)2 + %C‘Q, are independent of h, k, p and q; a1, as and as are positive if € is small

enough.

Proof. Recall that Ej, = S-S5}, i.e. Su—Shpuhp = S(u—uhp)—Ehpuhp. Then by the construction
of ¢Zp and the coercivity of W and V, there holds for all v"? € Vhp

2 2

O = ey + € [ =9 e

< <Su — Sppul™ u — uhp>rE + <V(¢Zp — "), — ¢hp>

= <S(u—uhp),u—vhp> + <S(uhp —u), ulP —vhp>

FZ FE

+ (B, u =)+ (Vi = v"), 0 - )

P

I's

I's
Since Vp,, C ﬁl/Q(Fg), Ehp = S — Shp, using , we have

<Suhp,uhp — vhp> = <Ehpuhp,uhp — vhp> — <)\kq,uhp — vhp>
I's I's

+ <’y ()\kq + Shpuhp) ,Shp(uhp — vhp)> + <t,uhp — vh’p>

I'c 'y

e



Hence,

-

IR e PP

+ <Su,v — uhp> + <Ehpuhp,u - vhp>
FE FE
- <)\kq,uhp - vhp>F + <’y (x\kq + Shpuhp) , Spp(ulP — vhp)>
C

(VWi =¥ p— o)+ (o)

< <S(u—uhp),u—vhp> .

Fe

Now, the individual terms can be bounded by Cauchy-Schwarz inequality and Young’s inequality,

namely
e el e
I's H/2(Ty) H1/2(Is)
R I
H1/2 FZ) H/2(I's)
and additionally with Lemma [3] we have
<Ehpuhp, u— vhp> = <Ehp(uhp —u+u),u— vhp>
Fg FE
- . hp . hp . hp
= Crp (”u||H1/2(FE) ‘u v HHl/Z’(FE) * Hu “ Hﬁw(rz) ‘u v HHl/Q(FE)>
C hp hp 2 hp 2
< Ul 7 Hu—v H~ +eflu—u H~ + uU— ’~ .
=~ UE H ”Hl/Q(Fz) HY/2(Dy,) € aY/2(y)  4de H/2(T's)

From Lemma [! it follows with ¢ Vh% that
(Vi =00 =) = (VG — ') 0 - )
I's

[<CK+ > H HH1/2 (Ts) de ¢hPHH 1/2 Fz)] H¢ gbthHfl/Q(Fz)'

Collecting the above terms with we obtain for arbitrary v € H'/?(T'y)

_ ., hp 2 hp||2 _\ka ,hp _
Cwllu—wu ||I~{%(FE)+CV||1/J (0 || 3 1) —(A =AMy U)Te
< (S(u—u}m),u—vh]”>rE + (Enpu p,u—fuhp>pE

+ (t — Su,u™ —v)py + (t — Su,u — V"), + <)\,U - uh”>F - <)\kq,u - vhp>r
C c

+ (Vo — ™), ¢ — ")y, + <7(>\kq + Sppu™P), Spp(uP — vhp)>

e

10



Now with Lemma [11| we have for arbitrary v € V,, and v € H'/?(T'y)

Cw|lu - Uhp”g%(rz)JrCVH?ﬁ - ¢hp|!2,%(rz)+||7%()\ = N T2r,

< <S(u —ulP),u— Uhp>1“g + <Ehpuhp,u — vhp>Fc + <t — Su,u" — U>FN + <t — Su,u — vhp>FN
+(hv—ul?) - <A’“q u— ’"’>FC (V (W, —¥"P), 0 = ")y
+ <7(>\kq + Sppu”™?), Spp(u > <)\kq - u,u>rc + <)\ — P P (= NR— Suhp>

+ <7(/\'“’ — (i59), Epp(u” )>Fc + <g,un — A+ i — An>r — <’Y()\ — A*), S(u - uhp)>rc

|Ne]

C

Note that
kq hp hp _ ,,hp _ _ \ka _ . hp
<7(A + Sppu'?), Spp(u v )>Fc <’y()\ M) S(u—wu )>Fc
= (Y= X, S(u— ")) 4 (YA SuP), S = ")) = (YN SulP), By (P — 1P) )
I'c le

— (YEnp(u!?), S — 0"7))  + (YEpp(u), B (u? — /7))

T'e

e re
Finally, applying continuity of S, Sy, En, and Cauchy and Young’s inequalities yields the assertion
of the theorem.

