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Abstract We present randomized algorithms for estimating the trace and deter-
minant of Hermitian positive semi-definite matrices. The algorithms are based on
subspace iteration, and access the matrix only through matrix vector products.
We analyse the error due to randomization, for starting guesses whose elements
are Gaussian or Rademacher random variables. The analysis is cleanly separated
into a structural (deterministic) part followed by a probabilistic part. Our absolute
bounds for the expectation and concentration of the estimators are non-asymptotic
and informative even for matrices of low dimension. For the trace estimators, we
also present asymptotic bounds on the number of samples (columns of the starting
guess) required to achieve a user-specified relative error. Numerical experiments
illustrate the performance of the estimators and the tightness of the bounds on
low-dimensional matrices; and on a challenging application in uncertainty quan-
tification arising from Bayesian optimal experimental design.
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1 Introduction

Computing the trace of high-dimensional matrices is a common problem in vari-
ous areas of applied mathematics, such as evaluation of uncertainty quantification
measures in parameter estimation and inverse problems [17,18,3,38], and gener-
alized cross validation (GCV) [46,47,15].

Our original motivation came from trace and log-determinant computations of
high-dimensional operators in Bayesian optimal experimental design (OED) [11].
Of particular interest is OED for Bayesian inverse problems that are constrained
by partial differential equations (PDEs) with high-dimensional parameters. In Sec-
tion 6 we give an example of such a Bayesian inverse problem and illustrate the
evaluation of OED criteria with our algorithms.

Trace and determinant computations are straightforward if the matrices are
explicitly defined, and one has direct access to individual matrix entries. The
trace is computed as the sum of the diagonal elements, while the determinant
can be computed as the product of the diagonal elements from a triangular factor
[21, Section 14.6]. However, if the matrix dimension is large, or explicit access to
individual entries is expensive, alternative methods are needed.

Here we focus on computing the trace and log-determinant of implicitly defined
matrices, where the matrix can be accessed only through matrix vector products.
We present randomized estimators for trace(A) and1 log det(I + A) for Hermitian,
or real symmetric, positive semi-definite matrices A ∈ Cn×n.

1.1 Main features of our estimator

Our estimators are efficient and easy to implement, as they are based on ran-
domized subspace iteration; and they are accurate for many matrices of interest.
Unlike Monte Carlo estimators, see Section 1.3, whose variance depends on indi-
vidual matrix entries, our error bounds rely on eigenvalues. To this end we need
to assume that the matrix has a well-defined dominant eigenspace, with a large
eigenvalue gap whose location is known. Our bounds quantify the effect of the
starting guess on the dominant eigenspace, and are informative even in the non-
asymptotic regime, for matrices of low dimension. Our estimators, although biased,
can be much more accurate than Monte Carlo estimators.

1.2 Contributions

Our paper makes the following four contributions.

1 The square matrix I denotes the identity, with ones on the diagonal and zeros everywhere
else.
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1.2.1 Randomized estimators

Assume that the Hermitian positive semi-definite matrix A ∈ Cn×n has k dominant
eigenvalues separated by a gap from the remaining n−k sub-dominant eigenvalues,
λ1 ≥ · · · ≥ λk � λk+1 ≥ · · · ≥ λn. The idea is to capture the dominant eigenspace
associated with λ1, . . . , λk via a low-rank approximation T of A. Our estimators
(Section 2.1) for trace(T) ≈ trace(A) and log det(I + T) ≈ log det(I + A) appear to
be new. Here T ≡ Q∗AQ ∈ C`×` where k ≤ `� n. The matrix Q approximates the
dominant eigenspace of A, and is computed from q iterations of subspace iteration
applied to a starting guess Ω, followed by the thin QR factorization of AqΩ.

1.2.2 Structural and probabilistic error analysis

We derive absolute error bounds for trace(T) and log det(I+T), for starting guesses
that are Gaussian random variables (Section 2.2.2), and Rademacher random vari-
ables (Section 2.2.3) The derivations are cleanly separated into a “structural”
(deterministic) part, followed by a probabilistic part.

Structural analysis (Section 3). These are perturbation bounds that apply to any
matrix Ω, be it random or deterministic. The resulting absolute error bounds for
trace(T) and log det(I+T) imply that the estimators are accurate if: (1) the starting
guess Ω has a large contribution in the dominant eigenspace; (2) the eigenvalue
gap is large; and (3) the sub-dominant eigenvalues are negligible.

The novelty of our analysis is the focus on the eigendecomposition of A. In
contrast, as discussed in Section 2.3, the analyses of Monte Carlo estimators de-
pend on the matrix entries, and do not take into account the spectral properties
of A.

To understand the contribution of the random starting guess Ω, let the columns
of U1 ∈ Cn×k represent an orthonormal basis for the dominant eigenspace, while
the columns of U2 ∈ Cn×(n−k) represent an orthonormal basis associated with the
n − k sub-dominant eigenvalues. The “projections” of the starting guess on the
respective eigenspaces are are Ω1 ≡ U∗1Ω ∈ Ck×` and Ω2 ≡ U∗2Ω ∈ C(n−k)×`.

The success of T in capturing the dominant subspace range(U1) depends on

the quantity2 ‖Ω2‖2‖Ω†1‖2.

Probabilistic analysis (Section 4). We bound the projections ‖Ω2‖2 and ‖Ω†1‖2 for
starting guesses Ω that are Gaussian or Rademacher random matrices.

For Gaussian starting guesses, we present bounds for the mean (or expecta-
tion), and concentration about the mean, based on existing bounds for the spectral
norms of Gaussian random matrices and their pseudo-inverse.

For Rademacher starting guesses, we present Chernoff-type concentration in-
equalities, and show that ` ∼ (k + log n) log k samples are required to guarantee
rank(Ω1) = k with high probability.

2 The superscript † denotes the Moore-Penrose inverse.
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1.2.3 Asymptotic efficiency

One way to quantify the efficiency of a Monte Carlo estimator is a so-called (ε, δ)
estimator [6], which bounds the number of samples required to achieve a relative
error of at most ε with probability at least 1 − δ. Our asymptotic (ε, δ) bounds
(Theorem 4) show that our trace estimator can require significantly fewer samples
than Monte Carlo estimators.

1.2.4 Numerical Experiments

Comprehensive numerical experiments corroborate the performance of our esti-
mators, and illustrate that our error bounds hold even in the non-asymptotic
regime, for matrices of small dimension (Section 5). Motivated by our desire for
fast and accurate estimation of uncertainty measures in Bayesian inverse problems,
we present a challenging application from Bayesian OED (Section 6).

1.3 Related work

We demonstrate that the novelty of our paper lies in both, the estimators and
their analysis.

There are several popular estimators for the trace of an implicit, Hermitian
positive semi-definite matrix A, the simplest one being a Monte Carlo estimator.
It requires only matrix vector products with N independently generated random
vectors zj and computes

trace(A) ≈ 1

N

N∑
j=1

z∗jAzj .

The original algorithm, proposed by Hutchinson [24], uses Rademacher random
vectors and produces an unbiased estimator. Unbiased estimators can also be pro-
duced with other distributions, such as Gaussian random vectors, or columns of
the identity matrix that are sampled uniformly with or without replacement [6,
35], see the detailed comparison in Section 2.3.

Randomized matrix algorithms [19,28] could furnish a potential alternative
for trace estimation. Low-rank approximations of A can be efficiently computed
with randomized subspace iteration [26,29] or Nyström methods [14], and their
accuracy is quantified by probabilistic error bounds in the spectral and Frobenius
norms. Yet we were not able to find error bounds for the corresponding trace
estimator in the literature.

Like our estimators, the spectrum-sweeping method [27, Algorithm 5] is based
on a randomized low-rank approximation of A. However, it is designed to compute
the trace of smooth functions of Hermitian matrices in the context of density of

state estimations in quantum physics. Numerical experiments illustrate that the
method can be much faster than Hutchinson’s estimator, but there is no formal
convergence analysis.

A related problem is the trace computation of the matrix inverse. One can
combine a Hutchinson estimator 1

N

∑N
j=1 z∗iA

−1zi with quadrature rules for ap-

proximating the bilinear forms z∗iA
−1zi [7,8]. For matrices A that are sparse,
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banded, or whose off-diagonal entries decay away from the main diagonal, one can
use a probing method [41] to estimate the diagonal of A−1 with carefully selected
vectors that exploit structure and sparsity.

Computation of the log-determinant is required for maximum likelihood esti-
mation in areas like machine learning, robotics and spatial statistics [48]. This can
be achieved by applying a Monte Carlo algorithm to the log-determinant directly
[9], or to an expansion [32,48].

Alternatively one can combine the identity log det(A) = trace(log(A)) [7, Sec-
tion 3.1.4] with a Monte Carlo estimator for the trace. Since computation of log(A),
whether with direct or matrix-free methods, is expensive for large A, the logarithm
can be expanded into a Taylor series [10,32,48], a Chebyshev polynomial [20], or
a spline [4,12].

2 Algorithms and main results

We present the algorithm for randomized subspace iteration (Section 2.1), followed
by the main error bounds for the trace and logdet estimators (Section 2.2), and
conclude with a discussion of Monte Carlo estimators (Section 2.3).

2.1 The Algorithm

We sketch the estimators for trace(A) and log det(In + A), for Hermitian positive
semi-definite matrices A ∈ Cn×n with k dominant eigenvalues. The estimators
relinquish the matrix A of order n for a matrices T of smaller dimension ` � n

computed with Algorithm 1, so that trace(T) is an estimator for trace(A), and
log det(I` + T) an estimator for log det(In + A).

Algorithm 1 is an idealized version of randomized subspace iteration. Its start-
ing guess is a random matrix Ω with k ≤ ` � n columns, sampled from a fixed
distribution, that is then subjected to q power iterations with A. A thin QR de-
composition of the resulting product AqΩ produces a matrix Q with orthonormal
columns. The output of Algorithm 1 is the ` × ` restriction T = Q∗AQ of A to
span(Q).

