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Abstract We generalize the two dimensional mixed finite elements of Arbogast and
Correa [T. Arbogast and M. R. Correa, SIAM J. Numer. Anal., 54 (2016), pp. 3332—
3356] defined on quadrilaterals to three dimensional cuboidal hexahedra. The con-
struction is similar in that polynomials are used directly on the element and supple-
mented with functions defined on a reference element and mapped to the hexahedron
using the Piola transform. The main contribution is providing a systematic procedure
for defining supplemental functions that are divergence-free and have any prescribed
polynomial normal flux. General procedures are also presented for determining which
supplemental normal fluxes are required to define the finite element space. Both full
and reduced H (div)-approximation spaces may be defined, so the scalar variable,
vector variable, and vector divergence are approximated optimally. The spaces can
be constructed to be of minimal local dimension, if desired.
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1 Introduction

It is well-known that standard mixed finite elements defined on a square or cube and
mapped to a general convex quadrilateral or cuboidal hexahedron perform poorly;
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in fact, they fail to approximate the divergence in an optimal way or require a very
high number of local degrees of freedom. Recently, Arbogast and Correa [[1] resolved
the problem on quadrilaterals (although, see the 2004 paper for the lowest order
case). They defined two families of mixed finite elements that are of minimal local
dimension and achieve optimal convergence properties. In this paper, we generalize
these elements to convex, cuboidal hexahedra, i.e., convex polyhedra with six flat
quadrilateral faces.

It is convenient to discuss H (div)-conforming mixed finite elements in the context
of the simplest problem to which they apply. Let Q C R?, d =2 or 3, be a polytopal
domain, let W = L?() and (-, ) denote the L?(®) or (L?(®))¢ inner-product, and
let V=H(div;Q) = {v € (L*(R))? : V-u € L*(2)}. Consider the second order
elliptic boundary value problem in mixed variational form: Find (u, p) € V x W such
that

(@'u,v)a—(p,V-v)a=0 Ywev, (1)
(V : uaW)Q = (fvw).Q Yw € W7 (2)

where f € L>(Q) and the tensor a is uniformly positive definite and bounded. A
mixed finite element method is given by restricting V x W to inf-sup compatible finite
element subspaces V, x W, C V x W defined (in our case) over a mesh of convex,
cuboidal hexahedra, where r > 0 is the index of the subspaces.

Full H(div)-approximation spaces of index r > 0 approximate u, p, and V - u to
order /!, where h is the maximal diameter of the computational mesh elements.
Such spaces include the classic spaces of Raviart-Thomas (RT) [16l[19] in 2-D and
3-D, as well as, in 2-D only, the spaces of Arnold-Boffi-Falk (ABF) [4] and Arbogast-
Correa (AC) [1]]. The ABF spaces have been generalized recently to 3-D by Bergot
and Durufle [6]. Reduced H (div)-approximation spaces of index r > 1 approximate
u to order /! and p and V -u to order 4". In this category are the classic spaces due
to Brezzi-Douglas-Marini (BDM) [8] in 2-D and their 3-D counterpart from Brezzi-
Douglas-Duran-Fortin (BDDF) [712]], as well as the reduced Arbogast-Correa (AC™?)
spaces []] in 2-D. Recent progress on defining 3-D mixed finite elements has been
made by many authors, including, but certainly not exhaustively, [12}/6l2131[10].

All spaces save AC, AC™ and the spaces of Cockburn and Fu [[10] are defined on
a reference square or cube £ = [0, 1]¢ and mapped to the element E using the Piola
transform. The RT and BDM (and BDDF) spaces lose accuracy. The ABF spaces
maintain accuracy, but at the expense of adding many extra degrees of freedom to the
local finite element space. Cockburn and Fu construct finite elements on hexahedra
using a sub mesh of tetrahedra.

The two families of AC spaces, V, and V;"d, are constructed using a different
strategy. They use polynomials defined directly on the element and supplemented by
two (one if r = 0) basis functions defined on a reference square and mapped via Piola.
Let P, denote the space of polynomials of degree up to r, and let P, denote the space
of homogeneous polynomials of exact degree r. On a convex quadrilateral element
E, for which d = 2 and x = (xy,x;), the full H(div)-approximation spaces of index
r>0are

V.(E) = (P,)! & xP,®S,(E) and W,(E)=TP, 3)
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and the reduced H (div)-approximation spaces of index r > 1 are
Ved(E) = (P)! @S, (E) and W.(E)=P, ;. (4)

One can define the reference supplemental space on £ = [0,1]? in 2-D as

) span{c/u/:rl((ﬁl —1/2)(2-1/2))}, r=0,
Sr = ¢ span{curl((£; —1/2) 18 (1 — %) (£ — 1/2)), (5)

curl (& — 1/2) (%2 — 1/2) 151 — %))}, r> 1,

and then
SH(E) = 28, (6)

where . is the Piola transform from £ = [0,1]¢ to E.

Our generalization of the two families of AC spaces to the case of a convex,
cuboidal hexahedron E gives full and reduced H (div)-approximating mixed finite
elements V(E) x W(E) and V®*(E) x W(E), respectively. These are defined to in-
clude spaces of polynomials and special supplemental functions. In fact, the spaces
are defined formally by the same equations (B)—@), (@), except that now d = 3,
X = (x1,x2,x3), and the supplemental space S,(E) or S, (replacing (@) must be de-
fined carefully. The number of supplemental functions is 2 for » = 0 and otherwise
at most 3(r+ 1). The divergences of these vectors lie in P, for the full space and in
P,_ for the reduced space, and the normal flux on each edge or face f of E is in
P,(f) (i.e., P, in dimension d — 1). In fact, the degrees of freedom (DOFs) of a vector
v € V, or Vi include the divergence and edge or face normal fluxes:

(V-v,w)g Yw e P (for V,) or P*_, (for Vid), (7
(v-v,u)s VYedges(d=2)orfaces (d =3) f of E and Yu € P.(f), ®)

where V is the outer unit normal vector to £ and P} are the polynomials of degree r
with no constant term. The purpose of the supplements is to make these DOFs inde-
pendent, so that the elements can be joined in H(div) to form V, or V*! while also
maintaining consistency to approximate the divergence. The set of DOFs is com-
pleted by adding conditions on the interior, divergence-free, bubble functions (for
H (div)-conforming elements, an inferior bubble function is a vector function with
vanishing normal component on JE).

After setting some additional notation in Section 2, we describe how to construct
arbitrary, divergence-free supplemental functions in 3-D with a prescribed normal
flux in SectionsBland @l In Section ] we describe a way to choose the specific sup-
plemental function space S, needed to define S,(E) by (@). The most useful cases
r=0and r = 1 are given in detail (although some proofs are relegated to the appen-
dices). For r > 1, we need to determine the normal fluxes needed to ensure that the
DOFs () are independent. We note the recent work of Cockburn and Fu [[I0] in this
regard, but we provide a method for resolving this issue based on linear algebra. We
present some numerical results in Section[6l We close by summarizing our results in
the last section.
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2 Further notation

In this section, we fix the notation and geometry used throughout the paper. As noted
above, let P, denote the space of polynomials of degree . Generally, P, = P,(R3) is
defined over a three-dimensional domain. Sometimes we need to restrict polynomials
to faces, so let P,(f) be the polynomials defined over the domain f. Let P, denote the
space of homogeneous polynomials of degree r. We also let P, denote the tensor
product polynomial spaces of degree r in xy, s in x», and ¢ in x3.

