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Abstract Maximal regularity is a fundamental concept in the theory of par-
tial differential equations. In this paper, we establish a fully discrete version of
maximal regularity for a parabolic equation. We derive various stability results
in Lp(0, T ;Lq(Ω)) norm, p, q ∈ (1,∞) for the finite element approximation
with the mass-lumping to the linear heat equation. Our method of analysis
is an operator theoretical one using pure imaginary powers of operators and
might be a discrete version of G. Dore and A. Venni (On the closedness of the
sum of two closed operators. Math. Z., 196(2):189–201, 1987). As an appli-
cation, optimal order error estimates in that norm are proved. Furthermore,
we study the finite element approximation for semilinear heat equations with
locally Lipschitz continuous nonlinearity and offer a new method for deriv-
ing optimal order error estimates. Some interesting auxiliary results including
discrete Gagliardo-Nirenberg and Sobolev inequalities are also presented.
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1 Introduction

Let Ω be a bounded domain in Rd, d = 2, 3, with the boundary ∂Ω. Let
JT = (0, T ) be a time interval with T ∈ (0,∞]. We consider the finite element
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2 T. Kemmochi, N. Saito

approximation of linear heat equation for the function u = u(x, t) of (x, t) ∈
Ω × [0, T ): 

∂tu = ∆u+ g in Ω × JT ,
u = 0 on ∂Ω × JT ,
u|t=0 = u0 on Ω,

(1)

where ∂tu = ∂u/∂t, ∆u =
∑d
j=1 ∂

2u/∂xj
2, g = g(x, t), and u0 = u0(x); g and

u0 are prescribed functions. All functions and function spaces considered in
this paper are complex-valued.

The purpose of this paper is to derive various stability estimates in the
Lp(JT ;Lq(Ω)) norm

‖v‖Lp(JT ;Lq(Ω)) =

[∫ T

0

(∫
Ω

|v(x, t)|q dx
)1/q

dt

]1/p
and discrete Lp(JT ;Lq(Ω)) norm defined as (8) with X = Lq(Ω), where p, q ∈
(1,∞). As applications of those estimates, we also derive optimal order error
estimates in those norms for the finite element approximations of (1) and
semilinear heat equation

∂tu = ∆u+ f(u) in Ω × JT
u = 0 on ∂Ω × JT ,
u|t=0 = u0 in Ω,

(2)

where f : C → C is a prescribed function. Particularly, we assume only a
locally Lipschitz continuity and offer a new method of error analysis for (2).

In other words, we intend to develop a discrete version of theory of max-
imal regularity for evolution equations of parabolic type. To recall maximal
regularity in a general context, let us consider an abstract Cauchy problem on
a Banach space X as {

u′(t) = Au(t) + g(t), t ∈ JT ,
u(0) = 0,

(3)

where A is a densely defined closed operator on X with the domain D(A) ⊂ X,
g : JT → X is a given function, u : JT → X is an unknown function and
u′(t) = du(t)/dt.

Definition 1 (Maximal regularity, MR, CMR) Let p ∈ (1,∞). The op-
erator A has maximal Lp-regularity (Lp-MR) on JT , if and only if, for every
g ∈ Lp(JT ;X), there exists a unique solution u ∈W 1,p(JT ;X)∩Lp(JT ;D(A))
of (3) satisfying

‖u‖Lp(JT ;X) + ‖u′‖Lp(JT ;X) + ‖Au‖Lp(JT ;X) ≤ CMR‖g‖Lp(JT ;X), (4)

where CMR > 0 denotes a constant that is independent of g. We say that A has
maximal regularity (MR) if A has maximal Lp-regularity for some p ∈ (1,∞)
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(see Lemma 1). To distinguish Lp-MR and MR from the discrete versions
introduced later, we say that A has continuous maximal Lp-regularity (Lp-
CMR) and continuous maximal regularity (CMR) .

It is proved that the Lq(Ω) realization A of ∆ with D(A) = W 2,q(Ω) ∩
W 1,q

0 (Ω) has Lp-CMR for any p, q ∈ (1,∞) (see [14,32]). The problem (1)
admits a unique solution u ∈ W 1,p(JT ;Lq(Ω)) ∩ Lp(JT ;D(A)) satisfying (4)
with u0 = 0. This result implies that ∂tu and ∆u are well defined and have
the same regularity as the right-hand side function g. Moreover, ∂tu and ∆u
cannot be in a better function space than g, since g = ∂tu − ∆u. This is
not a trivial fact. For comparison, we recall the solution obtained using the
analytical semigroup theory, which is a powerful method to establish the well-
posedness of (1) and (2). For example, assume g ∈ Cσ(JT ;Lq(Ω)) for some
σ ∈ (0, 1), that is, assume

sup
t,s∈JT , t 6=s

‖g(t)− g(s)‖Lq(Ω)

|t− s|σ <∞.

Then, by application of the analytical semigroup theory, we can prove that
the problem (1) with u0 = 0 admits a unique solution u ∈ C(JT ;X) ∩
C(JT ;D(A)) ∩ C1(JT ;Lq(Ω)); see [35, Theorems 4.3.2, 7.3.5]. However, we
are able to obtain slightly less regularity ∂tu − ∆u ∈ C(JT ;Lq(Ω)) than
g. To obtain the same regularity ∂tu − ∆u ∈ Cσ(JT ;Lq(Ω)), we must fur-
ther assume g(x, 0) = 0 for all x ∈ Ω; see [35, Theorem 4.3.5]. Therefore,
W 1,p(JT ;Lq(Ω)) ∩ Lp(JT ;D(A)) is an appropriate function space to study
parabolic equations such as (1). Moreover, CMR is a “stronger” property than
the generation of analytical semigroup in the sense that, if A has CMR, then
A generates the analytical (bounded) semigroup (cf. [15]). Although CMR is
a concept for linear equations, it actually has many important applications
to nonlinear equations, as reported in the literature [3,32,40]. Moreover, the
analytic semigroup theory and its discrete counterparts play important roles
in construction and study of numerical schemes for parabolic equations (see
e.g. [18,20,21,37,38,46]). Therefore, it is natural to wonder whether a discrete
version of CMR is available.

This study has another motivation. Considering the problem (2) with
f(u) = u|u|α for α > 0, then without loss of the generality, we assume 0 ∈ Ω.
Let λ > 0. Then the function

uλ(x, t) = λ
2
αu(λx, λ2t)

also solves (2) where Ω and JT are replaced, respectively, by Ωλ = {λ−1x |
x ∈ Ω} and JT/λ2 . Moreover, if p, q ∈ (1,∞) satisfy

2

α
=
d

p
+

2

q
, (5)

we have
‖uλ‖Lp(JT/λ2 ;Lq(Ωλ)) = ‖u‖Lp(JT ;Lq(Ω))
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for any λ > 0. Those p, q are called the scale invariant exponents. The function
space Lp(JT ;Lq(Ω)) with p, q satisfying (5) plays a crucially important role
in the study of time-local and time-global well-posedness of (2). Furthermore,
such a scaling argument is applied to deduce a novel numerical method for
solving (2) (see [5]). Therefore, it would be interesting to derive stability and
error estimates in those norms from the dual perspectives of numerical and
theoretical analysis.

Based on those motivations, we studied a time discrete version of maximal
regularity for (3) in an earlier study [29]. Let

NT =

{
bT/τc (T <∞)

N∞ =∞ (T =∞).
(6)

We consider the implicit θ scheme for (3) given as
un+1 − un

τ
= Aun+θ + gn+θ, n = 0, 1, . . . , NT − 1,

u0 = 0,

(7)

where τ > 0 is the time increment, θ ∈ [0, 1], g = (gn)NTn=0 is a given XNT+1-
valued function, and u = (un)NTn=0 is an unknown XNT+1-valued function. Set

vn+θ = (1− θ)vn + θvn+1

for a sequence v = (vn)n. We moreover assume that A is bounded when θ 6= 1.
The function un might be an approximation of u(nτ) for n = 1, . . . , NT .

We introduce the space lp(N ;X) by setting

lp(N ;X) =

{
XN+1, N ∈ N,
lp(N;X), N =∞,

and let

‖v‖lpτ (N ;X) =

(
N−1∑
n=0

‖vn‖pXτ
)1/p

, (8)

Dτv =

(
vn+1 − vn

τ

)N−1
n=0

, Av = (Avn)Nn=0,

vθ = (vn+θ)N−1n=0 ,

for v = (vn) ∈ lp(N ;X).
Discrete maximal regularity is then introduced as follows (see [29]).

Definition 2 (Discrete maximal regularity, DMR) Let p ∈ (1,∞). The
operator A has maximal lp-regularity (lp-DMR) on JT if and only if, for every
g ∈ lp(NT ;X), there exists a unique solution u ∈ XNT of (7) satisfying

‖uθ‖lpτ (NT ;X) + ‖Dτu‖lpτ (NT ;X) + ‖Auθ‖lpτ (NT ;X) ≤ CDMR‖gθ‖lpτ (NT ;X), (9)
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uniformly with respect to τ , where CDMR > 0 is independent of g. We say
that A has discrete maximal regularity (DMR) if A has lp-DMR for some
p ∈ (1,∞).

In [6], Blunck considered the forward Euler method (θ = 0) and character-
ized DMR by developing a discrete version of the operator-valued Fourier mul-
tiplier theorem. However, the dependence of τ on DMR inequalities is not clear
since only the case τ = 1 is studied. The backward Euler method (θ = 1) with
an arbitrary time increment τ is discussed in [4]. Ashyralyev and Sobolevskĭı
provided no reasonable sufficient conditions for DMR. Consequently, those re-
sults cannot be applied straightforwardly to numerical analysis. In contrast to
those works, we gave sufficient conditions on τ , θ, A for DMR to hold in [29].
We recall the statement below (see Lemma 6).

Spatial discretization must be addressed next. We introduce the finite ele-
ment approximation Lh of ∆ in H1

0 (Ω) and prove that Lh has CMR. Herein,
h denotes the size parameter of a triangulation Th. As a matter of fact, Geis-
sert studied CMR for the finite element approximation of the second order
parabolic equations in the divergence form in [22,23]. He considered a smooth
convex domain Ω and triangulations defined on a polyhedral approximation
Ωh of Ω. (For the Neumann boundary condition case, he considered the ex-
actly fitted triangulation.) Therefore, combining those results with our Lemma
6, we are able to obtain DMR for the smooth domain case. In those works, the
method of [39] and [42] for studying stability and analyticity in L∞ norm is
applied. He first derived some estimates for the discrete Green function asso-
ciated with the finite element operator in parabolic annuli. Then he obtained
some estimates in the whole Ω by a dyadic decomposition technique. Con-
sequently, the proofs are quite intricate. Moreover, he applied several kernel
estimates for the Green function associated with a parabolic equation. There-
fore, the domain and coefficients should be suitably smooth.

In the present paper, we take a completely different approach. We directly
establish a discrete version of the method using pure imaginary powers of op-
erators developed by [16]. To this end, we consider polyhedral domains and
study the discrete Laplacian with mass-lumping Ah instead of the standard
discrete Laplacian since the positivity-preserving property of the semigroup
generated by Ah (see Lemma 9) plays an important role in our analysis. Actu-
ally, the standard discrete Laplacian has no such property (see [43]). It must be
borne in mind that the Lq theory for the discrete Laplacian with mass-lumping
is of great use in study of nonlinear problems, such as the finite element and
finite volume approximation of the Keller-Segel system modelling chemotaxis
(see [37,38,46]).

