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Abstract We present a pricing method based on Shannon wavelet expansions for
early-exercise and discretely-monitored barrier options under exponential Lévy asset
dynamics. Shannon wavelets are smooth, and thus approximate the densities that
occur in finance well, resulting in exponential convergence. Application of the Fast
Fourier Transform yields an efficient implementation and since wavelets give local
approximations, the domain boundary errors can be naturally resolved, which is the
main improvement over existing methods.
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1 Introduction

Early-exercise options and discrete barrier options are important options for which no
analytic valuation formulas exist. Robust and efficient pricing of these options outside
the Black–Scholes–Merton framework is a challenging problem.
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1036 S. C. Maree et al.

Bermudan options are basically options that can be exercised at a finite set of dates
prior to maturity. This path-dependency and the requirement of the optimal early-
exercise strategy make efficient pricing of Bermudan options challenging.

A broad class of option pricingmethods is the class of so-called transformmethods,
where computations take place in the Fourier domain, often utilizing the Fast Fourier
Transform (FFT) for fast computations [3,4,8–10,16]. Option pricing methods based
on wavelet expansions have been discussed in [12,14,15] for European options. A
method for pricing discrete barrier options with a wavelet expansion method is intro-
duced in [11].

The ShannonWavelet Inverse Fourier Technique (SWIFT)method [15] is an option
pricing method for European options based on a Shannon wavelet expansion of the
underlying density function. Shannon wavelets are smooth wavelets generated from
the cardinal sine function [5]. Shannon wavelets have been used before in the pricing
of discrete barrier options in [10], but to approximateHilbert transforms. In the SWIFT
method, the Shannonwavelet expansion is used to directly approximate the underlying
density function.

In this paper, we extend the theory of the SWIFTmethod for European options, and
we derive a complete error bound, proving that it exhibits exponential convergence
with respect to the wavelet approximation scale.

We furthermore show that the SWIFT method can be reduced to the state of the
art COS method [8] under specific parameter choices. The main difference between
the two methods is that for the COS method, one chooses a finite computational
domain, and recovers the underlying density function by a Fourier series expansion.
The accuracy is then controlled by adding more Fourier terms, but the computational
domain cannot be increased without recomputing all coefficients. In many situations
however, for example in stochastic control problems, backward stochastic differential
equations (BSDEs) or recursive pricing problems like Bermudan option pricing, it is
unclear how to select a proper computational domain a priori. Then due to the recursion
in time, errors caused by an insufficient domain propagate, resulting in incorrect option
prices.

Withwavelet series expansions the procedure goes differently. First, one determines
a required accuracy, and then the size of the domain can be controlled by adding
more wavelet terms. An important result is that for Shannon wavelets, the required
wavelet approximation scale can be determined a priori using analytic properties of the
characteristic function, and the computational domain can be determined recursively,
making the method parameter-free.

Finally, we extend the SWIFTmethod to the pricing of path-dependent and discrete
barrier options under exponential Lévy dynamics. We can speed up the computations
by benefiting from the FFT, but the main advantage being that we have a natural
solution to prevent domain boundary errors. We show numerically that the method
exhibits exponential convergencewith respect to thewavelet scalewhen the underlying
density is smooth, and algebraic convergence otherwise.

This paper is organized as follows. In Sect. 2, the basics of wavelet approxima-
tion theory are discussed in the context of the Multi Resolution Analysis (MRA)
framework, together with an analysis of the Shannon MRA. Then, we describe the
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Pricing early-exercise and discrete barrier options 1037

SWIFT method for European options in Sect. 3 and prove exponential convergence
with respect to the wavelet scale.

An efficient algorithm for Bermudan option pricing with the SWIFT method is
presented in Sect. 4. Moreover, we present a second approach of approximating the
wavelet coefficients in Sect. 4.2, which is beneficial for short maturity options. In
Sect. 4.3, we show how to price discretely monitored barrier options according to the
same principle. Numerical results showing exponential convergence and improved
boundary behavior are presented in Sect. 5 and we conclude in Sect. 6.

2 Multi resolution analysis

Point of departure for a wavelet analysis is the function space L2(R). A Multi Res-
olution Analysis (MRA) consists of a sequence of nested successive approximation
spaces Vm in L2(R), being closed subspaces that satisfy,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , (1)

with the properties,

⋃

m∈Z
Vm = L2(R), and

⋂

m∈Z
Vm = {0}. (2)

There are many subspaces that satisfy the two properties above that have nothing to do
with multi resolution. Multi resolution is a consequence of an additional requirement,

f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, (3)

or equivalently, f (x) ∈ V0 ⇔ f (2mx) ∈ Vm , that is, all the spaces Vm are scaled
versions of the central space V0.

The second feature we require from an MRA is invariance of V0 under integer
translations,

f (x) ∈ V0 ⇒ f (x − k) ∈ V0, for all k ∈ Z. (4)

Requirement (3) implies a similar translation for the spaces Vm , i.e., if f (x) ∈ Vm ⇒
f (x − 2mk) ∈ Vm for all k ∈ Z. We are now ready to define MRA.

Definition 1 (MRA) Let φ ∈ L2(R) be the generator of a wavelet family {φm,k}m,k∈Z
with φm,k(x) := 2

m
2 φ(2mx − k), and define the spaces Vm ⊂ L2(R) as,

Vm := closure
L2

(R)

〈{φm,k}k∈Z
〉
, m ∈ Z. (5)

If Vm satisfies the properties (1)–(4), and {φ0,k} forms an orthogonal basis1 of V0,
then we say that φ generates an MRA, and φ is called a scaling function, or father
wavelet.

1 This definition can be relaxed by requiring that the set {φ0,k } forms a Riesz-basis of V0, see [7].
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1038 S. C. Maree et al.

In words, Definition 1 states that an MRA is a special structure of nested spaces
generated from a single function, called the scaling function.

Lemma 1 Let us define Pm f as the orthogonal projection of a function f ∈ L2(R)

on the space Vm of (5), which is by construction given by,

Pm f (x) =
∑

k∈Z

〈
f, φm,k

〉
φm,k(x), (6)

where the inner product is 〈 f, g〉 := ∫
R
f (x)g(x)dx. Then, convergence of the pro-

jection f (x) = limm→∞ Pm f (x) holds in the L2(R)-norm.

For a proof of the L2(R)-convergence of wavelet approximations of Lemma 1 and
more theory on wavelet approximations, see for example [6,7,13].

2.1 Shannon wavelet approximations

Shannon wavelets are named after Claude Shannon, “the father of information theory”
and founder of the sampling theory in signal analysis [18]. The key function in that
context is the cardinal sine function sinc(x) := sin(πx)

πx , extended by sinc(0) := 1, as
shown in Fig. 1. In an MRA setting, this cardinal sine function will perform the role of
scaling function, φ(x) := sinc(x), which we refer to as the Shannon scaling function.
The Shannon scaling function is particularly useful due to its simplicity in the Fourier
domain,

φ̂(ω) :=
∫

R

φ(x)e−iωx dx = rect
(

ω
2π

)
,

x
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Fig. 1 Shannon Scaling function sinc(x) := sin(πx)/(πx)
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Pricing early-exercise and discrete barrier options 1039

where rect () is the rectangle function, defined as,

rect(x) =

⎧
⎪⎨

⎪⎩

1, if |x | < 1
2 ,

1
2 , if |x | = 1

2 ,

0, if |x | > 1
2 .

Due to this simplicity in the Fourier domain, there is a close connection with band-
limited functions.

Definition 2 A function f is called band-limited if there exists a positive constant
B < ∞, such that,

f (x) = 1

2π

∫ Bπ

−Bπ

f̂ (ω)eiωx dω,

i.e., its Fourier transform f̂ is identically zero on |ω| > Bπ . The parameter B is
referred to as the bandwidth of f .

We consider an MRA generated from the Shannon scaling function, defined as
φ(x) := sinc(x), with wavelets defined by φm,k(x) := 2

m
2 sinc(2mx − k), and its

Fourier transform φ̂m,k is given by,

φ̂m,k(ω) = 2−m
2 e−iω k

2m rect
( ω

2m+1π

)
.

The relation between the Shannon MRA and band-limited functions is stated in the
following lemma from [19].

Lemma 2 Consider an MRA generated from the Shannon scaling function φ(x) =
sinc(x). The space Vm as defined in Definition 1 is precisely the space of all functions
f ∈ L2(R) with bandwidth B ≤ 2m.

CombiningLemma2withLemma1yields an alternative formulation for the orthog-
onal Shannon wavelet projection.

Corollary 1 The space Vm as defined in Definition 1 is the space of all functions
f ∈ L2(R) with bandwidth B ≤ 2m. Therefore, the orthogonal projection Pm :
L2(R) → Vm of (6) is equivalent to,

Pm f (y) = 1

2π

∫ 2mπ

−2mπ

f̂ (ω)eiωydω. (7)

Proof of Corollary 1 is given in Appendix 3. Another corollary of Lemma 2 is a version
of the well-known Whittaker-Shannon interpolation formula, see [19].
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1040 S. C. Maree et al.

Corollary 2 Let g be a band-limited function with bandwidth B, then g can be recov-
ered exactly by a Shannon wavelet expansion at scale B < 2m, and we have,

g(x) =
∑

k∈Z
2−m

2 g( k
2m )φm,k(x),

where the series converges uniformly if g ∈ L2(R) or g ∈ L1(R).

