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Abstract

In this paper, we present a novel second order in time mixed finite element scheme for the
Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard
second order Crank-Nicholson method for the Navier-Stokes equations and a modification to
the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order
Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy
stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally
energy stable with respect to a modification of the continuous free energy of the PDE system.
Specifically, the discrete phase variable is shown to be bounded in £*° (0, T'; L>°) and the discrete
chemical potential bounded in ¢*° (O, T Lz), for any time and space step sizes, in two and three
dimensions, and for any finite final time 7. We subsequently prove that these variables along
with the fluid velocity converge with optimal rates in the appropriate energy norms in both two
and three dimensions.

Keywords: Cahn-Hilliard equation, Navier-Stokes, mixed finite element methods, convex split-
ting, energy stability, error estimates, second order
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1 Introduction

In this paper, we prove error estimates for a fully discrete, second order in time, finite element
method for the Cahn-Hilliard-Navier-Stokes (CHNS) model for two-phase flow. Let Q C R%
d = 2,3, be an open polygonal or polyhedral domain. For all ¢ € H'(Q),u € L?(€Q), consider the
energy
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where ¢ represents a concentration field, u represents fluid velocity, and ¢ is a positive constant.
The CHNS system is a gradient flow of this energy [17, [18], 22} 24]:

Op+Vop-u=eV-(M(p)Vu), inQr, (1.2a)
p=c"'(¢*—¢) —cAp, inQr, (1.2b)
ou—nAu+u-Vu+ Vp=~yuVe, inQrp, (1.2¢)
V-u=0, inQp, (1.2d)

On¢® =0t =0,u=0 ond2x (0,7), (1.2¢)

where M (¢) > 0 is a mobility, n = —e where Re is the Reynolds number, v = —* where We* is
the modified Weber number that measures relative strengths of kenetic and surface energies, and
1 is the chemical potential:

pi= 0 = é (¢* — ¢) — eAg. (1.3)

Here 04 denotes the variational derivative of (LIl with respect to ¢. The equilibria are the pure
phases ¢ = £1. The boundary conditions are of local thermodynamic equilibrium and no-flux/no-
flow /no-slip type.

A weak formulation of ([.2a)) — (L2e) may be written as follows: find (¢, 4, u, p) such that

¢ €L>®(0,T; Hl(Q)) NLY(0,T; L (), (1.4a)
Ohp € L* (0,T; HH(Q)), (1.4b)
peL?(0,T; HY(Q ), (1.4c)
uel?(0,T; H0 )ﬂLOO (0,T;L%(Q)), (1.4d)
duel?(0,T;H(Q), (1.4e)
peL?*(0,T; LO(Q)), (1.4f)
and there hold for almost all ¢ € (0,7)
(Orp,v) +ea(p, )+b(¢,u v)=0, VYveH(Q), (1.5a)
(1.0) —cal6,0) = (= 60) =0, Ve HY(Q),  (15b)
(O, v) +na(u,v) + B(u,u,v) —c(v,p) —yb(d,v,u) =0, YveHQ), (1.5¢)
c(u.q) =0, VYqe L), (1.5d)
where
a(u,v) := (Vu,Vv), b@,v,v):= (V- -v,v), (1.6)
c(v,q) =(V-v,q), B(uv,w):= % [(u-Vv,w)—(u-Vw,v)], (1.7)
with the “compatible” initial data
$(0) = ¢y € H3(Q) := {ve H?*(Q) ‘ dpv = 00000},
u0)=ueV:={ve H ()| (V-v,q) =0,Vq € Lg(Q)} , (1.8)

and we have taken M(¢) = 1 for simplicity. Observe that the homogeneous Neumann boundary
conditions associated with the phase variables ¢ and p are natural in this mixed weak formulation



of the problem. We define the space LZ as the subspace of functions of L? that have mean zero.
Furthermore, we state the following definitions of which the first is non-standard: H~!(Q) :=
(Hl(Q))*, H{(Q) = [H&(Q)]d, H-1(Q) := (H(l](Q))*, and (-, -) as the duality paring between
H~1' and H! in the first instance and the duality paring between H~!(Q) and (H(l](Q))* in the
second. The notation ®(t) := ®(-,t) € X views a spatiotemporal function as a map from the time
interval [0,7] into an appropriate Banach space, X. We use the standard notation for function
space norms and inner products. In particular, we let |lu|| := [Ju|| ;2 and (u,v) := (u,v) 2, for all
u,v € L3(Q).

The existence of weak solutions to (L5al) — (L5d]) is well known. See, for example, [28]. Tt is
likewise straightforward to show that weak solutions of (L5al) — (L5d) dissipate the energy (LTI).
In other words, ([.2al) — (I.2e]) is a mass-conservative gradient flow with respect to the energy (I.T]).
Precisely, for any ¢ € [0,T], we have the energy law

E(6(t), u(t)) + / eIV + L vu(s) |2 ds = E(éo, o), (1.9)
0 v

and where mass conservation (for almost every t € [0, 7], (¢(t) — ¢o,1) = 0) of the system ([.5al) —
(L5d) is shown by observing that b(¢,u,1) = 0, for all ¢ € L*(Q) and all u € V.

Numerical methods for modeling two-phase flow via phase field approximation has been exten-
sively investigated. See, for example, [4,[5, 89, [10] 1T T3], 14} 24] 251 26, 28], 29, [32], BT [33], 34L [35], 36]
and the references therein). Of the most recent, Shen and Yang [33] proposed two new numerical
schemes for the Cahn-Hilliard-Navier-Stokes equations, one based on stabilization and the other
based on convex splitting. Their new schemes have the advantage of being totally decoupled, lin-
ear, and unconditionally energy stable. Additionally, their schemes are adaptive in time and they
provide numerical experiments which suggest that their schemes are at least first order accurate in
time. However, no rigorous error analysis was presented.

Abels et. al. [1] introduce a thermodynamically consistent generalization to the Cahn-Hilliard-
Navier-Stokes model for the case of non-matched densities based on a solenoidal velocity field. The
authors demonstrate that their model satisfies a free energy inequality and conserves mass. The
work of Abels et. al. builds on the pioneering paper of Lowengrub and Truskinovsky [30] who use
a mass-concentration formulation of the problem. Perhaps the fundamental difference between the
approaches is that the model of Lowengrub and Truskinovsy end up with a velocity field that is
not divergence free, in contrast with that of Abels et. al.. For this reason, and others, developing
suitable numerical schemes for the model in [30] is a difficult task, but see the recent work of [16].
Garcke et. al. [I2] present a new time discretization scheme for the numerical simulation for the
model in [I]. They show that their scheme satisfies a discrete in time energy law and go on to develop
a fully discrete model which preserves that energy law. They are furthermore able to show existence
of solutions to both the time discrete and fully discrete schemes. Again, however, no rigorous error
analysis is undertaken for either of these schemes. Griin et al. [I3] [14] provide another numerical
scheme for the non-matched density model and they carry out an abstract convergence analysis
for their scheme. Rigorous error analysis (with, say, optimal order error bounds) for models with
non-matched densities seems to be a difficult prospect, but a very interesting line of inquiry for the
future.

Most of the papers referenced above present first order accurate in time numerical schemes.
Second order in time numerical schemes provide an obvious advantage over first order schemes by
decreasing the amount of numerical error. On the other hand, second-order (in time) methods are
almost universally more difficult to analyze than first-order methods. A few such methods have
been developed in recent years [5], 18] 21, 23]. Most notably, Han and Wang [I8] present a second



order in time, uniquely solvable, unconditionally stable numerical scheme for the CHNS equations
with match density. Their scheme is based on a second order convex splitting methodology for the
Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. The authors show
that the scheme satisfies a modified discrete energy law which mimics the continuous energy law and
prove that their scheme is uniquely solvable. However, no rigorous error analysis is presented and
stability estimates are restricted to those gleaned from the energy law. The overall scheme is based
on the Crank Nicholson time discretization and a second order Adams Bashforth extrapolation.
Chen and Shen [5] have very recently refined the scheme of Han and Wang [18].