After having established CMR and DMR for Ah (see Theorems I, II, III
and IV), we derive optimal order error estimates for the finite element approx-
imations combined with the implicit θ method to (1) (see Theorem V). We
address not only unconditionally stable cases (θ ∈ [1/2, 1]), but also condition-
ally stable cases (θ ∈ [0, 1/2)). For the latter case, we give a useful sufficient
condition for the scheme to be stable. As a further application, we study the
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finite element approximation for (2) and prove optimal order error estimates
(see Theorem VI). Since nonlinearity f is assumed to be only locally Lipschitz
continuous, the solution u might blow up in some sense. Our error estimate is
valid as long as u exists in contrast to [23]. To achieve such an objective, we
apply the fractional powers of −Ah and derive a sub-optimal error estimate
in the L∞(Ω × (0, T )) norm as an intermediate result (see Theorem VII).
Our proposed method is apparently new in the literature. Some auxiliary re-
sults including discrete Gagliardo-Nirenberg and Sobolev inequalities are also
presented (see Lemmas 24 and 28).

We learned about [33,31] after completion of the present study. The paper
[33] specifically examined the time-discrete version of Lp-Lq-maximal regular-
ity for arbitrary p, q ∈ [1,∞], by discontinuous Galerkin time stepping (cf. [41])
for parabolic problems. This result is valid for p, q = 1,∞. However, they did
not consider the R-boundedness of sets of operators, which plays an important
role in the theory of maximal regularity developed by Weis [45]. The main tools
in [33] were the smoothing properties of the continuous and discrete Laplace
operators. Consequently, their estimate invariably contained the logarithmic
term, so that the optimal error estimate is never obtained. It was established
by a related work [31] that arbitrary A-stable time-discretization preserves
the time-discrete version of maximal Lp-regularity for abstract Cauchy prob-
lems and for p ∈ (1,∞). These results were obtained via the theory of R-
boundedness. It is therefore partially the same result of our previous work
[29]. An optimal error estimate was established only for semi-discrete back-
ward Euler scheme for a semilinear parabolic problem. In contrast to these
works, we deal only with the finite difference scheme in time. However, our
error estimate is optimal for fully discretized problems.

The plan of this paper is as follows. In Sec. 2, we introduce the notion
of finite element approximation and state main results (Theorems I–VII). We
summarize some preliminary results used in the proofs of Theorems in Sec. 3.
Some auxiliary lemmas related to MR, DMR and Ah are described there. A
useful sufficient condition for DMR to hold is also described there (Lemma 6).
In Sec. 4, we prove Theorems I–IV by a discrete version of the method of [16]
using pure imaginary powers of operators. Auxiliary results, Lemmas 15, 18
and 19, themselves are of interest. The proor of error estimate (Theorem V)
for the linear equation (1) is described in Sec. 5. The semilinear equation (2)
is studied in Sec. 6. Therein, we also prove auxiliary results including discrete
Gagliardo-Nirenberg, Sobolev inequalities and provide useful results related to
the fractional powers of Ah. Combining those results, we prove the final error
estimate, Theorems VI and VII.

2 Main results

Throughout this paper, Ω is assumed to be a bounded polygonal or polyhedral
domain in Rd, d = 2, 3, with the boundary ∂Ω. We follow the notation of [1].
As an abbreviation, we write Lq = Lq(Ω), W s,q = W s,q(Ω) and Hs = W s,2 for



Discrete maximal regularity and FEM for parabolic equations 7

q ∈ [1,∞] and s > 0. We use W 1,q
0 = {v ∈ W 1,q | v|∂Ω = 0} and H1

0 = W 1,2
0 .

Generic positive constants which are independent of discretization parameters,
h and τ , are denoted as C. Their values might be different in each appearance.

Since the boundary ∂Ω is not smooth, we make the following shape as-
sumption on Ω.

Assumption 1 (Shape assumption on Ω) There exists µ > d satisfying

‖v‖W 2,q ≤ C‖∆v‖Lq , ∀v ∈W 2,q ∩W 1,q
0 , (10)

for q ∈ (1, µ), where C > 0 depends only on Ω and q.

For example, if Ω is a convex polygonal domain in R2, then one can find µ > 2
satisfying Assumption 1 (see [24]).

Let Th be a triangulation of Ω with the granularity parameter h defined
below. Hereinafter, a family T of triangles or tetrahedra is a triangulation of
Ω if and only if

1. each element of T is an open triangle or tetrahedron in Ω and

Ω = Int

( ⋃
K∈T

K

)
,

where Int(·) is the interior part of a set,
2. any two elements of T meet only in entire common faces (when d = 3),

sides or vertices.

We use the following notations:

• h = maxK∈Th hK ; hK = the diameter of a triangle or tetrahedron K;
• Nh = the number of nodes of Th; Nh = the number of interior nodes;

• {Pj}Nhj=1 = the nodes of Th; {Pj}Nhj=1 = the interior nodes.

We assume the following.

Assumption 2 (Regularity of {Th}h) There exists ν > 0 such that

hK ≤ νρK , ∀K ∈ Th, ∀h > 0,

where ρK denotes the radius of the inscribed circle or sphere of K.

Here we consider the P1 finite element. Let Vh be the space of continuous
functions on Ω which are affine in each element K ∈ Th. For every node Pj
(j = 1, . . . , Nh), φj is the corresponding basis of Vh, which satisfies φj(Pi) =
δij , where δij is Kronecker’s delta. Namely, Vh is the linear space spanned by

{φj}Nhj=1. We also set

Sh = {vh ∈ Vh | vh|∂Ω = 0} = span{φj}Nhj=1.

Moreover, we presume that {Th}h satisfies the following conditions if nec-
essary.
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(H1) (Inverse assumption) There exists γ > 0 such that

h ≤ γhK , ∀K ∈ Th, ∀h > 0.

(H2) (Acuteness) For each h > 0 and for each i, j ∈ {1, 2, . . . , Nh} with i 6= j,∫
Ω

∇φi · ∇φj dx ≤ 0. (11)

Remark 1 In the two-dimensional case, let σ ⊂ Ω be an edge of the triangu-
lation Th and K and L be the triangles of Th which meet in σ. Assume that
the nodes Pi and Pj be both endpoints of σ. We denote the interior angle of
K opposite to the edge σ by αKi,j . Then, the condition (11) is equivalent to the

equation of αKi,j + αLi,j ≤ π. See [30, Corollary 3.48] for the detail.

Remark 2 (Discrete maximum principle) The condition (H2) is equivalent to
the discrete maximum principle, i.e., the following conditions are equivalent.

1. The triangulation Th fulfills the acuteness condition.
2. Let uh ∈ Vh be the solution of the following problem for f ∈ L2 and
gh ∈ Vh: {

(∇uh,∇vh)L2 = (f, vh)L2 , ∀vh ∈ Sh,
uh|∂Ω = gh.

Then, uh ≥ 0 in Ω provided that f ≥ 0 in Ω and gh ≥ 0 on ∂Ω.

See [30, Theorem 3.49] for details.

Remark 3 When q = 2, Ah is a self-adjoint operator in Xh,2. Therefore,
(H2) is not required in the following discussion. However, the condition (H1)
is required for the inverse inequality, which implies H1-stability of the L2-
projection (the equation (29)) and the discrete Gagliardo-Nirenberg type in-
equality (Lemma 24). Therefore, this condition is imposed for the consequences
of (29) and Lemma 24, for example, Theorems V–VII, even if q = 2.

We describe the method of mass-lumping. For a node Pj , we designate the
corresponding barycentric domain as Λj ; see Figure 1 for illustration and see
[20,19] for the definition. We denote the characteristic function of Λj by χj
for j = 1, . . . , Nh. Then, we set

Sh = span{χj}Nhj=1

and define the lumping operator Mh : Sh → Sh as

Mhvh =

Nh∑
j=1

vh(Pj)χj .

Moreover, we define Kh = M∗hMh, where M∗h is the adjoint operator of Mh

with respect to the L2-inner product. As one might expect, Mh is invertible
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Pj2

Pj1

Ω

∂Ω

Λj2

Λj1

Fig. 1: Barycentric domains. Pj1 : interior node, Pj2 : boundary node. : node,
: midpoint of an edge, : barycenter of a triangle.

and therefore Kh is as well. We define the mesh-dependent norms and inner
product as

‖vh‖h,q = ‖Mhvh‖Lq , (uh, vh)h = (Mhuh,Mhvh), uh, vh ∈ Sh
for q ∈ [1,∞]. In fact, ‖ · ‖h,q is an equivalent norm to ‖ · ‖Lq in Sh for each
q ∈ [1,∞] (see Lemma 12).

At this stage, we introduce a discrete Laplacian as follows. Define the
operator Ah on Sh as

(Ahuh, vh)h = −(∇uh,∇vh), ∀vh ∈ Sh,

for uh ∈ Sh. We designate Ah the discrete Laplacian with mass-lumping.
From the Poincaré inequality, Ah is injective so that it is invertible due to
dimSh <∞.

We are now in a position to state the main results of this study. In the
theorems below, we always presume that Assumptions 1 and 2 are satisfied,
unless otherwise stated explicitly. The first one is about CMR for Ah.

Theorem I (CMR for Ah) Let T ∈ (0,∞], p ∈ (1,∞) and q ∈ (1, µ). As-
sume that (H1) and (H2) are satisfied when q 6= 2. Then, Ah has Lp-CMR on
JT in Xh,q uniformly for h > 0. That is, there exists C > 0 independent of
h > 0 satisfying

‖uh‖Lp(JT ;Xh,q) + ‖u′h‖Lp(JT ;Xh,q) + ‖Ahuh‖Lp(JT ;Xh,q) ≤ C‖gh‖Lp(JT ;Xh,q),

where gh ∈ Lp(JT ;Xh,q) and uh is the solution of{
u′h(t) = Ahuh(t) + gh(t), t ∈ JT ,
uh(0) = 0.

(12)
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Remark 4 Since (12) is a system of (inhomegeneous) linear ordinary differen-
tial equations, the unique existence of a solution follows immediately.

Next, we state results about DMR for Ah. To state them, we set

θq = arccos |1− q/2|, (13)

κh = min
K∈Th

κK ,

where κK denotes the minimum length of perpendiculars of K.

Theorem II (DMR for Ah in J∞) Let p ∈ (1,∞), q ∈ (1, µ) and θ ∈ [0, 1].
Assume that (H1) and (H2) are satisfied when q 6= 2. We choose ε and τ
sufficiently small to satisfy

τ

κ2h
≤ 2 sin θq − ε

(1− 2θ)(d+ 1)2
, (14)

when θ ∈ [0, 1/2). Then, Ah has lp-DMR on J∞ in Xh,q uniformly for h > 0.
That is, there exists C > 0 independent of h and τ satisfying

‖uh,θ‖lpτ (N;Xh,q) + ‖Dτuh‖lpτ (N;Xh,q) + ‖Ahuh,θ‖lpτ (N;Xh,q) ≤ C‖gh,θ‖lpτ (N;Xh,q),

where gh = (gnh)n ∈ lp(N;Xh,q) and uh = (unh)n is the solution of{
(Dτuh)n = Ahu

n+θ
h + gn+θh , n ∈ N,

u0h = 0.