The density functions we encounter in finance are not band-limited, so no exact
recovery is possible with a Shannon wavelet expansion for a finite scale m. However,
these density functions have a fast decay in the Fourier domain, which results in
accurate approximations even at low wavelet scales m, as stated in the following
lemma.

Lemma 3 Let f ∈ L2(R) and let H(ξ) represent the mass in the tails of Fourier
transform f̂ ,

H(ξ) := 1

2π

∫

|ω|>ξ

∣∣∣ f̂ (ω)

∣∣∣ dω. (8)

The pointwise approximation error εm(y) due to the projection of f onto the space
Vm in (5) is given by εm(y) := f (y) − Pm f (y), and can be uniformly bounded by
|εm(y)| ≤ H(2mπ).

Proof Wewrite f as the inverse Fourier transform of f̂ and use Corollary 1 to rewrite
Pm f . Then, the point-wise error is given by,

εm(y; x) := f (y|x) − Pm f (y|x) = 1

2π

∫

|ω|>2mπ

f̂ (ω; x)eiωydω. (9)

The desired bound follows by taking the modulus and noting that
∣∣eiωy

∣∣ = 1. ��
For the Lévy processes we use, the characteristic function is known, and therefore

we can study its decay rate to determine a suitable approximation scale, which we
discuss in Sect. 3.2.

An important difficulty to realize when working with the sinc-function, is that no
analytic form for its integral Si(t) := ∫ t

0 sinc(x) dx is available, which we require
in the computation of the wavelet coefficients. This issue is not new in numerical
integration, and was adressed in [1,2]. There, a combination of Vieta’s formula and
a cosine product-to-sum identity was used to approximate the sinc-function by a so-
called incomplete cosine expansion. The same approximation can be derived as well
by writing the sinc-function as its inverse Fourier transform,

sinc(t) = 1

2π

∫ π

−π

eitω dω = 1

π

∫ π

0
cos(tω) dω. (10)

We can then discretize the right hand side to obtain the required approximation, as
summarized in Lemma 4.
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Pricing early-exercise and discrete barrier options 1041

Lemma 4 We numerically integrate the r.h.s. of (10) using the midpoint rule with
J sub-intervals, thus obtaining the approximation,

sinc(t) ≈ sinc∗(t; J ) := 1

J

J∑

j=1

Re
{
eitω j

}
, (11)

where ω j := π
J ( j − 1

2 ). The approximation error due to the midpoint rule on a finite
domain |t | ≤ a ≤ π

2 J is bounded by,

∣∣sinc(t) − sinc∗(t; J )
∣∣ ≤ (πa)2

(4J )2 − (πa)2
. (12)

The Shannon wavelet can be approximated similarly, and we denote its approximation
by φ∗

m,k(y) := 2
m
2 sinc∗(2m y − k; J ). By error bound (12), the maximum error for

any 1− κ ≤ k ≤ κ inside the domain |y| ≤ c for a fixed J ≥ π
2 (2mc+ κ) is given by,

max|y|≤c, 1−κ≤k≤κ

∣∣φm,k(y) − φ∗
m,k(y)

∣∣ ≤ 2
m
2

(π(2mc + κ))2

(4J )2 − (π(2mc + κ))2
.

The approximation of the sinc-function in Lemma 4 can be derived in different
ways. Besides the derivation based on Vieta’s formula in [2], a derivation based on
Parseval’s identity, see [15], was given, which is a discretization of the integral that
arises in Corollary 1. If that integral is approximated by the midpoint rule with J sub-
intervals, it coincides once more with the result in Lemma 4, which was the missing
link between the two approaches.

The derivation here generalizes2 the previous approaches as it is valid for any natural
number J , while in previous results, J = 2η−1 for some η ∈ N was used. The error
bound (12) now follows directly from [15, Lemma 2].

3 European option pricing

Before we discuss Bermudan options, we start by analyzing the SWIFT method for
European pricing problems as in [15] in further detail. We derive an analytic error
bound and derive the appropriate wavelet approximation scale.

The pricing of a European option under Lévy asset price processes in computa-
tional finance is governed by the numerical solution of partial (integro-) differential
equations. The corresponding solution, being the option value at time t , can be found
by means of the Feynman–Kac formula as the discounted expectation of the option
value at final time T . We consider the risk-neutral option valuation formula,

v(x, t) = e−rΔt
E[ v(y, T ) | x] = e−rΔt

∫

R

v(y, T ) f (y|x) dy, (13)

2 It should be mentioned that the FFT is applied most efficiently when the number of coefficients is a power
of two. The generalization here is only of interest from a mathematical point of view.
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1042 S. C. Maree et al.

Table 1 Characteristic exponents and parameters restrictions for Lévy processes occurring in financial
applications

Model ψL (ω) Param. restrictions

GBM − σ2

2 ω2 σ > 0

NIG δ
(√

α2 − (β + iω)2 −
√

α2 − β2
)

α, δ > 0

VG − σ2

2 ω2 − 1
v log

(
1 − ivθω + v

σ2
v
2 ω2

)
v, σv > 0, σ ≥ 0

CGMY CΓ (−Y )
(
(M − iω)Y − MY + (G + iω)Y − GY

)
C,G > 0

Model details can be found in [17]

where v denotes the option value, T the maturity, t the initial date, Δt := T − t the
remaining time, E is the expectation operator under the risk-neutral measure, x and y
are state variables at time t and T respectively, f (y|x) is the probability density of y
given x and r is the deterministic risk-neutral interest rate.

Denote by {St }Tt=0 the underlying asset price process and let K be the strike price
of the option. We model the asset price process by an exponential Lévy process, so
that the log-transformed process Xt := log(St/K ) is a Lévy process with drift. Let
the state variables be given by x := Xt = log(St/K ) and y = XT := log(ST /K ). We
are interested in the conditional probability density function f (y|x), but this function
is rarely known in analytic form. However, due to the celebrated Lévy–Khintchine
formula, the Fourier transform f̂ (ω; x) of the density function f (y|x) is known and
given by,

f̂ (ω; x) := E

[
e−iωXT

]
= e−iωx e−iωμT+TψL (−ω) =: e−iωx f̂ (ω), (14)

where μ is a drift correction term defined as μ := r − ψL(−i), ψL(ω) is the charac-
teristic exponent that uniquely defines the Lévy process, and f̂ (ω) := f̂ (ω; 0). For
different models in finance, the characteristic components are listed in Table1 with
their model specific parameters. See [17] for details about these processes.

Remark 1 The SWIFTmethod can be applied to European pricing problems when the
characteristic function of the price process is known. For Bermudan pricing problems,
we require that the density function can be written as f (y|x) = f (y − x |0), which is
possible for Lévy processes and also for the Heston model.

Under the log-asset transformation, the option value at maturity time T of a Euro-
pean put option can be written as,

v(y, T ) = gput (y) := K (1 − ey)+ = K · max
(
1 − ey, 0

)
. (15)

Similarly, the payoff function for a call option is gcall(y) = K (ey − 1)+, but this
payoff grows exponentially for large values of y which could cause significant round-
off errors along the domain boundary. It is therefore highly recommended to price call
options via put options by applying the put-call parity relation.
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Pricing early-exercise and discrete barrier options 1043

3.1 SWIFT for European options

We assume that the underlying conditional density function f (y|x) is an L2(R)-
function so that we can apply the theory of MRA of Sect. 2. The SWIFT method
consists of three steps to approximate the density function by recovering it from its
characteristic function f̂ (ω; x).

Step 1 (Wavelet projection). In the first step, f is approximated by its Shannon
wavelet projection at scale m ∈ Z. By Lemma 1, this is,

f (y|x) ≈ f1(y|x) := Pm f (y|x) =
∑

k∈Z
Dm,k(x)φm,k(y), (16)

where the density coefficients depend on the initial asset price x and are defined as
Dm,k(x) := 〈 f (·|x), φm,k

〉
.

Step 2 (Series truncation). To numerically work with the wavelet approximation,
the infinite summation in (16) has to be truncated. If the density function vanishes as
y → ±∞, the wavelet coefficients Dm,k vanish as well, which can be seen by noting
that for k ∈ Z,

f (2−mk|x) ≈ f1(2
−mk|x) = 2

m
2 Dm,k(x). (17)

Thus we truncate3 the summation range for some κ ∈ N, so that we obtain,

f1(y|x) ≈ f2(y|x) :=
κ∑

k=1−κ

Dm,k(x)φm,k(y). (18)

Step 3 (Coefficient approximation). The final step is to compute the density coeffi-
cients Dm,k(x) := 〈 f (·|x), φm,k

〉
.We do this by replacingφm,k byφ∗

m,k as in Lemma4,
so that we obtain,

Dm,k(x) ≈ D∗
m,k(x) :=

∫

R

f (y|x)φ∗
m,k(y) dy

= 2
m
2

J

J∑

j=1

Re

{∫

R

f (y|x)e−iω j (2m y−k)dy

}

= 2
m
2

J

J∑

j=1

Re
{
f̂
(
ω j2

m; x) eiω j k
}

. (19)

InAppendix 2,we showwe showhow to compute the vector of coefficients D∗
m,k(x)

efficiently using the Fast Fourier Transform (FFT). We replace the density coefficients
by their approximation and obtain the SWIFT series approximation of the density
function,

3 The only reason that we choose a symmetric summation range 1 − κ ≤ k ≤ κ is for convenience of
notation. It is straightforward to work with an arbitrary range κ1 ≤ k ≤ κ2 for κ1, κ2 ∈ Z.
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1044 S. C. Maree et al.

f2(y|x) ≈ f3(y|x) :=
κ∑

k=1−κ

D∗
m,k(x)φm,k(y). (20)

