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1 Introduction

The discontinuous Petrov-Galerkin methodology (dPQG) has recently been introduced
with the intention to design the optimal test spaces in a Petrov-Galerkin scheme for
maximal stability. On the continuous level, the weak form of a PDE may assume
the general form b(u,-) = F with a unique solution w in some real Banach space
X and some bilinear form b : X x Y — R for some real Hilbert space Y with
scalar product a : Y x Y — R and a given right-hand side F' € Y*, the dual to Y.
Well-posedness is understood to lead to an inf-sup condition on the continuous level.
Given some discrete trial space Xj; < X, the restriction b|x, xy clearly satisfies the
inf-sup condition (even with a possibly slightly better inf-sup constant) but it is less
clear how to choose the best trial space My}, i.e. some subspace, My < Y such that

b
0 < B(Xp, M) := inf sup _b@n,yn) (1.1)
zp€Xn Yyn€Mp, ”thXHyh”Y

is maximal under the condition that dim(Xy) = dim(Mp) is fixed. The idealized
dPG method computes the optimal test space utilizing some Riesz representations
in the infinite-dimensional Hilbert space Y [18]. The practical realization utilizes,
first, a test-search space Y;, < Y with dimension n = dim(Y}) much larger than
the dimension m = dim(X}) of the trial space X} and, second, a minimal residual
method to compute the discrete solution as a minimizer

xp, € argmin [ F — b(&p, )|y x. (1.2)
EnEXp "

The method is in fact equivalent to a Petrov-Galerkin scheme with the bilinear form
restricted to X; x M) for an appropriate subspace M; < Y} of dimension m as
pointed out in [8, Thm. 3.3]. Therefore, the large discrete space Y}, (which is an
input of the dPG scheme) is called test-search space [17] and the (implicit) test
space Mj, is not visible in (1.2).

The computation of z;, in (1.2) is equivalent to solving the normal equations and
so possibly expansive. This guided Demkowicz and Gopalakrishnan [19] to break the
norms in the test (and ansatz) spaces [6]. This allows a parallel computation of the
dual norm separately for each individual element domain. As it stands today, the
term dPG abbreviates “discontinuous Petrov-Galerkin” and stands for a minimal
residual method with broken test or ansatz functions and solely outlines a paradigm.
The dPG methodology allows various weak and ultra-weak formulations, where X
and Y are completely different and b is not at all symmetric. The least-squares finite
element methods can be seen as a (degenerated) subset of (an idealized) dPG with
a degenerated test space in which the Lebesgue norm can be evaluated exactly.

To the best knowledge of the authors, not much is known about nonlinear versions
of the methodology. One first choice is to linearize the problem and then apply the
dPG schemes to the linear equations to generalize the Gauss-Newton method. There
exist already suggestions for nonlinear applications, in which there are constraints
plus a linear problem, e.g., for the contact problem in [21]. Concepts of nonlinear dPG
in fluid mechanics have been discussed in [16]. Another usage of the term nonlinear
is in nonlinear approximation theory and there is the contribution [22] on linear
problems with an attempt to replace the Hilbert space Y by some uniformly convex
Banach space.
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This paper introduces a direct nonlinear dPG methodology and replaces the above
bilinear form b by some nonlinear mapping b : X x Y — R, which is linear and
bounded in the second component to allow the computation of the dual norm in the
minimal residual method. To stress the nonlinear dependence in the first component
in X, the notation in this papers follows [24] and separates the linear components by
a semi-colon so that the nonlinear dPG method replaces b(&p, ) in (1.2) by b(&p; @ ).

The simplest case study for the nonlinear dPG methodology is an energy minim-
ization problem with some Hilbert space setting and a nonlinearity with quadratic
growth in the gradient. The scalar model example of this paper stands for a larger
class of Hencky materials [28, Sect. 62.8] and is the first model problem in line to-
wards real-life applications with a matrix-valued stress o(F') given as a nonlinear
function of some deformation gradient F' (such as the gradient Vu of the displace-
ment u) and the remaining equilibration equation

f+dive(Vu) =0 a.e. in £2 (1.3)

for some prescribed source term f in the domain (2. Although the existence of dis-
crete solutions z to (1.2) follows almost immediately, the closeness of xj, to some
continuous solution x is wildly open (cf. Remark 2.11 below for a brief discussion).

One critical point is the role of the stability condition (1.1) in the nonlinear set-
ting for a regular solution and its low-order discretizations (as the most natural first
choice for nonlinear problems, partly because of limited known regularity properties).
In the situation of the model scenario (1.3), the discrete stability follows from the
stability of the continuous form for piecewise constant Vu;, and so the local discrete
stability simply follows from the linearization.

The overall structure of the nonlinear dPG of the type (1.2) but for a nonlinear
map b with derivative b’ with respect to the first variable is also characterized as a
nonlinear mixed formulation with solution (z,yp) € X x Y} to

a(Yn,Mn) + b(xp;nn) = F(ny) for all ny € Yy, o

b (zn;€n,yn) =0 for all &, € X,.
Another characterization in the lowest-order cases under consideration is that as
a weighted least-squares functional on Courant finite element functions S3(7) with
homogeneous Dirichlet boundary values and the Raviart-Thomas finite element func-
tions RTy(7T") with some mesh-depending piecewise constant weight Sy € Po(7;R™*™)

(uc,prr) € argmin (HHOf + div ggr ”iz(n)
(ve,qrr)€SE(T) X RTo(T)

+ [ (Tnxn + So) ™ (Mogrr — o(Voe) + Ho(f (id — mid(7)))) Him))'

This is already a new result even for the linear cases in [9,13] and opens the door of
a convergence analysis of adaptive algorithms via a generalization of [11,14].

This paper contributes the aforementioned equivalent characterizations and a
first convergence analysis in the natural norms. The a priori result is local quasi-
optimal convergence for the simple model problem in that any discrete solution
xp, € X, sufficiently close to the exact regular solution z € X satisfies

|z —zn[x s nf fz—E&lx.
EneXy
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It has been discussed in [5,9,13] that the norm of the computed residual |y, |y =
|E" — b(ve, qrrs *)|ly+ is almost a computable error estimator for linear problems
h,

and this paper extends it to the a posteriori error estimate

Ip - qr{T”iI(div,Q) +[lu—vel® ~ | F = bve, arrs ')Hih*

(1.4)
+ (1= o) f1 720y + (1 = Ho)grr72 (o)

for the nonlinear model problem (1.3). Since |F — b(ve, grr; * )Hyh* is the comput-
able residual, this leads to built-in error control despite inexact solve: The discrete
quantities (ve, grr) in (1.4) do not need to solve the nonlinear dPG discrete problem.

The analysis is given for the primal version of the nonlinear dPG for brevity
but applies to the other formulations of Subsection 4.4 as well. The results of this
paper can be generalized, e.g., to the Hencky material [28, Sect. 62.8], and then
applied to more real life computational challenges where the advantages of the dPG
methodology are more striking.

The remaining parts of of this paper are organised as follows. Section 2 discusses
an abstract framework for different equivalent formulations of a dPG method for
nonlinear problems and develops an abstract a priori estimate. Section 3 presents
a model problem with a dPG discretization. Section 4 analyses this discretization
and gives proofs on existence of a solution and an a posteriori error estimate. Some
numerical examples in Section 5 conclude the paper.

This paper employs standard notation of Sobolev and Lebesgue spaces H”(£2),
H(div, £2), L?(£2), and L®(£2) and the corresponding spaces of vector- or matrix-
valued functions H*(2;R™), L2(2;R™), L% (2;R™), H*(2; R™*™), H(div, 2; R™*"),
L2(£2;R™*™), and L®(£2; R™*™). For any regular triangulation T of £2, let H*(T) =
[Trer HY(T) ={ve L*(2)|¥T € T, v|r € H*(T)} denote the piecewise (or broken)
Sobolev spaces and (Ve v)]T = V(v’T) on T € T the piecewise gradient for v €
HYT). Let ||| = | lz1(2) = |V *lL2() abbreviate the energy norm. For every
Hilbert space X, let (e, )x denote the associated inner product and, for every
normed space (X, | ¢|x), S(X) = {r € X||z|x = 1} the sphere in X. The measure
| o | is context-sensitive and refers to the number of elements of some finite set or the
length |E| of an edge FE or the area |T'| of some triangle T and not just the modulus
of a real number or the Euclidean length of a vector.

Throughout the paper, A < B abbreviates the relation A < C'B with a generic
constant 0 < C, which does not depend on the mesh-size of the underlying triangu-
lation T but solely on the initial triangulation 75; A ~ B abbreviates A < B < A,
e.g. in (1.4).

2 Abstract framework

This section analyses an abstract nonlinear dPG method and presents an a priori
error estimate.



Nonlinear dPG methods 5

2.1 Abstract nonlinear dPG

For an open set D # ¢ in a real Banach space X and a real Hilbert space changedY
with scalar product a : Y x Y — R, let B e C1(D;Y*) be a differentiable nonlinear
map with Fréchet derivative DB(z) € L(X;Y™*) at € D. With the duality bracket
(e, e in Y, associate the nonlinear map b : X x Y — R, b(x; ) = (B(x), *),
which is linear and bounded in the second component. Let b (z; o) abbreviate the
derivative DB(z) € L(X;Y*) with b/ (x;&,7n) == (DB(x;€),n) forxe D, e X,neY.

