
Abstract We use the H-matrix technology to compute the approximate square root of a covariance
matrix in linear cost. This allows us to generate normal and log-normal random fields on general point
sets with optimal cost. We derive rigorous error estimates which show convergence of the method. Our
approach requires only mild assumptions on the covariance function and on the point set. Therefore, it
might be also a nice alternative to the circulant embedding approach which applies only to regular grids
and stationary covariance functions.

ar
X

iv
:1

70
2.

08
63

7v
4

 [
m

at
h.

N
A

]
 4

 J
an

 2
01

8

Noname manuscript No.
(will be inserted by the editor)

Fast random field generation with H-matrices

Michael Feischl · Frances Y. Kuo · Ian H. Sloan

Received: date / Accepted: date

1 Introduction

Generating samples of random fields is a common bottleneck in simulation and modeling of real life phe-
nomena as, e.g., structural vibrations [6], groundwater flow [8], and composite material behavior [1]. A
standard approach is to truncate the Karhunen-Loève expansion of the random field. This can, particu-
larly for rough fields with short correlation length, be very expensive, as many summands of the expansion
have to be evaluated to compute a decent approximation. Often, it suffices to evaluate the random field
only on some particular (quadrature) nodes. If the random field Z(x, ω) is Gaussian with given covariance
function %(·, ·), it is well-known that the evaluation at the quadrature nodes x1, . . . ,xN can be done by
computing the square-root of the corresponding covariance matrix C = (%(xi,xj))i,j∈{1,...,N} ∈ RN×N ,
i.e.,

Z(xi, ω) =
(
C1/2z(ω)

)
i

for all i ∈ {1, . . . , N},

where z(ω) ∈ RN is a vector of i.i.d. standard normal random numbers. Since each evaluation requires

a matrix-vector multiplication with C1/2, a direct approach requires O(N2) operations for the multipli-
cation plus O(N3) operations for computing the square-root itself and thus is prohibitively expensive.
An efficient method first proposed in [4,3] is circulant embedding, which employs fast FFT techniques
to realize the factorization and the matrix-vector multiplication in O(N log(N)) operations. This ap-
proach, however, works solely for stationary covariance functions %(x,y) = ρ(|x− y|) and regular grids
of quadrature nodes. Since non-stationary covariance functions are of great interest for the modeling
of natural structures (e.g., porous rock, wood,. . .), and since finite element methods often use irregular
grids, we propose a new method which removes both restrictions.

The idea is to approximate the covariance matrix C by an H2-matrix, as described in, e.g, [2], and to
use an iterative method to compute an approximation Zk,p(z) (k and p are parameters of the methods,

see below) to C1/2z for any z ∈ RN . We therefore obtain the approximation to the random field by
feeding the algorithms with i.i.d. standard normal random vectors z(ω) ∈ RN , i.e.,

Z(xi, ω) ≈ Zk,p(z(ω))i for all i ∈ {1, . . . , N}.

This is feasible since matrix-vector multiplication with H2-matrices can be done in O(N) operations.
The only assumption on the covariance function of the random field is that it is asymptotically smooth.
We propose two iterative algorithms, each with individual advantages for smooth or rough random fields.
This algorithms might also be of interest for the approximation of random fields with covariance kernels
of random solutions of certain stochastic operator equations, as considered in [5].

The idea to use H-matrices for random field approximation has already been used indirectly in [16,
11], where the authors efficiently compute eigenfunctions of the covariance operator by use of H-matrix
techniques.

M. Feischl, F.Y. Kuo, I.H. Sloan
School of Mathematics and Statistics, UNSW Sydney, NSW 2052
Tel.: +61-2-93857076
E-mail: m.feischl@unsw.edu.au, f.kuo@unsw.edu.au, i.sloan@unsw.edu.au

2

1.1 Notation

Throughout the text, α . β denotes α ≤ Cβ for some generic constant C > 0 and α ' β means α . β
and β . α. The notation | · | has several unambiguous meanings: for vectors, it denotes the euclidean
norm, while for sets, | · | is the natural measure, which is the Lebesgue measure (volume, area) for
continuous sets and the counting measure (cardinality) for finite sets. The notation ‖ · ‖2 is used for the

spectral matrix norm and |z|p := (
∑N
j=1 |zi|p)1/p for all z ∈ RN denotes the `p-norm. By Pk we denote

the set of polynomials of maximal degree k. For brevity, we write | · | := | · |2. We denote the maximal
and minimal eigenvalues of a positive definite and symmetric matrix M ∈ RN×N by

λmax(M) := sup
z∈RN\{0}

|Mz|
|z|

and λmin(M) := inf
z∈RN\{0}

(Mz)Tz

|z|2
.

We denote the k-th component of a vector v ∈ RN by vk, whereas sequences of vectors are denoted by
v1,v2,

2 Model Problem

Let (Ω,Σ,P) be a probability space and let D ⊆ Rd, d ∈ N be a Lipschitz domain. We consider a random
field which is normal or log-normal,

Z(x, ω) or exp(Z(x, ω)) for all ω ∈ Ω, x ∈ D

for some zero-mean Gaussian random field Z(·, ·) (note that the assumption on the mean is purely for
brevity of presentation). The covariance function % : D × D → R of Z(·, ·) is assumed asymptotically
smooth: that is, % ∈ C∞

({
(x,y) ∈ D ×D : x 6= y

})
and there exist constants c1, c2 > 0 such that

|∂αx∂βy%(x,y)| ≤ c1(c2|x− y|)−|α|1−|β|1 |α+ β|1! for all x 6= y ∈ D, (1)

for all multi-indices α, β ∈ Nd0 with |α|1 + |β|1 ≥ 1. (The expert reader will notice that the original
definition of asymptotically smooth includes a singularity order. As our covariance functions are always
finite in value, we do not consider this.) The goal of this work is to derive an efficient method which
evaluates the random field at certain (quadrature) points N ⊆ D, where N = {x1, . . . ,xN} is a finite
set, i.e., we aim to approximate(

Z(x, ω)
)
x∈N

∈ RN or
(

exp(Z(x, ω))
)
x∈N

∈ RN

for given ω ∈ Ω.

2.1 Examples of valid covariance functions

The condition above includes the important class of isotropic stationary covariance functions of Matérn
form, e.g.,

%(x,y) = σ2 21−µ

Γ (µ)

(√
2µ
|x− y|p

λ

)µ
Kµ

(√
2µ
|x− y|p

λ

)
, (2)

where Γ (·) is the gamma function, Kµ is the modified Bessel function of second kind, and λ, σ > 0,
µ ∈ (0,∞], p ∈ N are parameters. For µ = 1/2, the above function takes the form

%(x,y) = σ2 exp
(
− |x− y|p

λ

)
and the limit case µ =∞ satisfies

%(x,y) = σ2 exp
(
−
|x− y|2p

2λ2

)
.

3

Also much more general non-stationary, non-isotropic covariance functions, e.g.,

%(x,y) := σ2 det(Σx)1/4det(Σy)1/4√
2det(Σx +Σy)1/2

exp
(
− (x− y)T

(Σx +Σy)−1

2
(x− y)

)
. (3)

satisfy the assumptions. Here, Σ(·) : D → Rd×d is a smooth mapping into the symmetric positive definite
matrices and σ > 0 is a parameter. This covariance function was first suggested in [12] to model spatially
dependent anisotropies in a material.

Lemma 1 The covariance functions from (2) satisfy (1). Assume the mapping x 7→ Σx satisfies (for
any matrix norm ‖ · ‖)

sup
α∈Nd

sup
x∈D
‖∂αxΣx‖ <∞. (4)

Then, the covariance function from (3) is asymptotically smooth (1).

We postpone the proof of the lemma to Appendix A.

3 Sampling the random field

By definition, Z(x, ·), x ∈ N is a Gaussian random field with covariance matrix C ∈ RN×N , N = |N |,
and Cij = %(xi,xj), where we write N := {x1, . . . ,xN}. The main goal of this section is to establish a

new way to efficiently approximate C1/2z for given z ∈ RN . Roughly, the strategy is to approximate C
by an H2-matrix and to benefit from the fast matrix-vector multiplication provided by it. This allows
us to efficiently approximate Az (without actually factorizing the matrix C).

3.1 H2-matrix approximation of the covariance matrix

Given the finite set of evaluation points N := {x1, . . . ,xN} ⊂ D, we approximate the covariance matrix
C ∈ RN×N , Cij := %(xi,xj) by an H2-matrix Cp via interpolation of order p ∈ N.

In the following, we recall the definition of H2-matrices and the approximation process as laid out
in, e.g., [2]. The rough idea is to partition the index set of the covariance matrix into far-field blocks,
which can be approximated efficiently by interpolation of the covariance function, and near-field blocks,
which are stored exactly.

3.1.1 Block partitioning

For each subset X ⊆ N , we denote by BX ⊆ Rd, the smallest axis-parallel box such that X ⊆ BX . We
build a binary tree of clusters in the following way. Let Xroot := N = {x1, . . . ,xN} denote the root of
the tree which has level zero level(Xroot) = 0 by definition. For each node of the tree X with |X| > Cleaf

for some cut-off constant Cleaf≥ 2 (usually Cleaf ≈ 20), we define two sons of X as follows: Split BX in
half along its longest edge into B0 ∪ B1 = BX . Define sons(X) := {X0, X1} with X0 := X ∩ B0 and
X1 := X \ X0 and set level(Xi) = level(X) + 1 for i = 0, 1. For a node X with |X| ≤ Cleaf , we define
sons(X) := ∅. This procedure generates a binary tree denoted by Tcl (where cl stands for cluster) and
guarantees that its leaves satisfy |X| ≤ Cleaf .

For a parameter η > 0, we consider the admissibility condition for axis parallel boxes B,B′ ⊆ Rd

max{diam(B),diam(B′)} ≤ η dist(B,B′), (5)

where the euclidean distance between the bounding boxes is defined by

dist(B,B′) := inf
x∈B,y∈B′

|x− y|.

4

The condition (5) will be used to build the block-cluster tree T ⊆ Tcl × Tcl as follows. The root of T is
(Xroot, Xroot). For each node (X,Y) ∈ T of the tree, define sons(X,Y), the set of sons, as:

if BX and BY satisfy (5) or if sons(X) = ∅ = sons(Y) set sons(X,Y) = ∅
else if sons(Y) 6= ∅ and sons(X) = ∅ set sons(X,Y) = {X} × sons(Y)
else if sons(X) 6= ∅ and sons(Y) = ∅ set sons(X,Y) = sons(X)× {Y }

else sons(X) 6= ∅ and sons(Y) 6= ∅ set sons(X,Y) = sons(X)× sons(Y)

We also define the level as level(Xroot, Xroot) = 0 and level(X,Y) = level(X ′, Y ′) + 1 for (X,Y) ∈
sons(X ′, Y ′). Further, we define

Tfar :=
{

(X,Y) ∈ T : sons(X,Y) = ∅ and BX , BY satisfy (5)
}

as well as

Tnear :=
{

(X,Y) ∈ T : sons(X,Y) = ∅ and BX , BY do not satisfy (5)
}
.