Algorithm 1 Randomized subspace iteration (idealized version)

Input: Hermitian positive semi-definite matrix A ∈ Cn×n with target rank k,
Number of subspace iterations q ≥ 1
Starting guess Ω ∈ Cn×` with k ≤ ` ≤ n− k columns

Output: Matrix T ∈ C`×`
1: Multiply Y = AqΩ
2: Thin QR factorization Y = QR
3: Compute T = Q∗AQ.

The idealized subspace iteration in Algorithm 1 can be numerically unstable.
The standard remedy is to alternate matrix products and QR factorizations [37,
Algorithm 5.2]. In practice, one can trade off numerical stability and efficiency by
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computing the QR factorization once every few steps [37, Algorithm 5.2]. Through-
out this paper, we assume exact arithmetic and do not take into account finite
precision effects.

Random starting guess. The entries of Ω are i.i.d.3 variables from one of the two
distributions: standard normal (zero mean and variance 1), or Rademacher (values
±1 with equal probability).

As in Section 1.2.2, let Ω1 ≡ U∗1Ω and Ω2 ≡ U∗2Ω be the respective “pro-
jections” of the starting guess on the dominant and subdominant eigenspaces.
The success of T in capturing the dominant subspace depends on the quantity
‖Ω2‖2‖Ω†1‖2. We make the reasonable assumption rank(Ω1) = k, so that Ω†1 is a
right inverse. Asymptotically, for both Gaussian [19, Propositions A.2 and A.4] and
Rademacher random matrices [36, Theorem 1.1], ‖Ω2‖2 grows like

√
n− k +

√
`,

and 1/‖Ω†1‖2 like
√
`−
√
k.

Other than that, however, there are major differences. For Gaussian random
matrices, the number columns in Ω is ` = k + p, where p is a user-specified over-
sampling parameter. The discussion in [16, Section 5.3] indicates that the bounds
in Section 2.2.2 should hold with high probability for p . 20. Asymptotically, the
required number of columns in a Gaussian starting guess is ` ∼ k.

In contrast, the number of columns in a Rademacher random matrix cannot
simply be relegated, once and for all, to a fixed oversampling parameter, but in-
stead show a strong dependence on the dimension k of the dominant subspace and
the matrix dimension n. We show (Section 4) that the error bounds in Section 2.2.3
hold with high probability, if the number of columns in Ω is ` ∼ (k + log n) log k.
This behavior is similar to that of structured random matrices from sub-sampled
random Fourier transforms and sub-sampled random Hadamard transforms [42].
It is not yet clear, though, whether the asymptotic factor (k+ log n) log k is tight,
or whether it is merely an artifact of the analysis.

2.2 Main results

We clarify our assumptions (Section 2.2.1), before presenting the main error bounds
for the trace and logdet estimators, when the random matrices for the starting
guess are Gaussian (Section 2.2.2) and Rademacher (Section 2.2.3).

2.2.1 Assumptions

Let A ∈ Cn×n be a Hermitian positive semi-definite matrix with eigenvalue de-
composition

A = UΛU∗, Λ = diag
(
λ1 · · · λn

)
∈ Rn×n,

where the eigenvector matrix U ∈ Cn×n is unitary, and the eigenvalues are ordered,
λ1 ≥ · · · ≥ λn ≥ 0.

We assume that the eigenvalues of A have a gap λk > λk+1 for some 1 ≤
k < n, and distinguish the dominant eigenvalues from the sub-dominant ones by

3 independent and identically distributed
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partitioning

Λ =

(
Λ1

Λ2

)
, U =

(
U1 U2

)
,

where Λ1 = diag
(
λ1 · · · λk

)
∈ Rk×k is nonsingular, and U1 ∈ Cn×k. The size of

the gap is inversely proportional to

γ ≡ λk+1/λk = ‖Λ2‖2 ‖Λ−1
1 ‖2 < 1.

Given a number of power iterations q ≥ 1, and a starting guess Ω ∈ Cn×` with
k ≤ ` ≤ n columns, we assume that the product has full column rank,

rank(Aq Ω) = `. (1)

Extract an orthonormal basis for range(Aq Ω) with a thin QR decomposition
Aq Ω = QR, where Q ∈ Cn×` with Q∗Q = I`, and the matrix R ∈ C`×` nonsin-
gular.

To distinguish of the effect of the dominant subspace on the starting guess
from that of the subdominant space, partition

U∗Ω =

(
U∗1Ω

U∗2Ω

)
=

(
Ω1

Ω2

)
,

where Ω1 ≡ U∗1Ω ∈ Ck×` and Ω2 ≡ U∗2Ω ∈ C(n−k)×`. We assume that Ω has a
sufficient contribution in the dominant subspace of A,

rank(Ω1) = k. (2)

2.2.2 Gaussian random matrices

We present absolute error bounds for the trace and logdet estimators when the
random starting guess Ω in Algorithm 1 is a Gaussian. The bounds come in two
flavors: expectation, or mean (Theorem 1); and concentration around the mean
(Theorem 2). We argue that for matrices with sufficiently dominant eigenvalues,
the bounds are close.

The number of columns in Ω is equal to

` = k + p,

where 0 ≤ p < n− k is a user-specified oversampling parameter. We abbreviate

µ ≡
√
n− k +

√
k + p. (3)

Theorem 1 (Expectation) With the assumptions in Section 2.2.1, let T be computed

by Algorithm 1 with a Gaussian starting guess Ωn×(k+p) and furthermore, let p ≥ 2.

Then

0 ≤ E [ trace(A)− trace(T)] ≤
(

1 + γ2q−1 Cge

)
trace(Λ2),

and

0 ≤ E [ log det(I + A)− log det(I + T)] ≤

log det (I + Λ2) + log det
(
I + γ2q−1 CgeΛ2

)
,

where

Cge ≡
e2 (k + p)

(p+ 1)2

(
1

2π(p+ 1)

) 2
p+1 (

µ+
√

2
)2(p+ 1

p− 1

)
.
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Proof See Section 4.1.1. ut

Theorem 1 demonstrates that Algorithm 1 with a Gaussian starting guess
produces a biased estimator. However, when Λ2 = 0, then Algorithm 1 produces
an unbiased estimator.

In the special case when rank(A) = k, the assumption (2) guarantees exact
computation, trace(T) = trace(A) and log det(T) = log det(A). Hence the bounds
are zero, and hold with equality. If A has n − k eigenvalues close to zero, i.e.
Λ2 ≈ 0, the upper bounds in Theorem 1 are small, implying that the estimators
are accurate in the absolute sense. If A has k dominant eigenvalues that are very
well separated from the remaining eigenvalues, i.e. γ � 1, then Theorem 1 implies
that the absolute error in the estimators depends on the mass of the neglected
eigenvalues Λ2. The above is true also for the following concentration bounds,
which have the same form as the expectation bounds.

Theorem 2 (Concentration) With the assumptions in Section 2.2.1, let T be com-

puted by Algorithm 1 with a Gaussian starting guess guess Ωn×(k+p) where p ≥ 2. If

0 < δ < 1, then with probability at least 1− δ

0 ≤ trace(A)− trace(T) ≤
(

1 + γ2q−1 Cg

)
trace(Λ2),

and

0 ≤ log det(I + A)− log det(I + T) ≤

log det (I + Λ2) + log det
(
I + γ2q−1 Cg Λ2

)
,

where

Cg ≡
e2 (k + p)

(p+ 1)2

(
2

δ

) 2
p+1

(
µ+

√
2 log

2

δ

)2

.

Proof Substitute Lemma 5 into Theorems 6 and 8. ut

The expectation and concentration bounds in Theorems 1 and 2 are the same
save for the constants Cge and Cg. For matrices A with sufficiently well separated
eigenvalues, i.e. γ � 1, and sufficiently many power iterations q in Algorithm 1,
the factor γ2q−1 subdues the effect of Cge and Cg, so that Theorems 1 and 2 are
effectively the same.

Nevertheless, we can still compare Theorems 1 and 2 by comparing their con-
stants. To this end we take advantage of the natural logarithm, and consider two
cases. For a high failure probability δ = 2/e, the ratio is

Cg
Cge

= (2 e π (p+ 1))
2
p+1

(
p− 1

p+ 1

)
→ 1 as p→∞.

Hence the concentration bound approaches the expectation bound as the oversam-
pling increases. Note, though, that the rank assumptions for the bounds impose
the limit p < n−k. However, for the practical value p = 20, the ratio Cg/Cge ≈ 1.6,
so that the constants differ by a factor less than 2.

For a lower failure probability δ < 2/e, we have Cg > Cge. Hence the concen-
tration bound in Theorem 2 has a higher constant.
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2.2.3 Rademacher random matrices

We present absolute error bounds for the trace and logdet estimators when the
random starting guess Ω in Algorithm 1 is a Rademacher random matrix. In
contrast to Gaussian starting guesses, the number of columns in the Rademacher
guess reflects the dimension of the dominant subspace.

The error bounds contain a parameter 0 < ρ < 1 that controls the magnitude
of ‖Ω†1‖2. The bound below has the same form as the error bound in Theorem 2
with Gaussian starting guesses; the only difference being the constant.

Theorem 3 With the assumptions in Section 2.2.1, let 0 < δ < 1 be a given failure

probability, and let T be computed by Algorithm 1 with a Rademacher starting guess

Ω ∈ Rn×`. If the number of columns in Ω satisfies

` ≥ 2ρ−2

(
√
k +

√
8 log

4n

δ

)2

log

(
4k

δ

)
,

then with probability at least 1− δ

0 ≤ trace(A)− trace(T) ≤
(

1 + γ2q−1 Cr

)
trace(Λ2),

and

0 ≤ log det(I + A)− log det(I + T) ≤

log det (I + Λ2) + log det
(
I + γ2q−1 Cr Λ2

)
,

where

Cr ≡
1

(1− ρ)

1 + 3`−1

(
√
n− k +

√
8 log

4`

δ

)2

log
4(n− k)

δ

 .
Proof Substitute the bound for ‖Ω2‖22‖Ω

†
1‖

2
2 from Theorem 5 into Theorems 6

and 8. ut

The interpretation of Theorem is the same as that of Theorems 1 and 2. In
contrast to Gaussian starting guesses, whose number of columns depends on a
fixed oversampling parameter p, the columns of the Rademacher guess increase
with the dimension of the dominant subspace.