To solve the option pricing integral in (13), we truncate the integration range4 to
|y| ≤ c for some positive constant c, so that we obtain,

v(x, t) ≈ v0(x, t) := e−rΔt
∫

|y|≤c
f (y|x)v(y, T ) dy. (21)

We substitute the approximation of the density function in (20) that we obtained after
the three consecutive approximation steps into the truncated pricing integral (21),

v(x, t) ≈ v3(x, t) := e−rΔt
∫

|y|≤c
f3(y|x)v(y, T ) dy

= e−rΔt
κ∑

k=1−κ

D∗
m,k(x)

∫

|y|≤c
v(y, T )φm,k(y) dy. (22)

The remaining integrals are closely related to the wavelet coefficients of the value
function v(y, T ) in y. We therefore define the value coefficients Vm,k(T ) at time T by,

Vm,k(T ) :=
∫

|y|≤c
v(y, T )φm,k(y) dy. (23)

With this definition, the resulting option value at time t can be written as,

v(x, t) ≈ v3(x, t) = e−rΔt
κ∑

k=1−κ

D∗
m,k(x)Vm,k(T ). (24)

Remark 2 The truncation of the integration range to |y| ≤ c is required for the approx-
imation of the sinc-function by the approach in Lemma 4, as this approximation holds
only on a finite domain, which we require in the computation of the value coefficients
(23). It is however easy to extend this domain, as discussed in the error analysis in the
next section.

Remark 3 From the series truncation argument in (17), when f (y|x) is negligible for
|y| > c, it follows that we should choose κ ≥ 2mc. Furthermore, by Lemma 4, we
should choose J ≥ πκ .

4 Truncation to a symmetric domain is not required, but chosen only for ease of notation.
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3.1.1 Vanilla payoff coefficients

For European options, the option value v(y, T ) at maturity equals the payoff function
g(y), see (15). Thus, the value coefficients Vm,k(T ) are given by,

Vm,k(T ) =
∫

|y|≤c
v(y, T )φm,k(y) dy =

∫

|y|≤c
g(y)φm,k(y) dy =: Gm,k(−c, c),

(25)
and we refer to Gm,k as the payoff coefficients. These integrals depend on the payoff
function g, but for the common payoff functions, the integral cannot be solved ana-
lytically. In [15], approximation formulas for the payoff coefficients for put, call and
digital option payoffs were derived. For a European put with payoff function g given
by (15), the approximated payoff coefficients G∗

m,k are given by,

G∗
m,k(a, b) := K

∫ b

a
(1 − ey)+φ∗

m,k(y) dy

= K
∫ b̄

a
(1 − ey)φ∗

m,k(y) dy

= K
2

m
2

J

J∑

j=1

Re

{
e−iω j k

∫ b̄

a
(1 − ey)eiω j2m y dy

}
, (26)

where b̄ := min(0, b). The remaining integral is easily solved analytically, and the
whole vector of coefficients can be computed efficiently using the FFT as explained
in Appendix 1.

The computation of the payoff coefficients is the final approximation step in the
SWIFT method, and by plugging Vm,k(T ) = Gm,k(−c, c) ≈ G∗

m,k(−c, c) into (22),
we obtain the SWIFT pricing formula for European options,

v(x, t) ≈ v4(x, t) := e−rΔt
κ∑

k=1−κ

D∗
m,k(x)G

∗
m,k(−c, c). (27)

3.2 European option pricing error analysis

We present an error analysis of the SWIFT method for European options, i.e., the
approximation error ε(x) := v(x, t)−v3(x, t)with v3 in (24).We assume that the pay-
off coefficients Vm,k(T ) are given explicitly, that the payoff function g(y) is bounded5

and to simplify notation, we assume r = 0.

5 The assumption of a bounded payoff holds for put and digital options. For options with an unbounded
payoff, one has to assume a certain decay rate on the density function in order to bound ε0(c) in Lemma 5.
This assumption is introduced to derive an error bound, and is not required for the SWIFT pricing formula
(27), as the pricing integral is truncated before any approximation is made, and the payoff is finite on a
bounded domain.
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1046 S. C. Maree et al.

Key to the existence of the option pricing integral (13) is that the density function
decays faster than the growth of the payoff function. We make no assumptions on the
decay rate of the density function, as it is unknown in general, but since the mass in
the tails of the density function tends to zero, for every T OL > 0 there exists a value
c > 0 such that,

τ(c) :=
∫

|y|>c
f (y|x) dy ≤ T OL . (28)

Using this observation, it follows directly that the error due to the integration range
truncation to |y| ≤ c is bounded, as stated in the following lemma.

Lemma 5 Let ε0(c) := v(x, t)− v0(x, t) be the error caused by the truncation of the
integration range to |y| ≤ c in (21). Then,

ε0(c) =
∫

|y|>c
f (y|x)g(y)dy ≤ τ(c) ‖g‖∞ ,

where the infinity norm ‖g‖∞ := sup{|g(y)| : y ∈ R}. The bound can be made
arbitrarily small by increasing the value c.

In the following lemma, we show how the decay rate of the density and its Fourier
transform relate to the error in the wavelet projection and series truncation.

Lemma 6 The error ε2(m, κ) caused by approximating f by the truncated Shannon
wavelet series f2(y|x) :=∑κ

k=1−κ Dm,k(x)φm,k(y) as in (18) is given by,

|ε2(m, κ)| =
∣∣∣∣
∫

|y|≤c
[ f2(y|x) − f (y|x)]g(y) dy

∣∣∣∣

≤ 2c ‖g‖∞
[
(2κ + 3)H(2mπ) + 2mτ( κ

2m )
]
.

The proof of Lemma 6 is given in Appendix 3. The remaining step in the SWIFT
approximation is the replacement of the density coefficients Dm,k by D∗

m,k as in (19)
which is discussed in [15]. The midpoint rule approximation of the sinc-functions
yields a summation of cosines, and is thus periodic. To reduce the impact of the
undesired periodic replications of the sinc-function, the density function acts as a
windowing function, but only if the period of sinc∗(· ; J ) is ‘large enough’.

Lemma 7 When the mass in the tails of the density function is represented by τ(c) as
in (28), the error ε3(J ) := v3(x, t) − v2(x, t) is bounded by,

|ε3(J )| ≤ 2m(2κ + 1) ‖g‖∞
(
2τ(c) + √

2c ‖ f ‖2
(πκ)2

(2J )2 − (πκ)2

)
,

when J ≥ πκ ≥ 2mπc.

The proof of Lemma 7 can be found in Appendix 3. We are now ready to combine all
of the above results.
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Theorem 1 The SWIFT pricing formula (24) for European options is bounded by,

|v(x, t0) − v3(x, t1)|
‖g‖∞ e−rΔt

= O
(
2mτ(c) + H(2mπ)

)
, (29)

whenever J ≥ πκ ≥ 2mπc, where τ(c) represents the mass in the tails of the density
function (28), and H(2mπ) the mass in the tails of the characteristic function (8).

The proof of Theorem 1 can be found in Appendix 3. Theorem 1 states that the error
of the SWIFT pricing formula depends the decay of both the density function and its
characteristic function. Unfortunately, the uncertainty principle of Fourier transforms
states that a fast decay in the Fourier domain implies a slow decay in the time domain
and vice-versa. Optimal convergence is obtained when f is Gaussian with variance
σ , so that its Fourier transform is a Gaussian with variance σ−1.

In the following sections we discuss how to find a suitable value for the two remain-
ing parameters, the wavelet scale m and the domain truncation parameter c.

3.3 Wavelet scale determination

It is important that the wavelet scale m is chosen a large enough, as it is not possible
to alter the scale of approximation afterwards without recomputing all that was done
before. We use the Fourier transform f̂ of the density function, which is known in
analytic form, to find an analytic expression to determine a sufficient wavelet scalem.

All of the processes of interest6 satisfy,

∣∣∣ f̂ (ω; x)
∣∣∣ =

∣∣∣eΔtψL (ω)
∣∣∣ ≤ Ce−dΔt |ω|ν , (30)

with constants C, d > 0 and ν ∈ (0, 2]. For any process with a Brownian motion
component, as indicated by − 1

2σ
2ω2, the bound in (30) is satisfied with ν = 2, which

is the ideal case from a computational point of view. For NIG, ν = 1, while ν = Ȳ
for CGMY,7 which can be directly read from the characteristic exponents in Table1.

With (30), the mass in the tails of the characteristic function H(2mπ) is given by,

H(2mπ) ≤ C

π

∫ ∞

2mπ

e−dΔt |ω|νdω = C

πν(dΔt)1/ν
Γ

(
1

ν
, dΔt(2mπ)ν

)
=: ε̄m,

where Γ (a, x) is the incomplete gamma function, and for large values of 2mπ , the
error behaves as,

ε̄m ∼ C(2mπ)1−ν

πνdΔt
e−dΔt(2mπ)ν , (31)

6 Geometric Brownian Motion, Normal Inverse Gaussian, Kou, Merton jump model and CGMY. The
exception is pure jump Variance Gamma, for which | f̂ (ω; x)| = O(C |ω|−2Δt/v), for which f̂ fails to be
integrable if Δt ≤ v/2.
7 We denote the parameters of the CGMY model by (C̄, Ḡ, M̄, Ȳ ) to avoid confusion with other model
parameters.
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which holds uniformly for ω and x . From (31), we see that the error converges expo-
nentially with respect to the wavelet scaling factor 2m . The parameters C and d in
(30) are often not readily available, thus we substituteCe−dΔt(2mπ)ν ∼ | f̂ (±2mπ; x)|
back into (31), so that we obtain the approximation,

ε̄m ∼ (2mπ)1−ν

2πνΔt

( ∣∣∣ f̂ (−2mπ; x)
∣∣∣+
∣∣∣ f̂ (2mπ; x)

∣∣∣
)
, (32)

which we can now cheaply evaluate. A simple iterative procedure can be performed,
by setting m = 0, 1, 2, . . . until ε̄m < T OL , for some user defined tolerance T OL .

