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Abstract The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal
parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates
have many applications. They are essential, for example, inestablishing optimal a priori error estimates in non-
Hilbertian norms without unnatural coupling of spatial mesh sizes with time steps.

Keywords maximal parabolic regularity· finite elements· maximum norm· fully discrete· resolvent estimates·
resolvent estimates· optimal error estimates· parabolic smoothing

1 Introduction

Let Ω be a Lipschitz domain inRd, d = 2, 3 andI = (0, T ). We consider the heat equation as a model of a
parabolic second order partial differential equation,

∂tu(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ I ×Ω,

u(t, x) = 0, (t, x) ∈ I × ∂Ω,

u(0, x) = u0(x), x ∈ Ω

(1)

with a right-hand sidef ∈ Ls(I;Lp(Ω)) for some1 ≤ p, s ≤ ∞ andu0 ∈ Lp(Ω), 1 ≤ p ≤ ∞.
The maximal parabolic regularity foru0 ≡ 0 says that there exists a constantC such that,

‖∂tu‖Ls(I;Lp(Ω)) + ‖∆u‖Ls(I;Lp(Ω)) ≤ C ‖f‖Ls(I;Lp(Ω)), 1 < p, s <∞, for all f ∈ Ls(I;Lp(Ω)),

(see, e.g., [8,19,20]). The maximal parabolic regularity is an important analytical tool and has a number of ap-
plications, especially to nonlinear problems and/or optimal control problems when sharp regularity results are
required (cf. [21,22,23,25]). Our aim in this paper is to establish similar maximal parabolic regularity results for
time discrete discontinuous Galerkin solutions as well as for the fully discrete Galerkin approximations. Such
results are very useful, for example, in fully discrete a priori error estimates and are essential in order to keep the
spatial mesh sizeh and the time stepsk independent of each other (cf. [28]). In [27] we apply the results of this
paper to establish pointwise best approximation estimatesfor fully discrete Galerkin solutions.

Maximal parabolic regularity with applications to semidiscrete finite element Galerkin solutions in space were
analyzed for smooth domains in [14,15] and for convex polyhedra in [29]. Time discrete results are much less
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known in the finite element community. Explicit methods are treated in [5,6,36]. Implicit Euler methods with
pointwise norms in time are considered in [16,17]. A more systematic investigation of discrete maximal parabolic
regularity for various time schemes was carried out by Sobolevskĭi and Ashyralyev and summarized in the book
[1].

In this paper, we investigate maximal parabolic regularityfor a family of time discontinuous Galerkin (dG)
methods, which were first deeply analyzed for linear second order parabolic problems in [13]. There is a number
of important properties that make the dG schemes attractivefor temporal discretization of parabolic problems. For
example, such schemes allow for a priori error estimates of optimal order with respect to discretization parame-
ters, such as the size of time steps and the mesh width, as wellas with respect to the regularity requirements for
the solution (see, e.g., [10,11]). Different systematic approaches for a posteriori error estimation and adaptivity
developed for finite element discretizations can be adaptedfor dG temporal discretization of parabolic equations,
(see, e.g., [38,39]). Since the trial space allows for discontinuities at the time nodes, the use of different spatial
discretizations for each time step can be directly incorporated into the discrete formulation, (see, e.g., [38]). Com-
pared to the continuous Galerkin methods, dG schemes are notonly A-stable but also strongly A-stable, (see,
e.g., [24]). An efficient and easy to implement approach thatavoids complex coefficients, which arise in the equa-
tions obtained by a direct decoupling for high order dG schemes, was developed in [37]. For the treatment of
optimal control problems, Galerkin methods are particularly suitable since they expose an important property that
the two approaches optimize-then-discretize, i.e., the discretization of the optimality system built up on the con-
tinuous level, and discretize-then-optimize, i.e., discretization of the state equation and subsequent construction
of the optimality system on the discrete level, lead to the same discretization scheme, (see, e.g., [4]). Compared to
continuous Petrov-Galerkin time-stepping schemes (see [35] for details), dG schemes also have the advantage that
the adjoint state can use the same discretization as the state variable. This allows for unified numerical treatment
and simplifies a priori and a posteriori error analysis, (see, e.g., [7,32,33,34]).

The main results of this paper for the time semidiscrete discontinuous Galerkinuk solution consist roughly of
two parts. First, for the homogeneous problem (i.e.f = 0) with u0 ∈ Lp(Ω), 1 ≤ p ≤ ∞ we show

‖∂tuk‖L∞(Im;Lp(Ω)) + ‖∆uk‖L∞(Im;Lp(Ω)) +

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤
C

tm
‖u0‖Lp(Ω), (2)

for m = 1, 2, . . . ,M . Then, using this smoothing result, we also establish discrete maximal parabolic regularity
for the inhomogeneous problem whenu0 = 0. We show,

(

M
∑

m=1

‖∂tuk‖
s
Ls(Im;Lp(Ω))

)

1
s

+ ‖∆uk‖Ls(I;Lp(Ω)) +

(

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

)

1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)),

(3)
for 1 ≤ s ≤ ∞ and1 ≤ p ≤ ∞, with obvious notation changes in the case ofs = ∞. In the case of the lowest
order piecewise constant method, i.e.,q = 0, the first terms on the left-hand side of the above estimates vanish.
In contrast to the continuous case, the limiting casess, p ∈ {1,∞} are allowed, which explains the logarithmic
factor in (3). We also provide the fully discrete analog of (2) and (3).

The rest of the paper is organized as follows. In the next section we introduce the discretization method and
the resolvent estimates, which build the main analytical tool of the paper. For better communication of the ideas
we first analyze the dG(0) method, which is technically much simpler, and in the following section we analyze the
general dG(q) case. That is done in Sections 3 and 4, respectively. At the end of Section 4 we provide an example
of how such maximal parabolic regularity results can rathereasily lead to optimal order error estimates. Finally,
Section 5 is devoted to fully discrete Galerkin solutions. In Section 6 we provide an extension of our results to
the case of a general norm fulfilling a resolvent estimate. This generalization, being of an independent interest,
is used, for example, in [27] for derivation of pointwise interior (local) error estimates of fully discrete Galerkin
solutions.

2 Preliminaries

To introduce the time discontinuous Galerkin discretization for the problem, we partitionI = (0, T ) into subin-
tervalsIm = (tm−1, tm] of lengthkm = tm − tm−1, where0 = t0 < t1 < · · · < tM−1 < tM = T . The
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maximal and minimal time steps are denoted byk = maxm km andkmin = minm km, respectively. We impose
the following conditions on the time mesh (as in [31]):

(i) There are constantsc, β > 0 independent onk such that

kmin ≥ ckβ.

(ii) There is a constantκ > 0 independent onk such that for allm = 1, 2, . . . ,M − 1

κ−1 ≤
km
km+1

≤ κ.

(iii) It holds k ≤ 1
4T .

