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a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and
efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework
for the approximation of a regular solution. The variational model example allows
for a built-in guaranteed error control despite inexact solve. The subtle uniqueness
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1 Introduction

The discontinuous Petrov-Galerkin methodology (dPG) has recently been introduced
with the intention to design the optimal test spaces in a Petrov-Galerkin scheme for
maximal stability. On the continuous level, the weak form of a PDE may assume
the general form bpu, ¨q “ F with a unique solution u in some real Banach space
X and some bilinear form b : X ˆ Y Ñ R for some real Hilbert space Y with
scalar product a : Y ˆ Y Ñ R and a given right-hand side F P Y ˚, the dual to Y .
Well-posedness is understood to lead to an inf-sup condition on the continuous level.
Given some discrete trial space Xh Ă X, the restriction b|XhˆY clearly satisfies the
inf-sup condition (even with a possibly slightly better inf-sup constant) but it is less
clear how to choose the best trial space Mh, i.e. some subspace, Mh Ă Y such that

0 ă βpXh, Mhq :“ inf
xhPXh

sup
yhPMh

bpxh, yhq
}xh}X}yh}Y

(1.1)

is maximal under the condition that dimpXhq “ dimpMhq is fixed. The idealized
dPG method computes the optimal test space utilizing some Riesz representations
in the infinite-dimensional Hilbert space Y [18]. The practical realization utilizes,
first, a test-search space Yh Ă Y with dimension n “ dimpYhq much larger than
the dimension m “ dimpXhq of the trial space Xh and, second, a minimal residual
method to compute the discrete solution as a minimizer

xh P argmin
ξhPXh

}F ´ bpξh, ‚ q}Y ˚
h

. (1.2)

The method is in fact equivalent to a Petrov-Galerkin scheme with the bilinear form
restricted to Xh ˆ Mh for an appropriate subspace Mh Ă Yh of dimension m as
pointed out in [8, Thm. 3.3]. Therefore, the large discrete space Yh (which is an
input of the dPG scheme) is called test-search space [17] and the (implicit) test
space Mh is not visible in (1.2).

The computation of xh in (1.2) is equivalent to solving the normal equations and
so possibly expansive. This guided Demkowicz and Gopalakrishnan [19] to break the
norms in the test (and ansatz) spaces [6]. This allows a parallel computation of the
dual norm separately for each individual element domain. As it stands today, the
term dPG abbreviates “discontinuous Petrov-Galerkin” and stands for a minimal
residual method with broken test or ansatz functions and solely outlines a paradigm.
The dPG methodology allows various weak and ultra-weak formulations, where X

and Y are completely different and b is not at all symmetric. The least-squares finite
element methods can be seen as a (degenerated) subset of (an idealized) dPG with
a degenerated test space in which the Lebesgue norm can be evaluated exactly.

To the best knowledge of the authors, not much is known about nonlinear versions
of the methodology. One first choice is to linearize the problem and then apply the
dPG schemes to the linear equations to generalize the Gauss-Newton method. There
exist already suggestions for nonlinear applications, in which there are constraints
plus a linear problem, e.g., for the contact problem in [21]. Concepts of nonlinear dPG
in fluid mechanics have been discussed in [16]. Another usage of the term nonlinear
is in nonlinear approximation theory and there is the contribution [22] on linear
problems with an attempt to replace the Hilbert space Y by some uniformly convex
Banach space.
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This paper introduces a direct nonlinear dPG methodology and replaces the above
bilinear form b by some nonlinear mapping b : X ˆ Y Ñ R, which is linear and
bounded in the second component to allow the computation of the dual norm in the
minimal residual method. To stress the nonlinear dependence in the first component
in X, the notation in this papers follows [24] and separates the linear components by
a semi-colon so that the nonlinear dPG method replaces bpξh, ‚ q in (1.2) by bpξh; ‚ q.

The simplest case study for the nonlinear dPG methodology is an energy minim-
ization problem with some Hilbert space setting and a nonlinearity with quadratic
growth in the gradient. The scalar model example of this paper stands for a larger
class of Hencky materials [28, Sect. 62.8] and is the first model problem in line to-
wards real-life applications with a matrix-valued stress σpF q given as a nonlinear
function of some deformation gradient F (such as the gradient ∇u of the displace-
ment u) and the remaining equilibration equation

f ` div σp∇uq “ 0 a.e. in Ω (1.3)

for some prescribed source term f in the domain Ω. Although the existence of dis-
crete solutions xh to (1.2) follows almost immediately, the closeness of xh to some
continuous solution x is wildly open (cf. Remark 2.11 below for a brief discussion).

One critical point is the role of the stability condition (1.1) in the nonlinear set-
ting for a regular solution and its low-order discretizations (as the most natural first
choice for nonlinear problems, partly because of limited known regularity properties).
In the situation of the model scenario (1.3), the discrete stability follows from the
stability of the continuous form for piecewise constant ∇uh and so the local discrete
stability simply follows from the linearization.

The overall structure of the nonlinear dPG of the type (1.2) but for a nonlinear
map b with derivative b1 with respect to the first variable is also characterized as a
nonlinear mixed formulation with solution pxh, yhq P Xh ˆ Yh to

apyh, ηhq ` bpxh; ηhq “ F pηhq for all ηh P Yh,

b1pxh; ξh, yhq “ 0 for all ξh P Xh.
(M)

Another characterization in the lowest-order cases under consideration is that as
a weighted least-squares functional on Courant finite element functions S1

0 pT q with
homogeneous Dirichlet boundary values and the Raviart-Thomas finite element func-
tions RT0pT q with some mesh-depending piecewise constant weight S0 P P0pT ;Rnˆnq

puC, pRTq P argmin
pvC,qRTqPS1

0
pT qˆRT0pT q

´
}Π0f ` div qRT}2

L2pΩq

` }pInˆn ` S0q´1{2
`
Π0qRT ´ σp∇vCq ` Π0pfpid ´ midpT qqq

˘
}2

LpΩq

¯
.

This is already a new result even for the linear cases in [9,13] and opens the door of
a convergence analysis of adaptive algorithms via a generalization of [11,14].

This paper contributes the aforementioned equivalent characterizations and a
first convergence analysis in the natural norms. The a priori result is local quasi-
optimal convergence for the simple model problem in that any discrete solution
xh P Xh sufficiently close to the exact regular solution x P X satisfies

}x ´ xh}X À inf
ξhPXh

}x ´ ξh}X .
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It has been discussed in [5,9,13] that the norm of the computed residual }yh}Y “
}F ´ bpvC , qRT; ‚ q}Y ˚

h

is almost a computable error estimator for linear problems

and this paper extends it to the a posteriori error estimate

}p ´ qRT}2
Hpdiv,Ωq ` ~u ´ vC ~2 « }F ´ bpvC , qRT; ‚ q}2

Y ˚
h

` }p1 ´ Π0qf}2
L2pΩq ` }p1 ´ Π0qqRT}2

L2pΩq

(1.4)

for the nonlinear model problem (1.3). Since }F ´ bpvC , qRT; ‚ q}Y ˚
h

is the comput-

able residual, this leads to built-in error control despite inexact solve: The discrete
quantities pvC , qRTq in (1.4) do not need to solve the nonlinear dPG discrete problem.

The analysis is given for the primal version of the nonlinear dPG for brevity
but applies to the other formulations of Subsection 4.4 as well. The results of this
paper can be generalized, e.g., to the Hencky material [28, Sect. 62.8], and then
applied to more real life computational challenges where the advantages of the dPG
methodology are more striking.

The remaining parts of of this paper are organised as follows. Section 2 discusses
an abstract framework for different equivalent formulations of a dPG method for
nonlinear problems and develops an abstract a priori estimate. Section 3 presents
a model problem with a dPG discretization. Section 4 analyses this discretization
and gives proofs on existence of a solution and an a posteriori error estimate. Some
numerical examples in Section 5 conclude the paper.

This paper employs standard notation of Sobolev and Lebesgue spaces HkpΩq,
Hpdiv, Ωq, L2pΩq, and L8pΩq and the corresponding spaces of vector- or matrix-
valued functions HkpΩ;Rnq, L2pΩ;Rnq, L8pΩ;Rnq, HkpΩ;Rnˆnq, Hpdiv, Ω;Rnˆnq,
L2pΩ;Rnˆnq, and L8pΩ;Rnˆnq. For any regular triangulation T of Ω, let HkpT q –ś

T PT HkpT q – tv P L2pΩq | @T P T , v|T P HkpT qu denote the piecewise (or broken)
Sobolev spaces and p∇NC vq

ˇ̌
T

“ ∇pv
ˇ̌
T

q on T P T the piecewise gradient for v P
H1pT q. Let ~ ‚ ~ – | ‚ |H1pΩq “ }∇ ‚ }L2pΩq abbreviate the energy norm. For every
Hilbert space X, let p ‚ , ‚ qX denote the associated inner product and, for every
normed space pX, } ‚ }Xq, SpXq – tx P X | }x}X “ 1u the sphere in X. The measure
| ‚ | is context-sensitive and refers to the number of elements of some finite set or the
length |E| of an edge E or the area |T | of some triangle T and not just the modulus
of a real number or the Euclidean length of a vector.

Throughout the paper, A À B abbreviates the relation A ď CB with a generic
constant 0 ă C, which does not depend on the mesh-size of the underlying triangu-
lation T but solely on the initial triangulation T0; A « B abbreviates A À B À A,
e.g. in (1.4).

2 Abstract framework

This section analyses an abstract nonlinear dPG method and presents an a priori
error estimate.
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2.1 Abstract nonlinear dPG

For an open set D ‰ H in a real Banach space X and a real Hilbert space changedY

with scalar product a : Y ˆ Y Ñ R, let B P C1pD; Y ˚q be a differentiable nonlinear
map with Fréchet derivative DBpxq P LpX; Y ˚q at x P D. With the duality bracket
x ‚ , ‚ y in Y , associate the nonlinear map b : X ˆ Y Ñ R, bpx; ‚ q – xBpxq, ‚ y,
which is linear and bounded in the second component. Let b1px; ‚ q abbreviate the
derivative DBpxq P LpX; Y ˚q with b1px; ξ, ηq – xDBpx; ξq, ηy for x P D, ξ P X, η P Y .