2.1 A convex, cuboidal hexahedron and the Piola map

Fix the reference element £ = [0,1]> and take any convex, cuboidal hexahedron E
oriented as in Figure[Il The reference element E has faces ordered as follows. Face 0
is where £; = 0 and it is denoted fy = EN {%1 =0}, face 1 is where £ = 1 and it is
denoted fl, and so forth to face 5 is where 3 = 1 and it is denoted fs The vertices
X; jk are indexed byAthe faces of intersection, i.e., X;jx = fi ﬂfj N fx. The bijective and
trilinear map Fr : E — E is defined by

Fi (%) = xo2a(1 — £1) (1 — 22) (1 — £3) + X12481 (1 — ) (1 — £3)
Fxosa(1— 1) (1 — £3) + X134 8182(1 — 23)
Fxoas(1—£1)(1 — 22)83 + X125 %1 (1 — £2)%3
+X035(1 — £1) %283 + X135 81 82483
ePyy. )

This map fixes the notation on E (faces f; = Fg (f,) and vertices X;jx = Fg(X;jx)). The
center of face i is denoted x;. The outer unit normal to face i is v; = (Vi 1, Vi2, Vi3).
For example,
_ (X134 —X124) X (X125 — X124)
H (X134 - X124) X (Xlzs - X124)|| -

(10)

2.1.1 Piola transform and Jacobians

Let DFg(X) denote the Jacobian matrix of Fg and Jg (X ) = det(DFg(%)). The con-
travariant Piola transform g maps a vector ¥ : E — R to a vector v : E — R? by
the formula

v(x) = Pg(V)(x) = iDFEff(ﬁ), where x = Fg(X). (11)

For a scalar function w, we define the map w by w(X) = w(x), where again x = Fg (%).
The Piola transform preserves the divergence and normal components of V in the
sense that

1.
V.v=—-V.¥ 12
Tz (12)

1
v-v=—¥V-V foreach face f; of JE, (13)

R
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face 0

X035

X034

face 4

= [071]3 X134

Fig. 1 The geometry of the cuboidal hexahedron. On the left is the reference £ = [0, 1], which is trilin-
early mapped to the hexahedron E. The faces are labeled from O to 5, and faces 1, 3, and 5 are in front.
The corner points are labeled by their intersections with the faces (e.g., X35 intersects faces 1, 3, and 5).
The centers of the faces are labeled by the face (we show only x; on face 1).

where K; is the face Jacobian. The face Jacobian for face i is

8 p) P 3
_H al;j a’f’i)‘ﬁH:‘(%X%)‘ﬁ'vl” (14)

where i, ¢, and m are distinct integers from {1,2,3} and, say, ¢ < m. The face Jacobian
describes the bilinear distortion of the face, and it depends only on the face vertices
(so two elements intersecting at face f will have the same face Jacobian). If we re-
index the face so that
Fe(f0,2m)| ;= yo(1 = £0) (1 = %m) +y180(1 — %)
+¥2(1 = £0)2m + Y380 L, s)

then it is not hard to show, when f; is flat, that

Ki(%0,%m) = [|(y2—y0) X (¥y1 —yo)[[(1 = %) (1 — %)
+11(y3 — Y1)><(YO—Y1)H)€/;(1—)2,,1)
+1(y3 —y2) x (YO—Yz)H(l — X0)%m
+[[(y2 —y3) X (y1 — y3)[| £ %
€Py). (16)

2.1.2 Local variables

It is clear that for the reference cube E, the local variables can be taken as £, and X3
on faces 0 and 1, £; and %3 on faces 2 and 3, and £; and X, on faces 4 and 5. Similar
indexing does not necessarily hold on E. In fact, faces indexed as being opposite to
each other may be far from parallel (they could even be perpendicular to each other).
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It is necessary to select local variables on each face of E, two from among the set
of variables {x1,x2,x3}. For face ¢, we denote these variables by (x;,,x;,), where we
tacitly assume that iy < jy. In practice, one can find the maximal absolute component
of vy, say |V, and omit x,, from the set {x{,x2,x3}, leaving the local coordinates

{xi[,xjé}.

3 Construction of Pre-supplemental Functions on the Reference Cube

In this section, we construct a vector function on the reference cube £ = [0, 1]* with a
vanishing divergence and prescribed monomial normal flux (up to a constant). These
functions will be used later to construct the space of supplements S, (E) for the new
mixed finite elements. We call our special vector functions pre-supplements. For sim-
plicity, we consider only face 1 (where £; = 1). The other faces are handled analo-
gously.

The vector functions in the local BDDF spaces of index r [[7,2]] have the property
that their normal fluxes are polynomials of degree r. Moreover, both the normal fluxes
and the divergence are degrees of freedom. Analogous to BDDF, we can define vector
functions with the properties we desire. Let us fix the monomial as ﬁgﬁ? for some
integers £ > 0 and m > 0. We define the pre-supplement to be, when ¢ +m > 1,

R RGRY — 51
RS T Dt )
1 1
~ 1 o _ Fgy 3 A
Yem = 2(£+1)x2(] xé)(xgn+m+1) el (E). 17
1

1
— -0 (Aé _)
X3( X3 ) R%) + (41
It can be readily verified that indeed this function lies in the more symmetric BDDF
space as defined by Arnold and Awanou [2], although this fact is not important in
itself. What is important is that we have our desired properties

- f > 1
T )myy o ttmzl

0 onfi, i=0,2,...,5,
(13)
where we recall that the face f; is where £; = 1. The case ¢ = m = 0 reduces to

the zero vector because of the divergence theorem. We therefore accept a constant
divergence and simply take

Woo=10|, (19)
for which

. IR 1 onf
Vlo=1 and ¥, V= . 20
0.0 Yoo {0 onf;,i=0,2,...,5. 20)
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We can construct similar pre-supplements for each face; label these as li’;,.m for face
i=0,1,...,5. '

We remark that our pre-supplemental functions are not unique when there are
divergence-free bubble functions. For example, to l/?}m one could add any function
of the form '

0
J o o\

55, R —wn( -2 | 1)
2

fggpxrwﬂ@uf@m]

where p is any polynomial in £, and £3, and we would maintain (IS).

4 Construction of the Supplemental Functions on Hexahedra

In this section, we construct a supplemental vector function ¢ with zero divergence
on the convex, cuboidal hexahedron E. It has a prescribed polynomial normal flux
(up to a constant) on a single face and vanishing normal flux on the other 5 faces.
We continue to fix the nonzero flux on face 1 for ease of exposition; the other faces
are handled similarly. In terms of the local face variables (x;,,x;, ), suppose that the
prescribed flux is xf]x;'ﬁ. That is, we want to define G},m when ¢ +m > 1 so that, for

some constant ¢},

WX —cl (+m>1
V'Gém:() and o}m.v: {;’1 1~ Cem Oan"h. —i—(:nz_ , 5
s s on f;, 1=0,2,...,5.

(22)

The construction is given by first defining an appropriate vector function 6},,,1
on the reference cube £ and then mapping it to E using the Piola transform (IT), so
that G}m = f@géé‘m. The key is to recognize that the normal components of 6}7,"
transform by (13), and therefore we need to include the factor K; within the first row
of 62,,”. Our construction is vaguely reminiscent of the one given in 2-D by Shen
(for which the resulting method was later proved in [14]).

To proceed, we must realize two simple facts. First, the face Jacobian K is bilin-
ear in the reference variables, i.e., (I6) holds. Second, the polynomial flux xf}xﬁ is
evaluated in terms of the reference variables by the map Fr : £ — E @), i.e.,

xil :El(l,xAz,xA3) and le :Fjl(l,)?g,)?3), (23)

which are both bilinear. Therefore the product xflx;f’l , multiplied by K| and written in
terms of the reference variables, is in the space Py, 41, where n = £+ m. Let the
pre-image of xf]x;ﬁ (scaled by Kj) be denoted

Kixt )t = Ki(£2,83) F, (1,82, %) Fj, (1,82, 83)"

n+1ln+1 [ ai o 1 ‘m
_ m:@wgaf——f—J+av. (24)
l;)jzo GOTEE i+ 1)+ 1) 0.0

i+j>1
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That is, in practice, we compute the coefficients chj’m based on the geometry of the
hexahedron.
Whenn=~0(=m=0, let

860 = Z Z o (25)

i=0j=0

Recalling (I8) and 20), this function has divergence (xg"g and flux K| on face 1. By

the divergence theorem, clearly ag ’g =|f1|, the area of face 1, so

2 A A A Kl Oanl,
V-640=1fi] and G(I),O'V{O onf. i=0.2...5 (26)
1y - b) 90 M

When n=/¢-+m> 1, we define

n+1n+1 aim
= L X "0~ 75 Gbo @7)
i=0 j=0 |f|

which has vanishing divergence and matches the flux 24)), up to a constant multiple
of K;. Owing to (I2)—(13), Gé‘m = ﬂgéé,m has the desired properties (22)). We can
construct a similar vector function for each face; label these as G’[;m for face i =
0,1,...,5.