The semidiscrete spaceXq
k of piecewise polynomial functions in time is defined by

Xq
k = {uk ∈ L2(I;H1

0 (Ω)) : uk|Im ∈ Pq(H
1
0 (Ω)), m = 1, 2, . . . ,M},

wherePq(V ) is the space of polynomial functions of degreeq in time with values in a Banach spaceV . We will
employ the following notation for functions inXq

k

u+m = lim
ε→0+

u(tm + ε), u−m = lim
ε→0+

u(tm − ε), [u]m = u+m − u−m. (4)

Next we define the following bilinear form

B(u, ϕ) =

M
∑

m=1

〈∂tu, ϕ〉Im×Ω + (∇u,∇ϕ)I×Ω +

M
∑

m=2

([u]m−1, ϕ
+
m−1)Ω + (u+0 , ϕ

+
0 )Ω , (5)

where(·, ·)Ω and(·, ·)Im×Ω are the usualL2 space and space-time inner-products,〈·, ·〉Im×Ω is the duality product
betweenL2(Im;H−1(Ω)) andL2(Im;H1

0 (Ω)). We note, that the first sum vanishes foru ∈ X0
k . The dG(q)

semidiscrete (in time) approximationuk ∈ Xq
k of (1) is defined as

B(uk, ϕk) = (f, ϕk)I×Ω + (u0, ϕ
+
k,0)Ω for all ϕk ∈ Xq

k . (6)

Rearranging the terms in (5), we obtain an equivalent (dual)expression ofB:

B(u, ϕ) = −
M
∑

m=1

〈u, ∂tϕ〉Im×Ω + (∇u,∇ϕ)I×Ω −
M−1
∑

m=1

(u−m, [ϕ]m)Ω + (u−M , ϕ
−
M )Ω. (7)

The analysis of such schemes in non-Hilbertian setting is usually done by using a semigroup approach that
represents time stepping formulas as a Dunford-Taylor integral in the complex plane [41, Ch. 9]. This approach
requires certain resolvent estimates. For Lipschitz domains and a givenγ ∈ (0, π/2), the resolvent estimate (see
[40]) guarantees the existence of a constantC such that for allu ∈ Lp(Ω), 1 ≤ p ≤ ∞, and anyz ∈ C \ Σγ the
following estimate holds:

‖(z +∆)−1u‖Lp(Ω) ≤
C

1 + |z|
‖u‖Lp(Ω), (8)

where the Laplace operator−∆ is supplemented with homogeneous Dirichlet boundary conditions, and

Σγ = {z ∈ C : |arg (z)| ≤ γ}. (9)

Using the identity∆(z +∆)−1 = Id−z(z +∆)−1, one immediately obtains,

‖∆(z +∆)−1u‖Lp(Ω) ≤ C‖u‖Lp(Ω), z ∈ C \Σγ , 1 ≤ p ≤ ∞, u ∈ Lp(Ω). (10)

We note, that all our results for semidiscrete solutions hold if we replace the Laplace operator−∆ with a more
general self-adjoint second order elliptic operatorA provided it satisfies (8).
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3 Estimates for dG(0)

For the ease of the presentation, we first establish the results for the lowest order piecewise constant discretization
dG(0). In this case, we use the following notation,

uk,m = uk|Im , u+k,m = uk,m+1, u−k,m = uk,m, m = 1, 2, . . . ,M − 1. (11)

First, we establish results for the homogeneous problem. Inthis case the dG(0) method is equivalent to the Back-
ward Euler method.

3.1 Results for the homogeneous problem

Let f = 0, u0 ∈ Lp(Ω) and letuk ∈ X0
k be the semidiscrete approximation of (1) defined by

B(uk, χk) = (u0, χk,1), ∀χk ∈ X0
k , (12)

i.e., the dG(0) solutionuk satisfies

uk,1 − k1∆uk,1 = u0,

uk,m − km∆uk,m = uk,m−1, m = 2, 3, . . . ,M.
(13)

The first result shows that the solution can not grow from one time step to the next one.

Lemma 1 Letuk be the solution of(12). Then, foru0 ∈ Lp(Ω), 1 ≤ p ≤ ∞ there holds

‖uk,m‖Lp(Ω) ≤ ‖u0‖Lp(Ω) ∀m = 1, 2, . . . ,M.

Proof First, we assumeu0 ∈ L∞(Ω) and establish

‖uk,m‖L∞(Ω) ≤ ‖u0‖L∞(Ω) m = 1, 2, . . . ,M. (14)

It is sufficient to consider only a single time step,

uk,1 − k1∆uk,1 = u0. (15)

We want to show that‖uk,1‖L∞(Ω) ≤ ‖u0‖L∞(Ω). Assume it is false. Letx0 ∈ Ω be a point whereuk,1 attains a
maximum. By [18, Theorem 3.3], we know thatuk,1 ∈ C0(Ω), hence, there exists an open ballBδ(x0) of radius
δ > 0 centered atx0 with Bδ(x0) ⊂ Ω such that

uk,1(x) > ‖u0‖L∞(Ω) for all x ∈ Bδ(x0).

Hence,
uk,1(x) − u0(x) > 0 onBδ(x0).

By the maximum principle, from

−∆uk,1 =
1

k1
(u0 − uk,1) < 0 onBδ(x0),

we obtain a contradiction to the assumption thatuk,1 has a maximum at the interior pointx0. This contradiction
establishes (14). Next, using a duality argument, we will show

‖uk,1‖L1(Ω) ≤ ‖u0‖L1(Ω). (16)

Consider the problem, to findzk,1 ∈ H1
0 (Ω) that satisfies,

zk,1 − k1∆zk,1 = z0, with z0 = sgnuk,1.

The solutionzk,1 can be thought of as a single step of the dG(0) method to a parabolic problem with initial
conditionsgnuk,1. Thus,

‖uk,1‖L1(Ω) = (uk,1, z0) = (zk,1, uk,1)+k1(∇zk,1,∇uk,1) = (u0, zk,1) ≤ ‖u0‖L1(Ω)‖z0‖L∞(Ω) ≤ ‖u0‖L1(Ω),

where we have used (14) forzk and the fact that‖z0‖L∞(Ω) = ‖sgnuk,1‖L∞(Ω) = 1. This establishes (16).
Interpolating, we obtain the lemma for1 ≤ p ≤ ∞.
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Next we will establish a smoothing result.

Theorem 1 (Homogeneous smoothing estimate)Let uk ∈ X0
k be the solution of(12) with u0 ∈ Lp(Ω), 1 ≤

p ≤ ∞. Then there exists a constantC independent ofk such that

‖∆uk,m‖Lp(Ω) ≤
C

tm
‖u0‖Lp(Ω), m = 1, 2, . . . ,M.

Proof The proof is given on page 1321 in [12] for theL2(Ω) norm, but the proof is valid for theLp(Ω) norm as
well by using the resolvent estimate (8) with respect to theLp(Ω) norm.

Remark 1Let uk ∈ X0
k be the solution of (12) withu0 ∈ Lp(Ω), 1 ≤ p ≤ ∞. Then there exists a constantC

independent ofk such that

‖uk,m‖Lp(Ω) + (tm − tl)‖∆uk,m‖Lp(Ω) ≤ C‖uk,l‖Lp(Ω), ∀m > l ≥ 1.

From (13), we immediately obtain the following result.

Corollary 1 Letuk ∈ X0
k be the solution of(12) with u0 ∈ Lp(Ω), 1 ≤ p ≤ ∞. Then there exists a constantC

independent ofk such that

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤
C

tm
‖u0‖Lp(Ω), m = 1, 2, . . . ,M.

3.2 Results for the inhomogeneous problem

Now we consideruk ∈ X0
k to be the dG(0) solution to the parabolic equation withu0 = 0, i.e.,uk satisfies,

B(uk, ϕk) = (f, ϕk)I×Ω, ∀ϕk ∈ X0
k . (17)

Thus, the dG(0) solution satisfies

uk,1 − k1∆uk,1 = k1f1,

uk,m − km∆uk,m = uk,m−1 + kmfm, m = 2, 3, . . . ,M,
(18)

where

fm(·) =
1

km

∫

Im

f(t, ·)dt.

Sincefm is theL2 projection off onto the piecewise constant functions on each subintervalIm, we have

max
1≤m≤M

‖fm‖Lp(Ω) ≤ C‖f‖L∞(I;Lp(Ω)), 1 ≤ p ≤ ∞, (19a)

M
∑

m=1

km‖fm‖rLp(Ω) ≤ C‖f‖rLr(I;Lp(Ω)), 1 ≤ p ≤ ∞, 1 ≤ r <∞. (19b)

We now state our main result for the dG(0) approximations.