Given F P Y ˚, let x P D be a regular solution to the problem Bpxq “ F in Y ˚.
That means that x solves Bpxq “ F and the Fréchet derivative DB at x is a bijection
from X to Y ˚. The latter implies the inf-sup condition for the Fréchet derivative at
the regular solution x, namely,

0 ă βpxq – inf
ξPSpXq

sup
ηPSpY q

b1px; ξ, ηq. (2.1)

The minimal residual formulation of the continuous problem seeks x P X with

x P argmin
ξPD

}F ´ Bpξq}Y ˚ . (2.2)

The existence of a solution x to (2.2) is immediate from the assumption Bpxq “ F . In
particular, the minimum is zero and any minimizer x in (2.2) solves Bpxq “ F . The
situation is (in general) different on the discrete level with some discrete subspaces
Xh Ă X and Yh Ă Y , the dPG scheme seeks a minimizer xh P Dh – Xh X D of the
residual F ´ Bpξhq in the norm of Y ˚

h ,

xh P argmin
ξhPDh

}F ´ Bpξhq}Y ˚
h

. (dPG)

The existence of a solution to (dPG) requires further assumptions and follows in
Proposition 4.3 for a model problem.

2.2 Derivation of nonlinear dPG

A formal Lagrange ansatz leads to the minimization of the Lagrange functional
L : Dh ˆ Yh ˆ R Ñ R defined for pxh, yh, λq P Xh ˆ Yh ˆ R by

Lpxh, yh, λq – F pyhq ´ bpxh; yhq ´ λ

2

`
apyh, yhq ´ 1

˘
.

The stationary points xh P Dh, yh P Yh, and λ P R of L are characterized by the
first derivatives of L with respect to each argument in the sense that, for all ηh P Yh

and ξh P Xh,

λapyh, ηhq ` bpxh; ηhq “ F pηhq, b1pxh; ξh, yhq “ 0, apyh, yhq “ 1.

For ηh “ yh, this implies λ “ F pyhq ´ bpxh; yhq. The substitution of yh by λyh leads
to a modified system of equations. The resulting mixed formulation of the nonlinear
dPG method seeks xh P Xh and yh P Yh with

apyh, ηhq ` bpxh; ηhq “ F pηhq for all ηh P Yh,

b1pxh; ξh, yhq “ 0 for all ξh P Xh.

Notice that this is known for linear problems (there, b “ b1pxh; ‚ q) [17, Section 2.3].
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2.3 Equivalent mixed formulation

It is known in linear problems that the dPG method is equivalent to the mixed
problem (M) and this is generalized in this subsection to the nonlinear problem
Bpxq “ F at hand. Any local (or global) minimizer of Φpξhq – }F ´ Bξh}2

Y ˚
h

{2 is a

stationary point of Φ.

Definition 2.1 (stationary point) Any xh P Dh – DXXh is a stationary point of
the dPG discretization (dPG) if any directional derivative of Φpξhq – }F ´Bξh}2

Y ˚
h

{2
vanishes at xh, i.e., limδÑ0pΦpxh ` δξhq ´ Φpxhqq{δ “ 0 for all ξh P Xh.

Stationary points are exactly the solutions to (M).

Theorem 2.2 ((dPG) ô (M)) (a) Suppose xh is a stationary point of (dPG) and
yh is the residual’s Riesz representation (i.e. apyh, ‚ q “ F ´ bpxh; ‚ q) in Yh. Then
pxh, yhq solves (M).

(b) Suppose that pxh, yhq solves (M), then xh is a stationary point of (dPG).

Proof (a) For any ξh P Dh, the unique Riesz representation ̺hpξhq P Yh of the
residual F ´ bpξh; ‚ q P Y ˚

h satisfies

Φpξhq “ 1

2
}̺hpξhq}2

Y .

Given the stationary point xh P Dh to (dPG) and ξh P Xh, consider Φpxh ` tξhq as
a scalar function of the real parameter t with a derivative zero at t “ 0. For |t| small
such that xhptq – xh ` tξh P Dh and yhptq – ̺hpxhptqq, it follows

apyhptq, ‚ q ` bpxhptq; ‚ q “ F in Y ˚
h .

A differentiation with respect to t shows for 9yh – Byhp0q{Bt and 9xh – Bxhp0q{Bt “ ξh

that 9yh exists and is the Riesz representation of ´b1pxh; ξh, ‚ q “ ap 9yh, ‚ q in Yh.
Therefore, Φpxhptqq “ apyhptq, yhptqq{2 is differentiable and the derivative vanishes
at t “ 0, which leads to

0 “ ap 9yh, yhq for yh – yhp0q.

It follows that

b1pxh; ξh, yhq “ 0 for all ξh P Xh.

Since yh “ yhp0q “ ̺hpxhq, pxh, yhq solves (M).
(b) Conversely, if pxh, yhq solves (M) then, for any ξh P Dh and the above notation

for the Riesz representation yhptq of F ´ Bxhptq in Yh,

}F ´ Bxhptq}2

Y ˚
h

“ apyhptq, yhptqq “ F pyhptqq ´ bpxhptq; yhptqq

has a derivative with respect to t at t “ 0, namely, for yh – yhp0q

2 ap 9yh, yhq “ F p 9yhq ´ b1pxh; ξh, yhq ´ bpxh; 9yhq.

Since b1pxh; ξh, yhq “ 0 and F p 9yhq ´ bpxh; 9yhq “ apyh, 9yhq, this implies ap 9yh, yhq “ 0.
Recall BΦpxptqq{Bt|t“0 “ ap 9yh, yhq “ 0, and so xh is a stationary point of Φ. [\
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Proposition 2.3 (necessary and sufficient second-order condition) Assume
that Φ is twice differentiable. (a) If xh solves (dPG), then

b2pxh; ξh, ξh, yhq ď }b1pxh; ξh, ‚ q}2

Y ˚
h

for all ξh P Xh. (2.3)

(b) If, in addition,

b2pxh; ξh, ξh, yhq ă }b1pxh; ξh, ‚ q}2

Y ˚
h

for all ξh P Xhzt0u, (2.4)

then xh is locally unique.

Proof The second derivative of Φpxhptqq reads apB2yh{Bt2, yhq ` }Byh{Bt}2
Y . Recall

from the proof of Theorem 2.2 for t “ 0, that the Riesz representation 9yh “ Byhp0q{Bt

satisfies

ap 9yh, ‚ q “ ´b1pxh; ξh, ‚ q in Yh and } 9yh}Y “ }b1pxh; ξh, ‚ q}Y ˚
h

.

Another differentiation with respect to t shows that :yh – B2yhp0q{Bt2 satisfies

ap:yh, ‚ q “ ´b2pxh; ξh, ξh, ‚ q in Yh.

Consequently, the second derivative of Φpxhptqq at t “ 0 is

´ b2pxh; ξh, ξh, yhq ` }b1pxh; ξh, ‚ q}2

Y ˚
h

. (2.5)

The assertion follows from this and standard arguments in the calculus of stationary
and minimal points. [\

Remark 2.4 (linear problems) For a linear problem, b2pxh; ‚ q vanishes and (2.4)
holds. This implies local uniqueness in the linear situation (which is a global one).

The uniqueness of the discrete solution is observed in numerical examples; cf.
Theorem 4.4 for a sufficient condition in the model example below.

2.4 Abstract a priori error analysis

This section presents a best-approximation result based on a discrete inf-sup condi-
tion and the existence of a Fortin operator.

Hypothesis 2.5 Throughout this paper, assume that there exists a linear bounded
projection Πh : Y Ñ Yh with Πh|Yh

“ id |Yh
and

b1pDh; Xh, p1 ´ ΠhqY q “ 0, (2.6)

i.e., for all xh P Dh and all y P Y , Πhy P Yh satisfies b1pxh; ξh, y ´ Πhyq “ 0 for all
ξh P Xh. Let }Πh} denote the bound of Πh in LpY ; Y q.

The following theorem generalizes [1, Prop. 5.4.2] to the nonlinear problem at
hand. A sufficiently fine initial triangulation guarantees that Bpx, εq X Xh Ă Dh is
nonempty.
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Theorem 2.6 (discrete inf-sup condition) Given a regular solution x to Bpxq “
F , there exists an open ball Bpx, εq – tx̃ P X | }x ´ x̃}X ă εu of radius ε ą 0 around
x such that, for all x̃h P Bpx, εq X Xh Ă Dh, the following discrete inf-sup condition
holds

0 ă βpx; Xh, Yhq
2}Πh} ď βpx̃h; Xh, Yhq – inf

ξhPSpXhq
sup

ηhPSpYhq
b1px̃h; ξh, ηhq.

Proof The continuous inf-sup condition (2.1) and the continuity of DB in D lead to
some ε such that

Bpx, εq Ă D, (2.7)

βpxq{2 ď inf
ξPBpx,εq

βpξq. (2.8)

Then x̃h P Bpx, εq X Xh and (2.6) imply

βpxq{2 ď βpx̃hq ď inf
ξhPSpXhq

sup
ηPSpY q

b1px̃h; ξh, ηq

“ inf
ξhPSpXhq

sup
ηPSpY q

b1px̃h; ξh, Πhηq

“ inf
ξhPSpXhq

sup
ηPSpY q

}Πhη}Y b1`x̃h; ξh, Πhη
L

}Πhη}Y

˘

ď }Πh} inf
ξhPSpXhq

sup
ηPSpY q

b1
`
x̃h; ξh, Πhη

L
}Πhη}Y

˘

“ }Πh} inf
ξhPSpXhq

sup
ηhPSpYhq

b1px̃h; ξh, ηhq.

Hence, any x̃h P Bpx, εq satisfies 0 ă βpxq
2}Πh} ď βpx̃h; Xh, Yhq. [\

Remark 2.7 (converse of Theorem 2.6) Given the discrete inf-sup condition

0 ă inf
ξhPSpXhq

sup
ηhPSpYhq

b1px̃h; ξh, ηhq (2.9)

at some point rxh P Dh, the techniques of [9, Lemma 10] guarantee the existence
of a linear bounded projection Πhprxhq : Y Ñ Yh with (2.6), which depends on rxh.
The above proof shows that the existence of Πhprxhq is also sufficient for (2.9). The
class of model examples allows for the simple more uniform Hypothesis 2.5 with
Πhprxhq “ Πh independent of rxh P Dh.