In the case of constant normal face fluxes (i.e., n = 0), we cannot remove the
divergence unless we allow nonzero flux on at least two faces. We therefore define
and later use the lowest order divergence-free supplements given by

~AJ
6! 6
00 0,0) (28)

ij
o = YPr (
00 il 1S5l
Using (12), (I3) and 28), it can be easily verified that G o is divergence-free and
provides constant normal fluxes on faces i and ;.

5 Generalized AC Spaces on Convex, Cuboidal Hexahedra

We now present our generalization of the two families of AC spaces [1]]. The full
and reduced spaces are given by () and (@), respectively, once we have defined the
supplemental space S, for r > 0, so that the DOFs (Z)—(8) are independent.

The supplemental space is constructed using the functions defined in Sections3l-
[ once we know what fluxes are required to independently span the space of normal
fluxes (8)). To this end, it is convenient to define the full flux operator .% as well as
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the operators .%(»4 and .%;35 on the even and odd faces, respectively, to be

5
F () = [u-vo|gy, - w-vs|g] c[I2(f) = (P(R*))"C, (29)
i=0
2
Fooa(w) = [w-vol gy, u-va|ppu- i ] € [TBA(f2i) = (PA(R?) VS,
=0
2

Fizs(u) = [w-vilp,wval g uevs| g ] C [P (fairr) = (BR(R?),
i=0

Note that .% is a permutation of the block matrix [ﬂom F ]35} . For a sequence of n
functions, we also define the “flux matrix” as
ﬂ(ul) ll1-V()|f0...ll1-V5|f5
Fay,... u)=| 1 | = ST € (P,(R*)™°,  (30)

ﬂ(un) lln-V()|f0...ll,,-V5|f5

and we define Zgp4(uy,...,u,) and Fi35(uy,. .., u,) in (P,(R?))"*3 analogously.

5.1 Thecase r =0

On the convex, cuboidal hexahedron E, the new space is
Vo(E) = P & xPy &Sy, (1)
which has only normal flux DOFs. We will give two definitions of Sy, but first, note
that Pg @ xIP( has local dimension four, and a basis is
%‘)’"‘y = {X —X24,X — X034, X — X(25,X — X024 }- (32)

The normal flux (x —X;ji) - V¢|y, is zero if £ € {i, j,k} and strictly positive otherwise.
5.1.1 A simple supplemental space for r =0

Recalling (28), we define simply

simple 1,3 35
spimele _ span{ oy, 0 }- (33)
A local basis is )™ = 22 U {043,005} To prove that the DOFs are inde-
pendent, we compute the flux matrix, which is an ordinary matrix of numbers when
r = 0. This matrix is a permutation of [9024 F ]35} , which has the sign

+00|0++
0+0|+0+
00+++0

signum([ﬁom(%’gmple) y135(<%78imp]e)}) = |

(34)

o oo
oo
===

_|_

I

o
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where a plus or minus sign (4 or —) indicates that the number is strictly positive
or negative, respectively. Obviously, matrix (34)) is invertible if the determinant of
the lower right 3 x 3 submatrix is nonzero. This determinant is strictly positive if we
expand the 3 x 3 matrix by Sarrus’ rule. Since a matrix of this form is invertible, we
can decouple the DOFs (8); thus, the mixed finite element is well defined.

A set of shape functions can be defined by inverting .7 (%’Slmple) If we let C =

(F(#™"))~!, then the shape function for the DOF on face i (i.c., .F (9. simpley
el ) is

Si;qp]e(x) =Ci1(x—X124) + Ci2(x — X034) + Ci 3(X — X025)

+Cz4(x X024)+C15600+Ct6633 (35)

In fact, an explicit basis can be constructed without the need to invert a matrix. Recall
that for any point x on face 1, (X — Xgp4) - V| denotes the distance from point X(p4 to
face 1, which is a constant. Compute the numbers

o= (X—xX04) Vil, B=(X—X04) V3|, and y=(X—Xpa4) V5|,

. .. . 13 35
which are positive due to the convexity of E, and then Fpp4 (X — X024, 050,00 0) van-
ishes and '

1,3 35 & b 4
F135(X —X024,0(0,000) = |1/1fil =1/1f3] 0 . (36)
0 /Al —1/If
Guided by these fluxes, we construct the following linear combinations:
= |J1 )
o |f1|06+|f3|ﬁ+|fs|7
simple X—Xou— |fi |0‘G(l)f) + /5 |VG(3):(5)
03 (X) =l : (38)
' |f1|06+|f3|ﬁ+|fs|7
~ x— x4 — | filaogy — (| filo+ | f31B)ogg
03P (x) = |fs] 00 (39)

|f1|05+|f3|ﬁ+|f5|7

( simple )

0,i e/,

Using (36), inspection shows that indeed .#
functions, we then construct

i 1o i =1,3,5. From these

simple Vo X Vg — (Vo X Vy)- (v1¢51mple + v3¢31mple tvs ¢snmple)
o (X) - (Vz X V4 ’ (40)
simple Vo X Va— (Vo X vg) - (v snmple v ¢snmple tvs ¢snmple)
° (X) - (V() X V4 ’ (41)
simple Vo X Vo — (Vo X Wa) - (V¢ snmple +vs ¢snmple +vs ¢snmple)
0.4 (x) = Vo x V2) 42)
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simple

Using the property % ( 0.i )= el-TH, i =1,3,5, already established, a careful in-
spection of @Q)-@2) shows that these functions also satisfy the required property
F( Slﬁnple) = eiTH, i =0,2,4. Therefore, we have constructed a simple set of shape

functions for the lowest order case r = 0.

5.1.2 A more general supplemental space for r =0

While ,%(S)lmple is well defined and simple to implement, it is defined in a highly non-
symmetric way. One could average over all similar constructions, but it is not clear
how to weight them. An alternative is to add supplements that are as different as pos-
sible from the polynomial part Pg @ x[Py, and subject to the divergence-free constraint.
A criterion is to consider the fluxes generated by this part, and take supplements with
fluxes that span the orthogonal complement. We denote the flux matrix for %’801y as

M= 9024(%’801y) 9135(%’801y) = , (43)

where each letter (a;, b;, ¢;, @, B, and ) stands for a specific positive number. The
orthogonal complement of the row space of M is easily seen to be spanned by N7
(i.e., rank M = 4, rank N = 2 and MNT = 0), where

|: chl/al —ﬁaz/bz (Oﬂb3—ﬁa3)/63 ﬁ —a 0 (44)
(Ber—vbi)/ar Bea/ba —yb3/cs 0 v —B|

Let S denote the 2 x 6 matrix with rows being the desired supplemental fluxes. The
divergence-free constraint can be written as S¢ = 0 in terms of the vector of face
areas, which is

o = (Ifol LAL ISl 1 f5])- 45)

We define S to be the projection of N to the orthogonal complement of span{¢}, i.e.,
T

s=n(1-27), (46)
o9

and then we define So = span{a,,,57 }, where

G(]),o =Pr (51,16870+S1,2<A7(1),0+S1,3<A7(2),0+S1,4CA7(3)70+S1,563,0+S1,66(5),o)7 47)
G%,O = Py (52,168’0+52,26(]),0 +S2’36(2)’0 +S2’468’0+SZ,568’0 +S2’66(5)’0), (48)

since, by (26) and (12)—(13), these supplements satisfy the constraint of being divergence-
free and produce the desired fluxes S on each face.

It remains to verify that the DOFs are independent after applying the projection.
To this end, we note that ¢ is not in the span of the rows of N. This is true since M ¢ #
0 (at least one row of M represents a function with a nonzero divergence), which
implies that ¢ ¢ (MT) = row(N). Independence of the DOFs is a consequence of
the following, more general lemma.
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Lemma 1 Suppose that M is m x (m+n), N is n X (m+n), and Bﬂ is invertible.

Let @ be an (m+ n)-vector that does not lie in the row space of N. Let the projection
T
_ 99

P, .
9T

M
If S =N(I — Pyp), then [S

} is invertible.