Note that by definition of the block-cluster tree T, the set Tnear ∪ Tfar contains all the leaves of T.
Moreover, we see that for each (X,Y) ∈ T \ (Tnear ∪ Tfar), there holds

X × Y =
⋃

(X′,Y ′)∈sons(X,Y)

X ′ × Y ′

Therefore, Tnear ∪ Tfar is a partition of N × N in the sense that each pair of points (xi,xj) ∈ N × N
for 1 ≤ i, j ≤ N is contained in exactly one (X,Y) ∈ Tnear ∪ Tfar.

3.1.2 Interpolation

The blocks (X,Y) ∈ Tfar satisfy (5) and hence interpolation of the kernel function is highly accurate.
This allows us to store the matrix very efficiently. Let I(X) :=

{
i ∈ N : xi ∈ X

}
denote the index

set of X. The basic idea now is to replace C|I(X)×I(Y) by a low-rank approximation V XMXY (V Y)T

with V X ∈ R|X|×pd , MXY ∈ Rpd×pd , and V Y ∈ R|Y |×pd , where p is the interpolation order. The three
matrices are defined by Chebychev interpolation of the covariance function. To that end, let {qX1 , . . . , qXpd}
denote transformed, tensorial Chebychev nodes in BX with the corresponding Lagrange basis functions
LX1 , . . . , L

X
pd : BX → R. Given (X,Y) ∈ Tfar, we may approximate

%(x,y) ≈ cXYp (x,y) :=

pd∑
n,m=1

%(qXn , q
Y
m)LXn (x)LYm(y) for all x ∈ X,y ∈ Y.

For i, j ∈ {1, . . . , N} and n,m ∈ {1, . . . , pd}, this leads to

V X
in := LXn (xi), V Y

jm := LYm(xj), and MXY
nm := %(qXn , q

Y
m)

and hence

C|I(X)×I(Y) ≈ V XMXY (V Y)T .

The admissibility condition (5) guarantees that the approximation error converges to zero exponentially
in p, as we prove in Proposition 1 below. Further note that the Chebychev interpolation described above
is exact on polynomials of degree p. Thus, for X ∈ Tcl and xi ∈ X ′ ∈ sons(X), there holds with the

transfer matrices TX
′X := (LXn (qX

′

m))mn ∈ Rpd×pd

V X
in := LXn (xi) =

pd∑
m=1

LXn (qX
′

m)LX
′

m (xi) =

pd∑
m=1

LXn (qX
′

m)V X′

im = (V X′TX
′X)in.

Thus, it suffices to store V X only for the leaves of Tcl together with the transfer matrices TX
′X . This

enables very efficient storage and arithmetics for H2 matrices.
The capabilities of H2-matrices which we employ in this work are summarized below in Proposition 1.

To that end, we assume that the pointsN are approximately uniformly distributed, in the following sense.

5

Assumption 1 (quasi-uniform distribution) We say that N is quasi-uniformly distributed if there
exists a constant Cu > 0 such that

C−1u N−1/d ≤ min
x,x′∈N

|x− x′| ≤ sup
x∈D

min
x′∈N

|x− x′| ≤ CuN
−1/d.

Proposition 1 Suppose we have a covariance matrix C ∈ RN×N and an asymptotically smooth kernel
%(·, ·) and recall Assumption 1 on approximate uniform distribution of N . Then, there exists a constant
CH > 0 such that, for all p ∈ N0, the H2-matrix Cp ∈ RN×N constructed as above satisfies

‖C −Cp‖2 ≤ ‖C −Cp‖F :=
(N∑
i,j=1

|C −Cp|2ij
)1/2

≤ CHN(log(p) + 1)2d−1
(η

4c2

)p
. (6)

(The constant c2 is defined in (1).) The H2-matrix Cp is symmetric and can be stored using less than
CHp

2dN memory units. Moreover, given any vector x ∈ RN , it is possible to compute Cpx ∈ RN in less
than CHp

2dN arithmetic operations. The constant CH depends only on Cleaf and d. The matrix Cp is
positive definite if p is sufficiently large such that

CHN(log(p) + 1)2d−1
(η

4c2

)p
< λmin(C). (7)

We postpone the proof of the lemma to Appendix B.

3.2 Computing the square-root (Method 1)

Since C is positive definite in our case, a standard method is to compute the Cholesky factorization
LLT = C. This can be done using H2-matrices in almost linear cost (analyzed in [10] for H-matrices,
but the method transfers to H2-matrices). However, to the authors’ best knowledge, there is no complete
error analysis available, and due to the complicated structure of the algorithm, the worst-case error
estimate may be overly pessimistic. Therefore, we propose an iterative algorithm based on a variant of
the Lanczos iteration. Note that polynomial or rational approximations of the square root (as pursued
in, e.g., [17]) are doomed to fail since smooth random fields result in very badly conditioned covariance
matrices C (see also the numerical experiments below). This implies that a polynomial approximation
of the square root over the spectrum of C is very costly, whereas a rational approximation requires the
inverse of C which is hard to compute due to the bad condition number.

The idea behind the algorithm below is as follows. Given a positive definite symmetric matrix M ∈
RN×N and a vector z ∈ RN , the aim is to compute efficiently an approximation to M1/2z. For arbitrary
k ≤ N define the order-k Krylov subspace of M and z as

Kk := span{z,Mz,M2z, . . . ,Mk−1z). (8)

Assuming Kk is k-dimensional, consider the orthogonal matrix Q ∈ RN×k whose columns are the or-
thonormal basis vectors of the Krylov subspace, i.e., QTQ = Ik and range(Q) = Kk. Now define
U ∈ Rk×k by

U := QTMQ.

If k = N then QQT = IN and QUQT = M , from which it follows that

M1/2z = QU1/2QTz. (9)

The algorithm relies on explicit matrix multiplication to construct U and then a direct factorization of
U , thus for large N it is feasible only when k � N , in which case (9) does not hold exactly. However,
as we show later it may hold to a good enough approximation. The following Lanczos type algorithm
builds up progressively the columns of Q without fully computing Kk first.

Remark 1 In the following, we make frequent use of the QR-factorisation of matrices and therefore recall
the most important facts: For a matrix A ∈ Rn×k with k ≤ n ∈ N, there exists a QR-factorization A =
QR such that Q ∈ Rn×k and R ∈ Rk×k. The columns of Q are orthonormal and for 1 ≤ j ≤ rank(A),
the first j columns of Q span the same linear space as the first j columns of A. Moreover, R is upper
triangular. If we restrict to positive diagonal entries of R, the factorization is unique if rank(A) = k.

6

Algorithm 1 Input: positive definite symmetric matrix M ∈ RN×N , vector z ∈ RN , and maximal
number of iterations k ∈ N.

1. Compute Krylov subspace: Set Q1 := z/|z| ∈ RN×1 and k0 = k. For j = 2, . . . , k do:
(a) Compute q̃ := Mqj−1 ∈ RN , where qj−1 is the (j − 1)-th column of Qj−1 ∈ RN×(j−1).
(b) Compute QR-factorization Qj ∈ RN×j (with orthonormal columns), Rj ∈ Rj×j (upper triangu-

lar) such that QjRj = (Qj−1, q̃) ∈ RN×j.
(c) If (Rj)jj = 0, set k0 = j − 1 and goto Step 2.

2. Compute Uk0 := QT
k0MQk0 ∈ Rk0×k0 .

3. Compute U
1/2
k0

directly.

4. Return y = Qk0U
1/2
k0
QT
k0z.

Output: Approximation y ≈M1/2z and number of steps k0.

Remark 2 Obviously, the orthogonal basis q1, . . . , qk could also be generated by Gram-Schmidt orthog-
onalization. However, numerical experiments show that this is not stable with respect to roundoff errors.
Moreover, also the classical Lanczos algorithm seems to be prone to rounding errors, especially for ill-
conditioned matrices. Therefore, we propose to use the QR-factorization as above.

Remark 3 As proved in Lemma 4 below (and as is easily verified), a generic QR-algorithm produces Qj

which coincides with the first j columns of Q up to signs. For simplicity, we assume in the following that
the QR-algorithm ensures that the diagonal entries of Rj are always non-negative. This guarantees that
the first j columns of Qj+1 coincide with Qj . Thus, it suffices to store only the new column qj .

Theorem 1 Let 0 < η < 4c2 and let p be sufficiently large such that Cp constructed from C as in
Section 3.1 is positive definite (condition (7) is sufficient), and suppose Assumption 1 holds. Given
z ∈ RN , call Algorithm 1 with M = Cp, z, and a maximal number of iterations k ∈ N. The output of

Algorithm 1 contains the approximation Zk,p(z) := y ∈ RN to C1/2z and the step number k0 ≤ k.

(i) There holds with Kronecker’s delta δi,j

|C1/2z −Zk,p(z)|
|z|

≤ δk0,k
√

2‖M‖2
4r2

r − 1
r−k +

2CHN(log(p) + 1)2d−1
(

η
4c2

)p
max{λmin(C), λmin(Cp)}1/2

,

where CH, η, c2, and p are as in Proposition 1, and

r :=
λmax(Cp) + λmin(Cp)

λmax(Cp)− λmin(Cp)
> 1.

(ii) Let λmax(Cp) = λ1 > λ2 > . . . > λM > 0 denote the distinct eigenvalues of Cp for some M ≤ N and
assume

|λi − λj | ≤ λmax(Cp)Cκκ
min{i,j} for all 1 ≤ i, j ≤M

for some Cκ > 0 and 0 < κ < 1, then

|C1/2z −Zk,p(z)|
|z|

≤ δk0,k3
√
λmax(Cp)Cκ κ

k/4 + 3
√

2CHN(log(p) + 1)d−1/2
(η

4c2

)p/2
.

The algorithm completes in O(k3p2dN) arithmetic operations and uses less than O(kN) storage.

Remark 4 The theorem covers two regimes of covariance matrices. Whereas case (i) is the classical
Lanczos convergence analysis for well-conditioned matrices, case (ii) considers ill-conditioned matrices
with rapidly decaying eigenvalues. The numerical examples in Section 4 suggest that the error estimates
might be more or less sharp, since Algorithm 1 performs remarkably well for smooth random fields
(with rapidly decaying eigenvalues) and very rough random fields (with well-conditioned covariance
matrices). Note that k0 < k (hence δk0,k = 0) implies that the condition in the if-clause 1(c) is true.
This however is an exotic case, meaning that z lies some non-trivial invariant subspace of Cp with

fewer than k dimensions. In this situation the algorithm computes C1/2
p z exactly and only the H-matrix

approximation error remains. We note that by use of (16) instead of (17) in the proof below, it is
possible to replace (k + 1)/4 by (k + 1)/2 and p/2 by p in the exponents in (ii) at the price of including
the square-root of the minimal eigenvalue in the denominator as in (i).