In this paper, we study a second-order in time mixed finite element scheme for the CHNS system
of equations with matched densities. The method essentially combines the recently analyzed second-
order method for the Cahn-Hilliard equation from [7, [I5] and the pioneering second-order (in time)
linear, Crank-Nicholson methodology for the Navier-Stokes equations found in [3]. The Cahn-
Hilliard scheme from [7 [I5] is based on convex splitting and some key modifications of the Crank-
Nicholson framework. The mixed finite element version of the scheme was analyzed rigorously
in [7]. The scheme herein is coupled, meaning the Cahn-Hilliard and Navier-Stokes must be solved
simultaneously. But, the method is almost linear, with only a single weak nonlinearity present
from the chemical potential equation. In particular, second order Adams-Bashforth extrapolations
are used to linearize some terms and maintain the accuracy of the method, without compromising
the unconditional energy stability and unconditional solvability of the scheme. The convergence
analysis of a fully decoupled scheme, such as those in [5l [18] is far more challenging. The present
work may be viewed as a first step towards analyzing such methods.

Theoretical justification for the convergence analysis and error estimates of numerical schemes
applied to phase field models for fluid flow equations has attracted a great deal of attention in
recent years. In particular, the recent work [6] provides an analysis for an optimal error estimate
(in the energy norms) for a first-order-accurate convex splitting finite element scheme applied to
the Cahn-Hilliard-Nonsteady-Stokes system. The key point of that convergence analysis is the
derivation of the maximum norm bound of the phase variable, which becomes available due to
the discrete £2(0,T; H') stability bound of the velocity field, at the numerical level. However, a
careful examination shows that the same techniques from [6] cannot be directly applied to the
second-order-accurate numerical scheme studied in this paper. The primary difficulty is associated
with the 3/4 and 1/4 coefficient distribution in the surface diffusion for the phase variable, at time
steps t"T1, t"~1 respectively. In turn, an ¢°°(0,T; H?) estimate for the phase variable could not
be derived via the discrete Gronwall inequality in the standard form.

We therefore present an alternate approach to recover this £>°(0, T'; H?) estimate for the phase
field variable. A backward in time induction estimate for the H? norm of the phase field variable is
applied. In addition, its combination with the £°°(0, T; L?) estimate for the chemical potential leads
to an inequality involving a double sum term, with the second sum in the form of Z;”:l(%)m_j .
Subsequently, we apply a very non-standard discrete Gronwall inequality, namely Lemma [A.2] in
Appendix [Al so that an £°°(0,7; H?) bound for the numerical solution of the phase variable is
obtained. Moreover, the growth of this bound is at most linear in time, which is a remarkable
result.

It turns out that this stability bound greatly facilitates the second order convergence analysis in
the energy norms for the numerical scheme presented in this paper. We point out that because of
the £>°(0,T; H?) bound for the discrete phase variable, we are able to carry out the analysis on the
Navier-Stokes part of the system that is much in the spirit of that which appears in Baker’s ground-
breaking paper [3]. Due to the increased complexity of numerical calculations and the appearance
of the nonlinear convection terms, a few more technical lemmas are required for the analysis in-
cluded in this paper compared to the work presented in [6] for the Cahn-Hilliard-Nonsteady-Stokes



system. The use of these lemmas results in a numerical scheme which attains optimal convergence
estimates in the appropriate energy norms: ¢>°(0,T; H') for the phase variable and ¢2(0,T; H') for
the chemical potential. Moreover, such convergence estimates are unconditional: no scaling law is
required between the time step size 7 and the spatial grid size h.

The remainder of the paper is organized as follows. In Section 2] we define our second order
(in time) mixed finite element scheme and prove that the scheme is unconditionally stable and
solvable with respect to both the time and space step sizes. In Section Bl we provide a rigorous
error analysis for the scheme under suitable regularity assumptions for the PDE solution. Finally,
a few discrete Gronwall inequalities are reviewed and analyzed in Appendix [Al

2 A Second-Order-in-Time, Mixed Finite Element Scheme

2.1 Definition of the Scheme

Let M be a positive integer and 0 =ty < t; < --- < tpy = T be a uniform partition of [0, 7], with
T=tiy1—t;andi=0,...,M—1. Suppose T, = { K} is a conforming, shape-regular, quasi-uniform
family of triangulations of Q. For r € ZT, define M" := {vec () | vl € Pr(K),V K €T} C
HY(Q) and MP, .= MEN HE(Q).
For a given positive integer g, we define the following:

Sy = MZ,

Sp = S, N L3(),

Xy i={ve [CoQ)]" | vie Ml 00 =1, d},

V), = {v € X, ‘ (V- v,w) = 0,Yw & §h}.
With the finite element spaces defined above, our mixed second-order convex splitting scheme is
defined as follows: for any 1 < m < M, given gme,qSZn_l € Sp,upt,up = Xp,ppt € Sy, find
¢zn+1,,u 3 € Sp,u m+1 € X}, and pm+1 € S, such that

1 1 L 1
<6T¢;Ln+2,u> +ca <,u2n+2,1/> +b< Zn+2,ﬁ2n+2,u

(x (65 1) ) — <¢m+2’¢’> e (‘Z’T%””) - <M?Z+§,w = 0¥y eS,  (21b)

1 1 1 1
<5Tuhm+2,v> +na (uhm+ > —I—B< m+2,u2n+2,v> —c <v,ﬁ2n+2>
1 m >

1
5

m+2 3
c<1‘1h+2,q = 0,Yq €5y, (2.1d)
where
m+1 m
m—l—2 . @b _¢h m+2 L m+1 1 m m+2 3 m_l m—1
T(b . - ) (b . 2¢ + 2¢h7 ¢ . 2¢h 2¢h )
metg 3 m 1 m— m m 1 m 2 m Tmtg
L 2= Z(Zﬁh e Z(bh Lox (et en) = 2 ((% 7+ (oh )2> heoo (2:2)



The notation involving the pressure and velocity approximations are similar. For initial conditions
we take

Oh = RBndo, &), := Rag(), uj:=Ppug, w, :=Ppu(r), pj:= Pipo, pj, = Pap(r),  (2.3)
where Ry, : H'(2) — S, is the Ritz projection,
0 (Brd— 6,€) =0, VEESh, (Rnp— 1) =0, (2.4)
and (P, P,) : V x L3 — V), x S}, is the Stokes projection,
na(Ppu—wu,v) —c(v,P,p—p) =0, VveIXy,
c(Pou—u,q) =0, VgeS. (2.5)

It will be useful for our stability analyses to define the chemical potential at the % time step via
3 1 1,0 L (3 -3
Mh7w ::g (X ((bh?(bh)?w)_g (bhaq/} +eca ¢h7w ) Vwesh (26)

1
We also define the residual function p; € S}, that solves

1 1 1 11
(pfl,y> = <5T¢}2L,1/> —|—€a<,u,2l,1/> —|—b<¢,2l,uﬁ,l/>, Vv e S (2.7)

1
While we do not expect the residual p; to be identically zero for finite h,7 > 0, it will be stable in
the relevant norms with the assumption of sufficiently regular PDE solutions.

Remark 2.1. We have assumed exact expressions for (ﬁ}L and u}lL. This is done to manage the
length of the manuscript. We can employ a separate initialization scheme, but the analysis becomes
far more tedious. See, for example, [7]. We point out that, because of the properties of the Ritz
projection,

(1) = (dn1) (2:8)
under the natural assumption that (¢(0),1) = (¢(7),1). Furthermore, note that this implies,

1
(5, : 1) 0.
Proposition 2.2. Suppose that ¢ € Sy, and v € Vy, are arbitrary. Then
b(¢,v,1) =0. (2.9)
Proof. Using integration-by-parts, we get

b(?[),V,l) = (V¢,V) :—(T/J,V'V) = _E(LV'V)_ (Qﬁ—E,V'V)
= —¢Yc(l,v)—c(¢—1,v) =0. (2.10)

Observe that ¢ (1,v) = 0 by the divergence theorem, using v-n = 0 on 9f2, and ¢ (w — ), v) =0
sincew—ﬁeﬁh and v € Vj,. O



Remark 2.3. The last result relies on the fact that ¢ — 1) € S‘h. In other words, the phase field
space should be a subspace of the pressure space, which is restrictive. If this does not hold, mass
conservation is lost. It may, however, be possible to prove what we wish using a variation of the
trilinear form b. For example, we may take the alternate form

b(,v,q) = (Vi -v,v)+ (V- -v,ov).

This allows us to decouple the pressure space from the phase space. The analysis of this case will
be considered in a future work.