Proof By a change of basis, we may assume that M = [I,, 0] and N = [0 I,]. Nor-

. .. a) . T
malize and partition ¢ = <b> into m- and n-subvectors. Now the projection in block

form is
P aa’ ab”
"~ |pa” bb" |’

and S = [—ba’ I, —bb’]. Since |[bb” || < 1 (recall a # 0), we conclude that I, — bb”

.. . Ly 0 M
is invertible, and thus also [—baT I,,—bbT] = {S]

5.2 Thecase r =1

We concentrate on the reduced space VI*4(E) = P} @Sy, since we merely add xP; to
define Vi (E). The divergence of VI*(E) is constant as in the case r = 0, but now the
normal face fluxes are linear, so there are 18 of them in total. Since dim ]P’? =12, we
need 6 supplements.

Please recall the notation from Fig.[Tl We can view the hexahedron as containing a
tetrahedron nestled in the corner near X4, i.e., the tetrahedron with the four vertices
X024, X124, X034, and Xgz5. The usual BDM (i.e., BDDF) space on tetrahedra [[7] is
]P’?, so we know that we can set the fluxes independently on the faces 0, 2, and 4 by
polynomial vector functions (since these fluxes are independent degrees of freedom
for the tetrahedral element IP’? C Vrled (E)). To find these functions, we first define the
six linear functions

ki(x):f(X7Xi)~V,’, i:O,l,...,S, 49)
and the linear function associated with the plane fg through Xj24, X034, and Xg»5,
As(X) = —(x —Xg) - Vs, (50)

where Xg lies on fi and vg is the unit normal pointing info the tetrahedron.
Since VA; = —V;, we have that

V x (A,M,j\/k) = —l,’Vj X Vg —)ij,' X Vi,

which has no normal flux on faces i, j, and k. As we show below, we can indepen-
dently set the 9 fluxes on the faces 0, 2, and 4, respectively, by the functions

Vo=X—X14, Y =Vx(hAVs), ¥, =Vx(MAsV2), (51

V3 =X—Xo34, Wy=Vx(lodsVs), Ws=Vx(AdsW), (52)
Ve =X—Xps, Y;=VXx(AV2), Wg=Vx(haAsW). (53)
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The rest of the polynomial space is associated to fs, and consists of the functions

Vo =X—Xou, Wio=Vx(hiavs), v =Vx(Llw). (54)
It is convenient for the discussion to map E to a simpler shape E using an affine
map. In the case of an affine map, no polynomial spaces are changed, so conclusions
about fluxes on dE hold for JE. We take E as in Fig. [l but it is the result of a
translation that makes xgp4 = 0. Rotations, dilations, and shear maps can then make
X124 = €1, X034 = €, and Xpp5 = e3. We proceed as if £ = E. Then
Vo= —e|, Vo) =—€, Vi=—e3, Vg= —(61 +ez+e3)/\/§,
A=xi, h=x, M=x3, Ae=@@+x+x—1)/V3

Thus, for face 0,

x1—1 | 1—x1—2x —x3 1 X1 +x04+2x3—1
lI/(): X2 7W]:_ X2 7"/2:_ 0 ’
X3 \/§ 0 \/§ —X3
(55)
and so we compute the columns of .% for faces 0, 2, and 4 as
1 00
Foa(Wo, Y1, ¥2) = [2x2+x3—1 0 0] . (56)

1—x—2x3 00

The other two triples, (Y5, W4, ¥s) for face 2 and (yg, ¥, W) for face 4, are similar,
so we conclude that indeed these 9 functions independently set the 9 fluxes on the
faces 0, 2, and 4.

For the other three faces 1, 3, and 5, we have that

X1 —X1 0
Vo= |X2 |, Vipo=| *2 |, ¥Ynu={—*]- (57)
X3 0 X3

Note that these three functions have no normal flux on faces 0, 2, and 4. In the follow-
ing discussion, for simplicity, we replace Yy, ¥4, and y; with yg, w7, and y7,
where

X1 0 0
vo=10], vig=|x], vii=(0]. (58)
0 0 X3
We can do this because
1 X1 —X] 0 1 11 X1 00
5 X2 X2 —Xp -2 11 = 0 X2 0 y (59)
X3 0 X3 —-1-12 00 X3

and the transformation matrix is invertible, so yg, ¥/, and Y, span the same space
as y§, ¥y, and yj,. Therefore,

X1V, X1V3n X1Vs

F135(Wo, W0, Wi1) = | X2Vip X2V3p XaVso | . (60)
X3V13 X3V33 X3Vs53
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We must add supplements to the set { yg, w7, ¥}, } that also have no normal flux on
faces 0, 2, and 4. Moreover, the normal fluxes of the supplements on the remaining
three faces, when combined with (60), must independently span the spaces of linear
polynomials. There are at least two ways to choose the supplements, a non-symmetric
way and a symmetric way.

Theorem 1 (Non-Symmetric supplements) There exist constants s and t such that
if the supplemental functions oy to 03, 0}, and 0% are defined to take the fluxes

Xy —c) 0 0

x3—c§ 0 0

ey 0 xl—c? 0
F135(00,01,02,03,04,05) = 0 ¥l ol: ©D

(=1 fsley +0)/1f1] —t/Ifsl

—s/|Ail (=1f5le3 +9)/1f3] x2

where the constant cé is the average over face i of the variable xy, then they provide
independent flux degrees of freedom.

Theorem 2 (Symmetric supplements) Let the supplemental functions o to s take
the fluxes

xzfc% 0
x3—cé 0
0 x —c?
3

oS O O

Z135(00,01,02,03,04,05) = , (62)

(e

0 x3—c3
0 0 x fc?
0 0 xzfcg

where the constant c} is the average over face i of the variable xy. These provide
independent flux degree of freedoms as long as the matrix

1 3 5
V1,1 CIV3’1 CIV5’1
CoH= | )Via V32 V52 (63)
1 3 5
c3V13 €3V33 C3V53

is invertible.

The proofs of Theorems [I] and 2] appear in Appendices [l and [Bl respectively.
The invertibility of matrix C o H in (&3) is discussed in Appendix [Al We remark that
we have not seen a perturbed hexahedron in practice that violates the invertibility
condition. In Appendix [Al we prove the invertibility condition (&3), i.e., Theorem 3]
below, in two special cases: hexahedra with at least one pair of faces being parallel
and truncated pillars.

Definition 1 A cuboidal hexahedron E is a truncated pillar if four of its twelve edges
are parallel. These four edges form the pillar. If they are extended to infinity, the other
two faces of E are formed by truncating the pillar.
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Theorem 3 If E is a cuboidal hexahedron that either has two pair of faces being
parallel or is a truncated pillar, then (&3) holds.

Meshes of cuboidal hexahedra with at least one pair of faces being parallel are
used in many applications. For any cuboidal hexahedron E with flat faces, it is easy
to check this condition without transformation to £. For example, the mesh .7,% in
Section [0] satisfies this condition.

Meshes of truncated pillars are widely used. For example, in reservoir simulation
and geological modeling, it is very common that the dataset is given in the corner-
point grid format [[13]]. The grid format gives a set of pillar lines which run from the
top to the bottom of the model and, in many cases, the lines are vertical. The mesh
Zf in Section[@lis an example of a grid made by truncated vertical pillars.

The vector functions providing the fluxes we require in (6I) and (62) can be
easily obtained using the functions G}m (22) and o, 28) defined in Section @l For

example, o here is exactly G}’O of 22)), and
Fras(0i) = |1l +0/1Al —1/IAl x]

_ 5 5 _L L L _L :|
o o m-dl+imet|-gr o glelg o o

5.1 13
= F135 (G?,o) + | f5]e} Fiss (Go;o) +t.F35 (Go;o) ,

— ) 51 1,3

S0 0 = Cipt+ |f5|c](70’ +10p.
In conclusion, if we know that C o H is invertible for the meshes used, we can
apply the symmetric supplements. On the other hand, one can always take the non-
symmetric supplements for any mesh, provided s and 7 are chosen properly. A general

method for handling » = 1 is contained in the next subsection.

5.3 The general case r > 1

In general, the DOFs of our mixed finite element spaces are allocated as

V.(E)=P}axP, &S, =E, oD, 0B,

(64)
or VY(E) =P} @S, =E D eB,.