7

Proof (Proof of Theorem 1) The cost estimate is proved as follows. The Krylov subspace loop of Algo-
rithm 1 completes at most k iterations. In each iteration, we have one H2-matrix-vector multiplication
which needs O(p2dN) operations. Moreover, the QR-factorization needs O(Nk2) arithmetic operations.
After the matrix Qk is set up, we have k H2-matrix-vector multiplications to compute MQk and k2

scalar products to compute Uk0 . In total, this needs O(N(k + k2)) arithmetic operations. The compu-

tation of U
1/2
k0

can be done in O(k3) operations (see, e.g., [13] for the algorithm and the corresponding
analysis). Finally, to compute y, we have k scalar products, a matrix vector multiplication with a (k×k)
matrix and a matrix-matrix multiplication of (N × k) and (k × k) matrices, all of which can be done in
O(Nk2) arithmetic operations.

To see (i), we employ the triangle inequality

|C1/2z −Zk,p(z)|
|z|

≤
|C1/2

p z −Zk,p(z)|
|z|

+
|C1/2z −C1/2

p z|
|z|

≤
|C1/2

p z −Zk,p(z)|
|z|

+ ‖C1/2
p −C1/2‖2.

(10)

For the first term on the right-hand side, Lemma 6 below proves

|C1/2
p z −Zk,p(z)|

|z|
≤ δk0,k

√
2‖M‖2

4r2

r − 1
r−k.

As shown in (16) of Lemma 2 below, the second term on the right-hand side of (10) is bounded by

‖C1/2
p −C1/2‖2 ≤ 2 max{λmin(C), λmin(Cp)}−1/2‖Cp −C‖2. (11)

Hence, (i) follows from Proposition 1. For (ii), we note that the combination of both estimates in Propo-
sition 2 below shows for U j := QT

jMQj

min
1≤j≤k

|C1/2
p z −Qj(U

1/2
j)QT

j z|
|z|

≤ δk0,k3
√
λmax(Cp)Cκ κ

k/4.

We may eliminate the minimum in the error estimate since Algorithm 1 is essentially (up to roundoff
errors) of Lanczos type, and for this algorithm, [7, Example 5.1] shows that the approximation error

|C1/2
p z −Qj(U

1/2
j)QT

j z| decreases monotonically in j. Since Qk0(U
1/2
k0

)QT
k0z = Zk,p(z), the remainder

of the proof then follows as for (i) but we use (17) instead of (16) of Lemma 2 below.

3.3 Computing the square-root (Method 2)

The main drawback of Algorithm 1 is the additional storage requirements due to the necessity to store
the matrix Qk. For this reason, we here follow a different approach, proposing a second algorithm that
improves this situation.

The matrix sign function is defined for all square matrices M̃ with no pure imaginary eigenvalues as

sgn(M̃) := M̃(M̃
2
)−1/2.

The sign function sgn(M̃) can be computed using the Schultz iteration via

Mk+1 =
1

2
Mk(3I −M2

k), M0 = M̃ . (12)

The iterates Mk converge quadratically towards sgn(M̃) if ‖I−M̃
2
‖2 < 1 in any matrix norm (see [15,

Theorem 5.2]). It is observed in [14], that all matrices M ∈ RN×N with only positive real eigenvalues
satisfy

sgn

(
0 M
I 0

)
=

(
0 M1/2

M−1/2 0

)
,

8

where I ∈ RN×N denotes the identity matrix, which opens the possibility to compute M1/2 via the sign
function of the matrix By inserting

M̃ :=

(
0 M
I 0

)
.

By inserting this choice of M̃ into (12), we see that all iterates have the form

Mk :=

(
0 Ak

Bk 0

)
.

As already observed in [14], this leads to the iteration

Ak+1 =
1

2
Ak(3I −BkAk), Bk+1 =

1

2
Bk(3I −AkBk), (13)

starting with A0 = M and B0 = I ∈ RN×N . The iterates Ak converge towards M1/2, which is what we
aim to compute. The considerations above lead us to the following recursive form of the Schulz algorithm
above, which uses only matrix vector multiplication. The subroutines PartA and PartB compute Akz
and Bkz respectively.

Algorithm 2 Input: positive definite symmetric matrix M ∈ RN×N , vector z ∈ RN , maximal number
of iterations k ∈ N, temporary storage vectors zj ∈ RN , j ∈ {1, . . . , k}, and scaling factor 0 < s <
2‖Cp‖−12 (the scaling factor ensures convergence of the algorithm).
Main:

1. Compute y = PartA(sM , z, (zj)kj=1, k).
2. Return y/

√
s.

Output: the approximation y ≈M1/2z.
Subroutines:
PartA(M , z, (zj), k):

(i) If k = 0, return Mz.
(ii) Compute zk := PartA(M , z, (zj)k−1j=1 , k − 1) and zk := PartB(M , zk, (zj)k−1j=1 , k − 1).

(iii) Compute z := 3z − zk.
(iv) Return 1

2PartA(M , z, (zj)k−1j=1 , k − 1).

PartB(M , z, (zj), k):

(i) If k = 0, return z.
(ii) Compute zk := PartB(M , z, (zj)k−1j=1 , k − 1) and zk := PartA(M , zk, (zj)k−1j=1 , k − 1).

(iii) Compute z := 3z − zk.
(iv) Return 1

2PartB(M , z, (zj)k−1j=1 , k − 1).

Remark 5 The extra storage vectors (zj)kj=1 are needed to avoid allocation of a new temporary storage

vector in each call of either PartA are PartB. This would result in O(3k) additional allocations. By
supplying the additional storage vectors, we can exploit the fact that each level of recursion can share a
single storage vector.

Theorem 2 Suppose Assumption 1 holds and and let z ∈ RN . If 0 < η < 4c2 and p is sufficiently
large such that Cp constructed from C as in Section 3.1 is positive definite (condition (7) is sufficient),
Algorithm 1 called with M = Cp and 0 < s < 2‖Cp‖−12 computes the approximation Zk,p(z) := y ∈ RN
such that

|C1/2z −Zk,p(z)|
|z|

≤ s−1/2κ2
k

+
2CHN(log(p) + 1)2d−1

(
η

4c2

)p
max{λmin(C), λmin(Cp)}1/2

,

where κ := max{|1−sλmax(Cp)|, |1−sλmin(Cp)|} < 1. The algorithm completes in O(3kp2dN) arithmetic
operations and uses less than kN extra storage. The constant CH is defined in Proposition 1.

9

Remark 6 In contrast to Algorithm 1 which needs O(| logκ(ε)|N) extra storage (at least in case (ii)), we
see that Algorithm 2 requires only O(log | log(ε)|N) additional storage for an error request of ε > 0.

Proof (Proof of Theorem 2)
First, we prove that PartA and PartB from Algorithm 2 correctly compute Akz and Bkz from (13).

This is done by induction on k. First, for k = 0, the output of PartA is obviously Mz = A0z and the
output of PartB is z = B0z. This confirms the case k = 0. Assume that PartA and PartB work correctly
for k ∈ N. By substitution of PartA(M , z, (zj)k−1j=1 , k − 1) = Ak−1z and PartB(M , zk, (zj)k−1j=1 , k − 1) =

Bk−1z
k in PartA, the variable zk before step (iii) is given by zk = Bk−1Ak−1z. Thus, step (iii)–(iv) cor-

rectly compute 1
2Bk−1(3z −Bk−1Ak−1z) = Akz. During the execution of PartA(·, ·, ·, k), extra storage

vector zk is not accessed by other instances of the subroutines (the function calls to PartA(·, ·, ·, k − 1)
and PartB(·, ·, ·, k−1) access only (zk)k−1j=1). This ensures that the correct value of zk is used at each point
of the execution. Analogously, we argue that PartB works correctly and thus conclude the induction.

For the computational cost estimate, we prove by induction that each subroutine PartA(·, ·, ·, k) and
PartB(·, ·, ·, k) requires less than

C(3kp2dN + 2N

k−1∑
j=0

3j) (14)

operations for some universal constant C ≥ 1 and all k ∈ N. For k = 0, subroutine PartA performs an
H2-matrix-vector multiplication which, according to Proposition 1, costs less than O(p2dN). Subroutine
PartB just returns the vector z. This shows (14) for k = 0 for both subroutines. Assume that (14)
is correct for both subroutines for some k > 0. The fact that each subroutine PartA(·, ·, ·, k + 1) and
PartB(·, ·, ·, k + 1) performs one scalar-vector multiplication and one vector addition as well as three
calls to PartA(·, ·, ·, k) or PartB(·, ·, ·, k) shows that the cost of each subroutine PartA(·, ·, ·, k + 1) and
PartB(·, ·, ·, k + 1) is bounded by

3C(3kp2dN + 2N

k−1∑
j=0

3j) + 2N = C(3k+1p2dN + 2N

k∑
j=1

3j) + 2N ≤ C(3k+1p2dN + 2N

k∑
j=0

3j).

This concludes the proof of (14), which proves the cost estimate since

C(3kp2dN + 2N

k−1∑
j=0

3j) ≤ C3kp2dN + C3kN ≤ 2C3kp2dN.

To see the error estimate, we use (10) and note that Algorithm 2 is nothing else than a recursive version
of the iteration (13). The scaling s < 2‖Cp‖−12 ensures κ < 1, since λ ∈ {λmin(Cp), λmax(Cp)} satisfies
1− sλ < 1 (since s, λ > 0) as well as sλ− 1 ≤ s‖Cp‖2 − 1 < 2− 1 = 1. Thus, Lemma 8 shows

|C1/2
p z −Zk,p(z)|

|z|
≤ s−1/2

(
max{|1− sλmax(Cp)|, |1− sλmin(Cp)|}

)2k
= s−1/2κ2

k

.

We conclude the proof with the aid of (11) and Proposition 1.

4 Numerical experiments

All numerical experiments where computed in Matlab, by use of a Matlab-H2-matrix library which
can be downloaded under software.michaelfeischl.net. The authors are well aware that the Matlab
implementation prohibits high-end performance. However, we wanted to demonstrate the feasibility of
our algorithms and show the correct convergence rates, for which purpose the Matlab implementation is
sufficient.

For the first example, we consider a covariance function of the form (3) with

Σx := |x|2I and Σy := |y|2I. (15)

10

Fig. 1: Samples of Z with a non-stationary covariance function. We clearly observe the shorter covariance
length (more variation) near the bottom left corner.

Fig. 2: Samples of Z with a stationary covariance function from (2) with p = 2 and µ = 1/2.

11

Fig. 3: Samples of Z with a stationary covariance function from (2) with p = 2 and µ =∞.

m = 5 6 7 8 9 10
λ = 1 2.0e+09 6.1e+16 8.6e+17 2.6e+19 1.8e+20 1.4e+20
λ = 10−1 3.9e+07 5.5e+14 1.8e+17 8.4e+18 4.8e+20 4.6e+20
λ = 10−2 6.5e+06 2.6e+12 2.7e+17 1.2e+19 3.3e+19 2.8e+20
λ = 10−3 4.2e+06 9.4e+11 6.1e+17 4.2e+18 2.6e+19 1.1e+20

Table 1: Condition numbers of C for the covariance function from (2) with N being a Sobol point set
with 2m points.