Theorem 2 (Maximal parabolic regularity) Let 1 ≤ s, p ≤ ∞ andu0 = 0. Then, there exists a constantC
independent ofk such that for everyf ∈ Ls(I;Lp(Ω)) anduk satisfying(17), the following estimate holds:

‖∆uk‖Ls(I;Lp(Ω)) ≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)), 1 ≤ s ≤ ∞, 1 ≤ p ≤ ∞.
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Proof Using (18), we can write the dG(0) solution as

uk,m =

m
∑

l=1

kl





m−l+1
∏

j=1

r(−km−j+1∆)



 fl, m = 1, 2, . . . ,M,

wherer(z) = (1 + z)−1. Then,

∆uk,m =

m
∑

l=1

kl



∆

m−l+1
∏

j=1

r(−km−j+1∆)



 fl, m = 1, 2, . . . ,M.

Hence

‖∆uk,m‖Lp(Ω) ≤

m
∑

l=1

kl

∥

∥

∥

∥

∥

∥



∆

m−l+1
∏

j=1

r(−km−j+1∆)



 fl

∥

∥

∥

∥

∥

∥

Lp(Ω)

, m = 1, 2, . . . ,M.

From Remark 1, since each term in the sum on the right-hand side can be thought of as a homogeneous solution
with initial conditionfl at t = tl−1, we have

∥

∥

∥

∥

∥

∥



∆

m−l+1
∏

j=1

r(−km−j+1∆)



 fl

∥

∥

∥

∥

∥

∥

Lp(Ω)

≤
C

tm − tl−1
‖fl‖Lp(Ω).

Thus, we obtain

‖∆uk,m‖Lp(Ω) ≤ C

m
∑

l=1

kl
tm − tl−1

‖fl‖Lp(Ω), m = 1, 2, . . . ,M. (20)

Fors = ∞, we obtain from the above estimate and using (19),

‖∆uk‖L∞(I;Lp(Ω)) = max
1≤m≤M

‖∆uk,m‖Lp(Ω) ≤ C max
1≤m≤M

m
∑

l=1

kl
tm − tl−1

‖fl‖Lp(Ω)

≤ C max
1≤l≤M

‖fl‖Lp(Ω) max
1≤m≤M

m
∑

l=1

kl
tm − tl−1

≤ C ln
T

k
‖f‖L∞(I;Lp(Ω)),

where in the last step we used that
m
∑

l=1

kl
tm − tl−1

≤ 1 +

∫ tm−1

0

dt

tm − t
= 1 + ln

tm
km

≤ C ln
T

k
, (21)

by using the assumptionkmin ≥ Ckβ andk ≤ T
4 .

Fors = 1, we have

‖∆uk‖L1(I;Lp(Ω)) =
M
∑

m=1

km‖∆uk,m‖Lp(Ω) ≤ C
M
∑

m=1

km

m
∑

l=1

kl
tm − tl−1

‖fl‖Lp(Ω).

Changing the order of summation and using (19), we obtain

‖∆uk‖L1(I;Lp(Ω)) ≤ C

M
∑

l=1

kl‖fl‖Lp(Ω)

M
∑

m=l

km
tm − tl−1

≤ C ln
T

k

M
∑

l=1

kl‖fl‖Lp(Ω) ≤ C ln
T

k
‖f‖L1(I;Lp(Ω)),

where we used again that
M
∑

m=l

km
tm − tl−1

≤ C ln
T

k
.

Interpolating betweens = 1 ands = ∞, we obtain the result for any1 ≤ s ≤ ∞.
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Remark 2The appearance of the logarithmic term is natural for the critical valuess = 1, p = 1, s = ∞, or
p = ∞, since the corresponding maximal parabolic regularity results for the continuous problem hold only for
1 < s, p < ∞. For s = 2 or p = 2, the power of the logarithm can be lowered. Thus, forp = 2, from [33] we
know,

‖∆uk‖L2(I;L2(Ω)) ≤ C‖f‖L2(I;L2(Ω))

and from (20), we have

‖∆uk‖Ls(I;L2(Ω)) ≤ C ln
T

k
‖f‖Ls(I;L2(Ω)), 1 ≤ s ≤ ∞.

Interpolating betweens = 2 ands = ∞ and betweens = 2 ands = 1, we obtain

‖∆uk‖Ls(I;L2(Ω)) ≤ C

(

ln
T

k

)

|s−2|
s

‖f‖Ls(I;L2(Ω)), for any1 ≤ s ≤ ∞.

Similarly, we can obtain,

‖∆uk‖L2(I;Lp(Ω)) ≤ C

(

ln
T

k

)

|p−2|
p

‖f‖L2(I;Lp(Ω)), for any1 ≤ p ≤ ∞.

Corollary 2 (Maximal parabolic regularity for jumps) Let 1 ≤ s, p ≤ ∞ andu0 = 0. Then, there exists a
constantC independent ofk such that for everyf ∈ Ls(I;Lp(Ω)) anduk satisfying(17), the following estimate
holds,

max
1≤m≤M

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C ln
T

k
‖f‖L∞(I;Lp(Ω)), 1 ≤ p ≤ ∞,

(

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

)

1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)), 1 ≤ s <∞, 1 ≤ p ≤ ∞,

where the jump term[uk]0 at t = 0 is defined asuk,1.

Proof Since by (18) on each time subintervalIm we have

k−1
m [uk]m−1 = ∆uk,m + fm, m = 1, 2, . . . ,M,

by using Theorem 2, we have

max
1≤m≤M

k−1
m ‖[uk]m−1‖Lp(Ω) ≤ max

1≤m≤M

(

‖∆uk,m‖Lp(Ω) + ‖fm‖Lp(Ω)

)

≤ C ln
T

k
‖f‖L∞(I;Lp(Ω)).

Similarly, using Theorem 2, for1 ≤ s <∞ we have

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

≤ Cs

M
∑

m=1

km

(

‖∆uk,m‖sLp(Ω) + ‖fm‖sLp(Ω)

)

≤ Cs

(

ln
T

k

)s

‖f‖sLs(I;Lp(Ω)),

where the constantCs depends ons. By taking thes-root we obtain the corollary.

4 Estimates for dG(q)

In this section we will establish the dG(q) version of the results from the previous section. It is convenient to
introduce some additional notation. Letq ≥ 1 andψl(t) ∈ Pq([0, 1]), l = 0, 1, . . . , q be the standard Lagrange

basis functions on the interval[0, 1], i.e.,ψl

(

j
q

)

= δlj , whereδlj is the Kronecker symbol. Then for anyuk ∈ Xq
k

on the time intervalIm = (tm−1, tm] we have

uk|Im =

q
∑

l=0

Um
l (x)ψl

(

t− tm−1

km

)

, (22)

with Um
l ∈ H1

0 (Ω) independent oft. In this notation, we have

u+k,m = Um+1
0 and u−k,m = Um

q .
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4.1 Results for the homogeneous problem

Let uk ∈ Xq
k be the semidiscrete in time solution to the parabolic equation withf ≡ 0, i.e.,

B(uk, ϕk) = (u0, ϕ
+
k,0), ∀ϕk ∈ Xq

k . (23)

Alternatively, on a single intervalIm, we have

U1
l = rl,0(−k1∆)u0, l = 0, 1, . . . , q,

Um
l = rl,0(−km∆)Um−1

q , l = 0, 1, . . . , q, m = 2, 3, . . . ,M,
(24)

where the rational functionsrl,0 are of the form,

rl,0(λ) =
pl,0(λ)

p̂(λ)
, l = 0, 1, . . . , q, (25)

with p̂ being a polynomial of degreeq + 1 with no roots on the right-half complex plane andpl,0, l = 0, 1, . . . , q
being polynomials of degreeq (cf. [12], page 1322). Sincerq,0(λ) is a subdiagonal Padé approximation ofe−λ,
we also have (cf. [9])

rq,0(0) = pq,0(0) = p̂(0) = 1 and |rq,0(λ) − e−λ| = O(|λ|2q+2), (26)

asλ→ 0. The rational functionsrl,0 satisfy the following properties, which we will often use

rl,0(0) = 1, and rl,0(λ)− 1 =
λp̃l(λ)

p̂(λ)
, l = 0, 1, . . . , q, (27)

wherep̃l(λ) are some polynomials of degreeq. The first property follows, for example, by considering thehomo-
geneous Neumann problem with initial conditionu0 = 1. Then the exact solutionu and the dG(q) solutionuk
are the same and equal to 1, i.e.,u = uk = 1. Hence, all nodal valuesUm

l = 1 for all m = 1, 2, . . . ,M and
l = 0, 1, . . . , q. For example form = 1, we have

1 = U1
l = rl,0(−k1∆)u0 = rl,0(−k1∆)1 = rl,0(0),

and as a resultrl,0(0) = 1. The second property in (27) is just a consequence of the firstone.