Theorem 1 shows that when Algorithm 1 is run with a Gaussian starting guess,
the resulting estimators for the trace and determinant are biased. We are not able
to provide a similar result for the expectation of the estimators for the Rademacher
starting guess. However, we conjecture that the estimators for trace and determi-
nant are biased even when the Rademacher starting guess is used in Algorithm 1.
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2.3 Comparison with Monte Carlo estimators

The reliability of Monte Carlo estimators is judged by the variance of a single
sample. This variance is 2(‖A‖2F −

∑n
j=1 A2

jj) for the Hutchinson estimator, and

2‖A‖2F for the Gaussian estimator. Avron and Toledo [6] were the first to determine
the number of Monte Carlo samples N required to achieve a relative error ε with
probability 1− δ, and defined an (ε, δ) estimator

P

 ∣∣∣∣∣∣trace(A)− 1

N

N∑
j=1

z∗jAzj

∣∣∣∣∣∣ ≤ ε trace(A)

 ≥ 1− δ.

An (ε, δ) estimator based on Gaussian vectors zj requires N ≥ 20 ε−2 log(2/δ)
samples. In contrast, the Hutchinson estimator, which is based on Rademacher
vectors, requires N ≥ 6 ε−2 log(2rank(A)/δ) samples.

Roosta-Khorasani and Ascher [35] improve the above bounds for Gaussian
estimators to N ≥ 8 ε−2 log(2/δ); and for the Hutchinson estimator to N ≥
6 ε−2 log(2/δ), thus removing the dependence on the rank. They also derived
bounds on the number of samples required for an (ε, δ) estimator, using the
Hutchinson, Gaussian and the unit vector random samples, which depend on spe-
cific properties of A. All bounds retain the ε−2 factor, though, which means that an
accurate trace estimate requires many samples in practice. In fact, even for small
matrices, while a few samples can estimate the trace up to one digit of accuracy,
many samples are needed in practice to estimate the trace to machine precision.

To facilitate comparison between our estimators and the Monte Carlo estima-
tors, we derive the number of iterations needed for an (ε, δ) estimator. Define the
relative error

∆ ≡ trace(Λ2)/trace(Λ). (4)

In practice, the relative error ∆ is not known. Instead, it can be estimated as
follows: the bounds trace(Λ2) ≤ (n− k)λk+1, trace(Λ1) ≥ kλk, can be combined to
give us the upper bound

∆ ≤ (n− k)γ

nγ + k(1− γ)
.

Assuming that ∆ > 0, abbreviate ε∆ ≡ ε/∆. If ∆ = 0, then we have achieved our
desired relative error, i.e., the relative error is less than ε.

We present the following theorem that gives the asymptotic bound on the
number of matrix-vector products needed for an (ε, δ) trace estimator.

Theorem 4 (Asymptotic bounds) With the assumptions in Section 2.2.1, let ε be

the desired accuracy and let 0 < ∆ < ε ≤ 1. The number of matrix-vector products for

an (ε, δ) estimator is asymptotically

k

(
log

1

ε∆ − 1
+ log

2

δ

)
, (5)

for Gaussian starting guess, whereas for Rademacher starting guess the number of

matrix-vector products is asymptotically

(k + log n) log k

(
log

1

ε∆ − 1
+ log

[
(n− k) log

4n

δ

])
. (6)
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Proof The number of matrix-vector products in Algorithm 1 are `(q + 1). Recall
that the number of samples required for Gaussian starting guess are ` ∼ k; whereas
for Rademacher starting guess ` ∼ (k + log n) log k. With probability of failure at
most δ, for an (ε, δ) estimator

trace(A)− trace(T)

trace(A)
≤ (1 + γ2q−1C)∆.

Here C can either take values Cg for standard Gaussian matrices and Cr for
standard Rademacher matrices. Equating the right hand side to ε gives us (1 +
γ2q−1C)∆ = ε. Assuming ε > ∆, we can solve for q to obtain

q =

⌈
1

2

(
1 + log

(
C∆

ε−∆

)/
log γ−1

)⌉
.

Asymptotically, logCg behaves like log 2/δ and logCr behaves like log [(n− k) log 4n/δ].
This proves the desired result. ut

Theorem 4 demonstrates both estimators are computationally efficient com-
pared to the Monte Carlo estimators if ∆ is sufficiently small.

3 Structural analysis

We defer the probabilistic part of the analysis as long as possible, and start with
deterministic error bounds for trace(T) (Section 3.1) and log det(T) (Section 3.2),
where T is the restriction of A computed by Algorithm 1. These deterministic
bounds are called “structural” because they hold for all matrices Ω that satisfy
the rank conditions (1) and (2).

3.1 Trace Estimator

We derive the following absolute error bounds for Hermitian positive semi-definite
matrices A and matrices T computed by Algorithm 1.

Theorem 5 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

0 ≤ trace(A)− trace(T) ≤ (1 + θ1) trace(Λ2)

where θ1 ≡ min{γq−1 ‖Ω2Ω†1‖2, γ
2q−1 ‖Ω2Ω†1‖

2
2}.

Proof The lower bound is derived in Lemma 1, and the upper bounds in Theorem 6.
ut

Theorem 5 implies that trace(T) has a small absolute error if Algorithm 1
applies a sufficient number q of power iterations. More specifically, only a few
iterations are required if the eigenvalue gap is large and γ � 1. The term θ1
quantifies the contribution of the starting guess Ω in the dominant subspace U1.
The minimum in θ1 is attained by γq−1 ‖Ω2Ω†1‖2 when, relative to the eigenvalue
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gap and the iteration count q, the starting guess Ω has only a “weak” contribution
in the dominant subspace.

We start with the derivation of the lower bound, which relies on the variational
inequalities for Hermitian matrices, and shows that the trace of a restriction can
never exceed that of the original matrix.

Lemma 1 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

trace(A)− trace(T) ≥ trace(Λ2)− (λk+1 + · · ·+ λ`) ≥ 0.

Proof Choose Q⊥ ∈ Cn×(n−`) so that Q̂ ≡
(
Q Q⊥

)
∈ Cn×n is unitary, and parti-

tion

Q̂∗AQ̂ =

(
T A12

A∗12 A22

)
,

where T = Q∗AQ is the important submatrix. The matrices Q̂∗AQ̂ and A have
the same eigenvalues 0 ≤ λn ≤ · · · ≤ λ1. With λ`(T) ≤ · · · ≤ λ1(T) being the
eigenvalues of T, the Cauchy-interlace theorem [33, Section 10-1] implies

0 ≤ λ(n−`)+j ≤ λj(T) ≤ λj , 1 ≤ j ≤ `.

Since λj ≥ 0, this implies (for ` = k we interpret
∑`
j=k+1 λj = 0)

trace(T) ≤
∑̀
j=1

λj = trace(Λ1) +
∑̀

j=k+1

λj

= trace(A)− trace(Λ2) +
∑̀

j=k+1

λj ≤ trace(A),

where the last inequality follows from
∑`
j=k+1 λj ≤

∑n
j=k+1 λj = trace(Λ2). ut

Next we derive the two upper bounds. The first one, (7), is preferable when,
relative to the eigenvalue gap and the iteration count q, the starting guess Ω has
only a “weak” contribution in the dominant subspace.

Theorem 6 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

trace(A)− trace(T) ≤
(

1 + γq−1 ‖Ω2Ω†1‖2
)

trace(Λ2). (7)

If 0 < ‖Ω2Ω†1‖2 ≤ γ
−q, then the following bound is tighter,

trace(A)− trace(T) ≤
(

1 + γ2q−1 ‖Ω2Ω†1‖
2
2

)
trace(Λ2). (8)

Proof The proof proceeds in six steps. The first five steps are the same for both
bounds.
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1. Shrinking the space from ` to k dimensions If W ∈ C`×k is any matrix with
orthonormal columns, then Lemma 1 implies

trace(A)− trace(Q∗AQ) ≤ U ≡ trace(A)− trace
(
(QW)∗A (QW)

)
.

The upper bound U replaces the matrix Q∗AQ of order ` by the matrix (QW)∗A (QW)
of order k ≤ `. The eigendecomposition of A yields

trace
(
(QW)∗A (QW)

)
= t1 + t2,

where dominant eigenvalues are distinguished from subdominant ones by

t1 ≡ trace
(
(U∗1QW)∗Λ1 (U∗1QW)

)
, t2 ≡ trace

(
(U∗2QW)∗Λ2 (U∗2QW

)
.

Note that t1 and t2 are real. Now we can write the upper bound as

U = trace(A)− t1 − t2. (9)

2. Exploiting the structure of Q Assumption (1) implies that R is nonsingular,
hence we can solve for Q in Aq Ω = QR, to obtain

Q = (AqΩ) R−1 = UΛq U∗ΩR−1 = U

(
Λq

1 Ω1

Λq
2 Ω2

)
R−1. (10)

3. Choosing W Assumption (2) implies that the k × ` matrix Ω1 has full row

rank, and a right inverse Ω†1 = Ω∗1 (Ω1Ω∗1)−1. Our choice for W is

W ≡ R Ω†1Λ−q1 (Ik + F∗F)−1/2 where F ≡ Λq
2 Ω2Ω†1 Λ−q1 ,

so that we can express (10) as

QW = U

(
Λq

1 Ω1

Λq
2 Ω2

)
R−1 W = U

(
Ik
F

)
(Ik + F∗F)−1/2. (11)

The rightmost expression shows that QW has orthonormal columns. To see that
W itself also has orthonormal columns, show that W∗W = Ik with the help of

R∗R = (QR)∗(QR) = (Λq
1 Ω1)∗(Λq

1 Ω1) + (Λq
2 Ω2)∗(Λq

2 Ω2).

4. Determining U in (9) From U∗1QW = (I + F∗F)−1/2 in (11) follows

t1 = trace
(

(I + F∗F)−1/2 Λ1 (I + F∗F)−1/2
)

= trace
(
Λ1 (I + F∗F)−1

)
.