3.4 Domain truncation determination

In general, the mass τ(c) in the tails of the density function is unknown, but we can
determine its rate of decay from the characteristic function, as stated in the following
lemma, of which the proof can be found in both [19,20].

Lemma 8 Consider a function f ∈ L2(R) with Fourier transform f̂ . Define the
interval −∞ ≤ λ− ≤ 0 ≤ λ+ ≤ ∞ and let λ := min(|λ−| , λ+). When f̂ is analytic
in the domainD(λ−, λ+) := {z ∈ C : Im {z} ∈ (λ−, λ+)} then f (x) = O(e−λ|x |) for
x → ±∞.

For the asset price models we consider, the strip in which f̂ is analytic is given in
Table2. It follows from Lemma 8 that all of the models have exponential decay for
some decay rate d > 0, and thus the mass in the tails τ(c) decays exponentially in c.
However, there are no analytic results on how to find the corresponding c such that
τ(c) < T OL for some user selected tolerance T OL . We therefore use a rule of thumb
that was used before in [8].

First, use the cumulants of the density function to heuristically determine an initial
guess for the log-asset domain such that τ(c) < T OL , as introduced in [8], by setting,

c := |c1| + L
√
c2 + √

c4, (33)

where ci is the i th cumulant, and given for commonLévy processes in Table2. Numer-
ical results suggest that L = 6 is sufficient for the SWIFT method, while L = 8 is
sufficient for the COS method [9].

Secondly, we set κ := �2mc�, compute the vector of density coefficients using the
FFT, and evaluate the test T1(κ),

T1(κ) :=
∣∣∣∣1 −

∫

R

f3(y|x) dy
∣∣∣∣ =

∣∣∣∣∣1 − 2−m
2

κ∑

k=1−κ

Dm,k

∣∣∣∣∣ . (34)

If T1(κ) > T OL , we repeat the procedure by increasing κ . Previously computed
coefficients can still be used, and only the new coefficients have to be computed.
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Table 2 Cumulants for Lévy processes occurring in financial applications

Model Cumulants Analytic strip (λ−, λ+)

GBM c1 = μt, c2 = σ 2t, c4 = 0 R

NIG c1 = μt + δtβ/
√

α2 − β2 [β ± α]
c2 = δtα2(α2 − β2)−3/2

c4 = 3δtα2(α2 + 4β2)(α2 − β2)−7/2

VG c1 = t (μ + θ)

[
θ

σ2 ±
√

θ2

σ4
v

+ 2
νσ2

v

]

c2 = tσ 2 + t (σ 2
v + vθ2)

c4 = 3t (σ 2
v v + 2θ4v3 + 4σ 2

v θ2v2)

CGMY c1 = μt + CtΓ (1 − Y )(MY−1 − GY−1) [−M,G]
c2 = CtΓ (2 − Y )(MY−2 − GY−2)

c4 = CtΓ (4 − Y )(MY−4 − GY−4)

The drift parameter is defined as μ = r − q − ψL (−i). Corresponding processes are shown in Table1.
Specific parameters for asset pricing problems can be found in for example [17]

3.5 Domain truncation error

Before we continue to the main contribution of this paper, Bermudan option pricing,
we discuss an advantage of the SWIFTmethod and themotivation for further research.

The SWIFT method exhibits a close relation to the COS method [8]. That method
recovers the density function by a Fourier cosine expansion, which is defined on a
finite domain and periodically extended outside this domain. This causes price under-
estimation within the computational domain near to the domain boundary where the
payoff function is non-zero, as highlighted in [16]. A ‘workaround’ solution proposed
there is by an extrapolation of the payoff coefficients.

The SWIFT method does not suffer from this problem. Wavelet methods in gen-
eral are approximations on the whole real line. Although we need a truncation of
the integration range to evaluate the wavelet coefficients efficiently (Lemma 4), this
truncation |y| ≤ c can be chosen independently of the truncated summation range
1 − κ ≤ k ≤ κ . Let us illustrate this independence by the problem of multiple strike
pricing.

From the definition of the payoff coefficients G∗
m,k in (26), it follows that we can

factor the strike price K out of the computation of the payoff coefficients by defining
U∗
m,k(a, b) so thatG∗

m,k(a, b) = K ·U∗
m,k(a, b), which therefore becomes independent

of the strike price.
We insert the definition of the density coefficients D∗

m,k in (19) into the SWIFT
pricing formula (24), and by interchanging summation and integration, we obtain,

v4(x, t) = e−rΔt K
J∑

j=1

Re

{
f̂
(
ω j2

m; x)
(
2

m
2

J

κ∑

k=1−κ

U∗
m,k(−c, c)eiω j k

)}
.
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Fig. 2 A European put priced by the COS method on a domain [4.3, 4.8]. We observe price underestima-
tion within the computational domain. The SWIFT method behaves fine, as we can integrate the payoff
coefficients independently of the computational domain. Parameters as in [16]

The inner summation, which is independent of x and K , is given by,

Ũ j (−c, c) := 2
m
2

J

κ∑

k=1−κ

U∗
m,k(−c, c)eiω j k, (35)

which can be computed efficiently using the FFT, see Appendix 2.
Furthermore, for Lévy models and for the Heston stochastic volatility models, the

SWIFT pricing formula allows for an efficient formulation. Recall from (14) that for
these processes, the Fourier transform f̂ of the density function can be factorized as
f̂ (ω; x) = f̂ (ω)e−iωx , where f̂ (ω) := f̂ (ω; 0).
Let us denote vectors with a boldface letter, then we can write the SWIFT option

pricing formula for a vector of strike pricesK, with corresponding initial asset values
x := log(S0/K) as,

v4(x, t) = e−rΔtK
J∑

j=1

Re
{
f̂ (ω j2

m)Ũ j (−c, c)e−iω j2mx
}

, (36)

which requires only two times the FFT in the construction of Ũ j , independent of the
number of strikes. The main observation here is that the integration range−c ≤ y ≤ c
within the coefficients Ũ j (−c, c), see (26), can be chosen independent of the truncation
of k. We set Ũ j (min(x) − c,max(x) + c), and we observe that the boundary problem
can be naturally avoided, as shown in Fig. 2. We highlight that the SWIFT method is
also periodic, as the approximation of the sinc function in (11) is periodic. However,
now we have the flexibility to cleverly choose the periodicity (in terms of J ) far from
the computational domain x ∈ [a, b].
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3.6 Relation with the COS method

The close relation between the SWIFT pricing formula (36) and the COS pricing
formula [8, Eq. (19)] can be made explicit by a specific choice of parameters. In
the SWIFT method, a local wavelet basis is used, however, we approximate the sinc
function by a global periodic expansion, see (11).

The parameters for the COSmethod are the truncated domain [a, b] and the number
of Fourier coefficients JCOS , and the pricing formula is given by,

vCOS(x, t) = e−rΔt
JCOS−1∑′

n=0

Re
{
DCOS
n

}
Re
{
VCOS
n

}
,

where, DCOS
n := f̌

(
nπ

b − a
; x
)
e−i nπ

b−a a,

and, VCOS
n :=

∫ b

a
g(y)einπ

y−a
b−a dy. (37)

We match the SWIFT method to this pricing formula by using the same computa-
tional domain [a, b] and we approximate the wavelet coefficients D∗

m,k and V
∗
m,k as in

(19) and (26) with the same number of discretization points J := 1
2 JCOS , where k is in

the range 1− J, . . . , J , and the wavelet scale m is selected according to 2m := JCOS
b−a .

Then, we insert the definition of the payoff coefficients (26) into the SWIFT pricing
formula (27), and by a change of summation and integration we obtain,

vSW I FT (x, t) = e−rΔt
J∑

j=1

Re

{(∫ b

a
g(y)eiω j2m y dy

)( J∑

k=1−J

D∗
m,k(x)e

−iω j k

)}
,

(38)
where D∗

m,k is the discrete inverse Fourier transform of f̂ , and when we take the
discrete Fourier transform of it, we return to the original vector. Thus we obtain that
SWIFT estimate v4(x, t) of (27) is equivalently written as,

vSW I FT (x, t) = e−rΔt

1
2 JCOS−1∑′

n=0

Re
{
DCOS
2n+1 · VCOS

2n+1

}
, (39)

which shows great similarity to (37). The main difference being that the COS method
uses only the real part of the coefficients while the SWIFT method only sums the odd
coefficients. The result is that the SWIFT approximation vSW (x, t) is replicated oddly
and the COS approximation vCOS(x, t) is evenly replicated.

Using this representation the SWIFT method loses its flexibility with respect to
the boundary as κ = J = 2m−1(b − a), and thus the coefficients we use are directly
related to the domain truncation. It gives however insight in the rate of convergence of
the SWIFT method, which is equivalent to the COS method. Furthermore, it suggests
that for the COS method, one should set JCOS := 2m(b − a). Thus, when one wants
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to retain accuracy while increasing the computational domain (see [15, Fig. 5]), one
knows how to change JCOS , as m is known analytically from (32).