Here E, are the functions that have constant divergence and independently cover the
normal flux DOFs (§). The functions in D, or D¢ match the (nonconstant) diver-
gence DOFs (). One of these functions can be constructed from a basis function in
xP* or X]F’;Ll, respectively, but then modified by the functions in E, to remove the
face normal fluxes. Finally, the divergence-free bubbles B, are left over, and provide
the final set of DOFs. Since P; = curl P}, | & xP,_, we conclude that

E, @B, =curlP} | ©xP @S, (65)

Thus, our task is to construct the supplemental space S, of functions with zero diver-
gence so that the normal flux DOFs (8)) in curl IP’% 1 ©xPy @ S, are independent.
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Cockburn and Fu [10] determined the minimal number of supplemental func-
tions (which they call “filling functions”) needed to produce the space E, on vari-
ous elements, including a cuboidal hexahedron. In particular, [T0, Lemma 4.6 and
Theorems 2.10-2.15] identify the fluxes required (but note that they label the faces
counting from 1 rather than 0). Their construction is to obtain supplements that have
no flux on faces 0, 1, and 2. They specify the needed fluxes on face 3, but allow any
flux on the last two faces. They then specify the needed fluxes on face 4, but again
allow any flux on the last face. Finally, face 5 has a set of required fluxes, and these
can be matched by divergence-free functions. As mentioned previously, Cockburn
and Fu use a mesh of tetrahedral elements within the hexahedron to construct their
supplemental functions. We can instead use the ideas of Sections BH4l

The number of additional fluxes (see [[10, Cor. 4.5 and Table 4]) is bounded by
3(r+1) and depends on the geometry, in particular, on the number of parallel faces.
The cube requires 3(r + 1) supplemental functions. It is numerically delicate to vary
the number of supplemental functions based on the number of parallel sides, since an
element E may have almost, but not quite, parallel faces.

A numerically safe way to proceed is to use the general construction of Subsec-
tion[5.1.2] Since it is difficult to characterize what functions lie in B, (see, however,
[10]), we simply compute the flux matrix of the entire polynomial part of the space,
i.e., of a basis for curl P2, @ xPPy, which has dimension n = dimP} — dim(xP}_,) =
% (r+2)(r+1)(2r+9)+ 1. To proceed, it is convenient to express the flux matrix as
an ordinary matrix of numbers, so we expand every normal flux polynomial in a basis
that includes 1 and everything orthogonal to 1. A simple choice is displayed in 22))

for face 1, i.e., take 1 and the functions xflx'j’?l — c} nforl < £+ m < r. The expansion

coefficients give the matrix M™!!, which is n x 3(r+2)(r+1).

We reduce the number of rows in M™!! to M by including only a basis for the
row space. This removes the interior bubble parts of the space. It may be better to
compute the singular values of M™!! and remove all rows corresponding to small
singular values. In fact, we suggest reducing M™' to an n — 3(r+ 1) matrix, so that
3(r+1) supplements are needed, regardless of the geometry. This may create more
interior bubble functions than is necessary, but it safely handles any geometry.

We proceed to find a basis N7 of (M7)". Let the area vector ¢ be analogous to
the one defined in (43)) (it is the same, except that it has more zeros). The desired sup-

T
plemental fluxes S are then defined by the formulain @8), i.e., S = N(I — %) . We
construct supplemental functions S, having these fluxes. By Lemmal/[ll these fluxes
are independent of the ones from M, and so the space E, is well-defined. Any extra

functions are divergence-free bubbles, which can be modified to have no face fluxes.

In the hybrid form of the mixed method [}, the Lagrange multiplier space on the
face f is simply P.(f), and implementation is clear up to evaluation of the integrals
over the elements. If the hybrid form is not used, one needs H (div)-conforming finite
element shape functions to form a local basis. This is done by inverting the numerical
counterpart of the local flux matrix, as discussed in (33) for r = 0.
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5.4 Construction of the 7 operator

Once the spaces E,, D, or ]D)ﬁed, and B, have been determined, one can define the
Raviart-Thomas [16] or Fortin [9] projection operator 7, onto V.(E) = E, & D, & B,
or ' onto VI*(E) = E, © D™ & B,. One simply matches the DOFs ([@)—(8) to fix
the part in E® D, or E @ D™, To these DOFs, we add

(v,¥)e Yy EB,. (66)

Because of (@), these projection operators satisfy the commuting diagram prop-
erty, namely, that

V.gv=%yV-v and V- nﬁedv =Pw, Vv, (67)

where Py, is the L?-projection onto W,. Moreover, since our spaces contain full sets
of polynomials, V, x W, will have full H(div)-approximation properties and V¢ x
W, will have reduced H (div)-approximation properties. Moreover, we have the
following result.

Lemma 2 Assume that the computational mesh is shape-regular. The spaces V, X W,
and V' x W,_| satisfy the inf-sup conditions
(V 'y, W)

V.
inf sup w >y>0 and inf  sup = >y7>0. (68)
wewvev, [[VllyIwlw weWeryevid [IVIlvIIwllw

Moreover, if u is sufficiently smooth and h is the diameter of the computational mesh,
then

[u— maul| + [Ju— 7% < Ch*|ul|yu, 1<s<r (69)
|V-(a—mu)|| <CRYV-ulsq, 1<s<r (70)
V- (u— )| <P Veullgy, 1T<s<r—1. (71)

The condition for a computational mesh to be shape regular is that each element
E is uniformly shape-regular pp- 104—-105], which means that E contains fifteen
(overlapping) simplices constructed from any choice of four vertices, and each such
simplex has an inscribed ball, the minimal radius of which is pg. If hr denotes the
diameter of E, the requirement is that the ratio pg /hg > o, > 0, where o, is inde-
pendent of the meshes as 7 — 0 (h = maxg hg).

The proof of Lemma Rlis quite standard and classic in the mixed finite element
literature (e.g., see [16[7L0], or see the proof outlined in [l Section 2] for the two
families of similar elements defined on quadrilaterals).

6 Some numerical results
In this section we present convergence studies for various low order mixed spaces. We

include the new full and reduced spaces defined in Section[3] which we will designate
as AT spaces to avoid confusion. The ATy space used is the simple one given in (33)
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Fig. 2 Mesh of 2 x 2 x 2 cubes for the three base meshes. Finer meshes are constructed by repeating this
base mesh pattern over the domain, appropriately reflected to maintain mesh conformity. Note that the
meshes have 3, 2, and 0 pairs of parallel faces per element, respectively.

(or, equivalently, (37)—(@2)). The AT, full and reduced spaces used are constructed
using the symmetric supplemental fluxes of (62) since the invertibility of C o H is
known for .7;% and .7, (see Theorem[3).

The performance of the AT spaces will be compared to RT, BDDF, and ABF
spaces. For the 3-D ABF space, we use the optimal space 97;’?‘(1%) of Bergot and
Durufle [6]]. The test problem is defined on the unit cube 2 = [0, 1]* with the co-
efficient a = 1 and the source function f(x) = 37> cos(7x;) cos(7x,) cos(7x3). The
exact solution is

p(x1,x2,x3) = cos(mxy) cos(mxy) cos(mx3), (72)

sin(7tx;) cos(7xy) cos(mxs)
u(xy,x,x3) = 7 | cos(mx) sin(mxy) cos(mx3) | - (73)
cos(mxy) cos(mxy) sin(7x3)

In the computations, we apply the hybrid form of the mixed finite element method [3].
Let .7}, be the finite element partition of the domain Q. For the mixed spaces V;, x Wy,
let V; agree with V), on each element E € .7,, but relax the condition that the normal
flux be continuous on the faces of the elements. The hybrid method is: Find u;, € V;,
pn €Wy, and pj, € M), such that

(@ "upV)E = (P, V- V)E+ (Pr, V- Vi) g =0 YWeVy(E)Eec T, (14)
Y (Vow,w)e =(fwa YweW, (75)
E€T),
Y (wvw)ore =0 vu € M. (76)
Ec9),

The Lagrange multiplier or trace finite element space M}, is defined locally by M;| s =
My(f) = Vj - v|y for each face f of the computational mesh. For the AT spaces,
M,(f) =P,(f). We require that the L-projection of the Dirichlet boundary condition
be imposed on py,.

Solutions are computed on three different sequences of meshes. The first se-
quence, .7;!, is a uniform mesh of n* cubes (three sets of parallel faces per ele-
ment). The second sequence, .7, 2 s obtained from the 2-D trapezoidal meshes used
in Arnold, Boffi, and Falk [4] by simply lifting them in the third direction. These ele-
ments have two pair of parallel faces per element. The third sequence of meshes, 213,
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Table 1 A comparison of the dimensions of the local RT, ABF, and AT spaces on a hexahedron E. Only
the ABF and AT spaces give optimal order convergence on hexahedra.