Theorem III (DMR for Ah in JT ) Let p ∈ (1,∞), q ∈ (1, µ) and θ ∈
[0, 1]. Assume that (H1) and (H2) are satisfied when q 6= 2. Choose ε and
τ sufficiently small to satisfy (14), when θ ∈ [0, 1/2). Then, for every T >
0 and for every gh ∈ lp(NT − 1;Xh,q), there exists a unique solution uh ∈
lp(NT ;Xh,q) of{

(Dτuh)n = Ahu
n+θ
h + gnh , n = 0, 1, . . . , NT − 1,

u0h = 0,

and it satisfies

‖uh,θ‖lpτ (NT ;Xh,q)+‖Dτuh‖lpτ (NT ;Xh,q)+‖Auh,θ‖lpτ (NT ;Xh,q) ≤ C‖gh‖lpτ (NT ;Xh,q),

where C > 0 is independent of g, T , h, and τ .

Theorem IV (DMR for non-zero initial value) Let p ∈ (1,∞) and q ∈
(1, µ). Assume that (H1) and (H2) are satisfied when q 6= 2. Then, for every
T > 0, gh ∈ lp(NT ;Xh,q), and u0,h ∈ (Xh,q, D(Ah))1−1/p,p, there exists a
unique solution uh ∈ lp(NT ;Xh,q) of{

(Dτuh)n = Ahu
n+1
h + gn+1

h , n = 0, 1, . . . , NT − 1,

u0h = u0,h,
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which satisfies

‖uh,1‖lpτ (NT ;Xh,q) + ‖Dτuh‖lpτ (NT ;Xh,q) + ‖Auh,1‖lpτ (NT ;Xh,q)
≤ C

[
‖gh,1‖lpτ (NT ;Xh,q) + ‖u0,h‖1−1/p,p

]
,

where C > 0 is independent of g, u0,h, T , h, and τ .

Therein, (Xh,q, D(Ah))1−1/p,p and ‖ · ‖1−1/p,p respectively denote the real
interpolation space and its norm. (see Subsection 6.1 for related details.)

Those theorems are applicable for error analysis of the fully discretized
finite element approximation for heat equations. First, we consider a linear
heat equation (1) for T ∈ (0,∞), g ∈ Lp(JT ;Lq) and u0 ∈ Lq. We further
assume g ∈ C0(JT ;Lq)). We consider the following approximate problem to
find uh = (unh)n ∈ lp(NT ;Sh) satisfying

((Dτuh)n, vh)h + (∇un+θh ,∇vh)L2 = (Gn+θ, vh)L2 , ∀vh ∈ Sh,
n = 0, 1 . . . , NT − 1,

(u0h, vh)L2 = (u0, vh)L2 , ∀vh ∈ Sh
(15)

where τ ∈ (0, 1), θ ∈ [0, 1], tn = nτ , and Gn = g(·, tn). An alternative scheme
is obtained with replacement (Gn+θ, vh)L2 by (Gn+θ, vh)h. However, the re-
sulting scheme has a shortcoming reported in Appendix B.

Let Ph be the L2-projection onto Sh defined as

(Phv, vh)L2 = (v, vh)L2 , ∀vh ∈ Sh (16)

for v ∈ L1.
Then, (15) is equivalently written as{

(Dτuh)n = Ahu
n+θ
h +K−1h PhG

n+θ, n = 0, 1, . . . , NT − 1,

u0h = Phu0.
(17)

Since Ah is invertible, there exists a unique solution of (17). We introduce

jθ =

{
2, θ = 1/2,

1, otherwise
(18)

and µd = max{µ′, d/2}. Since µ′ < d′ ≤ 2 ≤ d < µ, it might be apparent that

µd =

{
µ′, d = 2,

d/2 = 3/2, d = 3.

Theorem V (Error estimate for linear equation) Let p ∈ (1,∞) and
q ∈ (µd, µ). Let uh = (unh)n ∈ lp(NT ;Sh) be the solution of (17) and u be
that of (1). Assume u ∈ W 1,p(JT ;W 2,q) ∩W 2,p(JT ;W 1,q) ∩W 1+jθ,p(JT ;Lq)
and set Un = u(·, tn). Assume that (H1) and (H2) are satisfied. Moreover, we
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choose ε and τ sufficiently small to satisfy (14), when θ ∈ [0, 1/2). Then, there
exists a positive constant C such that(

NT−1∑
n=0

‖un+θh − Un+θ‖pLqτ
)1/p

≤ C(h2 + τ jθ ). (19)

The constant C is taken as

C = C ′
(
‖u‖W 1,p(JT ;W 2,q) + ‖∂tu‖W 1,p(JT ;W 1,q) + ‖u‖W 1+jθ,p(JT ;Lq)

)
,

where C ′ depends only on Ω, p, q, and θ, but is independent of h and τ .

For q ∈ (1,∞), let Aq be the realization of the Dirichlet Laplacian:

D(Aq) = W 2,q ∩W 1,q
0 , Aqu = ∆u. (20)

We are assuming Assumption 1. We consider a semilinear heat equation (2)
under the following basic assumptions:

u0 ∈ (Lq, D(Aq))1−1/p,p, (21)

f : C→ C is locally Lipschitz continuous with f(0) = 0. (22)

Herein, (Lq, D(Aq))1−1/p,p denotes the real interpolation space [2,34,44]. Re-
striction f(0) = 0 is set for simplicity. It is noteworthy that the solution u of
(2) might blow-up: let T∞ ∈ (0,∞] be the life span of u (the maximal existence
time of u).

To avoid unnecessary difficulties, we restrict our consideration to a semi-
implicit scheme for (2) given as{

(Dτuh)n = Ahu
n+1
h +K−1h Phf(unh), n = 0, 1, . . . , NT − 1,

u0h = Phu0,
(23)

or, equivalently,
((Dτuh)n, vh)h + (∇un+1

h ,∇vh)L2 = (f(unh), vh)L2 , ∀vh ∈ Sh,
n = 0, 1, . . . , NT − 1,

(u0h, vh)L2 = (u0, vh)L2 , ∀vh ∈ Sh.
Since Ah is invertible, there exists a unique solution of (23). Our final theo-

rem is the following error estimate for semilinear equation. Our error estimate
remains valid as long as the solution of (2) exists and requires no size condition
on u0.

Theorem VI (Error estimate for semilinear equation) Let p ∈ (1,∞),
q ∈ (µd, µ) and p > 2q/(2q − d). Assume that (H1) and (H2) are satisfied.
Presuming that (2) admits a sufficiently smooth solution u under the conditions
(21) and (22), then, for every T ∈ (0, T∞) and the solution uh = (unh)NTn=0 of
(23), we have (

NT∑
n=1

‖unh − Un‖pLqτ
)1/p

≤ C(h2 + τ),

where Un = u(·, nτ).
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In the proof of Theorem VI (Sec. 6), the following sub-optimal error esti-
mate, which is worth stating separately, will be used.

Theorem VII (L∞ error estimate for semilinear equation) Under the
same assumptions of Theorem VI, for every α ∈ (0, αp,q,d) and T ∈ (0, T∞),
the following error estimate holds:

max
0≤n≤NT

‖unh − Un‖L∞ ≤ C(h2α + τ),

where αp,q,d = 1− 1/p− d/(2q) and Un = u(·, nτ).

3 Preliminaries

As explained in this section, we collect some preliminary results used for this
study.

3.1 Continuous maximal regularity

The definition of CMR in Definition 1 is the classical one. The weaker one is
introduced in [45, Definition 4.1], which requires the inequality

‖u′‖Lp(JT ;X) + ‖Au‖Lp(JT ;X) ≤ C‖f‖Lp(JT ;X) (24)

instead of (4). Also, CMR in this sense is characterized by operator-theoretical
properties ([45, Theorem 4.2]). However, two inequalities (4) and (24) are
equivalent if 0 ∈ ρ(A), where ρ(A) denotes the resolvent set of A. Since the
condition 0 ∈ ρ(A) is satisfied in our application, we ignore the differences
between these definitions.

Conditions necessary for CMR to hold have been studied by many re-
searchers (see e.g. [15,45]). Among them, we review some sufficient conditions
for CMR, which will be used for this study. For the detail, see [15] and refer-
ences therein.

Lemma 1 Let T ∈ (0,∞], X be a Banach space and A be a densely defined
and closed operator on X. Assume that A has Lp0-CMR on JT for some
p0 ∈ (1,∞). Then, A has Lp-CMR on JT , for any p ∈ (1,∞).

Lemma 2 Let p ∈ (1,∞), X be a Banach space and let A be a densely defined
and closed operator on X. Assume that A has Lp-CMR on J∞. Then, A has
Lp-CMR on JT , for any T > 0.

The next lemma is the celebrated result of Dore and Venni [16, Theorem
3.2] (see also [3, Section III.4]).

Lemma 3 Let p ∈ (1,∞), X be a UMD space, and let A be a densely defined
and closed operator on X. Assume that −A ∈ P(X;K) ∩ BIP(X;M, θ) for
some K > 0, M ≥ 1, and θ ∈ [0, π/2). Then, A has Lp-CMR on JT , for any
T > 0 and T = ∞. Moreover, the constant CMR > 0 depends only on X, K,
M , θ, and T .
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Herein, the sets P(X;K) and BIP(X;M, θ) are defined as

P(X;K) = {A ∈ C(X) | ρ(A) ⊂ (−∞, 0] and

‖(1 + λ)R(λ;A)‖L(X) ≤ K, ∀λ ≥ 0
}
,

BIP(X;M, θ) = {A ∈ P(X) | Ait ∈ L(X) and ‖Ait‖L(X) ≤Meθ|t|, ∀t ∈ R},

for K > 0, M ≥ 1, and θ ≥ 0, where C(X) is the set of all closed linear
operators on X with dense domains, P(X) =

⋃
K>0 P(X;K). The imaginary

power Ait is defined by H∞-functional calculus (see Appendix A).

The dependence of the constant CMR on the Banach space X derives
from the boundedness of imaginary powers of the time-differential operator
on Lp(JT ;X). See [3, Lemma III.4.10.5] for T < ∞ and [25, Corollary 8.5.3]
for T =∞. Chasing the constants appearing in the proofs, we can obtain the
following property (see [29]).

Lemma 4 Let p ∈ (1,∞), X be a UMD space, X0 ⊂ X be a closed subspace,
and A be a densely defined and closed operator on X0. Assume that −A ∈
P(X0;K) ∩ BIP(X0;M, θ) for some K > 0, M ≥ 1, and θ ∈ [0, π/2). Then
A has Lp-CMR on JT , for any T > 0 and T = ∞. Moreover, the constant
CMR > 0 depends only on X, K, M , θ, and T , but is independent of X0.

In the definition of CMR (3), we consider only the zero initial value. How-
ever, in general cases, particularly in the nonlinear cases, the choice of ini-
tial values is extremely important. Therefore, we now consider the following
Cauchy problem: {

u′(t) = Au(t) + g(t), t ∈ JT ,
u(0) = u0,

(25)

for u0 ∈ X.

Lemma 5 Let p ∈ (1,∞), T ∈ (0,∞], X be a Banach space and A be a
densely defined and closed operator. Assume that A has Lp-CMR on JT . Then,
for each g ∈ Lp(JT ;X) and for each u0 ∈ (X,D(A))1−1/p,p, there exists a
unique solution u ∈W 1,p(JT ;X) ∩ Lp(JT ;D(A)) of (25) satisfying

‖u‖Lp(JT ;X) + ‖u′‖Lp(JT ;X) + ‖Au‖Lp(JT ;X)

≤ CMR

(
‖g‖Lp(JT ;X) + ‖u0‖1−1/p,p

)
,

where CMR > 0 is independent of g and u0.

Herein, the norm ‖ · ‖1−1/p,p is the norm of the real interpolation space
(X,D(A))1−1/p,p.
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3.2 Discrete maximal regularity

As in the CMR case, the weaker definition can be considered, which does not
require that 0 ∈ ρ(A). Indeed, the weaker one is used in [6,29]. However,
for the same reason as that presented in the previous subsection, we do not
distinguish these two definitions.