4 Pricing Bermudan and barrier options

A Bermudan option is a financial contract, which the holder can exercise at a prede-
termined finite set of exercise moments prior to maturity, and the holder of the option
receives a payoff when she exercises the option.

Consider a Bermudan option with strike price K and a set of N exercise moments
t1, . . . , tN , and strictly ordered, 0 = t0 < t1 < · · · < tN = T , where T is the option’s
maturity. When the option is exercised at time tn , the holder receives a payoff g(Xtn ),
where {Xt }Tt=0 is the underlying log-asset price process. The value v(x, t0) of the
Bermudan option at time t0 is then given by,

v(x, t0) = max
τ∈T

E

[
e−r(τ−t0)g(Xτ )

∣∣∣ X0 = x
]
, (40)

where τ is a stopping time taking values inT = {t0, t1, . . . , tN }. We apply Bellman’s
optimality principle, also known as the dynamic programming principle, stating that if
one follows an optimal exercise strategy up to some observation time, then, given this
information, it remains optimal to use it after that observation time. By the dynamic
programming principle, one can split the optimization problem into two parts. The
optimal exercise point may be found at some time θ , given the current state Xθ .
Then, the expected value in (40) is maximized over all exercise strategies in [θ, T ].
In continuous time, the dynamic programming principle leads to the well known
Hamilton–Jacobi–Bellman equation.

In the context of Bermudan option pricing, the dynamic programming principle
states that the price of the option at any exercise moment is the maximum of the spot
payoff and the so-called continuation value.

Between twoexercisemoments, the valuation process canbe regarded as aEuropean
option pricing problem, and can be priced with the help of the risk-neutral option
valuation formula (13).

For simplicity of notation, we use an equidistant time grid Δtn := tn − tn−1 = Δt
and we define, x := Xtn−1 = log(Stn−1/K ), and y := Xtn = log(Stn/K ), where St is
price process of the underlying asset. The payoff of the option is denoted by g(y) and
for vanilla options, the value of the option at maturity is given by,

v(y, T ) = g(y) = [αK (ey − 1)]+, α =
{
1, for a call,

−1, for a put.
(41)

We consider again a constant risk-neutral rate r . By the dynamic programming
approach, the option value prior to maturity can be expressed recursively for n =
N , N − 1, . . . , 2, by,
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{
v(x, tn−1) = max(g(x), c(x, tn−1)),

c(x, tn−1) = e−rΔt
∫
R

v(y, tn) f (y|x) dy, (42)

and finally followed by the option value at t0,

v(x, t0) = e−rΔt
∫

R

v(y, t1) f (y|x) dy, (43)

where c(x, tn−1) is referred to as the continuation value and the probability function
of y given x is denoted by f (y|x) := fΔt (y|x).

The integrals in (42) and (43) are of the same form as the European pricing formula
(13), and we can apply the SWIFT pricing formula to approximate them.

4.1 SWIFT Bermudan algorithm

At the initial time t0, the option value is given by the integral representation in (43),
and by application of the SWIFT pricing formula (24), we obtain,

v(x, t0) ≈ v∗(x, t0) = e−rΔt
κ∑

k=1−κ

D∗
m,k(x)Vm,k(t1), (44)

where the density coefficients D∗
m,k(x) are as in (19). Thus, the option value can be

determined once the value coefficients Vm,k(t1) are known. We propose a backward
recursion to recover these coefficients, based on (42). We describe the approach by
pricing a vanilla Bermudan put option.

Following (41), the option value at maturity tN = T equals the payoff of the option,
v(y, T ) = g(y), and thus we can write the value coefficients for a put option as,

Vm,k(tN ) = Vm,k(T ) :=
∫

|y|≤c
v(y, T )φm,k(y) dy

=
∫ 0

−c
g(y)φm,k(y) dy

= Gm,k(−c, 0), (45)

where Gm,k(y1, y2) are the payoff coefficients over the exercise region (y1, y2), as we
saw before in the European case, given in (26), which can be efficiently computed
using the FFT.

Now that we have an expression for the value coefficients at maturity, we can
compute the coefficients at any time tn , for n = N − 1, . . . , 1, prior to maturity
recursively, when we know the early-exercise point x∗

n , which is the point where the
continuation value equals the payoff, i.e., c(x∗

n , tn) = g(x∗
n ). Once we obtain x∗

n , we
can split the integral for the value coefficients Vm,k in two parts, giving,
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Vm,k(tn−1) :=
∫

|x |≤c
v(x, tn−1)φm,k(x) dx

=
∫

|x |≤c
max

{
g(x), c(x, tn−1)

}
φm,k(x) dx

=
∫ x∗

n

−c
g(x)φm,k(x) dx +

∫ c

x∗
n

c(x, tn−1)φm,k(x) dx

=: Gm,k(−c, x∗
n ) + Cm,k(x

∗
n , c, tn−1), (46)

where Cm,k(x1, x2, tn−1) are the continuation coefficients at time tn−1 over the inter-
val (x1, x2).

Theorem 2 The continuation coefficientsCm,k(x1, x2, tn−1) canbe efficiently approx-
imated with the use of five times the FFT when the value coefficients at the next time
step {Vm,k(tn)}k are known.
The proof of Theorem 2 is given in Appendix 3.

Remark 4 (Early-exercise point) Each time step tn , we have to determine the early-
exercise point x∗

n , which is the x value that solves g(x) = c(x, tn). We use Newton’s
method as we know the payoff function g(x) explicitly, and the continuation value
in functional form in (65). The coefficients Ũ j (tn) here are independent of x , and
can be reused for computation of the continuation coefficients, thus Newton’s method
consists only of a few O(J ) operations per iteration.

The above theorem leads to the SWIFT method for Bermudan options, and is
summarized in Algorithm 1. The method uses 5 times the Fast Fourier Transform per
time step, which is the same number of times as the COS method [9], but the vectors
we use are about two times longer when the same domain is chosen.

Remark 5 One could improve robustness by adding a check to see if the domain
truncation c is sufficient. This can be done by evaluating T1(c) in (34). When using
equidistant time steps Δt , this check has to be performed only once at O(N log N )

cost.

Remark 6 As highlighted in Sect. 3.5, when recovering the option price for x in a
range [−c, c], the integration domain of the value coefficients as in (46), should be set
larger than this range. However, when the integration range of an integral is extended,
while the number of discretization points J is the same, accuracy decreases. Therefore,
we slightly extend the integration range to c̃ := 3

2c, so that we have minimal loss of
accuracy, but the error is constant on the whole domain, as confirmed by numerical
results in Sect. 5.

Remark 7 (Error Convergence) From Sect. 3.6, we know that the SWIFT pricing for-
mula is closely related to the COS method, and the same is true for Bermudan options
if we choose the parameters as mentioned in that section. It is proven [9,16] that the
COS method exhibits exponential convergence for Bermudan options when the den-
sity function is smooth. We show numerically that the same is true for the SWIFT
method.

123



Pricing early-exercise and discrete barrier options 1055

Algorithm 1: SWIFT method for Bermudan options
Initialization:
- Select the value for m such that ε̄m < T OL in (32);
- Determine c by the cumulants as in (33);
- Set κ := ⌈2mc⌉, and J := �πκ�;
- Set c̃ := 3

2 c;

At maturity tN = T :
- Compute Vm,k (tN ) = G∗

m,k (−c̃, 0), where G∗
m,k is computed with the FFT as in (26).

for n = N − 1, . . . , 1 do

Early-exercise point:
- Construct Ũ j (tn+1) from {Vm,k (tn+1)}k as in (66) using the FFT;
- Run 5 iterations of Newton’s method to find x∗

n , see Remark 4.

Continuation coefficients:
- ConstructJq (x∗

n , c̃, tn+1) as in (71) from Ũ j (tn+1) using the efficient
Hankel matrix product of Appendix 1 by use of 3 times the FFT;

- Construct C∗
m,k (x

∗
n , c̃, tn) as in (70) fromJq (x∗

n , c̃, tn+1) using the FFT;

Value coefficients:
- Set Vm,k (tn) = G∗

m,k (−c̃, x∗
n ) + C∗

m,k (x
∗
n , c̃, tn).

end

Recover the option value v(x, t0) at t = t0 by plugging Vm,k (t1) into (44).

4.2 Quick SWIFT

When pricing Bermudan options with many exercise moments, a high wavelet scale
m is required to recover the peaked density function accurately. However, the payoff
function does not need such a high wavelet scale to accurately be recovered, as it is
relatively smooth. The main recursion back in time is on the payoff coefficients in the
SWIFT method of Algorithm 1. This suggests that a cheaper approximation of the
payoff function would be beneficial.

