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The Herman–Kluk propagator is a popular semi-classical approximation
of the unitary evolution operator in quantum molecular dynamics. In this
paper we formulate the Herman–Kluk propagator as a phase space integral
and discretise it by Monte Carlo and quasi-Monte Carlo quadrature. Then,
we investigate the accuracy of a symplectic time discretisation by combining
backward error analysis with Fourier integral operator calculus. Numerical
experiments for two- and six-dimensional model systems support our theor-
etical results.

1. Introduction
Molecular quantum dynamics is an active area of research aiming at an improved under-
standing of fundamental chemical processes, e.g. photoisomerisation or electrochemical
reactions. Calculations are based on the semi-classical Schrödinger operator

Hε = −ε
2

2
∆ + V. (1)

which results from the Born–Oppenheimer approximation. Its potential V : Rd → R is
a smooth function of sub-quadratic growth. The small positive parameter ε > 0 reflects
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1. Introduction

the mass ratio of electrons and nuclei in a molecule and typically ranges between 10−3

and 10−2. Since Hε is a self-adjoint linear operator on L2(Rd), the spectral theorem
provides a well-defined unitary propagator

Uε
t = e−iHεt/ε (2)

for all times t ∈ R. This gives us existence and uniqueness of the solution

ψ(t, ·) = Uε
tψ0 (3)

to the time-dependent Schrödinger equation

i ε ∂tψ = Hεψ, ψ(0, ·) = ψ0, (4)

for all square integrable initial data ψ0 ∈ L2(Rd). Typical solutions to the time-
dependent Schrödinger equation (4) are wave packets with width of order

√
ε, wavelength

of order ε, and an envelope moving at velocity of order one. For small ε, grid-based nu-
merical methods need a very fine resolution and thus become expensive even in one
and computationally infeasible in higher dimensions. In this situation, semi-classical
methods come into play. They use the underlying classical Hamiltonian system

ż = J∇h(z)

which is characterized by a Hamiltonian function h : R2d → R and the matrix

J =

(
0 Id
−Id 0

)
∈ R2d×2d. (5)

Such a system is numerically accessible even in high dimensions. In addition these
methods work with ansatz functions that have the correct localisation both in space and
frequency, e.g. a Gaussian wave packet

gεz : R2d → R, x 7→ (πε)−d/4 exp
(
− 1

2ε
|x− q|2 + i

ε
p · (x− q)

)
.

It is parametrised by a phase space point z = (q, p) ∈ R2d. Gaussian wave packets enjoy
the striking property that any square integrable function ψ ∈ L2(Rd) can be decomposed
according to

ψ = (2πε)−d
∫
R2d

〈gεz, ψ〉 gεz dz.

The precise meaning of the integral is given by the inversion formula of the Fourier–
Bros–Iagolnitzer (FBI) transform. From this we get the formal equation

Uε
tψ0 = (2πε)−d

∫
R2d

〈gεz, ψ0〉 (Uε
tg
ε
z) dz

2



1. Introduction

which motivates the approximation of Uε
t by continuously superimposing approximately

propagated Gaussian wave packets. In the chemical literature such methods are known
as Initial Value Representations, see [TW04]. From a mathematical viewpoint they con-
stitute Fourier integral operators with complex valued phase functions. A very simple
approximation,

U ε
t g

ε
z ≈ e

i
ε
S(t,z)gεΦt(z),

is called Frozen Gaussian and is due to Heller [Hel81]. It evolves the wave packet’s centre
according to the classical flow

Φt : R2d → R2d, z 7→
(
X t(z)
Ξt(z)

)
,

which is defined as the solution to the ordinary differential equation ż = J∇h(z) with
initial datum z(0) = z. The phase of the wave packet changes according to the action
integral along the classical trajectory, i.e.

S(t, z) :=

∫ t

0

(
d
dτ
Xτ (z) · Ξτ (z)− h(Φτ (z))

)
dτ. (6)

The approximation by Herman and Kluk [HK84] is more sophisticated as it accounts for
the changes in the width of a wave packet. It is defined as an operator

Iεt : L2(Rd)→ L2(Rd),

ψ 7→ (2πε)−d
∫
R2d

u(t, z) e
i
ε
S(t,z) 〈gεz, ψ〉 gεΦt(z) dz (7)

and is nowadays called Herman–Kluk propagator. In its centre it encapsulates the well-
known Herman–Kluk prefactor

u(t, z) :=
√

2−d det(∂qX t(z) + ∂pΞt(z) + i(∂qΞt(z)− ∂pX t(z)))

which depends on the components of the Jacobian matrix of the flow. Swart and Rousse
[SR09, Theorem 2] prove that Iεt is a bounded operator on L2(Rd) and that it approx-
imates the unitary propagator (2) in the following sense. For every T > 0, there exists
C ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

‖Iεt − Uε
t‖ ≤ C ε. (8)

The constant C ≥ 0 depends on higher order derivatives of the Hamiltonian function h
and the flow map Φt. It vanishes, if the potential V is a polynomial of degree ≤ 2, so
that Iεt = U ε

t for all harmonic systems.
The discretisation of the Herman–Kluk propagator involves two separate tasks, the

phase space discretisation of the integral over R2d and the time discretisation of the

3



1. Introduction

Hamiltonian flow together with the action and its Jacobian matrix. We present our
approach to the phase space problem in §4.1. There, we assume that the initial data are
Schwartz functions ψ0 ∈ S(Rd) that allow for a multiplicative decomposition

(2πε)−d 〈gεz, ψ0〉 =: rε0(z) · µε0(z),

for all z ∈ R2d, where µε0 ∈ C∞(R2d) is a smooth probability distribution on R2d and
rε0 ∈ C∞(R2d) ∩ L1( dµ0) grows at most polynomially for z → ∞. The Herman–Kluk
propagator is thus rewritten as

Iεtψ0 =

∫
R2d

rε0(z)u(t, z) e
i
ε
S(t,z) gεΦt(z) dµε0(z).

We use Monte Carlo or quasi-Monte Carlo quadrature to discretise this integral by
sampling z1, . . . , zM ∈ R2d from the probability distribution µ0 and defining

ψεM(t) =
1

M

M∑
m=1

rε0(zm)u(t, zm) e
i
ε
S(t,zm) gεΦt(zm)

as a linear combination of Gaussian wave packets with classically propagated centres.
We can prove that

ψεM(t)→ Iεtψ0 as M →∞,

where the precise meaning of the limit and convergence rates will be addressed in § 5.1.
For the time discretisation, which is presented in detail in §4.3, we choose an initial
phase space point z ∈ R2d and set up a system of ordinary differential equations for(

Φt(z), (DΦt)(z), S(t, z)
)
∈ R2d × R2d×2d × R.

We integrate the equations by a method of order γ with fixed time step τ > 0 in
such a way that we obtain a symplectic approximation Φ̃τ for the Hamiltonian flow Φt.
Denoting the corresponding approximate action and Herman–Kluk prefactor by S̃ and
ũ respectively we then define the approximate propagator Ĩετ : L2(Rd)→ L2(Rd) by

Ĩετψ := (2πε)−d
∫
R2d

ũ(τ, z)e
i
ε
S̃(τ,z)〈gεz, ψ〉gεΦ̃τ (z)

dz.

Our main theoretical result, Theorem 5, establishes that the Herman–Kluk propagator
and its time discrete counterpart are close to each other in the following sense. There
exists a constant C > 0 such that for all ε > 0 and τ > 0 with τ γ+1 < ε∥∥∥Ĩετ − Iετ∥∥∥ ≤ Cτ γ+1/ε.

For the proof we use the well-established backward error analysis of geometric numer-
ical integration by Hairer, Lubich and Wanner [HLW06, Ch. IX] in combination with the
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2. Semi-classical approximations

Fourier integral operator calculus developed by Swart and Rousse [SR09]. Our numer-
ical experiments confirm the theoretical error estimate, of course, and demonstrate the
practicability of the proposed discretisation in a moderately high-dimensional setting.
All our simulations achieve an accuracy at the level of the asymptotic O(ε) resolution
provided by (8).

The paper is organised as follows. The next section briefly reviews some numerical
methods for the semi-classical Schrödinger equation. Then, we discuss the Herman–Kluk
propagator and its properties in §3. The algorithmic description of our discretisation
is given in §4, while our main results, the convergence analysis of the phase space and
time discretisation are presented in §5. The numerical experiments in §6 comprise a
two-dimensional torsional system as well as a Henon–Heiles system in dimension d = 6.
The appendices summarise computational details for the Herman–Kluk prefactor and
expectation values.