RT, ABF, AT,

dimV(E) | 3(r+2)(r+1)? 3(r+4)(r+2)? %(r+1)(r+2)(r+4)

+3(r+1)(+2if r=0)

dimW(E)|  (r+1)° (r+2P+3(r+2*  gr+1)(r+2)(r+3)
= 6+1 48 + 20 6+1
=1 36+8 135+ 54 21+4

is chosen so as to have no pair of faces being parallel. The first 2 x 2 x 2 mesh for each
sequence is shown in Fig. 2l Finer meshes are constructed by repeating this sub-mesh
pattern over the domain, appropriately reflected to maintain mesh conformity.

The cubical mesh Z,' provides a reference on which all the mixed methods work
well. It turns out that the second and third meshes provide similar results, so we show
only results for the most irregular case of the third mesh Zf.

6.1 Full H(div)-approximation spaces

The local number of DOFs for each full H(div)-approximation finite element space
can be found in Table [ Note that according to Bergot and Durufle 6], the opti-
mal ABF, space should satisfy the property Zg(VQgp(E)) D P @ xPy, and so it
is defined to be \A’gBF(E) =P3 11 X Py 3,1 x Py 3. Since we solve the linear system
([Z2)—([@a) using a Schur complement for pj, we will report in this section the size of
the Schur complement matrix, i.e., dimM,, rather than the size of dim(V, x W,.).

In Tables 2H3l we present the errors and the orders of the convergence for the
lowest two indices of the full H(div)-approximation spaces RT, AT, and ABF; al-
though, we omit ABF; because the sheer size of its linear system is computationally
excessive. On cubical meshes .7;', RTy and AT coincide. Table 2] shows first order
approximation of the scalar p, the vector u, and the divergence V - u, as we should
expect. The ABF; space gives higher order approximation of all three variables on
cubes because it is constructed with higher order polynomials and, in fact, includes
RT;. The results for RT| and AT (which are different spaces even on cubical meshes)
show second order convergence for all the variables. The errors for RT; are smaller
than AT, but RT; uses more degrees of freedom, both locally and globally.

Table 3] shows that for the hexahedral mesh sequence %f, RTy retains first order
convergence of the scalar but loses convergence of the vector and divergence, while
ATy shows first order convergence for all three quantities. The ABF space still gives
a higher order convergence rate for the scalar on the meshes tested. However, we
can observe that the vector and divergence approximations quickly decrease to first
order. We also observe that AT gives the optimal second order approximation of all
quantities, whereas RT only retains second order for the scalar. The vector reduces
to first order in this numerical test, but the results on the definition of ABF [6] show
that this first order convergence cannot be ensured on general meshes. The divergence
appears to be converging at less than first order.
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Table 2 Errors and orders of convergence for low order RT, AT, and ABF spaces on cubical meshes.

78 =] =] V-lu—w)]
n n DOFs error order error order error order
RTy = AT, on ,le meshes
2 8 36 | 2.417e-1 1.136e-0 7.156e-0
6 216 756 | 9.110e-2  0.95 | 4.078e-1 0.97 | 2.697¢e-0  0.95
12 1728 5616 | 4.609¢-2  0.99 | 2.052e-1 0.99 1.365e-0  0.99
24 13824 | 43200 2.312e-2 1.00 1.027e-1 1.00 | 6.844e-1 1.00
ABF) on 7! meshes
2 8 144 | 1.035e-2 2.523e-1 2.578e-1
6 216 3024 | 2.96le-4  3.17 | 2.786e-2  2.01 8.389¢-3  3.06
12 1728 22464 | 3.523e-5 3.05 | 6.953e-3  2.00 1.031e-3  3.02
24 13824 | 172800 | 4.345¢-6  3.01 1.737e-3  2.00 1.283e-4  3.00
RT; on 7! meshes
2 8 144 | 5.419e-2 2.440e-1 1.603e-0
6 216 3024 | 6.231e-3 1.99 | 2.773e-2 1.99 1.845e-1 1.99
12 1728 22464 | 1.562¢-3  2.00 | 6.945e-3  2.00 | 4.626e-2  2.00
24 13824 | 172800 | 3.909¢-4  2.00 1.737e-3  2.00 1.157e-2  2.00
AT on ,le meshes
2 8 108 | 1.171e-1 4.358e-1 3.465e-0
6 216 2268 | 1.505e-2 1.94 | 5.164e-2 1.98 | 4.455e-1 1.94
12 1728 16848 | 3.814e-3 1.99 1.298e-2 1.99 1.129¢-1 1.99
24 13824 | 129600 | 9.567e-4  2.00 | 3.249¢e-3  2.00 | 2.833e-2  2.00

6.2 Reduced H (div)-approximation spaces

Next we consider the reduced H(div)-approximation spaces BDDF; and ATrled, which
coincide on cubical meshes. These spaces have the same local and global dimension,
as shown in Table @]l The computational results appear in Tables BHAl As we expect,
the elements give first order approximation for the scalar p and the divergence V -
u and second order convergence for the vector u on cubical meshes, as shown in
Table Bl On the hexahedral meshes .73, Table [@ shows that BDDF; has first order
approximation of the scalar but loses convergence of the vector and the divergence.
When ATrf"Jl is used instead, the optimal convergence rates of the cubical meshes are
recovered for the hexahedral meshes, i.e., second order approximation for the vector u
and first order for the scalar p and the divergence V - u.

7 Conclusions

We generalized the two dimensional mixed finite elements of Arbogast and Correa []]
defined on quadrilaterals to three dimensional cuboidal hexahedra. Our construction
is similar in that vector polynomials are used directly on the element. The space of
polynomials used is rich enough to give good approximation properties over the ele-
ment for both the vector variable and its divergence (as either full or reduced H (div)-
approximation). Unfortunately, the traces of the normal components of these vector
polynomials onto the faces do not independently span the full space of polynomials.
This property is needed for H (div)-conformity. Therefore, supplemental functions are
added to the space to give the full set of edge degrees of freedom (i.e., normal fluxes).
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Table 3 Errors and orders of convergence for low order RT, AT, and ABF spaces on ?,13 meshes.

78 Tr=pn =] V-(u—u,)]
n n DOFs error order error order error order
RT( on ,7}13 meshes

2 8 36 | 2.660e-1 1.185e-0 7.488e-0
6 216 756 | 9.464e-2 094 | 4.591e-1 0.86 | 3.149¢-0 0.76
12 1728 5616 | 4.782¢-2  0.99 | 2.630e-1 0.75 1.952e-0  0.60
24 13824 | 43200 2.400e-2 1.00 1.838e-1 0.45 1.530e-0  0.29
ATj on ,7/13 meshes
2 8 36 | 2.66le-1 1.226e-0 7.873e-0
6 216 756 | 9.452¢-2 094 | 4.275e-1 0.96 | 2.798¢-0  0.94
12 1728 5616 | 4.771e-2  0.99 | 2.150e-1 0.99 1.413e-0  0.99
24 13824 | 43200 2.394e-2 1.00 1.077e-1 1.00 | 7.087e-1 1.00
ABFy on .7;* meshes
2 8 144 | 1.474e-2 2.815¢e-1 3.649¢-1
6 216 3024 | 4.706e-4  3.04 | 3.697e-2 1.85 | 2.222¢-2 233
12 1728 22464 | 6.438e-5  2.85 1.310e-2 1.47 | 5.909¢-3 1.77
24 13824 | 172800 | 9.937e-6  2.65 | 5.537e-3 1.19 | 2.261e-3 1.30
RT; on ,7}13 meshes
2 8 144 | 5.644e-2 2.754e-1 1.996e-0
6 216 3024 | 7.098e-3  2.03 | 3.688e-2 1.83 | 2.834e-1 1.69
12 1728 22464 | 1.814e-3  2.00 1.311e-2 1.47 1.239¢-1 1.15
24 13824 | 172800 | 4.541e-4  2.00 | 5.547e-3 1.19 | 7.382¢-2  0.64
AT on ,7/13 meshes
2 8 108 | 1.299e-1 4.526e-1 3.846e-0
6 216 2268 | 1.600e-2 1.95 | 5.629e-2  2.00 | 4.737e-1 1.95
12 1728 16848 | 4.091e-3 1.98 1.436e-2 1.99 1.211e-1 1.98
24 13824 | 129600 | 1.027e-3  2.00 | 3.600e-3  2.00 | 3.040e-2  2.00

Table 4 The dimensions of the local BDDF and AT™¢ spaces on a hexahedron E. These spaces coin-
cide on rectangles, and they have the same local dimension. Only the AT™! spaces give optimal order

convergence on hexahedra.