Remark 2.4. For the Stokes projection, if the family of meshes satisfy certain reasonable properties,

we have
IPpu—ull +h ||V Pra—u)|| + k| Pwp—pll < CRH (Jul e + [plgs) (2.11)

provided that (u,p) € H{(Q) N HTL(Q) x H3(Q), for all 0 < s < g+ 1. In fact, for our analysis,
we do not need the optimal case s = g+ 1. We only require that the sub-optimal case s = q holds,
in other words, we will only assume (u,p) € H(Q) NHITL(Q) x HY(Q). See Assumption [Tl

Following similar arguments to what are given in [6], we get the following theorem, which we
state without proof:

Theorem 2.5. For any 1 < m < M — 1, the fully discrete scheme 2I1a) — @2Id) is uniquely
solvable and mass conservative, i.e., (qbzl — @Y, 1) =0
2.2 Unconditional Energy Stability

We now show that the solutions to our scheme enjoy stability properties that are similar to those

of the PDE solutions, and moreover, these properties hold regardless of the sizes of h and 7. The

first property, the unconditional energy stability, is a direct result of the convex decomposition.
Consider the modified energy

1 €
F(¢,,u) := E(¢,u) + 1 [l6 = 0" + S [Vo - Vo,
where E(¢,u) is defined as above.

1 .
Lemma 2.6. Let (¢hm+1,,u2n+2 , uZ”l,phmH) € Sp X Sp x X, x Sy, be the unique solution of (2.1al)
~ @2Id), for 1 <m < M — 1. Then the following energy law holds for any h, T > 0:

0 2
F (o efuftt) +7 ) <s )
m=1

)4
1 — m m m—
30 gl 20 o+ IVt - 2vep + e

m=1

1|2 1
i e

= F (6h, éh» up) .

(2.12)

forall1< < M —1.



1 1
Proof. Setting v = ,u2n+2 in (ZTa), v = T¢m+2 in (21I0), v = % MR 2Id), and ¢ = = m+2
in ([2.1d) gives

<T¢m+2, i >+a ( et e h’”’*%) =0, (2.13)
1 m+1 1 m+2
g <X (¢h 7¢h ) Téh > - g <¢ 6T¢h )

o

V,uh

. 1 1
+sa<¢$+2,5T¢Z”2> —< mts Sy >_ , (2.14)
l (5 u mty um+é> va+2 2+ 1B< Mty um+2 ﬁm+ >
v ho 2 7h v v he 2 h
1 1 1 1
—;C< hm+27ﬁ2n+2> <¢m+2’ m+27'uhm+2> — 07 (215)
1
—c <uhm+2,phm+ > = 0. (2.16)
5

Combining (ZI3]) — (ZI6]), using the following identities

m+1 m+1 2 2
QR R G R (A e L )
1 —
R (AR W Ay
+ % e+t =20 + o0 |°, (@2a7)
¢ +2 5 qu—i—% — i (“V¢m+l|‘2_‘|v¢m‘|2> +i||v¢m+l_2v¢m+v¢m—1”2
h TVh - 2 h h 8T h h h
o (Ivegt = v~ [vor - vop—|*). (218)

and applying the operator 7 an:l to the combined equations, we get (2.12]). O

Assumption 2.7. From this point, we assume the following reasonable stabilities independent of
h and T:

E (¢27u2) <C,
1
F (6} 0h.u}) = B} uh) + 1 [oh — ohlI” + < [ Vol - vei|* < .

112
TV

2
1
+7|Vaz || <C,

where C' > 0 is independent of h.

Remark 2.8. In the sequel, we will not track the dependences of the estimates on the interface
parameter € > 0 or the viscosity n > 0, though these may be important.

The next result follows from energy stability and Assumption 271 We omit the proof.



1 .
Lemma 2.9. Let (¢hm+1,,u2n+2 Ja Tt p Y € S, x Sy x Xy, x Sy, be the unique solution of (21a))
- @Id), for 1 <m < M — 1. Then the following estimates hold for any h, 7 > 0:

Vol w2 1|+ | <o 2.19
e NG (G I A e (2.19)
Jmax (16715 + 651 + lef 7] < . (2.20)
Jmax [lor -+ Vo - v s @

= mid|? m+i 2]
T Z Hvuh ? +HVuh 2| <q, (2.22)

m=0

M—-1 ) .
> [H%”“ =200+ o T+ [Vt = 2vep + Vet < C, (2.23)

m=1 J

for some constant C' > 0 that is independent of h, 7, and T.

We are able to prove the next set of a priori stability estimates without any restrictions on A
and 7. We define the discrete Laplacian, Ay, : Sy, — Sy, as follows: for any vy, € Sy, Apv, € Sy,
denotes the unique solution to the problem

(Apvp,§) = —a(vp,§), VEE S (2.24)
In particular, setting & = Apvy, in (2.24]), we obtain
|ARVA[* = —a (vn, Apop) -
We also need the following discrete Gagliardo-Nirenberg inequalities. See, for example, [19, 29].

Proposition 2.10. If Q is a convex polygonal or polyhedral domain, and Ty is a globally quasi-
uniform triangulation of ), we have

4 3(4—d)
[¥nll oo < ClIARYLIZED [[Ynll7s " + Cllvnlls, Yn € Sh, d=2,3, (2.25)
d 4—d
VYRl < C IVl + [[ARYR]D) 5 (VY] T, Vo € Spy d=2,3, (2.26)

for some constant C > 0 that is independent of h.

Assumption 2.11. From this point, we will assume that ) is a convex polygonal or polyhedral do-
main, and Ty, is a globally quasi-uniform triangulation of 2. Furthermore, we assume the following

initial stabilities hold:

2 2

1|2 1 1
T (|60 +7|0-05 +7lpp| <C, (2.27)
H-1 ~1,h
where C' > 0 is independent of h.
See [2, 6} 29] for a definition of the norm || -|_; ;.



1 .
Lemma 2.12. Let (¢2n+1,u2n+2, m“,p%”“) € S x Sp x X, X Sy, be the unique solution of (2.1al)
- @Id), 1 <m < M —1. Then the following estimates hold for any h, T > 0:

M— + 2 1 2
Z m 3 T¢m 3 S C7 (228)
m=0 - —1,h
M—-1 L1 2
™ N | <C@+), (2.29)
m=0
oL | gL
e||Angy, ? ‘#h 2 +C, V1<m<M-1, (2.30)
_1|? 12
et < |k +e. (231)
M-1 2 N
m=1 L

for some constant C > 0 that is independent of h, 7, and T'.

The proof of Lemma is very similar to proofs of [7, Lemma 2.7] and [0, Lemma 2.13]. We
omit the details for the sake of brevity.

2.3 Unconditional ¢>(0,7"; L*) Stability of the Discrete Phase Variable

1 .
Lemma 2.13. Let ((JSZH_l,,u:H—Z m+1,pz"”+1) € Sp, x Sp x X, X Sy, be the unique solution of (2.1al)
- @21d), for 1 <m < M — 1. Then the following estimates hold for any h, T > 0:

<53 (5) ot o (5) Nty 2)
h -3 3 h®h 3 h®n|l > .
2m+1 8w~ (1) (2k+1)—3 ? " 1|2
|Angz1* < 5; s Andy, +5) Mol (2.34)
Proof. Using the definition of &ZH%, for 1 <m < M — 1, we have the following inequality:
mt b || 3 1 2
= (Gt gor)
9 m+11[2 3 m+1 m—1 1 m—1|2
= g lAne " +3 (A On T Andl ) + 15 Ay H
m 2 m m— M —
Z 15 H L HA ont|* - oo HAh% P+ 4 HAW ik
= g!!AhW“!!Q—gHAhW‘lH : (2.35)
Its repeated use gives the result. O
Assumption 2.14. From this poz’nt on, we assume the following initial stabilities
1 1|2 1
T¢Z tpll + ||en + 1aned|” + || Aaneh|” < C, (2.36)

where C > 0 is independent of h.

10



We are now ready to show the main result for this section.
) € Sp xS x Xy, x S, be the unique solution of ([Z1a)

1
Lemma 2.15. Let (¢2”+1,u2n+2 , uzﬂ'l,]ozﬂ'1
- @Id), for 1 <m < M — 1. Then the following estimates hold for any h, 7 > 0:
M-1 41 2
Y |oegy E| <C(T+1), (2.37)
m=0
Ak ik N
o<menr—1 ||F'h T [HA}‘% (% Lo } e+, (2:38)
9 4(6—d)
Apdy? T o8 <C(T+1), 2.
s (18w P+ gl s | <o, @)

for some constant C > 0 that is independent of h, 7, and T'.