We investigated a sufficient condition for DMR on J∞, in the UMD case
in [29]. More precisely, we proved the following result.

Lemma 6 Let p ∈ (1,∞), θ ∈ [0, 1], X be a UMD space, X0 ⊂ X be a closed
subspace, and A be a bounded operator on X0. Assume that A has Lp-CMR
on J∞ with the constant CMR. Furthermore, we suppose that the following
conditions (condition (NR)δ,ε) are satisfied when θ ∈ [0, 1/2):

(NR1) There exists δ ∈ (0, π/2) such that S(A) ⊂ C \Σδ+π/2.
(NR2) There exists ε > 0 such that (1− 2θ)τr(A) + ε ≤ 2 sin δ.

Then, A has lp-DMR on J∞. Moreover, the constant CDMR depends only on
p, θ, δ, ε, X, and CMR, but is independent of X0.

Herein, for ω ∈ (0, π), the set Σω denotes the sector

Σω = {z ∈ C\{0} | | arg z| < ω}. (26)

The set S(A) ⊂ C is the numerical range of A defined as

S(A) =

{
〈x∗, Ax〉

∣∣∣∣ x ∈ D(X), ‖x‖ = 1,
x∗ ∈ X∗, ‖x∗‖ = 1, 〈x∗, x〉 = 1.

}
,

where 〈·, ·〉 is the duality paring ([20,35]). We set

r(A) = max
z∈S(A)

|z|.

Actually, DMR on finite intervals is obtainable from the infinite-interval
case. The following lemma corresponds to Lemma 2. Although the inequality
(28) below is slightly different from (9), it does not affect error analysis.

Lemma 7 Let p ∈ (1,∞), θ ∈ [0, 1], X be a Banach space, and A be a bounded
operator on X. Assume that A has lp-DMR on J∞ with CDMR = C0. Then,
for every T > 0 and for every g ∈ lp(NT −1;X), there exists a unique solution
u ∈ lp(NT ;X) of the equation

un+1 − un
τ

= Aun+θ + gn, n = 0, 1, . . . , NT − 1,

u0 = 0,

(27)

and it satisfies

‖uθ‖lpτ (NT ;X) + ‖Dτu‖lpτ (NT ;X) + ‖Auθ‖lpτ (NT ;X) ≤ C0‖g‖lpτ (NT ;X). (28)
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Proof Fix T > 0, τ > 0, and g ∈ lp(NT −1;X) arbitrarily. Define g̃ ∈ lp(N;X)
as

g̃n =

{
gn, n = 0, 1, . . . , NT − 1,

0, n ≥ NT ,

and consider the Cauchy problem
ũn+1 − ũn

τ
= Aũn+θ + g̃n, n = 0, 1, . . . ,

ũ0 = 0.

Since A has lp-DMR on J∞, we can find the corresponding solution ũ =
(ũn)n ∈ XN satisfying

‖ũθ‖lpτ (N;X) + ‖Dτ ũ‖lpτ (N;X) + ‖Aũθ‖lpτ (N;X) ≤ CDMR‖g̃‖lpτ (N;X).

Then, u := (ũn)NTn=0 ∈ lp(NT ;X) is a solution of (27), and fulfills

‖uθ‖lpτ (NT ;X) + ‖Dτu‖lpτ (NT ;X) + ‖Auθ‖lpτ (NT ;X) ≤ CDMR‖g̃‖lpτ (N;X),

which implies (28). The uniqueness of the solution might be readily apparent.
ut

An a priori estimate with non-zero initial value is obtained only in the case
where θ = 1. See [4] for T <∞ and [29] for T =∞.

Lemma 8 Let p ∈ (1,∞), θ ∈ [0, 1], T ∈ (0,∞], X be a UMD space,
X0 ⊂ X be a closed subspace, and A be a bounded operator on X0. As-
sume that A has lp-DMR on JT . Then, for each g ∈ lp(NT ;X0) and for each
u0 ∈ (X0, D(A))1−1/p,p, there exists a unique solution u ∈ lp(NT ;X0) of the
equation 

un+1 − un
τ

= Aun+1 + gn+1, n = 0, 1, . . . , NT − 1,

u0 = u0,

which satisfies

‖u1‖lpτ (NT ;X0) + ‖Dτu‖lpτ (NT ;X0) + ‖Au1‖lpτ (NT ;X0)

≤ CDMR

(
‖g1‖lpτ (NT ;X0) + ‖u0‖1−1/p,p

)
,

where CDMR > 0 is independent of g, u0, and X0.
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3.3 Operator-theoretical properties of Ah

A semigroup T (t) on a Lebesgue space X = Lq(Ω,µ) (q ∈ [1,∞]) is said to
be positivity-preserving if

u ≥ 0 µ-a.e. in Ω =⇒ T (t)u ≥ 0 µ-a.e. in Ω

for each t > 0 and u ∈ X. In the proofs of the following two lemmas, the
discrete maximum principle (Remark 2) plays a crucially important role.

Lemma 9 ([41, Theorem 15.5]) Let q ∈ [1,∞]. Assume that the family
of triangulations {Th} satisfies the acuteness condition (H2). Then, the semi-
group etAh generated by Ah is positivity-preserving in Xh,q.

Lemma 10 ([13, Theorem 4.1]) Let q ∈ [1,∞]. Assume that the family of
triangulations {Th} satisfies the acuteness condition (H2). Then, Ah generates
an analytic and contraction semigroup on Xh,q. Moreover, if q ∈ (1,∞), then
Ah satisfies the condition (NR1) with the angle θq defined as (13).

We introduce several mesh-depending operators on Sh. The L2 projection
Ph is defined as (16). Let Rh be the Ritz projection of W 1,1 → Sh defined as

(∇Rhu,∇vh)L2 = (∇u,∇vh)L2 , ∀vh ∈ Sh
for u ∈ W 1,1. These operators have the following well-known properties. See
[28,12,7] for the proofs.

Lemma 11 Assume that {Th}h satisfies (H1). Then, there exists C > 0 de-
pending only on Ω and q such that

‖Phv‖Lq ≤ C‖v‖Lq , ∀v ∈ Lq, ∀q ∈ [1,∞],

‖Phv‖W 1,q ≤ C‖v‖W 1,q , ∀v ∈W 1,q, ∀q ∈ [1,∞], (29)

‖Rhv‖W 1,q ≤ C‖v‖W 1,q , ∀v ∈W 1,q, ∀q ∈ (1,∞],

‖v − Phv‖Lq ≤ Ch2‖v‖W 2,q , ∀v ∈W 2,q, ∀q ∈ (d/2,∞],

‖v −Rhv‖Lq ≤ Ch2‖v‖W 2,q , ∀v ∈ D(Aq), ∀q ∈ (µ′,∞),

where µ′ is the Hölder conjugate of µ. When q 6= 2, (H1) is not required for
all inequalities above except for (29).

Mass-lumping operator Mh and Kh have the following properties. For the
proof, see [20].

Lemma 12 Let q ∈ [1,∞]. Then, there exists C > 0 depending only on q and
Ω such that

C−1‖vh‖Lq ≤ ‖Mhvh‖Lq ≤ C‖vh‖Lq , vh ∈ Sh, q ∈ [1,∞].

Moreover, if {Th}h satisfies (H1) when q 6= 2, then there exists C > 0 depend-
ing only on q and Ω such that

C−1‖vh‖Lq ≤ ‖Khvh‖Lq ≤ C‖vh‖Lq , vh ∈ Sh, q ∈ [1,∞].
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We use the standard discrete Laplacian Lh defined as

(Lhuh, vh) = −(∇uh,∇vh), ∀vh ∈ Sh,

for uh ∈ Sh. We designate Lh the discrete Laplacian without mass-lumping.
From the Poincaré inequality, Lh is injective. Consequently, it is invertible due
to dimSh <∞. Then, by the definitions given above, it is apparent that

Lh = KhAh, Rh = L−1h PhA. (30)

From these relations, the following estimate is obtained.

Lemma 13 Assume that {Th}h satisfies (H1) when q 6= 2. Then, for q ∈
(1, µ), there exists C > 0 satisfying

‖vh‖h,q ≤ C‖Ahvh‖h,q, ∀vh ∈ Sh,

where C depends only on Ω and q.

Proof By (30) and Lemma 12, it suffices to show that

‖vh‖Lq ≤ C‖Lhvh‖Lq

for all vh ∈ Sh. Fix vh ∈ Sh arbitrarily and set fh = Lhvh and v = A−1fh ∈
D(A). Then, noting that Phfh = fh and from (30), one obtains

vh = L−1h Phfh = L−1h PhAv = Rhv.

Therefore, we have

‖vh‖Lq ≤ ‖Rhv‖W 1,q ≤ C‖v‖W 1,q ≤ C‖v‖W 2,q ≤ C‖Av‖Lq = C‖Lhvh‖Lq

by Lemma 11 and (10). ut

Furthermore, the following estimate holds. See [37, Lemma 4.6] for the
proof.

Lemma 14 Assume that {Th}h satisfies (H1) when q 6= 2. Let q ∈ (µ′, µ).
Then, there exists C > 0 depending only on q and Ω such that

‖A−1h (I −K−1h )vh‖h,q ≤ Ch2‖∇vh‖Lq , vh ∈ Sh.
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4 Proofs of Theorems I, II, III and IV

The aim of this section is to establish CMR and DMR for Ah. We first consider
the continuous case via the method of imaginary powers of operators. Then,
we obtain DMR for Ah by our previous result (Lemma 6). We also present a
useful criterion to check the condition (NR)δ,ε.

In view of Lemma 3, it suffices to show that

−Ah ∈ P(Xh,q;K) ∩ BIP(Xh,q;M, θ)

for some K > 0, M ≥ 1, and θ ∈ [0, π/2), uniformly with respect to h. We
first show that −Ah ∈ P(Xh,q;K).

Lemma 15 Let q ∈ (1, µ). Assume that the family {Th}h satisfies (H1) and
(H2) when q 6= 2. Then, there exists Kq > 0 satisfying

−Ah ∈ P(Xh,q;Kq),

where Kq is independent of h > 0.

Proof Let Th(t) be the semigroup etAh generated by Ah in Xh,q. Then, by
Lemma 10, Th(t) is an analytic and contraction semigroup. Since Th(t) is
contraction semigroup, we have

‖R(λ;Ah)‖L(Xh,q) ≤
1

λ
, ∀λ > 0

for each h > 0. In addition, by virtue of Lemma 13 and analyticity of Th(t),
we have

‖R(λ;Ah)fh‖h,q = ‖A−1h [λR(λ;Ah)− I]fh‖h,q ≤ C‖fh‖h,q, ∀fh ∈ Sh

for all λ > 0 and h > 0, where C > 0 is independent of h. Therefore, we obtain
−Ah ∈ P(Xh,q;Kq) with Kq = C + 1 since R(·;Ah,q) ∈ C([0,∞);L(Xh,q)).
ut

To show −Ah ∈ BIP(Xh,q;M, θ), we use Duong’s result, which is based
on H∞-functional calculus. The imaginary power is understood as the special
case of the function of operators. Let X be a Banach space, D ⊂ C be a
domain and O(D) be the space of holomorphic functions on C. We set

H∞(D) = O(D) ∩ L∞(D;C). (31)

Then, for A ∈ P(X) and for m ∈ H∞(Σθ) with suitable θ, m(A) can be
defined as a linear operator on X. When we take m(z) = zit, the imaginary
power Ait is defined in this sense. The definition and details of the properties
of m(A) have been presented in the literature [11] and in the Appendix A. We
refer to [17] for the proof of the following lemma (see also [10]).
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Lemma 16 ([17, Theorem 2]) Let (Ω,µ) be a σ-finite measure space and let
A be a linear operator on X = Lq(Ω,µ) for q ∈ (1,∞). Assume that A ∈ P(X)
and that −A generates a contraction semigroup T (t) on X. Moreover, we
suppose that T (t) is positivity-preserving on X. Then, for each θ ∈ (π/2, π),
there exists M > 0 satisfying

‖m(A)‖L(X) ≤M‖m‖L∞(Σθ)

for all m ∈ H∞(Σθ). Furthermore, M depends only on q and θ, but is inde-
pendent of A and measure space (Ω,µ).