Remark 3The dG(1) solutionuk on each subintervalIm is of the form

Um
0

(

tm − t

km

)

+ Um
1

(

t− tm−1

km

)

and the rational functions arêp(λ) = 1 + 2
3λ+ λ2

6 , r0,0(λ) = 1 + 2
3λ, andr1,0(λ) = 1− λ

3 .

For later proof we require two supplementary results.

Lemma 2 Let the rational functionr(z) be of the formr(z) = p(z)
p̂(z) , wherep̂(z) is a polynomial of degreeq + 1

with no roots on the right half complex plane andp(z) is a polynomial of degreeq, for someq ≥ 0. Then, there
exists a constantC independent ofk > 0, such that for anyg ∈ Lp(Ω)

‖r(−k∆)g‖Lp(Ω) ≤ C‖g‖Lp(Ω). (28)

Proof For simplicity we assume that the rootsz1, z2, . . . , zq of p̂ are pairwise distinct. If it is not the case, the
argument can be slightly modified. Forq = 0 we haver(z) = c0

z−z0
and the desired estimate follows directly by

the resolvent estimate (8), since

r(−k∆)g = −
c0
k

(z0
k

+∆
)−1

g

and therefore by (8)

‖r(−k∆)g‖Lp(Ω) ≤
|c0|

k

C

1 + |z0|
k

‖g‖Lp(Ω) ≤
C|c0|

|z0|
‖g‖Lp(Ω).
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For q > 0 we use the partial fraction decomposition

r(z) =

q
∑

i=0

ci
z − zi

with someci ∈ C. Applying the estimate forq0 to each summand we obtain

‖r(−k∆)g‖Lp(Ω) ≤ C

(

q
∑

i=0

|ci|

|zi|

)

‖g‖Lp(Ω),

which completes the proof.

Lemma 3 Let the rational functionr(z) be of the formr(z) = zp(z)
p̂(z) , wherep̂(z) is a polynomial of degreeq + 1

with no roots on the right-half complex plane andp(z) is a polynomial of degreeq, for someq ≥ 0. Then for any
g ∈ Lp(Ω) with∆g ∈ Lp(Ω), 1 ≤ p ≤ ∞, there exists a constantC independent ofk such that

‖r(−k∆)g‖Lp(Ω) ≤ Ck‖∆g‖Lp(Ω).

Proof This lemma is just a consequence of the previous one. We setr̃(z) = p(z)
p̂(z) and obtain:

r(−k∆)g = −k∆ r̃(−k∆)g = −k r̃(−k∆)∆g.

The the result follows by Lemma 2.

Lemma 4 Let the rational functionr(z) be of the formr(z) = zp(z)
p̂(z) , wherep̂(z) is a polynomial of degreeq + 1

with no roots on the right half complex plane andp(z) is a polynomial of degreeq, for someq ≥ 1. Then, there
exists a constantC independent ofk, such that for anyg ∈ Lp(Ω)

‖r(−k∆)g‖Lp(Ω) ≤ C‖g‖Lp(Ω). (29)

Proof We setr̃(z) = p(z)
p̂(z) and obtain:

‖r(−k∆)g‖Lp(Ω) ≤ k‖∆r̃(−k∆)g‖Lp(Ω).

The estimate

‖∆r̃(−k∆)g‖Lp(Ω) ≤
C

k
‖g‖Lp(Ω)

is provided on the top of page 1322 in [12] using a decomposition r(z) = r1(z) + r2(z), wherer1(z) = c
z−z0

,
with z0 being a root ofp̂(z) andc such that the degree of the polynomial in the numerator ofr2(z) is less or
equalq − 1. Then the estimate for∆r̃1(−k∆)g follows directly by applying a dG(0) type argument and the term
∆r̃2(−k∆)g is estimated using the Dunford-Taylor formula.

Next we provide some properties of the dG(q) solutions of the homogeneous problem.

Lemma 5 Letuk be the solution of(23)with u0 ∈ Lp(Ω), 1 ≤ p ≤ ∞. Then,

‖uk‖L∞(Im;Lp(Ω)) ≤ C‖u0‖Lp(Ω), ∀m = 1, 2, . . . ,M.

Proof The proof is given in [12, Thm. 5.1] for theL2(Ω) norm, but the proof is valid for theLp(Ω) norm as well
by using the resolvent estimate (8) with respect to theLp(Ω) norm.

Theorem 3 (Homogeneous smoothing estimate)Letuk be the solution of(23) with u0 ∈ Lp(Ω), 1 ≤ p ≤ ∞.
Then there exists a constantC independent ofk such that

‖∆uk‖L∞(Im;Lp(Ω)) ≤
C

tm
‖u0‖Lp(Ω), m = 1, , 2 . . . ,M.

Proof Again the proof is given in [12, Thm. 5.1] for theL2(Ω) norm, but the proof is valid for theLp(Ω) norm
as well by using the resolvent estimate (8) with respect to theLp(Ω) norm.
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Remark 4Notice that the statement of Theorem 3 is equivalent to

‖∆Um
l ‖Lp(Ω) ≤

C

tm
‖u0‖Lp(Ω), m = 1, 2, . . . ,M, l = 0, 1, . . . , q, (30)

which we will use in the following proofs.

Remark 5Let uk be the solution of (23). Then there exists a constantC independent ofk such that

‖u−k,m‖Lp(Ω) + (tm − tn)‖∆uk,m‖L∞(Im;Lp(Ω)) ≤ C‖u−k,n‖Lp(Ω), m > n, n = 1, 2, . . . ,M,

or in terms of nodal values

‖Um
q ‖Lp(Ω)+(tm−tn)‖∆U

m
l ‖Lp(Ω) ≤ C‖Un

q ‖Lp(Ω), m > n, n = 1, 2, . . . ,M, l = 0, 1, . . . , q. (31)

Theorem 4 (Homogeneous smoothing estimate for jumps)Let uk be the solution of(23) with u0 ∈ Lp(Ω),
1 ≤ p ≤ ∞. Then there exists a constantC independent ofk such that

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤
C

tm
‖u0‖Lp(Ω), m = 1, 2, . . . ,M,

where[uk]0 = U1
0 − u0.

Proof Form > 1, using (24), we have

[uk]m−1 = Um
0 − Um−1

q = r0,0(−km∆)Um−1
q − Um−1

q = (r0,0(−km∆)− Id)Um−1
q .

Using (27) and Lemma 3, we obtain
∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C
∥

∥∆Um−1
q

∥

∥

Lp(Ω)
.

Now by Remark 4 and the assumption on the time mesh(ii), we obtain

∥

∥∆Um−1
q

∥

∥

Lp(Ω)
≤

C

tm−1
‖u0‖Lp(Ω) ≤

C

tm
‖u0‖Lp(Ω).

That finishes the proof for this case.
Form = 1, by Lemma 5 we have,

∥

∥

∥

∥

[uk]0
k1

∥

∥

∥

∥

Lp(Ω)

=
1

k1
‖U1

0 − u0‖Lp(Ω) ≤
C

k1
‖u0‖Lp(Ω) =

C

t1
‖u0‖Lp(Ω).