Theorem 2.8 (local best-approximation) Given a regular solution x to Bpxq “
F , there exist positive constants ε ą 0 and Cpx, εq ą 0 such that any solution pxh, yhq
to (M) with }x ´ xh}X ă ε satisfies

}x ´ xh}X ` }yh}Y ď Cpx, εq inf
ξhPXh

}x ´ ξh}X .

The proof of the theorem requires the following lemma.
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Lemma 2.9 Any ε ą 0 and xh P Bpx, εq Ă D satisfy

}b1pxh; x ´ xh, ‚ q ´ bpx; ‚ q ` bpxh; ‚ q}Y ˚

ď 2 sup
ξPBpx,εq

} DBpxq ´ DBpξq}LpX;Y ˚q}x ´ xh}X (2.10)

}Bpxq ´ Bpxhq}Y ˚ ď sup
ξPBpx,εq

} DBpξq}LpX;Y ˚q}x ´ xh}X . (2.11)

Proof Given any η P SpY q, the Taylor’s formula of b at xh with remainder reads

b1pxh; x ´ xh, ηq ´ bpx; ηq ` bpxh; ηq

“
ż 1

0

´
b1pxh; x ´ xh, ηq ´ b1pxh ` spx ´ xhq; x ´ xh, ηq

¯
ds.

Since }x ´ xh}X ă ε implies }x ´ pxh ` spx ´ xhqq}X ă ε for 0 ď s ď 1, the triangle
inequality proves

b1pxh; x ´ xh, ηq ` bpxh; ηq ´ bpx; ηq
ď 2 sup

ξPBpx,εq
|b1px; x ´ xh, ηq ´ b1pξ; x ´ xh, ηq|

ď 2 sup
ξPBpx,εq

} DBpxq ´ DBpξq}LpX;Y ˚q}x ´ xh}X .

Since η P SpY q is arbitrary, this implies (2.10). The assertion (2.11) follows from the
same arguments without the term b1pxh; x ´ xh, ηq. [\

Proof (of Theorem 2.8) Let x̃h be the best-approximation to x in Xh, i.e.,

}x ´ x̃h}X “ inf
ξhPDh

}x ´ ξh}X ď }x ´ xh}X ă ε.

Suppose ε ą 0 satisfies (2.7)-(2.8) and, with the continuity of DB at x,

sup
ξPBpx,εq

} DBpξq}LpX;Y ˚q ď 2} DBpxq}LpX;Y ˚q. (2.12)

The discrete inf-sup condition from Theorem 2.6 plus the Brezzi splitting lemma [3,
Thm. 4.3 in Ch. III] with inf-sup constants, βpxq{2 and 1, and continuity constants,
2} DBpxq}LpX;Y ˚q and 1, for the bilinear form b1pxh; ‚ , ‚ q and scalar product a prove
the global inf-sup condition 0 ă γ ď βpxh; Xh, Yhq for

γ – inf
pξ̃h,η̃hqPSpXhˆYhq

sup
pξh,ηhqPSpXhˆYhq

´
b1pxh; ξ̃h, ηhq ` b1pxh; ξh, η̃hq ` apη̃h, ηhq

¯
.

independent of ε with (2.7)–(2.8) and (2.12). Given γ ą 0 and βpxq ą 0 suppose, for
some smaller ε ą 0 if necessary, that ε ą 0 satisfies (2.7)–(2.8), (2.12), and, from the
continuity of DB at x,

sup
ξPBpx,εq

} DBpxq ´ DBpξq}LpX;Y ˚q ď mintγ{4, βpxq{8u. (2.13)

For the best-approximation ỹh “ 0 to y “ 0 in Yh and pξ̃h, η̃hq “ px̃h ´ xh, ỹh ´ yhq,
this implies the existence of pξh, ηhq P SpXh ˆ Yhq with

γ
`
}x̃h ´ xh}X ` }yh}Y

˘
ď b1pxh; x̃h ´ xh, ηhq ´ b1pxh; ξh, yhq ´ apyh, ηhq.
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Since pxh, yhq solves (M) and ỹh “ 0, this leads to

γ
`
}x̃h ´ xh}X ` }yh}Y

˘
ď b1pxh; x̃h ´ x, ηhq ` b1pxh; x ´ xh, ηhq ` bpxh; ηhq ´ bpx; ηhq.

Lemma 2.9 and (2.13) imply

b1pxh; x ´ xh, ηhq ` bpxh; ηhq ´ bpx; ηhq ď γ}x ´ xh}X {2.

The combination of the preceding two displayed formulae reads

γ

2
}x̃h ´ xh}X ` γ}yh}Y ď b1pxh; x̃h ´ xh, ηhq.

With (2.12), this is bounded from above by

} DBpxhq}LpX;Y ˚q}x ´ x̃h}X ď 2} DBpxhq}LpX;Y ˚q}x ´ x̃h}X .

The triangle inequality concludes the proof. [\

Remark 2.10 Under further smoothness conditions of the nonlinear mapping b1 the
local existence and uniqueness of a discrete solution, e.g., follows from [25, Thm. 2].

Remark 2.11 The Newton-Kantorovich theorem [27, Section 5.2] is another tool for
the proof of the existence of discrete solutions close to the regular solution. In the
model problem of Section 3, the higher Fréchet derivatives for this argument do not
exist, cf. Remark 3.3 for details.

2.5 Abstract a posteriori error analysis

This subsection is devoted to a brief abstract a posteriori error analysis of the non-
linear dPG. Given a discrete approximation xh close to the regular solution x to
Bpxq “ F , the residual F ´ Bpxhq P Y ˚ has a norm }F ´ Bpxhq}Y ˚ that, in prin-
ciple, is accessible in the sense that lower and upper bounds may be computable.
The latter issue is a typical general task in the a posteriori error analysis and will
be adressed in Section 3 for a model example.

Theorem 2.12 (local a posteriori analysis) Let x be a regular solution to Bpxq “
F with inf-sup constant βpxq from (2.1). Then there exists some ε ą 0 such that any
xh P Bpx, εq Ă D satisfies

βpxq
4

}x ´ xh}X ď }F ´ Bpxhq}Y ˚ ď 2} DBpxq}LpX;Y ˚q}x ´ xh}X .

Proof With the choice of ε ą 0 from the proof of Theorem 2.8 it follows (2.7)-(2.8)
and (2.12)-(2.13). The continuous inf-sup condition (2.1) implies the existence of
η P SpY q with

βpxq
2

}x ´ xh}X ď b1pxh; x ´ xh, ηq

ď bpx; ηq ´ bpxh; ηq ` |b1pxh; x ´ xh, ηq ´ bpx; ηq ` bpxh; ηq|.

Lemma 2.9 for the last term, bpx; ηq “ F pηq, and (2.13) show

βpxq
2

}x ´ xh}X ď F pηq ´ bpxh; ηq ` βpxq
4

}x ´ xh}X .
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This proves the asserted reliability

βpxq
4

}x ´ xh}X ď }F pηq ´ bpxh; ηq}Y ˚ .

To prove the efficiency, utilize F “ Bpxq, Lemma 2.9, and (2.12) to verify

}F ´ Bpxhq}Y ˚ “ }Bpxq ´ Bpxhq}Y ˚

ď 2} DBpxq}LpX;Y ˚q}x ´ xh}X . [\
Remark 2.13 Since y “ 0 and yh is computed, the a posteriori error }y ´ yh}Y “
}yh}Y is already an error estimator and can be added on both sides of the reliability
(resp. efficiency) a posteriori error estimate. This justifies the usage of the extended
residual }F ´ apyh, ‚ q ´ bpxh; ‚ q}Y ˚ ` }yh}Y of the system (M).

Remark 2.14 The constants βpxq{4 (resp. 2} DBpxq}LpX;Y ˚q) in Theorem 2.12 follow
from the choice of ε in the a priori error analysis in the proof of Theorem 2.8. For
smaller and smaller values of ε, those constants could be replaced by any number
ă βpxq (resp. ą } DBpxq}LpX;Y ˚q) in the following sense. For any 0 ă λ ă 1 there
exists some ε ą 0 such that any xh P Bpx, εq satisfies λβpxq ď }F ´ Bpxhq}Y ˚ ď
p1 ` λq} DBpxq}LpX;Y ˚q.

3 Model problem

This section introduces a nonlinear model problem and a low-order dPG discretiz-
ation and establishes two further equivalent characterizations of the nonlinear dPG
method: reduced discretization and weighted least-squares.

3.1 Convex energy minimization

The nonlinear model problem involves a nonlinear function φ P C2p0, 8q with 0 ă
γ1 ď φptq ď γ2 and 0 ă γ1 ď φptq ` tφ1ptq ď γ2 for all t ě 0 and universal positive
constants γ1, γ2. Given f P L2pΩq and the convex function ϕ, ϕptq –

şt

0
s φpsq ds for

t ě 0, the model problem minimizes the energy functional

Epvq –

ż

Ω

ϕp| ∇ vpxq|q dx ´
ż

Ω

fv dx among all v P H1
0 pΩq.

The convexity of ϕ and the above assumptions on φ lead to growth-conditions and
sequential weak lower semicontinuity of E and guarantee the unique existence of a
minimizer u of E in H1

0 pΩq [29, Thm. 25.D]. The equivalent Euler-Lagrange equation
reads ż

Ω

φp| ∇ u|q ∇ u ¨ ∇ v dx “
ż

Ω

fv dx for all v P H1
0 pΩq (3.1)

and has the unique solution u in H1
0 pΩq. The stress variable σpAq – φp|A|qA defines

a function σ P C1pRn;Rnq with Fréchet derivative

DσpAq “ φp|A|qInˆn ` φ1p|A|q|A| signpAq b signpAq (3.2)

with the sign function signpAq – A { |A| for A P R
nzt0u and the closed unit ball

signp0q – Bp0, 1q in R
n. The prefactor φ1p|A|q|A| makes Dσ a continuous function

in R
n. In fact Dσ P C0pRnˆn

sym q is bounded with eigenvalues in the compact interval
rγ1, γ2s Ă p0, 8q.
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Remark 3.1 (Lippσq ď γ2) For A, B P R
n, the argument σpAq ´ σpBq “

ş1

0
DσpsA `

p1 ´ sqBqpA ´ Bq ds and (3.2) imply the global Lipschitz continuity of σ,

|σpAq ´ σpBq| ď
ż 1

0

| DσpsA ` p1 ´ sqBqpA ´ Bq| ds ď γ2|A ´ B|.