We use Algorithm 1 to generate six samples on the unit square D = [0, 1]2 of the corresponding normal
random field Z shown in Figure 1. Figure 2–3 show samples of the covariance functions from (2) with
different parameters.

To illustrate the challenging nature of handling these covariance matrices, Table 1 shows condition
numbers of C for different problem sizes and the Matérn covariance function (2).

For a performance comparison of Algorithm 1 and Algorithm 12, we consider the covariance function
of the form (2) with p = 2, σ = 1, and varying µ ∈ {1/2,∞}, λ ∈ {1, 10−1, 10−2, 10−3}. We compute
samples of Z(x, ω) on a Sobol pointset with 210 points. The results are plotted in Figure 4 where
we see the relative approximation error versus the computation time in seconds. We observe that with
respect to computational time, Algorithm 1 is superior in almost all cases (particularly for smooth fields).
However, keep in mind that according to Theorem 1, Algorithm 1 needs up to O(logκ(ε)N) extra storage,
while Algorithm 2 uses only O(log(log(ε))N) extra storage units. (See Theorem 2, where the quadratic
convergence shows that k ' log(log(ε)) is sufficient to reach a given accuracy ε > 0. However, we have
to mention that k iterations of Algorithm 2 require O(3k) arithmetic operations.)

Figure 5 compares the two algorithms with the direct matrix square root provided by Matlab. We
evaluate Z(x, ω) on a Sobol pointset with size 2m for m ∈ {1, . . . , 14}. The number of iterations in
both algorithm is set such that the relative error is smaller than 10−10 for the example from above with
p = 2, and varying µ ∈ {1/2,∞}, λ ∈ {1, 10−1, 10−2, 10−3}. We see that both, Algorithm 1–2, perform
in linear time, whereas the direct approach comes closer to O(N3). Even though our H2-matrix library

12

10 -2 10 -1 10 0 10 1 10 2
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Alg. 2

Alg. 1

µ = 1/2, λ = 1

10 -2 10 -1 10 0 10 1 10 2
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Alg. 2

Alg. 1

µ = ∞, λ = 1

10 -2 10 -1 10 0 10 1 10 2
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Alg. 2

Alg. 1

µ = 1/2, λ = 10−1

10 -2 10 -1 10 0 10 1 10 2
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Alg. 2

Alg. 1

µ = ∞, λ = 10−1

10 -2 10 -1 10 0 10 1 10 2
10 -15

10 -10

10 -5

10 0

Alg. 2

Alg. 1

µ = 1/2, λ = 10−2

10 -2 10 -1 10 0 10 1 10 2
10 -3

10 -2

10 -1

10 0

Alg. 2

Alg. 1

µ = ∞, λ = 10−2

10 -2 10 -1 10 0 10 1 10 2
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

Alg. 2

Alg. 1

µ = 1/2, λ = 10−3

10 -2 10 -1 10 0 10 1 10 2
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Alg. 2

Alg. 1

µ = ∞, λ = 10−3

Fig. 4: Comparison of Algorithm 2 and Algorithm 1. We plot the relative error |Zk,p(z) − C1/2z|/|z|
versus computation time in seconds.

13

10 0 10 1 10 2 10 3 10 4 10 5
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

Alg. 2

Alg. 1

direct

t
im

e
in

s
e
c
o
n
d
s

N = |N|

O(N
)

Fig. 5: Computational time in seconds versus the number of evaluation points N . The direct approach
uses Matlab’s sqrtm function.

is programmed entirely in Matlab (and thus nowhere near optimal performance), the breakthrough point
at around N = 103 shows that also small problems benefit from the speed up.

5 Lemmas for the proof of Theorem 1

First, we state a slight generalization of a well-known result.

Lemma 2 Let A,B ∈ RN×N be symmetric positive definite. Then, there holds

‖A1/2 −B1/2‖2 ≤ (λmin(A) + λmin(B))−1/2‖A−B‖2, (16)

as well as

‖A1/2 −B1/2‖2 ≤ 3‖A−B‖1/22 . (17)

Proof The estimate (16) is proved in [18, Lemma 2.2]. To obtain (17), let U ∈ RN×N denote the
orthonormal matrix that diagonalizes A, i.e., UTAU = D for a positive diagonal matrix D ∈ RN×N .
With UD1/2UT = A1/2 and UUT = I, there holds for arbitrary α ≥ 0

‖A1/2 − (A+ αI)1/2‖2 = ‖UD1/2UT −U(D + αI)1/2UT ‖2
= ‖D1/2 − (D + αI)1/2‖2 = max

1≤i≤N

∣∣√Dii + α−
√
Dii

∣∣ ≤ √α,
where we used x+ y ≤ (

√
x+
√
y)2 and hence

√
x+ y ≤

√
x+
√
y for x, y ≥ 0 in the last estimate. With

α := ‖A−B‖2, (16) shows

‖(A+ αI)1/2 −B1/2‖2 ≤ 2α(λmin(A) + λmin(B) + α)−1/2 ≤ 2
√
α.

The combination of the last two estimates concludes the proof of (17).

Lemma 3 Let M ∈ RN×N be symmetric positive definite and assume that 0 < κ < 1 and Cκ > 0 are
such that the sequence of all distinct eigenvalues λ1 > . . . > λM > 0 ∈ R (for some M ≤ N) of M
satisfies |λi−λj | ≤ λ1Cκκmin{i,j} for all 1 ≤ i, j ≤M . Given 1 ≤ k ≤M and z ∈ RN , define Z ∈ RN×k
by

Z := (z, λ−11 Mz, λ−21 M2z, . . . , λ
−(k−1)
1 Mk−1z). (18)

Consider the QR-factorization Z = QR, with Q ∈ RN×k satisfying QTQ = Ik and R ∈ Rk×k upper
triangular with non-negative diagonal entries (note that if Z has full rank, this ensures uniqueness of Q
and R). Then the diagonal entries of R satisfy

Rnn ≤ |z|Cn−1κ κ(n−1)n/2 for all 1 ≤ n ≤ k. (19)

14

Proof Let qi, i = 1, . . . , k denote the orthonormal columns of Q. By definition of the QR-factorization,
there holds for 1 ≤ n ≤ k

λ
−(n−1)
1 Mn−1z =

n∑
i=1

Rinq
i.

Since the qi are orthogonal, the best approximation (with respect to |·|) of λ
−(n−1)
1 Mn−1z in span{q1, . . . , qn−1}

is given by
∑n−1
i=1 Rinq

i for all n ≥ 2. Therefore, we obtain

Rnn =
∣∣∣λ−(n−1)1 Mn−1z −

n−1∑
i=1

Rinq
i
∣∣∣ ≤ min

v∈span{z,...,Mn−2z}
|λ−(n−1)1 Mn−1z − v|,

where we used span{z, . . . ,Mn−2z} ⊆ span{q1, . . . , qn−1} by definition of the QR-factorization (see
also Remark 1). We may choose v = p(M)z, where p(x) is the polynomial of degree n− 2 interpolating
f(x) := (x/λ1)n−1 at the points x = λ1, . . . , λn−1. Since M is symmetric and positive definite, we
may diagonalize it with an orthogonal matrix U ∈ RN×N , i.e., UTMU = D with a diagonal matrix
D ∈ RN×N containing the eigenvalues of M . This allows us to conclude

Rnn ≤ ‖f(M)− p(M)‖2|z| = ‖UT (f(D)− p(D))U‖2|z| = ‖f(D)− p(D)‖2|z|
≤ max
x∈{λ1,...,λM}

|f(x)− p(x)||z| = max
x∈{λn,...,λM}

|f(x)− p(x)||z|.

The function f(x)− p(x) is a polynomial of degree n− 1 with known zeros λ1, . . . , λn−1 and thus reads

f(x)− p(x) = α(x− λ1) · · · (x− λn−1)

for some leading coefficient α ∈ R. Differentiation reveals α(n − 1)! = f (n−1)(x) = (n − 1)!λ
−(n−1)
1 and

hence α = λ
−(n−1)
1 . This shows

Rnn ≤ |z| max
n≤i≤M

n−1∏
j=1

|λi − λj |
λ1

= |z|
n−1∏
j=1

|λM − λj |
λ1

.

By the decay assumption on the λi it follows that

Rnn ≤ |z|
n−1∏
j=1

(Cκκ
j) = |z|Cn−1κ κn(n−1)/2. (20)

This concludes the proof.

The next lemma shows that the matrices Qj from Algorithm 1 are strongly tied to the matrices
Z = QR defined in Lemma 3.

Lemma 4 Given z ∈ RN and let M ∈ RN×N be symmetric positive definite. Call Algorithm 1 with M ,
z, and k ∈ N to compute k0 ≤ k and Rj, Qj for all 1 ≤ j ≤ k0. Define Z,Q,R satisfying Z = QR as
in Lemma 3. Then, Qj (as defined in Algorithm 1) for 1 ≤ j ≤ k0 satisfies Qj = Q|{1,...,N}×{1,...,j}, i.e.,
the first j columns coincide and

range(Qj) = span{z, . . . ,M j−1z} = range(Z|{1,...,N}×{1,...,j}) (21)

for all 1 ≤ j ≤ k0. Moreover, Z has full rank if and only if k0 = k.

Proof Let qj denote the j-th column of Qj and note that by definition of Algorithm 1 we have

(Rj)jj > 0 for all 1 ≤ j ≤ k0. (22)

In order to prove (21), we first show

range(Qj) = span{z, . . . ,M j−1z} (23)

15

for all 1 ≤ j ≤ k0 by induction. To that end, note that Q1 = q1 = z/|z| and consequently (23) holds for
j = 1. Assume (23) holds for all 1 ≤ j < j0 ≤ k0. By construction of the matrices in Algorithm 1, we
have

(Qj0−1,Mqj0−1) = Qj0Rj0 . (24)

By the induction assumption, qj0−1 ∈ span{z, . . . ,M j0−2z}. Thus, (24) and the fact that Rj0 is regular
(by (22)) imply

range(Qj0) = span{range(Qj0−1),Mqj0−1} ⊆ span{z, . . . ,M j0−1z}.

The fact that Qj0 is orthogonal (and hence its range is j0 dimensional) shows even equality, that is

range(Qj0) = span{z, . . . ,M j0−1z}. (25)

This concludes the induction, and proves (23) for all 1 ≤ j ≤ k0. The second equation in (21) follows by
definition of Z.

To see the remainder of the statement, we first assume k0 = k and proceed to prove that Z has full
rank. To that end, we apply (21) with j = k to see that range(Z) = range(Qk) is k-dimensional and
therefore Z has full rank.