Proof. The proof will be completed in two parts.
Part 1: (m = 1) Subtracting (2.6) from (2.Ib) with m = 1, we obtain

o ) - % <¢h —¢57¢> +§(>< (6%, 0h) — X (¢h, 41 , )

(u% —uénﬂ) =ca (%% — 05,0
—ca @Tw}% " irw}%,w) = <76T¢,%,w>

1

+ = (x (@ 0n) = X (@ 0h) - ¥) - (2.40)
Additionally, we take a weighted average of (ZIa)) with m = 1 and (2.7) with the weights 2 and 1,
respectively, to obtain,

3 3 1 1 33 1 1 3 (.3 3
<167'¢le + Z(ST(ﬁ;”V) = —¢&a <ZN}2L + ZM;HV) - Zb <¢le7u}2”y>
1 11 1 1
_ Zb (gbﬁ,uﬁ,y) + 1 (pﬁ,u) . (2.41)
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3 1 1
Taking ¢ = %/‘ﬁ % 7 in 240), v = 3757¢h + 70-¢; in ([2.41), and adding the results yields

3 3 1. 1]
Zé'r(ﬁ}zl + 157'(25}21

3 13 3 1
<uh uh,4uﬁ+1ui>+7

1/ 03 3,11 1 2 1 1,0 5.3
B A R L e X (64 0n) = x (¢h 8n) » 3uz + uf

|

€
3 ([~ 3 3r_ ¢ T1_ 1 11 37 1
- Zb <¢}2Lauf2p Z5T¢}QL + 157—(;52) - <¢2 27_ T¢h + 5T¢f2l>
1 1 37 3 T 1
L] g 4P 112 0|2 2 41\[2 1 40Y(2
<[ el + 16+l + b 0 b
3 3 3 1. 1 1 1 3 1. 1
COTNwaR lai| (P60 + 2aez| + Tlvaz| |aE|| ||Ps.ef + teed
1 sl R A 1 P | P 1
I 3. 2 1. 1
+Z pfi ‘167(255 +Z(ST¢}2L
1| 3 3 3 -3
§C+Z ppll +Ct T(bh—i- (5¢h H u; <Hv¢h + ‘Ah(ﬁﬁ )
3.8 104 =3 -3 73 T3¢ 5 1o
T Zéﬂ—gbh +157'¢h Vuh V¢h + Ah¢h +E ZéT(ZSh + Z(STQSh
1] 2> 373, 2 1. 1| 3|2 1|2
SO+ 7| + 5 |70 + 70-¢|| +O7|[Vai|| +C7||Va;
8 1l PP S 1 =
<C+ Z Bpll + 5 Z(STth + Zéq—QSh +CT Vuh ,
where we have used Young’s inequality, the embedding H' < L5, estimates (Z.20) and (2.26) and
Assumption 214l Considering Assumption 2.14] estimate (2.:22]), and the following estimates
3.3 1. 1> 3 a2 1 1|2
Hz&(ﬁﬁ + Z(L(zﬁfl > 3 Srdp || — 3 0r¢7 || (similar to ([2.33)) ,
3 133 1 1 31 312 1/ 38 1 11 112 1 sl? 1|2
(uﬁ—uﬁyzu%rzuﬁ):z‘ui —§<uﬁ,uﬁ>—z‘ui zg‘uﬁ — 5|4
we have,
1] 2> 3r 3|2 1|2 1|2 3|2
Z"u;‘ — 10-07 || <Cllpp + 15 6r0f|| +CT||Vuy|| +C<C. (2.42)
Now, using (2.30), (2:25)), the embedding H'(2) < L5(Q), and (Z20)), we have
9 4(6—d)
.3 .3 d
HAhcﬁﬁ + |97 <C.
LOO

Using Lemma 213 (Z.25]), the embedding H'(Q) < L5(), and ([2.20)), we obtain

1(6-d)
|and2|)? + ||63] 2 < C.

12



Part 2: 2<m <M -—1)

For 2 <m < M — 1, we subtract (2.1D]) from itself at consecutive time steps to obtain

(M;“+2_M;”—%,¢>_ga<¢h — g ,w> <¢m+2 é;”‘%,w)

1
E ( (¢m+17 (ﬁh ) (é;{l? (ﬁZl—l) 7¢)
m—1 1 m—3
- <3T5T¢h+2 + T(STth 71/)> B 1 (gTéquh - 57—57—¢h 27¢>

b L (o —).0), 243

for all ¥ € S}, where
= w (¢} ARG O 1) = (o} +1) + (1) + (o) 1) + ¢ o+ ol +1<Z5h Y+ o o L
We note that using the H'(Q) < L5(Q) embedding, we achieve the following bound,

leopll o = [|(8541) " + (@102 + ()" + gt ege + g g + |

L3
<C|ap 5 + C o2 + Ol 0
<C |l | + C ol + C oy 3 < €
Now, for all 2 < m < M — 1, we take a weighted average of the m + % and m — 2 tlme steps

with the weights % and l of (IQ:IE]), respectively, to obtain,
3 11 -3 3 ~m+1 1
( Or ¢h+2 + - 5 gbh , > = —6a<1,u21+2 —I—Z,uhm 2,1/) _Zb <¢Zl+2,uzl+2,y>
1. [ ~m-3 3
— Zb (gﬁhm Z,uhm 2,1/) , Vv e Sy, (2.44)

1 _ 1 _3
Taking ¢ = %u;ln+2 + i,uhm 2in @43), v =1 <%5T¢hm+2 + %(Lqﬁ;n 2> in ([2.44), and adding
the results yields

m+ 777,—l 3 m_;’_l 1 771,—§
<Mh 2=y, 271!% 24‘1/% 2)

2
5¢h+2+ Loop s

€ ahn gt
o <w2157¢hm_%7 iu?é + %uﬁn%) - <¢m+2, ‘m+27 r¢h+2 + 5r¢h )
——b <¢h w, ,i5 ¢h+2 T 5T¢h >
Z—T orty * 3Mh+é o |+ l T¢h H?’Nthz + K
+%me\m< st 3w +§+u2”_% , 5T¢Zn_§“"3“hm+%+uhm_% m)

T~m3m33

——b(d”“f’”“, R )—Zb<¢>h‘2,ah LSS b o )
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Now we bound the trilinear form b(-, -, -). Using (2.26), Holder’s inequality, and (2.19), the
following estimates are available:

‘ <¢m+27_m+ 7 T¢h+2+ 5T¢h >‘§HV&ZH‘2 T¢h+2+ 5T¢h

(

+2

1
4

m+2

Vu

H 5. ¢h+2 T 5T¢h

o

2

1 2
ey 2 : (2.45)

H 5¢"+2+4

+CHV o

1
2

and, similarly,

basm‘%u I ar M
h 9 77‘h TYh
5 (12

1 3
S RS Nt

5 , (2.46)

2 3 2
Jr(JHVuZ1 2

_3
Jr(JHVuZ1 2

for any 2 < m < M — 1. Therefore, we arrive at

2
+
Tqﬁh e 5T¢h

m—3 ||
Ordpy, *
12
Ah¢h :
2
B
Ah¢h :

2 2

1 1
+3l2 Sry 2 +COr |y 2| +or|p

H1 H1

2 12
_mTz5
+C7||Vu, 2

2

2
m—3 m—3
+C7||Vu, 2| +C7|Vua, 2 , V2<m < M- 1. (2.47)

Furthermore, we use Lemma 2.13] and (2.30]) to derive the following inequalities:

2
e

2
) +C, (2.48)

(2k+1)+2

otz < aneen [ i

“e£0)” (e

- (8 ( ’

<claut]+ ol

2 ON(CE

Jj=1

() (b

J=1

“(27)—1
st

2
. 1
(2j+1)—35
h

(24)—%
h

'

1112

H Ah(ggk)-i- !