Given F € Y*, let € D be a regular solution to the problem B(z) = F in Y'*.
That means that x solves B(z) = F and the Fréchet derivative DB at x is a bijection
from X to Y*. The latter implies the inf-sup condition for the Fréchet derivative at
the regular solution z, namely,

0<pB(x)= inf sup V(z;&n). (2.1)
£eS(X)nesS(Y)
The minimal residual formulation of the continuous problem seeks x € X with

x € argmin |[F — B(&)|yx*-. (2.2)
¢eD

The existence of a solution x to (2.2) is immediate from the assumption B(z) = F. In
particular, the minimum is zero and any minimizer z in (2.2) solves B(z) = F. The
situation is (in general) different on the discrete level with some discrete subspaces
X, < X and Yy, c Y, the dPG scheme seeks a minimizer zj, € Dy, = X} n D of the
residual F' — B() in the norm of Y},

xp, € argmin |[F — B(&g) [y . (dPG)

En€DR h

The existence of a solution to (dPG) requires further assumptions and follows in
Proposition 4.3 for a model problem.

2.2 Derivation of nonlinear dPG

A formal Lagrange ansatz leads to the minimization of the Lagrange functional
L:Dp xY, xR — R defined for (zp,yn, \) € X x Yy x R by

A
L(@n,yn, A) = F(yn) — b(@n;yn) — §<a(yh»yh) -1).
The stationary points x, € Dy, yp € Yy, and A € R of £ are characterized by the
first derivatives of £ with respect to each argument in the sense that, for all n, € Y3

and &, € Xy,

Aa(yn, ) + 0(xnsmn) = (), b (@hi&n,yn) =0, alyn,yn) = 1.
For np, = yp, this implies A = F(yp,) — b(xp;yr). The substitution of y, by Ay, leads
to a modified system of equations. The resulting mixed formulation of the nonlinear
dPG method seeks xj, € X}, and yp, € Y}, with
a(yn,nn) + b(zn;nn) = F () - for all n, € Y,
V(xn;&nyn) =0 for all &, € X,

Notice that this is known for linear problems (there, b = V' (x; *)) [17, Section 2.3].
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2.3 Equivalent mixed formulation

It is known in linear problems that the dPG method is equivalent to the mixed

problem (M) and this is generalized in this subsection to the nonlinear problem

B(z) = F at hand. Any local (or global) minimizer of ®(&,) = |F — B, ||3Y* /2is a
h

stationary point of @.

Definition 2.1 (stationary point) Any x; € Dy, = Dn X}, is a stationary point of
the dPG discretization (dPG) if any directional derivative of ®(&,) == ||F—B§hH§/*/2
h

vanishes at xp, i.e., lims_,o(@(zp, + 6&n) — P(xp))/0 = 0 for all &, € X,.
Stationary points are exactly the solutions to (M).

Theorem 2.2 ((dPG) « (M)) (a) Suppose xy, is a stationary point of (dPG) and
Yn is the residual’s Riesz representation (i.e. a(yn, ») = F —b(zp; »)) in Y. Then
(Th,yn) solves (M).

(b) Suppose that (zn,yn) solves (M), then xp, is a stationary point of (dPG).

Proof (a) For any &, € Dj, the unique Riesz representation ¢p,(¢n) € Yy of the
residual F' — b(&p; ») € YV} satisfies

B(&) = 5llon (€)1}

Given the stationary point zj, € Dp, to (dPG) and &, € Xp, consider @(zp + &) as
a scalar function of the real parameter ¢ with a derivative zero at ¢t = 0. For |¢| small
such that zp(t) = ), + t&, € Dy, and yp(t) = op(xx(t)), it follows

a(yn(t), o) + b(zp(t); o) = F  in ;'

A differentiation with respect to ¢ shows for y;, == 0y, (0)/0t and &}, == 0z, (0)/dt = &y,
that g, exists and is the Riesz representation of —bV/'(zx;&n, ¢) = a(yn, *) in Yj,.
Therefore, @(xp(t)) = a(yn(t),yn(t))/2 is differentiable and the derivative vanishes
at t = 0, which leads to

0= a(yn,yn) for yn = yn(0).

It follows that
b (zn;€n,yn) =0 for all &, € X,.
Since yn = yn(0) = on(zp), (zh,yr) solves (M).

(b) Conversely, if (1, yr) solves (M) then, for any &, € D, and the above notation
for the Riesz representation y,(t) of F' — Bz (t) in Yy,

|1F — Bﬂ?h(t)”f/h* = a(yn(t), yn(t)) = F(yn(t)) — b(xn(t); yn(t))
has a derivative with respect to t at ¢ = 0, namely, for y;, == y5(0)
2a(gn,yn) = F(yn) — ' (xn; Ens yn) — b(n; gn)-

Since V' (z1;&n, yn) = 0 and F(yn) — b(zn;9n) = a(yn, Yr), this implies a(yn, yn) = 0.
Recall 09(x(t))/0t|t=0 = a(Yn,yn) = 0, and so zy, is a stationary point of @. o
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Proposition 2.3 (necessary and sufficient second-order condition) Assume
that @ is twice differentiable. (a) If xj solves (APG), then

V" (213 €y €y yn) < |V (s En, ')Hih* for all &, € X (2.3)
(b) 1If, in addition,
V" (213 €y Enyyn) < |6/ (s En, ')||§/h* for all &, € Xp\{0}, (2.4)
then xy, is locally unique.

Proof The second derivative of @(zy(t)) reads a(82yn/ot?,yn) + |0yn/dt|3 . Recall
from the proof of Theorem 2.2 for ¢ = 0, that the Riesz representation y;, = dyp(0)/0t
satisfies

a(gn, *) = =b'(@n;&n, o) Yy and [galy = [V (zn:&n, @)lyx-
Another differentiation with respect to ¢ shows that §jj, = 02y, (0)/0t? satisfies
a(n, o) = =b"(xn; n,Eny o) in V.
Consequently, the second derivative of @(z,(t)) at ¢t =0 is
= 0" (w3 €ns € yn) + [V (203 &n, @ )||§/h*~ (255)

The assertion follows from this and standard arguments in the calculus of stationary
and minimal points. =]

Remark 2.4 (linear problems) For a linear problem, b”(zy; o) vanishes and (2.4)
holds. This implies local uniqueness in the linear situation (which is a global one).

The uniqueness of the discrete solution is observed in numerical examples; cf.
Theorem 4.4 for a sufficient condition in the model example below.

2.4 Abstract a priori error analysis

This section presents a best-approximation result based on a discrete inf-sup condi-
tion and the existence of a Fortin operator.

Hypothesis 2.5 Throughout this paper, assume that there exists a linear bounded
projection Iy, ' Y — Yy, with I} |y, =idly, and

V' (Dp; Xn, (1 = II)Y) = 0, (2.6)

i.e., for all xp, € Dy, and all y € Y, Iy € Yy, satisfies b/ (xp; &,y — py) = 0 for all
&n € Xy Let |11y denote the bound of Iy, in L(Y;Y).

The following theorem generalizes [1, Prop. 5.4.2] to the nonlinear problem at
hand. A sufficiently fine initial triangulation guarantees that B(z,c) n X < Dy, is
nonempty.
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Theorem 2.6 (discrete inf-sup condition) Given a regular solution x to B(x) =
F, there exists an open ball B(x,¢) = {Z € X ||z — &||x <&} of radius ¢ > 0 around
x such that, for all &}, € B(x,€) n X, < Dy, the following discrete inf-sup condition
holds

X3, Y;
0< Blw; Xn, Yi) < B(Zn; Xn,Yn) = inf sup b (Zn; Ensn)-

2| €n€S(Xn) M €S(Yn)

Proof The continuous inf-sup condition (2.1) and the continuity of DB in D lead to
some ¢ such that

B(x)/2 < B(En) < inf  sup V(Zn;&n,n)
€neS(Xn) nesS(Y)

= inf sup b (Zp;&n, pm)
EneS(Xp) nesS(Y)

= inf  sup [Iunly b (Zn; En, Tun/ | Tnnly)
EhES(Xh) ’I]ES(Y)

< |Hy| inf osup O (Zn;&n, Hun/|Hanlly)
fhES(Xh)T]ES(Y)

= [II,|  inf sup b (Zn; Eny n)-
En€S(Xn) nneS(Yn)

Hence, any &, € B(z, <) satisfies 0 < b(z) B(Zn; Xn, Yy). o

Remark 2.7 (converse of Theorem 2.6) Given the discrete inf-sup condition

0< inf  sup '(Zn;&n,mn) (2.9)
fhES(Xh)T]hES(Yh)

at some point Z, € Dj, the techniques of [9, Lemma 10] guarantee the existence
of a linear bounded projection II,(Zp) : Y — Y}, with (2.6), which depends on Zp,.
The above proof shows that the existence of ITj, (%) is also sufficient for (2.9). The
class of model examples allows for the simple more uniform Hypothesis 2.5 with
Iy (Zp) = IIj, independent of Ty, € Dy,.

