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Abstract Numerical approximation of a stochastic partial integro-differential equation
driven by a space-time white noise is studied by truncating a series representation of the
noise, with finite element method for spatial discretization and convolution quadrature for
time discretization. Sharp-order convergence of the numerical solutions is proved up to a
logarithmic factor. Numerical examples are provided to support the theoretical analysis.
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1 Introduction

For given a € (0, 2), we consider the stochastic partial integro-differential equation (PDE)

oup(x,t) — AD " p(x,t) = f(z,t) + o W (z,t) (z,t) € O xR,
O~ p(x,t) =0 (z,t) € 00 x Ry (1.1)
¥(x,0) = to(x) z€0

in a convex polygon/polyhedron O C R¢, d € {1,2,3}, where A : H2(2) N H}(O) —
L?(0) denotes the Laplacian operator, f(z,t) a given deterministic source function, ¥ (z)
a given deterministic initial data, o a given positive parameter, and W(:r, t) a space-time
white noise, i.e., the time derivative of a cylindrical Wiener process on L?(Q) with an
underlying probability sample space §2. The Caputo fractional time derivative/integral
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O}~ is defined by (cf. [16, pp. 91])

L ! _Sa—13¢($75) s if a
F(a)/o(t ) g5 i ae (0,1]

; t —8)2 2(z, 8)ds  if «
P -9 ele s it ae(12),

0 P(a,t) ==

where I'(s) := [~ t*"te~'dt denotes the Euler Gamma function. If o = 1, then (1.1)
recovers the standard stochastic parabolic equation.

Problem (1.1) can be used to describe the behavior of complex phenomena in math-
ematical physics, such as viscoelasticity and heat conduction in materials with memory
subject to stochastic noises [0, 17,23]. For any given initial data 1y € L?(O) and source
f € LY0,T; L?(0)), problem (1.1) has a mild solution ¢ € C([0,T]; L?(£2; L?(0))); see
Appendix A.

Many efforts have been made in developing efficient numerical methods with rigorous
error analyses for solving (1.1), with or without the stochastic noise. In [22], Lubich et.al.
have considered the deterministic version of this problem in the case o € (1,2). The
discretization used convolution quadrature (CQ) based on backward difference methods
(BDF's) in time and piecewise linear finite elements in space. The authors have proved
optimal-order convergence rate of the numerical scheme for nonsmooth initial data. To
achieve higher-order temporal convergence rates, the CQ generated by second-order BDF
and Crank-Nicolson methods have been considered in [7] and [15] for solving (1.1) and its
equivalent formulation, respectively. Due to the singularity of the solution of fractional
evolution PDEs, the standard BDF and Crank-Nicolson CQs need to be corrected at
several initial steps to achieve the desired order of convergence. Initial correction of
higher-order BDF methods for fractional evolution PDEs has been considered in [14]
recently.

Compared with the deterministic problem, the major technical difficulties in the de-
velopment and analyses of numerical schemes for (1.1) are due to the space-time white-
noise forcing, which leads to low regularity of the solution in both time and space. In
the case a = 1, Allen et. al. [1] developed a fully discrete numerical scheme for solving
a stochastic parabolic problem, for which the white noise was approximated by piece-
wise constant random processes and a sharp order of convergence was proved. See also
Du and Zhang [9] for some special noises, Shardlow [25] for the space-time white noise
discretized by the spectral method, and Yan [28] for a nonlinear stochastic parabolic sys-
tem with Wiener process discretized by the generalized L?-projection operator. In [17],
Kovéacs and Printems developed a CQ based on backward Euler method for the model
(1.1) with « € (1,2), where the Q-Wiener process was discretized by the generalized L2-
projection operator. For the space-time white noise case, a strong order of convergence
of the numerical solution was proved in one-dimensional spatial domains, i.e.,

E|[¢(-stn) — 00|20y = O(73 " $ 4+ ha~27%) for a € (1,2) and d =1,

where € can be arbitrarily small, ¢ (-, ¢,) and w&h) denote the PDE’s mild solution and
numerical solution at time t,, respectively, 7 denotes the temporal step size, and h
denotes the spatial mesh size. For a € (0,2), a sharp order convergence rate O(72~%")
was proved in [12] for a CQ time discretization of (1.1) in general d-dimensional spatial
domains, with d € {1,2, 3}, without the deterministic forcing. We refer the readers to [2,
, 10] for numerical analysis of other nonlinear physical stochastic equations.

This article is a continuation of [12] in the spatially discrete setting, by truncating a
series representation of the space-time white noise and solving the truncated problem by
the finite element method. For the resulting fully discrete numerical scheme, we prove



the sharp-order convergence

|y (- tn) — i |12 (0) = ) (1.2)
O(T%fTﬁ—h%%) if o€ (O, 5),

1 1
up to a logarithmic factor ¢ = (In(e+1/h))z, in general d-dimensional spatial domains,
d € {1,2,3}. The main contributions of this paper are the following,.
(1) Sharper-order spatial convergence is proved in the case o € (1,2) and d =1 (up to

1
a logarithmic factor £7).

2

(2) The error estimates are extended to a € (0, 5) and multi-dimensional domains.

(3) An interesting phenomenon is found: the spatial order of convergence i—% increases
to 2 — g as « decreases to %, and stays at this order when « further decreases.

(4) Less regularity assumption on f: the error estimates in the literature all rely on cer-
tain regularity of % (even for the deterministic problems, cf. [13, Theorem 3.6] and
[22, Theorem 3.3]). We relax such conditions to an optimal integrability condition
fe L2+4mi’1(0,T; L?(0)) to match the convergence rate of the stochastic problem.

Consequently, the source f does not need to be continuous in time.

The rest of this paper is organized as follows. In section 2, we recall some basic
preliminary results, introduce the numerical scheme for problem (1.1), and state the
main results. Based on an integral representation of the numerical solution and careful
analyses of the resolvent operator, the strong convergence rates are proved in section
3 and section 4. Numerical examples are given in section 5 to illustrate the theoretical
results.

Throughout this paper, we denote by C, with or without a subscript/superscript,
a generic constant independent of n, 7, and h, which could be different at different
occurrences.

2 The main results
2.1 Notations

We denote by (-,-) and || - || the inner product and norm of L?(0), respectively. The
operator norm on L?*(O) is also denoted by || - || (as it is induced by the norm of L*(0)).
Let H*(O) C L?(0) denote the Hilbert space induced by the norm

el g0y 7= D A3 (0, 0517,

Jj=1

where ¢;, j = 1,2,..., denote the L?-norm normalized eigenfunctions of the Laplacian
operator —A corresponding to the eigenvalues \; , j = 1,2, ..., arranged in nondecreasing
order. In particular, H°(0) = L*(0), H'(©) = H}(O) and H*(O) = H*(O) N H}(O);
see [27]. For 1 < p < oo we denote by LP1(0,T; L?(0)) the standard Lorentz space of
functions defined on O x (0,7T) (see [11, section 1.4]), satisfying

t 1
S(tépT)/(t =) 7 f(9)llds < CllflleroriLzoy Y F € LPHO,T; LP(0)),  (2.1)
te (0, 0

where p’ denotes the dual of p, i.e., % + % = 1. For 1 < p < oo, the Lorentz space
LPY(0,T; L?(0)) is an intermediate real interpolation space between L'(0,T;L%*(0))
and L>(0,T; L*(0)) (see [5, Theorem 5.2.1]), satisfying

L%0,T; L*(0)) — LP*(0,T; L*(0)) Vqg>p>1.