2

IN

IN

2
) +C. (2.49)
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Applying an_2 to (247) and using the following properties

m+ 1 m—1 3 m+ 1 1 m-2 1 m+1 m—1 m+ 1 m—2
<Nh Z_Nh ’ 4Nh 2+Zﬂh 2) 2<Nh Q_Nh zaﬂh 2+Nh 2)

4
1 m+2 1 m—= 2 1 m+1 m—35 2
1 1 312 1 41 1 _3|?
o A -3 S T A
8 8
m+2 1 m—j 2 3 m-l—% m—% 2 .
T¢ + Z5T¢h > 5 6y, 6r 9y, (similar to (230)) ,
we conclude that
¢
T e+d 2 m+1
: T 5 2
2"% * 1677; O
1l s 2 . 32 1112
SgHuﬁ—uﬁ + 35 ||99% 5 (|97
)4 112 m m—j 2
s 1 1
e S () e
m=0 H! Jj=1
¢ m+ - m=Jy S os|? ¢ m+1
w0y | va z() w | wer s |var
m=0 Jj=1 m=0
Y4 2 m m—j . 2 . 2
_m+d 1 j—1 j—3
<SCT+1)+Cr Y |Iva, 2| =) s w, 2+ ||, 2
m=0 j=1

for any 2 < ¢ < M —1, where we have used Part 1, (2.29) and (2:22]). Moreover, with an application
of the discrete Gronwall inequality from Lemma (with a = % < 1), we arrive at
2 2)

o+ T
DS
<C(T+1), (2.50)

£ 1
Iy, ) ¢m+2 <C(T+1)-exp (CAOCT Z Vﬁ;nJri

m=0

|

m=2

where (Z22) has been repeatedly applied.
Now, using (Z.30), (Z.25)), the embedding H'(Q) — L%(Q), and ([2.20)), we get

4(6—d)
d

Z—i—z

HAhqs”z <O(T+1), V2< <M —1.

Pp
LOO

By Lemma [ZT3] the following bound is available:

2
HAW’;;HH <OM+1), ¥V2<0< M- 1.
Using (2.25) again, the embedding H'(Q) < L5(), and ([2.20)), we arrive at
4(6—d)
(41 d
Héh L
The proof is completed by combining Parts 1 and 2. O

<CO(T+1),V2<0<M-—1.
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3 Error Estimates for the Fully Discrete Scheme

Assumption 3.1. For the error estimates that we pursue in this section, we shall assume that
weak solutions have the additional reqularities

¢ € L0, T;Whe(Q)) n H(0,T; HT™(Q)) n H*(0,T; H3(Q)) N H3(0,T; L*(Q)), (3.1)
¢* € H*(0,T; H' (), (3.2)
p € L*(0,T; HIT(Q)), (3.3)
u € H*(0,T;L%(Q)) N L>=(0, T; L4(Q)) N L>(0, T; HT™(Q)) n H' (0, T; HTT(Q)), (3.4)
p € L*0,T; HY(Q) N L3(Q)) N L>(0,T; H1(Q)), (3.5)

where q > 1 corresponds to the finite element spaces defined at the beginning of Section [2. The
norm bounds associated with the assumed regularities above are not necessarily global-in-time and
therefore can involve constants that depend upon the final time T. We also assume that the initial
data are sufficiently reqular so that the stability from Assumptions[2.7, 211, and hold.

Weak solutions (¢, 1, u,p) to (L5a) — (L5d) with the higher regularities (3.1]) — ([B.5) solve the
following variational problem: for all ¢ € [0, 7],

(Or,v) +ea(p,v) + b(¢,u v)=0, VYveH (Q), (3.6)

(1) —ea(g,9) —e ' (¢° —d,9p) =0, Ve H'(Q), (3.7)

(O, v) +na(u,v)+ B(u,u,v) —c(v,p) — ’yb(qﬁ,v p) =0, VveHQ), (3.8)
clug) =0, VeeI(@).  (39)

We define the following: for any real number m € [0, M], t,,, :== m -7, and ¥™ := ¢(t,;,). This
definition applies to vector valued functions of time as well. Note that, in general,

+3 . 1 1) . ymts
Wi __Q/J(tm_i_%) + 3 (wm—i—wm ) = pMmT 2,
An over-bar will always indicate a simple central average in time. Denote
ESM = g™ — Rp¢™,  EWM = ™ — Rpp™, EM™:=u" — Pu™, EP™:=p™ — Pp™. (3.10)

The following definitions are given for any integer 0 <m < M — 1:

m—+1 _ m m+1 _ ..m
5¢m+§ :¢ - ¢ , 5Tum+%.:u . u ,
Uf’m+% = (5TRh¢m+% — (5T<;5m+%, U?’m—i_% = 57Phum+% - (5Tum+%,
U;b,er% = (5T¢m+% - 8t<;5m+%, U;’m+% = (5Tum+% - atum+%,
Uf*’”"‘z _ ¢m+% _ ¢m+%7 ;‘vm"'i _ ﬁm—i-% _ um-i-%’
f’mﬂ = x (¢, ¢™) <¢m+§) a§””+2 — ity _pmts,
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Then the PDE solution, evaluated at the half-integer time steps ¢, 1 satisfies

(57—Rh¢m+%,y) +ea (Rh,uer%,V) = < fm+2 + ¢m+2,V> —b <¢m+%,um+%,u) , (3.11a)
() - () =0 (57 (570

68 ) (i)

(72,0), (3.11b)

1
e X
1
Tz

(5 Pau™3,v) +na (Prams,v)
1 1 1
—c (V,Phﬁm—i_%) =na < um+27V> + <0_11,m+2 +O_;1,m+27v> —c <V7O_§,m+2>
+’yb<¢’”+%,v,um+%) - B (um+%,um+%,v), (3.11c)

1
c <Phﬁm+%,q) =c <a§’m+2,q> , (3.11d)

forallu,weSh,VEXh,anquS‘h,foranyOSmgM—l.
Restating the fully discrete splitting scheme (2.Jal) — @1d), we have, for 1 <m < M — 1, and
for all v, € Sy, v € X, and g € S},

1 1
< T¢m+27 > +eca </LZH_27V> <¢m+27 m+27y> ) (3123)

—mai I 41 1 1 ~m1
ca <<z>;” z,w) + (P00, ¥) - (u;” %w) ==~ (x (601 w) + - <<z>;” z,w) :
(3.12b)
m+i _m+1 _m+2 ~m+ 1 m+1 m+i _m+l
<5Tuh 2,v> +na (uh 2,V> —c(v D, 2> = 7b<¢h 2LV, g, 2> - B (uh 2, 2,V> ,
(3.12¢)
1
c (ﬁ:”*? , q> —0, (3.12d)
where 02¢™ = le (pmtt — 2¢m 4 L),
Now let us define the following additional error terms
E = Rag™ = o, EOT = oM — O, E)T = Rup™ — i,
EMi=Pu” — ', EYMi=u" —up, &= Pp™ —pp, EPTi=p™ —pi. (3.13)
We also define, for 1 <m < M — 1,
¢m+3
o5 = x (ot o) — x (07 9™ (3.14)
1 a1
PIGUAE s B (3.15)
1
0(1;,m+2 = "t —uhm+2. (3.16)
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Subtracting [B12al) — (3.12d) from @IIal) — B.I1d), yields, for 1 <m < M —1,
<5T€f’m+%,l/> +ea (5:,"%%71/) = <a(f’m+é + 02’m+é,1/> —b (¢m+%7um+%7y)
+b (&?*é,ufé,y) : (3.17a)
ca <5_2)’m+%,1/1> + %a <535,‘f”m,1/1>
o) e ) (20
+ é <0§)’m+%,¢> +§ (Jf’er%,?/))

1 m+ 1 2
+2 <a§f *2,1/;) + 5 a (820™, ) (3.17b)

4
um+1 sum+1
<5T€h 2,v> +na <5h 2,V>
—p,m—i—% u,m—i—% u,m—i—% u,m—l—%
—c| v, &, = (oy + 0y V] +nalog Y
1
e <"=U§’m+2> R ClasRATas)
oL 1
— () < (57 v
_m+3 _mts
+B(u, * 0, *,v]|, (3.17¢)

su,m+ = u,m+2
c(Sh’ +2,q> :c<03’ +2,q> (=0), (3.17d)

1 1 _ 1 _
Setting v = &% in BI7a), v = 6,&, " in @ITH), v = 16,77 in @BIT0), ¢ = L&)
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in (8I7d) and adding the resulting equations, we have

£ (vt - foeee]) o (Jeemo - e

N er2
~a
4

2
m—l—%

+e||vE)

m4+L
<5255"”,5Tgf"+2>-+

1 1 1 1 1 1 1
(U?mﬂ N U;ﬁ,m+275:,m+2> tea (U?Wrg 7 575;?7m+2> N (gf’m+2 7 575;?7m+2>

1112
Fu,m+3

o

T % <a;‘vm+% a;vm%,g;’m*%) 14 <a;vm+%,g;vm+%> _ L <g;vm+%,agvm+%
b <¢m+§’um+175;jvm+§> b <¢~SZH%7 ?+2’557m+§>

+ <¢m+%,5“’””+2,um+§) b (éf*é,s;"m%,uhm*%)

L (wrr b ) s L (g

)

(3.18)

for all 1 <m < M — 1. Expression (B.I8]) is the key error equation from which we will define our
error estimates. Observe that the error equation is not defined for m = 0.
The following estimates are standard and the proofs are omitted.

