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AN IMPROVED A PRIORI ERROR ANALYSIS OF NITSCHE’S
METHOD FOR ROBIN BOUNDARY CONDITIONS

NORA LUTHEN, MIKA JUNTUNEN, AND ROLF STENBERG

ABSTRACT. In a previous paper [6] we have extended Nitsche’s method [8] for
the Poisson equation with general Robin boundary conditions. The analysis
required that the solution is in H®, with s > 3/2. Here we give an improved
error analysis using a technique proposed by Gudi [5].

1. THE METHOD AND ITS CONSISTENCY

In the article [6] a Nitsche-type method is introduced and analyzed for the
following model Poisson problem with general Robin boundary conditions: Find
u € H*(Q) such that

(1.1) —Au=f inQ,
ou 1
(1.2) a—nzz(uo—u)—kg onT,

where Q@ ¢ RN, N = 2,3, is a bounded domain with polygonal or polyhedral
boundary T, f € L?(Q), ugp € HY?(T), g € L*(T), and ¢ € R, 0 < ¢ < 0.
The limiting values of the parameter € give the Dirichlet and Neumann problems,
respectively.

The error analysis presented was not entirely satisfactory. It assumed that the
solution is in H*(2) with s > 3/2, which is the same condition that traditionally has
been needed for discontinuous Galerkin methods [1]. For discontinuous Galerkin
methods Gudi introduced a technique using a posteriori error analysis by which
this assumption could be avoided [5].

The purpose of this paper is to use these arguments to improve the analysis
of the Nitsche method for the above Robin problem. Below we start by recalling
the method of [6]. We first recall the derivation of the method in a way that
emphasizes the use of the residual, which will be crucial for the error analysis. The
same notation as in [6] will be used. The finite element partitioning into simplexes
is denoted by 7j. This induces a mesh, denoted by Gp, on the boundary I'. By
K € T;, we denote an element of the mesh and by F we denote an edge or a face in
Gn. By hi we denote the diameter of the element K € 7Tj, and by pg the radius
of the biggest ball contained in K. The mesh is assumed to be regular, i.e. it holds

h
(1.3) sup —~ =k < 0.
KeT, PK
By hg we denote the diameter of E € Gj. The finite element subspace is denoted
by
Vii= {ve HYQ) : v|x € Pp(K) VK € Ty, },
where P, (K) is the space of polynomials of degree p.
1
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The Nitsche method is obtained as follows. Multiplying the differential equation
(1.1) with a testfunction w € V}, and integrating by parts we have

0
(1.4) (Vu,Vw)Q—<£,w>F— (f,w)Q =0
Defining the residual
Ov

(15) Re(o) = (50 —9) + v — w0,
the boundary condition is
(1.6) Rr(u) =0.
Hence it holds
1
(17) ) (Br(w),w)p, =
Eegy ¢+ he
and
YhE ow
1. — —>),.,=0.

Adding (1.4), (1.7) and (1.8) shows that the exact solution satisfies

(V. V) — (o) — (P + D (Rr(u),w),,

Eegn
’}/hE ow _

Eegy

eJr’)/hE

Substituting the expression (1.5) for the boundary condition and rearranging the
terms, we see that the exact solution satisfies

(1.10) By (u,w) — Fp(w) =0 Yw eV,
where
vhg ov ow
(L1 Bufww) = (90, Vu)y + 3 {_ e (G (0 500 )
h

1 eyhg ,0v Ow
+ e+vhg (v w)p = e+vhg <%’ 8n>E}

and

1 h 0
(1.12) }—h(w) - (f7w)9+ Z {e+’7hE <UO7w>E_ e—zvb;LE <U07%>E

E€Gh

i e e G
The above derivation shows the consistency of the
Nitsche Method [6]. Find u, €V}, such that

(1.13) By (up, w) = Fp(w) Yw € V.
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2. THE NEW A PRIORI ERROR ESTIMATE

The estimate will be given in the mesh and problem dependent norm

1
(2.1) ollf = IVollgo+ D

——|Jo[l} &-
Eegy €+he

We recall the following discrete trace inequality which is easily proved by scaling
arguments.

Lemma 2.1. There is a positive constant Cp such that

o |?
(2.2) > he o < CrlVolgg Yo € V.
n
Eegn 0,E
For the formulation we have the following stability result, cf. [6]. Here and in

what follows C' denotes a generic positive constant independent of both the mesh
parameter h and the parameter e.

Lemma 2.2. Suppose that 0 < v < 1/Cy. Then there exists a positive constant C
such that

2.3 Bn(v,v) > Cllv||? Yv e V.
h

By fn € Vi, and gn, uon € Vi|r we denote the interpolants to the data. For
E € Gj, we denote by K(E) € Tj, the element with E as edge/face. In [6] we proved
the following bound.