Similarly, we can obtain the corresponding result for the time derivative.

Theorem 5 (Homogeneous smoothing estimate for time derivatives)Letuk be the solution of(23) with u0 ∈
Lp(Ω), 1 ≤ p ≤ ∞. Then there exists a constantC independent ofk such that

‖∂tuk‖L∞(Im;Lp(Ω)) ≤
C

tm
‖u0‖Lp(Ω).

Proof Form > 1, using (22) and (24), we have

∂tuk|Im = k−1
m

q
∑

l=0

Um
l (x)ψ′

l

(

t− tm−1

km

)

= k−1
m

q
∑

l=0

rl,0(−km∆)ψ′
l

(

t− tm−1

km

)

Um−1
q (x).

By the fact that
∑q

l=0 ψl

(

t−tm−1

km

)

= 1 we have
∑q

l=0 ψ
′
l

(

t−tm−1

km

)

= 0. Using (27), i.e.,rl,0(0) = 1 we obtain

q
∑

l=0

rl,0(z)ψ
′
l

(

t− tm−1

km

)

=
zp̃t(z)

p̂(z)
,
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wherep̂(z) is the same polynomial as in (25) andp̃t(z) is some polynomial of degreeq− 1 whose coefficients are
time dependent, but uniformly bounded onIm. Thus again by Lemma 3, we obtain

‖∂tuk‖L∞(Im;Lp(Ω)) ≤ C‖∆Um−1
q ‖Lp(Ω).

Remark 4 and the assumption on the time mesh(ii), finishes the proof form > 1.
Form = 1, by Lemma 5 we have,

‖∂tuk‖L∞(I1;Lp(Ω)) ≤ Ck−1
1

q
∑

l=0

‖U1
l ‖Lp(Ω)‖ψ

′
l‖L∞(I1) ≤

C

t1
‖u0‖Lp(Ω).

4.2 Results for the inhomogeneous problem

In this section we establish properties of the dG(q) solutionuk ∈ Xq
k to the inhomogeneous parabolic equation

with u0 = 0, that satisfies,

B(uk, ϕk) = (f, ϕk), ∀ϕk ∈ Xq
k . (32)

Alternatively, on a single time intervalIm, we have

U1
l = k1

q
∑

j=0

rl,j(−k1∆)f1
j , l = 0, 1, . . . , q,

Um
l = rl,0(−km∆)Um−1

q + km

q
∑

j=0

rl,j(−km∆)fm
j , l = 0, 1, . . . , q, m = 2, 3, . . . ,M,

(33)

where

fm
j (·) =

1

km

∫

Im

f(t, ·)ψj

(

t− tm−1

km

)

dt,

and the rational functions

rl,j =
pl,j(λ)

p̂(λ)
, l, j = 0, 1, . . . , q, (34)

are as in the homogenous case withp̂ being a polynomial of degreeq + 1 with no roots on the right half complex
plane andpl,j , l, j = 0, 1, . . . , q being polynomials of degreeq (cf. [12], page 1322).

Notice that form = 1, 2, . . . ,M ,

‖fm
j ‖Lp(Ω) ≤ C‖f‖L∞(Im;Lp(Ω)) and ‖fm

j ‖Lp(Ω) ≤ Ck−1
m ‖f‖L1(Im;Lp(Ω)). (35)

Theorem 6 (Maximal parabolic regularity) Letuk satisfy(32)with f ∈ Ls(I;Lp(Ω)) for 1 ≤ s, p ≤ ∞. There
exists a constantC independent ofk andf such that

‖∆uk‖Ls(I;Lp(Ω)) ≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)).

Proof Using (33), we have the following representation

Um
l = kmG

m
l + rl,0(−km∆)

m−1
∑

n=1

kn





m−n−1
∏

j=1

rq,0(−km−j−1∆)



Gn
q , (36)

where

Gm
l =

q
∑

j=0

rl,j(−km∆)fm
j , m = 1, 2, . . . ,M.
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with the usual convention that
∏0

j=1 is an empty product. The proof now follows along the lines of Theorem 2.
Taking the Laplacian of both sides we obtain

∆Um
l = km∆G

m
l +∆rl,0(−km∆)

m−1
∑

n=1

kn





m−n−1
∏

j=1

rq,0(−km−j−1∆)



Gn
q ,

and as a result

‖∆Um
l ‖Lp(Ω) ≤ ‖km∆G

m
l ‖Lp(Ω) +

∥

∥

∥

∥

∥

∥

∆rl,0(−km∆)

m−1
∑

n=1

kn





m−n−1
∏

j=1

rq,0(−km−j−1∆)



Gn
q

∥

∥

∥

∥

∥

∥

Lp(Ω)

.

By Lemma 4, we have

‖km∆G
m
l ‖Lp(Ω) ≤ C max

0≤j≤q
‖fm

j ‖Lp(Ω), l = 0, 1 . . . , q, (37a)

and by Lemma 2 we also have

‖Gm
l ‖Lp(Ω) ≤ C max

0≤j≤q
‖fm

j ‖Lp(Ω), l = 0, 1 . . . , q. (37b)

On the other hand by Remark 5 for anyl = 0, 1, . . . , q, since each term in the sum on the right-hand side can be
thought of as a homogeneous solution with initial conditionGn

q at t = tn−1, we have
∥

∥

∥

∥

∥

∥

∆rl,0(−km∆)

m−1
∑

n=1

kn





m−n−1
∏

j=1

rq,0(−km−j−1∆)



Gn
q

∥

∥

∥

∥

∥

∥

Lp(Ω)

≤ C

m−1
∑

n=1

kn
tm − tn−1

‖Gn
q ‖Lp(Ω). (38)

To establish the result fors = ∞, we observe

‖∆uk‖L∞(I;Lp(Ω)) = max
1≤m≤M

max
0≤l≤q

‖∆Um
l ‖Lp(Ω)

≤ C max
1≤m≤M

max
0≤j≤q

‖fm
j ‖Lp(Ω) + C max

1≤m≤M

m−1
∑

n=1

kn
tm − tn−1

‖Gn
q ‖Lp(Ω)

≤ C max
1≤m≤M

max
0≤j≤q

‖fm
j ‖Lp(Ω)

(

1 + max
1≤m≤M

m−1
∑

n=1

kn
tm − tn−1

)

≤ C ln
T

k
max

1≤m≤M
max
0≤j≤q

‖fm
j ‖Lp(Ω),

where in the last step we used (21). Using (35) we can concludethat fors = ∞

‖∆uk‖L∞(I;Lp(Ω)) ≤ C ln
T

k
max

1≤m≤M
‖f‖L∞(Im;Lp(Ω)) ≤ C ln

T

k
‖f‖L∞(I;Lp(Ω)).

Similarly, for s = 1, we have

‖∆uk‖L1(I;Lp(Ω)) ≤

M
∑

m=1

km max
0≤l≤q

‖∆Um
l ‖Lp(Ω)

≤ C

M
∑

m=1

km max
0≤j≤q

‖fm
j ‖Lp(Ω) + C

M
∑

m=1

km

m−1
∑

n=1

kn
tm − tn−1

‖Gn
q ‖Lp(Ω)

≤ C

M
∑

m=1

km max
0≤j≤q

‖fm
j ‖Lp(Ω) + C

M
∑

m=1

km

m−1
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω)

≤ C
M
∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω).



Discrete maximal parabolic regularity for Galerkin finite element methods 13

Changing the order of summation and using (21) we obtain,

M
∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω) ≤

M
∑

n=1

kn max
0≤j≤q

‖fn
j ‖Lp(Ω)

M
∑

m=n

km
tm − tn−1

≤ C ln
T

k

M
∑

n=1

kn max
0≤j≤q

‖fn
j ‖Lp(Ω).