O]

Theorem 13. Let (u, \) € HY/?(I's) x Mt (F) withu € H't*(T'g), A\ € H*('¢) and (u?, \k7) €
Vhp X M,:;(}') be the solutions of , , respectively, with g = 0 and o € [O,%). Suppose
[Anll e o)y HIA N o oy FIF 20 0) S el giva(ry), then there exists a constant C' > 0 indepen-

dent of h, p, k and q, such that there holds with v, Y" in

o= 1 = 97 g gy IR O = X8 ey )
ka+§ tha

<C + u o inf / M4 — ) ds 31
(qa+é pg® >” oot M) Fc( & o

Proof. We apply Theorem [12| with v = «?. Employing Cauchy Schwarz and Young’s inequality
with € > 0, we note that

(AR — "y = (NFT— X — o"P)p, + (A u—0"P)p,
<IN = Al ey le = V"™ | Ly oy HIA 200y 1w — 0"l 220
€tk 2 1 p° hp)2 h
< Sz = )‘)”L2(FC)+?,YOEHU = 0|72y Tl 2oyl = v™ |l L2 r)

Setting v = TIhpu, where Iy, is the Lagrange interpolation operator, we have

1+2a h

h 2a
=1y 0 S o il o= ey <€ (5) Tl (32

11



Thus

1 1 h1+2a
Y2 S (u = ") 1720y < @llv? (u = 0) g < CO‘VOWHUH%IHQ(FE)' (33)

For uh? — P ¢ Vhp we have

h hp _ h hp||2 hp __ o hp
el G V") Fep ey < @;Hu = 0y < @llu [ ()’ (34)
Again using Cauchy Schwarz and Young’s inequality yields with A = —Su
(rSUP 4 A, S — 0" P)r < o ISP — o) [Rap o+ S0 S — 0P 4 o — P2
Y ) e = 270]72 L2(T¢) 2’70]92 L2(Tc)
3 h h
S 5’}/0?”5('&}7/17 - Uhp)||%2(rc)+701?||5(u - Uhp)”%?(rc)
1+2a hl 2a oo
< 0 (g llBivso ey o Nl ol = Pl ).
(35)
Choosing p*4 = Ty A With the L?-projection M, Onto M,:;(}') we have
A= inf (P = X" (=N = SuP))p < ((mag A = A), U — Y (WM SuMP))p
urIEM (F)
(36)

Using the L2-orthogonality of the projection and standard approximation properties gives
h, h,
(Tag A — A)yuP)re = <(7Tqu)\ = A), (W' —u))re + (Tag, A — A), (U — 7oy, u))re

k2 lia W k,1+2a
<C — Ml e oy llu — ™ g )+q1+2a Al 7oy lull gt (ry)
q2

Hence, employing Young’s inequality we obtain

<<7Tqu)\ — )\), —")/(/\kq + Suhp)>rc
= (Y(Ta A — A, (_)\kq + A))re + (Y (T A = A), S(u = Inpu))re + (Y (mag, A — ), S(Tppu — Uhp)>1“c

1
L/ h\2Ek” 1 1 1
< Cv (p2> qjllAllHa(rc)(\\WZ A = N 20y 72 S (= Tip) || 2 o) 172 S (Tnpt — w') || 220 )-

Using Young’s inequality, , and , we finally obtain

1
A< O(ellP A= Xy troll =12y (37
2a+1 hk:za 2a+1 )
+t ST q2a+1 ||u||H1+a(FZ)+ quaHUHHH-Q(I‘E)—'_W||u||H1+0t(I‘Z)>‘ (38)
We now estimate the term
B:= inf (y(=A" 4+ X+ Su— SuP), Epy(u? — 0"P))r, . (39)

vhreyy,

12



As above we have

h . ) h1+2a 14+2a 9 h

e _ . hp o _ o hp
023150 = W)y < C (g Nl oz olBissoqryy ol =1y

and with continuity of Ep, = S — Sp),

h W h1+2a
025 B0 = ey < © (g Wil ol = 12y Y,
yielding altogether
h1+2a o2 1 L )
7 5(\ — \ka
e e e O L OE P Ty PR )
Similar arguments yield (see [13])
: hp hp hp /h1+2a 2 [ 2 1 1 € 2
inE (B (l), S ")) < € ulfssaqpy+ | e + 5) + 508 | W —ulZy
(41)
: hp hp hp /h1+2a 2 [ 2 1 1 € 2
it OBy (), By~ ") € O il ooy [+ )+ 508 | Il
(42)
In order to estimate the term
Ci= inf  (y(\*— k), Epp(u))r, (43)
phIEML, (F)
we write
(YNM = %), Bppu")r o = (7 = ), Enpu)re, + (v(A = 5"), Enpu)r. (44)
and estimate the two terms separately. Inserting u? = u — v + " — y + u, we have
3€, 1
(O = 2), Byt ) < Sl (A - W)H%Z(FC)
7o
||Ehp( — V") 2(rey+ ||Ehp( hp)H%z(pcfrqﬁllEhpUIliz(rC)
1 Yo '
< 5”’72()\ = N |[F2p oy T . p2+2a HUHHHa(rE)
Yo h1 T2 Y0 2 oo h
gl gyt 2 = w2y Tl
The second term in is estimated by
1 1
h2 h2 hs ko
<7()\ — uM), Ehpuhp>FC < VO?HA - /"qu”Lz(Fc)?HEhPuth%Q(FC)< VO?CTH)\HHa o) llull mivery)-
(45)