2. Semi-classical approximations
The high frequencies of the solution to the semi-classical Schrödinger equation (4) ex-
clude conventional grid based space discretisations schemes, in particular in view of the
size of the dimension d� 1 for molecular systems of interest. Quasi- and semi-classical
approximations come into play here, using a priori analytical knowledge of the solution’s
qualitative behaviour. We will shortly review some of them.

2.1. Gaussian wave packets

Gaussian wave packets gεz are a major building block of the Herman–Kluk propagator (7).
They are characterised by their respective centre point z = (q, p) ∈ R2d in phase space.
Their widths are frozen to be unit. Introducing a complex symmetric matrix C = CT ∈
Cd×d with positive definite imaginary part and a complex number ξ ∈ C to the parameter
space, one defines a general Gaussian wave packet by

ϕε0[z, C, ξ](x) := (πε)−d/4 exp
(

i
2ε

(x− q) · C(x− q) + i
ε
p · (x− q) + i

ε
ξ
)
.

Note that this definitions contains the simple Gaussian wave packet

gεz = ϕε0[z, i Id, 0].

as a special case. If the phase and normalisation parameter ξ is properly chosen with
respect to the width matrix C, then

‖ϕε0[z, C, ξ]‖2 =

∫
Rd
|ϕε0[z, C, ξ](x)|2 dx = 1.

For the unitary propagation of a general Gaussian wave packet, one supplements the
Hamiltonian system ż(t) = J∇h(z(t)) for the centre motion by a Riccati equation for
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2. Semi-classical approximations

the complex width matrix C(t) and an ordinary differential equation for ξ(t) ensuring
the correct phase and normalisation. Then, for every T > 0, there is a constant c ≥ 0
such that for all ε > 0

sup
t∈[0,T ]

‖ϕε0[zt, Ct, ξt]− Uε
tϕ

ε
0[z0, C0, ξ0]‖ ≤ c

√
ε. (9)

Moreover, if the potential V is a polynomial of degree ≤ 2, then c = 0, and the Gaus-
sian wave packet approximation is exact. Over decades, general Gaussian wave packets
have been used as a flexible tool in chemical physics, cf. Heller [Hel76] or Littlejohn
[Lit86]. More recently, they have also been considered for the systematic construction of
numerical integrators by Faou and Lubich [FL06].

2.2. Hagedorn’s semi-classical wave packets

Any complex symmetric matrix C = CT ∈ Cd×d with positive definite imaginary part
can be written as C = PQ−1, where P,Q ∈ Cd×d are invertible and satisfy

QTP − P TQ = 0, Q∗P − P ∗Q = 2i Id. (10)

We use such matrices P and Q to build the rectangular matrix

Z =

(
Q
P

)
∈ C2d×d.

Then, we define the general Gaussian wave packet

ϕε0[z, Z](x) =

(πε)−d/4 det(Q)−1/2 exp
(

i
2ε

(x− q) · PQ−1(x− q) + i
ε
p · (x− q)

)
in the parametrisation introduced by Hagedorn [Hag80; Hag98]. The matrix condi-
tions (10) ensure the correct normalisation,

‖ϕε0[z, Z]‖ = 1.

Hagedorn’s parametrisation allows an elegant construction of an orthonormal basis of
L2(Rd)

ϕεk[z, Z] =
1√
k!
A†[z, Z]kϕε0[z, Z], k ∈ Nd,

by the iterated application of the raising operator

A†[z, Z] =
i√
2ε
Z∗J (ẑ − z), where (ẑψ)(x) :=

(
xψ(x)
−iε∇ψ(x)

)
.

6



2. Semi-classical approximations

For the unitary propagation of these semi-classical wave packets one augments the
Hamiltonian equation żt = J∇h(zt) by a rectangular version of its variational equa-
tion

Żt = J∇2h(zt)Zt

and the action integral (6) to generalise the previously discussed Gaussian wave packet
approximation as shown by Hagedorn [Hag98, Theorem 2.9]. For all k ∈ Nd and T > 0
there exists c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

∥∥∥Uε
tϕ

ε
k[z0, Z0]− e

i
ε
S(t,z0)ϕεk[zt, Zt]

∥∥∥ ≤ c
√
ε.

Again, if the potential V is a polynomial of degree ≤ 2, then c = 0. Using this
exact propagation property for harmonic Hamiltonians, Faou, Gradinaru and Lubich
[FGL09] as well as Gradinaru and Hagedorn [GH14] develop a Galerkin method with
time-splitting for a convergent discretisation of the unitary time evolution of Hagedorn’s
semi-classical wave packets.

2.3. Gaussian beams

A complementary line of semi-classical approximations is built for initial data that are
less localised in position space than semi-classical wave packets. Wentzel–Kramers–
Brillouin (WKB) wave functions

wε0(x) = α0(x)e
i
ε
σ0(x), x ∈ Rd,

are defined by a complex-valued amplitude function α0 ∈ C∞(Rd) and a real-valued
phase function σ0 ∈ C∞(Rd). A first order Gaussian beam approximation of the unit-
ary Schrödinger dynamics carries WKB initial data beyond caustics by continuously
superimposing general Gaussian wave packets according to

bεt = (2πε)−d/2
∫

Λ0

αt(z) e
i
ε
σt(z) ϕε0[Φt(z), Zt(z)] dz. (11)

The centres of the initial Gaussians are chosen from the set

Λ0 := {(x,∇σ0(x)) | x ∈ supp(a0)} ,

while the propagation of the beam parameters αt(z) ∈ C, σt(z) ∈ R, and Zt(z) ∈ C2d×d

is achieved by a system of coupled ordinary differential equations driven by the classical
Hamiltonian flow Φt : R2d → R2d. Its building blocks resemble the variational equation
and the equation for the action integral. Zhen [Zhe14, Theorem 5.1] proves that for all
T > 0 there exists a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

‖Uε
tw

ε
0 − bεt‖ ≤ c ε.

7



3. The Herman–Kluk propagator

Higher order Gaussian beam approximations with O(εN/2) accuracy, N ∈ N, have been
developed as well [LRT13]. The discretisation of the continuous Gaussian beam super-
position (11) and its higher order versions has been tackled by grid based numerical
quadrature. Thus, numerical applications have been restricted to systems in dimension
d = 1 and d = 2.

2.4. Quasi-classical approximations

It is often not the time-evolved wave function ψ(t, ·) = Uε
tψ0 which is of interest, but

derived quadratic quantities as expectation values

EA(t) = 〈ψ(t),Aψ(t)〉

for a given self-adjoint operator A defined on L2(Rd). Typical observables are ε-scaled
pseudo-differential operators and can be expressed as the Weyl quantisation A = opε(a)
of a smooth phase space function a : R2d → R. Consider for example

ψ 7→ −ε
2

2
∆ψ and ψ 7→ V ψ,

i.e. the kinetic and potential energy operators respectively. The most popular quasi-
classical approximation [Mil74; TW04; LR10] uses the Wigner functionW(ψ0) ∈ L2(R2d)
of the initial wave function and the classical Hamiltonian flow Φt : R2d → R2d to compute
the weighted phase space integral

Eappr(t) =

∫
R2d

(a ◦ Φt)(z)W(ψ0)(z) dz.

This is commonly called linearised semi-classical initial value representation (LSC-IVR)
in chemistry journals. Its accuracy is of order two in ε, meaning that for all T > 0 there
exists a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

|EA(t)− Eappr(t)| ≤ c ε2. (12)

The constant c depends on the observable A and derivatives of the flow Φt, but is
uniformly bounded for all normalised initial data with ‖ψ0‖ = 1. As for the Haged-
orn wave packets and the Herman–Kluk propagator, the time evolution for quadratic
Hamiltonians is exact so that c = 0 in this case. In §6.4 we shall use this quasi-classical
approximation to calculate reference expectation values for our numerical experiments
in d = 6.

3. The Herman–Kluk propagator
In [HK84] Herman and Kluk observed that in most cases a single Gaussian wave packet
cannot accurately approximate a quantum system. However, a suitable superposition of

8



3. The Herman–Kluk propagator

Gaussian wave packets can. The authors provide a formal justification and derive what
we now call the Herman–Kluk propagator. The rigorous mathematical analysis of this
method is due to [SR09]. It crucially uses the following generalised Fourier transform.