Let {t, = nT})_, denote a uniform partition of the time interval [0, 7], with a step
size 7 = T/N, and u" = u(z,t,). If we denote by f. the following function (piecewise
constant in time):

I
£o(ers) = 7/ FOdE Vs € (toyita], n=1,2,...,N, (2.2)
T tn—l

then it is well known that
Il f- 2o, 1s220)) < I fllzro,m;2200)) VfeL'(0,T;L*(0)),
I frllzo 0,522 (0)) < IfllLoe 0,722 (0)) V f e L>®(0,T; L*(0)).

The real interpolation of the last two inequalities yields (see [5, Definition 2.4.1] and [5,
Theorem 5.2.1])

| fr e 0,m522(0)) < Clfllzr0,m;02(0)) v f e LP0,T; L*(0)). (2.3)

The last inequality will be used in this paper.
For a € (0, 1], we approximate the Caputo fractional time derivative 9; ~“u(z,t,) =

O}~ *(u(x, tp) — u(x,0)) by the backward Euler CQ (cf. [15, (2.4)] and [20,21,22,24]):
_ 1 n
O (uy, — ug) = e an_j(uj —ug), n=1,2...,N. (2.4)
j=1

For a € (1,2), we approximate the Caputo fractional time derivative 9}~ “u(x,t,) by the
CQ without subtracting the initial data (cf. [22, (1.15)]), i.e.,

al—a 1 <
ol = > bujuj, n=12,... N (2.5)

T rl-a ,
Jj=1

In both (2.4) and (2.5), the coefficients b;, j = 0,1,2,..., are determined by the power
series expansion

(1=¢)'*=>"b;¢/ V[¢|<1, ¢eC.
j=0
Besides, we define the standard backward Euler difference operator

a3 Up — Un—1

Ortly i = —, n=12...,N. (2.6)
-
The complex-valued function
1-¢

is called the generating function of the backward Euler difference operator. It plays an
important role in the analysis of the CQ. In particular, for any sequence {v,}52, €
(?(L?(0)) we have

SO ) = Y e Y b = ()Y, Vid<1 (@)
n=1 n=1 7j=1 j=1

Let T, be a quasi-uniform triangulation of the domain O into d-dimensional simplexes
7w, T € Th, with a mesh size h such that 0 < h < hg for some constant hg. A continuous
piecewise linear finite element space X} over the triangulation 7 is defined by

Xy, = {én € Hy(O) : ¢plx, is a linear function, vV, € Ty}
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Over the finite element space X}, we denote the L? projection P, : L?(O) — X}, and
Ritz projection Ry, : H}(O) — X, by

(Prip, 1) = (¢, dn) Yo € X,
(VRLp,Vor) = (Vo,Von) Yon € Xp.

It is well known that the L? projection and Ritz projection satisfy the following
standard error estimates ([27]):

[1Proll < Clloll Vo e L2(0), (2.9)
1Pn¢ — oIl < ChY |9 1+ (o) Vo e H(0), vel0,2], (2.10)
1Pnd = Ruoll < CR2(|¢ll 720 Vo€ H(0). (2.11)

Through defining the discrete Laplacian 4y, : X, — X by

(Anpn, ¢n) = —(Vonr, Von) Von, én € Xy
and using the inverse inequality, the inequality (2.11) implies
|AR(Prd — Rio)|| < Ch™2||Pud — Ryl < Cliol g2 (o V¢ e H*(O). (2.12)
Since ApRp¢p = P Ag, it follows that

[AnProll < [[AnRioll + | An(Prd — Rpd)||
=[P AG| + | An(Prg — Rio) ||
< Cll¢ll g2 (0 Ve H*(O). (2.13)

The complex interpolation between (2.9) and (2.13) yields
145 Proll < Clldll o o) Vo e HY(0), ve0,1]. (2.14)
Similarly, the complex interpolation between (2.11) and (2.12) yields
147, (Pad — Rig) | < CR*2Y(|¢]| 200 Vo e H0), ye€(0,1]. (2.15)

The estimates (2.9)-(2.15) will be frequently used in this paper.

2.2 The numerical scheme and main theorem

Recall that the cylindrical Wiener process on L?(O) can be represented as (cf. [3, Propo-
sition 4.7, with @ = I and U; denoting some negative-order Sobolev space])

W(wt) = 3 6 @)Wyt

with independent one-dimensional Wiener processes W;(t), j = 1,2,.... We approximate
the space-time white noise W (x,t) by

M
WM (z,t,) = Z ¢; ()0 W (tn)

with M := [h~9] + 1, the largest integer that does not exceed h~? + 1. Clearly, we have
h™?<M<Ch ™% VYO0<h< hg,

where the constant C' may depend on hg.



With the above notations, we propose the following fully discrete scheme for problem
(1.1): find

n=12,...,N,

QNS w(()h) + X}, in the case a € (0,1]
" X in the case a € (1,2)

with z/Jéh) = Ppy, such that the following equations are satisfied for all ¢, € Xp:

(000, 0n ) + (VO — i), Vo)
= (fna ¢h) + (O’éTWM(~,tn), Qbh) s ifae (Oa 1]a (216)

(8w, 0n) + (VO w, Vo)
= (fur00) + (00, WM (- 1,), 1) , if a € (1,2), (2.17)
where f,, is the average of f over the subinterval (¢,-1,t,], i.e.,

=t [ stnar

T

Through the discrete Laplacian Ay, we can rewrite the fully discrete scheme (2.16)-
(2.17) in the following equivalent forms:
57'/(/)7(7,’1) - Ahé'fl-_a(wgh) - w(()h)) = thn + UPhéTWM('atn)v if a € (07 1}7

_ _ . (2.18)
8 — A=) = Py, £, 4+ o PO, WM (- 1,), if € (1,2).

Note that 9§") € L2(2; X},) and Py, f+0 P8, WM (- t,) € L2(£2; X)) forn = 1,2,..., N.
If the numerical solutions d»@ € L2(2; Xy), n=0,1,...,m — 1, then we define

m—1
7_04—1 Z bm—jAh(w]('h) - '(/)(()h)) + thm + O-Phé‘rW]M('a tm) if o€ (07 1]a
(h) ._ J=1

m—1
7NN by AW + Py fon + 0 PuOWM (- ) if € (1,2).

j=1
Then gg,}f) € L?(£2; X},), and the numerical solution defined by (2.18) is given by

b — 84 (T = A T (T @G = o) + g) i ae (0,1),
" (r7! - Ta_lboAh)_l(T_ll/J,(:Z)_l + g,(,}[)) if @€ (1,2),
which is well defined in L?(£2; X},). By induction, the numerical solutions w,(Lh) € L?(02; Xp),

n=12,...,N, are well defined.
The main result of this paper is the following theorem.