Theorem 2.8 (local best-approximation) Given a regular solution x to B(x) =
F, there exist positive constants € > 0 and C(z,€) > 0 such that any solution (z, yn)
to (M) with | — x| x < € satisfies

|z —znlx + |ynlly < C(z,e) inf [z —&hlx.
En€Xh

The proof of the theorem requires the following lemma.
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Lemma 2.9 Anye > 0 and zj, € B(z,e) < D satisfy

[/ (s — an, o) = b(s @) + b(wn; *)|y=

<2 sup [DB(z) = DB(&)|Lxvx)le — znlx (2.10)
£eB(z,e)

1B(z) = B(xn)lys < Sl?p )II DB(&)|rxys)lz — znlx- (211)
¢eB(x,e

Proof Given any n € S(Y), the Taylor’s formula of b at z;, with remainder reads
V' (@nsa — xn,m) = b(w;n) + b(wn;n)
1
= [ (¥ @i = ann) =V on + s(a = an)io = onm) s
0

Since || — zp|x < € implies |z — (z}, + s(x — zp))|x < € for 0 < s < 1, the triangle
inequality proves

b (wn; @ — wnym) + banin) — bla;n)
<2 sup |V(zyz—ap,m) — V(& z —2p,7)]
£eB(x,g)
<2 sup [DB(z) =DBE)lcxvs)le —nlx-
£eB(z,e)
Since n € S(Y) is arbitrary, this implies (2.10). The assertion (2.11) follows from the
same arguments without the term o' (zp;x — xp, 7). o

Proof (of Theorem 2.8) Let &, be the best-approximation to z in Xp, i.e.,

|z —Zn|x = inf |z —-&|x <z —znllx <e.
h€Dp

Suppose € > 0 satisfies (2.7)-(2.8) and, with the continuity of DB at z,

. St;p )H DB(&)|Lx;y#) < 2| DB(@)|Lix;y*)- (212)
€eB(x,e

The discrete inf-sup condition from Theorem 2.6 plus the Brezzi splitting lemma [3,
Thm. 4.3 in Ch. III] with inf-sup constants, 5(x)/2 and 1, and continuity constants,
2| DB(2)|lL(x;y*) and 1, for the bilinear form b (xp; o, o) and scalar product a prove
the global inf-sup condition 0 < v < B(zp; X}, Ys) for

7= inf sup (b/(ﬂﬁh; Enan) + V' (@ns €y i) + a(in, ﬂh))-
(En,in)ES (X X Y3) (En,nn)ES(Xn X Yh)

independent of € with (2.7)—(2.8) and (2.12). Given v > 0 and 3(z) > 0 suppose, for
some smaller ¢ > 0 if necessary, that € > 0 satisfies (2.7)—(2.8), (2.12), and, from the
continuity of DB at x,

. S;p )II DB(z) = DB(&)|L(x;v#) < min{y/4, 5(z)/8}. (2.13)

For the best-approximation ¢, = 0 to y = 0 in Y} and (éh, Mn) = (Tn — Th, Y — Yn),
this implies the existence of (&, n) € S(X}, x Y3) with

Y(|Zr — znlx + lynly) < (@i En — zn,m0) — U (2hsEn, yn) — a(yn, n)-
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Since (xp, yp) solves (M) and g, = 0, this leads to
Y(I1Zh = znlx + lynlly) <V (@ns@n —2,00) + 6 (202 — 2h,00) + b(wn;na) — b(z;08).-
Lemma 2.9 and (2.13) imply

V' (whsa — xp,mp) + b(@nsmn) — b(zimp) < vz — ) x /2.
The combination of the preceding two displayed formulae reads
SlEn = anlx +Yynly < b(@nidn —znm).
With (2.12), this is bounded from above by
IDB(@n)|Lix;v#)le — Zallx < 2|DB(@n)|pix;v*)lz — Zallx-
The triangle inequality concludes the proof. ]

Remark 2.10 Under further smoothness conditions of the nonlinear mapping b’ the
local existence and uniqueness of a discrete solution, e.g., follows from [25, Thm. 2].

Remark 2.11 The Newton-Kantorovich theorem [27, Section 5.2] is another tool for
the proof of the existence of discrete solutions close to the regular solution. In the
model problem of Section 3, the higher Fréchet derivatives for this argument do not
exist, cf. Remark 3.3 for details.

2.5 Abstract a posteriori error analysis

This subsection is devoted to a brief abstract a posteriori error analysis of the non-
linear dPG. Given a discrete approximation z; close to the regular solution = to
B(z) = F, the residual F' — B(xp,) € Y* has a norm |F — B(xp)|y= that, in prin-
ciple, is accessible in the sense that lower and upper bounds may be computable.
The latter issue is a typical general task in the a posteriori error analysis and will
be adressed in Section 3 for a model example.

Theorem 2.12 (local a posteriori analysis) Let x be a reqular solution to B(z) =
F with inf-sup constant §(x) from (2.1). Then there exists some £ > 0 such that any
zp € B(z,e) © D satisfies

p(x)
4
Proof With the choice of € > 0 from the proof of Theorem 2.8 it follows (2.7)-(2.8)

and (2.12)-(2.13). The continuous inf-sup condition (2.1) implies the existence of
neS(Y) with

T
P8 o~ alx < ¥@nsw— )

|z = 2nlx < |F = B(zn)|y+ < 2[DB(@)|L(xy+)lr — 2nlx.

< b(xin) = b(wnin) + V' (wn; @ — xp,m) — blasn) + blzpsn)]-
Lemma 2.9 for the last term, b(x;n) = F(n), and (2.13) show

B(x) px)

T”ﬂﬁ —zp|x < F(n) —b(@n;n) + TH»T — zpllx.
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This proves the asserted reliability

@Hx —anllx < [F(n) = blwn;n)ys-

To prove the efficiency, utilize F' = B(z), Lemma 2.9, and (2.12) to verify
I = B(xn)|y* = [B(x) — Bzn)|y*
<2|DB@)|pxiy+ |z —znlx. ©

Remark 2.13 Since y = 0 and y;, is computed, the a posteriori error |y — yu|y =
lynlly is already an error estimator and can be added on both sides of the reliability
(resp. efficiency) a posteriori error estimate. This justifies the usage of the extended
residual |F — a(yp, *) — b(zn; )|y + [lyn]y of the system (M).

Remark 2.14 The constants 3(x)/4 (vesp. 2| DB(z)||(x;y#)) in Theorem 2.12 follow
from the choice of ¢ in the a priori error analysis in the proof of Theorem 2.8. For
smaller and smaller values of ¢, those constants could be replaced by any number
< B(x) (vesp. > | DB(x)|1(x;y*)) in the following sense. For any 0 < A < 1 there
exists some € > 0 such that any z; € B(x,¢) satisfies A\3(z) < [|[F' — B(zp)|y* <
L+ NIDB@) | x;v%)-

3 Model problem

This section introduces a nonlinear model problem and a low-order dPG discretiz-
ation and establishes two further equivalent characterizations of the nonlinear dPG
method: reduced discretization and weighted least-squares.

3.1 Convex energy minimization

The nonlinear model problem involves a nonlinear function ¢ € C2(0,0) with 0 <
M <o) <y and 0 < y1 < ¢(f) + ¢ (t) < 72 for all t > 0 and universal positive
constants 71, v2. Given f € L2({2) and the convex function ¢, p(t) = Sf) s¢(s)ds for
t = 0, the model problem minimizes the energy functional

E(v) = Lz o(| Vo(z)|)dz — Lz fudr among all ve Hj(£2).

The convexity of ¢ and the above assumptions on ¢ lead to growth-conditions and
sequential weak lower semicontinuity of E and guarantee the unique existence of a
minimizer u of E in Hg (£2) [29, Thm. 25.D]. The equivalent Euler-Lagrange equation
reads

J¢(|Vu|)Vu-Vvdx:J fuodx for all ve Hj(R2) (3.1)
Q Q

and has the unique solution u in H}(2). The stress variable o(A) = ¢(]A|)A defines
a function o € C1(R™; R"™) with Fréchet derivative

Da(A) = (|ANInxn + ¢ (JA])| Al sign(A) ® sign(A) (3.2)

with the sign function sign(A4) = A/|A| for A € R™\{0} and the closed unit ball
sign(0) :== B(0,1) in R™. The prefactor ¢’(|A])|A| makes Do a continuous function
in R™. In fact Do € CO(RQYXH?) is bounded with eigenvalues in the compact interval
[’71772] < (07 OO)
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Remark 3.1 (Lip(o) < v2) For A, B € R™, the argument o(A4) — o(B) = S(l) Do(sA +
(1 —3s)B)(A— B)ds and (3.2) imply the global Lipschitz continuity of o,

lo(A) —o(B)l < | '[Do(sA+ (1 —5)B)(A-B)lds < 2|4 - Bl.