Definition 1. For z = (q, p) ∈ R2d we set

gεz(x) = (πε)−
d
4 exp

(
− 1

2ε
|x− q|2 +

i

ε
p · (x− q)

)
, x ∈ Rd. (13)

The mapping T ε : S(Rd) −→ S(R2d) defined by

(T εψ)(z) := (2πε)−d/2 〈gεz, ψ〉

is called the Fourier–Bros–Iagolnitzer (in short: FBI) transform.

One can show that the FBI transform can be extended to map L2(Rd) isometrically
into L2(R2d) and that for all ψ ∈ L2(Rd) the inversion formula

ψ = (2πε)−d
∫
R2d

gεz 〈gεz, ψ〉 dz (14)

holds, see [Mar02, Chapter 3.1]. From this we get the formal equation

Uε
tψ0 = (2πε)−d

∫
R2d

(Uε
tg
ε
z) 〈gεz, ψ0〉 dz

which is used as a starting point for the Herman–Kluk approximation.

3.1. Definition and well-posedness

Definition 2. For any initial wave function ψ0 ∈ L2(Rd) and time t ∈ [0, T ] the Herman–
Kluk propagator is defined by

Iεtψ0 = (2πε)−d
∫
R2d

u(t, z) e
i
ε
S(t,z)gεΦt(z) 〈gεz, ψ0〉 dz. (15)

Again, Φt = (X t,Ξt) denotes the classical Hamiltonian flow and S the corresponding
action

S(t, ·) =

∫ t

0

(
d
dτ
Xτ · Ξτ − h(Φτ )

)
dτ.

The quantity u(t, z) is called Herman–Kluk prefactor. It incorporates the components
of the Jacobian matrix of the flow

(DΦt)(z) =

(
∂qX

t(z) ∂pX
t(z)

∂qΞ
t(z) ∂pΞ

t(z)

)
∈ R2d×2d

9



3. The Herman–Kluk propagator

and is defined by

u(t, z) :=
√

2−d det (∂qX t(z)− i∂pX t(z) + i∂qΞt(z) + ∂pΞt(z)) (16)

for all z = (q, p) ∈ R2d.

Remark. Note that for t = 0 the Herman–Kluk propagator reduces to the FBI inversion
formula (14), that is,

Iε0ψ0 = ψ0, ψ0 ∈ L2(Rd),

since Φ0(z) = z, u(0, z) = 1, and S(0, z) = 0.
Swart and Rousse [SR09] introduce a general class of Fourier integral operators to

which the Herman–Kluk propagator Iεt belongs and prove that it is possible to construct
approximate propagators of arbitrary order in ε. The following theorem is a special case
of their main result.

Theorem 1 (Swart and Rousse [SR09, Theorem 2]). Let Uε
t be the unitary time evolution

of (4) with subquadratic potential V . The Herman–Kluk propagator Iεt satisfies

sup
t∈[0,T ]

‖Uε
t − Iεt ‖L2(Rd)→L2(Rd) ≤ C(T ) ε,

where T > 0 is a fixed time and C(T ) > 0 is independent of ε.

In light of this approximation estimate we desire a numerically stable Herman–Kluk
algorithm. This is the main contribution of our paper. In the process of proving our
main result in §5 we shall also use elements of the Fourier integral operator calculus that
has been developed in [SR09] for establishing Theorem 1.
Remark. As an intermediate result of the original proof in [SR09], one obtains that
for any time t ∈ [0, T ] the prefactor z 7→ u(t, z) is a smooth function such that the
function itself and all its derivatives are bounded. Moreover, one also discovers that the
Herman–Kluk propagator is exact for quadratic Hamiltonians.

3.2. The Herman–Kluk propagator in momentum space

Many situations require knowledge of the Fourier transform of a wave function, e.g. when
calculating the expectation values for the momentum operator ψ 7→ iε∇ψ or the kinetic
energy operator ψ 7→ − ε2

2
∆ψ. Since in general we will not have the Herman–Kluk wave

function on a uniform grid, using the FFT might prove difficult. There is, however, a
way to calculate the Herman–Kluk propagator and its Fourier transform simultaneously
by considering the following formal argument. For all ξ ∈ Rd let

(F εψ) (ξ) := (2πε)−d/2
∫
Rd

e−
i
ε
x·ξ ψ(x) dx

10



4. The algorithm

be the ε-scaled Fourier transform. Then,

F ε (Iεtψ0) = (2πε)−d F ε
(∫

R2d

u(t, z) e
i
ε
S(t,z)gεΦt(z) 〈gεz, ψ0〉 dz

)
= (2πε)−d

∫
R2d

u(t, z) e
i
ε
S(t,z)

(
F εgεΦt(z)

)
〈gεz, ψ0〉 dz.

Once one manages to calculate the Herman–Kluk propagator, it is sufficient to know the
Fourier transform of a Gaussian wave packet, i.e.

F εgε(q,p) = e−
i
ε
p·q gε(p,−q),

to calculate its Fourier transform. This can be done in parallel without substantial
additional effort.

4. The algorithm
As the first step for deriving the algorithm that we propose, let us take another look
at the definition of the Herman–Kluk propagator (15). Its evaluation requires involves
one integral over the phase space R2d and another one over Rd for each phase space
point in order to calculate the FBI transform. In either case the respective integrand is
potentially highly oscillatory. Furthermore, we need to calculate the classical flow Φt(z),
the classical action S(t, z), and the Herman–Kluk prefactor u(t, z) for all phase space
points z ∈ R2d. The present chapter describes a way to do this while circumventing any
difficulties that occur along the way.

4.1. Phase space discretisation

In order not to having to evaluate the integral for the FBI transform by numerical
quadrature, we restrict ourselves to specific initial wave functions. Their FBI transform
should be computable analytically and they should satisfy the following assumption.

Assumption 1. Let ψ0 ∈ S(Rd) such that for all z ∈ R2d there is a multiplicative
decomposition

(2πε)−d 〈gεz, ψ0〉 =: rε0(z) · µε0(z), (17)

with µε0 ∈ S(R2d) being a probability distribution on R2d and the complex-valued func-
tion rε0 ∈ C∞(R2d) ∩ L1( dµε0) growing at most polynomially for z →∞.

A variety of initial wave functions that are commonly used in semi-classical calcu-
lations satisfy this assumption, including Hermite functions as well as Hagedorn wave
packets.

11



4. The algorithm

Example 1 (label=FBIofGaussian). A common choice as initial wave function is a
simple Gaussian wave packet ψ0 = gεz0 centred at some point z0 = (q0, p0) ∈ R2d. In this
case, the scalar product that occurs in the FBI transform gives

〈gεz, ψ0〉 = exp
(
− 1

4ε
|z − z0|2 + i

2ε
(p+ p0) · (q − q0)

)
. (18)

Hence, we get

µε0(z) = (4πε)−de−
1
4ε
|z−z0|2 and rε0(z) = 2de

i
2ε

(p+p0)·(q−q0).

as a multiplicative decomposition thereof. For the corresponding explicit formulae for
Hermite and Hagedorn functions see [LT14].

Assumption 1 allows the interpretation of the Herman–Kluk propagator as an integ-
ration over phase space weighted with respect to the probability measure µ0,

Iεtψ0 =

∫
R2d

rε0(z)u(t, z) e
i
ε
S(t,z) gεΦt(z) dµε0(z). (19)

For one-dimensional problems we could consider grid based quadrature methods for
the µε0-integration. However, already for two-dimensional systems phase space is four-
dimensional, and conventional grid based approaches are no longer practical. We there-
fore turn to grid free methods, in particular Monte Carlo and quasi-Monte Carlo quad-
rature, which permit the evaluation of high dimensional integrals. In addition, their
shortcoming of having a low order of accuracy is of little consequence since the total
error is already dominated by the asymptotic error of order ε as shown in Theorem 1.
We use either Monte Carlo or quasi-Monte Carlo quadrature to approximate (19). In
both cases we define an approximate wave function by

ψM(t) :=
1

M

M∑
m=1

rε0(zm)u(t, zm) e
i
ε
S(t,zm) gεΦt(zm) (20)

where z1, . . . , zM ∈ R2d are sampled from µε0. In §5.1 we will present rigorous error
estimates for these discretisations.