Lemma 17 Let X and A be as in Lemma 16. Then, for each θ ∈ (π/2, π),
there exists M > 0 such that A ∈ BIP(X;M, θ).

Proof Let m(z) = zit for z ∈ Σθ and t ∈ R. Here, zit is defined as

zit = eit(log |z|+i arg z), arg z ∈ (−π, π)

for z ∈ Σπ. Then, setting z = |z|eiϑ (ϑ ∈ (−θ, θ)), one can readily obtain
|zit| = e−tϑ. Therefore, we have

‖m‖L∞(Σθ) ≤ e|t|θ,

which yields m ∈ H∞(Σθ) and A ∈ BIP(M, θ) for some M > 0 by Lemma
16. ut

Now, we are ready to show the following lemma.

Lemma 18 (Imaginary powers of discrete Laplacian) Let q ∈ (1, µ).
Assume that (H1) and (H2) are satisfied when q 6= 2. Then there exist Mq > 0
and θq ∈ (0, π/2) satisfying

−Ah ∈ BIP(Xh,q;Mq, θq),

where Mq and θq are independent of h > 0.

Proof We begin by proving that −Ah ∈ BIP(Xh,q;M, θ) for each θ ∈ (π/2, π)
and for suitable M > 0 independent of h. Let Th(t) be the semigroup etAh

generated by Ah in Xh,q. Then, by Lemma 9 and 15, we can apply Lemma 17.
Therefore, for each θ ∈ (π/2, π), there exists M > 0 satisfying

−Ah ∈ BIP(Xh,q;M, θ). (32)

Now, we show our assertion. We first assume that q = 2. In this case, Xh,2 is
a Hilbert space and −Ah is self-adjoint and positive definite without conditions
on the triangulation by Poincáre inequality. Consequently, by Theorem 32, we
have

‖(−Ah)it‖L(X2,h) ≤
∫ ∞
0

dE−Ah(λ) = 1
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for all t ∈ R, which implies −Ah ∈ BIP(X2,h; 1, 0). Here, E−Ah is the spectral
decomposition of −Ah. Then we presume that q 6= 2. Set

θq,r =
q−1 − 2−1

r−1 − 2−1

for r 6= 2. Since q 6= 2, we can choose r ∈ (1,∞) satisfying θq,r ∈ (0, 1). Then,
by the Riesz-Thorin theorem, we obtain

‖(−Ah)it‖Xh,q ≤ ‖(−Ah)it‖1−θq,rXh,2
‖(−Ah)it‖θq,rXh,r

≤Mθq,reθθq,r|t|

for any t ∈ R and θ ∈ (π/2, π), where M > 0 is as in (32). Since θq,r ∈ (0, 1),
we can take θ as

π

2
< θ <

π

2θq,r
,

which implies
−Ah ∈ BIP(Xh,q;M

θq,r , θθq,r)

with θθq,r < π/2. This is the desired assertion. ut
Owing to Lemma 6 and Theorem I, we are able to obtain DMR for Ah. To

apply Lemma 6, it is necessary to verify that the condition (NR)δ,ε is satisfied.
From Lemma 10, the condition (NR1) is always satisfied. Therefore, what is
left is to check the condition (NR2). We begin with the following lemma,
which is a generalization of [19, Lemma 2]. No condition on the triangulation
is required.

Lemma 19 Let r ∈ [1,∞). Then, we have

‖∇vh‖Lr ≤
d+ 1

κh
‖vh‖h,r, ∀vh ∈ Sh.

Proof Fix K ∈ Th arbitrarily. Then it suffices to show that

‖∇vh‖Lr(K) ≤
d+ 1

κh
‖vh‖h,r,K , ∀vh ∈ Sh,

where ‖vh‖h,r,K = ‖Mhvh‖Lr(K). Let Qj (j = 0, . . . , d) be the vertex of K, λj
be the corresponding barycentric coordinate in K, and κj be the length of the
perpendicular from Pj in K. Then it is well-known that |∇λj | = 1/κj . Take

vh ∈ Sh arbitrarily and set vj = vh(Qj). Since vh|K =
∑d
j=0 vjλj , we have

‖∇vh‖Lr(K) ≤
d∑
j=0

|vj |‖∇λj‖Lr(K) =

d∑
j=0

|uj |
κj
|K|1/r

≤

 d∑
j=0

1

κr
′
j

1/r′  d∑
j=0

|uj |r
1/r

|K|1/r

≤ (d+ 1)1/r
′

κh

|K| d∑
j=0

|uj |r
1/r

, (33)
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where r′ is the Hölder conjugate of r. Moreover, it is readily apparent that

‖vh‖h,r,K =

 1

d+ 1
|K|

d∑
j=0

|vj |r
1/r

.

This, together with (33), implies that

‖∇vh‖Lr(K) ≤
(d+ 1)1/r

′+1/r

κh
‖vh‖h,r,K =

d+ 1

κh
‖vh‖h,r,K .

Thereby we complete the proof. ut

Now, we describe a sufficient condition for (NR2) to hold.

Lemma 20 (A sufficient condition for (NR)δ,ε) Assume θ ∈ [0, 1/2) and
q ∈ (1,∞), and Let θq = arccos |1−2/q|. If we choose ε and τ sufficiently small
so that Ah satisfies (14), for every h, then the condition (NR)θq,ε is fulfilled.

Proof The numerical range of Ah is expressed as

S(Ah) = {(Ahvh, v∗h)h | vh ∈ Sh, ‖vh‖h,q = 1},

where v∗h ∈ Sh is defined as

v∗h(P ) = |vh(P )|q−2vh(P ) for every node P of Th

for vh ∈ Sh. Therefore, by Lemma 19, we have

|(Ahvh, v∗h)h| ≤ ‖∇vh‖Lq‖∇v∗h‖h,q′ ≤
(d+ 1)2

κ2h
‖vh‖qh,q

for all vh ∈ Sh. Hence we can deduce (NR2) form the assumption (14). ut

At this stage, we can state the following proofs.

Proof (Proof of Theorem I) It is a consequence of Lemmas 2, 4, and 18. ut

Proof (Proof of Theorem II) It is a consequence of Theorem I and Lemmas 6
and 20. ut

Proof (Proof of Theorem III) It is a consequence of Theorem II and Lemma
7. ut

Proof (Proof of Theorem IV) It is a consequence of Theorem II and Lemma
8. ut
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5 Proof of Theorem V

This section is devoted to error analysis of the solution uh = (unh) ∈ lp(NT ;Sh)
of (17). We begin by presenting some lemmas.

Lemma 21 Let X be a Banach space, T > 0, p ∈ (1,∞) and τ ∈ (0, 1). Set
tn = nτ for n = 0, 1, . . . , NT . Then, there exists CS > 0 satisfying(

NT−1∑
n=0

‖v(tn)‖pXτ
)1/p

+

(
NT∑
n=1

‖v(tn)‖pXτ
)1/p

≤ CS‖v‖W 1,p(JT ;X) (34)

for all v ∈ W 1,p(JT ;X), where CS depends only on p, but is independent of
T , τ , and X.

Proof By the Sobolev embedding W 1,p(0, 1;X) ↪→ L∞(0, 1;X), there exists
C1 > 0 such that

‖v‖L∞(0,1;X) ≤ C1‖v‖W 1,p(0,1;X)

for v ∈ W 1,p(0, 1;X). One can check that C1 is independent of X. See the
proof of [8, Theorem 8.8]. Then, setting Jn = (tn, tn+1) and considering the
change of variables, we have

‖v(tn)‖X ≤ ‖v‖L∞(Jn;X) ≤ C1(1 + τ)τ−1/p‖v‖W 1,p(Jn;X)

for each n ∈ N. Therefore, we have (34) with CS = 2C1. ut

The next lemma is shown readily by Taylor’s theorem. Therefore, we skip
the proof.

Lemma 22 Let X be a Banach space, T > 0, p ∈ (1,∞), θ ∈ [0, 1] and
τ ∈ (0, 1). Set tn = nτ for n = 0, 1, . . . , NT and

rn =
v(tn+1)− v(tn)

τ
−
[
(1− θ)dv

dt
(tn) + θ

dv

dt
(tn+1)

]
for v ∈W jθ+1,p(JT ;X), where jθ is defined as (18). Then, there exists C > 0
such that (

NT−1∑
n=0

‖rn‖pXτ
)1/p

≤ Cτ jθ‖v‖W jθ+1,p(JT ;X),

where C is independent of τ and X.

Now we can state the following proof.

Proof (Proof of Theorem V) We set enh = unh − PhUn so that

unh − Un = enh + (Ph − I)Un.
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Then, by Lemmas 11 and 21, we have

NT−1∑
n=0

‖(Ph − I)Un+θ‖pLqτ

≤ Ch2p
[

(1− θ)p
NT−1∑
n=0

‖Un‖pW 2,qτ + θp
NT∑
n=1

‖Un‖pW 2,qτ

]
≤ Ch2p‖u‖pW 1,p(JT ;W 2,q). (35)

It remains to derive an estimation for enh. Set V n = ∂tu(·, tn) and

rn,θh = (K−1h PhA−AhPh)Un+θ + Ph

(
u(tn+1)− u(tn)

τ

)
−K−1h PhV

n+θ.

Then, by a simple computation, we have{
(Dτeh)n = Ahe

n+θ
h + rn,θh , n = 0, 1, . . . , NT − 1,

e0h = 0.

Therefore,{
(Dτ (A−1h eh))n = Ah(A−1h en+θh ) +A−1h rn,θh , n = 0, 1, . . . , NT − 1,

A−1h e0h = 0.

Consequently, according to Theorem III, we obtain

NT−1∑
n=0

‖en+θh ‖pLqτ =

NT−1∑
n=0

‖Ah(A−1h en+θh )‖pLqτ ≤ C
NT−1∑
n=0

‖A−1h rn,θh ‖
p
Lqτ. (36)

We divide rn,θh into two parts as

rn,θh = rn,θ1,h + rn,θ2,h ,

where

rn,θ1,h = (K−1h PhA−AhPh)Un+θ, rn,θ2,h = Ph

(
u(tn+1)− u(tn)

τ

)
−K−1h PhV

n+θ.

We first estimate rn,θ1,h . Noting the relation (30), we have

A−1h rn,θ1,h = (Rh − Ph)Un+θ,

so that (
NT−1∑
n=0

‖A−1h rn,θ1,h‖
p
Lqτ

)1/p

≤ Ch2
(
NT−1∑
n=0

‖Un+θ‖pW 2,qτ

)1/p

≤ Ch2‖u‖W 1,p(JT ;W 2,q) (37)
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by Lemma 11 and Lemma 21. Also, A−1h rn,θh,2 is expressed as

A−1h rn,θ2,h = A−1h Ph

[
u(tn+1)− u(tn)

τ
− V n+θ

]
+A−1h (I −K−1h )PhV

n+θ.