Lemma 2.3. For an arbitrary v €V}, and E € Gy, it holds

/2
24) ZElBr®)os < C(IV (=)o ke + hxll f = ok
1 1/2
_ E _ _
el o + g = 90) + o~ woslos).
We introduce the oscillation terms
1/2
(2.5) ose(f) = (D BklIF—snlix) "
KeTh
he 5 \1/2
(26) oseleuog) = (D —rsllelg —gn) +uo—wonlis) -
EcGy (6+hE)

Lemma 2.3 then gives

Lemma 2.4. For v € V), it holds

1/2
20 (e IRr@ls) < C{llu— vl + oscls) + oscles o, )}
E€gy,

We can now prove our new error estimate.

Theorem 2.1. Suppose that 0 < v < 1/Cr. Then there exist a positive constant C
such that

(2.8) [lu — up|ln < C{ Uiené [lw —v||n + osc(f) + osc(e,umg)}.
h
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Proof. We will divide the proof in 6 steps.

1. Treating the consistency by Gudi’s method.
Let v € V3 be arbitrary. From the stability we have

(2.9) Cllv —unllz < Bhr(v —un, v —up).
Next, we denote w = v — up, and use (1.13)

(2.10) Bp(v—up,v—up) = Bp(v—up,w)=By(v,w)— Bxlup,w)
= Bp(v,w) — Fp(w).

Reversing the arguments leading from (1.9) to (1.10) we see that

Q_<g%’w>F_(f’w)Q
(2.11) + Y : (Br(v),w),

Eegy, et ’th

’th 8w
- Y EERr(), )
Eegh6+WhE< r(v) 8n>E

Bi(v,w) — Fp(w) = (Vv,Vw)

Substituting the boundary condition (1.2) into (1.4) we get

1
(2.12) (Vu, Vw) , — <g(u0 —u)+g,w). — (fiw), =
Subtracting this from the right hand side of (2.11) yields
ov 1

By (v, w) — Fp(w) (V(v—u),Vw)Q—<a—n—g(uo—u)—g,w>F

1
+ Y o (B ),

Eegy

(2.13) - Y zhthE (Rr(v), %’:}E

EegGy
= Ri+ Rs+ Rs+ Ry.

Next we estimate the terms in the right hand side above.

2. Estimates for the terms Ry and Ry.
The first and the last term are readily estimated. By Schwarz inequality and the
definition (2.1) of the norm, we have

(2.14) Ry = (V(v—u), V), < [lu—vlpllw|s.

Schwarz inequality, the discrete trace inequality (2.2), and Lemma 2.4 give

Ri<| Y T <v>,%§j>E\

Eegn €+7hE
V’hi 1
(2.15) < (Egg:h m” ) (E%g:h hE||7||O E)

< C(llu = vlln + osc(f) + osc(e, uo, 9)) [w]n-

3. Splitting the boundary.
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To treat the two remaining terms R and R3, we have to separate the cases when
the edge size hg is smaller or greater than e. To this end we denote the collection
of edges of size greater than € by

(2.16) G, ={E€Gnle<hgr},
and the corresponding part of the boundary by
(2.17) r.=|J E

Eeg;,

We then write

R2+R3:—<%_E(u0_u)_ng>F+E§ €+7h (Br(),w),

(2.18) Eeﬁ{ —foO*U) g,w>E+ﬁ<Rr(v)vw>E}
T s g
O

4. Estimation of the contribution to Ry + Rs from the part I'.
On E CT. it holds € < hg and we estimate as follows, using Lemma 2.4,

> o (Reo) )

ECT.

¢ 1/2
S e e (e + hip)

Bk €+ 7he
\/§h1/2 -
(219) < > | Re(@)os - (e hp) A wlop
gcr, €T E
2hEg 5 \1/2 . , \1/2
< - =
= (EZ (€ + vhE )2” r(v )HOE> ( Z (e+hp) Hw”OE)
CT. ECT.

< C(llu = vlln + osc(f) + osc(e, uo, 9)) wlln-

Next, we have to estimate

ov 1
(2.20) — (3, — Z(w—u)—gw) .
We substitute
(2.21) Yo —u)tg = o0,
which gives
ov 1 ou Ov
(2.22) ~(Gn ~ (o= g = (5~ 5w,
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FIGURE 1. The boundary parts I'. and T'}, and the strip Q..