We propose a very cheap approximation of the payoff function here, at cost of
some accuracy. From Corollary 2, it follows that when a function g is band-limited, its
wavelet coefficients are given by Gm,k := 〈

g, φm,k
〉 = 2−m

2 g(2−mk). Equality does
not hold for non band-limited functions, as are the payoff functions we encounter, but
it serves as a very cheap approximation.8

We price Bermudan options using the same recursion on the payoff coefficients as
the SWIFT method, but now with the quick approximation to compute coefficients
instead of the approximation used before in (11). Similar to (45), we start at maturity
tN , where the option value equals the payoff, which we approximate,

Vm,k(tN ) = Gm,k ≈ 2−m
2 g
(
2−mk

) =: V Q
m,k(tN ). (47)

8 Note that this approximation can be seen as the approximation of the sinc-function by the Dirac-delta,
which holds in the limit when m → ∞.
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Then, at any time tn prior to maturity, we can recursively recover the payoff coef-
ficients,

Vm,k(tn−1) =
∫

R

v(x, tn−1)φm,k(x) dx,

≈ 2−m
2 v(2−mk, tn−1)

= 2−m
2 max

{
g(2−mk), c(2−mk, tn−1)

}

=: V Q
m,k(tn−1). (48)

Here, the only unknown quantity is the continuation value c(2−mk, tn−1), which is a
European option pricing problem, and by the application of the SWIFT method for
European options (22) we find,

c(2−mk, tn−1) ≈ e−rΔt
κ∑

p=1−κ

D∗
m,p

∫

R

v(y, tn)φm,p(y − 2−mk) dy

≈ e−rΔt
κ∑

p=1−κ

D∗
m,p2

−m
2 v
(
2−m(p + k), tn

)

= e−rΔt
κ∑

p=1−κ

D∗
m,pV

Q
m,p+k(tn). (49)

In the first step, we used that wavelets satisfy φm,k(x −2−m p) = φm,k+p(x). Further-
more, this last summation can be written as a matrix-vector product, with a Hankel
matrix, which we can efficiently compute using three times the FFT, as shown in
Appendix 1. In case of equidistant time steps, the payoff coefficients D∗

m,k , computed
as before in (19), have to be computed only once, and thus we require only two times
the FFT per iteration, as shown in Algorithm 2.

The efficient evaluation of the continuation value makes this method more than
twice as fast as the COS method with the same number of coefficients and more than
four times faster than the SWIFT method with the same wavelet scale m.

Numerical results in the next section show that for engineering accuracy approxi-
mations up to 10−5, the Quick SWIFT method is generally faster, however, due to its
linear convergence, it is unsuitable for high-accuracy approximations.

Remark 8 Algorithm 2 returns the option value at time t0 for a range of initial asset
values x = 2−mk, with k ∈ Z. However, often x := log(S0/K ) is not of this form.
Therefore, the alternative log-transform Xt := log(St/S0) should be used, implying
that x := X0 = 0.
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Algorithm 2: Quick SWIFT method for Bermudan options
Initialization:
- Select the value for m such that ε̄m < T OL in (32);
- Determine c by the cumulants as in (33);
- Set κ := ⌈2mc⌉, and J := �πκ�;
- Set c̃ := 3

2 c;

At maturity tN = T :

- Compute V Q
m,k (tN ) from the payoff function g as in (47);

- Compute the payoff coefficients D∗
m,k of (19) using the FFT;

- Construct μh := DFT(mh) from D∗
m,k as in (55);

for n = N − 1, . . . , 1 do

- Construct the vector xh in (55) from V Q
m,k (tn+1);

- Compute c(2−mk, tn) with the FFT from xh and μh as in Appendix 1;

- Compute V Q
m,k (tn) = 2−m

2 max
{
g(2−mk), c(2−mk, tn)

}
.

end

Recover the option value v(x, t0) at t = t0 by plugging V Q
m,k (t1) into (44).

4.3 Discretely-monitored barrier options

Discretely-monitored barrier “out” options are options that cease to exist if the asset
price hits a certain barrier level, B, at one of the pre-specified observation dates. If
B > S0, the option is referred to as “up-and-out”, and “down-and-out” otherwise.

The payoff for an up-and-out option reads,

v(x, T ) = [{α(ST − K )}+ − Rb
]
1{Stn<B} + Rb, (50)

where α = 1 for a call and α = −1 for a put, Rb is a rebate and 1A is the indicator
function, taking value one whenever A is not empty, and zero otherwise. Let the set
of observation dates be t1 < · · · < tN−1 < tN = T . Then, the price of an up-and-out
option, monitored N times, satisfies the following recursion,

⎧
⎪⎨

⎪⎩

c(x, tn−1) = e−rΔt
∫
R

v(x, tn) f (y|x) dy,
v(x, tn−1) =

{
e−r(T−tn−1)Rb, x ≥ b,

c(x, tn−1), x < b,

(51)

where b := log(H/K ) and n = N , N − 1, . . . , 2.
This approach is very similar to the recursion for Bermudan options, with the main

difference being that for barrier options the barrier point is known in advance, while
the early-exercise point for Bermudans has to be found by a root-searching algorithm.

Theorem 3 (Backward recursion for discrete barrier options) By the backward
recursion, the following numerical approximation is found for discretelymonitored up-
and-out barrier options. At anymonitoring date prior tomaturity n = N , N−1, . . . , 1,
we obtain,
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V ∗
m,k(tn) = C∗

m,k(−c, h, tn) + e−r(T−tn−1)R∗
m,k(h, c), (52)

where C∗
m,k(x1, x2, tn) is as in (70) and the rebate coefficient Rm,k(h, c) defined as,

Rb∗
m,k(x1, x2) := Rb

∫ x2
x1

φ∗
m,k(x) dx, which can be computed using the FFT similar

to the payoff coefficients in (26). Let b+ := max{0, b} and b− := min{b, 0}, then we
have at maturity tN = T ,

V ∗
m,k(tN ) =

{
G∗

m,k(0, b
+) + Rb∗

m,k(b, c), for a call,

G∗
m,k(−c, b−) + Rb∗

m,k(b, c), for a put.
(53)

In a similar fashion, we can price down-and-out barrier options, barrier “in”-
options and double-barrier options with the same ease.

The proof of this theorem goes along the same lines as the recursion we found for
Bermudan options. The main difference is that the computation of C∗

m,k(−c, b, tn) is
less expensive as b is known in advance, and many computations, like Rb∗

m,k(b, c),
can be done outside the main loop.

Algorithm 3: SWIFT method for up-and-out barrier options
Initialization:
- Select the value for m such that ε̄m < T OL in (32);
- Determine c by the cumulants as in (33);
- Set κ := ⌈2mc⌉, and J := �πκ�;
- Set c̃ := 3

2 c;

At maturity tN = T :
- Compute Rb∗

m,k (b, c̃) as in Theorem 3.

- Compute V ∗
m,k (tN ) as in (53) where G∗

m,k is computed with the FFT as in (26).

for n = N − 1, . . . , 1 do

Continuation coefficients:
- ConstructJq (−c̃, b, tn+1) as in (71) from Ũ j (tn+1) using the efficient Hankel matrix
product of Appendix 1 by use of 3 times the FFT;

- Construct C∗
m,k (−c̃, b, tn) as in (70) fromJq (−c̃, b, tn+1) using the FFT;

Value coefficients:
- Set V ∗

m,k (tn) = C∗
m,k (−c̃, b, tn) + e−r(T−tn−1)Rb∗

m,k (b, c̃).

end

Recover the option value v(x, t0) at t = t0 by plugging the coefficients V ∗
m,k (t1) into (44).

5 Numerical results

In this section, we illustrate the performance of the SWIFT method for option types
with early exercise features. All tests are run with Matlab 2016a on an Intel Core
i7-4790 CPU @ 3.60GHz with 16 GB of memory. We compare the SWIFT method
against the COS method and the Quick SWIFT method for different option types
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Table 3 Test parameters for pricing Bermudan options

Test no. Model S0 K T r Other parameters

1 GBM 100 110 1 0.1 σ = 0.2

2 CGMY 100 80 1 0.1 (C̄, Ḡ, M̄, Ȳ ) = (1, 5, 5, 1.5)

3 CGMY 100 100 1 0.1 (C̄, Ḡ, M̄, Ȳ ) = (1, 5, 5, 0.5)

Characteristic exponents of these Lévy models can be found in Table1. For details, we refer the reader to
[17]
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Fig. 3 Convergence of the Bermudan put price with 12 exercise moments under different dynamics with
respect to the wavelet scale m. Domain truncated by the cumulants in (33) with L = 6. The diamonds
denote the recommended wavelet scale by the analytic formula (32)

on different underlying price processes. The computational complexity of all of the
methods is O(N J log J ), where N is the number of early-exercise moments and J
is the number of coefficients, see Sect. 5.2. The reference prices for our tests, if not
available analytically, are computed by the COSmethod with JCOS = 20,000 Fourier
terms and domain trucation by cumulants with L = 50, see (33).

We start by analyzing convergence behavior in terms of the wavelet scale m, and
confirm numerically that the SWIFT method exhibits exponential convergence with
respect to 2m . We price a Bermudan put option with underlying dynamics and param-
eters given in Table3. Convergence results are shown in Fig. 3 for a Bermudan put
with N = 12 (monthly) exercise dates.

We determined a priori the required wavelet scale m to obtain an error <10−10 by
application of the analytic result in (32), which we denoted by a diamond in Fig. 3.
This simulation confirms the analytic formula.

For a fixed wavelet scale, Test 1, the GBMmodel, is optimal in terms of CPU time,
which we see in the right sub figure, as it has fast decay in both the asset domain and
the Fourier domain. Test 2, the CGMY model with Ȳ = 1.5 has the fattest tails and
thus a wide domain in the asset-space is required, but due to a fast decay in the Fourier
domain, m = 3 already results in machine accuracy. The contrary is true for Test
3, CGMY with Ȳ = 0.5, which is a highly peaked density function, and it requires
m = 8 to reach machine accuracy.
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Fig. 4 The three tests from Table3 with N = 12 exercise moments. We plotted the error bound along with
the true numerical price error

5.1 Wavelet scale determination

We test the analytic bound that we determined in Sect. 3.3. The bound is not exact as
we substitute the upper bound (30) back and forth in the expression for the error (32).
In Fig. 4, we see that the bound is very tight for both fat-tailed distributions, the GBM
and CGMY with Y = 1.5. For the peaked CGMY model of Test No. 3, the bound is
an overestimation of the true error. This can be explained by the fact that we neglect
a division of d as a divisor in (32), which is larger for Test No. 3.