According to Lemmas 11, 13, 14, 21, and 22, we have(
NT−1∑
n=0

‖A−1h rn,θ2,h‖
p
Lqτ

)1/p

≤ Cτ jθ‖u‖W jθ+1,p(JT ;Lq) + Ch2

(
NT−1∑
n=0

‖∇PhV n+θ‖pLqτ
)1/p

≤ Cτ jθ‖u‖W jθ+1,p(JT ;Lq) + Ch2

(
NT−1∑
n=0

‖V n‖pW 1,qτ

)1/p

≤ Cτ jθ‖u‖W jθ+1,p(JT ;Lq) + Ch2‖∂tu‖W 1,p(JT ;W 1,q). (38)

Combining (35), (36), (37), and (38), we obtain the error estimate (19).
ut

6 Proofs of Theorems VI and VII

This section is devoted to analysis of semilinear problems (2) and (23). We
first prove several auxiliary lemmas.

6.1 Embedding and trace theorems

For q ∈ (1,∞), we recall that Aq denotes the realization of the Dirichlet
Laplacian defined as (20). Let D(Aq) be a Banach space equipped with the
norm ‖Aq · ‖Lq . This is a norm if q ∈ (1, µ) by the regularity assumption (10).
We also set D(Ah,q) = (Sh, ‖Ah · ‖h,q), which is a Banach space for q ∈ (1, µ)
by Lemma 13.

For N ∈ N ∪ {∞} and vh ∈ SN+1
h , we set

‖vh‖Y p,qh,τ,N
= ‖vh,1‖lpτ (N ;Xh,q) + ‖Ahvh,1‖lpτ (N ;Xh,q) + ‖Dτvh‖lpτ (N ;Xh,q) (39)

and Y p,qh,τ,N =
(
SN+1
h , ‖ · ‖Y p,qh,τ,N

)
. For abbreviation, we write Y p,qh,τ = Y p,qh,τ,∞

and

‖vh‖YT = ‖vh‖Y p,qh,τ,NT
(40)

for T > 0, where NT is defined as (6).
Then, we have the following embedding result.
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Lemma 23 Let q ∈ (µd, µ) and p > 2q/(2q − d). Assume that the family
{Th}h satisfies (H1) and (H2) when q 6= 2. Then, the embedding

(Xh,q, D(Ah,q))1−1/p,p ↪→ L∞

holds uniformly for h > 0.

To show Lemma 23, we prove the discrete Gagliardo-Nirenberg type in-
equality. The following result is the generalization of [26, Lemma 3.3], and
that the proof is almost identical. However, for the reader’s convenience, we
provide the proof.

Lemma 24 (Discrete Gagliardo–Nirenberg type inequality) Let q ∈
(µd, µ). Assume that the family {Th}h satisfies (H1) and (H2). Then, we have

‖vh‖L∞ ≤ C‖Ahvh‖
d
2q

h,q‖vh‖
1− d

2q

h,q , ∀vh ∈ Sh.

Proof It suffices to show that

‖L−1h fh‖L∞ ≤ C‖fh‖
d
2q

Lq‖L−1h fh‖
1− d

2q

Lq ,

for every fh ∈ Sh. We decompose the left-hand side as

‖L−1h fh‖L∞ ≤ ‖(L−1h − PhA−1q fh)fh‖L∞ + ‖PhA−1q fhfh‖L∞ =: a+ b.

From the usual Gagliardo-Nirenberg inequality [1, Theorem 5.9] and the reg-
ularity assumption (10), we have

b ≤ C‖A−1q fh‖L∞ ≤C‖fh‖
d
2q

Lq‖A−1q fh‖
1− d

2q

Lq

≤C‖fh‖
d
2q

Lq

(
‖L−1h fh‖

1− d
2q

Lq + ‖(A−1q − L−1h Ph)fh‖
1− d

2q

Lq

)
.(41)

Setting u = A−1q fh ∈ D(Aq), we have

‖(A−1q − L−1h Ph)fh‖Lq = ‖u−Rhu‖Lq ≤ Ch2‖u‖W 2,q ≤ Ch2‖fh‖Lq , (42)

by Lemma 11 and (10). Since Lemma 19 and the inverse assumption imply

‖Lhvh‖Lq ≤ Ch−2‖vh‖Lq , ∀vh ∈ Sh,

we obtain

‖(A−1q − L−1h Ph)fh‖Lq ≤ C‖L−1h fh‖Lq . (43)

From (41) and (43), we have

b ≤ C‖fh‖
d
2q

Lq‖L−1h fh‖
1− d

2q

Lq .
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We estimate a. The inverse assumption (H1) is well known to imply (see [9,
theorem 3.2.6]) the inverse inequality

‖vh‖L∞ ≤ Ch−d/r‖vh‖Lq , ∀vh ∈ Sh,

where C > 0 is independent of h. This, together with (42) and (43), implies

a = ‖Ph(L−1h Ph −A−1q )fh‖L∞ ≤ Ch−d/q‖(L−1h Ph −A−1q )fh‖Lq

≤ C‖fh‖
d
2q

Lq‖L−1h fh‖
1− d

2q

Lq .

Therefore, we can complete the proof. ut

Proof (Proof of Lemma 23) From the general theory of interpolation spaces,
it is readily apparent that the embedding

(Xh,q, D(Ah,q))1−1/p,p ↪→ (Xh,q, D(Ah,q))1−1/p−ε,1

for ε ∈ (0, 1− 1/p), uniformly with respect to h. Take ε = 1− 1/p− d/(2q) so
that 1−1/p− ε = d/(2q). Then, the assumptions q > d/2 and p > 2q/(2q−d)
imply ε ∈ (0, 1 − 1/p). Therefore, we can obtain from Lemma 24 that the
embedding

(Xh,q, D(Ah,q))d/(2q),1 ↪→ L∞,

holds uniformly with respect to h, by the same argument of the embedding
theorem for the Besov spaces (see [1, Theorem 7.34]). ut

We next show the trace theorem for Y p,qh,τ . The following result is the discrete
version of the characterization of the real interpolation space via the analytic
semigroup [34, Lemma 6.2].

Lemma 25 Let q ∈ (1, µ) and p ∈ (1,∞). Assume that the family {Th}h
satisfies (H1) and (H2) when q 6= 2. Then there exists C > 0 depending only
on p such that

sup
n≥1
‖vnh‖1−1/p,p ≤ C‖vh‖Y p,qh,τ

.

for every vh ∈ Y p,qh,τ .

Proof Fix vh ∈ Y p,qh,τ arbitrarily. It suffices to show that

‖v1h‖1−1/p,p ≤ C‖vh‖Y p,qh,τ
(44)

by translation. Since

v1h = −
n∑
j=1

(vj+1
h − vjh) + vn+1

h

for n ≥ 1, we have

K(t, v1h) ≤
n∑
j=1

‖vj+1
h − vjh‖h,q + t‖Ahvn+1

h ‖h,q (45)
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for t > 0. Here, the function

K(t, wh) = inf{‖ah‖h,q + t‖Ahbh‖h,q | wh = ah + bh, ah, bh ∈ Xh,q.},
t > 0, wh ∈ Xh,q

is the K-function with respect to the interpolation pair (Xh,q, D(Ah,q)) (see
[34] and [44]). Then, (45) implies that

‖v1h‖p1−1/p,p =

∫ ∞
0

∣∣∣t−1+1/pK(t, v1h)
∣∣∣p dt

t

≤
∫ τ

0

|t−1K(t, v1h)|pdt

+ 2p
∞∑
n=1

∫ (n+1)τ

nτ

1

t

n∑
j=1

‖vj+1
h − vjh‖h,q

p

dt+ τ‖Ahvn+1
h ‖ph,q


≤ 2p‖Ahvh‖plpτ (N;Xh,q) + 2p

∞∑
n=1

In. (46)

In the last step, we used the property K(t, v1h) ≤ t‖Ahv1h‖h,q and we defined
In as

In =

∫ tn+1

tn

1

t

n∑
j=1

‖vj+1
h − vjh‖h,q

p

dt

for n ≥ 1. The term In is bounded as

In ≤
∫ tn+1

tn

 1

nτ

n∑
j=1

‖vj+1
h − vjh‖h,q

p

dt = τ

 1

n

n∑
j=1

‖(Dτvh)j‖h,q

p

.

Therefore, we can obtain

∞∑
n=1

In ≤
(

p

p− 1

)p ∞∑
n=1

‖(Dτvh)j‖ph,qτ (47)

by the Hardy inequality [27], and inequalities (46) and (47) imply (44), with
a constant C depending only on p. ut

For Y p,qh,τ,N , we have the following trace theorem.

Lemma 26 Let N ∈ N, q ∈ (1, µ) and p ∈ (1,∞). Assume that the family
{Th}h satisfies (H1) and (H2) when q 6= 2. Then, there exists C > 0 indepen-
dent of N , h, and τ such that

max
0≤n≤N

‖vnh‖1−1/p,p ≤ C
(
‖vh‖Y p,qh,τ,N

+ ‖v0h‖1−1/p,p
)

for every vh ∈ Y p,qh,τ,N .
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To prove this result, we need to extend each element of Y p,qh,τ,N to that of

Y p,qh,τ,∞. First, we obtain the following extension lemma, which corresponds to
[3, Lemma 7.2].

Lemma 27 Let X be a Banach space and A be a linear operator which has
discrete maximal regularity and which satisfies 0 ∈ ρ(A). Let N ∈ N ∪ {∞}
and set

‖v‖p,N = ‖v1‖lpτ (N ;X) + ‖Av1‖lpτ (N ;X) + ‖Dτv‖lpτ (N ;X)

for v ∈ XN+1 and Y pN = {v ∈ XN+1 | v0 ∈ (X,D(A))1−1/p,p, ‖v‖p,N < ∞}.
Then, for M ∈ N with M < N , there exists a map extM : Y pM → Y pN satisfying

(extM v)n = vn, n = 0, . . .M,

and
‖ extM v‖p,N ≤ C

(
‖v‖p,M + ‖v0‖1−1/p,p

)
,

where C is independent of τ and M .

Proof For v ∈ Y pM , we define g ∈ Y pN as

gn =

{
(Dτv)n −Avn+1, n = 0, . . . , N − 1,

0, otherwise.