From (11) also follows U∗2QW = F (I + F∗F)−1/2, so that

t2 = trace
(

(I + F∗F)−1/2 F∗Λ2 F (I + F∗F)−1/2
)

= trace
(
Λ2 F (I + F∗F)−1 F∗

)
.

Distinguish dominant from subdominant eigenvalues in U via U = U1 + U2, where

U1 ≡ trace(Λ1)− t1, U2 ≡ trace(Λ2)− t2.

Since t1 and t2 are real, so are U1 and U2. With the identity

Λ1

(
I− (I + F∗F)−1

)
= Λ1 F∗F (I + F∗F)−1,

and remembering that F = Λq
2 Z Λ−q1 with Z ≡ Ω2Ω†1, we obtain U = U1 +U2 with

U1 = trace
(
Λ1−q

1 Z∗Λq
2 F (I + F∗F)−1

)
U2 = trace

(
Λ2 (I− F (I + F∗F)−1F∗)

)
.
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5. Bounding U Since Λ2 and I−F (I + F∗F)−1F∗ both have dimension (n− k)×
(n− k), the von Neumann trace theorem [23, Theorem 7.4.11] can be applied,

U2 ≤
∑
j

σj(Λ2)σj(I− F (I + F∗F)−1F∗) ≤
∑
j

σj(Λ2) = trace(Λ2).

The last equality is true because the singular values of a Hermitian positive semi-
definite matrix are also the eigenvalues. Analogously, Λq

2 Z Λ1−q
1 and F (I+F∗F)−1

both have dimension (n− k)× k, so that

U1 ≤
∑
j

σj(Λ
q
2 Z Λ1−q

1 )σj(F (I + F∗F)−1)

≤ ‖F (I + F∗F)−1)‖2
∑
j

σj(Λ
q
2 Z Λ1−q

1 )

Repeated applications of the singular value inequalities [22, Theorem 3.314] for
the second factor yield∑

j

σj(Λ
q
2 Z Λ1−q

1 ) ≤ ‖Z‖2 ‖Λ1‖1−q2

∑
j

σj(Λ
q
2)

≤ ‖Z‖2 ‖Λ1‖1−q2 ‖Λ2‖q−1
2

∑
j

σj(Λ2) = γq−1 ‖Z‖2 trace(Λ2)

Substituting this into the bound for U1 gives

U1 ≤ ‖F (I + F∗F)−1‖2 γq−1 ‖Z‖2 trace(Λ2).

6. Bounding ‖F (I + F∗F)−1‖2 For (7) we bound ‖F (I + F∗F)−1‖2 ≤ 1, which
yields U1 ≤ γq−1 ‖Z‖2 trace(Λ2). For (8) we use

‖F (I + F∗F)−1‖2 ≤ ‖F‖2 ≤ ‖Λ2‖q2 ‖Z‖2 ‖Λ1‖−q2 = γq ‖Z‖2,

which yields U1 ≤ γ2q−1‖Z‖22 trace(Λ2).
Comparing the two preceding bounds for U1 shows that (8) is tighter than (7)

if γ2q−1 ‖Z‖22 ≤ γq−1 ‖Z‖2, that is ‖Z‖2 ≤ γ−q. ut

Remark 1 The two special cases below illustrate that, even in a best-case scenario,
the accuracy of trace(T) is limited by trace(Λ2).

– If ` = k and Ω = U1 then

trace(A)− trace(T) = trace(Λ2).

This follows from Lemma 1, and from both bounds in Theorem 6 with Ω1 = Ik
and Ω2 = 0.

– If ` > k and Ω consists of the columns of U associated with the dominant
eigenvalues λ1, . . . , λ` of A, then

trace(Λ2)− (λk+1 + · · ·+ λ`) ≤ trace(A)− trace(T) ≤ trace(Λ2).

This follows from Lemma 1, and from both bounds in Theorem 6 with Ω1 =(
Ik 0k×(k−`)

)
and Ω2 =

(
0(n−k)×k ∗

)
.

Theorem 6 cannot be tight for ` > k because step 3 of the proof deliberately
transitions to a matrix with k columns. Hence the eigenvalues λk+1, . . . , λ` do
not appear in the bounds of Theorem 6.
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3.2 Log Determinant Estimator

Subject to the Assumptions in Section 2.2.1, we derive the following absolute error
bounds for Hermitian positive semi-definite matrices A and matrices T computed
by Algorithm 1.

Theorem 7 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

0 ≤ log det(In + A)− log det(I` + T) ≤ log det (In−k + Λ2) + log det (In−k + θ2 Λ2)

where θ2 ≡ γ2q−1 ‖Ω2Ω†1‖
2
2 min{1, 1

λk
}.

Proof The lower bound is derived in Lemma 2, and the upper bounds in Theorem 8.
ut

Theorem 7 implies that log det(I`+T) has a small absolute error if Algorithm 1
applies a sufficient number q of power iterations. As in Theorem 6, only a few
iterations are required if the eigenvalue gap is large and γ � 1. The term θ2
quantifies the contribution of the starting guess Ω in the dominant subspace U1.
The two alternatives differ by a factor of only λ−1

k . The second one is smaller if
λk > 1.

Theorem 9 extends Theorem 7 to log det(A) for positive definite A.
As before, we start with the derivation of the lower bound, which is the counter

part of Lemma 1 and shows that the log determinant of the restriction can never
exceed that of the original matrix.

Lemma 2 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

log det(In + A)− log det (I` + T) ≥ log det(In−k + Λ2)− log
∏̀

j=k+1

(1 + λj) ≥ 0.

Proof Choose the unitary matrix Q̂ as in the proof of Lemma 1,

Q̂∗(In + A)Q̂ =

(
I` + T A12

A∗12 In−` + A22

)
,

and proceed likewise with the Cauchy-interlace theorem [33, Section 10-1] to con-
clude

det(I` + T) ≤ det(Ik + Λ1)
∏̀

j=k+1

(1 + λj)

= det(In + A)
∏̀

j=k+1

(1 + λj)/det(In−k + Λ2) ≤ det(In + A),

where for ` = k we interpret
∏`
j=k+1 (1 + λj) = 1. The monotonicity of the loga-

rithm implies

log det(I` + T) ≤ log det(In + A)− log det(In−k + Λ2) + log
∏̀

j=k+1

(1 + λj)

≤ log det(In + A). ut
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The following auxiliary result, often called Sylvester’s determinant identity, is
required for the derivation of the upper bound.

Lemma 3 (Corollary 2.1 in [31]) If B ∈ Cm×n and C ∈ Cn×m then

det(Im ±BC) = det(In ±CB).

Next we derive two upper bounds. The second one, (13), is preferable when
λk > 1 because it reduces the extraneous term.

Theorem 8 With the assumptions in Section 2.2.1, let T = Q∗AQ be computed by

Algorithm 1. Then

log det(In + A)− log det(I` + T) ≤

log det (In−k + Λ2) + log det
(
In−k + γ2q−1 ‖Ω2Ω†1‖

2
2 Λ2

)
. (12)

If λk > 1 then the following bound is tighter

log det(In + A)− log det(I` + T) ≤

log det (In−k + Λ2) + log det
(
In−k + γ2q−1

λk
‖Ω2Ω†1‖

2
2 Λ2

)
. (13)

Proof The structure of the proof is analogous to that of Theorem 6, and the first
three steps are the same for (12) and (13). Abbreviate f(·) ≡ log det(·).

1. Shrinking the space Lemma 2 implies

f(In + A)− f(I` + Q∗AQ) ≤ f(In + A)− f(Ik + H),

where

H ≡W∗TW = W∗Q∗AQ W = (U∗QW)∗
(

Λ1

Λ2

)
(U∗QW).

The upper bound for the absolute error equals

f(In + A)− f(Ik + H) = f(Ik + Λ1) + f(In−k + Λ2)− f(Ik + H)

= f(In−k + Λ2) + E .

Since nothing can be done about f(In−k + Λ2), it suffices to bound

E ≡ f(Ik + Λ1)− f(Ik + H). (14)

2. Exploiting the structure of Q and choosing W To simplify the expression for H,
we exploit the structure of Q and choose W as in the proof of Theorem 6. From
(11) follows

U∗QW =

(
Ik
F

)
(Ik + F∗F)−1/2, where F ≡ Λq

2 Ω2Ω†1 Λ−q1 .

Substituting this into the eigendecomposition of H gives

H = (Ik + F∗F)−1/2 (Λ1 + F∗Λ2F
)

(Ik + F∗F)−1/2.
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3. Lower bound for f(Ik + H) We use the Loewner partial order [23, Definition
7.7.1] to represent positive semi-definiteness, F∗Λ2F � 0, which implies

H � H1 ≡ (Ik + F∗F)−1/2 Λ1 (Ik + F∗F)−1/2. (15)

The properties of the Loewner partial order [23, Corollary 7.7.4] imply

f(Ik + H) ≥ f(Ik + H1).

We first derive (12) and then (13).

Derivation of (12) in Steps 4a–6a

4a. Sylvester’s determinant identity. Applying Lemma 3 to H1 in (15) gives

f(Ik + H1) = f(Ik + H2) where H2 ≡ Λ
1/2
1 (Ik + F∗F)−1Λ

1/2
1 .

5a. Upper bound for E in (14). Steps 3 and 4a imply

E ≤ f(Ik + Λ1)− f(Ik + H2) = f(H3),

where

H3 ≡ (Ik + H2)−1/2(Ik + Λ1)(Ik + H2)−1/2

= (Ik + H2)−1 + (Ik + H2)−1/2Λ1(Ik + H2)−1/2.

Expanding the first summand into (Ik + H2)−1 = I − (Ik + H2)−1/2H2(Ik +
H2)−1/2 gives

H3 = Ik + (Ik + H2)−1/2(Λ1 −H2)(Ik + H2)−1/2.

Since Ik − (Ik + F∗F)−1 � F∗F, the center term can be bounded by

Λ1 −H2 = Λ
1/2
1

(
Ik − (Ik + F∗F)−1

)
Λ

1/2
1 � K ≡ Λ

1/2
1 F∗FΛ

1/2
1 .