Theorem 1 Leta € (0,2) withd € {1,2,3}, f € Lﬁ’l(O,T;LQ(O)) and 1y € HX(O),

with the notation
d 1 d
=min(2—--, —— = 2.1
x=min(2-3, 2= 2}, (219)

and assume that the spatial mesh size satisfies 0 < h < hgy for some constant hy. Then

the numerical solution given by (2.18) converges to the mild solution of (1.1) with sharp
order of convergence, i.e.,

. Clo+T (o, ) (F3 % +2n5 %) ifac [1 3),
E¢(,tn) — || 120y < ) . 1
Clo+T(Wo, f)) (T3~ F+127%)  ifac (o, 7),



where

T(%o, f) = Yol grxcoyt Il

4 4 5
L7 (0,75L2(0))

E denotes the expectation operator, ¢, = In(e 4+ 1/h), the constant C is independent of
h, 7, n, o, and f (but may depend on T and hg).

Proof. Without loss of generality, we can assume o = 1 in the proof of Theorem 1.
The solution of (1.1) can be decomposed into the solution of the deterministic problem

owv(z,t) — A} v(x,t) = f(x,t) (2,t) € O x Ry
oF v(x,t) =0 (z,t) € 00 x R, (2.20)
v(z,0) = () xeO

plus the solution of the stochastic problem
dyu(z,t) — AD} ~“u(z,t) = W(x,t) (x,t) € O xR,
oF ~u(x,t) =0 (z,t) € 00 x Ry (2.21)
u(xz,0) =0 zeO.

Similarly, the solution of (2.18) can be decomposed into the solution of the deterministic
finite element equation

5 o) _ A, glma(y® _ o™y _ p
{6(7}?)” w070 = 097) = Pufn if o€ (0,1], (2.22)
Vg = Py
or _ _
&,-”UELh) — Ahai*avgh) = Py fn
o if a€(1,2), (2.23)
vy~ = Prg

plus the solution of the stochastic finite element equation
{ 57—11,5?) - Ahg,,l__au;h) = PhgTWM(-, tn)

(2.24)
u((Jh) =0.

In the next two sections, we prove Theorem 1 by estimating E|u(-,t,) — u%h)H and

|v(-stn) — vﬁbh)H separately. In particular, Theorem 1 follows from (3.1) and (4.1) (in

(4.1), we have y =1 — 2 for a € [£,2) and x =2 — ¢ for o € (0, 3)).

3 Stochastic problem: estimate of E|u(-,t,) — ulM||

In this section, we prove the following error estimate for the solutions of (2.21) and (2.24):

Ellu(,tn) - u| < o 2 (3.1)
C(ri=% 1 h* %)  ifac (0, 7)
To this end, we introduce a time-discrete system of PDEs:
Oty — AD~%u, = 0, W (-,t,), m=1,2,...,N,
(3.2)
Uug = 0.

Then (2.24) can be viewed as the spatially finite element discretization of (3.2), and the
error can be decomposed into two parts:

Ellu(-,tn) — ul || < Eflu(-,tn) — wnl| + Eluy, — ulP]),

n



where the first part on the right-hand side has been estimated in [12] (in [12] we have
only considered zero initial condition u(-,0) = 0, and in this case the boundary condition
u =0 on 9N is equivalent to 8; *u = 0 on 912), i.e.,

Ellu(-,ty) —un|| <Cr3~%  Vae (0,2/d), de{1,2,3}.

It remains to prove the following estimate in the next three subsections:

ClEnd—% ifac [1 g),

Elfu, —u| < 2d (3.3)
d
cht ifae(0,5).
2
3.1 Integral representations
We estimate E||u, — ul || by using integral representations of w,, and u%h), respectively.

We first introduce some notations:

Iy ={2€C:|z| =k, |argz| <O U{z € C: 2z = pet? p > &},

1y = {z € ot () < 2},

which are contours on the complex plane, oriented with increasing imaginary parts. On

™)

the truncated contour I 9(,,-;7 the following estimates hold.

Lemma 1 ([12]) Let o € (0,2), 6 € (Z,arccot(—2)) and k = + be given, with 6-(¢)
defined in (2.7). Then

5.(e7*T) € Xy Vzel,) (3.4)
Colz| < 16:(e™"7)| < Cuz| Vae Iy (3.5)
6,(e7*7) — 2| < O]z Vzely, (3.6)
16, (e7*7)* — 22| < Crlz|* ! Vzely), (3.7)

where Xy = {z € C\{0} : |arg z| < 0 < 7}, the constants Cy,Cy and C are independent
of T and K.

Let 0.W denote a piecewise constant function in time, defined by

57—W(',t0) =0
0, W (-,t) == W) = W(stna) for t € (tp_1,tn], n=1,2,...,N.
T
Similarly, we define
éTWj(to) =0
A Wi(t) := Wiltn) = Witn-1) for t € (tn_1,tn], n=1,2,...,N.
T

Then the following results hold.

Lemma 2 Let o € (0,2) and 6:(C) be defined as in (2.7) with the parameters x and 0
satisfying the conditions of Lemma 1.



(1) The solution of the time-discrete problem (3.2) can be represented by
tn > tn
_ / Frltn — )0, W (5)ds = 3 / Bty — 8)6;0.W;(s)ds,  (3.8)
0 =iJo

where the operator E.(t) is given by

zZT

- i zt —zT\a—1 —2T\ —1
E, (t)p = 5 /1“9(7? e T 157—(6 )T (0 (e = A) T g de (3.9)

for ¢ € L?(0).
(2) The solution of the fully discrete problem (2.24) can be represented by

ulh) = Z/ EWMW(t, — 5)p;0,W;(s)ds (3.10)

where the operator Egh) (t) is given by

EM ()¢ = 1,/()@“ T S (e ) (G (e ) — Ay Phpde (3.11)
e

2 erT — 1

for ¢ € L*(0).

The first statement in Lemma 2 has been proved in [12, Proposition 3.1]. The second
statement can be proved in the same way, replacing the operator A by A, and W (-, t)
by WM (. t) (this does not affect the proof therein). From Lemma 2, we see that

Uy, — ul) —Z/ — EW(t, —5))¢;0-W;(s)ds

+Z/E $)¢;0-W;(s)ds

j=M+1

We present the estimates for Z,, and 7, in subsections 3.2 and 3.3, respectively.

3.2 Estimate of 7,

Now, we start to estimate Z,,, i.e., the error of space discretization. The following lemmas
are useful in the estimates of Z,, and 7,.

Lemma 3 ([18,19,26]) Let O denote a bounded domain in R?, d € {1,2,3}. Suppose
A; denotes the 7t eigenvalue of the Dirichlet boundary problem for the Laplacian operator
—Ain O. Then, we have

Cijt <A <Cyji (3.13)
for all j > 1, where the constants C§ and C} are independent of j.
Proof. The well-known Weyl’s law gives the asymptotic behavior of the eigenvalues of

the Laplacian operator (see [19] and [26, pp. 322]):

Aj 2
]E{IQCW = (2m)*(B4|O]) "4,
where By denotes the volume of the unit d-ball. The estimate (3.13) follows immediately
from the above result. a
The following lemma is contained in [12, Lemma 3.2].
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Lemma 4 For any z € X, with ¢ € (0,7), we have

< _Ce
BERRE

1
Z+)\j

(3.14)

where j =1,2,....
The following resolvent estimates will be frequently used in this paper.