Example 3.2 In the following examples, 0 ď φ2 ď 2 is bounded as well as φ1 and Dσ

from (3.2) is globally Lipschitz continuous. (a) φptq – 2 ` p1 ` tq´2 with γ1 “ 1 ă
γ2 “ 3 [15] and LippDσq ď 4 and (b) φptq – 2 ´ p1 ` t2q´1 with γ1 “ 1 ă γ2 “ 4
and LippDσq ď 2.

Remark 3.3 (second derivative) A formal calculation with spjq – psign Aqj , spj, kq –

psign Aqjpsign Aqk etc. and the Kronecker symbol δjk for j, k, ℓ “ 1, . . . , n leads at
any A P R

n to

D2σpAqj,k,ℓ “ φ1p|A|qpδjkspℓq ` δjℓspkq ` δkℓspjqq ` pφ2p|A|q|A| ´ φ1p|A|qqspj, k, ℓq.

Although D2σpAq may be bounded (at least in the Example 3.2.a and b), it may be
discontinuous for A Ñ 0. In Example 3.2.b, φ1p0q “ 0 and D2σ is continuous with
D2σp0q “ 0. The associated trilinear form b2px; ‚ q, however, is not well-defined on
X ˆ Y ˆ Y because the product of three Lebesgue functions in L2pΩq is, in general,
not in L1pΩq.

3.2 Breaking the test spaces

Let Ω Ď R
n be a bounded Lipschitz domain with polyhedral boundary BΩ. Let T

denote a regular triangulation of the domain Ω into n-simplices and let E (resp.
EpT q) denote the set of all sides in the triangulation (resp. of an n-simplex T P T ).

The unit normal vector νT along the boundary BT of an n-simplex T P T (is
constant along each side of T and) points outwards. For any side E “ BT` X BT´ P E

shared by two simplices, the enumeration of the neighbouring simplices T˘ is globally
fixed and so defines a unique orientation of the unit normal νE “ νT`

|E . Let hT

denote the diameter of T P T , hmax – maxT PT hT ď diampΩq and hT |K “ hK for
any K P T . The barycenter midpT q of T P T defines the piecewise constant function
midpT q P P0pT ;Rnq by midpT q|K – midpKq for any K P T and midpEq is the
barycenter of E P E . The piecewise affine function ‚ ´ midpT q P P1pT ;Rnq equals
x ´ midpT q at x P T P T .

Recall that HkpT q –
ś

T PT HkpT q – tv P L2pΩq | @T P T , v|T P HkpT qu de-
notes the piecewise Sobolev space. Define the discrete spaces

PkpT q – tvk P L8pT q | vk is polynomial on T of degree ď ku,

PkpT q – tvk P L8pΩq | @T P T , vk |T P PkpT qu,

PkpT ;Rnq ” PkpT qn,

Sk
0 pT q – PkpT q X H1

0 pΩq,
RTkpT q – tqk P Hpdiv, Ωq | DA P PkpT ;Rnq, Db P PkpT q,

qk “ A ` bp ‚ ´ midpT qqu,

CR1pT q – tvCR P P1pT q | @E P EpΩq, vCR continuous at midpEqu,

CR1
0pT q – tvCR P CR1pT q | @E P EpBΩq, vCRpmidpEqq “ 0u,

PkpEq – ttk P L2pBT q | tk |E P PkpEq for any E P Eu.
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Definition 3.4 For a triangulation T with skeleton BT –
Ť

T PT

Ť
EPEpT q E and

T P T , recall the local trace spaces H1{2pBT q and H´1{2pBT q “ pH1{2pBT qq‹ and

H´1{2pBT q – tt “ ptT qT PT P
ś

T PT
H´1{2pBT q |

Dq P Hpdiv, Ωq, @T P T , tT “ pq|T q|BT ¨ νT u

endowed with the minimal extension norm, for t P H´1{2pBT q,

}t}H´1{2pBT q – mint}q}Hpdiv,Ωq | q P Hpdiv, Ωq, @T P T , tT “ pq|T q|BT ¨ νT u.

The duality brackets x ‚ , ‚ yBT in H´1{2pBT qˆH1{2pBT q extend the L2 scalar product
in L2pBT q and lead to the duality bracket on the skeleton for any t “ ptT qT PT Pś

T PT
H´1{2pBT q and s “ psT qT PT P

ś
T PT

H1{2pBT q defined by

xt, syBT –

ÿ

T PT

xtT , sT yBT .

Remark 3.5 (RT0pT q ” P0pEq) The spaces RT0pT q and P0pEq are isomorphic [8,
Lemma 3.2] in the sense that any qRT P RT0pT q and E P E with fixed unit normal
vector νE satisfies qRT|E ¨ νE P P0pEq. Conversely, for any t0 P P0pEq, there exists
a unique qRT P RT0pT q with qRT|E ¨ νE “ t0|E for any E P E , in short notation
qRT ¨ν “ t0 in BT . Since }t0}H´1{2pBT q « }qRT}Hpdiv,Ωq, this identification justifies the

embedding P0pEq Ď H´1{2pBT q, where any T P T and E P EpT q satisfy pqRT ¨νT q|E “
˘t0|E with the sign ˘ “ νT ¨ νE depending on the (globally fixed) choice of the
orientation of the unit normal νE P tνT˘

|Eu.

Definition 3.6 Define S0 P P0pT ;Rnˆnq and H0 : L2pΩq Ñ P0pT ;Rnq for T P T

and f P L2pΩq by

S0|T – Π0pp ‚ ´ midpT qq b p ‚ ´ midpT qqq,
H0f – Π0pfp ‚ ´ midpT qqq P P0pT ;Rnq.

(3.3)

Remark 3.7 An analysis of the eigenvalues of the piecewise symmetric positive semi-
definite matrix S0 shows that any T P T and v P R

n satisfies

|v| ď |pInˆn ` S0|T qv| ď p1 ` h2
T q|v| and |v| ď |pInˆn ` S0|T q1{2v| ď p1 ` hT q|v|.

Furthermore, }H0f}L2pΩq ď hmax}p1´Π0qf}L2pΩq for the maximal mesh-size hmax “
max hT in T .

3.3 Lowest-order dPG discretization

The nonlinear model problem of this paper concerns the nonlinear map σ : Rn Ñ R
n

of Subsection 3.1. A piecewise integration by parts in (3.1) and the introduction of
the new variable t – σp∇uq¨ν on BT leads to the nonlinear primal dPG method with
F pvq –

ş
Ω

fv dx and b : X ˆ Y Ñ R for X – H1
0 pΩq ˆ H´1{2pBT q and Y – H1pT q

defined by

bpu, t; vq –

ż

Ω

σp∇ uq ¨ ∇NC v dx ´ xt, vyBT — xBpu, tq, yyY . (3.4)
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for all x “ pu, tq P X – H1
0 pΩqˆH´1{2pBT q and y “ v P Y “ H1pT q with associated

norms and the scalar product a in Y . Given the subspaces Xh – S1
0 pT q ˆ P0pEq and

Yh – P1pT q, the discrete problem minimizes the residual norm and seeks puh, thq “
xh P Xh with

}F ´ Bpxhq}Y ˚
h

“ min
ξhPXh

}F ´ Bpξhq}Y ˚
h

. (3.5)

The derivative Dσ : Rn Ñ R
nˆn gives rise to the map

b1pu, t; w, s, vq –

ż

Ω

∇ w ¨ pDσp∇ uq ∇NC vq dx ´ xs, vyBT . (3.6)

This defines a bounded bilinear form b1pu, t; ‚ q : X ˆ Y Ñ R for any x “ pu, tq P X

and the operator B associated with b belongs to C1pX; Y ˚q. Recall the equivalent
mixed formulation from (M) for the model problem at hand, which seeks puh, thq P
Xh and vh P Yh with

apvh, ηhq ` bpuh, th; ηhq “ F pηhq for all ηh P Yh,

b1puh, th; wh, sh, vhq “ 0 for all pwh, shq P Xh.
(3.7)

Remark 3.8 (regular solution) Since Dσp∇uq P L8pΩ;Rnˆn
sym q uniformly positive def-

inite, the splitting lemma from the linear theory [6, Thm. 3.3] implies the inf-sup
condition (2.1) for the nondegenerate bilinear form b1px; ‚ , ‚ q : X ˆ Y Ñ R. Hence,
the solution x P X to Bpxq “ F is regular.

3.4 Reduced discretization

The dPG discretization (3.5) can be simplified to a modified problem that seeks
puh, vhq P S1

0 pT q ˆ CR1
0pT q with

apvh, wCRq `
ż

Ω

σp∇ uhq ¨ ∇NC wCR dx “
ż

Ω

fwCR dx for all wCR P CR1
0pT q,

ż

Ω

∇ wC ¨
`

Dσp∇ uhq ∇NC vh

˘
dx “ 0 for all wC P S1

0 pT q.
(R)

Theorem 3.9 ((3.7) ô (R)) (a) If puh, th; vhq P Xh ˆ Yh solves (3.7), then vh P
CR1

0pT q and puh, vhq P S1
0 pT q ˆ CR1

0pT q solves (R).
(b) For any solution puh, vhq P S1

0 pT q ˆ CR1
0pT q to (R), there exists a unique

th P P0pEq such that puh, th; vhq solves (3.7).