Ezample 3.2 In the following examples, 0 < ¢” < 2 is bounded as well as ¢’ and Do
from (3.2) is globally Lipschitz continuous. (a) ¢(t) =2+ (1 +t)"2 withy; = 1 <
2 = 3 [15] and Lip(Do) < 4 and (b) ¢(t) =2 — (1 +t3) L withy, =1 <y =4
and Lip(Do) < 2

Remark 3.3 (second derivative) A formal calculation with s(j) = (sign A) j»8(J, k) =
(sign A);(sign A)j etc. and the Kronecker symbol §;;, for j,k,£ = 1,...,n leads at
any A e R"” to

D?a(A)j ke = &' (|A)(Gj5(0) + djes(k) + Oes(5)) + (¢" (IADIA] = &' (|A])s(, K, ).

Although D?¢(A) may be bounded (at least in the Example 3.2.a and b), it may be
discontinuous for A — 0. In Example 3.2.b, ¢/(0) = 0 and D?o is continuous with
D?0(0) = 0. The associated trilinear form b”(z; ), however, is not well-defined on

X x Y x Y because the product of three Lebesgue functions in L?(2) is, in general,
not in L'(2).

3.2 Breaking the test spaces

Let 2 € R™ be a bounded Lipschitz domain with polyhedral boundary 02. Let T
denote a regular triangulation of the domain {2 into n-simplices and let £ (resp.
E(T)) denote the set of all sides in the triangulation (resp. of an n-simplex T e T).

The unit normal vector vp along the boundary 07T of an n-simplex T € T (is
constant along each side of T' and) points outwards. For any side F = 0T ndT— € €
shared by two simplices, the enumeration of the neighbouring simplices T’ is globally
fixed and so defines a unique orientation of the unit normal vg = vz, |g. Let hr
denote the diameter of T' € T, hpax = maxpe7 hr < diam($2) and hy|g = hg for
any K € 7. The barycenter mid(7") of T' € T defines the piecewise constant function
mid(7) € Py(T;R™) by mid(7)|x = mid(K) for any K € T and mid(E) is the
barycenter of E € £. The piecewise affine function o — mid(7) € P1(7;R") equals
r—mid(T) at zeTeT.

Recall that H*(T) = [[rer H¥(T) = {v € L*(2)|VT € T, v|r € H*(T)} de-
notes the piecewise Sobolev space. Define the discrete spaces

Py(T) = {vx, € L®(T) | vy is polynomial on T of degree < k},
Py(T) ={vx € L7(2) | YT €T, vklr € Pr(T)},
(T R™) = Pp(T)",
S5(T) = Pi(T) n Hy (£2),
RT(T) = {qr € H(div,2)|3A € Px(T;R"),3b € Pp(T),
ar = A+ (e —mid(7))},
CRYT) = {vcr € Pi(T) |VE € £(£2), vcr continuous at mid(E)},
CRY(T) = {vcr € CRY(T) |VE € £(812), ver (mid(E)) = 0},
Pi(E) = {tr, € L*(@T) | ti|p € Px(E) for any E € £}.
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Definition 3.4 For a triangulation 7 with skeleton 07 = Urer Upeg(r) £ and
T e T, recall the local trace spaces H/2(0T) and H~'2(oT) = (H'/?(oT))* and

HY2(T) = {t = (tr)rer € [Iper HV2(@T) |
g € H(div, 2),YT € T,tr = (q|7)|or - v1}

endowed with the minimal extension norm, for t € H=1/2(a7),
I¢l g 1207y = min{|q|l g aiv,2) | ¢ € H(div, 2),VT" € T, tr = (q|7)|or - vr}-

The duality brackets (s, ¢ Yop in H='/2(0T) x H/?(8T) extend the L? scalar product
in L?(0T) and lead to the duality bracket on the skeleton for any t = (tr)7e7 €
[rer HY2(0T) and s = (st)ret € [ Iper HY?(0T) defined by

Yot = ), Cbrysyer

TeT

Remark 3.5 (RTo(T) = Po(€)) The spaces RTH(T) and Py(E) are isomorphic [8,
Lemma 3.2] in the sense that any qrr € RTp(T) and E € £ with fixed unit normal
vector vp satisfies qrr|p - vE € Po(F). Conversely, for any ¢y € Py(E), there exists
a unique grr € RTo(T) with grr|E - vE = to|p for any E € &, in short notation
grr v = to in T . Since [tof g-1/2(67) ~ lgrr | #(aiv,2), this identification justifies the
embedding Py(£) € H='/2(0T), where any T € T and E € £(T) satisty (qrr-vr)|p =
+to|g with the sign + = vr - vg depending on the (globally fixed) choice of the

orientation of the unit normal vg € {vr A £}

Definition 3.6 Define Sy € Py(T;R™*™) and Hy : L2(£2) — Py(T;R") for T e T
and f e L?(£2) by

Solr = Mo((+ —mid(T)) ® (+ — mid(T)),

Remark 3.7 An analysis of the eigenvalues of the piecewise symmetric positive semi-
definite matrix Sy shows that any 7' € T and v € R™ satisfies

1/2

0] < [(Inxn + Solr)vl < (1 +h7)[v] and [v] < [(Inxn + Sol) 0] < (1 + he)lvl-

Furthermore, [Ho f|12(2) < hmax|(1—11o) fllp2(0) for the maximal mesh-size hyax =
max hy in T.

3.3 Lowest-order dPG discretization

The nonlinear model problem of this paper concerns the nonlinear map o : R — R"
of Subsection 3.1. A piecewise integration by parts in (3.1) and the introduction of
the new variable t := ¢(Vu)-v on 07T leads to the nonlinear primal dPG method with
F(v)={,fvdzand b: X xY — R for X = Hj(2) x H='Y20T)and Y = HY(T)
defined by

b(u, t;v) = fn o(Vu)-Vncvdx — {t,v)or = (B(u,t), )y (3.4)
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for all x = (u,t) € X = H}(2)x H~Y/2(8T) and y = v e Y = H'(T) with associated
norms and the scalar product a in Y. Given the subspaces X}, = S§(T) x Py(€) and
Y}, .= P1(T), the discrete problem minimizes the residual norm and seeks (up,ts) =
Ty € Xh with

F-B = min |F—-B . .

IF = Ban)lyy = min [~ B(&)lys (3.5)

The derivative Do : R™ — R™*™ gives rise to the map

b (u,t;w,s,v) = | Vw-(Do(Vu)Vncv)dz — (s, vde7- (3.6)
Q
This defines a bounded bilinear form b’ (u,t; o) : X x Y — R for any = = (u,t) € X
and the operator B associated with b belongs to C*(X;Y*). Recall the equivalent
mixed formulation from (M) for the model problem at hand, which seeks (up,tp) €
X}, and vy, € Y, with

a(vn, ) + b(un, th;nn) = F(np)  for all ny € Yy, 3.7)
b (up, th; wn, sn,vp) = 0 for all (wy,, s,) € Xp,. '

Remark 3.8 (regular solution) Since Do (Vu) € L*(£2; R{I) uniformly positive def-
inite, the splitting lemma from the linear theory [6, Thm. 3.3] implies the inf-sup
condition (2.1) for the nondegenerate bilinear form &' (z; ¢, ¢): X x Y — R. Hence,

the solution x € X to B(x) = F is regular.

3.4 Reduced discretization

The dPG discretization (3.5) can be simplified to a modified problem that secks
(unvn) € S3(T) x CRY(T) with

a(vp, wer) + f o(Vup) - Vnc wer do = f fwer dz for all wer € C’R(l) (),

(9] 2 (R)

f Vwe - (Do (Vuy) Ve vp) dz = 0 for all we € Sa(T).
7]

Theorem 3.9 ((3.7) & (R)) (a) If (up,tn;vn) € Xp x Yy solves (3.7), then vy, €
CRA(T) and (up,vp) € S3(T) x CRY(T) solves (R).

(b) For any solution (up,vs) € S§(T) x CRY(T) to (R), there exists a unique
ty € Py(E) such that (up,ty;vp) solves (3.7).

The proof utilizes the following discrete inf-sup condition of a linear primal dPG
method [19]. Let the bilinear forms axc : HY(T) x HY(T) > Rand b: X xY - R
be defined by

anc(vy, vg) = J Vncvr - Vncvadx  for vy, ve € HY(T),
Q

b(z,y) = anc(u,w) — {t,wysr forx = (u,t)e X,y =weY.
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Lemma 3.10 The bilinear formg : Xp x Y, — R satisfies the discrete inf-sup
condition

0< Bh = inf sup 3(§h,77h). (3.8)
EhES(Xh) nhES(Yh)

Proof The proof follows the arguments from [8, Thm. 3.5] for the bilinear form b in
the lowest-order scheme at hand. ]

Proof (of Theorem 3.9) (a) Since b'(xp;0,sp,vn) = —(sp,vpyer = 0 for all s, €
Py(E), vp € CRY(T). Then, (3.7) reduces to (R).