Hence, the term C in (43)) is bounded by the sum of the previous two right hand sides. Note that
hy|2 Loy by g2
g g, o el A= NP o

to the left hand side, we obtain the a priori error estimate of the theorem. O

~o is sufficiently small and, hence, moving the terms ~o||u — u

13



For the conforming approximation of by Bernstein polynomials \¥? € M ,z;(]: ) C Mt (F),
the term

inf Nt — ) ds =0 46
nf / ) (46)

vanishes. However, the properties of a corresponding quasi—interpolation operator to replace
TM,, do not seem to be available in the literature. Assuming that one can define an H F_stable
quasi-interpolation operator @y, : L*(T¢) N M*(F) — M,:;(]—'), such that 7y, satisfies the
approximation property

NGRS
HTI - ﬁqunHHk(pC) <C (p) |"7‘Hl+1(l“c) ) (47>
the proof of Theorem [L3] yields:

Remark 14. Let (u,\) € H'/2(T's) x M*(F) be the solution of the problem and (uP, \F9)
the solution of the discrete problem with Bernstein polynomials, i.e. \F1 € MZJ(]-"). Under
the same assumptions as in Theorem there holds with a constant C' > 0 independent of h, p,
k and q

ka+% h%ka
a+% + pqa ”u"H1+a(FE) . (48)

1
=™l gy g 172 A= XD 1y rey < € <q

Remark 15. Our convergence analysis (Theorem for the h-version with p = q = 1 covers
the result of Hild and Renard [11] for the FEM.

5 A posteriori error estimates

In this section we present an a posteriori error estimate of residual type for the mixed hp-BEM
scheme.

Lemma 16. Let (u, \), (uP, \¥9) be the solution of , respectively. Then there holds

<)\ — kg _yhr u>F
C

+ + —
FC _§7FC %,FC
- +
+ ()\kq> u? — + ( Mka —.7:) Uy — P
" 1 n ire t 2 1 t 2l
7571_‘0 27 7§7FC 27 C
=l =2 Jrl, = el e ],
<<H g Ml T'o et Fc+ O PR | I'e

where vt = max{0,v} and v~ = min {0,v}, i.e. v = v + 07,

14



Proof. Utilizing that (A, u, — g)Fc = 0 by , Uy — g < 0 almost everywhere in I'c and

kq + 2 + — . . + —
()\n ) € L*(T'¢) where v = max {0,v} and v~ = min {0, v}, i.e. v = vt 4+ v, there holds

+
<>\n — )\qu7uzp — un>r = <)\n — ()\flq> ’ugp _ g> + <)\n,g — un>rc
c

NG}
Jr
- <<>\7]?Lq> y g — un>FC

() ),
< <)\n — </\’flq>+ ,uzp — g> — <<x\fﬂ>_ ,uzp — un>

T'c Te

and with A € M+ (F)

(i), =808, (o) ) ),
L

o) (= () () (ol

° (9 - uﬁp)+>Fc + </\7’§q — An, (g - u?f’)_>rc

Application of Cauchy-Schwarz inequality yields
+ +
(vt )< ()" (s-) ")
T'o e
(o-u)

For the tangential component there holds by exploiting (A¢, u¢)r, = (F, [lutllo)p., <)\t, u?p>F
C

+’)\’fﬂ—)\n

e

i?FC

1

-5, 1
2,1 C E’FC

IN

15



u?pH2> , v =v" 4+ v~ and triangle inequality that
e

(3= X ,uﬁp—ut>r < (=F, uellp)p,, <AfQ,ut>Fc +(F,
< (], = 7)" )+
<((Pe, - )
:<( qu )

hp kq  hp

2/ Te N6}
hp kq , hp

2/ Te Te

(el =) 2 ], - (),

Ut —ut

Sl
o],

—<<\\qu\\2—f>w!uﬁp\\z>%—< A NR( L W
|0l -] e,
(el =) o), ), (el )