The proof utilizes the following discrete inf-sup condition of a linear primal dPG
method [19]. Let the bilinear forms aNC : H1pT q ˆ H1pT q Ñ R and rb : X ˆ Y Ñ R

be defined by

aNCpv1, v2q –

ż

Ω

∇NC v1 ¨ ∇NC v2 dx for v1, v2 P H1pT q,

rbpx, yq – aNCpu, wq ´ xt, wyBT for x “ pu, tq P X, y “ w P Y.
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Lemma 3.10 The bilinear form rb : Xh ˆ Yh Ñ R satisfies the discrete inf-sup
condition

0 ă rβh – inf
ξhPSpXhq

sup
ηhPSpYhq

rbpξh, ηhq. (3.8)

Proof The proof follows the arguments from [8, Thm. 3.5] for the bilinear form rb in
the lowest-order scheme at hand. [\

Proof (of Theorem 3.9) (a) Since b1pxh; 0, sh, vhq “ ´xsh, vhyBT “ 0 for all sh P
P0pEq, vh P CR1

0pT q. Then, (3.7) reduces to (R).
(b) Conversely, suppose puh, vhq solves (R), then the second equation in (3.7)

follows from the second equation in (R) and vh P CR1
0pT q. The first equation in (R)

leads to the first equation in (3.7) for any th P P0pEq and test functions in CR1
0pT q.

In other words, the linear functional

Λh – apvh, ‚ q `
ż

Ω

σp∇ uhq ¨ ∇NC ‚ dx ´ F P Y ˚
h

vanishes on CR1
0pT q Ă ker Λh. It remains to show that there exists th P P0pEq

with xth, ‚ yBT “ Λh, because then puh, th, vhq solves (3.7). To prove the existence

of such a th for Λh P Y ˚
h with CR1

0pT q Ă ker Λh, recall the bilinear form rb from
Lemma 3.10 with discrete inf-sup condition (3.8) and consider the linear problem
that seeks puh, th, vhq P Xh ˆ Yh with

aNCpvh, w1q ` rbpuh, th, w1q “ ´Λhpw1q for all w1 P Yh,

rbpwC , s0, vhq “ 0 for all pwC, s0q P Xh.
(L)

Since xr0, v1yBT “ 0 for v1 P P1pT q and for all r0 P P0pEq implies v1 P CR1
0pT q Ă

P1pT q, the kernel

Zh – tv1 P P1pT q |rbpxh, v1q “ 0 for all xh P Xhu

of rb consists of particular Crouzeix-Raviart functions, Zh Ă CR1
0pT q, and the discrete

Friedrichs inequality [4, p. 301] shows that aNC is Zh-elliptic. Hence, the Brezzi
splitting lemma [3, Thm. 4.3 in Ch. III] applies to the linear system (L) and (L) has
a unique solution puh, th, vhq P Xh ˆ Yh. The test of the first equation in (L) with
w1 P CR1

0pT q Ă ker Λh shows aNCpvh ` uh, ‚ q “ 0 in CR1
0pT q. The second equation

in (L) implies vh P CR1
0pT q and this proves vh “ ´uh. This leads to xth, ‚ yBT “ Λh

in P1pT q. The uniqueness of th follows from the fact that xth, ‚ yBT “ 0 in P1pT q
implies th “ 0. [\

3.5 Least-squares formulation

Recall S0 P P0pT ;Rnˆnq and H0 : L2pΩq Ñ P0pT ;Rnq from (3.3) to define an
equivalent least-squares formulation.

Theorem 3.11 (dPG is LS) Any xh “ puC , t0q P Xh and pRT P RT0pT q with
pRT ¨ ν “ t0 in BT satisfy

}F ´ bpxh; ‚ q}2

Y ˚
h

“ }pInˆn ` S0q´1{2
`
Π0pRT ´ σp∇uCq ` H0f

˘
}2

L2pΩq

` }Π0f ` div pRT}2
L2pΩq.

(3.9)
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Consequently, any solution xh “ puC , t0q P Xh to (3.7) and pRT ¨ ν “ t0 in BT from
Remark 3.5 minimizes the weighted least-squares functional (3.9).

Proof Let v1 P P1pT q ” Yh be the Riesz representation of bpxh; ‚ q ´ F P Y ˚
h , i.e.,

any w1 P P1pT q satisfies

apv1, w1q “ bpxh; w1q ´ F pw1q.

The substitution of t0 “ pRT ¨ ν based on the isometry in Remark 3.5 and an integ-
ration by parts lead to

bpxh; w1q ´ F pw1q “
ż

Ω

pσp∇uCq ´ pRTq ¨ ∇NC w1 dx ´
ż

Ω

pf ` div pRTqw1 dx.

With w1 “ Π0w1 ` ∇NC w1 ¨ p ‚ ´ midpT qq, this results in
ż

Ω

Π0v1Π0w1 dx `
ż

Ω

pInˆn ` S0q ∇NC v1 ¨ ∇NC w1 dx

“
ż

Ω

pσp∇uCq ´ Π0pRTq ¨ ∇NC w1 dx ´
ż

Ω

pΠ0f ` div pRTqΠ0w1 dx

´
ż

Ω

H0f ¨ ∇NC w1 dx.

For any T P T , the choices w1 “ χT and w1 “ χT ek ¨ p ‚ ´ midpT qq, k “ 1, . . . , n,
show

Π0v1 “ ´pdiv pRT ` Π0fq,
pInˆn ` S0q ∇NC v1 “ σp∇uCq ´ Π0pRT ´ H0f.

The Riesz isometry and }v1}2
H1pΩq “ }Π0v1}2

L2pΩq ` }pInˆn ` S0q1{2 ∇NC v1}2
L2pΩq for

any v1 P P1pT q conclude the proof. [\

4 Mathematical analysis of dPG for the model problem

This section analyses the low-order dPG method presented in Section 3 and proves
an a posteriori result next to the existence of a solution and applies the abstract
framework from Section 2. Recall the discrete spaces Xh – S1

0 pT q ˆ P0pEq, Yh –

P1pT q, and the nonlinear map from (3.4).

4.1 Well-posedness

This subsection is devoted to the equivalence of the dPG residuals and the errors.
For qRT P RT0pT q and vC P S1

0 pT q, the isomorphism between RT0pT q and P0pEq
from Remark 3.5 leads to the abbreviation bpvC , qRT; ‚ q – bppvC , pqRT ¨ νT qT PT q; ‚ q.
Recall the energy norm ~ ‚ ~ “ } ‚ }L2pΩq in H1

0 pΩq.

Theorem 4.1 The exact solution u P H1
0 pΩq to the model problem (3.1) with stress

p – σp∇uq P Hpdiv, Ωq and any discrete pvC , qRTq P S1
0 pT q ˆ RT0pT q satisfy the

equivalence

}p ´ qRT}2
Hpdiv,Ωq ` ~u ´ vC ~2 « }F ´ bpvC , qRT; ‚ q}2

Y ˚
h

` }p1 ´ Π0qf}2
L2pΩq ` }p1 ´ Π0qqRT}2

L2pΩq.
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The proof is based on a lemma on the nonlinear least-squares formulation. The
related least-squares formulation is associated with the nonlinear residual Rpf ; ‚ q :
Hpdiv, Ωq ˆ H1

0 pΩq Ñ L2pΩq ˆ L2pΩ;Rnq for the first-order system of (3.1) and
defined, for pp, uq P Hpdiv, Ωq ˆ H1

0 pΩq, by

Rpf ; p, uq – pf ` div p, p ´ σp∇ uqq.
Lemma 4.2 Any pp, uq, pq, vq P Hpdiv, Ωq ˆ H1

0 pΩq satisfy

} Rpf ; p, uq ´ Rpf ; q, vq}2
L2pΩq « }p ´ q}2

Hpdiv,Ωq ` ~u ´ v~2.

Proof Following [23, Thm. 4.4], the fundamental theorem of calculus shows

Rpf ; q, vq ´ Rpf ; p, uq “
ż 1

0

d

ds
Rpf ; p ` spq ´ pq, u ` spv ´ uqq ds

“
ż 1

0

R
1pp ` spq ´ pq, u ` spv ´ uq; q ´ p, v ´ uq ds.

For x P Ω and 0 ď s ď 1, define F psq – ∇ upxq ` s ∇pv ´ uqpxq and

M pxq –

ż 1

0

´
φp|F psq|qInˆn ` φ1p|F psq|qF psq b F psq

|F psq|
¯

ds.

Then

} Rpf ; q, vq ´ Rpf ; p, uq}2
L2pΩq “ } divpq ´ pq}2

L2pΩq ` }q ´ p ´ M ∇pv ´ uq}2
L2pΩq.

Since the assumptions on φ show that M P L2pΩ;Rnˆnq is pointwise symmetric and
positive definite with eigenvalues in the real compact interval rγ1, γ2s Ă p0, 8q, the
triangle inequality shows

} Rpf ; q, vq ´ Rpf ; p, uq}2
L2pΩq ď 2 maxt1, γ2

2 u
`
}q ´ p}Hpdiv,Ωq ` ~v ´ u~2

˘
.

For the reverse estimate, the positive definiteness of M provides the unique ex-
istence of a solution α P H1

0 pΩq to the weighted problem
ż

Ω

M ∇ α ¨ ∇ γ dx “
ż

Ω

pq ´ pq ¨ ∇ γ dx for any γ P H1
0 pΩq.

An integration by parts shows r – q ´ p ´ M∇α P Hpdiv, Ωq with div r “ 0. The
Friedrichs inequality with constant CF (i.e. }α}L2pΩq ď CF~α~) implies

}M 1{2
∇ α}2

L2pΩq “
ż

Ω

divpp ´ qqα dx ď CF{γ1} divpq ´ pq}L2pΩq}M 1{2
∇ α}L2pΩq.

The orthogonality of ∇ H1
0 pΩq and Hpdiv, Ωq X tdiv “ 0u in L2pΩq shows

}q ´ p}2
L2pΩq “ }M ∇ α ` r}2

L2pΩq ď γ2}M 1{2
∇ α ` M ´1{2r}2

L2pΩq

“ γ2}M 1{2
∇ α}2

L2pΩq ` γ2}M ´1{2r}2
L2pΩq.