Let V be the solution of{
(DτV )n = V n+1 + gn, n ∈ N,
V 0 = v0,

which is uniquely solvable by discrete maximal regularity of A. Then, if we set
extM v = V , it satisfies the desired properties. Indeed, since wn = vn − V n
satisfies {

(Dτw)n = Awn, n = 0, . . . ,M − 1,

w0 = 0,

we can obtain wn = (I−τA)−nw0 = 0 for n = 0, . . . ,M . Moreover, by discrete
maximal regularity, we have

‖V ‖p,N ≤ C
(
‖g‖lpτ (N ;X) + ‖V 0‖1−1/p,p

)
≤ C

(
‖v‖p,M + ‖v0‖1−1/p,p

)
.

ut

Proof (Proof of Lemma 26.) Let vh ∈ Y p,qh,τ,N . Then, by Lemmas 25 and 27, we
have

max
0≤n≤N

‖vnh‖1−1/p,p ≤ sup
n∈N
‖(extN vh)n‖1−1/p,p

≤ C
(
‖ extN vh‖Y p,qh,τ

+ ‖v0h‖1−1/p,p
)

≤ C
(
‖vh‖Y p,qh,τ,N

+ ‖v0h‖1−1/p,p
)

ut
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6.2 Fractional powers

We will use the fractional power (−Ah)z for z ∈ (0, 1) and z ∈ (−1, 0); see
[35]. The negative powers are defined as

(−Ah)−zvh =
sin(πz)

π

∫ ∞
0

t−zR(t;Ah)vhdt (48)

for z ∈ (0, 1). Since −Ah is an operator of positive type, it is well-defined.
One can check that (−Ah)−z is invertible. Consequently, the positive power
(−Ah)z defined by the inverse operator of (−Ah)−z for z ∈ (0, 1). Fractional
powers satisfy the following interpolation properties:

‖(−Ah)zvh‖h,q ≤ C‖vh‖1−zh,q ‖Ahvh‖zh,q, (49)

‖(−Ah)−zvh‖h,q ≤ C‖vh‖1−zh,q ‖A−1h vh‖zh,q, (50)

for each z ∈ (0, 1) and vh ∈ Sh, uniformly for h. Consequently, we have

‖(−Ah)−zvh‖h,q ≤ C‖vh‖h,q, ∀vh ∈ Sh (51)

uniformly for h, because of Lemma 13. Below we set (−Ah)0 = I and (−Ah)1 =
−Ah.

Lemma 28 (Discrete Sobolev inequality) Assume that the family {Th}h
satisfies (H1) and (H2). For every q > d/2 and α ∈ (d/(2q), 1), there exists
C > 0 independent of h, which fulfills the inequality

‖vh‖L∞ ≤ C‖(−Ah)αvh‖Lq ,

for all vh ∈ Sh.

Proof It suffices to show that

‖(−Ah)−αfh‖L∞ ≤ C‖fh‖h,q, ∀fh ∈ Sh. (52)

By the definition (48), it is necessary to estimate ‖R(t;Ah)fh‖L∞ . Lemmas 24
and 15 imply

‖R(t;Ah)fh‖L∞ ≤ C(1 + t)−1+
d
2q ‖fh‖h,q.

Consequently,

‖(−Ah)−αfh‖L∞ ≤ sin(πα)

π

∫ ∞
0

t−α‖R(t;Ah)fh‖L∞dt

≤ C
∫ ∞
0

t−α(1 + t)−1+
d
2q dt‖fh‖h,q. (53)

Since α ∈ (d/(2q), 1), the integral in the right-hand-side of (53) is finite. There-
fore, we can obtain the estimate (52). ut
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Lemma 29 Assume that the family {Th}h satisfies (H1) and (H2) when q 6=
2. For every β ∈ (0, 1 − 1/p), there exists C > 0 independent of h, which
satisfies

‖(−Ah)βvh‖h,q ≤ C‖vh‖1− 1
p ,p
,

for all vh ∈ Sh. Here, the norm ‖ · ‖1− 1
p ,p

is that of (Xh,q, D(Ah))1− 1
p ,p

.

Proof By the general embedding theorem for positive operators [34, Proposi-
tion 4.7], we have

(Xh,q, D(Ah))β,1 ↪→ D((−Ah)β).

Moreover, β < 1− 1/p implies

(Xh,q, D(Ah))1− 1
p ,p

↪→ (Xh,q, D(Ah))β,1.

Chasing the constants in these proofs, one can show that both embedding
properties are uniform for h. Therefore, we can establish the desired estimate.
ut
Lemma 30 Assume that the family {Th}h satisfies (H1) and (H2). For every
α ∈ (0, αp,q,d), there exists C > 0 independent of h, which satisfies

max
0≤n≤N

‖vh‖L∞ ≤ C
(
‖(−Ah)−αvh‖Y p,qh,τ,N

+ ‖(−Ah)−αv0h‖1− 1
p ,p

)
,

for all N ∈ N and vh ∈ SN+1
h .

Proof Since α+ d/(2q) < 1− 1/p, we can find β ∈ (0, 1) that satisfies

d

2q
+ α < β < 1 + α and 0 < β < 1− 1

p
.

β − α ∈ (d/(2q), 1). Then, owing to Lemmas 28, 29, and 26, we have

‖vnh‖L∞ ≤ C‖(−Ah)β−αvnh‖h,q ≤ C‖(−Ah)−αvnh‖1− 1
p ,p

≤ C
(
‖(−Ah)−αvh‖Y p,qh,τ,N

+ ‖(−Ah)−αv0h‖1− 1
p ,p

)
,

for vh = (vnh)n ∈ SN+1
h and n ∈ N. ut

6.3 Completion of the proofs of Theorems VI and VII

Let u and uh = (unh)NTn=0 be solutions of (2) and (23), respectively. Set Un =

u(nτ). We consider the error eh = (enh)NTn=0 ∈ SNT+1
h defined as

enh = unh − PhUn (n = 0, 1, . . . , NT ).

We first state the sub-optimal error estimate for a globally Lipschitz nonlin-
earity f . If f is a globally Lipschitz continuous function, then (2) admits a
unique time-global solution and the solution of (23) is bounded from above
uniformly in h and τ (see Remark 5). Recall that ‖ · ‖YT is defined as (39) and
(40).
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Lemma 31 In addition to hypotheses of Theorem VI, we assume that f is
a globally Lipschitz continuous function. Then, for every α ∈ [0, 1] and T ∈
(0,∞),

‖(−Ah)−αeh‖YT ≤ C(h2α + τ). (54)

Proof The proof is divided into two steps.
Step 1. We prove that there exists T1 = T1(u0, T ) ∈ (0, T ) satisfying

‖(−Ah)−αeh‖YT1 ≤ C(h2α + τ). (55)

The error eh satisfies{
(Dτeh)n = Ahe

n+1
h + rnh , n = 0, 1, . . . ,

e0h = 0,

where rnh = Fh(unh) − Ph(DτU)n + AhPhU
n+1 and Fh = K−1h ◦ Ph ◦ f . We

decompose rnh into two parts:

rnh = rn1,h + rn2,h, rn1,h = F (unh)− F (PhU
n), rn2,h = rnh − rn1,h.

We perform an estimation for rn2,h. Let V n = ∂tu(·, nτ). Noting that

V n+1 = AUn+1 + f(Un+1), the residual term rn2,h is can be decomposed as

rn2,h = Rn1,h +Rn2,h +Rn3,h,

Rn1,h = Ah(Ph −Rh)Un+1,

Rn2,h = (K−1h − I)PhV
n+1 + Ph(V n+1 − (DτU)n),

Rn3,h = [Fh(PhU
n)− Fh(Un)] + [Fh(Un)− Fh(Un+1)].

From the interpolation property (49) and the inverse inequality, we have

‖(−Ah)γvh‖h,q ≤ Ch−2γ‖vh‖h,q,

for γ ∈ (0, 1). Therefore, the first term Rn1,h is estimated as

‖(−Ah)−αRn1,h‖h,q = ‖(−Ah)1−α(Ph −Rh)Un+1‖h,q
≤ Ch−2(1−α) · h2‖Un+1‖W 2,q

= Ch2α‖Un+1‖W 2,q . (56)

Similarly, from (50) and Lemmas 11 and 14, we have

‖(−Ah)−α(K−1h − I)PhV
n+1‖h,q ≤ Ch2α‖V n+1‖W 1,q .

Combining this inequality with Lemma 22, we have(
N−1∑
n=0

‖(−Ah)−αRn2,h‖ph,qτ
)1/p

≤ C(h2α + τ). (57)
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Since f is globally Lipschitz continuous, we have by (51)

(
N−1∑
n=0

‖(−Ah)−αRn3,h‖ph,qτ
)1/p

≤ CL

(N−1∑
n=0

‖(Ph − I)Un‖ph,qτ
)1/p

+

(
N−1∑
n=0

‖Un+1 − Un‖ph,qτ
)1/p


≤ CL(h2 + τ), (58)

where L is the Lipschitz constant of f . The equations (56), (57), and (58) yield(
N−1∑
n=0

‖(−Ah)−αrn2,h‖ph,qτ
)1/p

≤ C(h2α + τ). (59)

Now, we are ready to show (55). We designate some constants appearing in
this proof. Since Ah has discrete maximal regularity on J∞ in Xh,q uniformly
for h, there exists CDMR > 0 depending only on p, q, Ω satisfying

‖vh‖YS ≤ CDMR

(
‖gh,1‖lpτ (NS ;Xh,q) + ‖xh‖1−1/p,p

)
, (60)

for every gh = (gnh)n ∈ lp(NS ;Xh,q) and xh ∈ Sh, where vh = (vnh)n is the
solution of {

(Dτvh)n = Ahv
n+1
h + gn+1

h , n = 0, . . . , NS − 1,

v0h = xh.

In view of (51) and the Lipschitz continuity of f , we have

CLip = sup

{‖(−Ah)−α(Fh(vh)− Fh(wh))‖h,q
‖vh − wh‖h,q

∣∣∣∣ h > 0, vh, wh ∈ Sh,
vh 6= wh

}
<∞,

which is the Lipschitz constant of (−Ah)−α ◦ Fh. Finally, we set

C0 = CDMRCLip|Ω|1/q,

where |Ω| denotes the d-dimensional Lebesgue measure.
Let ej,h (j = 1, 2) be the solution of{

(Dτej,h)n = Ahe
n+1
j,h + rnj,h, n = 0, . . . , NT − 1,

e0j,h = 0.
(61)

It is apparent that eh = e1,h + e2,h. Moreover, for every S < T∞, one can
obtain

‖(−Ah)−αe2,h‖YS ≤ C(h2α + τ) (62)

by (51) and (59).
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Next, it is necessary to derive an estimation for e1,h. Take S < T arbitrarily.
Since e1,h is the solution of (61), discrete maximal regularity (60) and Lemma
30 yield

‖(−Ah)−αe1,h‖YS

≤ CDMR

(
NS−1∑
n=0

‖Fh(unh)− Fh(PhU
n)‖ph,qτ

)1/p

≤ CDMR

CLip

(
NS−1∑
n=0

‖en1,h‖ph,qτ
)1/p

+ CLip

(
NS−1∑
n=0

‖en2,h‖ph,qτ
)1/p


≤ CDMRCLip|Ω|1/qS1/p max

0≤n≤NS−1
‖en1,h‖L∞ + C(h2α + τ)

≤ C0S
1/p‖(−Ah)−αe1,h‖YS + C(h2α + τ).

Consequently, taking S = (2C0)−p, we obtain

‖(−Ah)−αeh,1‖YT1 ≤ C(h2α + τ) (63)

with T1 = (2C0)−p. This, together with (62), implies (55).

Step 2. We prove (54) for any T ∈ (0,∞). We denote the constants appearing
in Lemma 26 by Ctr, and set

C1 = C0Ctr, C2 = CDMRCtr.