O]

Lemma 17. Let (u,)), (u", \*9) be the solution of @®). respectively. Then there exists a
constant C independent of h, p, k and q such that

(o=t oo )
< 2 Go)l-swel, s S (Gee ) s,

EcT,N'y pPE ’ EcT,NI'c ’

2
i E%;—h hp % (VW%P — (K + ;)Uhp) 2 + <()\7]2(1)Jr ’ <g B uﬁp>+>rc
2
€ )\l;rlq_)\n i;,rc—i_lle <g—uﬁp> Lo
P ’
o (SO IS (G5 o
(-2 L), - o),
+ <H)\qu2’ )U? H2>Fc

with € > 0 arbitrary.

Proof. Since u — u" € H'/2(T's) there holds
c (Hu _ uthfmz - e FE) < (W= u—u) (V- ),0- )
= <Su — Sppu™, U — uhp>FZ + <V("¢Zp — "), — 1/1’”’>F2

16



From Lemma 8 and [Ral it follows that

(Su— Shpuh”, U — uhp> = <S’u - Shpuhp, u— uhp>r + (Su— Shpuhp, P — ’Uhp>1‘2
>

I's
+ <)\ — kg yhr vhp> + <’y()\kq + Sppu”™P), Spp(ulP — vhp)>
NG}
= <t — Sppul u — vhp>r + <—)\kq — Sppu™ u — Uhp>
N

(YO 4 Spy™), Sy (u? — /7))

T'e
I'c

Let Ipp, be the Clement-Interpolation operator mapping onto Vy, with the property (see [16] and
interpolation between L? and H')

e\ V2
o= Tintllzagey <€ (22) " Iollgvam

with w(FE) a net around E. Then, an application of the Cauchy-Schwarz inequality yields with
VP = w4 I (u — uhP)

(- swinn-n) <0 52 (00 s, ]
hp™ Iy PE hp 0,E 1/2,w(E)

h 1/2
o) <e 5 (42)" sl o
< Sppu?;u —wv FC_C Z hpl 0. U— U

1/2,w(FE
EeTile PE /2,w(E)

Since upp € Vip C HY(I's) and 4y, € th C L*(T's) the mapping properties of V and K [7] yield
1
V(" = p,) = Vo' — (K + J)u” € H'(Ts) € C°(Ty).

Furthermore, V ()"P —¢;“Lp) is orthogonal in L?(I's) to thv Lemma Hence, for the characteristic
function xg € VhL; of an element E € 7Ty, there holds

0= (V" —viy) ), = [ V-, ds

and therefore the continuous function V' (ip, — w;p) has a root on each boundary segment E.
Since V (¢np — 9},) € H!(T'y), the application of [3, Theorem 5.1] yields

(v =i w—v) <[V -, " R v
2
<C E;hE g ~ Vi) . Hw’”’ wHH .

Since v"? = u" + I, (u—u"P), there holds by Cauchy-Schwarz inequality (twice), Theorem [5|and

17



the H'Y2-stability of Iy, that

{2k 4 S’hpuhp), Sup(u” — "))
|Ne]

h§
_ E kq E
=M )\ + Sh U Shp (I,
OE; / PE P ) (pE p( p(
1
2 1
he || & h hg
<7 Z H)\q—l—Shup‘ , Z =
Eelc pE L(B) Ecl'¢
1
2
< ST N
=¢ Z H)\ +Su L2(E) b H3(I's)
Eecl o
In total this yields with Lemma [16] that
C hp 2 hp
(e e TR
hE) H h h
< T () e sl o
Ee;m <pE o 1/2,0(E)
o\ /2
2 () st |
peTr, \PE 0,E 1/2,.w(E)
h 2 ’
| X Y se] W—WW1
S vE 12(B) 3 (rs)
O ’ h
DI PR Hp [
E;_ E a w whp) LQ(E) ¢ w H,j (I's))

()" ),
“Josr, |

(el )

h
Ul — Uy,

The assertion follows with Young’s inequality.
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7§7FC

(el

(9=wr)
ot (el -2)7
u’i:;l)H2>F <)\fq’ hp> C+

2

L2(E)

1
§7FC

h
[ e =]
le

[#7],s.. -
2/ Te

2

1
§7FC

[



Lemma 18. Let (u,\), (u"?, \¥) be the solution of ). respectively. Then there holds

hg 2
e P e Y e o7 [N sut
C’H A-12(T¢) — wou HY/2(T V-9 H-1/2(Ty) E; 2 +ou L2(E)
C
1/2 1/2
Y Ht — Shputh Y ‘ Ak _ g, uth
geTry PE 0.E EeTre PE 0.E