The two previous displayed inequalities, the triangle inequality, and the abbreviation
e – v ´ u yield

}q ´ p}2
Hpdiv,Ωq ` ~e~2 ď p2 ` γ2q}M 1{2

∇ α}2
L2pΩq ` } divpq ´ pq}2

L2pΩq

` maxt2, γ2u
`
}M 1{2

∇pα ´ eq}2
L2pΩq ` }M ´1{2r}2

L2pΩq

˘

ď pp2 ` γ2qC2
F{γ2

1 ` 1q} divpq ´ pq}2
L2pΩq

` maxt2, γ2u{γ1}q ´ p ´ M ∇ e}2
L2pΩq. [\
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Proof (of Theorem 4.1) Since Rpf ; p, uq “ 0, Lemma 4.2 with pq, vq – pqRT, vC q
shows

}p ´ qRT}2
Hpdiv,Ωq ` ~u ´ vC ~2 « }f ` div qRT}2

L2pΩq ` }qRT ´ σp∇ vCq}2
L2pΩq.

The L2-orthogonality of p1 ´ Π0qqRT and p1 ´ Π0qf onto piecewise constants implies

}f ` div qRT}2
L2pΩq ` }qRT ´ σp∇ vC q}2

L2pΩq

“ }Π0f ` div qRT}2
L2pΩq ` }p1 ´ Π0qqRT}2

L2pΩq

` }p1 ´ Π0qf}2
L2pΩq ` }Π0qRT ´ σp∇vCq}2

L2pΩq.

The triangle inequality and the estimates of Remark 3.7 result in

}p ´ qRT}2
Hpdiv,Ωq ` ~u ´ vC~2

À }Π0f ` div qRT}2
L2pΩq ` }p1 ´ Π0qqRT}2

L2pΩq ` }p1 ´ Π0qf}2
L2pΩq

` }H0f}2
L2pΩq ` }Π0qRT ´ σp∇vCq ` H0f}2

L2pΩq

À }Π0f ` div qRT}2
L2pΩq ` }p1 ´ Π0qqRT}2

L2pΩq ` }p1 ´ Π0qf}2
L2pΩq

` }Π0qRT ´ σp∇vCq ` H0f}2
L2pΩq.

Recall that S0 is pointwise positive semi-definite, hence Inˆn ` S0 is positive definite
and Remark 3.7 also proves

}Π0qRT ´ σp∇vCq ` H0f}2
L2pΩq « }pInˆn ` S0q´1{2pΠ0qRT ´ σp∇vCq ` H0fq}2

L2pΩq.

The proof of the converse estimate utilizes the last estimate and the triangle
inequality to show

}pInˆn ` S0q´1{2pΠ0qRT ´ σp∇vCq ` H0fq}2
L2pΩq ` }p1 ´ Π0qf}2

L2pΩq

À }Π0qRT ´ σp∇vCq}2
L2pΩq ` }H0f}2

L2pΩq ` }p1 ´ Π0qf}2
L2pΩq

À }Π0qRT ´ σp∇vCq}2
L2pΩq ` }p1 ´ Π0qf}2

L2pΩq.

This and the aforementioned orthogonalities imply

}pInˆn ` S0q´1{2pΠ0qRT ´ σp∇vCq ` H0fq}2
L2pΩq ` }p1 ´ Π0qf}2

L2pΩq

` }p1 ´ Π0qqRT}2
L2pΩq ` }Π0f ` div qRT}2

L2pΩq

À }qRT ´ σp∇vCq}2
L2pΩq ` }f ` div qRT}2

L2pΩq

À }p ´ qRT}2
Hpdiv,Ωq ` ~u ´ vC~2. [\

4.2 Existence and uniqueness of discrete solutions

The existence of discrete solutions follows from variational arguments, while their
uniqueness is fairly open.

Proposition 4.3 The discrete problem (3.5) has a solution.



Nonlinear dPG methods 19

Proof The proof follows with the direct method in the calculus of variations and,
in the present case of finite dimensions, from the global minimum of a continuous
functional on a compact set from the growth condition

lim
}ξh}X Ñ8

}F ´ Bξh}Y ˚
h

“ 8. (4.1)

The latter property follows from Theorem 4.1 up to some perturbation terms. The-
orem 3.11 shows

}p1 ´ Π0qqRT}L2pΩq ď }hT Π0f}L2pΩq ` hmax}Π0f ` div qRT}L2pΩq

ď }hT Π0f}L2pΩq ` hmax}F ´ Bξh}Y ˚
h

.

The combination with Theorem 4.1 shows that the right-hand side of Theorem 4.1
is bounded from above by

p1 ` 2h2
maxq}F ´ Bξh}2

Y ˚
h

` 2h2
max}Π0f}2

L2pΩq ` }p1 ´ Π0qf}2
L2pΩq

ď p1 ` 2h2
maxqp}F ´ Bξh}Y ˚

h

` }f}L2pΩqq.

Hence the left-hand side in Theorem 4.1 is controlled by this and so

}x ´ ξh}X À }F ´ Bξh}Y ˚
h

` }f}L2pΩq.

Since f and x are fixed, this implies (4.1) and concludes the proof. [\

The uniqueness of the exact solution pu, tq on the continuous level does not imply
the uniqueness of discrete solutions. There is, however, a sufficient condition for a
global unique discrete solution. Notice that vh “ v “ 0 on the continuous level h “ 0
satisfies (4.2).

Theorem 4.4 (a posteriori uniqueness) Suppose that puh, vhq P S1
0 pT qˆCR1

0pT q
solves (R) with Dσ P CpRn;Rnˆn

sym q globally Lipschitz continuous and

LippDσqp1 ` C2
Fq{γ2

1 } ∇NC vh}L8pΩq ă 1 (4.2)

with the Friedrichs constant CF from } ‚ }L2pΩq ď CF~ ‚ ~ in H1
0 pΩq. Then (R) has

exactly one solution puh, vhq P S1
0 pT q ˆ CR1

0pT q.

Proof Suppose that pruh, rvhq P S1
0 pT q ˆ CR1

0pT q solves (R) as well and so

apvh, vhq “ F pvhq ´
ż

Ω

σp∇uhq ¨ ∇NC vh dx

“ aprvh, vhq `
ż

Ω

pσp∇ruhq ´ σp∇uhqq ¨ ∇NC vh dx.

This and the second equation of (R) imply

apvh ´ rvh, vhq “
ż

Ω

∇NC vh ¨ pσp∇ruhq ´ σp∇uhq ´ Dσp∇uhq∇pruh ´ uhqq dx.
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Since σ P C1pRnq is bounded and Dσ Lipschitz continuous, any A, B P R
n with

F psq – p1 ´ sqA ` sB for 0 ď s ď 1 satisfy

|σpBq ´ σpAq ´ DσpAqpB ´ Aq| “ |
ż 1

0

pDσpF psqq ´ DσpAqqpB ´ Aq ds|

ď LippDσq|B ´ A|
ż 1

0

|F psq ´ A| ds “ 1

2
LippDσq|B ´ A|2.

With A “ ∇uhpxq and B “ ∇ruhpxq for a.e. x and an integration over Ω, this leads
in the preceding identity to

apvh ´ rvh, vhq ď 1

2
LippDσq} ∇NC vh}L8pΩq~uh ´ ruh~2. (4.3)

The discrete solutions of (R) lead to the same minimal discrete residual norm and
hence

}vh}Yh
“ }F ´ bpuh, th; ‚ q}Y ˚

h

“ }F ´ bpruh, rth; ‚ q}Y ˚
h

“ }rvh}Yh
.

This shows apvh ´ rvh, vh ` rvhq “ 0 and the combination with (4.3) is

}vh ´ rvh}2
Yh

“ 2apvh ´ rvh, vhq ´ apvh ´ rvh, vh ` rvhq
ď LippDσq} ∇NC vh}L8pΩq~uh ´ ruh~2.

(4.4)

On the other hand, DσpAq P R
nˆn
sym has eigenvalues in the compact interval rγ1, γ2s Ă

p0, 8q and so, for all A, B P R
n,

γ1|A ´ B|2 ď
ż 1

0

pA ´ Bq ¨ DσpB ` spA ´ BqqpA ´ Bq ds

“ pσpAq ´ σpBqq ¨ pA ´ Bq ď γ2|A ´ B|2.

(4.5)

With A “ ∇uhpxq and B “ ∇ruhpxq, and an integration over a.e. x P Ω, this shows

γ1~uh ´ ruh~2 ď
ż

Ω

pσp∇uhq ´ σp∇ruhqq ¨ ∇puh ´ ruhq dx.

The first identity in (R) for puh, vhq and pruh, rvhq, respectively, results in

ż

Ω

pσp∇uhq ´ σp∇ruhqq ¨ ∇puh ´ ruhq dx “ aprvh ´ vh, uh ´ ruhq

ď }vh ´ rvh}Yh

b
1 ` C2

F~uh ´ ruh~.

The combination with the previous inequality shows

γ1~uh ´ ruh~ ď
b

1 ` C2
F}vh ´ rvh}Yh

. (4.6)

The substitution in (4.4) results in

}vh ´ rvh}2
Yh

ď LippDσqp1 ` C2
Fq{γ2

1 } ∇NC vh}L8pΩq}vh ´ rvh}2
Yh

.

This and (4.2) show vh “ rvh. Then (4.6) implies uh “ ruh. [\
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4.3 Best-approximation

For any v P H1pT q, the nonconforming interpolation I loc
NCv P P1pT q is defined, on

each triangle T P T , by piecewise linear interpolation of the values

pI loc
NCvqpmidpEqq – ´

ż

E

v
ˇ̌
T

ds (4.7)

at the midpoints of the sides E P EpT q.

Proposition 4.5 The operator Π – I loc
NC satisfies Hypothesis 2.5.

Proof Given v P H1pT q, set vh – I loc
NCv P P1pT q. For every K P T , an integration by

parts leads to

∇
`
vh

ˇ̌
K

˘
“

ż

BK

vh ¨ νK ds “
ż

BK

v ¨ νK ds “
ż

K

∇ v dx
M

|K|.

Since ∇ wC P P0pT ;Rnq and (3.2) shows Dσp∇ uCq P P0pT ;Rnˆnq for all wC , uC P
S1

0 pT q, this implies
ż

Ω

∇ wC ¨ pDσp∇ uCq ∇NCpv ´ vhqq dx “ 0.

Moreover, (4.7) guarantees that any s0 P P0pEq satisfies

xs0, v ´ vhyBT “ 0.