Lemma 3.2. Suppose that (¢, u,u,p) is a weak solution to BI1al) — B11dl), with the additional
reqularities in Assumption[31. Then for allt,, € [0,T] and for any h, T > 0, there exists a constant
C > 0, independent of h and T and T, such that for all0 <m < M — 1,

¢m+1
01

$m+1
09

1
HVAJ?’m+2

1
7m+§

s
;

In addition, for alll1 <m < M —1,

v sz <

[r*vatem||” <

2 3

.
12 J,

1
7m+§

IN

HVU?

(™) + % (¢™)? — (¢m+%)2' 1 <

2
<C

h2q+2

tm+1 9
/ 10655 Zsn ds,
tm

2 tm+1

3

< 2

2 7—3 tm+1
< / 1V AGue(s)| ds,
tm

2 3 tm41
T 2
< — 833 d ’
<G/ IVous)I*ds
T tm+1 5 9
L = % Hassqb (S)HHl dS'

3 t'm+1
T / |V ADu ()| ds,
3 tm—1

7—3 t'm+1
= Ve as
tm—1

t'm+1

|V 8ssp(s)||* ds.

m—1
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Lemma 3.3. Suppose that (¢, u,u,p) is a weak solution to BI1al) — BI1dl), with the additional
reqularities in Assumption[31l. Then for all t,, € [0,T] and for any h, T > 0, there exists a constant
C > 0, independent of h and 7 and T, such that for all0 <m < M — 1,

a1 2 h2q+2 tm+1
] el / 105u(s) | 2rsa ds, (3.27)
t’UL
2 3 t
u,m—l—l T m+1 2
" | < em . [0sssu(s)||” ds, (3.28)
um+l 2 T3 tmt1 )
HVAU?,’ 2l < 96 IVAOssu(s)||” ds, (3.29)
t’UL
wm 1 2 3 tm+1
Vot < L |VOssu(s)| ds, (3.30)
96 J,
m 1 2 3 tm+1
A" < [ 9usp(s)] ds. (331)
96 J,
In addition, for all1 <m < M —1,
3 tm+1
|Pvasum|® < = / IV Ad,eu(s)||? ds, (3.32)
tmfl
3 tm+1
[r2vezu™||” < %/ IV8,su(s)|? ds, (3.33)
tmfl
wm 1 3 tm+1
Hv% < T IVOssu(s)|? ds, (3.34)
12/,
vo 2 m2_ T [t 2
|2vézp™|| gg t IVOssp(s)]|” ds. (3.35)
m—1

The following estimates are proved in [7].

Lemma 3.4. Suppose that (¢, i, u,p) is a weak solution to BI1al) — BILd), with the additional
reqularities in Assumption[31. Then, there exists a constant C > 0 independent of h and T — but
possibly dependent upon T through the reqularity estimates — such that, for any h,7 > 0,

2 tm tm
vaf””*% <o / VO8I ds + O / " 0w s)| ds, (3.36)
tm tm
2
va;f””*% <c vamﬂHz +C Hvs@m‘ : (3.37)

where EP™M = ¢ — o

Lemma 3.5. Suppose that (¢, u,u,p) is a weak solution to BI1al) — BI1dl), with the additional
reqularities in Assumption [Z1l. Then, there exists a constant C > 0 independent of h and T such
that, for any h,7 > 0,

mad |12 b1 2 2
Hvag” T2 < (173/ V8,552 ds+CHV5¢’mH +0Hv5¢vm—1‘ , (3.38)
tmfl
u,m+% 2 3 b1 2 um|2 u,m—1]|2
Vog <Cr IVOssu(s)[|? ds + C [|[VE || + C||[vE™"H|", (3.39)
tmfl

where EP™ = ¢ — ot and EW = u™ —up.
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Proof. For 1 <m < M — 1, using the truncation error estimate (3.20]), we obtain

mid||? 3 [lm+s 27 2 3 2
Vol < 3T IV 8ss(s)|% ds + —- Hve@mH 42 Hvedhm—lH . (3.40)
12 Jy, 4 4
Estimate ([8.39) similarly follows. O
The following technical lemma is proved in [6].
Lemma 3.6. Suppose g € H*(Q), and v € Sy. Then
(g, )l < ClIVgll vl » (3.41)
for some C > 0 that is independent of h.
We use only some very basic estimates for the trilinear form B:
Lemma 3.7. Suppose u,v,w € H}(Q). Then
1B (0, v, w)| < C[[Vul [Vv] [[Vw] . (3.42)
Ifu e LX(Q) and v,w € H}(Q), then
1B (u,v,w)| < Cljul| o [[VV] [Vw]|. (3.43)
Ifuc L2(Q), v,w € HY(Q) NL>(Q), then
1B (u,v, w)| < [[u] (Vv W]l + VW] [[V]Le) - (3.44)
We also recall some basic inverse inequalities.
lenllwge < ORI b gl Voo € M, 1<p<q<oo, 0<E<m<1,  (345)
From this and the Gagliardo-Nirenburg and Poincaré inequalities it follows that [3]
1_d 1 1
lenllpee < Ch272 Jlonll2 [Veon]2, d=2,3, (3.46)

for all ¢y, € Mﬁo.

Lemma 3.8. Let (P, P,) : VX L2 — V), x S}, be defined as in (Z3) and suppose that (¢, p,u,p) is
a weak solution to (B11a) — (B.1Ldl), with the additional regularities in Assumption[31. Then, for
any h, 7 > 0 there exists a constant C > 0, independent of h and T, such that, for 0 < m < M —1,

IPrull oo o1 L0 0)) < O (3.47)

and, as a simple consequence,
1€ 1 £oe 0,7 Lo (02)) < € (3.48)
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Proof. Let w = Zpu € X, the standard Lagrange nodal interpolant of u. Following Baker’s
unpublished paper [3] and using standard finite element approximations, including (ZIT]), inverse
inequalities, and Sobolev’s embedding theorem, we have

IPpuf o = [[Pru—w+w —u+ul| o
< [Ppu— Wl oo + W — 1l oo + [Ju] o
< OR% [Ppu—w + W — ul| oo + [uf g
< Ch™% (|Pyu—uf| +[lu—wi) + [|w — g + [|ul|
< C (Jlu = Wil + 7% Ju—w||) + Ch~# [Ppu—ull + Jul
< ufl oo + CRT2 ([0l ran + [plyga) -
Taking the L* norm over (0,7") and noting that ¢ > 1, the proof is concluded. O

We now proceed to estimate the terms on the right-hand-side of (3.18]).