Because the singular values of (Ik + H2)−1/2 are less than 1, Ostrowski’s The-
orem [23, Theorem 4.5.9] implies

H3 � Ik + (Ik + H2)−1/2K(Ik + H2)−1/2 � Ik + K.

Thus E ≤ f(H3) ≤ f(Ik + K).

6a. Bounding f(Ik + K). Abbreviate G1 ≡ Λ
q−1/2
2 Ω2Ω†1Λ

−q+1/2
1 and expand K,

Ik + K = Ik + Λ
1/2
1 F∗FΛ

1/2
1 = Ik + G∗1Λ2G1.

Applying Lemma 3,

det(Ik + G∗1Λ2G1) = det(In−k + G1G∗1Λ2).
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The fact that the absolute value of a determinant is the product of the singular
values, and the inequalities for sums of singular values [22, Theorem 3.3.16]
implies

det(In−k + G1G∗1Λ2) ≤
n−k∏
j=1

σj(In−k + G1G∗1Λ2)

≤
n−k∏
j=1

(1 + σj(G1G∗1Λ2)).

Observe that ‖G1‖2 ≤ γq−1/2 ‖Ω2Ω†1‖2 and apply the singular value product
inequalities [22, Theorem 3.3.16(d)]

σj(G1G∗1Λ2) ≤ σ1(G1G∗1)σj(Λ2) ≤ γ2q−1 ‖Ω2Ω†1‖
2
2 λk+j , 1 ≤ j ≤ n− k,

and therefore

det(In−k + G1G∗1Λ2) ≤ det
(
In−k + γ2q−1 ‖Ω2Ω†1‖

2
2 Λ2

)
.

Thus
E ≤ f(Ik + K) ≤ f

(
In−k + γ2q−1 ‖Ω2Ω†1‖

2
2 Λ2

)
.

Derivation of (13) in Steps 4b–5b

4b. Upper bound for E in (14). For the matrix H1 in (15) write

Ik + H1 = (Ik + F∗F)−1/2 ((Ik + F∗F) + Λ1

)
(Ik + F∗F)−1/2

� H4 ≡ (Ik + F∗F)−1/2 (Ik + Λ1) (Ik + F∗F)−1/2.

Thus f(H4) = f(Ik+Λ1)−f(Ik+F∗F). The properties of the Loewner partial
order [23, Corollary 7.7.4] imply

E ≤ f(Ik + Λ1)− f(H4) ≤ f(Ik + F∗F).

5b. Bounding f(Ik + F∗F). Write

Ik + F∗F = Ik + G∗2Λ2G2 where G2 ≡ Λ
q−1/2
2 Ω2Ω†1Λ−q1 .

Observe that, G2 = G1Λ
−1/2
1 and therefore, ‖G2‖2 ≤ γq−1/2

√
λk
‖Ω2Ω†1‖2. The

rest of the proof follows the same steps as Step 6a and will not be repeated
here. ut

The following discussion mirrors that in Remark 1.

Remark 2 The two special cases below illustrate that, even in a best-case scenario,
the accuracy of log det(I` + T) is limited by log det(In−k + Λ2).

– If ` = k and Ω = U1 then

log det(In + A)− log det(I` + T) = log det(In−k + Λ2).

This follows from Lemma 2, and from both bounds in Theorem 8 with Ω1 = Ik
and Ω2 = 0.
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– If ` > k and Ω consists of the columns of U associated with the dominant
eigenvalues λ1, . . . , λ` of A, then

log det(In−k + Λ2)− log
∏̀

j=k+1

(1 + λj) ≤ log det(In + A)− log det(I` + T)

≤ log det(In−k + Λ2).

This follows from Lemma 2, and from both bounds in Theorem 8 with Ω1 =(
Ik 0k×(k−`)

)
and Ω2 =

(
0(n−k)×k ∗

)
.

Theorem 8 cannot be tight for the same reasons as in Remark 1.

The proof for the following bounds is very similar to that of Lemma 2 and
Theorem 8.

Theorem 9 In addition to the assumptions in Section 2.2.1, let A be positive definite;

and let T = Q∗AQ be computed by Algorithm 1. Then

0 ≤ log (det A)− log det(T) ≤

log det (Λ2) + log det

(
In−k +

γ2q−1

λk
‖Ω2Ω†1‖

2
2 Λ2

)
.

4 Probabilistic analysis

We derive probabilistic bounds for ‖Ω2Ω†1‖2, a term that represents the contri-
bution of the starting guess Ω in the dominant eigenspace U1 of A, when the
elements of Ω are either Gaussian random variables (Section 4.1) or Rademacher
random variables (Section 4.2).

The theory for Gaussian random matrices suggests the value p . 20 whereas
theory for Rademacher random matrices suggests that ` ∼ (k+log n) log k samples
need to be taken to ensure rank(Ω1) = k. However, the theory for Rademacher
random matrices is pessimistic, and numerical experiments demonstrate that a
practical value of p . 20 is sufficient.

4.1 Gaussian random matrices

For the Gaussian starting guess, we present bounds for expectation
We split our analysis into two parts: an average case analysis (Section 4.1.1)

and a concentration inequality (Section 4.1.1), and prove Theorem 1.

Definition 1 A “standard” Gaussian matrix has elements that are independently
and identically distributed random N (0, 1) variables, that is normal random vari-
ables with mean 0 and variance 1.

Appendix A summarizes the required results for standard Gaussian matrices.
In particular, we will need the following.

Remark 3 The distribution of a standard Gaussian matrix G is rotationally in-
variant. That is, if U and V are unitary matrices, then U∗GV has the same
distribution as G. Due to this property, the contribution of the starting guess on
the dominant eigenspace does not appear in the bounds below.
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4.1.1 Average case analysis

We present bounds for the expected values of ‖G‖22 and ‖G†‖22 for standard Gaus-
sian matrices G, and then prove Theorem 1.

Lemma 4 Draw two Gaussian random matrices G2 ∈ R(n−k)×(k+p) and G1 ∈
Rk×(k+p) and let p ≥ 2. With µ defined in (3), then

E
[
‖G2‖22

]
≤ µ2 + 2

(√
π

2
µ+ 1

)
. (16)

If, in addition, also k ≥ 2, then

E
[
‖G†1‖

2
2

]
≤ p+ 1

p− 1

(
1

2π (p+ 1)

)2/(p+1)(
e
√
k + p

p+ 1

)2

. (17)

Proof See Appendix A.

We are ready to derive the main theorem on the expectation of standard Gaus-
sian matrices.

Proof of Theorem 1 We start as in the proof of [19, Theorem 10.5]. The assump-
tions in Section 2.2.1 and Remark 3 imply that U∗Ω is a standard Gaussian matrix.
Since Ω1 and Ω2 are non-overlapping submatrices of U∗Ω, they are both standard
Gaussian and stochastically independent. The sub-multiplicative property implies
‖Ω2Ω†1‖2 ≤ ‖Ω2‖2‖Ω†1‖2.

We use independence of Ω2 and Ω1 and apply both parts of (17); with µ ≡√
n− k +

√
k + p this gives

E
[
‖Ω2Ω†1‖

2
2

]
≤
[
µ2 + 2

(√
π

2
µ+ 1

)]
p+ 1

p− 1

(
1

2π(p+ 1)

) 2
(p+1)

(
e
√
k + p

p+ 1

)2

.(18)

Bounding

µ2 + 2

(√
π

2
µ+ 1

)
≤ (µ+

√
2)2.

gives E
[
‖Ω2Ω†1‖

2
2

]
≤ Cge. Substituting into the result of Theorem 6 we have the

desired result in Theorem 1.
For a positive definite matrix log det(A) = trace(log(A)), therefore

log det(I + γ2q−1‖Ω2Ω†1‖
2
2Λ2) =

n∑
j=k+1

log
(

1 + γ2q−1‖Ω2Ω†1‖
2
2λj

)
.

Observe that log(1 + αx) is a concave function. Using Jensen’s inequality, for
j = k + 1, . . . , n

E
[

log(1 + γ2q−1λj‖Ω2Ω†1‖
2
2)
]
≤ log

(
1 + γ2q−1λjE

[
‖Ω2Ω†1‖

2
2

])
.

Since log(1+αx) is monotonically increasing function, the second result in The-
orem 1 follows by substituting the above equation into the bounds from Theorem 8
and simplifying the resulting expressions.
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4.1.2 Concentration inequality

As with the expectation bounds, it is clear that we must focus our attention on
the term ‖Ω2‖2‖Ω†1‖2. We reproduce here a result on on the concentration bound
of this term. The proof is provided in [16, Theorem 5.8].

Lemma 5 Let Ω2 ∈ R(n−k)×(k+p) and Ω1 ∈ Rk×(k+p) be two independent Gaussian

random matrices and let p ≥ 4. Then for 0 < δ < 1,

P
[
‖Ω2‖22‖Ω†1‖

2
2 ≥ Cg

]
≤ δ, (19)

where Cg is defined in Theorem 2.

The following statements mirror the discussion in [16, Section 5.3]. While the
oversampling parameter p does not significantly affect the expectation bounds
as long as p ≥ 2, it seems to affect the concentration bounds significantly. The
oversampling parameter p can be chosen in order to make (2/δ)1/(p+1) a modest
number, say less than equal to 10. Choosing

p =

⌈
log10

(
2

δ

)⌉
− 1,

for δ = 10−16 gives us p = 16. In our experiments, we choose the value for the
oversampling parameter p = 20.

4.2 Rademacher random matrices

We present results for the concentration bounds when Ω is a Rademacher random
matrix. We start with the following definition.

Definition 2 A Rademacher random matrix has elements that are independently
and identically distributed and take on values ±1 with equal probability.

Note that unlike standard Gaussian matrices, the distribution of a Rademacher
matrix is not rotationally invariant.

As before we partition U =
[
U1 U2

]
and let Ω1 = U∗1Ω and Ω2 = U∗2Ω. The

following result bounds the tail of ‖Ω2‖22‖Ω
†
1‖

2
2. This result can be used to readily

prove Theorem 3.