Consequently, any xh “ puC , t0q P Xh and ξh “ pwC , s0q P Xh satisfy

b1pxh; ξh, v ´ vhq “
ż

Ω

∇ wC ¨ pDσp∇ uCq ∇NCpv ´ vhqq dx ´ xs0, v ´ vhyBT “ 0. [\

The estimates for the function Dσ from Subsection 3.1 lead to an explicit generic
constant for the best-approximation estimate from Theorem 2.8 without any local
hypothesis.

Theorem 4.6 (best-approximation) Let x “ pu, tq P X be the unique solution to
Bpxq “ F for the nonlinear map B from (3.4) in Section 3.3. Any discrete solution
puh, th; vhq P Xh ˆ Yh to (3.5) satisfies

~u ´ uh~ ` }vh}Y À inf
uCPS1

0
pT q

~u ´ uC~ ` inf
t0PP0pEq

}t ´ t0}H´1{2pBT q.

Proof Given the best-approximation x˚
h “ pu˚

h , t˚
hq P Xh to pu, tq in Xh and let

A “ ∇u˚
hpxq and B “ ∇uhpxq in (4.5) and integrate over a.e. x P Ω. Then

γ1~u˚
h ´ uh~2 ď

ż

Ω

`
σp∇ u˚

hq ´ σp∇ uhq ¨ ∇pu˚
h ´ uhq

˘
dx

“ bpx˚
h ; u˚

h ´ uhq ´ bpxh; u˚
h ´ uhq.

Since bpu, t; ‚ q “ F , the last term is equal to

F pu˚
h ´ uhq ´ bpxh; u˚

h ´ uhq ` bpx˚
h ; u˚

h ´ uhq ´ bpu; u˚
h ´ uhq

“ apvh, u˚
h ´ uhq `

ż

Ω

`
σp∇ u˚

hq ´ σp∇ uq
˘

¨ ∇pu˚
h ´ uhq dx.

(4.8)
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The Lipschitz continuity from Remark 3.1 leads to

}σp∇ uq ´ σp∇ u˚
hq}L2pΩq ď γ2~u ´ u˚

h~ (4.9)

and the last term in (4.8) is controlled by

ż

Ω

`
σp∇ u˚

hq ´ σp∇ uq
˘

¨ ∇pu˚
h ´ uhq dx ď γ2~u ´ u˚

h~ ~u˚
h ´ uh~. (4.10)

Since xh is a global discrete minimizer,

}vh}Y “ }F ´ bpxh; ‚ q}Y ˚
h

ď }F ´ bpx˚
h ; ‚ q}Y ˚

h

“ }bpx; ‚ q ´ bpx˚
h ; ‚ q}Y ˚

h

.

The Lipschitz continuity (4.9) of σ and the structure of the map b from (3.4) show
that the last term is ď γ2~u ´ u˚

h~ ` }t ´ t˚
h}H´1{2pBT q. The combination of }vh}Y ď

γ2~u ´ u˚
h~ ` }t ´ t˚

h}H´1{2pBT q with (4.8) and (4.10) shows

γ1~u˚
h ´ uh~ ď

b
1 ` C2

F}vh}Y ` γ2~u ´ u˚
h~.

A triangle inequality concludes the proof with explicit constants

~u ´ uh~ ď p1 ` γ2p1 `
b

1 ` C2
Fq

L
γ1q inf

uCPS1

0
pT q

~u ´ uC~

` γ2

b
1 ` C2

F

L
γ1 inf

t0PP0pEq
}t ´ t0}H´1{2pBT q. [\

The following a posteriori error estimate holds for any discrete approximation,
and even for inexact solve, and generalizes the built-in error control despite inexact
solve of [5, Thm. 2.1] to the nonlinear model problem at hand.

Theorem 4.7 (a posteriori) There exist universal constants κ « 1 « CdF such
that the exact solution pu, tq P X of Bpxq “ F and any discrete pvC , s0q P S1

0 pT q ˆ
P1pT q satisfy

γ2
1 ~u ´ vC ~2 ď p1 ` C2

dFq}F ´ bpvC , s0; ‚ q}2
CR1

0
pT q˚ ` κ2}hT f}2

L2pΩq.

Remark 4.8 The proof reveals that CdF is the constant in the discrete Friedrichs
inequality [4, p. 301] } ‚ } ď CdF} ∇NC ‚ } in CR1

0pT q. The explicit bounds of CdF

in [10] allow quantitative estimates in 2D and show in particular CdF ď 6.24 for a
convex domain with diampΩq ď 1 and a triangulation with right isosceles triangles.

Remark 4.9 The proof reveals that κ is the constant in interpolation error estimate
for the nonconforming interpolation operator }h´1

T
p1 ´ INCqv} ď κ} ∇NCp1 ´ INCqv}

for v P H1pΩq. An estimate with the first positive root j1,1 of the Bessel function of
the first kind in [7, Thm. 4] in 2D reads κ “ p1{48 ` 1{j2

1,1q1{2 “ 0.29823.

Proof (of Theorem 4.7) The estimate (4.5) with A “ ∇ upxq, B “ ∇ uhpxq, e –

u ´ uh, and an integration over a.e. x P Ω leads to

γ1~e~2 ď
ż

Ω

`
σp∇ uq ´ σp∇ uhq

˘
¨ ∇ e dx. (4.11)



Nonlinear dPG methods 23

Since pu, tq P X solves bpu, t; ‚ q “ F in Y ˚ and with the nonconforming interpolation
operator (4.7), this is equal to

F peq ´
ż

Ω

σp∇ uhq ¨ ∇ e dx “ F pp1 ´ INCqeq ` F pINCeq ´
ż

Ω

σp∇ uhq ¨ ∇NC INCe dx

“ F pp1 ´ INCqeq ` F pINCeq ´ bpuh, th; INCeq
ď F pp1 ´ INCqeq ` }F ´ bpuh, th; ‚ q}CR1

0
pT q˚ }INCe}Yh

.

The interpolation error estimate for the nonconforming interpolation operator with
constant κ [7, Thm. 4] yields

F pp1 ´ INCqeq ď κ}hT f}L2pΩq~e ´ INCe~NC.

The discrete Friedrichs inequality [4, p. 301] and INCe P CR1
0pT q prove

}INCe}Yh
ď

b
1 ` C2

dF~INCe~NC.

The Cauchy inequality in R
2 and the theorem of Pythagoras imply

γ1~e~2 ď
`
κ2}hT f}2

L2pΩq ` p1 ` C2
dFq}F ´ bpuh, th; ‚ q}2

CR1

0
pT q˚

˘1{2~e~NC. [\

4.4 Other nonlinear dPG methods

This section illustrates the plethora of dPG methodology by introducing the primal
mixed, the dual, and the ultraweak dPG method for the nonlinear model problem.
All three methods concern the first-order system of (3.1) with the convex function
ϕ and σ “ Dpϕ ˝ | ‚ |q and its dual ϕ˚ so that the relation p “ σp∇uq is equivalent
to ∇u “ Dϕ˚p|p|q sign p on the continuous level. Recall the space of functions with
piecewise divergence Hpdiv; T q –

ś
T PT

Hpdiv; T q from [8] as well as the piecewise
version RT NC

k pT q Ă Hpdiv; T q of RTkpT q, and the subspace Sk
0 pEq ” Sk

0 pT q
ˇ̌
BT

of

H
1{2

0 pBT q – ts “ psT qT PT P
ś

T PT
H1{2pBT q | Dv P H1

0 pΩq, @T P T , sT “ pv|T q|BT u.

Recall the primal nonlinear dPG method (dPG) in Section 3.3 with b from (3.4)
and general polynomial degree k ě 0 and m ě k in the discrete spaces

Xh :“ Sk`1
0 pT q ˆ PkpEq and Yh :“ Pm`1pT q.

The primal mixed nonlinear dPG method departs from a piecewise integration
by parts and employs the spaces and discrete subspaces

X :“ L2pΩ;Rnq ˆ H1
0 pT q ˆ H1{2pBT q and Y :“ L2pΩ;Rnq ˆ H1pT q,

Xh :“ PkpT ;Rnq ˆ Sk`1
0 pT q ˆ PkpEq and Yh :“ PmpT ;Rnq ˆ Pm`1pT q.

For pp, u, tq P X and pq, vq P Y , define (dPG) with F pq, vq :“ pf, vqL2pΩq and

bpp, u, t; q, vq :“ pp ´ σp∇uq, qqL2pΩq ` pp, ∇NC vqL2pΩq ´ xt, vyBT .
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The dual nonlinear dPG method utilizes the spaces and discrete subspaces

X :“ Hpdiv; Ωq ˆ L2pΩq ˆ H
1{2

0 pBT q and Y :“ Hpdiv; T q ˆ L2pΩq,
Xh :“ RTkpT q ˆ PkpT q ˆ Sk`1

0 pEq and Yh :“ RT NC
m pT q ˆ PmpT q.

For F as before and pp, u, sq P X and pq, vq P Y , define (dPG) with bpp, u, s; q, vq :“

pDϕ˚p|p|q sign p, qqL2pΩq ` pu, divNC qqL2pΩq ´ pdiv p, vqL2pΩq ´ xq ¨ ν, syBT .

The ultraweak nonlinear dPG method utilizes a piecewise integration by parts
in both equations of the first-order system and the spaces

X :“ L2pΩ;Rnq ˆ L2pΩq ˆ H1{2pBT q ˆ H
1{2

0 pBT q and Y :“ Hpdiv; T q ˆ H1pT q,
Xh :“ PkpT ;Rnq ˆ PkpT q ˆ PkpEq ˆ Sk`1

0 pEq and Yh :“ RT NC
m pT q ˆ Pm`1pT q.

For F from the above primal mixed method and pp, u, t, sq P X and pq, vq P Y , define
(dPG) with

bpp, u, t, s; q, vq :“ pDϕ˚p|p|q sign p, qqL2pΩq ` pp, ∇NC vqL2pΩq ` pu, divNC qqL2pΩq

´ xq ¨ ν, syBT ´ xt, vyBT .

The linear version is analysed in [18,2,6,8]. The four nonlinear dPG methods may
be further analysed in the spirit of this section.

5 Numerical experiments

This section presents numerical experiments with the LS-FEM of Subsection 3.5.