Lemma 5 For z € Xy (see the definition in Lemma 1), with 6 € (0,7), we have the
following resolvent estimates:

I = )7+ 1z — A0 < €l (3.15)
A= A+ A - AT <CRT, ye0 1 (316)

Proof. The first inequality is due to the self-adjointness and nonnegativity of the op-
erators —A and —Ay,. These properties guarantee that A and A; generate a bounded

analytic semigroup of angle 5 on L?(O) and (Xp, || || 2(0)), respectively; see [3, Example
3.7.5 and Theorem 3.7.11].
Recall that A; and ¢;, 7 = 1,2,..., are the eigenvalues and eigenfunctions of the

operator —A (see Section 2.1). The second inequality is due to the interpolation inequality

Ja =l = | ixm@,@m
(ZA2 21650P)° = (51659 PAT (65,02
j=1

< (Z [(¢j, <,O)|2) : (Z A2 (o, <p)|2) = (use Holder’s inequality)
Jj=1 j=1

< [lel | Ap|* .

Nl

Substituting ¢ = (z — A)~!¢ into the inequality above yields
1Az = A) 71 < lI(z = A) Tl A(z — A) T gl
< (ClzI7HIgI) (Cllelnt
< Clz[ 7|9 ll-
This proves the first part of (3.16). The estimate of ||A,1;“’(z — Ap)7!| can be proved
similarly (by using the eigenvalues and eigenfunctions of —Ay,). a

The following lemma is concerned with the difference between the continuous and
discrete resolvent operators.

Lemma 6 Let o € (0,2) and 6,(C) be defined as in (2.7) with the parameters r and 0
satisfying the conditions of Lemma 1. Then we have

[[(6-(e7*)> — A)™F — (3, (7)™ — Ap) " Plo; || < Ch¥(|2|* +2;) "2 (3.17)
for alle € [0,1] and j =1,2,..., M.

Proof. First, (3.4) yields that &, (e *7)* € X, for z € FG(;). Consequently, we have (cf.
22, pp. 7))
[[(6-(e7)> = A)F = (6,(e7*7)™ = Ap) "' By|| < CR*. (3.18)

Second, by Lemma 1 and Lemma 5, there exists a constant C' which depends only on
f and « such that

1(3-(e7*7)* = A)7H| < C|6,(e7*7)| 7 < Clz| ™ Vzel,), (3.19)



11

18- (€72 — Ap) 1Pyl < [[(8,(e7*7) — Ap) Ul Bull < Cle| ™ ¥z e Iy). (3.20)

Since (8, (e7*7)* — A)7LA = (6, (e7*7)* — A)~15,.(e7*7)™ — I, it follows that

1(6-(e*7)* = A)~r A < C.

Consequently, we have

10-(e7*)™ = A) 7 [l = (8 (e7*7)* = A) T AAT g

g [ ) R [ P e
<ON,

which together with h2 < C\}} (since M = [h= % +1 ~ h~% and Ay < CM74 by Lemma
3) implies

1(07(e77)™ = An) ™' Pags)

< (0 (e7 ) =A) 7 sl 4+ (- (™) = A) 7T = (8- (e7T) = An) T Pl |
<CN P+ OR®

<O

(3.21)
for j =1,---, M. Therefore, (3.19)-(3.21) leads to

16 (=) = 2)7 = (0, (™) = APy | < Cmin{l] =, A7)
<C(lz|*+ M)~ h (3.22)
Finally, interpolation between (3.18) and (3.22) yields (3.17). This completes the proof
of Lemma 6.

O

Now, we turn to the estimate of Z,,. From Lemma 6, and choosing 8 € (0, 1), it is
easy to derive

1B (1) — BX(1) 5117

<

< ([ I8 e e = )71 = (6 (e7)" - A Pyl )
Iy

2
< (C/( )e|z|tcos(arg(z))|Z|a—1(|zla +)\j)—(1—s)h2s |dZ|)
),

20—2+p
< Ch45 / e|z|tcos(arg(z))@ / e|z\tcos(arg(z)) |Z‘ “ |dZ|
) 1217/ \ I ( )%

200—2+4p
< Ch4stB—1/ e\z\tcos(arg(z)) ‘Z| “

—————|dz|,
o (el + 37

where |dz| denotes the arc length element. By choosing x = ~

7 we have
—r 6
/ 6|z|1§cos(arg(z))@ </TS‘H(6) efrt\cos(9)|g+/ entcos(gp) d(p
rym l21F ~ . 8 KA1
<ot (3.23)
Since w, i =1,...,n,and j = 1,2,..., are stochastically independent of
each other, it follows that

2

) et _TWj e / ' (Br(tn — 5) — E® (b, — 5))6;ds

i=1 izt

M
E|Z.)* =) E
j=1
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2

M n 1 ti
:ZZTH/t (ET(tn_S)_E‘(Fh)(tn_s))quds

j=11i=1

< ZZ/ | By (tn — 8) — EW(t,, — 5))¢;]|?ds (Cauchy-Schwarz inequality)

j=11:=1
- Z / — B® (1)) ;2
o202+

tn
4 B—1 | 2|t cos(arg(z))
<Ch6/ t A(T)ez comEl Z | |a+>\ 2 2e |d2|dt

tn « 2—2¢
_Ch4a/ tB 1/ \ |t cos(arg(z 2ea—2+0 |Z| dz|dt.
. || Z P |dz|

(3.24)

|2]® )2—25

Since (‘Z‘QHV

<1 for € € [0,1], it follows that

M

|Z|a 2—2¢
S cv<ane
: ‘Z|a + )\j
j=1
where the last inequality is due to our choice M = [h~¢] + 1. Thus (3.24) reduces to
tn
]E||In||2 < Ch4s—d/ tB—l/ e\z|tcos(arg(z))|Z|25a—2+ﬁ ‘dZ|d7f
0 7
tn —
< Ch457d/ tﬂfl /Tsm(g) efrt|cos(0)\,r26a72+ﬁ drdt
0 K
tn 0
+ Ch457d/ tﬁfl / emtcos(@)ly‘:ZEaflJrﬁ dgﬁdt
0 —6
— tn
— Ch4sfd/7—sm(6) T2€0¢72+ﬁ/ tﬁflefrt|cos(0)| dtdr
K 0

tn 0
+ Ch457d/ tﬁfll{QEaflJrﬁ/ e/{tcos((p) d(pdt
0 —0

= tn
< Ch4s—d</”‘““’> r2e0=2 qp. o H2sa—l+ﬁ/ tB—ldt)
K 0

< Cple—d 1 2ea—1 _ 1 ™ Zeamt Jrnzea—l(lit )B
- 1 —2ea 1 — 2ea \ 7sin(6) v

For a € [%, ), we choose ¢ = % with £, = In(e + 1/h) and h=/% < e (can recall
that x = 7), we have

E||Z,|] < CT ™ £,ha <. (3.25)
For a € (0, 3), we choose £ = 1 and get

E||Z,|? < CT*~2*pt~4, (3.26)
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3.3 Estimate of 7,

In this subsection, we present the estimate of 7, in (3.12), completing the proof of (3.1).
In view of the definition of E,(¢) in (3.9), by using Lemma 1 and (3.14) to estimate
|6, (e7*7)> ] and |(6,(e7*7)* + ;) !|, we obtain