Lemma 3.9. Suppose that (¢, pu,u,p) is a weak solution to (BI1al) — B.I1dl), with the additional
reqularities in Assumption [31. Then, for any h, 7 > 0 and any o > 0 there exist a constant
C =C(a,T) > 0, independent of h and T, such that, for 1 <m < M —1,

2 ([weemf - [meem ) + g (e[ - i) + e (s 0,08m+)

27y 4
2

1 B o B B |
sofepmt e[ valern | veme (3.49
—1,h

N

mal tm41 9 h2q+2
R = [ 0,0(6) e s +
tm

tm+41 9 3 tm+1 2
/ |0su(s)||%qe1 ds + T / [[0sss9(s)||” ds
tm tm

3 tm+1 9 3 tm+1 9 2 3 tm+1 9
+ 7 / |0sssu(s)||“ds + 7 / H@ssqﬁ (S)HH1 ds+ T / IVOsst(s)||” ds
tm t

m m—1

tm+1 ) tm+1 9 tmt1 9
g / 1VOsu(s)|? ds + 73 / 1V AGs(s)|2 ds + 73 /t 19ssp(5)[1? ds

tm—1 tm—1
2

T

4 p2a ‘Ium-i-%

2 _112 2
Ha+1 T h* |¢m+1‘Hq+1 + h* |¢m|%1q+1 + h* |¢m 1‘Hq+1 + h* |um+1‘Hq+1

—112 2 112
+ h2q |um|i{q+1 + h2q |um ! ‘Hq+1 + h2q |pm+1 ‘Hq+1 + h2q |pm|%1q+1 + h2q ‘pm 1|Hq+1 :
(3.50)

Proof. Define, for 1 < m < M — 1, time-dependent spatial mass average

1 1
grmte ! (55’"”*%1) . (3.51)
Using the Cauchy-Schwarz inequality, the Poincaré inequality, with the fact that

1 1
<0_<11>7er2 +02,m+2’1> o,
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and the local truncation error estimates ([B.19) and ([B.20), we get the following estimate:

pm+t  emtl pumtl ¢mt+s | dmty opumts  apmtd
'(O-l 2+O-2 Q,gh 2 — 0-1 2+O-2 275h 2_8]'1, 2

1 1 1 1
< ‘ Uf,m+2 +U;Z>7m+2 ) 5:%%-2 _ g;jm-kg
¢mty | dmty pommt
SC 0-1 +O-2 ° Vgh
¢,m+3 2 ¢,m+2 2 € pwm+: 2
<Cl\o," 2| +C|loy *|| +<||VE, ™ 2
8
h2q+2 tm+1 7.3 tm41 € +1
<o [T 006 e s+ O [ o) P s + 5 | ver (352)
T Ji, 640 J; 8
Meanwhile, standard finite element approximation theory shows that
1
e 9 (st et s el
Ha+1
Applying Lemma and the last estimate, we have
1 1 1 1
<gg,m+2’5_r525,m+2> ‘ <C vag,m-l—Q ‘ 5T€Z>7m+2
“1,h
1 é,m+3%
§Ch‘1‘um+z o T
“1,h
12 (0] (1>m—|-l 2
< Ch% ‘wﬁ + &g gt (3.53)
= Hq+1 6 T%h
~1,h
Using Lemma 3.6 and estimate ([B.21]), we find
1 1 1 1
ca <a§’m+2,575;?’m+2> = —¢ <Aa§’m+2,575§’m+2>
1 1
<cC HVAO‘?m+2 H 60"
“1,h
3 tm41 1 2
T @ 1
<o IV A, 6(s)|2 ds + = |68
96 J;,, 6 “1h
(3.54)
Now, using Lemmas [3.4] and B.6], we obtain
1 1 1 1
6_1 <O_:f,m—|—2 ’ 5T€2),m+2> ‘ <C Hvo_f,m-l‘g 5Tg}fi>,m+2
~1,h
om+i|? o sm+1
chv%’ o s e0me
6 “1,h
tm+1 9
<cr / |V04s6(s)|2 ds
tm
g [t 2012 o st ||
+or /t (o) ds+ G 58772 L (e
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Similarly, using Lemmas B.4] and 3.6}, the relation £»™+! =

element error estimate, we arrive at

1 1
(s

2

e ! Vo Pty +

o
6

2
<Cl|wetmtt +0‘

2
<C|lveem+ +0‘

(07

2
MG

+ | vepr

g9 4 gt

, and a standard finite

st

~1,h

vern| o+ 5 Jo-s

1,k

2 2
vepm|| + o||vegm|

#m+3 2

~1,h

<R [ [} + O Vg H2 + O (™ e

+0Hv5¢””H +2 55‘””*2 (3.56)
—1,h
pplying Lemmas an e relation &% =Cq’ +&p7 , and a standard finite element
Applying L dB8, the relation £9 1 = £9 ! 4 €01 and a standard finite el
error estimate, we find that
1| bmts o obmts om+i|? | @ o+
—1,h

tm—1

<07 ( / TV as(s)) ds) vofveg| + ofvepm|

2
matL
+ R | 20 + CR2 "2+ % 5,E0m (3.57)
—L,h
The following inequality is a direct consequence of ([B.24]):
eT” 2 2 ¢> m+3 3 [t 9 «@ bym+L 2
tm—1 —1,h
Using Lemma [B.3] we also obtain
<ai””+2+ oaa gt ><0 wmtg +C amts Hve“’”*?
2 2¢+2  ptml
m h2a +
<— 227 HVEU *2 +C /t |0su(s)||3ar1 ds
3 _— ) m
0640 |0sssu(s)]|” ds. (3.59)
Next, using (331]),
—lC gu,m-l—2 p,m—i— < v(S,u m+2 + C p,m+2 2
ERANCIEEAE - 227
um+1L 3 tm+1 2
<qbfegm e 2 [ e, G
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Now let’s consider the convection trilinear terms. Adding and subtracting the appropriate
terms, for all 1 <m < M — 1,

‘—b (¢m+%,um+%,eﬁ’m+§> (¢m+2,-’“*2 gt )
1 1 1 _ 1
< ‘b <Ug,m+2,um+é’g:,m+2 _g:m+2>‘ + ‘b <O_§>m+2’g:7m+2’#m+§>

1 1 1 _ 1 1
e ) )

1

Vorm | lames || [lenmt g |l gegmed | |l e
LA L4 1A LA
+4 || gum+2 m+ m+3 m+
+ qum 3 g;lm 3 _O_;m 3 5},L:m 3 _g;;m 3
L L
+4 || || gum+ m+3
Ve, 2| IIE T (e
L L
3 wmtt|? . m ~umt | pm+1]|2 om||?
< |vermTE | 4 o vETT | o verm |+ o [vepm|
v

—12 2 -1)2
+ h2 |¢m|§{q+1 + “lsm 1‘HCI+1 + h* |um+1‘Hq+1 + h* |um|§{q+1 + h? ‘um 1|HCI+1

2 tm+1 9 tm+1 9
+Cr / IV 0s(s)|2 ds + O / IV Osu(s)|? ds, (3.61)
Hatt t tm

m—1

+ h2¢] ‘Nm-i-%

where we have used Lemmas 2.12] 3.2]
Additionally, after adding and subtracting the appropriate terms, for 1 < m < M — 1, we have

H—B <um+;,um+;,5;"m+%> +B< gty ghmes )‘
1 um—l—2 m4+1 —u,m+% 7'2 2..m ..m+L —u,m+%
= _|B u"tE gy — B | wou™u""2 &

ot 2

+B ( ) gumtE gt ) - B <am+%,€;”m+%, _:’m+5>

+B (é;‘m“ garmts gumty > - B <5;"’”+2, m+é,5;"m+2>

+B (é,‘: o gumty gumts ) - B <é,‘:’m+%,um+%, ;L"””%)

—B< tr gumts ghmts )‘ (3.62)
This is the same basic decomposition considered in Baker’s paper [3]. We immediately see that the

last term vanishes by anti-symmetry in the last two terms of B: B < ZH? &, sumt 8“ Mty > =0.
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We examine the other eight terms individually. Using estimate (3.42]) of Lemma B.7]

1 u,m-i—l 1 —u,m—i—l u,m-i—l
—|B | o4 2,um+2,€h )L C| Vo 2
Y

2
2l +C— [VOssu(s)||? ds; (3.63)
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2 7.3 tm+1 9
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~ 1 umti zum+i ~ 1
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L (et g2 o) ver

A
el
<
o
3
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1112
su, = 2
< L vg}l: m+s; + Ch2q (‘um—l—l‘Hﬁl + ’um@{(ﬁl)

+ O ([ + " ) (3.66)
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—‘B <5a’ AL o *2)‘ Vs Ve,
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1
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—u,m+%

7 |ver

<
= 22y
+ Ch2q <|pm|§{q + @m—lﬁ{q) . (3.67)
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Using the stability estimate (3.48),

1 1
cu,m+5 Fu,m+3

verm | ve;

1
su,m+35
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I ———

LOO

7u,m+l
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= 22y
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and, with the estimate (3.44)), the inverse-Sobolev inequality (B8.46]), the Poincaré inequality, and
estimate (B.48) again,