5.1 Computational realization

Given f P L2pΩq, the discrete solution of (3.7) is solved by a Newton scheme with an
initial iterate from the solution of the scaled linear Poisson model problem. Let S1

0 pT q
be endowed with the energy norm ~ ‚ ~ and RT0pT q with } ‚ }Hpdiv,Ωq and let ~ ‚ ~˚

denote the norm of the dual space of S1
0 pT q ˆ RT0pT q. The first Fréchet derivative

DLSpf ; uC, pRTq of LSpf ; ‚ q belongs to the dual space of S1
0 pT q ˆ RT0pT q. After at

most 5 Newton iterations, every displayed discrete solution puh, phq in the following
subsections satisfy ~ DLSpf ; uh, ph, ‚ q~˚ “ 0 up to machine precision. In the case of
successive mesh-refinement, the iteration starts with the prolongated solution from
the coarser triangulation and terminates in at most 3 or 4 iterations.

Table 5.1 presents the errors ~ DLSpf ; u
pjq
h , p

pjq
h , ‚ q~˚ of the Newton iterate

pupjq
h , p

pjq
h q for j “ 0, 1, . . . , 5 on fixed triangulations of the square domain from Sub-

section 5.2 and the L-shaped domain from Subsection 5.4 with the convex function
φ from Example 3.2.a. The iterations (A) and (B) utilize a uniform triangulation of
the square domain with 4 096 triangles (ndof “ 8 193) and an initial iterate from
a Poisson model problem for (A) and a weighted Poisson problem with constant
weight 2.5 in (B). The adaptive mesh of the L-shaped domain with 3 450 triangles
(ndof “ 6.901) in (C) and (D) has been generated by the algorithm from Subsec-
tion 5.3 below at level ℓ “ 12. Iteration (C) starts with a weighted Poisson solution
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niter (A) (B) (C) (D)

0 1.67431 ¨ 101 8.73230 ¨ 100 6.43125 ¨ 100 1.16987 ¨ 10´1

1 2.20124 ¨ 100 7.69274 ¨ 10´2 4.19439 ¨ 10´2 1.94092 ¨ 10´3

2 1.59872 ¨ 10´1 2.13909 ¨ 10´4 8.04263 ¨ 10´5 3.30072 ¨ 10´6

3 9.61529 ¨ 10´4 1.74101 ¨ 10´9 3.74273 ¨ 10´10 1.17441 ¨ 10´11

4 4.11730 ¨ 10´8 1.12689 ¨ 10´14 6.11156 ¨ 10´15 6.26485 ¨ 10´15

5 1.13667 ¨ 10´14 1.09142 ¨ 10´14 5.70819 ¨ 10´15 5.93587 ¨ 10´15

6 1.11131 ¨ 10´14 1.10550 ¨ 10´14 5.92760 ¨ 10´15 5.82990 ¨ 10´15

7 1.09108 ¨ 10´14 6.03978 ¨ 10´15

8 1.14493 ¨ 10´14

Table 5.1 Convergence history of Newton iteration for 4 representative examples.

with constant factor 2.5 and (D) with the prolongated solution from the previous
mesh.

From the very beginning of the Newton iteration, all values in Table 5.1 provide
numerical evidence for Q-quadratic convergence.

In order to investigate the uniqueness of discrete solutions, the minimal and the
maximal eigenvalue λmin and λmax of the Hessian matrix D2LSpf ; uh, ph; ‚ , ‚ q of
the least-squares functional is computed, where puh, qhq P Xh and λ P R satisfy, for
all prvh, rqhq P Xh,

D2LSpf ; uh, ph; vh, qh, rvh, rqhq “ λ
`
aNCpvh, rvhq ` pqh, rqhqHpdiv,Ω

˘
. (5.1)

The value λmin is uniformly bounded from zero for the examples in the following
subsections, so that every computed discrete solution puh, phq is a local minimizer.

For any discrete approximation puh, phq, Theorem 3.11 and 4.7 verify the a pos-
teriori error estimator η2pT q – LSpf ; uh, phq ` }hT f}2

L2pΩq even for inexact solve in

its computation. In view of a lacking proof in Subsection 5.4 below that the com-
puted discrete solution is in fact a global discrete minimizer (at least up to machine
precision), it is only by this universal a posteriori error control that we know that
the computed approximations converge to the exact solution.

5.2 Numerical example on square domain

This subsection considers the nonlinear model problem for the exact solution

upxq – cospπx1{2q cospπx2{2q for x P Ω – p´1, 1q2

with homogeneous Dirichlet boundary conditions, f – ´ divpσp∇ uqq, and φ from
Example 3.2.a. This defines the exact stress function p – σp∇ uq P Hpdiv, Ωq.

Figure 5.1 displays the error estimator ηℓ – ηpTℓq at the discrete solutions puℓ, pℓq
on each level ℓ of a sequence of uniform triangulations as well as the error to the
exact solution pu, pq. The reference energy Epuq “ ´5.774337908509 in the energy
difference Epuℓq ´ Epuq ě γ1~u ´ uℓ~2{2 has been approximated by the energies
of P1-conforming finite element solution with an Aitken ∆2 extrapolation. The ei-
genvalues of (5.1) in all experiments of Figure 5.1 satisfy 1.597 ď λmin ď 1.722
and 9.943 ď λmax ď 16.128 and so prove that the discrete solutions are local min-
imizers. The parallel graphs confirm the equivalence of the built-in error estimator
}yℓ}Y “ pLSpf ; uℓ, pℓqq1{2 with the exact error from Theorem 4.1.
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Fig. 5.1 Convergence history for a sequence of uniform triangulations of the square domain
with exact solution u from Subsection 5.2.

With the Friedrichs constant CF “
?

2{π of the square domain, the criterion (4.2)
is equivalent to } ∇NC vh}L8pΩq ă γ2

1 LippDσq´1p1 ` C2
Fq´1 “ 0.17239892 and so

Figure 5.1 shows that the criterion (4.2) holds for each level ℓ ě 6 and Theorem 4.4
implies global uniqueness of the computed puℓ, pℓq. This proves that there exists only
one local minimizer in the discrete problem (dPG).

5.3 Adaptive mesh-refinement

The natural adaptive algorithm with collective Dörfler marking [20] utilizes the local
error estimator η2pT , T q – }pInˆn `S0q´1{2

`
Π0pRT ´σp∇uCq`H0f

˘
}2

L2pT q `}Π0f `
div pRT}2

L2pT q `}hT f}2
L2pT q for any puC , pRTq P S1

0 pT qˆRT0pT q and T P T as follows.

Input: Regular triangulation T0 of the polygonal domain Ω into simplices.

for any level ℓ “ 0, 1, 2, . . . do
Solve generalized LS-FEM with respect to triangulation Tℓ and solution puℓ, pℓq.
Compute error estimator ηℓ – ηpTℓq.
Mark a subset Mℓ Ď Tℓ of (almost) minimal cardinality |Mℓ| with

0.3 η2
ℓ ď η2

ℓ pMℓq –

ÿ

T PMℓ

η2pTℓ, T q

Compute smallest regular refinement Tℓ`1 of Tℓ with Mℓ Ď TℓzTℓ`1 by newest-
vertex bisection (NVB). od

Output: Sequence of discrete solutions puℓ, pℓqℓPN0
and triangulations pTℓqℓPN0

.

See [26] for details on adaptive mesh-refinement and NVB.
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Fig. 5.2 Solution uh for different functions φ on a uniform triangulation of the L-shaped
domain into 768 (ndof “ 1 537).
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(a) φ from Example 3.2.a, mesh with 1 783
triangles (ndof “ 3 567).
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(b) φ from Example 3.2.b, mesh with 1 838
triangles (ndof “ 3 677).

Fig. 5.3 Adaptively refined triangulation Tℓ for different functions φ.

5.4 Numerical example on L-shaped domain

This subsection considers f ” 1 on the L-shaped domain Ω – p´1, 1q2zr0, 1s2 Ă R
2

with homogeneous Dirichlet boundary data u|BΩ ” 0 and unknown exact solution u.
Figure 5.2 displays the corresponding discrete solutions uh on a uniform triangulation
of Ω for the different functions φ from Example 3.2.a and b.

Figure 5.3 shows two typical adaptively generated triangulations with consider-
able refinement at the re-entrant corner for different functions φ. At first glance, the
meshes appear similar and resemble the undisplayed adaptive triangulation from the
Poisson model problem.

For φ from Example 3.2.a, Figure 5.4 shows the convergence history plot of the
natural least-squares error estimator ηℓ “ ηpTℓq and the difference of the energy
Epuℓq of the solution uℓ and a reference energy Epuq “ ´3.657423002939 ˆ 10´2
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Fig. 5.4 Convergence history for adaptive mesh-refinement (solid lines) and uniform mesh-
refinement (dotted lines) with φ from Example 3.2.a.

(computed by the energies of P1-conforming finite element solutions with an Aitken
∆2 extrapolation).

The eigenvalues of (5.1) in all experiments satisfy 1.787 ď λmin ď 1.914 and
16.682 ď λmax ď 17.932 and so prove that all the discrete solutions are local minim-
izers. The function φ from Example 3.2.b leads to (undisplayed) similar results.

For the L-shaped domain, the smallest eigenvalue λ1 “ 9.6397238 of the Lapla-
cian with homogeneous Dirichlet boundary conditions yields the Friedrichs constant
CF “ 1{

?
λ1 “ 0.32208293. Since } ∇NC vℓ}L8pΩq ě γ2

1 LippDσq´1p1 ` C2
Fq´1 “

0.22650326 for all level ℓ P N0 in Figure 5.4, Theorem 4.4 is not applicable to any
triangulation Tℓ of the computation at hand.

To guarantee optimal convergence rates for least-squares FEMs with an altern-
ative a posteriori error estimator, the choice of a sufficiently small bulk parameter is
crucial [11,14]. However, for the natural error estimator with the values of the least-
squares functional, the plain convergence proof of [12] requires the bulk parameter
sufficiently close to 1. For the nonlinear model problem at hand, the convergence his-
tory plot in Figure 5.4 provides numerical evidence for optimal convergence rates for
adaptive mesh-refinement of Subsection 5.3 and suboptimal convergence for uniform
refinement.
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