4.2. Calculation of expectation values

One of the Herman–Kluk propagator’s advantages is the ability to compute the full
wave function including its phase. In addition, we also want to be able to calculate
expectation values for observables. This is important for practical purposes as well as
comparability to reference solutions. A quantum mechanical observable is a self-adjoint
operator A on L2(Rd), e.g. the position or momentum operator. Its expectation value
with respect to a normalised state ψ ∈ L2(Rd) is given by the inner product 〈ψ,Aψ〉.

12



4. The algorithm

In order to calculate such quantities we would have to perform yet another numerical
quadrature with an highly oscillatory integrand. However, there is a way to compute
expectation values without actually evaluating the full Herman–Kluk wave function. By
using the abbreviation f εt (z) := r0(z)u(t, z) e

i
ε
S(t,z) we write

〈Iεtψ0,AIεtψ0〉 =

∫
R2d

∫
R2d

f εt (w) f εt (z)
〈
gεΦt(w),A gεΦt(z)

〉
dµε0(w) dµε0(z)

=

∫
R4d

f εt (w) f εt (z)
〈
gεΦt(w),A gεΦt(z)

〉
d (µε0 ⊗ µε0) (w, z). (21)

This way we interpret the expectation value as a weighted integral on R4d with respect to
the product measure µε0⊗µε0 instead of two separate integrations on R2d. If we consider
a sequence of (Monte Carlo or quasi-Monte Carlo) quadrature points

(w1, z1), . . . , (wM , zM) ∈ R4d

that are sampled from µε0 ⊗ µε0, then

AM(t) :=
1

M

M∑
m=1

f εt (w) f εt (z)
〈
gεΦt(wm),A gεΦt(zm)

〉
(22)

is an approximation to (21). Note that the computational effort grows linearly in the
number of quadrature points albeit on a space of twice the dimension. In addition, we
may even find analytic expressions for〈

gεΦt(w),A gεΦt(z)
〉

(23)

for several observables including position, momentum, and kinetic energy operators, as
well as all polynomial potentials and the torsional potential. Some examples are given
in Appendix B.

4.3. Time discretisation

In order to preserve the symplectic structure of the classical Hamiltonian system

ż = J ∇h(z), (24)

we need a suitable numerical integrator. In addition to the flow of the Hamiltonian
system we have to compute the Herman–Kluk factor u(t, z) and the classical action
S(t, z). The computation of u(t, z) requires the solution to the variational equation

Ẇ (t) = J ∇2h(Φt)W (t), W (0) = I2d, (25)

where W (t) = DzΦ
t is the derivative of the flow with respect to the initial values and

∇2h is the Hessian of the Hamiltonian function. For a separable system of the form

13



4. The algorithm

h(q, p) = T (p) + V (q) the classical action may be seen as solution to the initial value
problem

Ṡ(t, z) = T (Ξt(z))− V (X t(z)), S(0, z) = 0 (26)

for all z = (q, p) ∈ R2d. Let us artificially spilt this equation into two, defining ST and
SV by (

ṠT (t, z)

ṠV (t, z)

)
=

(
T (Ξt(z))
−V (X t(z))

)
,

(
ST (0, z)
SV (0, z)

)
=

(
0
0

)
(27)

Then we may solve (24), (25), and (27) simultaneously by a single numerical integrator.
In our numerical experiments we use a composition method based on the Størmer–Verlet
scheme which is symplectic and symmetric, cf. [HLW06, Chapter VI]. The order of the
scheme is controlled by using a composition strategy with composition constants taken
from [KL97]. If we assume a separable system of the form h(q, p) = T (p) + V (q) the
resulting method is an explicit one, which makes our calculations even more efficient.

4.4. Schematic description of the algorithm

Our goal is to calculate either a wave function, more precisely the solution to the
Schrödinger equation, or expectation values of operators along this solution. The two
tasks require different sampling points but may use the same time-step algorithm.

1. a) Sample z1, . . . , zM ∈ R2d from µε0;

or

b) Sample (w1, z1), . . . , (wM , zM) ∈ R4d from µε0 ⊗ µε0;

2. Allocate an array containing the sampling points and the corresponding initial
values for the variational equations and the classical action;

3. Evolve this array according to (24), (25), and (27) using a high-order symplectic
and symmetric numerical integration method;

4. Compute the Herman–Kluk factor with a continuous phase (cf. Appendix A) and
the action respectively.

5. a) Calculate the approximate wave function by formula (20);

or

b) Calculate expectation values by means of formula (22);

Because of their parallel nature, these algorithms can be implemented in a highly efficient
manner. A related article is currently in preparation.
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5. Approximation properties of the algorithm

5. Approximation properties of the algorithm
The previous section proposes an algorithm for the computation of the Herman–Kluk
propagator. Two quantities have to be discretised. The first one is an integral over
phase space, the second one a solution to a system of ordinary differential equations. We
continues with a systematic analysis of the errors that result from these two discretisation
steps.

5.1. Phase space discretisation

Let us first discretise the phase space integral. In order to facilitate notation we denote
the integrand by

f εt (z) := rε0(z)u(t, z) e
i
ε
S(t,z)gεΦt(z) ∈ S(Rd) (28)

with z ∈ R2d and t ∈ [0, T ], where µε0 and rε0 are chosen as in Assumption 1. Then,

Iεtψ0 =

∫
R2d

f εt (z) dµε0(z) ∈ L2(Rd).

5.1.1. Using Monte Carlo quadrature

For Monte Carlo quadrature we treat the integrand f εt as a random variable with values
in the Hilbert space L2(Rd) distributed according to the probability measure µε0 and
interpret the phase space integral as its expected value, i.e.

Iεtψ0 =

∫
R2d

f εt (z) dµε0(z) = E[f εt ]. (29)

By taking M independent samples z1, . . . , zM ∈ R2d of the probability distribution µε0
we then define the Monte Carlo estimator

ψεM(t) :=
1

M

M∑
m=1

f εt (zm). (30)

Note that this is just a linear combination of classically evolved Gaussian wave packets.
We obtain the following estimate for its mean squared error, which shows the usual
O(M−1/2) behaviour with respect to the number of sample points.

Proposition 2. Let the initial wave function ψ0 ∈ S(Rd) satisfy Assumption 1 and
consider the Monte Carlo estimator ψεM(t) defined in (30). Then, the mean squared
error is given by

E
[
‖ψεM(t)− Iεtψ0‖2] =

V[f εt ]

M
,

15



5. Approximation properties of the algorithm

where V[f εt ] satisfies

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεtψ0‖2

for all t ∈ [0, T ] and ε > 0.

Proof. We observe that

E[ψεM(t)] =
1

M

M∑
M=1

E[f εt ] = Iεtψ0. (31)

Since the samples are independent and identically distributed, we get

E
[
‖ψεM(t)− Iεtψ0‖2] = V[ψεM(t)] =

1

M2

M∑
m=1

V[f εt ] =
V[f εt ]

M
.

Moreover,

V[f εt ] = E
[
‖f εt − Iεtψ0‖2] =

∫
R2d

‖f εt (z)− Iεtψ0‖2 dµε0(z)

=

∫
R2d

‖f εt (z)‖2 dµε0(z)− 2

∫
R2d

Re〈f εt (z), Iεtψ0〉 dµ0(z) + ‖Iεtψ0‖2 .

By writing ∫
R2d

〈f εt (z), Iεtψ0〉 dµε0(z) =

∫
R4d

〈f εt (z), f εt (w)〉 d(µε0 ⊗ µε0)(w, z)

and estimating

|〈f εt (z), f εt (w)〉| ≤ ‖f εt (z)‖ ‖f εt (w)‖ ≤ 1

2
(‖f εt (z)‖2 + ‖f εt (w)‖2).

we therefore find that∣∣∣∣∫
R2d

〈f εt (z), Iεtψ0〉 dµε0(z)

∣∣∣∣ ≤ ∫
R2d

‖f εt (z)‖2 dµε0(z).

Since ‖f εt (z)‖ = |u(t, z)rε0(z)|, we conclude the estimate as

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεtψ0‖2 .
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5. Approximation properties of the algorithm

The final estimate of Proposition 2,

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεtψ0‖2 ,

is dominated by its first summand, since Theorem 1 provides

‖Iεtψ0‖ = ‖Uε
tψ0‖+O(ε) = ‖ψ0‖+O(ε).

In the case of our previous example we may even calculate the initial variance V[f ε0 ]
analytically and observe ε-independence as well as convergence to one as d→∞.