For the converse implication, assume that Z has full rank. We prove k0 = k by induction. By
construction, we have (R1)11 = 1 and thus k0 ≥ 1. Assume k0 ≥ j0 for some j0 < k. Then, since
(Rj)jj 6= 0 for all 1 ≤ j < j0, the identity (21) shows range(Z|{1,...,N}×{1,...,j}) = range(Qj) for all
j < j0. From this, we argue that

qj0−1 ∈ range(Z|{1,...,N}×{1,...,j0−1}) \ range(Z|{1,...,N}×{1,...,j0−2}),

which, by definition of Z = (z, λ−11 Mz, . . . , λ
−(k−1)
1 Mk−1z), shows that qj0−1 =

∑j0−2
i=0 αiM

iz for some

αi ∈ R with αj0−2 6= 0. Consequently, we obtainMqj0−1 =
∑j0−2
i=0 αiM

i+1z ∈ range(Z|{1,...,N}×{1,...,j0})\
range(Z|{1,...,N}×{1,...,j0−1}). Since range(Z|{1,...,N}×{1,...,j0−1}) = range(Qj0−1), this implies the iden-

tity range((Qj0−1,Mqj0−1)) = range(Z|{1,...,N}×{1,...,j0}) and therefore the matrix (Qj0−1,Mqj0−1) has
full rank. Hence, (24) implies that Rj0 has full rank, which in particular implies (Rj0)j0j0 6= 0 and thus
k0 ≥ j0 + 1. This concludes the induction and shows k0 = k.

The following result proves that if Algorithm 1 terminates in less than k steps (due to the criterion

in step 1(c)), the quantity M1/2z is computed exactly.

Lemma 5 Let z ∈ RN and let M ∈ RN×N be symmetric positive definite. Call Algorithm 1 with M ,
z, and k ∈ N to compute k0 ≤ k as well as Qj for all 1 ≤ j ≤ k0. Define Uk0 = QT

k0MQk0 as in
Algorithm 1. If k0 < k, there holds

M1/2z = Qk0U
1/2
k0
QT
k0z.

Proof If k0 < k then Lemma 4 shows that Z as defined in Lemma 3 does not have full rank. More-
over, the identity (21) shows that Z|{1,...,N}×{1,...,k0} has full rank. By definition of Z, this implies
range(Z|{1,...,N}×{1,...,k0}) = range(Z). Therefore, (21) shows

range(MQk0) = range(MZ|{1,...,N}×{1,...,k0})
⊆ range(Z) = range(Z|{1,...,N}×{1,...,k0}) = range(Qk0).

(26)

Let Q ∈ RN×N be an orthonormal matrix such that its first k0 columns coincide with Qk0 , i.e., Q =

(Qk0 ,Q⊥) for some orthonormal Q⊥ ∈ RN×(N−k0). We obtain

M1/2 = QQ
T
M1/2QQ

T
= Q (Q

T
MQ)1/2Q

T
. (27)

There holds

Q
T
MQ =

(
QT
k0MQk0 Q

T
k0MQ⊥

QT
⊥MQk0 Q

T
⊥MQ⊥

)
.

16

The invariance property (26) shows QT
⊥MQk0 = 0, and by symmetry also QT

k0MQ⊥ = 0. Therefore,
we have

(Q
T
MQ)1/2 =

(
U

1/2
k0

0

0 (QT
⊥MQ⊥)1/2

)
.

This and (27), together with z ∈ range(Qk0), show M1/2z = Q (Q
T
MQ)1/2Q

T
z = Qk0U

1/2
k0
QT
k0z and

conclude the proof.

The following result is the main tool to prove Theorem 1 (i).

Lemma 6 Let z ∈ RN and let M ∈ RN×N be symmetric positive definite. Call Algorithm 1 with M ,
z, and k ∈ N to compute k0 ≤ k as well as Qj for all 1 ≤ j ≤ k0. Let Uk0 = QT

k0MQk0 be defined as
in Algorithm 1. Then, there holds

|M1/2z −Qk0U
1/2
k0
QT
k0z|

|z|
≤


√

2‖M‖2
4r2

r − 1
r−k if k0 = k,

0 if k0 < k,

where

r :=
λmax(M) + λmin(M)

λmax(M)− λmin(M)
> 1. (28)

Proof The case k0 < k is covered in Lemma 5. Assume k0 = k. Note that QkQ
T
k is the identity on

range(Qk). Lemma 4 shows that M jz ∈ range(Qk) for all 0 ≤ j ≤ k − 1. Moreover, z ∈ range(Qk) by
construction. Hence, we have

M jz = QkQ
T
kM

jz = QkQ
T
kM

jQkQ
T
k z = Qk(QT

kMQk)jQT
k z for all 1 ≤ j ≤ k − 1.

Thus, any polynomial p ∈ Pk−1 of degree k − 1 satisfies

p(M)z = QkQ
T
k p(M)QkQ

T
k z = Qkp(Q

T
kMQk)QT

k z = Qkp(Uk)QT
k z.

This implies for all p ∈ Pk−1

|M1/2z −QkU
1/2
k QT

k z|

≤ |M1/2z −Qkp(Uk)QT
k z|+ |Qkp(Uk)QT

k z −QkU
1/2
k QT

k z|

≤ |M1/2z − p(M)z|+ |Qk(p(Uk)−U1/2
k)QT

k z|

≤
(
‖M1/2 − p(M)‖2 + ‖p(Uk)−U1/2

k ‖2
)
|z|.

(29)

With f(x) :=
√

(x+ 1)(λmax(M)− λmin(M))/2 + λmin(M), the result [2, Lemma 4.14] proves

min
p∈Pk−1

‖f − p‖L∞([−1,1]) ≤
2r2

r − 1
r−k sup

x∈Cr
|f(x)|

with r > 1 from (28) and

Cr :=
{
x ∈ C :

(2 real(x)

r + 1/r

)2
+
(2 imag(x)

r − 1/r

)2
≤ 1
}
.

Since x ∈ Cr implies |x| ≤ r, straightforward calculations show

sup
x∈Cr

|f(x)| ≤ sup
|x|≤r

|f(x)| = sup
|x|≤r

√
|(x+ 1)(λmax(M)− λmin(M))/2 + λmin(M)|

≤ sup
|x|≤r

√
(|x|+ 1)(λmax(M)− λmin(M))/2 + λmin(M)

≤
√
λmax(M) + λmin(M) ≤

√
2‖M‖2,

17

which implies the estimate minp∈Pk−1 ‖f−p‖L∞([−1,1]) ≤
√

2‖M‖2 2r2

r−1r
−k. Hence, we obtain for g(x) :=√

x (note that x 7→ (x+ 1)(λmax(M)−λmin(M))/2 +λmin(M) maps [−1, 1] onto [λmin(M), λmax(M)])
also

min
p∈Pk−1

‖g − p‖L∞([λmin(M),λmax(M)]) ≤
√

2‖M‖2
2r2

r − 1
r−k. (30)

Let U ∈ RN×N denote the orthonormal matrix (UUT = I) that diagonalizesM , i.e.,M = UDUT with

D ∈ RN×N being the diagonal matrix containing the eigenvalues of M . There holds M1/2 = UD1/2UT

as well as p(M) = Up(D)UT . This, (30), and invariance of the spectral norm ‖ · ‖2 = ‖U(·)UT ‖2 show

min
p∈Pk−1

‖M1/2 − p(M)‖2 = min
p∈Pk−1

‖D1/2 − p(D)‖2

= min
p∈Pk−1

max
1≤i≤N

|g(Dii)− p(Dii)| ≤
√

2‖M‖2
2r2

r − 1
r−k.

Since Uk is an orthogonal projection of M , we have λmin(M) ≤ λmin(Uk) ≤ λmax(Uk) ≤ λmax(M).
Thus, repeating the above argument for Uk instead of M yields

min
p∈Pk−1

(
‖M1/2 − p(M)‖2 + ‖p(Uk)−U1/2

k ‖2
)
≤
√

2‖M‖2
4r2

r − 1
r−k.

This in combination with (29) and Lemma 4 conclude the proof.

The next result quantifies the distance of range(Qj) to range(MQj) in terms of the projection QjQ
T
j

onto range(Qj).

Lemma 7 Assume the requirements of Lemma 3. Call Algorithm 1 with M , z, and k ∈ N to compute
k0 ≤ k as well as Qj for all 1 ≤ j ≤ k0. Let qj be the last column of Qj for all 1 ≤ j ≤ k0. There holds
for all 1 ≤ j < k0

‖MQj −QjQ
T
jMQj‖2 = |(qj+1)TMqj | (31)

as well as

min
1≤i≤j

‖MQi −QiQ
T
i MQi‖2 ≤ λmax(M)Cκκ

(j+1)/2.

Proof Recall Z,Q,R satisfying Z = QR from Lemma 3 with k replaced by k0 in the call to Algorithm 1.
By Lemma 4, qj coincides with the j-th column of Q for all 1 ≤ j ≤ k0. Moreover, let rj be the j-th
column of R and let r̃j be the j-th column of R−1 from Lemma 3. All quantities are well-defined since Z
has maximal rank k0 by Lemma 4. For the first statement (31), note that range(MQj) ⊆ range(Qj+1)

implies MQj = Qj+1Q
T
j+1MQj . Moreover, due to Lemma 4, we have Qj+1 = (Qj , q

j+1), and hence

Qj+1Q
T
j+1 = qj+1(qj+1)T +QjQ

T
j . Altogether, this shows

‖MQj −QjQ
T
jMQj‖2 = ‖Qj+1Q

T
j+1MQj −QjQ

T
jMQj‖2

= ‖(qj+1(qj+1)T +QjQ
T
j)MQj −QjQ

T
jMQj‖2

= ‖qj+1(qj+1)TMQj‖2 = |(qj+1)TMqj |,

where the last step follows because qj+1 is orthogonal to Mqi, i = 1, . . . , j − 1. This proves (31).
To see the remaining statement, note that the definition of Z in (18) implies

(MZ)|{1,...,N}×{j} = λ1Z|{1,...,N}×{j+1} = λ1(QR)|{1,...,N}×{j+1} = λ1Qr
j+1

as well as

qj = (ZR−1)|{1,...,N}×{j} = Zr̃j .

18

The last two identities, and the fact that (qj+1)T (MZ)|{1,...,N}×{i} = 0 for all 1 ≤ i ≤ j − 1, imply

(qj+1)TMqj = (qj+1)TMZr̃j = (qj+1)T (MZ)|{1,...,N}×{j}(r̃j)j
= λ1(qj+1)TQrj+1(r̃j)j = λ1(rj+1)j+1(r̃j)j .