(b) Conversely, suppose (up,vp) solves (R), then the second equation in (3.7)
follows from the second equation in (R) and v, € CRS(T). The first equation in (R)
leads to the first equation in (3.7) for any ¢, € Py(€) and test functions in CRS(T).
In other words, the linear functional

Ap = a(vp, ) +J o(Vup) Vncedz —FeYF
Q

vanishes on CRY(T) < ker Aj,. It remains to show that there exists t;, € Py(€)

with {t, ® o7 = Ap, because then (up,tp,vn) solves (3.7). To prove the existence

of such a tj, for Ay € Y;* with CR}(T) < ker Ay, recall the bilinear form b from

Lemma 3.10 with discrete inf-sup condition (3.8) and consider the linear problem

that seeks (up,tn,vn) € Xp, x Yy, with

anc(vp,wr) +5(uh,th,w1) = —Ap(wy) for all wy €Y}, o
Z(wc,so,vh) =0 for all (wg,so) € Xp.
Since (rg,v1)s7 = 0 for v; € Py(T) and for all ry € Py(E) implies v; € CR[l)(T) c
Py (T), the kernel

Zy = {v1 € Py(T) | b(zp,v1) = 0 for all z), € X}

of b consists of particular Crouzeix-Raviart functions, Z, = CR}(T), and the discrete
Friedrichs inequality [4, p. 301] shows that anc is Zp-elliptic. Hence, the Brezzi
splitting lemma [3, Thm. 4.3 in Ch. III] applies to the linear system (L) and (L) has
a unique solution (up,tn,vn) € Xp X Yp. The test of the first equation in (L) with
w1 € CRY(T) < ker Ay, shows axc(v, +up, o) = 0 in CRY(T). The second equation
in (L) implies vy, € CR(T) and this proves vy, = —uy,. This leads to (ty, * Yo7 = Ay,
in P;(T). The uniqueness of ¢, follows from the fact that {t,, e o7 = 0 in P,(7T)
implies t5, = 0. m]

3.5 Least-squares formulation
Recall Sg € Py(T;R™*™) and Hy : L%(2) — Po(T;R™) from (3.3) to define an
equivalent least-squares formulation.

Theorem 3.11 (dPG is LS) Any =, = (uc,to) € Xn and prr € RTo(T) with
PRT -V =to in 0T satisfy

[ = b(xn; ')HQYh* = |(Lnxen + So)™Y?(Hoprr — o(Vuc) + Hof) Hiz(_q)

(3.9)
+ HH()f + dinRTHiQ(Q).
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Consequently, any solution xj, = (uc,tg) € Xy, to (3.7) and prr - v = tg in dT from
Remark 3.5 minimizes the weighted least-squares functional (3.9).

Proof Let vy € Pi(T) =Y}, be the Riesz representation of b(xy; ¢) — F € Y}*, ie.,
any wy € P (T) satisfies

a(vy,wy) = b(zp;wr) — F(wy).

The substitution of ty = prr - v based on the isometry in Remark 3.5 and an integ-
ration by parts lead to

b(zp;wy) — F(wy) = L}(U(Vuc) —prr) - Ve wy dx — Jz(f + div prr)w; dz.
7
With wy = Ipw; + Vncw; - (¢ —mid(7)), this results in
f Iyvi Hgw; dz + J (Inxn + S0) Vnc 1 - Ve wy do
7] Q
= JZ(U(VUC) — Iloprr) - VNc wy dz — L}(Uof + div prr) How; dx
7

- Lz Hyf - Vncw: dz.

For any T € T, the choices w; = xr and wy; = xrer - (¢ —mid(T)), k= 1,...,n,
show
Ilyvy = —(divprr + o f),
(Inxn + S0) Vncvr = 0(Vug) — Hoprr — Ho f.

The Riesz isometry and |Jv; H?{l(n) = |l ||2Lz(_(2) + | (Inxn +S0) /2 Ve 01 Hiz(n) for
any v; € P1(T) conclude the proof. o

4 Mathematical analysis of dPG for the model problem

This section analyses the low-order dPG method presented in Section 3 and proves
an a posteriori result next to the existence of a solution and applies the abstract
framework from Section 2. Recall the discrete spaces Xp, = Sg(T) x Py(E), Yy =
Py (T), and the nonlinear map from (3.4).

4.1 Well-posedness

This subsection is devoted to the equivalence of the dPG residuals and the errors.
For grr € RTy(T) and ve € S§(T), the isomorphism between RTo(7) and Py(€)
from Remark 3.5 leads to the abbreviation b(vc, grr; *) = b((ve, (qrr - V1) TeT); *)-
Recall the energy norm || || = [ ¢ || 12¢0) in Hg(£2).

Theorem 4.1 The ezact solution u € H}(£2) to the model problem (3.1) with stress
p = o(Vu) € H(div,2) and any discrete (vc,qrr) € Sa(T) x RIo(T) satisfy the
equivalence

Ip = arelfsae, ) + llu = vell® ~ | F = b, gar; *)l5«

+ 11 = o) f1 720y + (1 — Ho)arr7(q)-
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The proof is based on a lemma on the nonlinear least-squares formulation. The
related least-squares formulation is associated with the nonlinear residual R(f; ») :
H(div, 2) x H}(£2) — L?(02) x L?(£2;R™) for the first-order system of (3.1) and
defined, for (p,u) € H(div, £2) x H}(£2), by

R(fipyu) = (f +divp,p—a(Vu)).
Lemma 4.2 Any (p,u), (¢,v) € H(div, 2) x HE(02) satisfy
| R(fip,u) = R(f30,0)72(0) & 1P = dl (g, ) + lu =l

Proof Following [23, Thm. 4.4], the fundamental theorem of calculus shows
R(f;q0) = R(f:pyu f S R(fip+ s(a— p)u+ s(v— ) ds

R'(p+ s(q—p),u+s(v—u);q—p,v—u)ds.
0

For z € 2 and 0 < s < 1, define F(s) := Vu(z) + s V(v — u)(x) and

F(s)®F(8))ds

1
M@ = [ (S0P DT+ (P

Then
IR(f: 4 0) = RUF pew)2a = | divia — p)2agen) + I — p = M V(0 = ) 22 -

Since the assumptions on ¢ show that M e L%(£2; R"*") is pointwise symmetric and
positive definite with eigenvalues in the real compact interval [vy1,72] < (0,0), the
triangle inequality shows

| R(f:4,0) = R(fip, )72 () < 2max{1,75} (g = Pl (aiv, ) + Il — ull?).

For the reverse estimate, the positive definiteness of M provides the unique ex-
istence of a solution a € H}(2) to the weighted problem

JQMV& -Vydx = Jn(q —p) - Vyda for any v e H}(£2).
An integration by parts shows r := ¢ — p — MVa € H(div, {2) with divr = 0. The
Friedrichs inequality with constant Cr (i.e. |a]12(0) < Crl|al]) implies
IMY2 Y a2 ) = L div(p — q)adr < Cp/m | div(g - p)|ua(ey M2 V ol s .
The orthogonality of V HE(£2) and H(div, 2) n {div = 0} in L?(§2) shows
lg = pliago) = 1MV a+rliag) <2lMPVa+ M7V,
= R MYV al32 gy + 12l MTV2r] 72 -

The two previous displayed inequalities, the triangle inequality, and the abbreviation
e :=v —u yield

la = Pl are.y + llell® < 2 +92) M2V alfs o) + [ divig = p)72 (0
+ max{2, 72} (|M"? V(a = e)[F 200y + 1M 7r|32 ()
< (2+12)CR/1 + DI divig = p) 320
+max{2,y2}/nllg-p-MV 6”i2(n)~ =
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Proof (of Theorem 4.1) Since R(f;p,u) = 0, Lemma 4.2 with (¢,v) = (qrT,vc)
shows

Ip — aretl .y + 1t — vl ~ 1 + div grerl2ag) + larr — (Y ve) B .
The L?-orthogonality of (1 — ITy)grT and (1 — I1y) f onto piecewise constants implies
If + div grr ||izm) + llgrr — o (V UC)”%Z(Q)
= o f + divarr[72(q) + (1 = Ho)qrr7z (g
+ (1 - HO)f”iZ(Q) + Hogrr — U(VUC)”iZ(Q)-
The triangle inequality and the estimates of Remark 3.7 result in
Ip = arr 5 (i, ) + llu —vell?
< Hof + diVQRTH%z(Q) + (1= HO)qRT”iZ(Q) + (1= HO)f”iZ(Q)
+|HofI72(0) + | Mogrr — o(Vve) + Hof|72(0)
< Hof + diV‘IRTHi2(Q) +[(1 - HO)QRT”QLa(Q) +1- Ho)f||2L2(Q)
+ [Hogrr — 0(Vve) + Hof|72(0)-

Recall that Sy is pointwise positive semi-definite, hence I, x,, + S is positive definite
and Remark 3.7 also proves

| Togrr — o(Vve) + Hof 720y = [(Tnxn + S0)™*(Hogrr — o(Vve) + Hof)| 720

The proof of the converse estimate utilizes the last estimate and the triangle
inequality to show

[(Tnsn + S0) ™2 (Hoarr — o(Voe) + Hof) 720y + 1(1 = o) f72(0
< [Hogrr — o(Voe)l 7z () + 1Hof 720y + (1 = o) fl72(0)
< [Hogrr — 0(Voo)|Faigy + (1 - HO)f||2LZ(Q)'
This and the aforementioned orthogonalities imply
[(Tnxcn + S0) ™ (Mogrr — o(Voe) + Ho )72y + |(1 = o) f72(0
+ (1 = Ho)arr |72 (o) + [ Hof + divarr[72(o)
< larr — 0(Voo) 72y + If + divareliz o)

< lp = arr i, @) + llu—vell®.