Now we define the strip

(2.23) Q= |J K

K€,77L

KL #0
Following [1, 2, 7] we construct a linear finite element extension E,w € Vj, of w]r,
such that
(2.24) Enwlp, = wlr,
and
(2.25) Ehrw=0 in Q\ Q..
In [1, 2, 7] the following estimate is derived
_ 1/2

(2.26) IVEwlloo. <C( D bt llwl§e) "

ECT.
We denote
(2.27) It =Q.NT.

and split the boundary of €2, in three parts (cf. Figure 2)
(2.28) 00 =T U{TF\T U {00\ T}

Note that &,w # w on T \ T'.. Since 5hw|aﬂé\rj = 0, scaling and the estimate
(2.26) show that

_ 1/2 _ 1/2
(2.29) (> mllEnwllg ) "+ > htlEnwld g)
KcCQ. ECQAD
_ 1/2
< OVEwlon, <C( Y hptllwl3 )",
ECT.
and also
_ 1/2 _ 1/2
(2.30) (Y. hg'lEnwlld g) 2 < C|IVE w0, <O > hgtlwll§ g) .
ECI'I\I. ECT.

Further, since ¢ < hg, it holds

231) (3 i) < VE( S ——fwl2 ) < VElulla.

h €
ECT. pcr, e
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Next, integrating by parts and using (2.29)—(2.31) we estimate as follows

Ju Ov
(5~ 5 Enhes
(2.32) = Z [—(f + Av, &) . + (V(u—v), VEw) |
KCQ.
v
+ Z <|[%:|]’ghw>E
ECQA\TY
2 2 \1/2 -2 2 \1/2
<C( Z hK||f+Av||o,K) ( Z hy ||5hw||o,K)
KCQe. KCQe.
+IV(u =)l NVEnwlo,q.
0 _
(X sl 1370 Y rEtlEwlE p)
ECQAIT EcCQA\IY
<c{( Y mklf+ 20l )" + IV @ =)o,
KCQ.
0
(> nsl5]18.) " Ml
ECQAIT
From a posteriori error analysis [3, 9] we know that

)1/2

6,5

(2.33) (Y w2

ECQATY

1/2
<O BN+ Al ) + 1V - ) o,

KCQ.
and
(2.34) (}:h%U+Amﬁ@“2gcmvm—mmn+%qﬁy
KCQ.
Hence we have
Ou Ov

(2.35) ,mwxjgchfmm+mqﬁymm.

on  on
Since Epw = w on ', we get

du v ou  Ov
@w<%—%whgqmwmmﬂme4%—%@@mm



8 NORA LUTHEN7 MIKA JUNTUNEN, AND ROLF STENBERG

For £ C Fj \ T'c it holds that hp < ¢ < Chg with a constant that only depends on
the regularity constant x. Thus we can estimate

du v
_ <% — %7ghw>rj\r‘€

= Y B Ew), — (u v &),

ECTH\I.
(237) <C I Re(0) o sl Enwlo. + —— [l — vlo.slEnwllo.e
e+ hg e+ hg
ECTI\T.
hg 2 1 9 N\1/2
<C _ "B R L
<O Y Gl + i vlis)
ECII\T.
1 1/2
(X clEelie)
ECII\T.
Thus we have
ou Ov
(2.38) <% - %,w>n < C(Jlu = v|ln + osc(f) + osc(e, uo, 9)) wln,

which together with (2.19) gives

ov 1 1
Z {%% - E(Uo —u) = g, W), + €+’th<RF(U)’w>E}

(2.39) < C([lu—v|ln + osc(f) + osc(e, uo, 9))|[w]|n-

5. Estimation of the contribution to Ry + Rs from the part T'\ T..
It now holds € > hg. First write

ov 1 ov 1 1
(2.40) %—z(uo—u)—gza—n—z(uo—v)—g—kz(u—v)
1

- %Rp(v) + o).

™

Hence, on F it holds

ov 1 1
_ <% _ g(uo —'LL) — g,w>E + €+'}/hE <RF(U),'LU>E
1 1 !
= (o ~ D Br@w) = u—vu)y
(2.41) _ _%@ (v),w), — 1<u—v w)
(6+’th)€ T ) E € ’ E
h 1
< i @ lbslwlos + <l = vloslwlo.e

Since € + hg < 2e, it holds

1
(2.42) —llw = vllo,gllwllo, < l[u = vllo,zllwllo,&-

e+ hg
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Since hg/e < 1 we estimate as follows

YhEg
T hp)e [1Br(v)llo.2llwllo,e

Yhi(e+ hg)'/? _
e Re @l (e he) ™ol g

h}a/z h}3/2 (e + hE) —1/2
e ey e IR @l (et he) ™ s

L E E G R s (e b)Y s
€'/2 (e +vhg) € ’ ’

1/2
VI

Combining (2.41)—(2.43) yields

ov 1 1
ECI\T.

< C(llu = vlln + osc(f) + osc(e, uo, 9)) wlln-

(2.43)

IRe(v)llo,& - (€ + he) ™ *|wlo,z-

(Br(v), w),)

6. Collecting the estimates.

Adding (2.39) and (2.44) gives
(2.45) Ry + Rz < C(|lu—v||n + osc(f) + osc(e, uo, 9))[[w]|n-
The assertion then follows from this and (2.13), (2.14), and (2.15).
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