5.2 Quick SWIFT and CPU time

Convergence of the Quick SWIFT is demonstrated with the two CGMY tests from
Table3withweekly (N = 50) exercisemoments. In the left subfigure of Fig. 5, TestNo
2. is used, which has a smooth density function which is easy to approximate with the
SWIFT and COS methods. We observe that the Quick SWIFT method performs less,
and is not able to reach the threshold of an error of 10−10, although it still outperforms
the SWIFT and COS methods for low-accuracy estimates.

The right sub figure of Fig. 5 shows the results for the highly peaked Test No. 3.
We observe that the Quick SWIFT method is better than SWIFT, although the rate
of convergence of the Quick SWIFT method decreases around 10−6. This is where
the wavelet scale m is high enough such that the approximation error of the density
coefficients is small and the error in the ‘quickly’ approximated payoff coefficients
dominate.

The reason is that in Test No. 3, the error made in the approximation of the density
function dominates, so the impact of the ‘badly’ approximated payoff coefficients is
negligible. The small time between exercise moments and the naturally peaked density
function cause that wavelet scale m = 11 is required for SWIFT for an option pricing
error less than 10−5 according to (32). The COS method uses JCOS = 2m(b − a) =
3 · 2m coefficients for a fair comparison (see Sect. 3.6).

Theoretically, the SWIFT method is twice as slow as the COS method when the
same number of coefficients is used. We observe this in the right sub-figure of Fig. 5
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Fig. 5 CGMY Bermudan put with weekly (N = 50) exercise moments and parameters as in Test no. 3 in
Table3

for largem (form ≤ 5, initialization-time dominates). Furthermore, the Quick SWIFT
method is 2.5 times faster than SWIFT, as expected, since Quick SWIFT only uses
two times the FFT, compared to five times in the normal SWIFT method.

5.3 Domain boundary error and recursion

In Sect. 3.5, we demonstrated the advantage of the SWIFT method with respect to the
boundary. We show a similar example for a Bermudan option with N = 20 exercise
dates. The boundary error plays a big role in Bermudan option pricing due to the
recursive pricing, which has the potential to blow up small errors at the boundary to
significant errors within the domain. This is shown in Fig. 6. There, a Bermudan put
option is priced under geometric Brownian motion dynamics and parameters as in
Test no.1 in Table3. We choose a relatively small domain using the cumulants method
(33) and L = 3 for both methods.

We can see that the COS method has a pricing error for negative x , similar to the
European case, due to periodicity of the Fourier transform, as the payoff function of a
put option is non-zero there. Furthermore, on the positive side of the domain, an error
recursion occurs, which becomes significant after about 6 time steps, and increases
further at every iteration towards t = 0.

The SWIFTmethod allows us to place the domain truncation outside of the domain
of computation, decreasing the error recursion as much as possible. For a fair compari-
son, we have kept the number of coefficients the same. This results in a loss of accuracy
on the positive side of the x domain, and we see that the SWIFT pricing error is no
longer machine accuracy, but around 10−12. This error will become more apparent
when the domain is chosen larger or the number of exercise moments increases.

5.4 Barrier options

We consider monthly-monitored (N = 12) up-and-out call and put options (UOC)
and (UOP), down-and-out call and put options, (DOC) and (DOP), with up barrier
Bup = 120 and the down barrier Bdown = 80, without rebates. Reference method is
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Fig. 6 Option value surface for a Bermudan put with N = 20 exercise dates, both priced on a small domain
with L = 3. We see that the COS method (blue) suffers from boundary issues, which are minimal for the
SWIFT method (red) (color figure online)

Table 4 Test parameters for pricing barrier options

Test no. Model S0 K T r q Other parameters

4 CGMY 100 100 1 0.05 0.02 (C̄, Ḡ, M̄, Ȳ ) = (4, 50, 60, 0.7)

5 NIG 100 100 1 0.05 0.02 α = 15, β = −5, δ = 0.5

Characteristic exponents of these Lévy models can be found in Table1. For details, we refer the reader to
[17]

the COS method [9]. The test parameters we use are also from [9], and are shown in
Table4, where q is the dividend yield.

The computation of option values for barrier options is faster than for Bermudan
options, as the barrier is known in advance, in contrast to the early-exercise point, and
we observe in Fig. 7 accurate prices are computed within milliseconds. The down-
and-out put (DOP) and the up-and-out call (UOC) have a bounded payoff domain,
which results in a higher accuracy as no artificial truncation is required. Furthermore,
the NIG model with parameters as in Table4 has a a high-peaked density function,
thus a higher wavelet scale is required.

6 Conclusion and discussion

In this paper, we examined the SWIFT method for pricing European options [15].
We gave a complete proof of exponential convergence with respect to the wavelet
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Fig. 7 Barrier options priced with the SWIFT method. Parameters from Table4. Wavelet scales
m = 2, . . . , 8 are shown. Domain truncated by (33) and L = 6

scale and gave an analytic argument to determine a suitable approximation scale m.
Determination of the appropriate domain truncation can then be carried out recursively.
Furthermore, we showed a close relation to the COSmethod [8] for specific parameter
choices and we highlighted the advantage of the SWIFT method with respect to the
domain boundary for multiple strike pricing.

Themain contribution of this paper is the extension of theSWIFTmethod for pricing
Bermudan options and discretelymonitored barrier options under Lévy dynamics. The
SWIFT method for options with early-exercise features is competitive to the state-of-
the-art methods like the COS method [16], both with a computational complexity of
O(N J log J ), where J is the number of coefficients and N the number time steps. The
advantage of our method is preservation of the exponential convergence of the COS
method, while being able to solve boundary issues recursively. This is particularly
useful for smooth density functions and options with a long time to maturity.

The difficulty of this method is that the sinc function has to be approximated in
order to compute its integral, and a global artificial truncation of the integration range
is required if one want to apply the FFT. We introduced a second approach, the Quick
SWIFT method, based on the observation that the sinc-function converges to the
Dirac-delta when the wavelet scale m goes to infinity. This approach is very quick,
but resulting convergence of the error in the option price is linear. If only engineering
accuracy is required, this method is preferable over the COS method, especially when
the density function contains high-frequency moments, which happens for peaked
densities when for example the time between exercise moments is small.

As for possible extensions, it is interesting to apply the SWIFT method to higher
dimensions and other option types or exploring different approximations of the sinc
integral to balance between accuracy and computational time.We leave these for future
research.

Appendix 1: The fast Fourier transform

The SWIFT Bermudan method relies on the application of the Fast Fourier Transform
(FFT) for fast computations. Point of departure is the discrete Fourier transform (DFT),
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which is defined analogously to the continuous Fourier transform, but only on a set of
discrete frequencies ω.

Definition 3 (DFT) Let z ∈ C
N with entries z = {z j }Nj=1. Then the discrete Fourier

transform is defined as,

DFTk(z) =
N∑

j=1

z j e
− 2π i

N (k−1)( j−1), where k = 1 − N/2, . . . , N/2. (54)

Remark 9 There are different definitions regarding the DFT, but we use the one as
implemented in Matlab to reduce the differences between notation and implementa-
tion. Expression (54) is equivalent to Z = fftshift(fft(z)) in Matlab-code.

We discuss Hankel matrices that have a special structure, which allows us to com-
pute matrix-vector products with a complexity of O(N log2 N ) instead of O(N 2).
This is in detail described in [9].

Hankel matrix multiplication

A Hankel matrix M is an N × N matrix with constant anti-diagonals, i.e.,

M :=

⎡

⎢⎢⎢⎢⎣

m0 m1 m2 · · · mN−1
m1 m2 · · · mN−1 mN
... . .

. ...

mN−2 mN−1 · · · · · · m2N−3
mN−1 · · · · · · m2N−3 m2N−3

⎤

⎥⎥⎥⎥⎦
.

For a vector x ∈ R
N , the matrix-vector product M x is equal to the first N elements

of the circular convolution mh � xh , with the 2N -vectors,

mh := [m0,m−1,m−2, · · · ,m1−N , 0,mN−1,mN−2, · · · ,m1]T ,

xh := [x0, x1, x2, · · · , xN1 , 0, · · · , 0]T . (55)

A circular convolution of two vectors is equal to the inverse discrete Fourier trans-
form (DFT−1) of the product of the forward DFTs, DFT, i.e.,

x � y = DFT−1 (DFT(x) · DFT(y)) .

Thus, in total 3 times the FFT algorithm has to be applied on a vector of length 2N .

Appendix 2: Wavelet coefficient computation with the FFT

We show that we can benefit from the Fast Fourier Transform in the computation
of the Shannon wavelet coefficients when we make use of the approximation of the
sinc-function as in Lemma 4.
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Recall that wavelet coefficients of an arbitrary function g are defined as Gm,k :=〈
g, φm,k

〉
, and by approximating the wavelet φm,k by φ∗

m,k we obtain,

G∗
m,k :=

∫

R

g(y)φ∗
m,k(y) dy

= 2
m
2

J
Re

⎧
⎨

⎩

J∑

j=1

(∫

R

g(y)e−iω j2m y dy

)
eiω j k

⎫
⎬

⎭

=: 2
m
2

J
Re

⎧
⎨

⎩

J∑

j=1

g j e
iω j k

⎫
⎬

⎭ . (56)

The inner integral g j in the second step can be solved using the Fourier transform ĝ
whenever it exists, or it can be solved numerically, depending on the properties of the
function g. To apply the FFT, recall that ω j = π

J ( j − 1
2 ). We define N = 2J and

apply zero padding to g j := 0 for j = J + 1, . . . , N , to obtain,

G∗
m,1−k = 2

m
2

J
Re

⎧
⎨

⎩e
−i π

N (k−1)
N∑

j=1

g j e
−i 2πN ( j−1)(k−1)

⎫
⎬

⎭ , (57)

which is in the form of the Matlab fft-function as in Definition 3 and the whole vector
of coefficients {Gm,k}Nk=1 can be computed at a computational cost of O(N log N ).