Proof. Let v € ﬁl/z(l“g) and v"P = Inpv € Vpy, then by Lemma and there holds

<)\ - )\kq,v>r = <)\ — Ak g — vhp>F — (Su — Spyu WPy, — <7()\kq + Sppul™?), Shpvhp>r
C C C

= <t,v - vhp> — <Su,v - vhp> - <)\kq,v - vhp> —(Su — S’hpuhp, Uhp>rZ
FN FE FC

= (YO + Sppu®), S

C

= <t — Shpuhp,v — vhp> + <—/\kq — Shpuhp,’u — vhp>
T'n FC

— <Su — Sppul™, v>r — <'y()\kq + Sppul™), Shpvhp>

) NG}

For the third term we obtain by the definition of ¢/ and "? in and by the continuity of the
operators that

P

<Su — Sppu™, v>r = <W(u —u"?) + (KT + %)(1/1 = whp),v>

I's

oy .
< O fu =l Wl

+ (Cgr + %) Hw - WPHH—l/z(rE) vl g1/2(rg) -

The first two and the last term can be handled as in Lemma leading to

1 kq hp e
5<>\7>\ ’U>FCSHU7U HH1/2 1ol 12 (T's) +HQ’Z) v Hﬁfl/Q(Fz) ”U||H1/2(FZ)
, bl
hg
(2 sl ) s
EcTc pE w
hE 1/2 h
+ Z <> Ht—Shpu pHOE”U||1/2,w(E)
EcT,Nl'y PE 7
hi 1/2 . N
o 2 (5E) I s e
EcTyNl'c PE 7

The assertion follows from the continuous inf-sup condition @D and Cauchy-Schwarz inequality.
O
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Combining the two Lemmas[I7 and [I§ immediately yields the following theorem if in Lemmal[I7|
€ > 0 is chosen sufficiently small.

Theorem 19 (Residual based error estimate). Let (u,\), (uP, \k9) be the solution of (8),
respectively. Then there holds

o P TR Y L

< ¥ (;;)W—Sw“ﬂh # 2 () s,

EeT, 'y EeT,Nl'c PE pE
2 + + —1|?
3 e | (vt — (4 Sy + (M), (g -l (g —ul?
3 2
ECT;, L3(E) I'c ire

_ 2 _
N I (N I (R

~1rg
= Q)+ (] ),

It is worth pointing out, that the stabilization implies no additional term in the a posteriori

2
FC’

error estimate compared to the non-stabilized case in [I, Theorem 11] and does not even effect
the scaling.

Corollary 20. For \* ¢ M,:;(]:) or \k1 ¢ M,:;(]:) with ¢ = 1, i.e. \¥ € M*(F), the estimate
of Theorem s reduced by non-conformity terms and simplifies the complementarity and stick
error contributions.

(e W TR WP R

< 2 (o) lswrp e 2 (e g ) [ s
N E

0,E
’ EeT,NTc PE ’

2

+ E; hi 5)8 (vw’w — (K + ;)uhp) o)
(o=, - [~ (b= 1),

=)+ el L)

6 Implementational challenges

For the contact stabilized BEM two non-standard matrices must be implemented, namely
<7)\kq,Shpvhp>Fc and <'yShpuhp ,Shpvhp>rc. To restrain from additional difficulties we use the
same mesh for A" and u"” on I'c. Hence, the singularities of Shpvhp for the outer quadrature
coincide with the nodes of the mesh for \*¢ and the standard outer quadrature technique for
the BE-potentials can be applied. In the implementation we utilize the representations Shpvhp =
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WohP + (K + 1)Tn" where o = th,l(K + 2l e V}g, and Wov = —d%V*% where V* is the
modified single layer potential [?, p. 157]. Hence, performing integration by parts elementwise

yields

d d 1
)\kq S hp — )\kq _ v* hp )\kq K “\T,hp
<7 » Shpv >F <7 S FC+ A (K +5) .

C

he / d L d . d 1
=% Y o <ds)\’“1,V dsvhp> - [A’“qv dsvhp] + <7Akq, (K + 2)Tn’”">
EeT, e E E OFE T'c

where OF are the two endpoints of the interval E. Each of these terms can now be computed
by standard BEM techniques, e.g. decomposition into farfield, nearfield and selfelement with
the corresponding (hp-composite) Gauss-Quadrature for the outer integration and the analytic
computation for the inner integration [?]. The algebraic representation of " for the computation
of the standard Steklov-operator <Shpuhp ,uhP >F2 is reused, i.e.