BDDF, AT
dimV(E) | 1(r+1)(r+2)(r+3)+3(r+1)
dimW (E) Lrr+1)(r+2)
r=1 I8 +1

Table 5 Errors and orders of convergence for BDDF; and ATrled.

M, To—pal Ta—wi el
n n’ DOF error order error order error order
BDDF; = AT} on .7,! meshes

2 8 108 | 2.417e-1 5.611e-1 7.156e-0

6 216 2268 | 9.114e-2  0.95 | 8.601e-2 1.85 | 2.697e-0  0.95
12 1728 16848 | 4.610e-2  0.99 | 2.249e-2 1.95 1.365e-0  0.99
24 13824 | 129600 | 2.312e-2 1.00 | 5.701e-3 1.98 | 6.844e-1 1.00
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Table 6 Errors and orders of convergence for BDDF; and AT‘ied.

7 =] T V-lu—w)]
n n DOF error order error order error order
BDDF; on ,7/15 meshes

2 8 108 2.665¢e-1 6.450e-1 7.487e-0

6 216 2268 9.481e-2 094 1.164e-1 1.52 | 3.149¢-0 0.76
12 1728 16848 4.786e-2  0.99 | 4.000e-2 1.43 1.952e-0  0.60
24 13824 | 129600 | 2.401e-2 1.00 1.723e-2 1.16 1.530e-0  0.29

AT on 7> meshes

2 8 108 2.660e-1 6.435e-1 7.876e-0

6 216 2268 9.455¢-2 094 | 9.760e-2 1.76 | 2.798e-0  0.94
12 1728 16848 4.772¢-2 099 | 2.610e-2 1.91 1.413e-0  0.99
24 13824 | 129600 | 2.394e-2 1.00 | 6.753e-3 1.96 | 7.087e-1 1.00

These supplemental functions are defined on a reference element and mapped to the
hexahedron using the Piola transform.

We provided a systematic procedure for defining supplemental functions that are
divergence-free and have any prescribed polynomial normal flux in Sections BH4l
This is the key contribution of this work.

We also discussed in Section[3l what normal fluxes are required of the supplemen-
tal functions to define mixed finite element spaces. These supplemental functions are
then defined using functions from Section @ When index r = 0 (the lowest order
case), we gave two possibilities. The simple case has shape functions defined by the
explicit formulas (37)—(@2). The more general case for r = 0 in Section3. T 2requires
a bit of local linear algebra, @3)—(48d), to determine the fluxes required of the supple-
mental functions (@7)—@S). For r = 1, we gave three possibilities: (1) for elements
that satisfy the invertibility condition (&3), such as elements with two parallel faces
or that are truncated pillars; (2) for elements with a prescribed normal flux (up to
two parameters, which must be set appropriately); and (3) for the general case of
Section 3.3 which applies to all » > 1. The general case requires some local linear
algebra to determine the fluxes required of the supplemental functions.

Numerical results in Section [6f verified that our approach produces mixed finite
elements that achieve optimal full or reduced H (div)-approximation on quadrilateral
meshes.

A On the invertibility of matrix CoH

In Section[3.2] Theorem 2], we stated that the independence of the degrees of freedom
of our new spaces when » = 1 with symmetric supplements reduces to the invertibility
of the matrix CoH (63), which is the Hadamard product of the centroid matrix C (see
(80)) and the normal matrix H (see (Z7)) for faces fi, f3, and fs. In this section, we
discuss the properties of these matrices and how they relate to the geometry of the
convex hexahedron E. We then prove the invertibility of C o H in two special cases.
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face 2 -

X034

face 4

Fig. 3 The geometry of E.

A.1 The face normal matrix H

Following the discussion in Section[3.2] we know that any convex cuboidal hexahe-
dron can be affinely mapped to a simpler shape E, for which vy = —e;, v = —e,,
V4 = —e3 and X124 = €1, X034 = €2, X025 = €3. Therefore, the normal fluxes vy, V3, Vs
fully define the geometry of £. We define the face normal matrix

Vi1 V31 V51
H= |vip V32 V5| . (77
Vi3 V33 V53

The cross product of the normals of two intersecting faces is parallel to the edge
of intersection. Let 7;; = v; X v;, where ||v; X v;|| > 0 for two intersecting faces. For
example (see Figure[3), 731 = — 113 points from X135 to X|34.

Theorem 4 For any convex hexahedron E, all principle minors of H are strictly pos-
itive.
Proof We use the fact that for three vectors,
(axb)x (axe)=((bxc)-a)a=det[ab c|a.
We first show that det(H) > 0. Consider face 5 in Figure[3] for which
Ts3 X Tis = (V5 X V3) X (V] X Vs5) = (V5 X V1) X (Vs X v3) = det(H)vs. (78)

It is obvious that (753 X Tjs) - Vs > 0 when face 5 is a convex quadrilateral, i.e., the
triangle with vertices X35, X125 and X035 does not degenerate; therefore, det(H) > 0.

Second, we show that the diagonal entries of H are strictly positive. By convexity,
on face 5, (T52 X Tos) - Vs > 0. Thus, computing as in (Z8)), we see that (Vo X V») - Vs >
0. Since vy x vo = (—e;) X (—ez) = e3, we obtain that vs3 > 0. Similarly, since
(714 X T21) -v; >0 and (T3() X T43) -V > 0, we have Vi1 > 0 and V3o > 0.
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Finally, we show that the principal minors of order 2 are strictly positive. By
convexity, we have on face 5, (Tsp x 735) - Vs > 0, and so (v3 X Vg) - vs >0, i.e.,

v —1 Vs Veo v
det [vso 0 vso| =det| >* 52 >0. (79)
L0 V33 V53
V33 V53

The other two principal minors of order 2 can be shown from (7s; X T»s) - Vs > 0 and
(‘513 X T4|) -v; > 0.

A.2 The face centroids and matrix C

In this section, we look at the matrix

i ¢ q
|13 5] el W35
C= c% c% c% =[c ¢, (80)
3 3 G3
where 62 is the average over face i of the variable x,. That is, cl, ¢ s ¢ are the face

centroids of faces 1, 3, and 5, respectively. Obviously, all CZ are strictly positive.

Let Proj’ : R? — R2 denote the projection in the direction es to the (x1,x2)—plane.
Therefore, Proj* (c') is the centroid of the projected face i, Proj’(f;), i =1, 3, 5.

Lemma 3 [f face 2i and face 2i+ 1, i = 0, 1,2, are parallel, then the determinant of
the principal minor of C formed by deleting row and column i+ 1 is strictly positive.

Proof Without loss of generality, we only need to show that when vs = e3,
1.3
det [Ci g] ~0. 81)

When Vs = e3, Ts3 and T34 are parallel, as are 75 and 74;. See Figure [ for the pro-
jected view of E. From the figure, the area of the triangle formed by X4, Pr0j3(c' )
and Proj*(c?) is positive, so

ci ¢
c% X c% -e3 >0, (82)
0 0

which is (§T).
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X135
p X134

X035
X034
X024(5) X124 X125 X024 X125 X124
no overlap overlap

Fig. 4 View of E from the top. The two cases are for Proj*(f;) and Proj*(f3) overlap or not.

A.3 Invertibility of CoH

We have affinely mapped our convex, cuboidal hexahedron E to E. An affine transfor-
mation will take parallel lines to parallel lines. Therefore, if E has two pair of parallel
faces, or if E is a truncated pillar, the same will be true of E.

Theorem 5 For a convex, cuboidal hexahedron E, if one pair of opposite faces are
parallel, then the matrix C o H is invertible.