Thus, by using (35), we have

‖∆uk‖L1(I;Lp(Ω)) ≤ C ln
T

k

M
∑

m=1

km max
0≤j≤q

‖fm
j ‖Lp(Ω) ≤ C ln

T

k
‖f‖L1(I;Lp(Ω)).

Interpolating betweens = 1 ands = ∞ we obtain the result for any1 ≤ s ≤ ∞.

Remark 6As in the case of dG(0) the appearance of a logarithmic term is natural, since in contrast to the contin-
uous case the choicess, p ∈ {1,∞} are allowed. The power of the logarithm can be improved forp = 2 or s = 2.
In fact, we can obtain the following estimates,

‖∆uk‖Ls(I;L2(Ω)) ≤ C

(

ln
T

k

)

|s−2|
s

‖f‖Ls(I;L2(Ω)),

and

‖∆uk‖L2(I;Lp(Ω)) ≤ C

(

ln
T

k

)

|p−2|
p

‖f‖L2(I;Lp(Ω)).

Theorem 7 (Maximal parabolic regularity for jumps) Let uk satisfy(32) with f ∈ Ls(I;Lp(Ω)) for 1 ≤
s, p ≤ ∞. Then there exists a constantC independent ofk andf such that

max
1≤m≤M

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C ln
T

k
‖f‖L∞(I;Lp(Ω)), for s = ∞,

(

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

)

1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)), for 1 ≤ s <∞.

Proof Using (33) and (36), we have the following representation for the jump terms

[uk]m−1

km
=
Um
0 − Um−1

q

km

= Gm
0 + k−1

m

(

r0,0(−km∆)Um−1
q − Um−1

q

)

= Gm
0 + k−1

m (r0,0(−km∆)− Id)Um−1
q .

Using thatr0,0 − 1 satisfies (27) and using Lemma 3, Lemma 2, and proceeding similarly to the proof of Theorem
6, we have

k−1
m ‖[uk]m−1‖Lp(Ω) ≤ C

(

‖Gm
0 ‖Lp(Ω) + ‖∆Um−1

q ‖Lp(Ω)

)

≤ C max
0≤j≤q

‖fm
j ‖Lp(Ω) + C

m−1
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω)

≤ C
m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω).

(39)

Now, the proof of the casess = 1 ands = ∞ is identical to the one of the previous Theorem 6 and we have

max
1≤m≤M

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C ln
T

k
‖f‖L∞(I;Lp(Ω)), 1 ≤ p ≤ ∞,

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C ln
T

k
‖f‖L1(I;Lp(Ω)), 1 ≤ p ≤ ∞.
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For1 < s <∞ using the Hölder inequality with1s + 1
s′ = 1, we obtain,

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

Lp(Ω)

≤ C

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖Lp(Ω)

≤ C

(

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖

s
Lp(Ω)

)1/s( m
∑

n=1

kn
tm − tn−1

)1/s′

≤ C

(

ln
T

k

)1/s′
(

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖

s
Lp(Ω)

)1/s

.

(40)

Hence
M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

≤ C

(

ln
T

k

)s/s′ M
∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤j≤q

‖fn
j ‖

s
Lp(Ω).

Changing the order of summation, we obtain

M
∑

m=1

km

∥

∥

∥

∥

[uk]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

≤ C

(

ln
T

k

)s/s′ M
∑

n=1

kn max
0≤j≤q

‖fn
j ‖

s
Lp(Ω)

M
∑

m=n

km
tm − tn−1

≤ C

(

ln
T

k

)1+s/s′ M
∑

n=1

kn max
0≤j≤q

‖fn
j ‖

s
Lp(Ω) = C

(

ln
T

k

)s

‖f‖sLs(I;Lp(Ω)).

Taking thes-root we finish the proof.

Theorem 8 Letuk satisfy(32). Then there exists a constantC independent ofk andf such that

(

M
∑

m=1

‖∂tuk‖
s
Ls(Im;Lp(Ω))

)

1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)), 1 ≤ s <∞, 1 ≤ p ≤ ∞.

Proof Similarly to the proof of Theorem 4, using (22) and (33), we have

∂tuk|Im = k−1
m

q
∑

l=0

Um
l (x)ψ′

l

(

t− tm−1

km

)

+

q
∑

l=0

Gm
l (x)ψ′

l

(

t− tm−1

km

)

= k−1
m

q
∑

l=0

rl,0(−km∆)ψ′
l

(

t− tm−1

km

)

Um−1
q (x) +

q
∑

l=0

Gm
l (x)ψ′

l

(

t− tm−1

km

)

.

Using (27) and
∑q

l=0 ψ
′
l

(

t−tm−1

km

)

= 0, we can conclude that

q
∑

l=0

rl,0(z)ψ
′
l

(

t− tm−1

km

)

=
zp̃t(z)

p̂(z)
,

wherep̂(z) is the same polynomial as in (25) andp̃t(z) is some polynomial of degreeq whose coefficients are
time dependent, but uniformly bounded onIm. Thus again by Lemma 3 and Lemma 4, we obtain

‖∂tuk‖L∞(Im;Lp(Ω)) ≤ C‖∆Um−1
q ‖Lp(Ω) + C max

0≤j≤q
‖fm

j ‖Lp(Ω).

The rest of the proof is identical to the proof of the previoustheorem.
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4.3 Application to optimal order error estimates.

As an application of the maximal parabolic regularity, we show optimal convergence rates for the dG(q) solution.
First, we establish that the error is bounded by a certain projection error. A similar result was obtained for the
L2(I;L2(Ω)) norm in [32]. First, we define a projectionπk for u ∈ C(I, L2(Ω)) with πku|Im ∈ Pq(L

2(Ω)) for
m = 1, 2, . . . ,M on each subintervalIm by

(πku− u, φ)Im×Ω = 0, ∀φ ∈ Pq−1(Im, L
2(Ω)), q > 0, (41a)

πku(t
−
m) = u(t−m). (41b)

In the caseq = 0, πku is defined solely by the second condition.

Theorem 9 Letu be the solution to(1) with u ∈ C(Ī ;Lp(Ω)) anduk be its dG(q) approximation(6), for q ≥ 0.
Then there exists a constantC independent ofk such that

‖u− uk‖Ls(I;Lp(Ω)) ≤ C ln
T

k
‖u− πku‖Ls(I;Lp(Ω)), 1 ≤ s, p <∞,

where the projectionπk is defined above in(41).

Proof Pute := u− uk = (u− πku) + (πku− uk) := ηk + ξk. For1 ≤ s, p <∞, we have

‖e‖Ls(I;Lp(Ω)) = sup
ψ∈Ls

′
(I;Lp

′
(Ω))

‖ψ‖
Ls

′
(I;Lp

′
(Ω))

=1

(e, ψ)I×Ω,
1

s
+

1

s′
= 1,

1

p
+

1

p′
= 1.

For each suchψ, we consider a dual problem forzk ∈ Xq
k satisfying

B(ϕk, zk) = (ϕk, ψ)I×Ω for all ϕk ∈ Xq
k .

Thus, we have
(e, ψ)I×Ω = (ηk, ψ)I×Ω + (ξk, ψ)I×Ω := J1 + J2.

Using the Hölder inequality, we find

J1 ≤ ‖ηk‖Ls(I;Lp(Ω))‖ψ‖Ls′(I;Lp′(Ω)) ≤ ‖ηk‖Ls(I;Lp(Ω)).

On the other hand using thatB(u− uk, χk) = 0 for anyχk ∈ Xq
k , we obtain

J2 = B(ξk, zk) = −B(ηk, zk) =
M
∑

m=1

(ηk, ∂tzk)Im×Ω − (∇ηk,∇zk)Im×Ω + (η−k,m, [zk]m)Ω

= −(∇ηk,∇zk)I×Ω,

where we used that the first sum vanishes due to (41a) and the sum involving jumps due to (41b). Integrating by
parts in space, using the Hölder inequality and Theorem 6, we obtain

J2 = −(∇ηk,∇zk)I×Ω = (ηk, ∆zk)I×Ω ≤ ‖ηk‖Ls(I;Lp(Ω))‖∆zk‖Ls′(I;Lp′(Ω))

≤ C ln
T

k
‖ηk‖Ls(I;Lp(Ω))‖ψ‖Ls′(I;Lp′(Ω)) ≤ C ln

T

k
‖ηk‖Ls(I;Lp(Ω)).