Theorem 10 Let ρ ∈ (0, 1) and 0 < δ < 1 and integers n, k ≥ 1. Let the number of

samples ` be defined in Theorem 3. Draw a random Rademacher matrix Ω ∈ Rn×`.
Then

P
[
‖Ω2‖22‖Ω†1‖

2
2 ≥ Cr

]
≤ δ,

where Cr is defined in Theorem 3.

Proof See Appendix B. ut

Remark 4 From the proof of Theorem 10, to achieve ‖Ω†1‖2 ≥ 3/
√
` with at least

99.5% probability and n = 1024, the number of samples required are

` ≥ 2.54(
√
k + 11)2(log(4k) + 4.7).

Here ρ = 8/9 is chosen to be so that 1/(1− ρ) = 9.
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Fig. 1 The quantity log10(‖Ω†1‖2) for different amounts of sampling ` = k + 1 to ` = k + 40.
We consider k = 10 (top left), k = 75 (bottom left), and k = 500 (bottom right). The top right
plot shows the percentage of numerically rank deficient sampled matrices.

The imposition that ` ≤ n implies that the bound may only be informative for k
small enough. Theorem 10 suggests that the number of samples ` ∼ (k+log n) log k

to ensure that ‖Ω†1‖2 is small and rank(Ω1) = k.

We investigate this issue numerically. We generate random Rademacher matri-
ces Ω1 ∈ Rk×`; here we assume U = In. Here we choose three different values for k,
namely k = 10, 75, 500. For each value of k, the oversampling ` varies from ` = k+1
to ` = k+ 40. We generate 500 runs for each value of `. In Figure 1 we plot ‖Ω†1‖

2
2

and the percentage that are rank deficient. For k = 10, a few samples were rank
deficient but the percentage of rank deficient matrices dropped significantly; after
p = 20 there were no rank deficient matrices. For larger values of k we observed
that none of the sampled matrices were rank deficient and p = 20 was sufficient
to ensure that ‖Ω†1‖

2
2 . 10. Similar results were observed for randomly generated

orthogonal matrices U. In summary, a modest amount of oversampling p . 20
is sufficient to ensure that rank(Ω1) = k for the Rademacher random matrices,
similar to Gaussian random matrices. In further, numerical experiments we shall
use this particular choice of oversampling parameter p.

5 Numerical Experiments

In this section, we demonstrate the performance of our algorithm and bounds on
two different kinds of examples. In the first example, we focus on small matrices
(with dimension 128) in the non-asymptotic regime. We show that our bounds are
informative and our estimators are accurate with high probability. In the second
examples, we look at medium sized matrices (of dimension 5000) and demonstrate
the behavior of our estimators.
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5.1 Small matrices

In this section we study the performance of the proposed algorithms on small test
examples.

The A is chosen to be of size 128× 128 and its eigenvalues satisfy λj+1 = γjλ1
for j = 1, . . . , n − 1. To help interpret the results of Theorems 1-3, we provide
simplified versions of the bounds. The relative error in the trace estimator can be
bounded as

∆t ≡
trace(A)− trace(T)

trace(A)
≤ (1 + γ2q−1C)

γk(1− γn−k)

1− γn . (20)

Here C can take the value Cg for Gaussian starting guess and Cr for Rademacher
starting guess.

For the logdet estimator, we observe that log(1 + x) ≤ x. Using the relation
log det(I+Λ) = trace log(I+A), it is reasonable to bound log det(I+Λ) by trace(Λ).
With the abbreviation f(·) = log det(·) we can bound the relative error of the
logdet estimator as

∆l ≡
f(I + A)− f(I + T)

f(I + A)
≤ (1 + γ2q−1C)

γk(1− γn−k)

1− γn .

Consequently, the error in the trace and logdet approximations approach 0 as
k → n and is equal to 0 if k = n.

In the following examples, we study the performance of the algorithms with
increasing sample size. It should be noted here that, since ` = k+ p and p is fixed,
increasing sample size corresponds to increasing the dimension k; consequently, the
location of the gap is changing, as is the residual error ∆ = trace(Λ2)/trace(Λ).
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Fig. 2 Accuracy of proposed estimators on matrix with geometrically decaying eigenvalues.
The relative error is plotted against the sample size. Accuracy of (left) trace and (right) logdet
estimators. Here Gaussian starting guess was used.

1. Effect of eigenvalue gap Matrices A are generated with different eigenvalue
distributions using the example code above. The eigenvalue gap parameter γ varies
from 0.98 to 0.86. We consider sampling from both Gaussian random matrices. The
oversampling was set to be p = 20 for both distributions. The subspace iteration
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parameter q was set to be 1. The results are displayed in Figure 2. Clearly, both
the trace and logdet become increasingly accurate as the eigenvalue gap increases.
This confirms the theoretical estimate in (20) since the error goes to zero as k → n.
The behavior of the error with both Gaussian and Rademacher starting guesses is
very similar and is not displayed here.

2. Comparison with Monte Carlo estimators We fix the eigenvalue gap to γ = 0.9,
sampling parameter p = 20 and subspace iteration parameter q = 1. We consider
sampling from both Gaussian and Rademacher random matrices and consider their
accuracy against their Monte Carlo counterparts. As mentioned earlier, the Monte
Carlo estimator cannot be directly applied to the logdet estimator; however, using
the following identity

log det(In + A) = trace log(In + A),

the Monte Carlo estimators can be applied to the matrix log(In + A). For a fair
comparison with the estimators proposed in this paper, the number of samples
used equals the target rank plus the oversampling parameter p = 20, i.e., (k + p)
samples. We averaged the Monte Carlo samplers over 100 independent runs. The
results are illustrated in Figure 3. It can be readily seen that when the matrix
has rapidly decaying eigenvalues, our estimators are much more accurate than
the Monte Carlo estimators. The number of samples required for the Monte Carlo
methods for a relative accuracy ε depends as ε−2, so the number of samples required
for an accurate computation can be large. For the logdet estimator, initially the
Monte Carlo estimator seems to outperform our method for small sample sizes;
however, the error in our estimators decays sharply. It should be noted that for
this small problem one can compute log(I + A) but for a larger problem it maybe
costly even prohibitively expensive. For all the cases described here, Gaussian and
Rademacher random matrices seem to have very similar behavior.
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Fig. 3 Comparison against Monte Carlo estimators for (left) trace and (right) logdet compu-
tations. The relative error is plotted against the sample size.

3. Effect of subspace iteration parameter The matrix A is the same as in the previ-
ous experiment but p is chosen to be 0. The subspace iteration parameter is varied
from q = 1 to q = 5. The results of the relative error as a function of ` are displayed
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in Figure 4. The behavior is similar for both Gaussian and Rademacher starting
guess, therefore we only display results for Gaussian starting guess. We would like
to emphasize that Algorithm 1 is not implemented as is since it is numerically
unstable and susceptible to round-off error pollution; instead a numerically stable
version is implemented based on [16, Algorithm A.1]. As can be seen, increasing
the parameter improves the accuracy for a fixed target rank k. However, both from
the analysis and the numerical results, this is clearly a case of diminishing returns.
This is because the overall error is dominated by trace(Λ2) and log det(In−k+Λ2).
Increasing the subspace iteration parameter q, only improves the multiplicative
factor in front of one of the terms. Moreover, in the case that the eigenvalues are
decaying rapidly, one iteration, i.e. q = 1 is adequate to get an accurate estimator.
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Fig. 4 Effect of subspace iteration parameter q on the (left) trace estimator and (right) logdet
estimator. The relative error is plotted against the sample size. Gaussian starting guess was
used. The behavior is similar for Rademacher starting guess.

4. How descriptive are the bounds? In this experiment we demonstrate the accu-
racy of the bounds derived in Section 3. The matrix is chosen to be the same
as the one in Experiment 2. In Figure 5 we consider the bounds in the trace es-
timator derived in Theorem 6. We consider both the Gaussian (left panel) and
Rademacher distributions (right panel). For comparison we also plot the term ∆,
which is the theoretical optimum. ‘Est 1’ refers to the first bound in (7) and ‘Est
2’ refers to the second bound in (8). Both the bounds are qualitatively similar to
both the true error and the theoretical estimate ∆, and also quantitatively within
a factor of 10 of the theoretical estimate ∆. Since γ is close to 1 and ‖Ω2Ω†1‖2 > 1,

γ‖Ω2Ω†1‖2 > 1 and therefore ‘Est 1’ is a more accurate estimator. The error of the
logdet estimator is plotted against the theoretical bounds (see Theorem 8) in Fig-
ure 6; as before, our estimator is both qualitatively and quantitatively accurate.
The conclusions are identical for both Gaussian and Rademacher matrices. The
empirical performance of this behavior is studied in the next experiment.

5. Concentration of measure We choose the same matrix as in Experiment 2. We
generate 105 starting guesses (both Gaussian and Rademacher) and compute the
distribution of relative errors for the trace (quantified by ∆t) and logdet (quan-
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Fig. 7 Empirical distribution of the relative error for the trace estimator. 105 samples were
used for the distribution.

tified by ∆l). Figures 7 and 8 show the empirical probability density function for
the relative errors in the trace and logdet respectively. We observe that the two
distributions are nearly identical and that the empirical density is concentrated
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about the mean. Furthermore, as the sample size ` increases, the both the mean
and variance of the empirical distribution decrease. These results demonstrate that
the randomized methods are indeed effective with high probability.
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Fig. 8 Empirical distribution of the relative error for the logdet estimator. 105 samples were
used for the distribution.

5.2 Medium sized example

This example is inspired by a test case from Sorensen and Embree [39]. Consider
the matrix A ∈ R5000×5000 defined as

A ≡
40∑
j=1

h

j2
xjx

T
j +

300∑
j=41

l

j2
xjx

T
j , (21)

where xj ∈ R5000 are sparse vectors with random nonnegative entries. In MATLAB
this can be generated using the command xj = sprand(5000,1,0.025). It should
be noted the vectors xj are not orthonormal; therefore, the outer product form is
not the eigenvalue decomposition of the matrix A. However, the eigenvalues decay
like 1/j2 with a gap at index 40, and its magnitude depends on the ratio h/l. The
exact rank of this matrix is 300.