4.2 Existence and uniqueness of discrete solutions

The existence of discrete solutions follows from variational arguments, while their
uniqueness is fairly open.

Proposition 4.3 The discrete problem (3.5) has a solution.
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Proof The proof follows with the direct method in the calculus of variations and,
in the present case of finite dimensions, from the global minimum of a continuous
functional on a compact set from the growth condition

lim |F — B€h||Yh* = . (4.1)

[€n ] x —c0

The latter property follows from Theorem 4.1 up to some perturbation terms. The-
orem 3.11 shows

(1 = IIo)qrr| L2 (0) < |h7TIlofllL2(2) + hmax|Llof + divarr|L2(0)
< Ao fll2(@) + hmax | F = Bén|yx-

The combination with Theorem 4.1 shows that the right-hand side of Theorem 4.1
is bounded from above by

(14 202, I = BEZ w + Wl a0 + 11— )12
< (1+ 2hg ) (IF = Bénllys + | fl2(2))-
Hence the left-hand side in Theorem 4.1 is controlled by this and so
|z = &nllx < IF = Béhllyx + [ flL2(0)-
Since f and x are fixed, this implies (4.1) and concludes the proof. o
The uniqueness of the exact solution (u,t) on the continuous level does not imply
the uniqueness of discrete solutions. There is, however, a sufficient condition for a

global unique discrete solution. Notice that v;, = v = 0 on the continuous level h = 0
satisfies (4.2).

Theorem 4.4 (a posteriori uniqueness) Suppose that (up,vs) € S§(T)x CR(T)
solves (R) with Do € C(R";REX) globally Lipschitz continuous and

Lip(Do)(1 + CR)/7] Ve val e (o) < 1 (4.2)

with the Friedrichs constant Cy from | |20y < Cg||* || in Hy(£2). Then (R) has
ezactly one solution (up,vy) € S§(T) x CRY(T).

Proof Suppose that (T, 0,) € S§(T) x CRY(T) solves (R) as well and so
a(vp,vp) = F(vy) — Lz o(Vup) - Ve vy dx
_ (@, o) + L(a(vah) — o(Vup)) - Vo on da.

This and the second equation of (R) imply

a(vh - ﬁh, ’Uh) = JQ VNC Vp * (O'(Vﬂh) — U(Vuh) - DU(VUh)V(ﬂh - Uh)) dx.
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Since ¢ € C'(R") is bounded and Do Lipschitz continuous, any A, B € R™ with
F(s)=(1—s)A+ sB for 0 < s <1 satisty

lo(B) —o(A) —Do(A)(B - A)| = | L (Da(F(s)) — Do(A))(B — A)ds|
<MMD®W7AU;W@%ﬁwh:%MMDﬂwaﬁ

With A = Vuy(z) and B = Vi, (z) for a.e. © and an integration over (2, this leads
in the preceding identity to

~ 1. -
a(vh = U, vn) < 5 Lip(Do)| Ve vnlre= (o) llun — Un|*. (4.3)

The discrete solutions of (R) lead to the same minimal discrete residual norm and
hence

lonllv, = IF = blun,th; @)y = |F = b(@n, th; )llyx = [Tnly,-
This shows a(vy, — Up, vp + Up) = 0 and the combination with (4.3) is

H’Uh - 17}1“%/’1 = Qa(vh — Vg, Uh) - a(vh — Dp, Up + ﬁh)

(4.4)

< Lip(Do)| Vne vl e () llun — -

On the other hand, Do(A) € RZX™ has eigenvalues in the compact interval [y1,v2]

Sym

(0,00) and so, for all A, B € R™,

%M_Bﬁgf(A_BdeB+qA—BmA—Bms W
= (0(A) —o(B)) - (A - B) < 72|A - B]*.

With A = Vuy,(z) and B = Vuy,(z), and an integration over a.e. x € {2, this shows
yillun — T |* < JQ(J(Vuh) —o(Vay)) - V(up — ay) dz.
The first identity in (R) for (up,vn) and (4@p,0y), respectively, results in
J:Q(O’(Vuh) — U(Vﬂh)) . V(uh — ﬂh) d.iﬂ = a(ﬁh — Up,Up — ﬂh)
< vn = Vnllya/ 1+ Cllun — ).

The combination with the previous inequality shows

Yillun = @nll < 4/1+ CRllvn — Bnly,- (4.6)
The substitution in (4.4) results in

lvn — Bnl3;, < Lip(Do) (1 + CR)/47] Ve vallpe (o) |vn — Daly, -

This and (4.2) show vp, = p,. Then (4.6) implies up, = Up,. O
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4.3 Best-approximation

For any v € H(T), the nonconforming interpolation I$&v € Py(T) is defined, on
each triangle T' € T, by piecewise linear interpolation of the values

(1¥&) (mid(E)) = Jf v|,ds (4.7)
E
at the midpoints of the sides E € £(T).

Proposition 4.5 The operator II = Ill\?é satisfies Hypothesis 2.5.

Proof Given v e HY(T), set vy, == I&v € Py(T). For every K € T, an integration by
parts leads to

V (vnly) = Lth ‘v ds = LKv-ude - Lv@dx/uﬂ.

Since Vwe € Py(T;R™) and (3.2) shows Do(V uc) € Po(T;R"*™) for all we,uc €
S3(T), this implies

Lz Vwe - (Do(Vuc) Vre(v —vp))dz = 0.

Moreover, (4.7) guarantees that any sg € Py(€) satisfies

{80,V —vpyor = 0.

Consequently, any xj, = (uc,tg) € Xp and &, = (we, So) € X, satisty
V' (wn; Eny v — vn) = L Vuwe - (Do(Vue) Vie(v —wvp))dz — (so,v —vppor = 0. &
7

The estimates for the function Do from Subsection 3.1 lead to an explicit generic
constant for the best-approximation estimate from Theorem 2.8 without any local
hypothesis.

Theorem 4.6 (best-approximation) Let x = (u,t) € X be the unique solution to
B(z) = F for the nonlinear map B from (3.4) in Section 3.3. Any discrete solution
(un,tr;vn) € Xp x Yy, to (3.5) satisfies

llw = unll + [onlly s inf Jlu—wucl|+ inf |t —tofg-1/2(57)-
uc€SH(T) to€P, (€)

Proof Given the best-approximation =} = (uj,t}) € X, to (u,t) in X}, and let
A = Vuj(z) and B = Vuy(x) in (4.5) and integrate over a.e. x € £2. Then

k= wnlf < | (@(Vuf) ~ o(Tw) - Vi — ) do
= bz uf —up) — b(ap;uf — up).
Since b(u,t; o) = F, the last term is equal to
Fuf —up) = b(@p;uf —up) + b(z);u)f —up) — blus uff — up)

= a(vp,up —up) + JQ (o(Vup) —o(Vu)) - V(uf —up)da.
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The Lipschitz continuity from Remark 3.1 leads to
lo(Vu) —o(Vup)li ) < v2llu—uyll (4.9)

and the last term in (4.8) is controlled by

fQ (0(Vuf) = 0(Vw) - Viuf —wp)de < ollu— uf || uf —upll.  (4.10)
Since zy, is a global discrete minimizer,

Jonly = IF = b(an; )lyx < [F = baks )lys = [bla: o) —blafs o)lys.

The Lipschitz continuity (4.9) of o and the structure of the map b from (3.4) show
that the last term is < yaf|lu — ui || + [t — | g-1/2(o7)- The combination of |vs[y <
Yollw —wf | + [t = i | gr-1/2(o7) With (4.8) and (4.10) shows

Yllug —unll < A/1+ CElonly +yallu — ufl.

A triangle inequality concludes the proof with explicit constants

= unll < 1+ 721+ /1 +CR)/y)  inf Jlu—uc]|

uGeSE(T)

+721/1+C%/’Yl Hlf )”titOHH*U?(Z}'T)' O
&

to€P(

The following a posteriori error estimate holds for any discrete approximation,
and even for inexact solve, and generalizes the built-in error control despite inexact
solve of [5, Thm. 2.1] to the nonlinear model problem at hand.

Theorem 4.7 (a posteriori) There exist universal constants kK ~ 1 ~ Cqp such
that the exact solution (u,t) € X of B(x) = F and any discrete (vc, so) € SEH(T) x
Py (T) satisfy

Mllu—vell* < L+ Cap)IF = blve, so; ) &gy + 62107 fl72(a)-

Remark 4.8 The proof reveals that Cyr is the constant in the discrete Friedrichs
inequality [4, p. 301] || < Cqr| Vnc | in CR}(T). The explicit bounds of Cyp
in [10] allow quantitative estimates in 2D and show in particular Cqr < 6.24 for a
convex domain with diam({2) < 1 and a triangulation with right isosceles triangles.

Remark 4.9 The proof reveals that x is the constant in interpolation error estimate
for the nonconforming interpolation operator ||h}1(1 — Inc)v| < k] Vne(1 = Inc)v|
for v e H'(£2). An estimate with the first positive root j; 1 of the Bessel function of
the first kind in [7, Thm. 4] in 2D reads x = (1/48 + l/jil)l/2 = 0.29823.