Combining the estimates forJ1 andJ2 we obtain the result.

If the exact solution is sufficiently smooth then the above result easily leads to an optimal convergence rate,
modulo a logarithmic term.

Corollary 3 Letu ∈W q+1,s(I;Lp(Ω)) be the solution to(1) anduk be its dG(q) approximation forq ≥ 0. Then
there exists a constantC independent ofk such that

‖u− uk‖Ls(I;Lp(Ω)) ≤ Ckq+1 ln
T

k
‖u‖W q+1,s(I;Lp(Ω)), 1 ≤ s, p <∞.
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Remark 7The above result can be extended to the case of non-homogeneous Dirichlet boundary conditions. Let
g ∈ C(I;L2(Ω)) ∩ L2(I;H1(Ω)) be given and consider the equation

∂tu(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ I ×Ω,

u(t, x) = g(t, x), (t, x) ∈ I × ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

It turns out, that it is convenient to useπkg as boundary conditions for the semidiscrete solution, i.e.

uk ∈ πkg +Xq
k : B(uk, ϕk) = (f, ϕk)I×Ω + (u0, ϕ

+
k,0)Ω for all ϕk ∈ Xq

k .

Then following the lines of the proof of Theorem 9 and using that ξk = πku − uk has homogeneous boundary
conditions, i.e.,ξk ∈ Xq

k , we obtain

(ξk, ψ)I×Ω = −(∇ηk,∇zk) = (ηk, ∆zk)I×Ω +

∫

I

∫

∂Ω

(g − πkg)∂nzk ds dt.

Under an additional assumption onΩ that for anyv ∈ H1
0 (Ω) with ∆v ∈ Lp′

(Ω) the estimate

‖∂nv‖Lp′(∂Ω) ≤ c‖∆v‖Lp′(Ω)

holds, we obtain

‖u− uk‖Ls(I;Lp(Ω)) ≤ C ln
T

k

(

‖u− πku‖Ls(I;Lp(Ω)) + ‖g − πkg‖Ls(I;Lp(∂Ω))

)

, 1 ≤ s, p <∞.

The above assumption is fulfilled, for example, if onΩ theW 2,p′

elliptic regularity holds.

5 Fully discrete solutions

In this section, we consider the fully discrete approximation of the equation (1). From now on we assume that
the domainΩ is a polygonal/polyhedral convex domain. Forh ∈ (0, h0]; h0 > 0, let T denote a quasi-uniform
triangulation ofΩ with mesh sizeh, i.e.,T = {τ} is a partition ofΩ into cells (triangles or tetrahedrons)τ of
diameterhτ such that forh = maxτ hτ ,

diam(τ) ≤ h ≤ C|τ |
1
d , ∀τ ∈ T , d = 2, 3,

hold. LetVh be the set of all functions inH1
0 (Ω) that are polynomials of degreer on eachτ , i.e.,Vh is the usual

space of conforming finite elements. To obtain the fully discrete approximation we consider the space-time finite
element space

Xq,r
k,h = {vkh : vkh|Im ∈ Pq(Vh), m = 1, 2, . . . ,M, q ≥ 0, r ≥ 1}. (42)

We define a fully discrete analogukh ∈ Xq,r
k,h of uk introduced in (6) by

B(ukh, ϕkh) = (f, ϕkh)I×Ω + (u0, ϕ
+
kh)Ω for all ϕkh ∈ Xq,r

k,h. (43)

Moreover, we introduce the discrete Laplace operator∆h : Vh → Vh by

(−∆hvh, χ)Ω = (∇vh,∇χ)Ω, ∀χ ∈ Vh.

The semidiscrete results from the first part of the paper translate almost immediately to the fully discrete setting
provided we have the corresponding resolvent estimate,

‖(z +∆h)
−1χ‖Lp(Ω) ≤

C

1 + |z|
‖χ‖Lp(Ω), ∀z ∈ C\Σγ , ∀χ ∈ Vh, 1 ≤ p ≤ ∞, (44)

with some constantC independent ofh. Such a result was established in [3] for smooth domains. Later it was
extended to convex polyhedral domains in [30] (for someγ > 0) via stability and smoothing properties of the
semigroupEh(t) = e−∆ht and directly for an arbitraryγ > 0 but with logarithmic dependence of the constantC
onh in [26].
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5.1 Result for the homogeneous problem

Let ukh ∈ Xq,r
k,h be the fully discrete dG(q)cG(r) solution to the parabolic equation withf ≡ 0, i.e.

B(ukh, ϕkh) = (u0, ϕ
+
kh,0), ∀ϕkh ∈ Xq,r

k,h. (45)

Theorem 10 (Fully discrete homogeneous smoothing estimate) Letukh be a solution of(45)withu0 ∈ Lp(Ω),
1 ≤ p ≤ ∞. Then there exists a constantC independent ofk andh such that

‖∂tukh‖L∞(Im;Lp(Ω)) + ‖∆hukh‖L∞(Im;Lp(Ω)) + k−1
m ‖[ukh]m−1‖Lp(Ω) ≤

C

tm
‖u0‖Lp(Ω),

for m = 1, 2, . . . ,M .

5.2 Results for the inhomogeneous problem

Let ukh ∈ Xq,r
k,h be the dG(q)cG(r) solution to the inhomogeneous parabolic equation withu0 = 0, i.e.

B(ukh, ϕkh) = (f, ϕkh), ∀ϕkh ∈ Xq,r
k,h. (46)

Theorem 11 (Fully discrete maximal parabolic regularity) Let ukh satisfy(46) with f ∈ Ls(I;Lp(Ω)), 1 ≤
s, p ≤ ∞. Then there exists a constantC independent ofk andh such that

(

M
∑

m=1

‖∂tukh‖
s
Ls(Im;Lp(Ω))

)

1
s

+‖∆hukh‖Ls(I;Lp(Ω))+

(

M
∑

m=1

km

∥

∥

∥

∥

[ukh]m−1

km

∥

∥

∥

∥

s

Lp(Ω)

)

1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)),

with obvious notation changes in the case ofs = ∞.

5.3 Application to optimal order error estimates.

Similarly to the semidiscrete case, as an application of themaximal parabolic regularity, we show optimal conver-
gence rates for the dG(q)cG(r) solution.

Theorem 12 Let u be the solution to(1) with u ∈ C(Ī;Lp(Ω)) andukh be the dG(q)cG(r) solution forq ≥ 0
andr ≥ 1. Then there exists a constantC independent ofk andh such that for1 ≤ s, p <∞,

‖u− ukh‖Ls(I;Lp(Ω)) ≤ C ln
T

k

(

‖u− πku‖Ls(I;Lp(Ω)) + ‖Phu− u‖Ls(I;Lp(Ω)) + ‖Rhu− u‖Ls(I;Lp(Ω))

)

,

where the projectionπk is defined in(41), Ph : L
2(Ω) → Vh is the orthogonalL2 projection andRh : H

1
0 (Ω) →

Vh is the Ritz projection.

Proof Pute := u− ukh = (u− Phπku) + (Phπku− ukh) := ηkh + ξkh. For1 ≤ s, p <∞, we have

‖e‖Ls(I;Lp(Ω)) = sup
ψ∈Ls

′
(I;Lp

′
(Ω))

‖ψ‖
Ls

′
(I;Lp

′
(Ω))

=1

(e, ψ)I×Ω,
1

s
+

1

s′
= 1,

1

p
+

1

p′
= 1.