2

1B (£)¢5]|* =

1
/( )ezt cT 57(6—27)04—1(67_( —ZT) +)\ ) 1d2
FS,TN

27ri e*T — 1

<c</( o]

9

it e 4 1))

2
< C’(/( ) |6zt||z|a71(|z\0¢ + )\j)ldz> (use (C.1) here)
Iyl

¢ eostarg(: 1921 l=ttcontara(ey) 2P0
()e | | ‘ ~ \ 2| Z|
g o rf7) EREEYD

2+
< Ct’B_l/ e|z|tcos(arg(z))|z|d:7
) (I2[= +4)2

IN

|dz], (3.27)

where we have used (3.23). In view of (3.12), we have

Bl s [ 3 B0l

j=M+1
oo |Z|2a 24+

C/ntﬁil/ e|z|tcos(arg(z)) 7|dz|dt
0 i) j_%;l (|Z| + )4
200—
0/ B 1/ |21t con(arg(2)) 277 |Z‘ |dz|dt
ri7) (|Z| )

Tein pla—2+0
/ tB 1/ o 7rt|cos(0)\ — drdt
(r¥ + M)

tn 2a 148
+C/ tﬁ 1/ ntcos(g&) d(pdt
(kS 4+ M)a—1

T sin 2 2+ﬂ in
_ C/ R oM / B—1g=rtlcos(0)] 44dpr
'r ae + M)771

K/Za 1+ 6
—I-C/ tﬁ 1 / emtcos(gp)d(pdt
(k5 JrM)’_1 9

TS0 2a=2 C(kt,)Pr2a-1
<o [T ey S
F i R i

. 2 pis pis
min{M da ,m} p20=2 TSin(0) r2e—2
<C ——dr + —dr
4_9 2 20— da
K Ma min{M da , —T 2

’Tsin(e)} r
CH20¢—1
+ da 4
(k% + M)a—1

min{Mda,Tbln(e)} C 2a—1
<C</ 7’ dT+M1 >+m/€4. (328)
. Mi~ (k% + M)a—1

IN

IN

We estimate E||7,||? in three different cases by using M = [h~4] +1 < Ch~%



14

In the case o € (3, 2), (3.28) reduces to

d

Mds 20— , \
E||Jn? gC(/ 4d7’+M1da) +CM'~a
e Ma~!
< CM'~ds < Cha—, (3.29)
In the case o € (0, 1), (3.28) yields

(1+ T1—2a)M1—§
(1+T12)pt=1, (3.30)

E’HJnHQ S C(Tl—QaMl—% +M1_%) S C
<C

In the case o = %, (3.28) implies

2
Mda 1
E| Tl < C(/ A}ldelé‘;) +OM'"1 <C(InM +InT)M" 4
P d
< C(l,+InT)ha~%  (3.31)

It is well-known that (E|u, —uls? )2 < Elun — ui”||2, substituting (3.25)-(3.26) and
(3.29)-(3.31) into (3.12) yields (3.3), completing the proof of (3.1).

4 Deterministic problem: estimate of |[v(:,t,) — v{®)||

In this section, we estimate the error ||v(-,¢,) — v,(lh)H by minimizing the regularity re-

quirement on 1y and f to match the convergence rate proved in the last section, where

v and v{") are the solutions of (2.20) and (2.22) or (2.23), respectively. In particular, we
2

prove the following estimate for a € (0, 2):

(-, ta) = o8 < C ol o+ 171 ), (@)

L 2+4"d ’1(0:tn§L2(O))) (T

where y € (0,2— %) is defined in (2.19). To this end, we introduce the semi-discrete finite
element problem

oM — Aol = p, f 42)
v(,0) = Pyto. '
Then (2.22) or (2.23) can be viewed as the time discretization of (4.2), with the following

decomposition:

[oCet) = o8 < (o, ta) = 6 bl + [0 t) = o).

We estimate ||v(-,t,) — v (-, )| and [[v™) (- t,) — v,(Lh)H in the next two subsections,
respectively.

4.1 Spatial discretization: estimate of |[v(-,t,) — v™ (-, t,)]|

In this subsection we estimate ||v(-,t,) — v (-,,)||, where v and v(® are solutions of
(2.20) and (4.2), respectively. Next, we consider the following three cases:

Case 1: 99 # 0, f =0, a € (0,1] N (0, 2).

Case 2: ¥9 # 0, f =0, a € (1,2). (This requires d = 1, cf. Theorem 1)

Case 3: Yo =0, f #0.
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In Case 1, the solutions of (2.20) and (4.2) are given by v(-,t,) = 1o and v (-, t,,) =
Pyipg, n = 1, 2,..., respectively (this follows from setting f = 0 and o = 0 in (A.3) of
Appendix A). Consequently, we have

[0, n) = 0™ ()l = llvbo = Putboll < Clloll gx(oyhs

where we have used (2.10) in the last inequality.
In Case 2, we note that the PDE problem (2.20) is equivalent to (multiplying both
sides by the operator 9%~ 1)

Ofv(z,t) — Av(z,t) =0 (x,t) € O xRy
v(z,t) =0 (x,t) € 00 x Ry (4.3)
v(x,0) = ¢o(x) and Ow(z,0)=0 =z€O

and the finite element problem (4.2) is equivalent to (for the same reason)

{ ot — A =0

4.4
’U(h)(-,O) — Ph% and Btv(h)(~70) - 0. ( )

By Laplace transform, v = E(t)y and v® = E")(t) Py, where the operators E(t) :
L*(0) — L*(0) and EM(t) : X}, — X, are given in Appendix A. An error estimate for
(4.3) and (4.4) was presented in [13, Theorems 3.2]:

lo(:, tn) = 0™ C ta)ll < Cllvoll g2 (o). (4.5)

The boundedness of the solution operators E(t) : L?(O) — L?(O) and EM(t) : X, — X},
(see Appendix A, (A.4) and (A.6)) implies

lo(-, t) = o™ (. ta)ll = 1E (8 )0 — E™ () Putbol|
< 1E(tn)toll + |1 (ta) Putbol| (4.6)
< Cll%oll-

Then the interpolation between (4.5) and (4.6) yields
lo(-, t0) = o™ (. ta)ll < Cllvoll oy h*- (4.7)

In Case 3, we have

Pro(e,tn) — v(h)(~,tn) =P, (v(-,tn) - v(h)(-,tn))

= [ B [T BV - 9B o)

=Py [ E(tn - $)(f(-,8) — Puf(-8))ds

0
tn
+ P / (Bt — 5) ~ B (1, — )P, ) Puf (-, 5)ds
0
= IM (1) + TM (1), (4.8)
where
tn
T0(0) = [ on [ e R o = A ()~ Puf(s))dads

0 27 Ty,

t (4.9)

"l

:/ 7/ e#(tn—s) yo— ' Pyw, (-, s)dzds

0 27 Ty,
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with
w(y8) = (2% = A)7H(f(8) = Puf (), (4.10)
which satisfies
w9l g2y = AT AR = )TN 8) = Puf (5 8))ll 20

S OAGEY = A)7H(f(8) = Puf(9))]
< CHf(,S) - th('a S)' .