Proof (of Theorem 4.7) The estimate (4.5) with A = Vu(x), B = Vup(z), e =
u — up, and an integration over a.e. x € {2 leads to

1llell® < JQ (o(Vu)—o(Vuy))-Vedz. (4.11)
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Since (u,t) € X solves b(u,t; o) = F in Y* and with the nonconforming interpolation
operator (4.7), this is equal to

F(e) — J;Z oc(Vup) -Vedxr = F((1 — Inc)e) + F(Ince) — Lz oc(Vup) - Vne Incedz

= F((l — INC)e) + F(INce) — b(uh,th; INce)
< F((1 = Inc)e) + [F = b(un, tr; *)|cry () [ ncely, -

The interpolation error estimate for the nonconforming interpolation operator with
constant £ [7, Thm. 4] yields

F((1 = Inc)e) < E|hr flr2(o)lle — Incellne-

The discrete Friedrichs inequality [4, p. 301] and Ince € CR}(T) prove

[Ixcelly, <4/1+ CipllIncellnc.
The Cauchy inequality in R? and the theorem of Pythagoras imply

1/2
nllell* < (K2 Ih7 72y + (1 + Cap)IF — blun, th )| g2 (%) Pllefixe. =

4.4 Other nonlinear dPG methods

This section illustrates the plethora of dPG methodology by introducing the primal
mixed, the dual, and the ultraweak dPG method for the nonlinear model problem.
All three methods concern the first-order system of (3.1) with the convex function
pand 0 = D(p o |e]) and its dual ¢* so that the relation p = o(Vu) is equivalent
to Vu = Dy*(|p|) sign p on the continuous level. Recall the space of functions with
piecewise divergence H(div;T) == [[pes H(div;T) from [8] as well as the piecewise
version RTNC(T) < H(div; T) of RTy(T), and the subspace S¥(£) = S& (T)|<?T of

Hy*(2T) = {5 = (s7)rer € [Tper HY(OT) |30 € HY(2),YT € T, 57 = (v]r)|or}.

Recall the primal nonlinear dPG method (dPG) in Section 3.3 with b from (3.4)
and general polynomial degree k > 0 and m > k in the discrete spaces

X, = S{f“(T) x Pp(€) and Yy, := Py 1 (7).

The primal mixed nonlinear dPG method departs from a piecewise integration
by parts and employs the spaces and discrete subspaces

X = L2(;R™) x HY(T) x HY?(8T) and Y := L*(2;R™) x H'(T),
Xy = Po(T;R™) x SETHT) x Py(E) and Yy, := Pp(T;R™) x Proy1(T)).

For (p,u,t) € X and (¢,v) € Y, define (dPG) with F'(q,v) := (f,v)12() and

b(p,u,t;q,v) := (p — 0 (Vu),q) p2(0) + (P, VNc V) 2(0) — & 0)oT-
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The dual nonlinear dPG method utilizes the spaces and discrete subspaces
X 1= H(div; 2) x L2(2) x HY*(8T) and Y := H(div; T) x L%(£2),
Xp, = RTi(T) x Pi(T) x SETH(E) and Y}, := RTNC(T) x Pou(T).
For F as before and (p,u,s) € X and (q,v) € Y, define (dPG) with b(p, u, s;¢,v) :=

(De*(Ipl) signp, q) 120y + (u, divne ) p2(0) — (divp,v) 200y — (g -V, $)oT-

The ultraweak nonlinear dPG method utilizes a piecewise integration by parts
in both equations of the first-order system and the spaces

X = L2(R™) x L3(02) x HY2(2T) x HY*(2T) and Y := H(div; T) x H'(T),
Xp, i= Pu(T;R™) x P(T) x Pi(E) x S§T1(E) and Yy, := RTNC(T) x Ppgr (T).

For F from the above primal mixed method and (p,u,t,s) € X and (¢q,v) € Y, define
(dPG) with

b(p,u,t,5;9,v) := (D™ (|p]) sign p, ) 12(2) + (P, Ve v) 12(2) + (u, divie @) 12 (o)
- <q v, 8>07‘ - <t7 U>(77—'

The linear version is analysed in [18,2,6,8]. The four nonlinear dPG methods may
be further analysed in the spirit of this section.

5 Numerical experiments

This section presents numerical experiments with the LS-FEM of Subsection 3.5.

5.1 Computational realization

Given f € L%(§2), the discrete solution of (3.7) is solved by a Newton scheme with an
initial iterate from the solution of the scaled linear Poisson model problem. Let SE(7)
be endowed with the energy norm ||« || and RTo(7) with [ | (qiv,0) and let ||« |«
denote the norm of the dual space of S}(7) x RTy(T). The first Fréchet derivative
DLS(f;uc,prr) of LS(f; ) belongs to the dual space of S{(T) x RTo(T). After at
most 5 Newton iterations, every displayed discrete solution (uy, py) in the following
subsections satisfy || DLS(f;un,pn, ®)|l+ = 0 up to machine precision. In the case of
successive mesh-refinement, the iteration starts with the prolongated solution from
the coarser triangulation and terminates in at most 3 or 4 iterations.

Table 5.1 presents the errors || DLS(f;uELJ),pELJ), *)||« of the Newton iterate

(ugj),pgj)) for j =0,1,...,5 on fixed triangulations of the square domain from Sub-
section 5.2 and the L-shaped domain from Subsection 5.4 with the convex function
¢ from Example 3.2.a. The iterations (A) and (B) utilize a uniform triangulation of
the square domain with 4096 triangles (ndof = 8193) and an initial iterate from
a Poisson model problem for (A) and a weighted Poisson problem with constant
weight 2.5 in (B). The adaptive mesh of the L-shaped domain with 3450 triangles
(ndof = 6.901) in (C) and (D) has been generated by the algorithm from Subsec-
tion 5.3 below at level £ = 12. Iteration (C) starts with a weighted Poisson solution
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Niter (A) (B) (©) (D)

0 1.67431 - 101 8.73230 - 109 6.43125 - 109 1.16987 - 10— 1
1 2.20124 - 10° 7.69274 - 102 4.19439 - 10—2 1.94092 - 103
2 1.59872 - 101 2.13909 - 10—4 8.04263 - 10~° 3.30072 - 10~6
3 9.61529 - 10—4 1.74101 - 109 3.74273 10710 1.17441 .10~ 11
4 4.11730 - 108 1.12689 -10~1%  6.11156 - 10715  6.26485 - 1015
5 1.13667 -10~ 14 1.09142-10~1% 5.70819-10-15 5.93587-10~1°
6 1.11131-10~  1.10550-10~'%  5.92760-10~1° 5.82990 - 1015
7 1.09108 - 1014 6.03978 - 10—15
8 1.14493 - 10— 14

Table 5.1 Convergence history of Newton iteration for 4 representative examples.

with constant factor 2.5 and (D) with the prolongated solution from the previous
mesh.

From the very beginning of the Newton iteration, all values in Table 5.1 provide
numerical evidence for Q-quadratic convergence.

In order to investigate the uniqueness of discrete solutions, the minimal and the
maximal eigenvalue Ay, and Apax of the Hessian matrix DZLS(f;uh,ph; e o) of
the least-squares functional is computed, where (up, gn) € X, and A € R satisfy, for
all (17}1,6}1) € Xh,

D?LS(f; tn: i 0ns Gh Oy Gn) = Manc (W, Bn) + (qh, Gh) b (div.0)- (5.1)

The value Api, is uniformly bounded from zero for the examples in the following
subsections, so that every computed discrete solution (up,pp) is a local minimizer.

For any discrete approximation (up, pr), Theorem 3.11 and 4.7 verify the a pos-
teriori error estimator n2(7) = LS(f;un,pn) + HhTinz(g) even for inezact solve in
its computation. In view of a lacking proof in Subsection 5.4 below that the com-
puted discrete solution is in fact a global discrete minimizer (at least up to machine
precision), it is only by this universal a posteriori error control that we know that
the computed approximations converge to the exact solution.

5.2 Numerical example on square domain

This subsection considers the nonlinear model problem for the exact solution
u(z) = cos(mx1/2) cos(may/2) for x e 2= (—1,1)2

with homogeneous Dirichlet boundary conditions, f = —div(c(Vu)), and ¢ from
Example 3.2.a. This defines the exact stress function p = o(V u) € H(div, £2).

Figure 5.1 displays the error estimator 1, :== n(7;) at the discrete solutions (u¢, pe)
on each level ¢ of a sequence of uniform triangulations as well as the error to the
exact solution (u,p). The reference energy E(u) = —5.774337908509 in the energy
difference E(u¢) — E(u) = 71||lu — ue||?/2 has been approximated by the energies
of Pj-conforming finite element solution with an Aitken A2 extrapolation. The ei-
genvalues of (5.1) in all experiments of Figure 5.1 satisfy 1.597 < Apin < 1.722
and 9.943 < Apax < 16.128 and so prove that the discrete solutions are local min-
imizers. The parallel graphs confirm the equivalence of the built-in error estimator
lyely = (LS(f;ue, pe))™/? with the exact error from Theorem 4.1.
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Fig. 5.1 Convergence history for a sequence of uniform triangulations of the square domain
with exact solution u from Subsection 5.2.