Example 2 (continues=FBIofGaussian). For the initial mean squared error of the
sampling of a simple Gaussian wave packet ψ0 = gεz0 we can compute an analytic ex-
pression for the variance. We have

f ε0 (z) = rε0(z)gεz = 2d e
i

2ε
(p+p0)·(q−q0)gεz and E[f ε0 ] = gεz0

so that

V[f ε0 ] =

∫
R2d

∣∣rε0(z)gεz(x)− gεz0(x)
∣∣2 dx dµε0(z) = 1− 4−d.

This expression will be underlined by the numerical experiments in §6.1.

5.1.2. Using quasi-Monte Carlo quadrature

Quasi-Monte Carlo quadrature is an equiweighted quadrature on well-chosen determin-
istic quadrature points. Let z1, . . . , zM ∈ R2d and denote by

DεM(z1, . . . , zM ; z) =
1

M

M∑
m=1

χ]−∞,z](zm)− µε0(]−∞, z]), z ∈ R2d,

the discrepancy function of the probability measure µε0 that quantifies the deviation of
the empirical distribution for the rectangular interval

]−∞, z] := ]−∞, z1]× · · ·×]−∞, zM ] ⊂ R2d.

If the measure µε0 is the product of one-dimensional probability measures so that the
inverses of the one-dimensional cumulative distribution functions are accessible, then the
well-established low discrepancy sets for the uniform measure on the unit cube [0, 1]2d

allow to construct points z1, . . . , zM ∈ R2d with

sup
z∈R2d

|DεM(z1, . . . , zM ; z)| = O
(
(logM)2d−1/M

)
,

see [AD15, Theorem 4]. The following lemma elucidates, why the discrepancy function
is crucial for equiweighted quadrature.
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5. Approximation properties of the algorithm

Lemma 3. Let f ∈ S(R2d) and µε0 be a probability distribution on R2d so that f ∈
L1( dµε0). Then, for all z1, . . . , zM ∈ R2d

1

M

M∑
m=1

f(zm)−
∫
R2d

f(z) dµε0(z) =

∫
R2d

∂1:2df(z)DεM(z1, . . . , zM ; z) dz,

where ∂1:2d = ∂1∂2 · · · ∂2d denotes the mixed partial derivative through all dimensions.

We shall present the proof of Lemma 3 in Appendix C and now turn to its applic-
ation for the phase space discretisation of the Herman–Kluk propagator. We consider
z1, . . . , zM ∈ R2d and set

ψεM(t) :=
1

M

M∑
m=1

f εt (zm) (32)

with the function

f εt (z) := rε0(z)u(t, z) e
i
ε
S(t,z)gεΦt(z) ∈ S(Rd)

for z ∈ R2d and t ∈ [0, T ]. We obtain the following weak convergence result.

Proposition 4. Let ψ0 ∈ S(Rd) and rε0, µε0 be defined according to Assumption 1 and
consider ψεM(t) as defined in (32). Then,

ψεM(t)− Iεtψ0 =

∫
R2d

∂1:2d
z f εt (z)DεM(z1, . . . , zM ; z) dz. (33)

In particular, limM→∞ supz∈R2d |DεM(z1, . . . , zM ; z)| = 0 implies for all test functions
φ ∈ S(Rd)

lim
M→∞

〈φ, ψεM(t)− Iεtψ0〉 = 0. (34)

Proof. We observe that for all φ ∈ S(Rd) the mapping z 7→ 〈φ, f εt (z)〉 defines a Schwartz
function on R2d. We therefore apply Lemma 3 to obtain

〈φ, ψεM(t)− Iεtψ0〉 =

∫
R2d

∂1:2d
z 〈φ, f εt (z)〉DεM(z1, . . . , zM ; z) dz,

which means

ψεM(t)− Iεtψ0 =

∫
R2d

∂1:2d
z f εt (z)DεM(z1, . . . , zM ; z) dz.

Moreover,

|〈φ, ψM(t)− Iεtψ0〉| ≤ sup
z∈R2d

|DεM(z1, . . . , zM ; z)|
∫
R2d

∣∣∂1:2d
z 〈φ, f εt (z)〉

∣∣ dz,

so that limM→∞ supz∈R2d |DεM(z1, . . . , zM ; z)| = 0 implies (34).
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5. Approximation properties of the algorithm

Even though we have proven weak convergence, we notice that the mixed derivative
of our integrand f εt (z) depends unfavourably on various parameters as our next example
illustrates.

Example 3 (continues=Ex:MonteCarlo). We examine the mixed derivative of the initial
integrand f ε0 (z) for a Gaussian wave packet ψ0 = gε0 centred in the origin z0 = 0. We
calculate

∂1:2df ε0 (z) = f ε0 (z)
d∏
j=1

i

2ε2

(
(x− qj − ipj)(x− 1

2
qj)
)

and obtain

∥∥∂1:2df ε0 (z)
∥∥2

= ε−4d

d∏
j=1

(
1
8
ε(q2

j + 6ε) + 1
4
p2
j(q

2
j + 2ε)

)
.

for the square of the norm. Hence, the norm of the mixed derivative has a multiplicative
factor ε−2d in front of a polynomial in z. Our numerical experiments in §6 indeed
confirm that the smaller ε and the larger the dimension d, the more quadrature points
are required. However, it seems that beneficial cancellations in the key equation (33)
allow for a much smaller M than expected.

5.2. Error due to the ode solver

In Theorem 1 we learned that the Herman–Kluk propagator Iεt approximates the unitary
time evolution Uε

t in the sense

sup
t∈[0,T ]

‖Uε
t − Iεt ‖ ≤ C(T ) ε.

Let us examine the time discretised Herman–Kluk propagator

Ĩεt : L2(Rd)→ L2(Rd)

which is defined by

Ĩεtψ := (2πε)−d
∫
R2d

ũ(t, z) e
i
ε
S̃(t,z)〈gε

z
, ψ〉gε

Φ̃t(z)
dz

It depends on the flow Φ̃t, the action S̃, and the prefactor ũ that are computed by the
symplectic numerical integrator proposed in §4.3. The following theorem is the main
result of this paper. It relates the local accuracy of the time discrete Herman–Kluk
propagator with the one of the ode discretisation.
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Theorem 5. Let γ be the order of the symplectic integrator of the algorithm in §4.3.
There exists a constant C > 0 such that the time discrete Herman–Kluk propagator
satisfies ∥∥∥Ĩετ − Iετ∥∥∥ ≤ C τ γ+1/ε.

for all ε > 0 and all time steps τ > 0 with τ γ+1 < ε.

In order to prove Theorem 5 we combine backward error analysis of symplectic in-
tegrators with the calculus of Fourier integral operators. Let us thus review the basic
concepts of these two fields.

5.2.1. Backward error analysis

We summarise the basic ideas of backward error analysis as presented in [HLW06,
Chapter IX]. We need to solve a Hamiltonian system

ż = J∇h(z)

with flow map Φt : R2d → R2d. If we compare this to the flow Φ̃τ of a symplectic
numerical discretisation of order γ with time step τ > 0, we find that

Φ̃τ (z) = Φτ (z) +O(τ γ+1).

Furthermore, Φ̃τ is the exact flow to a modified Hamiltonian system

ż = J∇h̃(z)

with Hamiltonian

h̃(z) = h(z) +O(τ γ),

as shown in [HLW06, §IX.8]. The Herman–Kluk prefactor is built from the Jacobian
matrix of the flow map, so that the discretised prefactor ũ(τ, z) inherits its local accuracy,

ũ(τ, z) = u(τ, z) +O(τ γ+1). (35)

For the action integral, we obtain the same property via the following lemma.

Lemma 6. The action integral S(t, z) of the flow map Φt and its time discrete counter-
part S̃(τ, z) satisfy

S̃(τ, z) = S(τ, z) +O(τ γ+1).
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Proof. Let us split the difference of the two action integrals into four parts.

S̃(τ, z)− S(τ, z) =∫ τ

0

d
ds

(
X̃s(z)−Xs(z)

)
· Ξ̃s(z) ds +

∫ τ

0

d
ds
Xs(z) ·

(
Ξ̃s(z)− Ξs(z)

)
ds

−
∫ τ

0

(
h̃(Φ̃s(z))− h̃(Φs(z))

)
ds −

∫ τ

0

(
h̃(Φs(z))− h(Φs(z))

)
ds.

Each of the four integrands is at most O(τ γ), so that integration over the interval [0, τ ]
results in O(τ γ+1).