By using the Ritz projection operator Ry, equation (4.10) implies

(4.11)

(2% — Ap) Phw, + Ap(Pow, — Rpw,), ép) = 2%(w,, ¢n) + (VRrw,, V)

= a(wm(bh) (Vw.,Von)
((z% = A)w:, ¢n)
=(f—Puf,dn) =0 VYon € Xp,

ie., Paw, = —(2% — Ap) L Ap(Pyw, — Rpw,). Consequently, we obtain

|27 Prwa (-, 8) | = 1127 (=% — Ap) TV [AR(2" = Ap) T TV A (Prwa (-, 8) = Raws (-, 5)|
< CllA,(Paw: (-, 8) = Raw. (-, 9))||
< Cllw, (-, s)||H2(0)h2_27 (here we use (2.15))
< C|f(-8) — Puf(-,8)|p* (here we use (4.11))
< OIfC, )R>~

By choosing v = 1 — 1y so that 2 — 2y = , the inequality (4.9) reduces to
tn
IZM (¢a)| < C/ / |t =) 2| A=D1 1) By (-, )|z dis
T,
= C/ / 2 X £ 5) [l ds (412)
I,

SC"X/O (b — ) EX (-, ) ds.

Furthermore, applying the similar analysis in Lemma 6, we have

=
S
)
|
S

)_1 - (Za - Ah)_lphll < Ch27 (Cf [ y PP 7])
)7l — (2% — Ap) TP < Cl2| T (resolvent estimate, see (3.15))

=
S
)
\
[

The interpolation of the last two inequalities yields
[(z% — A)7 — (2% — Ap) 7P| < Clz| A>3 Yy € [0,1].

Again, by choosing v =1 — %X (so that 2 — 2y = x), we have

t’!L
: /0 /F #2727 = A) 7 = (2% = Aw) T Pl Puf(, 8) ] |dz|ds
0,

|7 )

Ph/ ! 2 /Fe 2(tn—s) ya— 1(( A)*lf(zo‘ - Ah)flph)th(-,S)dzds

t’ll 1
: C/ / || 2| TR (-, 5)]l|dzds
0 Iy
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tn
<o [ ( / |ez<f"S>||z%><a1|dz|)||f<-,s>|ds
0 ng,c
tTl 1
SC’IX/ (b — )X £, 5)ds. (4.13)
0

Substituting (4.12) and (4.13) into (4.8) yields

tn )
IPavleta) o P ) <O [y =) Bl (@
0
Furthermore, we can see that

[0 tn) = Pao( ta)
< CRX|o (5 to)ll e o)

< CRX[| AXu(-t,,)|

b1 1
= ChX / ﬁ/ e#n=9) 20" L AZX (2% — A)7Lf(- 5)dzds
0 <“TJr,,

tn 1
<o [ [ et e ARG - 2) A9 ldelds
0 I,
tn 1
gchX/ / == |21 2= £(., o)|||dzds  (here we use (3.16))
0 I,

sont / (tn — 5)"FX £(-, ) ds. (4.15)

The estimates (4.14) and (4.15) imply

tn N
(s t) — v (-, ta)l] < CRX / (tn — 5)" X (-, )]s

< CRX|If]l (here we use (2.1))

—2 1 B
L2-xa’ (0,T;L?(0))

completing the proof in Case 3.
The combination of Cases 1, 2 and 3 yields

lo(-stn) = o™ ()l < C (1ol oy + 11 2

X
L2—xa‘1(0,T;L2(O)))
< C(lIWollzzx oy + Il hX, (4.16)

41 )
L2Fad " (0,T;L2(0))

where we have used the fact 272xa <53 fa - in the last inequality.

4.2 Temporal discretization: estimate of |[v(") (-, t,) — vy(lh)H

To estimate ||v) (-, t,) — o I, we consider the following three cases:
Case 1: 1 £ 0, f =0, a € (0,1] N (0, 2).
Case 2": g # 0, f =0, a € (1, %) (This requires d = 1, cf. Theorem 1)
Case 3": 9 =0, f #0.
In Case 1’, it is straightforward to verify that the solutions of (4.2) and (2.22) are
given by v™ (., t,) = o) = Pripg, n =1,2,... Consequently, we have

oMW () — o = 0. (4.17)
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In Case 2’, by using the Laplace transform, we can derive the following error repre-
sentation (see Appendix B):

1
U(h)('v t’n) - U7(zh) = B / BZth_l(Za - A}L)_lAhP}L¢OdZ
2mi Iy

! 2tn ,—2T —z7\—1 —zT\a __ -1
2 i e o (e )T (O (€)= Ap) T APt dz
1
= | e DY (2)A] Putho dz
2mi Fé )
1
+ — GZt”Z_lAl ’Y( Ah) 1AZPh77/JOdZ
27 Lo \IST
=M+ 7", (4.18)

where v € [0,1] and
Dél)( ) _ 271A1 ’y( Ah) . efzfr(;‘r(efz-r)flA}l;’Y((sT(efz*r)a . Ah)fl.

Lemma 1 and Lemma 5 imply

IDSY ()] < Clel (14477 (2% = AR) 7 + 14577 (0- (7)™ — Ap) 1)

< Clz| 77! (here we use (3.16))
and
DL ()| < Cle AL = A) ™" = (B(e7) = Ap) 7|
+ Ol = e o (e ) (14T (00 (€)Y = An) |
< Cla| M2 = 8 (e )4 (6 (€7 ) = A) T = A7

+Cl(0-(e7*7) = 2) + (L= e )zll2| Mo (e )2 T (use (3.16))
< Clz|77r.

The last two inequalities further imply
IDV (2)]| < Clz| 7 vy e [0, 1].

Then, we have

1
Iz < ¢ /F 1 NP AR Prol 12|
0,k

<C [ 1t el 4G P
"

'rsi:(e) " (9) _ —1t 0
67" n COS r Yo n d,r +
—0

< O] 47 Pudo ( /

entn cos(p) H—7a+nd¢>

tp
Tsin(0)

< O| A7 Putdo (t:ﬁ" /
Ktn

< CT(1 4 k79T || AY Pt (this requires 7 > o)
< 07 ool o, (4.19)

e~ sleos(@) g=va—1+n q¢ 4 Hvoﬂrn)

where we have used (2.14) in the last inequality. Similarly, by using Lemma 5 we have

I7M) < ¢ e 12171143, (2% = Ap) 1A} Patboll|d2]
FQ,N\FG(T)

yK
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oo
< C| A} Puol| ) e rtnleosO)lp=1=72qp  (here we use (3.16))
T5in(8)
< CTl-&-'yaHAZPthH e—rtn| cos(0)|dr
TSin(0)
< O A Putbol|
< CTwaHz/JO”Hh(o)a (4.20)

where we have used (2.14) again in the last inequality. By choosing v = i — % € (0,1)
andn > 1 — 2 € (0,1) (recall that 1 < o < 2), substituting (4.19) and (4.20) into (4.18)
yields

1_od 1_ad
[0 ™ (- tn) — 0P| < CT27% Ioll 1 -4 o) < €727 % [ollx(0); (4.21)
where we have noted that é — g < x for a > 1.