The triangular structure of R implies (R−1)jj = 1/Rjj and hence (r̃j)j = 1/Rjj (where Rjj 6= 0 by
assumption). This shows

(qj+1)TMqj = λ1
R(j+1)(j+1)

Rjj
. (32)

With Lemma 3, we have

R(j+1)(j+1)

Rjj

Rjj

R(j−1)(j−1)
· · · R22

R11
R11 = R(j+1)(j+1) ≤ |z|Cjκκ(j+1)j/2. (33)

Moreover, we know R11 = |q1R11| = |z|. This implies that at least one of the fractions on the left-hand
side of (33) must be smaller than the j-th root of the right hand side of (33) divided by |z| and hence

min
1≤i≤j

R(i+1)(i+1)

Rii
≤ Cκκ(j+1)/2.

With this, (32), and (31), we obtain

min
1≤i≤j

‖MQi −QiQ
T
i MQi‖2 ≤ λ1Cκκ(j+1)/2.

This concludes the proof.

The following proposition is the main tool to prove Theorem 1 (ii).

Proposition 2 Let z ∈ RN and let M ∈ RN×N be symmetric positive definite. Call Algorithm 1 with
M , z, and k ∈ N to compute k0 ≤ k as well as Qj for all 1 ≤ j ≤ k0. Then, U j := QT

jMQj satisfies
the error bound

|M1/2z −QjU
1/2
j QT

j z|
|z|

≤

min
{ |(qj+1)TMqj |√

λmin(M)
, 3
√
|(qj+1)TMqj |

}
1 ≤ j < k0,

0 j = k0 and k0 < k

and we have the a priori estimate

min
1≤i≤j

|(qi+1)TMqi| ≤ λ1Cκκ(j+1)/2

for all 1 ≤ j < k0.

Proof The case k0 < k and j = k0 is trivially covered in Lemma 5. For the other cases, let Q ∈ RN×N
be orthonormal such that the first j columns coincide with Qj , i.e., Q = (Qj ,Q⊥) for some orthonormal

Q⊥ ∈ RN×(N−j). Then, we write

Q
T
MQ =

(
U j S

T

S T

)
for matrices S = QT

⊥MQj ∈ R(N−j)×j , T ∈ R(N−j)×(N−j). This means that∥∥∥QT
MQ−

(
U j 0
0 T

)∥∥∥
2
≤ ‖S‖2.

Lemma 2 then implies∥∥∥(Q
T
MQ)1/2 −

(
U

1/2
j 0

0 T 1/2

)∥∥∥
2
≤ min

{
λmin(M)−1/2 ‖S‖2, 3

√
‖S‖2

}
. (34)

19

Since I −QjQ
T
j = Q⊥Q

T
⊥, we have

‖S‖2 = ‖QT
⊥MQj‖2 = ‖Q⊥Q

T
⊥MQj‖2 = ‖MQj −QjQ

T
jMQj‖2.

With (Q
T
MQ)1/2 = Q

T
M1/2Q and since the ranges ofQj andQ⊥ are orthogonal, we haveQT

⊥QjQ
T
j =

0 and

‖M1/2QjQ
T
j −Qj(U

1/2
j)QT

j ‖2

= ‖M1/2QjQ
T
j −Qj(U

1/2
j)QT

j QjQ
T
j −Q⊥(T 1/2)QT

⊥QjQ
T
j ‖2

≤ ‖M1/2 −Qj(U
1/2
j)QT

j −Q⊥(T 1/2)QT
⊥‖2

= ‖QT
(
M1/2 −Qj(U

1/2
j)QT

j −Q⊥(T 1/2)QT
⊥

)
Q‖2

=
∥∥∥(Q

T
MQ)1/2 −

(
U

1/2
j 0

0 T 1/2

)∥∥∥
2
.

(35)

The combination of (34) and (35) shows

‖M1/2QjQ
T
j −Qj(U

1/2
j)QT

j ‖2 ≤ min
{
λmin(M)−1/2 ‖S‖2, 3

√
‖S‖2

}
.

We conclude the proof with z = QjQ
T
j z due to z ∈ range(Qj) and Lemma 7.

6 Lemma for the proof of Theorem 2

The following lemma is the main tool for the proof of Theorem 2.

Lemma 8 Let M ∈ RN×N be symmetric positive definite. Then, the iteration (13) with initial values
A0 = sM and B0 = I satisfies

‖M1/2 − s−1/2Ak‖2 ≤ s−1/2 (max{|1− sλmax(M)|, |1− sλmin(M)|})2
k

(36)

for all k ∈ N and all s > 0. The minimum bound is attained at s = 2/(λmin(M) + λmax(M)) such that
max{|1− sλmax(M)|, |1− sλmin(M)|} = 1− 2λmin(M)/(λmin(M) + λmax(M)).

Proof Straightforward calculations show

max
{
‖M1/2 −Ak‖2, ‖M−1/2 −Bk‖2

}
=
∥∥∥(0 M1/2

M−1/2 0

)
−
(

0 Ak

Bk 0

)∥∥∥
2
.

The result [15, Theorem 5.2] shows ‖I −X2
n‖2 < ‖I −X

2
0‖

(e1+e2+1)n

2 for all n ∈ N, where Xn+1 =
−XnPe1e2(I−X2

n)Q−1e1e2(I−X2
n) and X0 has no purely imaginary eigenvalues. Here Pe1e2/Qe1e2 is the

(e1/e2)-Padé approximant to (1− x)−1/2. We obtain from [15, Table 1] that for e1 = 1 and e2 = 0, Xn

satisfies the Schultz iteration (12) and thus we may use the result with

X0 =

(
0 M
I 0

)
to show ∥∥∥(0 M1/2

M−1/2 0

)
−
(

0 Ak

Bk 0

)∥∥∥
2
<
∥∥∥(I −M 0

0 I −M

)∥∥∥2k
2

= ‖I −M‖2
k

2

for all k ∈ N. By scaling of M , we may minimize the right-hand side. To that end, we observe that
the spectrum satisfies σ(I − sM) ⊂ [1 − sλmax(M), 1 − sλmin(M)]. The fact ‖I − sM‖2 ≤ max{|1 −
sλmax(M)|, |1− sλmin(M)|} proves (36). A straightforward optimization of s > 0 concludes the proof.

20

∂Cp

x

0

π

2p

Fig. 6: The situation of the proof of Lemma 10. The distance between ∂Cp and x is x sin(π/(2p)).

A Proof of Lemma 1

The following lemma is an elementary statement on holomorphic functions

Lemma 9 Let f : O → C be a continuous function on the domain O ⊂ Cn which is holomorphic in O in all variables xi,
i ∈ {1, . . . , n}, i.e.,

xi 7→ f(x1, . . . ,xi, . . . ,xn)

is holomorphic in
{
xi ∈ C : (x1, . . . ,xi, . . . ,xn) ∈ O

}
for all x1, . . . ,xi−1,xi+1, . . . ,xn ∈ C. Then, for all multi-indices

α ∈ Nn0 , the function ∂αxf is holomorphic in O in all variables xi, i ∈ {1, . . . , n} as defined above.

Proof The result is proved by induction on |α|1. Obviously, for |α|1 = 0, ∂αxf = f and the statement is true. Assume the
statement holds for all |α|1 ≤ k and choose some α ∈ Nn0 with |α|1 = k + 1. Then, we have for some i ∈ {1, . . . , n} and
some α0 ∈ Nn0 with |α0|1 = k that

∂αxf = ∂xi∂
α0
x f.

Since, ∂α0
x f is holomorphic in O in all variables by the induction hypothesis, obviously ∂αxf is holomorphic in O at least in

xi (derivatives of holomorphic functions are holomorphic). To prove the statement for all other variables, we may employ
Cauchy’s integral formula to obtain

∂αxf(x) = ∂xi∂
α0
x f =

1

2πi

∫
∂Bε(xi)

∂α0
x f(x1, . . . ,xi−1,z,xi+1, . . . ,xn)

(z − xi)2
dz,

for some ε > 0 with Bε(xi) ⊂ C being the ball with radius ε. The integrand is holomorphic in all variables xj , j 6= i.
Hence, we conclude that ∂αxf(x) is holomorphic in all variables and prove the assertion.

The following result is elementary but technical.

Lemma 10 For n, p ∈ N, define the set M :=
{
x ∈ Cn : real(

∑n
i=1 x

p
i) ≤ 0

}
. Then, there holds (Rn)+ :=

{
x ∈ Rn\{0} :

xi ≥ 0
}
∩M = ∅ and

dist(M,x) ≥ | sin(
π

2p
)||x| for all x ∈ (Rn)+.

Proof Let x ∈ (Rn)+, then we have
∑n
i=1 x

p
i > 0 and hence x /∈M . It is easy to see that the cone Cp :=

{
r exp(iφ) : r >

0, φ ∈ (− π
2p
, π
2p

)
}
⊂ C satisfies real(xp) > 0 for all x ∈ Cp. Thus, we have that

Cnp :=
(n∏
i=1

({0} ∪ Cp)
)
\ {0} ⊂ Cn

satisfies Cnp ∩M = ∅. Moreover, a simple geometric argument (see Figure 6) shows that all x > 0 satisfy

dist(x, ∂Cp) = x sin(π/(2p)).

Since (Rn)+ ⊆ Cnp , this implies

dist(M,x) ≥ dist(∂Cnp ,x) =
(n∑
i=1

x2
i sin(π/(2p))2

)1/2
= | sin(π/(2p))||x|.

This concludes the proof.

Products of asymptotically smooth functions are again asymptotically smooth. This is shown in the next lemma.

21

Lemma 11 Given two functions f, g : D × D → R which are asymptotically smooth (1). Then, also their product fg
satisfies (1).

Proof To simplify the notation, we consider f, g as functions of one variable z = (x,y) ∈ D ×D ⊂ R2d. For multi-indices
α, β ∈ N2d, define

(α
β

)
:=

2d∏
i=1

(αi
βi

)
.

Note that there holds
(α
β

)
≤
(|α|1
|β|1

)
. This follows from the basic combinatorial fact that the number of possible choices of

βi elements out of a set of αi elements for all i = 1, . . . , 2d is smaller than the number of choices of |β|1 elements out of a
set of |α|1 elements.

The Leibniz formula together with the definition of asymptotically smooth function (1) show for α ∈ N2d

|∂αz (fg)|(z) ≤
∑
β∈N2d0
β≤α

(α
β

)
|∂βz f |(z)|∂α−βz g|(z)

≤
∑
β∈N2d0
β≤α

(|α|1
|β|1

)
c1(c2|x− y|)−|β|1 |β|1!c1(c2|x− y|)−|α|1+|β|1 (|α|1 − |β|1)!

≤
∑
β∈N2d0
β≤α

c21(c2|x− y|)−|α|1 |α|1!

≤ (|α|1 + 1)2dc21(c2|x− y|)−|α|1 |α|1!

. c21(c̃2|x− y|)−|α|1 |α|1!,

where we used (|α|1 + 1)2d ≤ (2d exp(2d))|α|1 and c̃2 = c2/(2d exp(2d)). This concludes the proof.

The final lemma of this section proves the concatenations of certain asymptotically smooth functions are asymptotically
smooth.

Lemma 12 Let g : D ×D → R be asymptotically smooth (1) with constants c1, c2 > 0.