First we fix l = 1 and consider two different cases h = 5, and 1000. The
oversampling parameter p = 20 and the subspace iteration parameter is q = 1.
The results are displayed in Figure 9. The accuracy of both the trace and the
logdet estimators improves considerably around the sample size ` = 40 mark,
when the eigenvalues undergo the large jump for h = 1000; the transition is less
sharp when h = 5. This demonstrates the benefit of having a large eigenvalue gap
in the accuracy of the estimators. As an extreme case, consider l = 0 and h = 2.
In this example, the matrix A has exactly rank 40, and therefore 40 matrix-vector
products with A are enough to recover the trace and logdet to machine precision.
This result highlights the power of our proposed estimators.
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Fig. 9 Accuracy of trace and logdet computations for the matrix in (21). (left) l = 1, h = 5
and (right) l = 1, h = 1000.
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Fig. 10 Accuracy of trace and logdet computations for the matrix in (21) with l = 0, h = 2.

6 Applications to evaluation of uncertainty quantification measures

As mentioned in the introduction, the computation of traces and log-determinants
of high-dimensional operators is essential is the emerging field of uncertainty quan-
tification. In this section, we use the methods developed in this article to compute
some common statistical quantities that appear in the context of Bayesian inverse
problems. In particular, we focus on a time-dependent advection-diffusion equa-
tion in which we seek to infer an uncertain initial condition from measurements
of the concentration at discrete points in space/time; This is a commonly used
example in the inverse problem community; see e.g., [3,1,13,34]. Below, we briefly
outline the components of the Bayesian inverse problem. The model problem used
here is an adaptated from [3], and therefore, we refer the readers to that paper for
further details.

The forward problem The forward problem models diffusive transport of a con-
taminant in a domain D ⊂ R2, which is depicted in Figure 11 (left). The domain
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Fig. 11 Left: the computational domain D is the region [0, 1]2 with two rectangular regions
(representing buildings) removed. The black dots indicate the locations of sensor where obser-
vations are recorded. Right: the velocity field.

boundary ∂D, is a combination of the outer edges of the domain as well as the
internal boundaries of the rectangles that model buildings. The forward operator

maps an initial condition θ to space/time observations of the contaminant concen-
tration, by solving the advection diffusion equation,

ut − κ∆u+ v · ∇u = 0 in D × (0, T ),

u(·, 0) = θ in D,
κ∇u · n = 0 on ∂D × (0, T ),

(22)

and extracting solution values at spatial points (sensor locations as indicated in
Figure 11 (left)) and at pre-specified times. Here, κ > 0 is the diffusion coefficient
and T > 0 is the final time. In our numerical experiments, we use κ = 0.001. The
velocity field v, shown in Figures 11, is obtained by solving a steady Navier-Stokes
equation with the side walls driving the flow; see [3] for details. The discretized
equations give rise to a discretized linear solution operator for the forward prob-
lem, which is composed with an observation operator to extract the space-time
observations. We denote this discretized forward operator by F.

The Bayesian inverse problem The inverse problem aims to use a vector of ob-
served data d, which consists of sensor measurements at discrete points in time,
to reconstruct the uncertain initial condition. The dimension of d, which we de-
note by q, is given by the product of the number of sensors and the number of
points in time where observations are recored. In the present example, we use 35
sensors and record measurements at t = 1, t = 2, and t = 3.5. Therefore, we have
d ∈ RNobs , with Nobs = 105, and that F : Rn → R105. We use a Gaussian prior
measure N (θ0,C0), and use an additive Gaussian noise model. Following [3], the
prior covariance is chosen to be the discretized biharmonic operator. The solution
of the Bayesian inverse problem is the posterior measure, N (θpost,Cpost) with

Cpost = (F∗Γ−1
noiseF + C−1

0 )−1, θpost = Cpost(F
∗Γ−1

noised + C−1
0 θ0),

We denote, by H ≡ F∗Γ−1
noiseF, the Fisher information matrix. In many applica-

tions H has a rapidly decaying spectrum; see Figure 12 (left). Moreover, in the
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Fig. 12 Left: first 300 eigenvalues of H; right: normalized nonzero eigenvalues of H and H0.

present setup, the rank of H is bounded by the dimension of the observations,
which in our example is given by Nobs = 105. The prior-preconditioned Fisher
information matrix

H0 = C
1/2
0 HC

1/2
0 ,

is also of importance in what follows. Notice that preconditioning of H by the prior,
due to the smoothing properties of the priors employed in the present example,
results in a more rapid spectral decay; see Figure 12(right).

We point out that the quantity trace(H0) is related to the sensitivity cri-

terion in optimal experimental design (OED) theory [44]. On the other hand,
log det(I + H0) is related to Bayesian D-optimal design criterion [11]. As shown
in [2], log det(I+H0) is the expected information gain from the posterior measure
to the prior measure in a Bayesian linear inverse problem with Gaussian prior
and noise distributions, and with an inversion parameter that belongs to a Hilbert
space. Note that in the present context, information gain is quantified by the
Kullback–Leibler divergence from posterior measure to prior measure. A detailed
discussion of uncertainty measures is also provided in [38].

In Figure 13, we report the error in approximation of trace(H) and log det(I +
H0). Both of these quantities are of interest in theory OED, where one is in-
terested in measures of uncertainty in reconstructed parameters [5,44]. Such sta-
tistical measures are then used to guide the experimental configurations used to
collect experimental data so as to maximize the statistical quality of the recon-
structed/inferred parameters. Note that, in the present example, an experimental
configuration is given by the placement of sensors (black dots in Figure 11 (left)
where concentration data is recorded).

7 Conclusion

We present randomized estimators for the trace and log-determinant of implicitly
defined Hermitian positive semi-definite matrices. The estimators are low-rank
approximations computed with subspace iteration. We show, theoretically and
numerically, that our estimators are effective for matrices with a large eigenvalue
gap or rapidly decaying eigenvalues.

Our error analyses for the estimators are cleanly separated into two parts: A
structural analysis, which is applicable to any choice of a starting guess, paves the
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Fig. 13 Left: error in estimation of trace(H0); right: error in estimation of log det(H0 + I).
Computations were done using p = 20 and the randomized estimators use ` = k + p random
vectors with increasing values of k.

way for a probabilistic analysis, in this case for Gaussian and Rademacher start-
ing guesses. In addition, we derive asymptotic bounds on the number of random
vectors required to guarantee a specified accuracy with low probability of failure.
We present comprehensive numerical experiments to illustrate the performance of
the estimators, and demonstrate their suitability for challenging application prob-
lems, such as the computation of the expected information gain in a Bayesian
linear inverse problem governed by a time-dependent PDE.

Future work will evolve around two main issues.

Rademacher random matrices. Our analysis implies that a Gaussian starting guess
can do with a fixed oversampling parameter, while the oversampling amount for a
Rademacher starting guess depends on the dimension of the dominant eigenspace
and the dimension of the matrix. However, the numerical experiments indicate
that, for both types of starting guesses, an oversampling parameter of 20 leads to
accurate estimators. We plan to further investigate estimators with Rademacher
starting guesses, and specifically to derive error bounds for the expectation of
the corresponding estimators. Another issue to be explored is the tightness of the
bound ` ∼ (k + log n) log k for Rademacher starting guesses.

Applications. We plan to integrate our estimators into computational methods
for large-scale uncertainty quantification. Our main goal is the computation of
optimal experimental designs (OED) for large-scale inverse problems. This can be
posed as an optimization problem, where the objective function is the trace or
log-determinant of a high-dimensional operator. Due to their efficiency and high
accuracy, we expect that our estimators are well suited for OED.

A Gaussian Random Matrices

In this section, we state a lemma on the pseudo-inverse of a rectangular Gaussian random
matrix, and use this result to prove both parts of Lemma 4.
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A.1 Pseudo-inverse of a Gaussian random matrix

We state a result on the large deviation bound of the pseudo-inverse of a Gaussian random
matrix [19, Proposition 10.4].

Lemma 6 Let G ∈ Rk×(k+p) be a random Gaussian matrix and let p ≥ 2. For all t ≥ 1,

P
[
‖G†‖2 ≥

e
√
k + p

p+ 1
· t
]
≤ t−(p+1). (23)

A.2 Proof of Lemma 4

Proof From [45, Corollary 5.35] we have

P
[
‖G2‖2 >

√
n− k +

√
k + p+ t

]
≤ exp(−t2/2).

Recall from (3) µ =
√
n− k +

√
k + p. From the law of the unconscious statistician [16,

Proposition S4.2],

E
[
‖G2‖22

]
=

∫ ∞
0

2tP [ ‖G2‖2 > t] dt

≤
∫ µ

0
2tdt+

∫ ∞
µ

2tP [ ‖G2‖2 > t] dt

≤ µ2 +

∫ ∞
0

2(u+ µ) exp(−u2/2)du = µ2 + 2

(
1 + µ

√
π

2

)
.

This concludes the proof for (16).

Next consider (17). Using Lemma 6, we have for t > 0

P
[
‖G†1‖2 ≥ t

]
≤ Dt−(p+1) D ≡

1√
2π(p+ 1)

(
e
√
k + p

p+ 1

)
. (24)

As before, we have

E
[
‖G†1‖

2
2

]
=

∫ ∞
0

2tP
[
‖G†1‖2 > t

]
dt

≤
∫ β

0
2tdt+

∫ ∞
β

2tP
[
‖G†1‖2 > t

]
dt

≤ β2 +

∫ ∞
β

2tDt−(p+1)dt = β2 + 2D
β1−p

p− 1
.

Minimizing w.r.t. β, we get β = (D)1/(p+1). Substitute this value for β and simplify. ut

B Rademacher Random Matrices

In this section, we state the matrix Chernoff inequalities [43] and other useful concentration
inequalities and use these results to prove Theorem 10.
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B.1 Useful concentration inequalities

The proof of Theorem 10 relies on the matrix concentration inequalities developed in [43]. We
will need the following result [43, Theorem 5.1.1] in what follows.