.
NSv=XWi+ X' (f{ + ;1) v-! (K + ;1) 7.

For the second matrix we obtain
1 1
<'75hpuhp, Shpvh*”>F = <quh’p + (K +5) ¢ W+ (K + 2)T77h‘”>
C Tc

1
= <7Wuhp, thp>F + <’)/Wuhp, (K + 2)T77hp>
e

C

(U TR (300 )T+ )T
Te

NG}
Here, elementwise integration by parts of the hypersingular integral operator yields no advan-
tages, except for <7Wuhp,17hp>rc and <7Chp,thp>FC, and, therefore, the tangential derivative
is approximated by a central finite difference quotient with a step length of 10~* on the reference
interval. This yields the matrix representation

T T
. J— 1 e 1 1
7'Sit=0"WWi + 7" (K + 21) v-T (WKT + 2WI> T4+ T" <WKT + 2WI> v-! (K + 21) i

1\ " — 1l 1—T 1 1
+ a7 <K+21> v-T (KTKT+2KTI+2KTI +4II)V1 (K+21)ﬁ

Most of the computational time is required for the matrices WW, KTKT and WK . Hence,
their symmetry and other optimization possibilities should be exploited thoroughly.
and

7 Modifications for Coulomb friction

Tresca friction often yields unphysical behavior, namely non-zero tangential traction and stick-
slip transition outside the actual contact zone. Therefore, in many applications the more realistic
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Coulomb friction is applied, in which the friction threshold F is replaced by F|oy(u)|. In the
here presented discretization only the Lagrangian multiplier set must be adapted, namely

MY (FAn) = {u e H'2(Te) : {u,v)p, < (Fhn lJell)p, Yo € HY2(Is), v, < o} (49)
My (FAR) = {u’“q € L*(Tc) : M| = Zuf vap € Pap (B (1) 2 0, ()] < J-“(\IIE(in))(A?)n}
(50)
M (FARD) = {ukq € L*(Tc) : b € [Py (B)?, pk? >0, —FAR < pif? < FAR in qu}
(51)

A standard iterative solver technique for Coulomb friction is to solve a sequence of Tresca fric-
tional problems in which the friction threshold F A, of the current Tresca subproblem is obtained
from the previous iterative Tresca solution. Since that solution is updated in the next Tresca
iteration anyway we solve the subproblem inexactly by a single semi-smooth Newton step.

Theorem 21. Let (u,)), (u?,\F7) be the solution of , respectively, with the Lagrange
multiplier sets modified according to Coulomb friction. Under the assumption that \y = FA&,
¢ € Diry(u) where Diry(ug) is the subdifferential of the convexr map uy — |ui| (see [9]), F > 0
constant and F ||&|| sufficiently small, there holds

o P T Y L

c = () -swrl e 5 (20 s
BeTnry \PE OF  permre \PE Pk i
1 2 —2 +
n h hp _ hp> + | Anp)i —|—H A — F(Anp)y H
E%:Th B ( PP — (K )U o) | (Anp) H—1/2,Fc (1wp)el = F (np) ) —1/2T¢

= (el = Fu )™ gl ).+ (gl el = (o) )i,

+ H 9 - uhp H1/2 T'c <()‘hp):zr ) (g - (uhp)n)+>Fc>

Proof. The same arguments as for Theorem [19| apply, only the estimate of the tangential compo-
nent in Lemma [16] changes, [9, [I]. From Ay = FA,¢ follows

<)\t )\hp hp — ut>Fc = <)\?p — FE(Anp),, > ut — (unp) >F + <-7:§( Ahp)y, An) » Ut — (“hp)t>1‘c

< <()‘hp)t - F¢ ()‘hp)n y Ut — uhp t>1"c + F €] [|w — uhp”1/2,1“2 H)‘ - )\hPH_l/Q’I‘C
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For the other term there holds, similarly to [9, Eq. 27],

(), Feuh - (7)),

+
< flu = unplly o {H (10wl = FO)E) ‘ +F o),

n

—1/2,I‘c}

= ((00 = FOuE) il )+ Ul N = (Orade ()i, -

Te

This gives the assertion if @ — €7 — €3 — %.7: €]l (1 4 €3) > 0, i.e. F ||| is sufficiently small.
O

8 Numerical experiments

The following numerical experiments are carried out on an Intel Xeon compute-server with the
software package of Lothar Banz. We choose 79 = 1073, and use the adaptivity algorithm as
in [I, Alg. 12] with Dorfler marking parameter # = 0.3 and analyticity estimation parameter
6 = 0.5. The discrete problems are solved with a semi-smooth Newton method for which the
constraint (14b]) is written as two projection equations, one in the normal and one in the tangential
component.