(i) If cg := supx∈D×D g(x) <∞. Then, exp ◦g satisfies (1) with constants c̃1 := exp(cg) and c̃2 := c2/(2 max{1, c1}).
(ii) If g satisfies ∂αx∂

α
y g(x,y) ≤ Cg for all α, β ∈ Nd0 and some Cg < ∞ as well as g(x,y) ≥ C−1

g |x − y|, then, g1/q

satisfies (1) with %̃1 = 1/2 and %̃2 = C−1
g for all q ∈ N.

(iii) If g satisfies the assumptions from (ii) and additionally g(x,y) ≥ c0 > 0 for all x,y ∈ D, then g−1/q satisfies (1) for
all q ∈ N.

Proof To simplify the notation, we consider g as a function of one variable z = (x,y) ∈ D×D ⊂ R2d. Define the set of all
partitions of {1, . . . , n} as

Π(n) :=
{
P ⊆ 2{1,...,n} : S ∩ S′ = ∅ or S = S′ for all S, S′ ∈ P,

⋃
S∈P

S = {1, . . . , n}
}
.

For a multi-index α ∈ N2d, we define α̃ ∈ {1, . . . , 2d}n by α̃i = j for all 1 +
∑j−1
k=1 αk ≤ i ≤

∑j
k=1 αk and all 1 ≤ j ≤ 2d

(e.g., α = (2, 3, 1, 1) yields α̃ = (1, 1, 2, 2, 2, 3, 4)). With n = |α|1 and some S ∈ P ∈ Π(n), we define

∂Sz g(z) =
(∏
i∈S

∂zα̃i

)
g(z).

(the definition implies ∂
{1,...,n}
z g(z) = ∂αz g(z).) With those definitions and given a function f : R → R, Faà di Bruno’s

formula reads for a multi-index α ∈ N2d

∂αz (f ◦ g)(z) =
∑

P∈Π(|α|1)
(∂
|P |
x f) ◦ g(z)

∏
S∈P

∂Sz g(z). (37)

For (i), Faà di Bruno’s formula (37) and ∂
|P |
x exp = exp show for all multi indices α ∈ N2d with n = |α|1 that

∂αx (exp ◦g)(z)=
∑

P∈Π(n)

exp ◦g(z)
∏
S∈P

∂Sz g(z).

The definition of asymptotically smooth (1) and ‖g‖L∞(D×D) = cg imply

|∂αx (exp ◦g(z))| ≤ exp(cg)
∑

P∈Π(n)

∏
S∈P

c1(c2|x− y|)−|S||S|!

≤ exp(cg)
∑

P∈Π(n)

(c2|x− y|)−
∑
S∈P |S| c

|P |
1

∏
S∈P
|S|!

≤ exp(cg) max{1, c1}n(c2|x− y|)−n
∑

P∈Π(n)

∏
S∈P
|S|!.

22

With f(x) := (1− x)−1, x ∈ R \ {1}, we have ∂kxf(x) = k!(1− x)−1−k. Hence, the last factor can be written, using Faà di
Bruno’s formula again, as ∑

P∈Π(n)

∏
S∈P
|S|! =

∑
P∈Π(n)

exp ◦f(0)
∏
S∈P

∂
|S|
x f(0) = ∂nx (exp ◦f)(0).

As the function h(x) := exp((1− x)−1), x ∈ C is holomorphic at least for |x| < 1, Cauchy’s integral formula shows

|∂nxh(0)| =
n!

2π

∣∣∣ ∫
|z|=1/2

h(z)

zn+1
dz
∣∣∣ ≤ n!2n exp(2).

Altogether, we conclude the proof of (i) by

|∂αz (exp ◦g(z))| ≤ exp(cg)
(c2

2 max{1, c1}
|x− y|

)−n
n!.

For (ii), Faà di Bruno’s formula (37) shows again for q > 1

|∂αz (g1/q)(z)| ≤
∑

P∈Π(n)

|P |!|g(z)|1/q−|P |
∏
S∈P

Cg ≤ Cng |x− y|−|n|
∑

P∈Π(n)

|P |!,

where we used f(x) := x1/q and |∂|P |x f(x)| = |(1/q)(1/q− 1)(1/q− 2) · · · (1/q− |P |+ 1)||x|1/q−|P | ≤ |P |!|x|1/q−|P | as well
as the boundedness assumption on the derivatives of g from (ii). With r(x) := exp(x) − 1 and f(x) := (1 − x)−1, x ∈ R,
the last factor satisfies ∑

P∈Π(n)

|P |! =
∑

P∈Π(n)

(∂
|P |
x f) ◦ r(0)

∏
S∈P

(∂
|S|
x r)(0) = ∂nx (f ◦ r)(0).

The function h(x) := f ◦ r(x) = (2− exp(x))−1, x ∈ C is holomorphic at least for |x| ≤ 1/2. As above, this implies

∂nx (f ◦ r)(0) ≤ n!2n

and thus concludes the proof of (ii).
For (iii), we conclude the proof as for (ii) by use of the estimate g(z)−1/q−|P | ≤ c−1−n

0 .

At last, we are ready to prove Lemma 1 which states that the covariance functions from (2) and (3) are asymptotically
smooth (1).

Proof (Proof of Lemma 1) To see (1), consider %(·, ·) from (2). We define for complex variables xi,yi ∈ C

d(x− y) =
(d∑
i=1

(xi − yi)p
)1/p

∈ C,

whenever (·)1/p is defined in C. and consider %̃(x,y) which is %(x,y) from (2) but with d(x− y) instead of |x− y|p. With
the notation of Lemma 10, the above sum has positive real part in O :=

{
(x,y) ∈ C2d : x− y /∈ M

}
. Thus, the function

(x,y) 7→ d(x − y) is holomorphic in each variable in O. Since for a > 0, x 7→ xµKµ(ax) is a holomorphic function on
C \ (R− ∪ {0}), and d(x − y) has positive real part, we deduce that (x,y) 7→ %̃(x,y) is holomorphic in each variable in

O. Thus, Lemma 9 proves that ∂αx∂
β
y %̃(x,y) is holomorphic in O in all variables xi and yi. Therefore, Cauchy’s integral

formula applied in all variables shows

∂αx∂
β
y %̃(x,y) =

∏d
i=1 αi!βi!

(2πi)2d

∫
∂Bx,1

. . .

∫
∂Bx,d

∫
∂By,1

. . .

∫
∂By,d

%̃(s, t)∏d
i=1(si − xi)αi+1(ti − yi)βi+1

dtds.

The balls Bx,i and By,i have to be chosen such that
∏d
i=1Bx,i ×

∏d
i=1By,i ⊂ O. With Lemma 10, and for (x,y) ∈ R2d

such that x − y ∈ (Rn)+ (note that Lemma 10 implies (x,y) ∈ O), this can be achieved by setting Bx,i := Bε(xi) and
By,i := Bε(yi) with ε := sin(π/(2p))|x− y|/(2d+ 1). From this, we obtain the estimate

|∂αx∂βy%(x,y)| = |∂αx∂βy %̃(x,y)| .
α!β!(2d+ 1)|α|1+|β|1

|x− y||α|1+|β|1
max

(s,t)∈D×D
|%̃(s, t)| (38)

for all (x,y) ∈ R2d such that x−y ∈ (Rn)+, where the first equality follows from d(x−y) = |x−y|p for all x−y ∈ (Rn)+.
To remove the restriction x− y ∈ (Rn)+, consider b ∈ {0, 1}d and define the function

Fb(x,y) := ((−1)b1x1, . . . , (−1)bdxd, (−1)b1y1, . . . , (−1)bdyd).

Since we consider %(·, ·) from (2), there holds % ◦ Fb = %. Since for all x,y ∈ Rd with x 6= y, there exists some b ∈ {0, 1}d
such that (xb,yb) := Fb(x,y) satisfies xb − yb ∈ (Rn)+, we prove (38) for all x,y ∈ Rd with x 6= y. Finally, the fact
α!β! ≤ |α+ β|1!, proves that %(·, ·) from (2) is asymptotically smooth (1).

Next, consider the covariance function %(·, ·) from (3). By definition Σx is continuous on D. Hence, det(Σx) ≥ c0 > 0
for all x ∈ D. The assumption (4) implies that also det(Σx) has bounded derivatives in the sense of (4) (since det(Σx)
is a polynomial in the matrix entries of Σx). Thus, Lemma 12 shows that the functions (x,y) 7→ det(Σx)1/4, (x,y) 7→
det(Σy)1/4, and (x,y) 7→ det(Σx+Σy)−q , q ∈ {1/2, 1} satisfy (1). With Σx, also all functions Σ̃x defined by considering
only sub-matrices of Σx satisfy (4). Thus, Cramer’s rule and Lemma 11 show that the map (x,y) 7→ ((Σx +Σy)−1)i,j for
all i, j ∈ {1, . . . , d} satisfies (1). From this, we conclude (again with Lemma 11), that (x,y) 7→ (x−y)T (Σx+Σy)−1(x−y)
as sum and product of asymptotically smooth functions is asymptotically smooth (1). Finally, Lemma 12 shows that %(x,y)
satisfies (1). This concludes the proof.

23

B Proof of Proposition 1

The following lemmas state facts about the H2-matrix block partitioning, which are well-known but cannot be found
explicitly in the literature.

Lemma 13 Under Assumption 1, there exists a constant CB > 0 which depends only on d, Cu, D, and BXroot such that
all X ∈ Tcl satisfy

diam(BX)d ≤ CB |BX |, (39a)

C−1
B N |BX | − 1≤ |X| ≤ 1 + CBN |BX |, (39b)

|BX | = 2−level(X)|BXroot |. (39c)

Moreover, all (X,Y) ∈ T satisfy

C−1
BBdiam(BX) ≤ diam(BY) ≤ CBBdiam(BX), (40)

where CBB > 0 depends only on CB, Cleaf , and D.

Proof The first estimate (39a) follows from the fact that always the longest edge of a bounding box is halved. This means
that the ratio Lmax/Lmin of the maximal and the minimal side length of a bounding box BX stays bounded in terms of
the corresponding ratio for BXroot . Therefore, we have

diam(BX)d ≤ (
√
dLmax)d . dd/2Ldmin ≤ d

d/2|BX |.

To see the second estimate (39b), consider a given bounding box B with side lengths L1, . . . , Ld. Due to Assumption 1
the balls Qx with centre x and radius C−1

u N−1/d/2 for all x ∈ N do not overlap. All balls Qx with x ∈ B are containted
in a box with sidelengths Lmax + C−1

u N−1/d. Thus, the number mB of x ∈ N contained in B can be bounded by

mB .
(Lmax + C−1

u N−1/d)d

C−du /(N2d)
≤

dLdmax

C−du /(N2d)
+ d2d.