With the Friedrichs constant Cg = /2/7 of the square domain, the criterion (4.2)
is equivalent to | Ve vn| o) < 7% Lip(Do)~'(1 + C3)~' = 0.17239892 and so
Figure 5.1 shows that the criterion (4.2) holds for each level £ > 6 and Theorem 4.4
implies global uniqueness of the computed (ug, p¢). This proves that there exists only
one local minimizer in the discrete problem (dPG).

5.3 Adaptive mesh-refinement

The natural adaptive algorithm with collective Dorfler marking [20] utilizes the local
error estimator 0% (7, T) = |(Inxn+So) /2 (Hoprr—0(Vuc)+Hof) \\%2(T) + | o f+
div prr ||2LZ(T) + ||hTinQ(T) for any (uc,prr) € SHT)x RTo(T) and T € T as follows.

Input: Regular triangulation 7 of the polygonal domain {2 into simplices.

for any level £ =0,1,2,... do
Solve generalized LS-FEM with respect to triangulation 7, and solution (ug, pe).
Compute error estimator ny == n(7y).
Mark a subset M, = T; of (almost) minimal cardinality |M,| with

0317 <nf(Me) = Y 1*(Te, T)

TeM,;

Compute smallest regular refinement 7,41 of Tp with My € Tp\Tp4+1 by newest-
vertex bisection (NVB). od

Output: Sequence of discrete solutions (ug, pe)een, and triangulations (7¢)een, -

See [26] for details on adaptive mesh-refinement and NVB.
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(a) ¢ from Example 3.2.a (b) ¢ from Example 3.2.b

Fig. 5.2 Solution wy for different functions ¢ on a uniform triangulation of the L-shaped
domain into 768 (ndof = 1537).

T T
s e 1 g
05} : 0.5} g
of . of .
—0.5 - B —0.5 -
-1 - —1} |
| | | | | | | | | |
-1 —0.5 0 0.5 1 -1 —0.5 0 0.5 1
(a) ¢ from Example 3.2.a, mesh with 1783 (b) ¢ from Example 3.2.b, mesh with 1838
triangles (ndof = 3567). triangles (ndof = 3677).

Fig. 5.3 Adaptively refined triangulation 7, for different functions ¢.

5.4 Numerical example on L-shaped domain

This subsection considers f = 1 on the L-shaped domain 2 == (—1,1)%\[0,1]? c R?
with homogeneous Dirichlet boundary data |y, = 0 and unknown exact solution w.
Figure 5.2 displays the corresponding discrete solutions uy on a uniform triangulation
of {2 for the different functions ¢ from Example 3.2.a and b.

Figure 5.3 shows two typical adaptively generated triangulations with consider-
able refinement at the re-entrant corner for different functions ¢. At first glance, the
meshes appear similar and resemble the undisplayed adaptive triangulation from the
Poisson model problem.

For ¢ from Example 3.2.a, Figure 5.4 shows the convergence history plot of the
natural least-squares error estimator 7y = 7(7;) and the difference of the energy
E(uy) of the solution u, and a reference energy E(u) = —3.657423002939 x 10~2
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Fig. 5.4 Convergence history for adaptive mesh-refinement (solid lines) and uniform mesh-
refinement (dotted lines) with ¢ from Example 3.2.a.

(computed by the energies of Pj-conforming finite element solutions with an Aitken
A? extrapolation).

The eigenvalues of (5.1) in all experiments satisfy 1.787 < Apin < 1.914 and
16.682 < Apax < 17.932 and so prove that all the discrete solutions are local minim-
izers. The function ¢ from Example 3.2.b leads to (undisplayed) similar results.

For the L-shaped domain, the smallest eigenvalue A\; = 9.6397238 of the Lapla-
cian with homogeneous Dirichlet boundary conditions yields the Friedrichs constant
Cp = 1/v/A1 = 0.32208293. Since | Vncvelp=(o) = 7i Lip(Do)~'(1 + C3)™! =
0.22650326 for all level ¢ € Ny in Figure 5.4, Theorem 4.4 is not applicable to any
triangulation 7, of the computation at hand.

To guarantee optimal convergence rates for least-squares FEMs with an altern-
ative a posteriori error estimator, the choice of a sufficiently small bulk parameter is
crucial [11,14]. However, for the natural error estimator with the values of the least-
squares functional, the plain convergence proof of [12] requires the bulk parameter
sufficiently close to 1. For the nonlinear model problem at hand, the convergence his-
tory plot in Figure 5.4 provides numerical evidence for optimal convergence rates for
adaptive mesh-refinement of Subsection 5.3 and suboptimal convergence for uniform
refinement.

References

1. D. Boffi, F. Brezzi, and M. Fortin, Mized finite element methods and applications, Springer
Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958

2. T. Bouma, J. Gopalakrishnan, and A. Harb, Convergence rates of the DPG method with
reduced test space degree, Comput. Math. Appl. 68 (2014), no. 11, 1550-1561. MR 3279492

3. D. Braess, Finite elements, third ed., Cambridge University Press, Cambridge, 2007. MR
2322235 (2008b:65142)

4. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, third
ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954
(2008m:65001)



Nonlinear dPG methods 29

5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, A posteriori error control for DPG
methods, SIAM J. Numer. Anal. 52 (2014), no. 3, 1335-1353. MR 3215064

, Breaking spaces and forms for the DPG method and applications including Maz-
well equations, Comput. Math. Appl. 72 (2016), no. 3, 494-522. MR 3521055

C. Carstensen and D Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic
equation, Numer. Math. 126 (2014), no. 1, 33-51. MR 3149071

. C Carstensen, D. Gallistl, F. Hellwig, and L. Weggler, Low-order dPG-FEM for an elliptic

PDE, Comput. Math. Appl. 68 (2014), no. 11, 1503-1512. MR 3279489

. C. Carstensen and F. Hellwig, Low-order discontinuous Petrov-Galerkin finite element

methods for linear elasticity, STAM J. Numer. Anal. 54 (2016), no. 6, 3388-3410. MR
3576569

, Some constants in discrete Poincaré and Friedrichs inequalities and application
to discrete quasiinterpolation, Accepted at CMAM (2017), 1-27, arXiv:1709.00577.

C. Carstensen and E. Park, Convergence and optimality of adaptive least squares finite
element methods, STAM J. Numer. Anal. 53 (2015), no. 1, 43-62. MR 3296614

C. Carstensen, E. Park, and P. Bringmann, Convergence of natural adaptive least squares
finite element methods, Numer. Math. (2017), 1-19, published online.

C. Carstensen and S. Puttkammer, A low-order discontinuous Petrov-Galerkin method
for the Stokes equations, submitted, 2016.

C. Carstensen and H. Rabus, Azioms of adaptivity for separate marking, Accepted at
SIAM J. Numer. Anal. (2017), 1-19, arXiv:1606.02165.

C. Carstensen and E. P. Stephan, Adaptive coupling of boundary elements and finite
elements, RAIRO Modél. Math. Anal. Numér. 29 (1995), no. 7, 779-817. MR 1364401
Jesse Chan, Leszek Demkowicz, and Robert Moser, A DPG method for steady viscous
compressible flow, Comput. & Fluids 98 (2014), 69-90. MR 3209958

A. Cohen, W. Dahmen, and G. Welper, Adaptivity and variational stabilization for
convection-diffusion equations, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 5,
1247-1273. MR 2916380

L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equa-
tion, SIAM J. Numer. Anal. 49 (2011), no. 5, 1788-1809. MR 2837484

, A primal DPG method without a first-order reformulation, Comput. Math. Appl.
66 (2013), no. 6, 1058-1064. MR 3093480

W. Dorfler, A convergent adaptive algorithm for Poisson’s equation, STAM J. Numer.
Anal. 33 (1996), no. 3, 1106-1124. MR 1393904 (97e:65139)

T. Fihrer, N. Heuer, and E. P. Stephan, On the DPG method for Signorini problems,
arXiv:1609.00765 (2016), 1-28, submitted.

I. Muga and K. G. van der Zee, Discretization of linear problems in Banach
spaces: Residual minimization, nonlinear Petrov-Galerkin, and monotone mized meth-
ods, arXiv:1511.04400 (2015), 1-29, submitted.

B. Miiller, G. Starke, A. Schwarz, and J. Schroder, A first-order system least squares
method for hyperelasticity, SIAM J. Sci. Comput. 36 (2014), no. 5, B795-B816. MR
3264569

J. Necas, Introduction to the theory of monlinear elliptic equations, vol. 52, BSB B. G.
Teubner Verlagsgesellschaft, Leipzig, 1983. MR 731261

J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-
Galerkin methods applied to nonlinear problems, Numer. Math. 69 (1994), no. 2, 213-231.
MR 1310318

R. Stevenson, The completion of locally refined simplicial partitions created by bisection,
Math. Comp. 77 (2008), no. 261, 227-241 (electronic). MR 2353951 (2008j:65219)

E. Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New
York, 1986. MR 816732 (87£:47083)

, Nonlinear functional analysis and its applications. IV, Springer-Verlag, New
York, 1988. MR 932255

, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New
York, 1990. MR 1033498




	1 Introduction
	2 Abstract framework
	3 Model problem
	4 Mathematical analysis of dPG for the model problem
	5 Numerical experiments