Proof Without loss of generality, we assume that face 4 is parallel to face 5. Therefore
V51 = V52 = 0 and by Theorem @ we know that V53 > 0. The invertibility of matrix
CoH is reduced to showing that

1 3
Vi1 €1V3a
t[ R M (83)

V12 C3V32
1.3 1.3
By Lemma 3] we know that cjc3 > ¢3¢ > 0. By Theorem ] we have vy vz, >
Vi2V31. Therefore, C{C%V171V372 > Céc?vl’z\/&l, and (Im) holds.

Theorem 6 For any truncated pillar E, the matrix C o H is invertible.

Proof We assume without loss of generality that E is a truncated vertical pillar, so
Vo3 = Vi3 = V23 = V33 = 0. The matrix C o H reduces to

1 3 5
C1V1,1 €1V3,1 €1V5.1
CoH= C£V172 C%V&z C%Vs’z . (84)
0 0 C§V5!3

Moreover, the projection of ¢! on the bottom plane is in the line from X124 to X34, and
the projection of ¢3 in the line from X34 to Xg34 (see Figure [l where now X¢35 and
X034 are on top of each other, as are X134 and X35, and also X4 and X15). Therefore,
we have

cl 3

det|“1 1| >o0. (85)

C O

The rest of the proof follows that of Theorem 3
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B Proof of Theorem 2]

For E, the local variables on face 1 are x, and x3, so a base for the normal flux on i
is span{1,x2,x3} =P (f1). Similarly, span{1,x;,x3} =P (f3), and span{1,x;,x} =
Py (f5). Define the operator .55 € R'*? to be the normal fluxes of f1, f3, and fs in
the local degrees of freedom, i.e.,

Fis()XT = Fi35(u), where X = [1x2 x3]1 x1 x3]1 x1 x2 ] (86)

Fizs(u)
Similarly, we define Z55(uy, ..., u,) = : ER™.On fi, (x—e1)-v; =0,
F3s(un)
ie., x{Vi1 = Vi1 —X2Vi2 — x3V1 3. Similar statements hold on f3 and fs, so we can
rewrite (60) as

Vit —Vig—Vvi3l0 v3; 0 |0 vs; O
Fis(Wo, Vi W)= 0 vig 0 |vip—v3i—v33 0 0 s
0 0 wviz|0 0 v33|Vs3—Vs51—V52

(87)

To prove that ([©2) provides independent degrees of freedom, we need to show
that the 9 x 9 matrix

* * *
‘7@\1350//9)"'71”117607---565)

[vig —Vvip—Vviz| 0 v3; O 0 wvs1 O
0 vipg 0 |vip—Vv31—vs3| 0 0 vs3
0 0 wviz| 0 0 v33|Vs3—Vs51—Vs52

~J 1 _0]0 0 0]0 0 o0

= |- 0 1 ]0 0 0 ]0 0 O (88)

0 0 0| 1 00 0 o0
0 0 0 |- 0 1 ]0 0 0
0 0 010 0 0 |- 1 o0

0 0 o]0 0 0 |- o 1 |

is invertible. By the fact that ¢/ = [c’l cé cé]T ison f;, i =1,3,5, we know that, e.g.,
c{v],] =V — cév],Z — cévlﬁ. In (B8], using rows 4 to 9 to cancel out entries in

columns 2, 3, 5, 6, 8, and 9 of the first three rows, we obtain

_C%V],] 00 C?V},,] 00 C?V5,] 00
C£V1,2 00 C%V},,z 00 C§V5,2 00
CéV1,3 00 C§V3,3 00 C§V5,3 00
—cl 10l o oo 0 00
—l 01| 0 00| 0 00

0 00— 10 0 00
0 00/ -2 01/ 0 00
0 00/ 0 00— 10
.0 00/ 0 00— 01]
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We rearrange the columns to

[celvin lvsi vsi [0 0 0 0 0 0
civia 3vsn Svsp [0 0 0 0 00
civiz civsz 3vs3 [0 0 0 0 0 0
—c} 0 0 |1 00O0O0O
—cl 0 0 |01 00O0O
0 —¢ 0 (001000
0 - 0 |0001O0O0
0 0 —7 1000010
0 0 —c3 {0000 01|
The upper left submatrix is exactly C o H, and the proof of Theorem 2lis complete.

C Proof of Theorem[T]

Rewrite (61) with .75, to obtain

a* * * * o
‘jl35(w95"'a‘llllaGOa"'763764765)

Vi1 —Vip —Vi3 0 vii 0 |0 vs;7 O
0 vip 0 V32 —v31—v33 0 0 sy
0 0 vi3 0 0 V33 |Vs3 —Vs51 —Vs2
—cl 0 0 0 0]0 0 0
—cl 0 1 0 0 00 0 o0
— 0 0 0 —c3 1 010 0 0 (89)

0 0 0 —c3 0 1]0 0 0

i L (e A P T
il |f3l
2 0 o |[ZBlets o g0 0

LAl 3] |

If there exist constants s and 7 such that the matrix (89) is invertible, the non-symmetric
supplements oy to 03, 0}, and 63 provide independent degrees of freedom.

Using rows 4 to 7 to cancel out entries in columns 2, 3, 5, and 6 in the first three
rows, we obtain

C{V171 00 C?V3!1 0 0[O0 V5.1 0
clvin 00 V3o 00[(0 0 s,
C%V[J 00 C%V3,3 00 V53 —V51 —V52

—cl 10 0 00[0 0 0

—c! 0 1 0 00/0 0 0

0 00 - 100 0 o0

0 00 — 010 0 0

(=fsley +1)/1fi] 0 0 —t/1f3] 000 1 0
L —s/IAl 0 0|(-Ifsl3+9)/Ifs1 0 0f0 0 1 |
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Rearrange the columns and rows to see

C%V171 C?V3’1 V5.1 0 0 000O
civin 3Vin 0 wvs2|0 0000
(1fsled +0) /1Al —/If] I 0100000
—s/If1l (—lfsles+s)/Ifsl 01 [0 0000
civis Vi3 —Vs1 —Vs2|Vs3 00 0 0
—c} 0 0 0|0 1000
—c} 0 0 0|0 0100
0 —c3 0 010 0010
i 0 - 0 0|0 0001
This matrix is invertible if and only if
clvi v vsi 0
civin Vi 0 vsp
CIAC+0/A Bl |1 0 0
=s/lAl (sl +s)/1Al 0

is invertible. A 2 x 2 block matrix has the following lemma [18]].

A B

Lemma4 [fM= <C D

>, where A, B, C, D € R"*" and CD = DC, then

detM = det(AD — BC).

Obviously, the lower right submatrix of (9Q) (an identity matrix) commutes with any
2 x 2 matrix. Thus, to prove that matrix (90) is invertible, we need to show that

dmrhu+wﬂmw?tVMI

Avsi+1vsi /Il
aavsa+Vsa(lfsl — )/ 155l

This determinant is a bilinear function in s and 7, denoted as d(s,t). If we can prove
that d(s,z) # 0, then we can find a pair (s*,7*) such that d(s*,¢*) # 0, and the last two
non-symmetric supplements o and o7 in (6I) are defined. There are two cases.

Case 1: v5s | = 0 and vs > = 0. In this case, E is a truncated vertical pillar, and by
the proof of Theorem[@ we know that

cAvin+svsa/|fil

] £0. 1)

92)

v v
d(s,t) = det {Cl L1l 3’1} >0,

C%V[’Q C%V&Q
and s and # may be taken arbitrarily.

Case 2: vs5 # 0 or vs | # 0. By symmetry, we only show the situation Vs, # 0
here. Let

lv Vv 5 3v
ad(O,O)det[C' tvsisled/ial oo e ] (93)
Vi c3V32+ Vsa(lfsles) /|13l
cvit+vsi(Ifsle)/ 1] elvaa
bd(lfslci,O)det[: A ] (94)
cVip+Vsa(lfsle)/1fil - e3van
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Then
a—b=(vsa|fs|c3)det civin+vsi(fsle) /LAl efvaa
| —1/1A 1/1/3]
— %ﬁlﬁﬂfl lelvia +fleivag +1f5]elvs) #0, 95)
since
[Alevia+Ifsletva+1fsleivs (96)
x|

x|
~[ |o -vdA:/NV- 0 | av = £ #o0.
oE 0 E 0

The fact a # b implies that d(s,1) # 0, and so ([89) is invertible.
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