M (gt ez gt < o] e et
v L
LC g;Ll,m—i-% | |Vé_’;;’m+% ‘ g—;l,m—i-%
Lo°

d

<C ng,m-i-é

h hq(‘u’Hqul + ’p‘Hq)hl% vg—:7m+éH
selfrp
% vaum-i-Q +CH5;L1’mH2+C‘5;;’m_1H2; (3‘69)
: A Q" it s —m+2 _m+41 su,m+1 um+1
§'B<5h 2amtz g 2>‘§ (Hu 2 OO+HVu ! L4>‘£h . va ,
um+2 um||2 wm—1 2
T2y va 2 +0H5h I +0H5h H . (3.70)

Combining the estimates ([3.52)) — (870) with the error equation (3:I8]), the result follows. O
Lemma 3.10. Suppose that (¢, p,u,p) is a weak solution to [BI1al) — (B.11D]), with the additional

reqularities in Assumption[31. Then, for any h,T > 0, there exists a constant C > 0, independent
of h and 7, such that, for 1 <m < M —1,

¢m+i 2

2
mtg
<2e2||vg "

+C Hvsﬁj””Hz +C Hvsﬁfv’”*HQ
—1,h

+5C3||VE" g + CR™F3,

(3.71)

where Cy = C2C1, Cy is the HY(Q) — L*(Q) Sobolev embedding constant, Cy is a bound for
qnax, Vo, and R™2 s the consistency term given in ([3.50]).

Proof. Define Ty, : S, — S} via the variational problem: given ( € §h, find & € §h such that
a (Th(C),€) = (¢,€) for all € € . Then, setting v = Ty, ( 6, €¢’m+2 in (3I7al) and combining, we
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have

mal|? 1 L il ol el
e I G s | G AR A ()
~1,h
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(i) (i o)
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1 m
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L 1
Tm = u,m 1 m
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LOO
2 pmA+5 1 é,m+3 2 m+1 ml |2
<et||VET 2 +Z 6:& 2 +Clloy *>+o0y *
~1,h
1 m ma 1
Loyt HVTh< 5¢””+2>H+02 vE HVTh <5T5;f’ +2>H
Su,m u,m+1i m+ L
(e o o)
2 pm+ 5 2 1 ¢,m+2 2 om 2 é,m—1 2
< ||lver | 5 laerm | v c|verm| + o | v
~1,h
5C2 || o sumsd
+T2 vErT e 4 oR™ T, (3.72)
for 1 <m < M — 1, where we have used Lemmas 3.2, 3.3, and The result now follows. d

Lemma 3.11. Suppose that (¢, p,u,p) is a weak solution to [BI1al) — B.11d), with the additional
reqularities described in Assumption [31. Then, for any h, 7 > 0, there exists a constant C' > 0,
independent of h and T, but possibly dependent upon T, such that, for any 1 < m < M —1,

€ ¢,m+1 2 o,m 2 1 u,m+1 2 um||2 er? 2 oh,m ¢m+i
7(”“5% | _vah H)*% \‘5% I ) R e (e

um—i—2

v5u7m+2 § CHV‘S}?’m—HHz+0va;f7muz

v |ve:

+C Hvs,?’m‘lu T+l +c| 5,‘;””‘1“2 +OR™ S, (3.73)

Proof. This follows upon combining the last two lemmas and choosing « in (8.49) appropriately. [

Using the last lemma, we are ready to show the main convergence result for our second-order
splitting scheme.
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Theorem 3.12. Suppose (¢, p,u,p) is a weak solution to BIIa) — B.I11dl), with the additional
reqularities described in Assumption[31l. Then, provided that 0 < T < 79, with some 1g sufficiently
small,

nag (J5ei +er) ve 5 (Joei ]+ et ) st vom
1<ment-1 h h Tm:l h h = T ,
(3.74)
for some C(T') > 0 that is independent of T and h.
Proof. Using Lemma BTl we have
L (Jsetmo - o) » 2 (Je - i)« et
s bl (ot - wapm| - [wepm - wepm )
<C va,?m“Hz +C vaﬁmuz +C va,?m‘l(f +Cllerm| + o Hg;;’m—luz
+CR™ 2. (3.75)

Now, applying 7 anzl to (B.75]), and observing that EZ”m =0and "™ =0, for m = 0,1, leads to

¢ 2 2

2 2 m+1 m
vaﬁf,mH N ‘5;:,“1“ N % ) <va£, 3| 4 va}? +3 )
m=1
¢ X 41 ) ¢
<Y R oY |ver| o Y et 3.76)
m=1 m=2 m=2
o< r<19:= 307 < C , since 1 < }; < 2, it follows from the last estimate that
2

vafbf—l-lH _'_‘ u£+1H + < 5M7m+2 vasm-i-Q )

Cst mtd | Cyt bm CsT m
§1_047—mzz:1R 1—C4TZHV€ H +1—C4TZHVEU H

<2C5Cy(r4 + h2) + 2077 z (Hvs;f’m\f + Hvs;:mf) , (3.77)
m=2

where we have used the fact that TZ%z_ll R™TE < Ce(7* + h%9) and where C7 := max (Cy, Cs).
Appealing to the discrete Gronwall inequality [A] it follows that, for any

14 2
foac " i+ 5 35 (et o fees[ ) <2 s snemaean
m=1
(3.78)
forany 1</< M —1.
O
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Remark 3.13. From here it is straightforward to establish an optimal error estimate of the form

+ vaum+z

1<m<M-—1

e (| +”5"m+1”>”M > ([[vermaf ) <ot

(3.79)

using £ = £2 +5;f , et cetera, the triangle inequality, and the standard spatial approzimations. We
omit the details for the sake of brevity.
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A Some Discrete Gronwall Inequalities

We will need the following discrete Gronwall inequality cited in [20], 27]:

Lemma A.l. Fiz T > 0. Let M be a positive integer, and deﬁne T < % Suppose {am }—o;

bm and {c,, are non-negative sequences such that T “0 Cm < C1, where Cy is inde-
m=0 m= 0 0
pendent of T and M. Further suppose that,

/-1
CLg—i—TZb <C'2+7'Zamcm, V1<(< M, (A1)
m=0 m=0

where Ca > 0 is a constant independent of T and M. Then, for all T > 0,

¢ -1
ag+7'me§Cgexp <720m> < Cyexp(Cy), V1<{< M. (A.2)
m=0 m=0

Note that the sum on the right-hand-side of (A.I]) must be explicit.
In addition, the following more general discrete Gronwall inequality is needed in the stability
analysis.

. .. . M
Lemma A.2. Fix T > 0. Let M be a positive integer, and define 7‘ < % Suppose {am }p—os

{6, }M_ and {c} M=) are non-negative sequences such that 7M1 ¢,, < Oy, where Cy is inde-
pendent of T and M. Suppose that, for all T > 0 and for some constant 0 < o < 1,

-1 m
ag+7‘Zb <Cy+T1 cmZam Jaj, V1<L<M, (A.3)
0

m=0 m= 7=0

where Co > 0 is a constant independent of T and M. Then, for all T > 0,

ag+7'Zb < Cg—i—aoCl)exp(l?l ), V1</{< M. (A.4)

m=0
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Proof. We set A, := 2= > 1. A careful application of induction, using (A3)), yields the following

inequality:
4 )4
ag+ 7Y by < [[ doms V1< M, (A.5)
m=0 m=1

where

m—1 k .
o L+ 71a%¢y,) if 1<m<l-1
d — k=0 ( m - - A6
bm { Cs + agT Ef;_:%) cpaf if m=1/ (A-6)
Meanwhile, the following bound is available:
den = 1+ 7)1+ arep) - (1+ " rey,)
< exp(Tem) exp(areg) - - exp(@™ Lrey,)
=exp (Tl +a+-+a™ Yey) <exp(dacmt), Y1<m<l—1, (A7)
which in turn leads to
dpadps - dpg_y < etaciTedaca™ . gdac
< exp (Aat(cr + o+ -+ 1)) < exp(AaCh). (A.8)
On the other hand, we also have
dee = Co+ apt (co +ca+---+ cz_lo/_l)
< Cy + apt (Co +co+--+ CZ_1> < Oy + agCh. (A9)
In turn, a substitution of (A.8) and (A.9) into (A.G]) results in (A4), the desired estimate. The
proof of Lemma [A.2] is complete. O
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