Since mB ≤ 1 if Lmax < C−1
u N−1/d/2 and since Ldmax ' |B|, we may improve the estimate to

mB ≤ 1 + CB |B|N,

where CB depends only on d and Cu. On the other hand, Assumption 1 implies that any ball with radius CuN−1/d contains
at least one point x ∈ N . Since each such ball fits inside a box with sidelength 2CuN−1/d, we obtain

mB &
⌊ Ldmin

2dC−du /N

⌋
points of N . This allows us to estimate mB ≥ C−1

B |B|N − 1 and conclude (39b). The estimate (39c) follows from the fact
|BX | = |BX′ |/2 for all X ∈ sons(X′). For (40), we observe with (39b) that

|X| − 1

N
. |BX | .

|X|+ 1

N

for all X ∈ Tcl with hidden constants depending only on CB . Thus, with (39c), we have for all X ∈ Tcl with X ∈ sons(X′)
that

2−level(X) ≥ 2−level(X′)/2 ' |BX′ | & Cleaf/N.

Moreover, if additionally sons(X) = ∅, we have even 2−level(X) ' |Bx| . Cleaf/N . By definition of the block-tree T, a level
difference between X and Y for (X,Y) ∈ T can only happen, if sons(X) = ∅ or sons(Y) = ∅. Assume sons(X) = ∅. In this
case, we have level(Y) ≥ level(X). Then, we have

2−level(X) ' Cleaf/N . |Y |/N ' 2−level(Y),

with hidden constants depending only on CB and D. This implies level(Y) ≤ level(X) +C for some constant C > 0 which
depends only on Cleaf , D, and CB from (39). From this we derive (40) by use of (39).

Lemma 14 Given the definition of Tfar in Section 3.1, there exists a constant C > 0 such that all (X,Y) ∈ Tfar satisfy

C−1diam(BX) ≤ dist(BX , BY) ≤ C diam(BX). (41)

Proof By Lemma 13, we have

max{diam(BX), diam(BY)} ' 2−level(X)/d.

For (X,Y) ∈ sons(X′, Y ′), we obtain additionally

dist(BX′ , BY ′) + 2−level(X′)/d & dist(BX , BY).

By definition of the block-partitioning, for (X,Y) ∈ Tfar there holds that BX , BY satisfy (5) and BX′ , BY ′ do not
satisfy (5). Altogether, this implies

dist(BX , BY) . dist(BX′ , BY ′) + 2−level(X′)/d .
(1

η
+ 1
)

2−level(X′)/d . max{diam(BX), diam(BY)},

where we used |level(X′)− level(X)| ≤ 1. This concludes the proof.

24

The following lemma gives some basic facts about tensorial Chebychev-interpolation (see, e.g., [2, Section 4.4])

Lemma 15 Let f : B → R for an axis parallel box B ⊆ R2d such that ∂kj f ∈ L∞(B) for all j = 1, . . . , d and all 0 ≤ k ≤ p.

Then, the tensorial Chebychev-interpolation operator of order p, Ip : C(B)→ Pp(B) satisfies

sup
x∈B
|Ipf(x)− f(x)| ≤ 2dΛ2d−1

p 4
4−p

(p+ 1)!
diam(B)p

2d∑
i=1

‖∂p+1
xi

f‖L∞(B), (42)

where

Λp := sup
f∈C([−1,1])

‖Ixp f‖L∞([−1,1])

‖f‖L∞([−1,1])

≤
2

π
log(p+ 1) + 1 (43)

is the operator norm of the one dimensional Chebychev interpolation operator

Proof It is well-known that the one dimensional Chebychev interpolation operator Ixp satisfies the error estimate for any
f ∈ C([−1, 1])

‖u− Ixp f‖L∞([−1,1]) ≤ 4
2−p

(p+ 1)!
‖∂(p+1)f‖L∞([−1,1])

with an operator norm given in (43). Consider B := [−1, 1]2d. Then, there holds with I
xi
p denoting interpolation in the

xi-variable i ∈ {1, . . . , 2d}

|f − Ipf | = |f − Ix1
p f + Ix1

p f − Ix2
p Ix1

p f + . . .− Ipf |

≤
2d∑
i=1

4
2−p

p!
‖∂pxiI

x1
p (Ix2

p . . . I
xi−1
p)f‖L∞(B) ≤

2d∑
i=1

Λi−1
p 4

2−p

p!
‖∂(p+1)

xi f‖L∞(B)

≤ 2dΛ2d−1
p 4

2−p

p!
‖∂(p+1)

xi f‖L∞(B).

Since, for any affine transformation A : R2d → R2d, we have Ip(f ◦A) = Ip(f) ◦A, a standard scaling argument concludes
the proof.

Proof (Proof of Proposition 1)
We start by proving that λmin(Cp) > 0 if p satisfies (7). To that end, note

λmin(Cp) = min
z∈RN\{0}

(Cpz)T z

|z|
≥ min

z∈RN\{0}

(Cz)T z

|z|
− sup

z∈RN\{0}

((Cp −C)z)T z

|z|

≥ λmin(C)− ‖C −Cp‖2 ≥ λmin(C)− ‖C −Cp‖F ,

since the Frobenius norm is an upper bound for the spectral norm. By use of (6) (which is proved below) and (7), we
conclude λmin(Cp) > 0.

To see (6), we first estimate the maximal depth of the tree Tcl. With (39b)–(39c), we obtain Cleaf ≤ |X| . 2−level(X)

for all X ∈ Tcl with sons(X) 6= ∅. Thus, there holds

max
X∈Tcl

level(X) . log(|N |).

Second, we bound the so-called sparsity constant

Csparse := max
X∈Tcl

(
|
{
Y ∈ Tcl : (X,Y) ∈ Tnear ∪ Tfar

}
|

+ |
{
Y ∈ Tcl : (Y,X) ∈ Tnear ∪ Tfar

}
|
)
.

The H-matrix case can be found in [9, Lemma 4.5]. For the H2-matrix case, the combination of (40) and (41) (from
Lemma 14) shows that (X,Y) ∈ Tfar only if BY touches the (hyper-) annulus with center BX and radii C−1diam(BX)
and Cdiam(BX). By comparing the volumes of this annulus and of BY and using the fact that all the bounding boxes are
disjoint, we see that the number of Y such that (X,Y) ∈ Tfar is bounded in terms of C and the constants in (39).

For Y ∈ Tcl such that (X,Y) ∈ Tnear, we have with (39)–(40)

diam(BX) ' max{diam(BX), diam(BY)} > η dist(BX , BY).

Again, comparing the volumes of the ball with radius diam(BX) and of BY , we see that the number of Y such that
(X,Y) ∈ Tnear is bounded in terms of the constants in (39). Altogether, we bound Csparse uniformly in terms of the
constants of Lemma 13. Now, [2, Lemma 3.38] proves the estimate for storage requirements and [2, Theorem 3.42] proves
the estimate for matrix-vector multiplication.

25

It remains to prove the error estimate (see also [2, Section 4.6] for the integral operator case). To that end, note that
since the near field Tnear is stored exactly, there holds

‖C −Cp‖2F =
∑

(X,Y)∈Tfar

‖C|I(X)×I(Y) − V XMXY (WY)T ‖2F .

Given, (i, j) ∈ I(X)× I(Y), we have with the interpolation operator Ip from Lemma 15 and (1)

|Cij − (Cp)ij | =
∣∣%(xi,xj)−

pd∑
n,m=1

%(qXn , q
Y
m)LXn (xi)L

Y
m(xj)

∣∣ = |%(xi,xj)− (Ipc)(xi,xj)|

. (log(p) + 1)2d−1 4−p

(p+ 1)!
diam(BX ×BY)p

d∑
i=1

(
‖∂(p+1)

xi c‖L∞(B) + ‖∂(p+1)
yi

c‖L∞(BX×BY)

)
. (log(p) + 1)2d−1 4−p

(p+ 1)!
diam(BX ×BY)p(c2dist(BX , BY))−pp!.

With the admissibility condition (5), we get

diam(BX ×BY) . max{diam(BX), diam(BY)} ≤ ηdist(BX , BY)

and hence

|Cij − (Cp)ij | . (log(p) + 1)2d−1
(η

4c2

)p
.

The combination of the above estimates concludes the proof.

References

1. I. Babuška, B. Andersson, P. J. Smith, and K. Levin. Damage analysis of fiber composites. I. Statistical analysis on
fiber scale. Comput. Methods Appl. Mech. Engrg., 172(1-4):27–77, 1999.

2. Steffen Börm. Efficient numerical methods for non-local operators, volume 14 of EMS Tracts in Mathematics. European
Mathematical Society (EMS), Zürich, 2010.

3. Grace Chan and Andrew T.A. Wood. Algorithm as 312: An algorithm for simulating stationary gaussian random
fields. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46(1):171–181, 1997.

4. C. R. Dietrich and G. N. Newsam. Fast and exact simulation of stationary Gaussian processes through circulant
embedding of the covariance matrix. SIAM J. Sci. Comput., 18(4):1088–1107, 1997.

5. J. Dölz, H. Harbrecht, and Ch. Schwab. Covariance regularity and h-matrix approximation for rough random fields.
Numerische Mathematik, pages 1–27, 2016.

6. I. Elishakoff, editor. Whys and hows in uncertainty modelling, volume 388 of CISM Courses and Lectures. Springer-
Verlag, Vienna, 1999. Probability, fuzziness and anti-optimization.

7. Andreas Frommer. Monotone convergence of the Lanczos approximations to matrix functions of Hermitian matrices.
Electron. Trans. Numer. Anal., 35:118–128, 2009.

8. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, and I.H. Sloan. Quasi-Monte Carlo methods for elliptic PDEs with
random coefficients and applications. Journal of Computational Physics, 230(10):3668 – 3694, 2011.

9. Lars Grasedyck and Wolfgang Hackbusch. Construction and arithmetics of H-matrices. Computing, 70(4):295–334,
2003.

10. Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49 of Springer Series in Computational
Mathematics. Springer, Heidelberg, 2015.

11. Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen. Efficient approximation of random fields for numerical
applications. Numer. Linear Algebra Appl., 22(4):596–617, 2015.

12. D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling.
13. Nicholas J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl., 88/89:405–430, 1987.
14. Nicholas J. Higham. Stable iterations for the matrix square root. Numer. Algorithms, 15(2):227–242, 1997.
15. Charles Kenney and Alan J. Laub. Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal.

Appl., 12(2):273–291, 1991.
16. B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of hierarchical matrices for computing the Karhunen-

Loève expansion. Computing, 84(1-2):49–67, 2009.
17. Igor Moret. Rational Lanczos approximations to the matrix square root and related functions. Numer. Linear Algebra

Appl., 16(6):431–445, 2009.
18. Bernhard A. Schmitt. Perturbation bounds for matrix square roots and pythagorean sums. Linear Algebra and its

Applications, 174:215 – 227, 1992.

26

	1 Introduction
	2 Model Problem
	3 Sampling the random field
	4 Numerical experiments
	5 Lemmas for the proof of Theorem ??
	6 Lemma for the proof of Theorem ??
	A Proof of Lemma ??
	B Proof of Proposition ??