Theorem 11 (Matrix Chernoff) Let {Xk} be finite sequence of independent, random, d×d
Hermitian matrices. Assume that 0 ≤ λmin(Xk) and λmax(Xk) ≤ L for each index k. Let us
define

µmin ≡ λmin

(∑
k

E [ Xk]

)
µmax ≡ λmax

(∑
k

E [ Xk]

)
,

and let g(x) ≡ ex(1 + x)−(1+x). Then for any ε > 0

P

[
λmax

(∑
k

Xk

)
≥ (1 + ε)µmax

]
≤ dg(ε)µmax/L,

and for any 0 ≤ ε < 1

P

[
λmin

(∑
k

Xk

)
≤ (1− ε)µmin

]
≤ dg(−ε)µmin/L.

The following result was first proved by Ledoux [25] but we reproduce the statement
from [42, Proposition 2.1].

Lemma 7 Suppose f : Rn → R is a convex function that satisfies the following Lipschitz
bound

|f(x)− f(y)| ≤ L‖x− y‖2 for all x,y ∈ Rn.
Let z ∈ Rn be a random vector with entries drawn from an i.i.d. Rademacher distribution.
Then, for all t ≥ 0,

P [ f(z) ≥ E [ f(z)] + Lt] ≤ e−t
2/8.

Lemma 8 Let V be a n × r matrix with orthonormal columns and let n ≥ r. Let z be an
n× 1 vector with entries drawn from an i.i.d. Rademacher distribution. Then, for 0 < δ < 1,

P

[
‖V∗z‖2 ≥

√
r +

√
8 log

(
1

δ

)]
≤ δ.

Proof Our proof follows the strategy in [42, Lemma 3.3]. Define the function f(x) = ‖V∗x‖2.
We observe that f satisfies the assumptions of Lemma 7, with Lipschitz constant L = 1; the
latter follows from

|‖V∗x‖2 − ‖V∗y‖2| ≤ ‖V∗(x− y)‖2 ≤ ‖x− y‖2.

Furthermore, using Hölder’s inequality

E [ f(z)] ≤ [E
[
f(z)2

]
]1/2 = ‖V‖F =

√
r.

Using Lemma 7 with tδ =
√

8 log (1/δ) we have

P
[
f(z) ≥

√
r + tδ

]
≤ P [ f(z) ≥ E [ f(z)] + tδ] ≤ e−t

2
δ/8 = δ. ut

Lemma 9 Let Xi for i = 1, . . . , n be a sequence of i.i.d. random variables. If for each i =
1, . . . , n, P [Xi ≥ a] ≤ ξ holds, where ξ ∈ (0, 1], then

P
[

max
i=1,··· ,n

Xi ≥ a
]
≤ nξ.

Proof Since P [Xi ≥ a] ≤ ξ then P [Xi < a] ≥ 1− ξ. We can bound

P
[

max
i=1,··· ,n

Xi ≥ a
]

=

(
1− P

[
max

i=1,··· ,n
Xi < a

])
=

(
1−

n∏
i=1

P [Xi < a]

)
≤ 1− (1− ξ)n.

The proof follows from Bernoulli’s inequality [40, Theorem 5.1] which states (1− ξ)n ≥ 1−nξ
for ξ ∈ [0, 1] and n ≥ 1. ut
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B.2 Proof of Theorem 10

Proof Recall that Ω1 = U∗1Ω and Ω2 = U∗2Ω where Ω is random matrix with entries chosen
from an i.i.d. Rademacher distribution. The proof proceeds in three steps.

1. Bound for ‖Ω2‖22 The proof uses the matrix Chernoff concentration inequality. Let

ωi ∈ Rn×1 be the i-th column of Ω. Note Ω2Ω∗2 ∈ C(n−k)×(n−k) and

E [ Ω2Ω∗2] =
∑̀
i=1

U∗2E [ωiω
∗
i ] U2 = `In−k.

Furthermore, define µmin(Ω2Ω∗2) ≡ λmin(E
[
Ω2Ω∗2

]
) and µmax(Ω2Ω∗2) ≡ λmax(E

[
Ω2Ω∗2

]
).

Clearly µmin = µmax = `. Note that here we have expressed Ω2Ω∗2 as a finite sum of ` rank-1
matrices, each with a single nonzero eigenvalue ω∗iU2U∗2ωi. We want to obtain a probabilistic

bound for the maximum eigenvalue i.e., L2 = maxi=1,··· ,` ‖U∗2ωi‖22. Using Lemma 8 we can

write with probability at most e−t
2/8(√

n− k + t
)2
≤ ‖U∗2ωi‖22 = ω∗iU2U∗2ωi.

Since ‖U∗2ωi‖22 are i.i.d., applying Lemma 9 gives

P
[

max
i=1,··· ,`

‖U∗2ωi‖2 ≥
√
n− k + t

]
≤ `e−t

2/8.

Take t =
√

8 log(4`/δ) to obtain

P
[
L2 ≥ C2

u

]
≤ δ/4, Cu ≡

√
n− k +

√
8 log

(
4`

δ

)
. (25)

The matrix Ω2 satisfies the conditions of the matrix Chernoff theorem 11; for η ≥ 0 we
have

P [λmax(Ω2Ω∗2) ≥ (1 + η)`] ≤ (n− k)g(η)
`
L2 ,

where the function g(η) is defined in Theorem 11. For η > 1 the Chernoff bounds can be

simplified [30, Section 4.3] since g(η) ≤ e−η/3, to obtain

P [λmax(Ω2Ω∗2) ≥ (1 + η)`] ≤ (n− k) exp

(
−
η`

3L2

)
.

Choose the parameter

ηδ = C`,δC
2
u = 3`−1C2

u log

(
4(n− k)

δ

)
,

so that

P
[
‖Ω2‖22 ≥ (1 + ηδ)`

]
≤ (n− k) exp

(
−
C2
u

L2
log

4(n− k)

δ

)

= (n− k)

(
δ

4(n− k)

)C2
u/L2

.

Finally, we want to find a lower bound for ‖Ω2‖22. Define the events

A =
{
Ω2 | L2 < C2

u

}
, B =

{
Ω2 | ‖Ω2‖22 ≥ (1 + ηδ)`

}
.

Note that P [Ac] ≤ δ/4 and under event A we have C2
u > L2 so that

P [B | A] ≤ (n− k)

(
δ

4(n− k)

)C2
u/L2

≤ δ/4.
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Using the law of total probability

P [B] = P [B | A]P [A] + P [B | Ac]P [Ac]

≤ P [B | A] + P [Ac] ,

we can obtain a bound for P [B] as

P
[
‖Ω2‖22 ≥ `

(
1 + C2

uC`,δ
)]
≤ δ/2.

2. Bound for ‖Ω†1‖
2
2 The steps are similar and we again use the matrix Chernoff concen-

tration inequality. Consider Ω1Ω∗1 ∈ Ck×k, and as before, write this matrix as the sum of
rank-1 matrices to obtain

E [ Ω1Ω∗1] =
∑̀
i=1

U∗1E [ωiω
∗
i ] U1 = `Ik,

and µmin(Ω1Ω∗1) = `. Each summand in the above decomposition of Ω1Ω∗1 has one nonzero
eigenvalue ω∗iU1U∗1ωi. Following the same strategy as in Step 1, we define L1 ≡ maxi=1,...,` ‖U∗1ωi‖22
and apply Lemma 8 to obtain

P
[

max
i=1,··· ,`

‖U∗1ωi‖2 ≥
√
k + t

]
≤ `e−t

2/8 ≤ ne−t
2/8.

Take t =
√

8 log(4n/δ) to obtain

P
[
L1 ≥ C2

l

]
≤ δ/4, Cl ≡

√
k +

√
8 log

(
4n

δ

)
. (26)

A straightforward application of the Chernoff bound in Theorem 11 gives us

P [λmin(Ω1Ω∗1) ≤ (1− ρ)`] ≤ kg(−ρ)
`
L1 .

Next, observe that − log g(−ρ) has the Taylor series expansion in the region 0 < ρ < 1

− log g(−ρ) = ρ+ (1− ρ) log(1− ρ) =
ρ2

2
+
ρ3

6
+
ρ4

12
+ . . .

so that − log g(−ρ) ≥ ρ2/2 for 0 < ρ < 1 or g(−ρ) ≤ e−ρ2/2. This gives us

P
[
‖Ω†1‖

2
2 ≥

1

(1− ρ)`

]
≤ k exp

(
−
ρ2`

2L1

)
, (27)

where we have used λmin(Ω1Ω∗1) = 1/‖Ω†1‖22 assuming rank(Ω1) = k.
With the number of samples as defined in Theorem 3

` ≥ 2ρ−2C2
l log

(
4k

δ

)
,

the Chernoff bound (27) becomes

P
[
‖Ω†1‖

2
2 ≥

1

(1− ρ)`

]
≤ k

(
δ

4k

)C2
l /L1

.

Define the events

C =

{
Ω1 | ‖Ω†1‖

2
2 ≥

1

(1− ρ)`

}
, D = {Ω1 | L1 < C2

` }.

Note that P [Dc] ≤ δ/4 from (26). Then since the exponent is strictly greater than 1, we have

P [C | D] ≤ k
(
δ

4k

)C2
l /L1

≤ δ/4.

Using the conditioning argument as before gives P [C] ≤ δ/2.
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3. Combining bounds Define the event

E =

{
Ω | ‖Ω†1‖

2
2 ≥

1

(1− ρ)`

}
, F =

{
Ω | ‖Ω2‖22 ≥ (1 + C`,δC

2
u)`
}
,

where C`,δ is defined in Step 1, P [E] ≤ δ/2 and from Step 2, P [F ] ≤ δ/2. It can be verified
that {

Ω | ‖Ω2‖22‖Ω
†
1‖

2
2 ≥

1

1− ρ
(1 + C`,δC

2
u)

}
⊆ E ∪ F,

and therefore, we can use the union bound

P
[
‖Ω2‖22‖Ω

†
1‖

2
2 ≥

1

1− ρ
(1 + C`,δC

2
u)

]
≤ P [E] + P [F ] ≤ δ.

Plugging in the value of C`,δ and C2
u from Step 1 gives the desired result. ut
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