8.1 Mixed boundary value problem with linear Tresca-friction threshold

For the following numerical experiments, the domain is Q = [—%, %]2 with T'c = [—%, %] X {—%},

I'p= [%, %] X {%} and 'y = 9Q\ (I'c UT'p). The material parameters are £ = 500 and v = 0.3,
2

the gap function is g = 1 — /1 — 1%0 and the Tresca friction function is F = 0.211 + 0.412z;.

The Neumann force is

tofs = ( —(3 —952)0(—5—362) )7 on {_;} y [_;7;]
o (g om ) [t (3]

and zero elsewhere. An example with similar obstacle and friction function is considered in [17]
for FEM and in [I] for BEM with biorthogonal basis functions. The solution is characterized
by two singular points at the interface from Neumann to Dirichlet boundary condition. These
singularities are more sever than the loss of regularity from the contact conditions. At the contact
boundary the solution has a long interval in which it is sliding and in which the absolute value of
the tangential Lagrangian multiplier increases linearly like F. The actual contact set is slightly
to the right of the middle of I'¢c.

Figure [1| shows the reduction of the error indicator for different families of discrete solutions.
The residual error indicator for the uniform h-version with p = 1 has a convergence rate of 0.25
which is the same as in the non-stabilized case with biorthogonal basis function presented in [1J.
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Error Estimation
>

—&-uniform h, p=1, GLL
——uniform h, p=1, Bernstein
-©-h-adaptive, p=1, GLL
——h-adaptive, p=1, Bernstein
-7hp-adaptive, 6=0.5, GLL
—*—hp-adaptive, =0.5, Bernstein

10’ 10° 10° 10"

Degrees of Freedom

107

Figure 1: Error estimations for different families of discrete solutions (Tresca-friction)

Here, the residual contribution of the residual error indicator is divided by ten to compensate
for the residual estimator’s typical large reliability constant. This factor is purely heuristic and
based on a comparison of the residual and bubble error estimator for contact problems with
biorthogonal basis functions in [I]. Employing an h-adaptive scheme improves the convergence
to 2.5, which later on deteriorates, by local refinements at the Neumann to Dirichlet interface
and by locally resolving the contact interface as well as the first kink in A;. If both, h- and
p-refinements are carried out, the convergence rate is only slightly further improved to 2.6. This
is a very different behavior to the non-stabilized case with biorthogonal basis functions. There
h-adaptivity has a convergence rate of 1.3 and hp-adaptivity of 2.4 and a significant fraction
of the adaptive refinements is carried out on the contact boundary I'c. In fact, the h-adaptive
scheme there shows an almost uniform mesh refinement on a large part of I'c which is not the
case here, Figure 2| (a). The reason for that might be that the residual of the variational equation
is the dominant contribution of the error indicator, Figure 8] On the contact boundary, this is
ka4 Shpuhp . However, the employed stabilization tries to achieve that \*4 + Shpuhp = 0 for each
discrete solution. Hence, the estimated error on I'¢ is correctly small and no local refinements
are needed there.

Noting that the Bernstein basis functions (and constraints) are the same as for Gauss-Lobatto-
Lagrange (GLL) if p = 1, it is clear that the error estimation does not differ between these two
approach for both the uniform and the h-adaptive scheme, Figure [l When looking at the hp-
refined meshes for these two approaches, Figure [2[ (b)-(c), it becomes clear why the difference
in the error estimates is that small. Nevertheless, in the GLL approach the consistency error in
An is non zero, Figure (c), contrary to the conforming Bernstein polynomial case, Figure (b)
In both cases the consistency error in A; is on machine precision and is therefore omitted in the
plots.
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8.2 Neumann boundary value problem with Coulomb-friction

For the following numerical experiments, the domain is © = [—1, 112 with I'c = [—3, 5] x {—3

and I'y = 09 \ I'c. Since no Dirichlet boundary has been prescribed, the kernel of the Steklov
operator consists of the three rigid body motions ker(S) = span {(z1,0)", (0,22) ", (z2, —21) " }.
Nevertheless, to obtain a unique solution the rigid body motions are forced to zero during the
simulation. The material parameters are £ = 5 and v = (.45, and the Coulomb friction coefficient

is 0.3. The Neumann force is

fige = —10sign(z1)( + 22) (2 — 22)exp(—10(zs + £)2)
- G+ m)(} - o)