Remark 10 The FFT is used most efficient when the number of sub intervals J is a
power of two, thus by setting J = 2η, where η ∈ N.

Appendix 3: Technical details

Proof of Corrolary 1

Fix a wavelet scale m ∈ R and recall from (6) that by construction, the projection
onto Vm is given by Pm f (y) = ∑

k∈Z
〈
f, φm,k

〉
φm,k(y), where we can rewrite the

coefficient
〈
f, φm,k

〉
by application of Parseval’s identity,

〈
f, φm,k

〉 = 1

2π

〈
f̂ , φ̂m,k

〉
= 2−m

2

2π

∫ 2mπ

−2mπ

f̂ (ω)eiωk/2
m
dω.

When substituting this expression of the density coefficients in the projection Pm f ,
we obtain by interchanging integration and summation,

Pm f (y) = 2−m
2

2π

∫ 2mπ

−2mπ

f̂ (ω)

[
∑

k∈Z
φm,k(y)e

iωk/2m
]
dω. (58)
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It follows now from the Fourier series expansion of eiωy in y that,

∑

k∈Z
φm,k(y)e

iωk/2m = 2
m
2 eiωy, when, ω ∈ (−2mπ, 2mπ), (59)

see [19]. Substituting (59) into (58) yields the desired result. ��

Proof of Lemma 6

If f is a band-limited function, it follows fromCorollary 2 that the density coefficients
are given by Dm,k(x) = 2−m

2 f ( k
2m |x). In our application, density f is not band-

limited, but this motivates us to write Dm,k(x) = 2−m
2 [ f ( k

2m |x) − εm( k
2m ; x)], where

εm(y; x) is as in (9). Inserting this formulation of the density coefficients into f2 of
(18) results in,

f2(y|x) = 2−m
2

κ∑

k=1−κ

[
f ( k

2m |x) − εm( k
2m ; x)]φm,k(y). (60)

The difference between f2 and f can be expressed using (60), so that we obtain,

f2(y|x) − f (y|x) = 2− m
2

κ∑

k=1−κ

f
( k
2m |x)φm,k(y) − f (y|x) − 2− m

2

κ∑

k=1−κ

εm( k
2m ; x)φm,k(y).

The right-side sum is a finite summation of which each term can be bounded by noting
that

∣∣φm,k(y)
∣∣ ≤ 2

m
2 and |εm(y; x)| ≤ H(2mπ), see Lemma 3, where H(ω) is the

mass in the tails of the Fourier transform as in (8) Thus we obtain,

| f2(y|x) − f (y|x)| ≤
∣∣∣∣∣

κ∑

k=1−κ

2−m
2 f ( k

2m |x)φm,k(y) − f (y|x)
∣∣∣∣∣+ (2κ + 1)H(2mπ).

(61)
The part in absolute signs is a truncated sinc approximation, and convergence is proven
in [19, Theorem 1.3.5, eqn. (1.3.28)], and bounded by,

∣∣∣∣∣

κ∑

k=1−κ

2−m
2 f ( k

2m |x)φm,k(y) − f (y|x)
∣∣∣∣∣ ≤ 2H(2mπ) +

∑

|k|>κ

f ( k
2m |x). (62)

This remaining summation can be interpreted as a Riemann-sum over the tails of
the density function. We assume monotonic decay of the density function, and we
consider the left and right tails separately. Then, for the left tail, if we interpret the
summation as a left Riemann sum, it is bounded by 2m times the integral of f (y|x) over
(−∞, 1−κ

2m ). Similarly, a right Riemann sum is bounded from above by the integral
over the right tail ( κ

2m ,∞). Thus, we find,
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∑

|k|>κ

f ( k
2m |x) ≤ 2mτ( κ

2m ). (63)

If we summarize the results from (61)–(63), the desired result follows immediately. ��

Proof of Lemma 7

We use the definition of f2 and f3 in respectively (18) and (20) so that,

|ε3(J )| =
∣∣∣∣∣

κ∑

k=1−κ

(
Dm,k(x) − D∗

m,k(x)
)
Vm,k

∣∣∣∣∣

≤ 2
m
2 (2κ + 1) ‖g‖∞ max|k|≤κ

∣∣Dm,k(x) − D∗
m,k(x)

∣∣

≤ 2m(2κ + 1) ‖g‖∞
(
2τ(c) + √

2c ‖ f ‖2
(πκ)2

(2J )2 − (πκ)2

)
,

where the last step is a result of Lemma 2 in [15]. ��

Proof of Theorem 1

We combine the results the error bounds derived in Lemmas 5–7. That is,

|v(x, t0) − v3(x, t1)|
‖g‖∞ e−rΔt

= |ε3(J ) + ε2(m, κ) + ε0(c)|
‖g‖∞ e−rΔt

≤ 2c
[
(2κ + 3)H(2mπ) + 2mτ( κ

2m )
]+ τ(c)

+ 2m(2κ + 1)

(
2τ(c) + √

2c ‖ f ‖2
(πκ)2

(2J )2 − (πκ)2

)
,

(64)

and when J ≥ πκ ≥ 2mπc, the desired result follows. ��

Proof of Theorem 2

We show that the continuation coefficients,

Cm,k(x1, x2, tn−1) :=
∫ x2

x1
c(x, tn−1)φm,k(x) dx,

can be approximated by the SWIFT method for European options by a repeated use
of Lemma 4.

As noted above, the continuation value c(x, tn−1) in (42) resembles a European
pricing option problem, whichwe can approximate oncemore with the SWIFT pricing
formula. We use the formulation of the SWIFT method for multiple strikes (36), so
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that we obtain

c(x, tn−1) ≈ c∗(x, tn−1) := e−rΔt
J∑

j=1

Re
{
f̂
(
ω j2

m) Ũ j (tn)e
−iω j2mx

}
, (65)

where the factor Ũ j (tn) is as (35), but due to the time recursion, it now depends on
Vm,k(tn) so that it is given by,

Ũ j (tn) := 2
m
2

J

∑

|p|≤κ

Vm,p(tn)e
iω j p. (66)

This expression can be efficiently constructed using the FFT as explained in Appendix
1. We use the same truncation |p| ≤ κ at each time step for simplicity of notation and
to make optimal use of the FFT.

When substituting this SWIFT approximation of the continuation value (65) in the
definition of the continuation coefficients (46), we obtain,

Cm,k(x1, x2, tn−1) :=
∫ x2

x1
c(x, tn−1)φm,k(x) dx

≈ e−rΔt
∫ x2

x1

J∑

j=1

Re
{
f̂
(
ω j2

m) Ũ j (tn)e
−iω j2mx

}
φm,k(x) dx

= e−rΔt
J∑

j=1

Re

{
f̂
(
ω j2

m) Ũ j (tn)
∫ x2

x1
φm,k(x)e

−iω j2mx dx

}
,

(67)

Thus, the continuation coefficients at time tn−1 can be recovered from the value coef-
ficients at time tn . The remaining step is the computation of integrals at the right hand
side, which we do by replacing φm,k by φ∗

m,k as in Lemma 4, but we use the complex
form,

sinc∗(x) = 1

2J

J∑

q=1−J

eitωq , (68)

so that wewill not be confused by two real-parts functions Re {} in one equation. Then,
the integrals at the right hand side of (67) can be approximated by,

I ∗
j,k(x1, x2) :=

∫ x2

x1
φ∗
m,k(x)e

−iω j2mx dx = 2
m
2

2J

J∑

q=1−J

M j,q(x1, x2)e
iωq k, (69)

where the integrals M j,q(x1, x2) are defined as,

M j,q(x1, x2) :=
∫ x2

x1
e−i(ω j+ωq )2mx dx .
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These integrals can be solved analytically, and the solutions are given by,

M j,q(x1, x2) =

⎧
⎪⎨

⎪⎩

x2 − x1, for q = 1 − j,

i
e−i(ω j+ωq )2mx2 − e−i(ω j+ωq )2mx1

(ω j + ωq)2m
, else.

Substituting the approximation I ∗
j,k(x1, x2) into (67) and changing the order of the

summations yields,

C∗
m,k(x1, x2, tn−1) := e−rΔtRe

⎧
⎨

⎩

J∑

q=1−J

Jq(x1, x2)e
iωq k

⎫
⎬

⎭ , (70)

where the coefficients Jq(x1, x2) are defined as,

Jq(x1, x2) :=
⎛

⎝
J∑

j=1

[
f̂
(
ω j2

m) Ũ j (tn)
]
M j,q(x1, x2)

⎞

⎠ . (71)

This represents a matrix-vector product, where {M j,q} j,q is a Hankel matrix, as its
values only depend on j and q through ( j + q). As described in Appendix 1, we can
recover this matrix-vector product with a Hankel matrix by application of three times
the FFT. Then finally, the summation over q in (70) can be once more computed using
the FFT, see Appendix 2. ��
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