5.2.2. Fourier integral operators

The class of Fourier integral operators considered by Swart and Rousse [SR09] comprises
the Herman–Kluk propagator as a special case. Let Φt be a smooth Hamiltonian flow
and S the associated action. If

u : R× R2d × R→ C, (t, z, x) 7→ u(t, z, x)

is a smooth function with bounded derivatives, then

I(Φt, u)ψ(x) := (2πε)−d
∫
R2d

u(t, z, x)e
i
ε
S(t,z)

〈
gε
z
, ψ
〉
gε

Φt(z)
(x) dz

defines a bounded operator on L2(Rd). According to Swart and Rousse [SR09, The-
orem 1], whenever (t, z) 7→ u(t, z) is a smooth function that does not depend on x, then
one can estimate the operator norm as∥∥I(Φt, u)

∥∥ ≤ 2−d/2 ‖u(t, ·)‖∞ . (36)

Moreover, particular x-dependent linear factors absorb an inverse power of the semi-
classical parameter ε. That is, by [SR09, Lemma 3], we have

I(Φt, 1
ε
(xj −X t

j)u) = I(Φt, v)

for all j = 1, . . . , d, where

v(t, z, x) := −divz
(
ej · Z−1

t (z)u(t, z, x)
)
. (37)

Here, ej ∈ Cd is the jth standard basis vector, and

divzf :=
d∑

k=1

∂qkfk − i
d∑

k=1

∂pkfk

for smooth vector valued functions f : R2d → Cd. Furthermore, we define a smooth
mapping to the set of invertible complex d× d matrices

Zt := ∂qX
t − i∂pX

t + i∂qΞ
t + ∂pΞ

t

using the four blocks of the Jacobian matrix of the flow map Φt.
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5.2.3. Derivatives of Gaussian wave packets

The last building block of the proof of Theorem 5 is the calculation of the derivatives
of a Gaussian wave packet with respect to its phase space centre. For the gradient, we
obtain

∇zg
ε
z
(x) =

(
1
ε
(x− q)− i

ε
p

i
ε
(x− q)

)
gε
z
(x) =: vε(x− q, p)gε

z
(x),

where z = (q, p) ∈ R2d and x ∈ Rd. The higher order derivatives can be expressed in
terms of products of multivariate polynomials with the Gaussian wave packet.

Lemma 7. For fixed x ∈ Rd, we consider the function R2d → C, z 7→ gε
z
(x). Then, for

any multi-index α ∈ N2d, there exists a multi-variate polynomial Pεα : R2d → C of degree
|α| such that for all z = (q, p) ∈ R2d,

Dα
z g

ε
z
(x) = Pεα(x− q, p) gε

z
(x).

In particular,

Pεα(x− q, p) =
∑

k+|β|≤|α|

λα(k, β) ε−k vε(x− q, p)β,

where the coefficients λα(k, β) ∈ C are ε-independent complex numbers indexed by
(k, β) ∈ N× N2d.

Proof. We argue by induction and calculate

Dα+ej
z gε

z
(x) = ∂j

(
Pεα(x− q, p)gε

z
(x)
)

= (∓(∂jPεα)(x− q, p) + Pεα(x− q, p) ej · vε(x− q, p)) gεz(x),

where the ∓ sign depends on whether j ∈ {1, . . . , d} or j ∈ {d+ 1, . . . , 2d}. Finally, we
observe that

∓ (∂jPεα)(x− q, p) + Pεα(x− q, p) ej · vε(x− q, p)

=
∑

k+|β|≤|α|

λα(k, β) ε−k
(
∓∂jvε(x− q, p)β + vε(x− q, p)β+ej

)
=

∑
k+|β|≤|α|+1

λα+ej(k, β) ε−k vε(x− q, p)β.
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5.2.4. The proof of Theorem 5

In the last three paragraphs we prepared everything we need in order to for prove
Theorem 5.

Proof. We estimate the accuracy of the time discrete Herman–Kluk propagator in four
steps.

Towards the first estimate. We write

Ĩετ − Iετ = I(Φ̃τ , ũ)− I(Φτ , u)

= I(Φ̃t, ũ− u) + I(Φ̃τ , u)− I(Φτ , u),

so that (36) and (35) imply∥∥∥I(Φ̃t, ũ− u)
∥∥∥ ≤ 2−d/2 ‖ũ(τ, ·)− u(τ, ·)‖∞ = O(τ γ+1).

Towards the second estimate. Hence, for the rest of the proof we are only concerned
with

I(Φ̃τ , u)− I(Φτ , u)

= (2πε)−d
∫
R2d

u(τ, z)
(

e
i
ε
S̃(τ,z)gε

Φ̃τ (z)
− e

i
ε
S(τ,z)gε

Φτ (z)

) 〈
gε
z
, ·
〉

dz.

We express the difference in the integrand as

e
i
ε
S̃(τ,z)gε

Φ̃τ (z)
− e

i
ε
S(τ,z)gε

Φτ (z)

=
(

1− e
i
ε
(S(τ,z)−S̃(τ,z))

)
e

i
ε
S̃(τ,z)gε

Φ̃τ (z)
+ e

i
ε
S(τ,z)

(
gε

Φ̃τ (z)
− gε

Φτ (z)

)
and denote

w0(τ, z) := 1− exp
(

i
ε

(
S(τ, z)− S̃(τ, z)

))
.

Then,

I(Φ̃τ , u)− I(Φτ , u) = I(Φ̃τ , uw0)

+ (2πε)−d
∫
R2d

u(τ, z)e
i
ε
S(τ,z)

(
gε

Φ̃τ (z)
− gε

Φτ (z)

) 〈
gε
z
, ·
〉

dz,

and Lemma 6 yields∥∥∥I(Φ̃τ , uw0)
∥∥∥ ≤ 2−d/2 ‖u(τ, ·)w0(τ, ·)‖∞ = O(τ γ+1/ε).
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Towards the third estimate. We now use the Taylor series of the analytic function
z 7→ gε

z
(x) around a point z0 ∈ R2d,

gε
z
(x)− gε

z0
(x) = (z − z0) · ∇zg

ε
z
(x) |z=z0 +

∑
|α|≥2

(z − z0)α

α!
Dα
z g

ε
z
(x) |z=z0 .

We denote

δτ (z) := (DΦτ )(z)
(

Φ̃τ (z)− Φτ (z)
)
,

observe that

δτ (z) = O(τ γ+1),

and use Lemma 7 to write

gε
Φ̃τ (z)

(x)− gε
Φτ (z)

(x) =
(
wε1,1(τ, z, x) + wε1,2(τ, z) + rε(τ, z, x)

)
gε

Φτ (z)
(x)

with

wε1,1(τ, z, x) = δτ (z) ·

(
1
ε
(x−X t(z))

i
ε
(x−X t(z))

)

=
1

ε

d∑
j=1

(
δτj (z) + iδτj+d(z)

) (
xj −X t

j(z)
)
,

wε1,2(τ, z) = δτ (z) ·
(
− i
ε
Ξt(z)
0

)
,

rε(τ, z, x) =
∑
|α|≥2

δτ (z)α

α!
Pεα(x−Xτ (z),Ξτ (z)).

This implies that

(2πε)−d
∫
R2d

u(τ, z)e
i
ε
S(τ,z)

(
gε

Φ̃τ (z)
− gε

Φτ (z)

) 〈
gε
z
, ·
〉

dz

= I(Φτ , uwε1,1) + I(Φτ , uwε1,2) + I(Φτ , urε)

By (37), we have

I(Φτ , uwε1,1) = I(Φτ , v1)

with

v1(τ, z) = −
d∑
j=1

divz
(
ej · Z−1

τ (z)u(τ, z)
(
δτj (z) + iδτj+d(z)

))
.

Applying (36) once more, we have∥∥I(Φτ , uwε1,1)
∥∥ ≤ 2−d/2 ‖v1(τ, ·)‖∞ = O(τ γ+1),∥∥I(Φτ , uwε1,2)
∥∥ ≤ 2−d/2

∥∥u(τ, ·)wε1,2(τ, ·)
∥∥
∞ = O(τ γ+1/ε).
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Towards the fourth estimate. It remains to bound I(Φτ , urε). By Lemma 7,

Pεα(x−Xτ (z),Ξτ (z)) =
∑

(k,β)∈Mα

λα(k, β) ε−k vε(x−Xτ (z),Ξτ (z))β.