In Case 3’, with « € (0,2), we have

tn
ot = [T EW b - )P s)ds, (1.2

0

tn

v = (b, — )Py f-(-, 8)ds, (4.23)

0
where B (t) is given by (3.11) and f; is the piecewise constant (in time) function defined

n (2.2). The difference of the two expressions (4.22) and (4.23) yields

tn
oM (- t,) — ol = / [EM(t, —s) — EM(t, — 5)| Pufr (-, 8)ds
0

+/" EM(t, — 8)[Puf(-,5) — Pufr(-5)]ds
0

= KM 4 £, (4.24)

In the following, we estimate IC,(lh) and L%h) separately. R
By the inverse Laplace transform rule £71(fg)(t) = fot L)t —5)L7(9)(s)ds, we
have

1 ~
K = 27i /FM X207 (2% = Ap) TP fr (-, 2)dz
1 : 2T _ _ _ _ -~
o 2tn 57_ 2T\« 157_ zroziA IPT' d
s o " S0 G = AT A 2) s
1 tn () 7 1 tn 75(3) N
= — Ztn D P P dz — R #tn D P T\% d
27ri Fg7,c\l—'9(,7’36 h (Z) hf( Z) z i Fe(;)e h (Z) hf( Z) z
tn tn
:/ D2 (t, — s)thT(~,s)ds+/ DP(t, — 8)Pyfr(-, s)ds, (4.25)
0 0
where

N oa— o - RT —2T\a— —2T —
DY (2) = 2712 = )™ = 0 (e ) T (G (e — An)
and
1 ~ : ~
DD (14— / ) DB ()4 — / 53 .
h (D) o Feym\Féf?e h (2)¢dz, (e o Fe(f?e h (2)pdz
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Using the similar method as introduced in [12, Lemma 3.4] (as well as the inequalities
(3.15) in Lemma 5 and (C.1) in Appendix C), it is easy to see that

(2 ~(3 _ ~(3
IDZ () + 1DV () < €l and  [DP(2)] < O (4.26)
The last two inequalities further imply
IDP(2)]| < Clz|%71¢ w6 e 0,1]. (4.27)
Consequently,
2 z (2
IpP@l<e [ eIb @l
Fev“\FG.Trc
S C 6rtcos(9),r71d,r,
S Cr ert cos(Q)dT,
o0
<Ct'r es <39 qg
< Ct ir
SCtil/qu/q Vg>1, t >,
and

z ~(2
IDP@i<c [ eI el
Ly AT
(oo}

SR

< C ert cos(9)r—1dr
o
< C e’ cos(G)S—ldS

0o 1
S C/ escos(@)s—ld8+c 65005(9)8—1(18
1

tm
7 sin(0)

<C+Cln (tilr)
<ot Vart/a  wg>1, te(0,7).

A combination of the last two estimates gives the following estimate of ||D,(12) @]

IDP () < ctVarta  wg>1, t>0. (4.28)

Similarly, we have
3 z A3
M&Wmsoﬁmwmwﬁ@wwl
0,k

< CTl/q/( ) ‘QZt||Z|_(1_1/q)|dZ| (set 6 =1—1/q in (4.27))
I

0,k
J 6
T sin(0)
< /e / o7t eos(0),~(1-1/a) g, 4 07 1/4 / erteon®) 1 /ady (4.29)
" —0
< Ct-1agi/a / T seosD s 4 OrMarl/aghT
Kt

<ot~ Vagl/a y op—tarl/a
<ctVart/a  we>1, te(0,7).
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Substituting (4.28) and (4.29) into (4.25) yields

= [ 00—t Csas [ DO - B

<or [ (0= 9 RS 9l
0
< OTl/q”fT”L(I'vl(O,tn;LQ(O))
< CTl/q||f||L<1”1(0,tT,,;L2(O))7 (4.30)

where the last inequality follows from (2.3). This completes the estimate of the first term
n (4.24).
The second term in (4.24) can be estimated as follows:

e EM 1y — 5)[Puf (25) = Pufo ()] ds

Z / C(EW (b~ 5) ~ BVt — t;-0) [Pu (5) = Pfi(9)]ds

Jj=1

Z/ IE® (ty = 5) = Bty — t; )| Paf (-, 8) = Pufr(- )| ds

IN

2 / CTY/(t, — $) V| Puf (-, 5) = Pufo (-, 5)|ds

C /q||f fT”Lq'lOt,L,LZ(O))
<cor! q||f||Lq’1(0t \L2(0)) (4.31)

where we have used the following identity to obtain the second equality in (4.31):
t]
/ EM(t, —tj—1)Pnfr(-, s)ds
/ / )01 (3% _ A 1P, fo( 5)ds  (use (A.5) here)
27Tl To.n

27“/ /FM o2 (tn—t;) ya— 1( —Ap)” i/tjlphf(.’g)dfds (use (2.2) here)

G-

t) a— .
- / G e = )RS €)dE

- / E®(t, — t;_1)Paf(- s)ds

and we have used the following estimate to obtain the second inequality in (4.31): for
q>1,
IE® (¢, — 5) = ED(t, — t;-1)]|

= O/r (=) — =tz 2 | (2% — Ap) 7 Y|dz|
0

VK

< C’/ |e*(tn=3)||1 — e(5=ti=1) || 2| 71| d | (here we use (3.15))

<C |e*(tn=9)|71/a) 5| ~(1=1/0) |4z (here we use (C.2))
Iy «
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< i/, — )~V (4.32)

By choosing ¢ > 1 to satisfy % = % — %d, we have ¢ = Then substituting (4.30)

and (4.31) into (4.24) yields

2+ad

o = o™ ()] < O £ (4.33)

41 5
L2Fad " (0,t,;L2(0))

completing the proof of Case 3.
By combining (4.17), (4.21) and (4.33) (the results of Cases 1, 2 and 3), we obtain

h h 1_cd
o2~ 0 )< COWollioy + 11, st gy pnio) 5% (430)
The estimates (4.16) and (4.34) imply (4.1), completing the proof of Theorem 1. O

5 Numerical examples

In this section, we present numerical examples to illustrate the theoretical analyses.

We consider the one-dimensional stochastic partial integro-differential equation (1.1)
for 0 <z <1, 0 <t <1, with homogeneous Dirichlet boundary condition and initial
condition ¥g(x) = x(1 — ). Here, we let 0 = 1 in (1.1) and

1 for0<z< -,

The problem (1.1) is discretized by using the scheme (2.16)-(2.17).

To investigate the convergence rate in space, we first solve the problem (1.1) by taking
the mesh size hy = 1/M;, = 27F, k = 2,3,4,5, and using a sufficiently small time step
7 = 271 50 that the temporal discretization error is relatively negligible. Then, the error

Z 5 (i) — 9+ (i) |

is computed for k = 3,4, 5, by using I = 10000 independent realizations for each spatial
mesh size. By Theorem 1, the error E(hy) is expected to have the convergence rate
O(h==z) for o € [1,2), and O(h %) for o € (0, 1) in one-dimensional spatial domain. The
numerical results are presented in Table 1 and consistent with the theoretical analyses
that the spatial order of convergence increases as a decreases and stays at the order %
when « further decreases.