0
t pu—
o ( —275(% - 361)2(% + 21)? >

on the side, top respectively, and the gap to the obstacle is zero. A similar example is considered
in [12] for FEM and the same in [I] for BEM with biorthogonal basis functions. The solution is
characterized by a large contact set and that the Lagrangian multiplier has a kink, jump in the
normal, tangential component, respectively, at 1 = 0, Figure

Figure [5| shows the reduction of the error indicator for different families of discrete solutions.
The residual error indicator for the uniform h-version with p = 1 has a convergence rate of almost
1.5. Employing an h-adaptive scheme improves the convergence in the preasymptotic range but
then the estimated error runs parallel to the uniform case as only quasi uniform mesh refinements
are carried out, Figure (7| (a). If both, h- and p-refinements are carried out, the convergence rate is
improved to over 2.8 after a preasymptotic range in which only h-refinements are been carried out.
The estimated error for the GLL- and Bernstein approach is the same even for the hp-adaptive
case, since the basis functions for the Lagrange multiplier and the contact conditions only differ
where p > 2. This however, is only the case outside the actual contact area, Figure|7| (b)-(c), but
there A = 0 due to Coulomb’s friction law. The error reduction and adaptivity behavior is again
very different to the non-stabilized case with biorthogonal basis function [I, Sec. 6.2]. There the
convergence rate is larger with 1.9 for h-adaptivity and 3.3 for hp-adaptivity and the refinements
on I'c are more localized. There, the dominant error source is the slip-stick contribution, and
thus explaining the local mesh refinements on I'c, whereas here the residual of the variational
equation and the violation of the complementarity condition in A,, are dominant. Interestingly,
here, the slip-stick contribution is the smallest non-zero error contribution and is several decades
smaller then the other remaining ones, Figure [6]

8.3 Influence of the stabilization for the Neumann boundary value problem
with Coulomb-friction

From Lemma [6] it is clear that if 4o is chosen to be too large the system matrix has at least one
negative eigenvalue and the entire theory may no longer hold. Figure[8|shows the error estimation
for a uniform mesh with 256 elements and p = 1 versus 7. In all cases the iterative solver con-
verges to a solution of the discrete problem. But for «y > 0.152 the system matrix has a negative
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Figure 5: Error estimations for different families of discrete solutions (Coulomb-friction)
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eigenvalue and the discrete solution looks unphysical or even simply useless. Interestingly, the
error estimation captures this partly, the red curve in Figure |8, even though the error estima-
tion may not be an upper bound of the discretization error. Once 7 is sufficiently small, here
1.9-10712 < 4y < 6.6 - 1072, there is (almost) no dependency on the absolute value of vy itself,
neither in the error estimate nor in the discrete solution itself. Only if g is further decreased,
i.e. the stabilization is effectively switched off, the Lagrangian multiplier starts to oscillate as it is
typical for the non-stabilized case, when using the same mesh and polynomial degree for ’Lthh"C
and \*? and no special basis functions. This is captured by the increase in the error estimation.

Within thgigulation,/th\e most time consuming contribution is the computation of the ma-
trices WW, KTK T and WK for the stabilization matrix S. Since 7o is allowed to be very small

it may be favorable to compute these matrices only approximately. In the following we replace
WW by WM, M, M;'W where

(ML), = (15,8, (M), i= (05, 0y, (W), = Wiy, (KT) = (K 65,0:)

)

(52)

with span {¢;}, = V,% 41 and span {p;}; = Vpp. In particular Mp is only a block-diagonal ma-
trix and thus its inverse is cheap. The difference to the original formulation in Section [fis in an
intermediate projection of Wu/P, Wo" onto the discontinuous finite element space V,g) 41+ Analo-

gously, the matrices K/TET, WK are replaced by (KT)TMZ)TMVM;I_{T, (I_{T)TMBTMVM;W,

respectively. Even though four instead of three matrices must now be computed, only two poten-
tials (due to elementwise partial integration of W) must be evaluated and thus this is significantly
faster.

Figure [9] shows the decay of the error estimation for the uniform h version with p = 1 and
for the hp-adaptive scheme with Gauss-Lobatto-Lagrange basis functions when using the above
approximation of the stabilization matrix. For comparison the corresponding curves from Figure 5]
are also depicted. The difference in the error estimation for the original stabilization approach
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Figure 8: Dependency of error estimation on g for uniform mesh with 256 elements and p = 1
(Coulomb-friction)

and its approximation is 40.014% for the uniform h-version with p = 1 and 40.02% for the
hp-adaptive scheme. Hence, contact stabilized BEM is suitable for practical applications.
Acknowledgments: H.G. thanks the Danish Science Foundation (FNU) for partial support through
research grant 10-082866.
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