Therefore, the crucial terms in rε are of the form

δτ (z)α ε−k vε(x−Xτ (z),Ξτ (z))β

with |α| ≥ 2 and k + |β| ≤ |α|. The previous arguments for bounding I(Φτ , uwε1,1) and
I(Φτ , uwε1,2) then provide

‖I(Φτ , urε)‖ = O((τ γ+1/ε)|α|) = O(τ γ+1/ε).

6. Numerical examples
Let us underline the results of the previous section with a series of numerical examples.
First, we will test the robustness of our algorithm by calculating the full wave function of
the quantum mechanical harmonic oscillator problem in one dimension and comparing
it to the analytic solution. Next, we will do the same for the torsional potential in 2d
using a reference solution that is computed by a split-step Fourier method. After that,
we calculate expectation values using the approach presented in §4.2. We shall do this
again for a 2d torsional potential and - in order to underline the capability for calculation
high-dimensional problems - the Henon–Heiles potential in 6d. Finally, we illustrate one
of our main results, Theorem 5, by examining the behaviour of the overall error of our
method with respect to the time step size of the underlying symplectic ode solver.

6.1. Approximation of the initial wave function

We first examine the quality of our algorithm with respect to the discretization of phase
space as described in §4.1. Let us continue with our example from §5.1.1.

Example 4 (continues=Ex:MonteCarlo). For the sampling of the initial Gaussian wave
function ψ0 = gεz0 we found that for

f ε0 (z) := 2de
i

2ε
(p+p0)·(q−q0)gεz.

we have

E[f ε0 ] = gεz0 and V(f ε0 ) = 1− 4−d.

Figure 1 shows the sampling error for the initial wave function with respect to the number
of Monte Carlo quadrature points M . Each wave function is produced by averaging
over 10 independent samples. The two pictures show the error for one and two space
dimensions respectively. Note that the error shows no dependence on the value of ε.
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211 213 215 217

10−3

10−2

10−1

number of sampling points

‖ψ
M
−
ψ
0
‖ L

2

d = 1

211 213 215 217

10−3

10−2

10−1

number of sampling points

‖ψ
M
−
ψ
0
‖ L

2

d = 2

ε = 10−1 ε = 10−2 ε = 10−3
√

1− 4−d/
√
M

Figure 1: Initial sampling error for ψ0 = gεz0 in dimensions d = 1 (upper panel) and
d = 2 (lower panel) with respect to the number of Monte Carlo quadrature
points M .

6.2. Time evolution of the wave function

Now we shall use both discretisations, i.e. in time and phase space, to calculate the
solution to the semi-classical Schrödinger equation for different potentials.

Example 5 (The harmonic oscillator). The quantum mechanical harmonic oscillator is
one of the few examples for which an analytic solution is known explicitly. Furthermore,
the Herman–Kluk propagator is exact for quadratic potentials. As a proof of concept we
will restrict ourselves to one dimension where a grid based approach is still feasible. This
allows us to test and demonstrate the robustness of our algorithm even for large times,
in this case t ∈ [0, 100]. Let us consider the harmonic oscillator potential V (x) = x2/2
and initial data

ψ0 = gεz0 .

Let q(t), p(t) and S(t) be the position, momentum and action of the classical harmonic
oscillator, i.e.

q(t) = x0 cos(t) + ξ0 sin(t)

p(t) = ξ0 cos(t)− x0 sin(t)

S(t) = 1
2

sin(t)
((
ξ2

0 − x2
0

)
cos(t)− 2ξ0x0 sin(t)

)
.
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6. Numerical examples

Then the analytic solution to the quantum mechanical problem is given by

ψa(t, x) = (πε)−1/4 exp

(
i

ε
S(t)− i

2
t− 1

2ε
(x− q(t))2 +

i

ε
p(t)(x− q(t))

)
,

cf. [Hag98, Thm 2.5].
For the numerical calculations consider an equidistant grid in classical phase space R2

with grid size δq = δp = 0.1. Consider another equidistant grid in the wave function’s
position space with grid size δx = 2−8π on the interval [−π, π]. The time is discretised
in equally spaced steps τ = 0.05, starting at t = 0 up to the final time t = 100. As
initial position and momentum we take x0 = 1 and ξ0 = 0. Figure 2 shows the error
between the Herman–Kluk and the analytic solution in the L2-norm for different values
of the semi-classical parameter ε ∈ {10−1, 10−2, 10−3}. It underlines that the Herman–
Kluk propagator is exact for quadratic potentials and that our algorithm preserves this
feature even over long times.

0 10 20 30 40 50 60 70 80 90 100
10−15

10−14

10−13

10−12

10−11

10−10

time

‖ψ
−
ψ
a
‖ L

2

ε = 10−1 ε = 10−2 ε = 10−3

Figure 2: Evolution of the deviation between the Herman–Kluk and the analytic solution
for the harmonic oscillator potential and different values of ε. The error stays
close to the initial sampling error even over long times.

Example 6 (The torsional potential in two dimensions). Intramolecular rotations are
often modelled by a torsional potential of the form

V (x) =
d∑

k=1

(1− cos(xk)).

In two dimensions we can still evaluate the Herman–Kluk wave function on an equidistant
grid and thus compare it to a reference solution that we calculated with a split-step
Fourier method. As initial datum we consider a Gaussian wave packet ψ0 = gεz0 with
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6. Numerical examples

x0 = (1, 0)T and ξ0 = (0, 0)T . Note that this is the same initial wave function as used in
[FGL09, Section 5]. Figure 3 shows the error between the reference solution and the HK
wave function in the L2 norm as a function of time. The total error is a combination of
the asymptotic error of order ε, the quadrature error which depends on the number M
of quasi-Monte Carlo points, and the time discretisation error of the symplectic method
of order γ = 8. We choose several different values of M for both ε = 10−1 and ε = 10−2

in order to illustrate the behaviour of the error with respect to these parameters.
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M = 2048 M = 8192 M = 32768

Figure 3: Propagation of the error between the Herman–Kluk and the reference solution
for the torsional potential in the L2 norm. On the left hand side the semi-
classical parameter is chosen to be ε = 0.1, on the right hand side ε = 0.01.

6.3. Dependence on the time step size

As predicted by our main result, Theorem 5, the time discretization error of our method
should behave as ∥∥∥Ĩετ − U ε

τ

∥∥∥ ≤ C (τ γ/ε+ τ γ + ε) .

To underline this result by numerical calculations let us consider the same initial wave
function and potential as in Example 7. We want to observe the behaviour for different
length of time steps while the number of quasi-Monte Carlo points in phase space M =
8192 remains fixed. We will do so for two different values of the semi-classical parameter,
namely ε = 10−1 and ε = 10−2 to show that the overall error is dominated by ε if the
length of a time step becomes sufficiently small. We will use the classical Størmer-Verlet
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6. Numerical examples

scheme as time integrator, i.e. γ = 2, as well as a composition method of order γ = 4.
Figure 4 shows the behaviour of the error

‖ψ(T )− ψref(T )‖

between the HK solution and the reference solution at the final time T = 20. As
expected, the order of the method influences the step size at which the asymptotic error
of order ε starts to dominate.
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re
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error for order γ = 4 at T = 20
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Figure 4: Dependence of the error between the Herman–Kluk and the reference solution
on the length of one time step for the torsional potential for two values of the
semi-classical parameter: ε = 0.1 in the upper panel, ε = 0.01 in the lower
panel.

6.4. Expectation values

For space dimensions greater than three, the computational effort to produce reference
solutions with split-step Fourier or Galerkin methods is enormous. In order to show that
our algorithm still produces proper results we will now calculate expectation values for
higher dimensions with the Herman–Kluk propagator as described in §4.2.

Example 7 (The torsional potential in two dimensions). Let us consider the same
setting as in Example 6, i.e. the torsional potential in two dimensions with Gaussian
initial wave function and ε = 10−2. We useM = 8192 quasi-Monte Carlo points in phase
space. The length of a time step is τ = 0.25 and we observe the system up to a final
time T = 20. Figure 5 shows the evolution of the energy expectation values and their
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Figure 5: Evolution of energy expectation values (left) and the error to the reference
solution (right) for the two-dimensional torsional potential with ε = 10−2.

respective point-wise error at every time step. The black dotted lines are the reference
solution calculated by a split-step Fourier method.

We conclude this section by illustrating the ability to calculate expectation values in
high dimensions.