For each suchψ, consider a dual problem

B(ϕkh, zkh) = (ϕkh, ψ)I×Ω.

Thus, we have
(e, ψ)I×Ω = (ηkh, ψ)I×Ω + (ξkh, ψ)I×Ω := J1 + J2.
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Using the Hölder inequality, the triangle inequality, thestability of theL2 projectionPh in Lp(Ω) and the approx-
imation properties ofπk andPh, we find

J1 ≤ C‖ηkh‖Ls(I;Lp(Ω))‖ψ‖Ls′(I;Lp′(Ω)) ≤ C‖ηkh‖Ls(I;Lp(Ω)) = C‖u− Phπku‖Ls(I;Lp(Ω))

≤ C‖u− Phu‖Ls(I;Lp(Ω)) + C‖Ph(u − πku)‖Ls(I;Lp(Ω))

≤ C‖u− Phu‖Ls(I;Lp(Ω)) + C‖u− πku‖Ls(I;Lp(Ω)).

On the other hand, using thatB(u − ukh, χkh) = 0 for anyχkh ∈ Xq,r
k,h, and the properties of theL2 projection

and the properties ofπk, we obtain

J2 = B(ξkh, zkh) = −B(ηkh, zkh) =

M
∑

m=1

(ηkh, ∂tzkh)Im×Ω − (∇ηkh,∇zkh)Im×Ω + (η−kh,m, [zkh]m)Ω

=
M
∑

m=1

(u − πku, ∂tzkh)Im×Ω − (∇ηkh,∇zkh)Im×Ω + (u−m − (πku)
−
m, [zkh]m)Ω

= −(∇(u − Phπku),∇zkh)I×Ω.

where we used that the first sum vanishes due to (41a) and the sum involving jumps due to (41b). Using the
properties of the Ritz projection, integrating by parts in space, and using the Hölder inequality and Theorem 6, we
obtain

J2 = −(∇(u− Phπku),∇zkh)I×Ω = −(∇(Rhu− Phπku),∇zkh)I×Ω = (Rhu− Phπku,∆hzkh)I×Ω

≤ C‖Ph(Rhu− πku)‖Ls(I;Lp(Ω))‖∆hzkh‖Ls′(I;Lp′(Ω))

≤ C ln
T

k
‖Rhu− πku‖Ls(I;Lp(Ω))‖ψ‖Ls′(I;Lp′(Ω))

≤ C ln
T

k

(

‖Rhu− u‖Ls(I;Lp(Ω)) + ‖u− πku‖Ls(I;Lp(Ω))

)

.

Combining the estimates forJ1 andJ2 we obtain the result.

Corollary 4 If the solutionu to (1) satisfiesu ∈W q+1,s(I;Lp(Ω))∩Ls(I;W r+1,p(Ω)) andΩ such that elliptic
W 2,p′

- regularity holds, then there exists a constantC independent ofk andh such that

‖u− ukh‖Ls(I;Lp(Ω)) ≤ C ln
T

k

(

kq+1‖u‖W q+1,s(I;Lp(Ω)) + hr+1‖u‖Ls(I;W r+1,p(Ω))

)

, 1 ≤ s, p <∞.

6 Fully discrete results in general norms

For the future references we provide discrete maximal parabolic regularity results in general norms. For exam-
ple, we use these results to establish pointwise best approximation estimates in [27] for fully discrete Galerkin
solutions.

LetΩ be a Lipschitz domain and letT = {τ} be an arbitrary partition ofΩ into cellsτ (triangles, tetrahedrons,
quads, or hexahedrons, not necessary quasi-uniform). LetVh be the set of all functions inH1

0 (Ω) that belong to a
certain polynomial space (i.e.,Pr orQr) on eachτ . As before, we define a fully discrete solutionukh ∈ Xq,r

k,h by

B(ukh, ϕkh) = (f, ϕkh)I×Ω + (u0, ϕ
+
kh)Ω for all ϕkh ∈ Xq,r

k,h, (47)

where
Xq,r

k,h = {vkh : vkh|Im ∈ Pq(Vh), m = 1, 2, . . . ,M}, for some q ≥ 0, r ≥ 1. (48)

As in the previous section, we introduce the discrete Laplace operator∆h : Vh → Vh by

(−∆hvh, χ)Ω = (∇vh,∇χ)Ω, ∀χ ∈ Vh,

and the orthogonalL2 projectionPh : L
2(Ω) → Vh by

(Phv, χ)Ω = (v, χ)Ω , ∀χ ∈ Vh.
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Let |||·||| be a norm onVh such that for someγ ∈ (0, π2 ) the following resolvent estimate holds,

∣

∣

∣

∣

∣

∣(z +∆h)
−1χ

∣

∣

∣

∣

∣

∣ ≤
Mh

|z|
|||χ|||, for z ∈ C \Σγ , (49)

for all χ ∈ Vh, whereΣγ is defined in (9) and the constantMh is independent ofz.
For quasi-uniform meshes, this assumption is fulfilled for|||·||| = ‖·‖Lp(Ω) with a constantMh ≤ C indepen-

dent ofh, see [30], as discussed and exploited above. For a weighted norm |||·||| = ‖σ
N
2 ·‖L2(Ω) with the weight

σx0(x) =
√

|x− x0|2 + h2 andMh ≤ C|lnh| we established this estimate in [27], and used the corresponding
result to obtain interior (local) pointwise estimates. Moreover, the resolvent estimate (49) is known also to hold in
Lp(Ω) norms on a class of non quasi-uniform meshes as well, see [2].

6.1 Smoothing estimates for the homogeneous problem in general norms

For the homogeneous heat equation (1), i.e.f = 0 and its discrete approximationukh ∈ Xq,r
k,h defined by

B(ukh, ϕkh) = (u0, ϕ
+
kh,0) ∀ϕkh ∈ Xq,r

k,h, (50)

we have the following smoothing result.

Theorem 13 (Fully discrete smoothing estimate in general norms) Let |||·||| be a norm onVh fulfilling the
resolvent estimate(49). Letukh be the solution of(50). Then, there exists a constantC independent ofk andh
such that

sup
t∈Im

|||∂tukh(t)|||+ sup
t∈Im

|||∆hukh(t)|||+ k−1
m |||[ukh]m−1||| ≤

CMh

tm
|||Phu0|||,

for m = 1, 2, . . . ,M , wherePh : L
2(Ω) → Vh is the orthogonalL2 projection. Form = 1 the jump term is

understood as[ukh]0 = u+kh,0 − Phu0.

6.2 Discrete maximal parabolic estimates for the inhomogeneous problem in general norms

Now, we consider the inhomogeneous heat equation (1), withu0 = 0 and its discrete approximationukh ∈ Xq,r
k,h

defined by
B(ukh, ϕkh) = (f, ϕkh), ∀ϕkh ∈ Xq,r

k,h. (51)

Theorem 14 (Discrete maximal parabolic regularity in general norms) Let |||·||| be a norm onVh fulfilling
the resolvent estimate(49) and let1 ≤ s ≤ ∞. Let ukh be a solution of(51). Then, there exists a constantC
independent ofk andh such that

(

M
∑

m=1

∫

Im

|||∂tukh(t)|||
s
dt

)

1
s

+

(

M
∑

m=1

∫

Im

|||∆hukh(t)|||
s
dt

)

1
s

+

(

M
∑

m=1

km
∣

∣

∣

∣

∣

∣k−1
m [ukh]m−1

∣

∣

∣

∣

∣

∣

s

)

1
s

≤ CMh ln
T

k

(∫

I

|||Phf(t)|||
sdt

)
1
s

,

wherePh : L
2(Ω) → Vh is the orthogonalL2 projection and with obvious notation change in the case ofs = ∞.

For m = 1 the jump term is understood as[ukh]0 = u+kh,0.

The proofs of the above two results are identical to the proofs of the corresponding time discrete results from
Section 4, provided the resolvent estimate (49) holds.
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