Then we show that

‖(−Ah)−αe·+NS1,h ‖Yσ ≤ C
(
‖(−Ah)−αe1,h‖YS + h2α + τ

)
(64)

for all S < T and σ ≤ min{T1, T − S}. Take S < T and σ ≤ min{T1, T − S}
arbitrarily, and set wnj,h = en+NSj,h (j = 1, 2). Then, w1,h satisfies

{
(Dτw1,h)n = Ahw

n+1
1,h + Fh(un+NSh )− Fh(PhU

n+NS ), n = 0, . . . , NT−S ,

w0
1,h = eNS1,h.
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Therefore, discrete maximal regularity (60), Lemmas 26, 30, and (63) yield

‖(−Ah)−αw1,h‖Yσ

≤ CDMR

[(
Nσ−1∑
n=0

∥∥∥(−Ah)−α
[
Fh(un+NSh )− Fh(PhU

n+NS )
]∥∥∥p
h,q

τ

)1/p

+ ‖(−Ah)−αeNS1,h‖1−1/p,p
]

≤ CDMR

[
CLip

(
Nσ−1∑
n=0

‖wn1,h‖ph,qτ
)1/p

+ CLip

(
Nσ−1∑
n=0

‖wn2,h‖ph,qτ
)1/p

+ Ctr‖(−Ah)−αe1,h‖YS

]
≤ C0σ

1/p
(
‖(−Ah)−αw1,h‖Yσ + ‖(−Ah)−αeNS1,h‖1−1/p,p

)
+ C(h2α + τ)

+ CDMRCtr‖(−Ah)−αe1,h‖YS

≤ 1

2
‖(−Ah)−αw1,h‖Yσ +

(
Ctr

2
+ C2

)
‖(−Ah)−αe1,h‖YS + C(h2α + τ),

since σ ≤ T1 = (2C0)−p. Therefore, we obtain (64).

Noting that NS+σ ≤ NS +Nσ, one obtains

‖vh‖YS+σ
≤ ‖vh‖YS + ‖v·+NSh ‖Yσ

for vh ∈ lp(NS +Nσ;Sh) and S, σ > 0. Therefore, we can inductively establish
(54) from (63) and (64). Now we can complete the proof owing to Lemma 30.
ut

Finally, we state the following proof.

Proof (Proof of Theorems VI and VII) Observe that

‖unh − Un‖Lq ≤ ‖enh‖Lq + ‖PhUn − Un‖Lq ≤ ‖enh‖Lq + Ch2‖Un‖W 2,q

by Lemma 11. Therefore, it suffices to prove

(
NT∑
n=1

‖enh‖pLqτ
)1/p

≤ C(h2 + τ) and max
0≤n≤NT

‖enh‖L∞ ≤ C(h2α + τ)

for α ∈ (0, αp,q,d). To this end, let

M = ‖u‖L∞(Ω×(0,T )) + sup
h>0
‖Phu‖L∞(Ω×(0,T ))
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for the solution u of (2) and T ∈ (0, T∞). It is apparent that M is finite since
the L2-projection Ph is stable in the L∞-norm (Lemma 11). We introduce

f̃(z) = f̃M (z) =

f(z), |z| ≤M,

f
(
M z
|z|

)
, |z| > M.

Then, f̃ is a globally Lipschitz continuous function. We consider the problems
(2) and (23) with replacement of f by f̃ , and denote the corresponding solu-
tions by ũ and ũh, respectively. Moreover, we consider the error ẽh = (ẽnh)NTn=0 ∈
SNT+1
h , where ẽnh = ũnh − Phũ(nτ).

In view of Lemma 31, the following error estimate holds:

‖(−Ah)−αẽh‖YT ≤ C(h2α + τ)

for any α ∈ [0, 1]. By setting α = 1, we obtain(
NT∑
n=1

‖ẽnh‖pLqτ
)1/p

≤ C(h2 + τ). (65)

Applying Lemma 30, we can deduce

max
0≤n≤NT

‖ẽnh‖L∞ ≤ C(h2α + τ), (66)

for α ∈ (0, αp,q,d).
At this stage, we have ũ = u by the unique solvability of (2). Indeed,

‖u‖L∞(Ω×(0,T )) ≤ M implies f̃(u(x, t)) = f(u(x, t)) for every (x, t) ∈ Ω ×
(0, T ). Moreover, according to (66), we estimate as

max
0≤n≤NT

‖ũnh‖L∞ ≤ max
0≤n≤NT

‖ẽnh‖L∞ + max
0≤n≤NT

‖PhUn‖L∞

≤ C(h2α + τ) + sup
h>0
‖Phu‖L∞(Ω×(0,T ))

for α ∈ (0, αp,q,d). Therefore, there exist h0 > 0 and τ0 > 0 such that

max
0≤n≤NT

‖ũnh‖L∞ ≤M, ∀h ≤ h0, ∀τ ≤ τ0,

which implies that f̃(ũnh) = f(ũh). Again, the unique solvability of (23) yields
ũh = uh for h ≤ h0 and τ ≤ τ0. Hence we can replace ẽnh by enh in (65) and
(66), which completes the proof of Theorems VI and VII. ut
Remark 5 Based on the same assumptions of Lemma 31, the solution uh =
(unh)n of (23) admits

‖unh‖L∞ ≤ C‖u0‖L∞eTL.

We briefly show this inequality. Let Th,τ = (I−τAh)−1 and Fh = K−1h ◦Ph◦f .
Then the first equation of (23) is equivalent to

unh = Tnh,τPhu0 + τ

n−1∑
n=0

Tn−jh,τ Fh(ujh)
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for n ∈ N. It follows from Lemma 10 and the Hille-Yosida theorem that

‖λnR(λ;Ah)n‖L(Xh,∞) ≤ 1

for all n ∈ N and λ > 0. Particularly, we have

‖Tnh,τ‖L(Xh,∞) ≤ 1

for all n ∈ N. Moreover, one can find L > 0, independent of h, such that

‖Fh(vh)− Fh(wh)‖L∞ ≤ L‖vh − wh‖L∞ , ∀h > 0

for vh, wh ∈ Sh by the globally Lipschitz continuity of f and Lemmas 11 and
12. Then, we obtain

‖unh‖L∞ ≤ C‖u0‖L∞ + τ

n−1∑
j=0

L‖ujh‖L∞ .

Therefore, the well-known discrete Gronwall lemma [36, Lemma 2.3] implies

‖unh‖L∞ ≤ C‖u0‖L∞enτL ≤ C‖u0‖L∞eTL

for n ∈ N.

A H∞-functional calculus

In this appendix, we review the notion of H∞-functional calculus. We present only the
definition and the theorem used for this study. For relevant details, one can refer to [11] and
references therein. Throughout this section, X denotes a Banach space and Σω is the sector
defined as (26).

Definition 3 For ω ∈ (0, π), a linear operator A is of type ω if and only if

1. A is closed and densely defined,
2. σ(A) ⊂ Σω ,
3. for each θ ∈ (ω, π], there exists Cθ > 0 satisfying ‖R(z;A)‖L(X) ≤ Cθ/|z| for all

z ∈ C \Σθ with z 6= 0.

Every positive type operator is of type ω for some ω ∈ (0, π/2). Now, we define the
functions of operators of type ω. For θ ∈ (0, π), we set

Ψ(Σθ) =
⋃

C≥0, s>0

{
f ∈ H∞(Σθ)

∣∣∣∣ |f(z)| ≤ C
|z|s

1 + |z|2s
, ∀z ∈ Σθ

}
,

where H∞(Σθ) is defined as (31). Let Γϑ = {−te−iϑ | −∞ < t < 0} ∪ {teiϑ | 0 ≤ t < ∞}
be a contour for ϑ ∈ (0, π), which is oriented so that the imaginary parts increase along Γϑ.

Definition 4 Let A ∈ P(X;K) for some K ≥ 1. Assume that A is of type ω and let
ω < ϑ < θ. Then, we define the function of operator A as

ψ(A) =
1

2πi

∫
Γϑ

(A− zI)−1ψ(z)dz

for ψ ∈ Ψ(Σθ). We also define m(A) for m ∈ H∞(Σθ) as

m(A) = ψ0(A)−1(ψ0m)(A),

where ψ0(z) = z/(1 + z)2.
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In the case in which X is a Hilbert space and the operator A is positive type and self-
adjoint, we can define m(A) for m ∈ L∞(R+) by the spectral decomposition. It is natural
to wonder whether these two definitions coincide. The answer is as follows. See for example
[2, Theorem 4.6.7 in Chapter III] for the proof.

Lemma 32 Let X be a Hilbert space and A ∈ P(X). Assume that A is self-adjoint and let
EA(λ) be its spectral decomposition. Then, we have

m(A) =

∫ ∞
0

m(λ)dEA(λ)

for m ∈ H∞(Σθ).

B Remark on the scheme (17)

An alternate of the scheme (17) is given as

(Dτuh)n = Ahu
n+θ
h + PhG

n+θ, (67)

or, equivalently,

((Dτuh)n, vh)h = −(∇un+θh ,∇vh)L2 + (PhG
n+θ, vh)h, ∀vh ∈ Sh.

If taking (67) instead of the first equation of (17), we can only obtain the following error
estimate: NT−1∑

n=0

‖un+θh − Un+θ‖pLq τ

1/p

≤ C(h+ τ jθ ), (68)

since Lemma 14 is not available. This shortcoming is confirmed by numerical examples as
follows.

Let us consider the following two-dimensional heat equation in Ω = (0, 1)2:
∂u

∂t
(x, y, t) = ∆u(x, y, t) + g(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T,
u(x, y, 0) = x5/2(1− x)5/2y(1− y) (x, y) ∈ Ω,

(69)

where T > 0 and

g(x, y, t) = x1/2(1− x)1/2et
[
x2(1− x)2y(1− y)−

5

4
(3− 4x)(1− 4x)y(1− y) + 2

]
.

The exact solution is u(x, y, t) = x5/2(1−x)5/2y(1−y)et. We approximate the equation (69)
by the schemes (17) and (67) with meshes such as Figure 2, which satisfies the conditions
(H1) and (H2).

We consider the case for θ = 0, 1/2 and 1. When θ = 1/2 and θ = 1, we take τ as τ = h
or τ = h2. In the case for θ = 0, τ should be chosen to satisfy the condition (14). We take
ε = sin θq and

τ =
sin θq

(1− 2θ)(d+ 1)2
κ2h,

so that τ satisfies τ = O(h2) by the inverse assumption. We set the parameters as follows:

• (p, q) = (4, 2),
• T = 0.1 (θ = 0) or T = 0.5 (θ = 1/2, 1).
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Fig. 2: Meshes.
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Fig. 3: Behavior of L4-L2-errors.

Behavior of the errors is shown in Figure 3. In these figures, cases 1–5 mean the following
cases:

case 1: θ = 0 (τ = O(h2)),

case 2: θ = 1/2, τ = h, case 3: θ = 1/2, τ = h2,

case 4: θ = 1, τ = h, case 5: θ = 1, τ = h2.

Let us consider the order of the error. In case 4 with the scheme (17), for example, from
Theorem V and τ = h, we have

(The error) ≤ C(h2 + τ) ≤ Ch

if h is sufficiently small. We summarize these theoretical orders and results in Table 1. When
we use the scheme (17), the orders correspond to the theoretical bounds. In the case for the
scheme (67), all orders are expected to be O(h). However, except for case 4, the orders are
apparently O(h2). It is of course no problem since the error estimate (68) is just an upper
bound. In case 4, it also seems that the order is O(h2). However, when we compute (67) in
case 4 for smaller h, the error decreases more slowly. It seems to approach O(hα) for some
α ∈ [1, 2): Figure 4. We leave more rigorous error estimates for the scheme (67) as a subject
for future work.
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conditions bounds results

θ = 0 τ ∝ h2 O(h2) O(h2)

θ = 1/2
τ = h O(h2) O(h2)

τ = h2 O(h2) O(h2)

θ = 1
τ = h O(h) O(h)

τ = h2 O(h2) O(h2)

(a) Scheme (17)

conditions bounds results

θ = 0 τ ∝ h2 O(h) O(h2)

θ = 1/2
τ = h O(h) O(h2)

τ = h2 O(h) O(h2)

θ = 1
τ = h O(h) ?

τ = h2 O(h) O(h2)

(b) Scheme (67)

Table 1: The convergence rates: theoretical bounds and results.
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