Example 8 (The Henon–Heiles potential). The Henon–Heiles potential is given by

V (x) =
d∑

k=1

1

2
x2
k +

d−1∑
k=1

σ

(
xkx

2
k+1 −

1

3
x3
k

)
+

d−1∑
k=1

σ2

16

(
x2
k + x2

k+1

)2
.

Let us consider the quantum mechanical position space to be six-dimensional which leads
to a twelve-dimensional phase space. The same problem is treated in [FGL09, Section 5.4]
and [LR10, Section 6] so that we may compare the results. This means that we choose
the semi-classical parameter to be ε = 10−2, the coupling constant σ = 1/

√
80, and the

initial datum as a Gaussian wave packet centred at x0 = (2, . . . , 2)T and ξ0 = (0, . . . , 0)T .
We use a time step size of τ = 0.01. At every twentieth time step we calculate the kinetic,
potential, and total energy, as well as the L2 norm of our approximate solution by the
method described in §4.2 using M = 4 · 1024 · 1024 = 222 Halton points as quadrature
nodes. Figure 6a shows the evolution of kinetic, potential, and total energy. The required
computation time is approximately 28 minutes. As mentioned in §2.4, expectation values
can also be computed by quasiclassical approximations. We use the algorithm described
in [LR10] as a reference solver for validating our method. Figure 6b shows the respective
errors.
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Figure 6: Time evolution of the energy expectation values and their deviation from the
reference solution for the Henon–Heiles potential in 6d.

A. A detail for computing the HK factor
We now shall explain a method to calculate the square root that defines the Herman–
Kluk factor (16), i.e.

u(t, z) :=
√

2−d det (∂qX t(z)− i∂pX t(z) + i∂qΞt(z) + ∂pΞt(z))

for t ∈ [0, T ] and z ∈ R2d. We want u to be continuous with respect to t and therefore
we need to use a continuous complex square root. In order to do so, let us introduce the
notion of a continuous choice of argument for a complex-valued curve.

31



B. Formulas for expectation values

Definition. Let γ : [0, T ] → C r {0} be a path. A continuous real-valued function
h : [0, T ]→ R is called continuous choice of argument along γ if

γ(t) = |γ(t)|eih(t)

holds for all t ∈ [0, T ].

One can prove that such a continuous choice of the argument exists. Furthermore,
any two continuous choices of argument for the same path differ by a constant function
and the constant must be an integer multiple of 2π. This makes it possible to define a
continuous complex square root by√

γ(t) :=
√
|γ(t)| exp

(
i

2
h(t)

)
.

The numerical integrator described in §4.3 evolves the matrices ∂qX t, ∂pX t, ∂qΞt, and
∂pΞ

t in time. Additionally we calculate the absolute value and a continuous argument
for

det
(
∂qX

t(z)− i∂pX
t(z) + i∂qΞ

t(z) + ∂pΞ
t(z)
)
.

This allows us to evaluate u(t, z) whenever we need it. It also eliminates additional error
sources that may arise from numerically checking the continuity of the square root.

B. Formulas for expectation values
In §4.2 we discuss a way to calculate an approximation to the expectation value of an
observable A. The process involves evaluating integrals of the form∫

Rd
gε
z(1)(x)Agεz(2)(x) dx

where z(1) = (q(1), p(1)) ∈ R2d and z(2) = (q(2), p(2)) ∈ R2d are elements of phase space,cf.
Equation (21). As mentioned above, there are several cases in which this integral may
be computed analytically. Let us give some examples.

Example 9. Let us first consider the case A1 = I. This means that we have to compute
the scalar product of two Gaussian wave packets with the same width parameter but
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B. Formulas for expectation values

possibly different centres. We obtain〈
gεz(1) , g

ε
z(2)

〉
=

∫
Rd
gε
z(1)(x) gεz(2)(x) dx

= (πε)−
d
2

∫
Rd

exp

(
− 1

2ε

(∣∣x− q(1)
∣∣2 +

∣∣x− q(2)
∣∣2)) . . .

exp

(
− i

ε
p(1) ·

(
x− q(1)

)
+

i

ε
p(2) ·

(
x− q(2)

))
dx

= (πε)−
d
2

∫
Rd

exp

(
−1

ε

∣∣∣∣x− 1

2
q(1) +

1

2
q(2) +

i

2

(
p(1) − p(2)

)∣∣∣∣2
)

dx . . .

exp

(
1

4ε

∣∣q(1) + q(2) + i
(
p(1) − p(2)

)∣∣2 − 1

2ε

(∣∣q(1)
∣∣2 +

∣∣q(2)
∣∣2)) . . .

exp

(
i

ε

(
p(1) · q(1) − p(2) · q(2)

))
= exp

(
− 1

4ε

∣∣z(1) − z(2)
∣∣2 − i

2ε

(
p(1) + p(2)

)
·
(
q(1) − q(2)

))
.

Example 10 (Harmonic oscillator). Consider A2 = |x|2 / 2 to be the potential energy
of the harmonic oscillator. By partial integration one obtains

〈
gεz(1) ,A2 g

ε
z(2)

〉
=

∫
Rd
gε
z(1)(x)

d∑
k=1

x2
k

2
gεz(2)(x) dx

=
d∑

k=1

1

8

(
2ε−

(
(p

(1)
k − p

(2)
k ) + i (q

(1)
k + q

(2)
k )
)2
)〈

gεz(1) , g
ε
z(2)

〉
.

Example 11 (Kinetic energy). Using an ε-scaled version of the Fourier transform allows
us to calculate the above integral for the kinetic energy operator A3 = − ε2

2
∆. The result

is 〈
gεz(1) ,A3 g

ε
z(2)

〉
=

∫
Rd
gε
z(1)(x)

(
−ε

2

2
∆

)
gεz(2)(x) dx

=
d∑

k=1

1

8

(
2ε−

(
(p

(1)
k + p

(2)
k ) + i (q

(1)
k − q

(2)
k )
)2
)〈

gεz(1) , g
ε
z(2)

〉
.

Remark. Note that, by repeated application of the techniques used in Examples 10 and
11, analytic expressions may be found for any observable that is a polynomial of position
and momentum operator. This includes the Henon–Heiles potential.

We need not restrict ourselves to polynomial observables. The above integral may
also be calculated analytically for trigonometric potentials.

33



C. Quasi-Monte Carlo quadrature

Example 12 (Torsional potential). Consider A4 to be the torsional potential. In a
similar manner as in the previous examples one obtains the expression

〈
gεz(1) ,A4 g

ε
z(2)

〉
=

∫
Rd
gε
z(1)(x)

d∑
k=1

(1− cos(xk)) g
ε
z(2)(x) dx

=
d∑

k=1

(
1− e−ε/4 cosh

(
1

2
(p

(1)
k − p

(2)
k ) +

i

2
(q

(1)
k + q

(2)
k )

))〈
gεz(1) , g

ε
z(2)

〉
.

C. Quasi-Monte Carlo quadrature
We will now provide the proof of Lemma 3 by establishing the following result that
applies for even and odd dimension.

Lemma 8. Let f ∈ S(Rd) and µ a probability measure on Rd such that f ∈ L1( dµ).
Then, for all x1, . . . , xM ∈ Rd,

1

M

M∑
m=1

f(xm)−
∫
Rd
f(x) dµ(x)

= (−1)d
∫
Rd
∂1:df(y)

(
1

M

M∑
m=1

χ]−∞,y](xm)− µ(]−∞, y])

)
dy.

Our argument adjusts the proof of the Koksma–Hlawka inequality [AD15, Theorem 1]
which holds for the integration of functions of bounded variation on the unit cube, to
the integration of Schwartz functions on unbounded domains.

Proof. For any x ∈ Rd we have

f(x) = −
∫ ∞
x1

∂1f(y1, x2, . . . , xn) dy1

= (−1)d
∫ ∞
x1

· · ·
∫ ∞
xd

∂1:df(y1, . . . , yd) dyd · · · dy1

= (−1)d
∫

[x,∞[

∂1:df(y) dy.

This implies for the arithmetic mean

1

M

M∑
m=1

f(xm) =
(−1)d

M

M∑
m=1

∫
Rd
χ[xm,∞[(y) ∂1:df(y) dy

= (−1)d
∫
Rd
∂1:df(y)

1

M

M∑
m=1

χ]−∞,y](xm) dy
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and for the integral∫
Rd
f(x) dµ(x) = (−1)d

∫
Rd
∂1:df(y)µ(]−∞, y]) dy,

where the last equation also uses Fubini’s theorem.
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