Secondly, we solve the problem (1.1) by using the time step 7, = 27, k = 6,7,8,9.
In order to focus on the temporal discretization error, a sufficiently small spatial mesh
size h = 1/M = 2710 is used such that the spatial discretization error can be relatively
negligible. Similarly, we consider I = 10000 independent realizations for each time step
and compute the error E(7x) by

h
anm (W)

for k = 7,8,9, which is expected to have the convergence rate O(T%_%) by Theorem 1.
Clearly, the results in Table 2 illustrate the sharp convergence rate.
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Table 1 E(hy) and convergence rates in space

a\hg 2-3 2~ 2°5 order
a=0.25 | 1.1669e-02 3.9124e-03  1.3519e-03 | 1.555 (1.500)
o =0.75 | 2.4353e-02 1.2987e-02  6.6322e-03 | 0.938 (0.833)
a=1.25 | 8.3694e-02 6.7186e-02 5.4196e-02 | 0.314 (0.300)

Table 2 E(7;) and convergence rates in time

a\Tg 2=7 2-8 2-9 order
a=0.25 | 2.2103e-03  1.7275e-03  1.3454e-03 | 0.359 (0.4375)
a=0.75 | 1.5613e-02 1.2621e-02 1.0177e-02 | 0.309 (0.3125)
a=1.25 | 5.0056e-02 4.4012¢-02  3.8869e-02 | 0.183 (0.1875)

A Mild solution of (1.1)

In the case a € (1,2), the boundary condition 8,5170‘w = 0 is equivalent to ¢ = 0 on 92 (this can be
checked by taking Laplace transform in time). Similarly, in the case o € (0, 1], the boundary condition
8270‘1[1 = 0 is equivalent to ¥ — 19 = 0 on 942 X [0, 00), where ¥g = 9 (-,0) is the initial value in (1.1).

In the case o = 0, the solution of the corresponding deterministic problem of (1.1) can be expressed
by (via Laplace transform, cf. [22, (3.11) and line 4 of page 12] in the case a € (1,2))

t
o +/ Bt — 8)f(-, s)ds it a € (0,1],
V(1) = o (A1)
E(t)yo +/ E(t—s)f(,s)ds if a€(1,2),
0
where the operator E(t) : L2(0) — L2?(0) is given by
1 zt ja—1/ —1 2
E(t)p = — ez (2% — A)Tpdz V¢ € L7(O) (A.2)
27 Ty .
with integration over a contour Iy , on the complex plane.
Correspondingly, the mild solution of the stochastic problem (1.1) is defined as (cf. [17, Proposition
2.7] and [23])
t t
Yo + / E(t—s)f(-,s)ds+ 0'/ E(t—s)dW (-, s) if o€ (0,1],
¢(': t) = 0 0 (A3)

E(t)o + /OtE(t — (-, 8)ds +U/Ot E(t— $)dW(,s) if ac (1,2).

For any given initial data 1o € L?(O) and source f € L'(0,T; L2(0)), the expression (A.3) defines a
mild solution ¢ € C([0,T]; L2(§2; L?(0))). In the case ¢g = f = 0 and o # 0, a simple proof of this
result can be found in [12, Appendix]; in the case o = 0 (¢o and f may not be zero), the result is a
consequence of the boundedness of the operator E(t) : L2(0) — L2(0), i.e.,

IE@)] < C/F le* |21 (=% = 4) " olld2]
0,k

> 0
< C||v||/ e Ttlcos(0) . —1q, 4 C||v||/ enteos(9) g,
“ -0

<Clvll Vv e L?*0). (A.4)
Similarly, the discrete operator E() (t) : Xp — X, defined by
EM ()¢ := i #2271 (2% — Ap)"lpdz Vo€ Xy, (A.5)
2mi Jry
is also bounded on the finite element subspace Xy, i.e.,
IE® @)l < Cllvll Vv € Xa, (A.6)

where the constant C is independent of the mesh size h.
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B Representation of the discrete solutions

For f = 0 we prove the following representation of the solutions of (4.2) and (2.23):

1
v (- tn) = Pubo + o e*n 27N (z% — Ap) T AR Prgbodz, (B.1)
FQ,N,
) 1 _ o _ _
’Ug) = Ppto + %/(7—) etnze ZT(S(E z‘r) 1(5(6 z’r)a _ Ah) lAhPhTZ)O dz, (B.Q)
FG,N

which are used in (4.18) in estimating the error of temporal discretization.
In fact, (B.1) is a consequence of (A.3): replacing E(t) by E( (t) and substituting ¢ = P,)g yield

1

oM () = — 21 (2% — Ap) T Puyo dz

2mi Ty
1

= — etz (2% — Ap + AR)(zY — Ap) " Py dz
2mi Ty,
1 1

= — etz 1 Py dz + —/ etz 712 — Ah)_lAhPm/Jg dz
2mi T . 2mi Iy,

1
= Pppo + — / ez (2% — Ap) "L AL Pyijo dz,
2mi FQ,N

where we have used the identity 71 fFe e**z71dz = 1 (i.e., the inverse Laplace transform of z~! is 1).

It remains to prove (B.2). To this end, we rewrite (2.23) as

8 (v — Prapo) — AR08l — Pyibo) = ApE* (Pato)n, (B.3)

where 87 % (Pptbo)n = 7_1%& Z;L:l by—; Pro. Since we are only interested in the solutions ’uflh), n =
1,..., N, we define
oy _ [ 1<m<n,
Ty =
Pppo n2N+1,

which satisfies the equation

37 () — Puipo) — ARdL= (@Y — Pytpo) = ARdL=* (Phtbo)n + gn, (B4)

with gn = 0 for 1 <n < N. The right-hand side of (B.4) differs from (B.3) only for n > N + 1, that

lgnll < 1An8~ =@ — Pyibo) | + | AnDE~* (Phtbo)nll

1

N n
—(h 1
< = D B N = Purioll + == D Iou—s I Phvol
j=1 j=1

Tl

N n
<O (Y bnmil + D byl
j=1 j=1
S CTa_lna_l,

as n — oo, Thus 3572 1 gn¢™ is an analytic function of ¢ for [¢] < 1.
By (2.8), summing up (B.4) times ("™ for n = 1,2, ..., yields

_ _ N\1-a oo _ o\ 1« 0

T T n=1 n=N-+1

which implies

e} _ —1 _ e -1
Z('@(mh) — Pripo)¢" =(1 C) ((lic) - Ah) AhPM/Jo£
ne1 T T T

1— C a—1 1— 4— o —1 0
S5 () ) 3 e
T T n§+l
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For £ > 0 and g, = e~ ("7 € (0,1), the Cauchy integral formula implies that

M — Py
_L —n—1 — (h) _ n
=5 ngf ;(vn Prto)¢™d¢
_ -1 _ @ -1 B.5

- L <*"(1 C) ((1 C) —Ah) L AnPLodc ©9

™ ‘C‘:Qn T T T

1 1_( a—1 I_C @ —1 e 1
= (—T ) ((T ) —Ah) S gmem e,

m=N+1

For 1 < n < N the function (1%4)&71((5)& - Ah)71 D = N1 gmC™ "1 is analytic in |¢| < 1.

=
Consequently, Cauchy’s integral theorem implies

1 1—4)“‘1((1—C)a A )‘1 - m—n—1q. _
L 1-c Lb ™G = 0.
271 I¢|=ex ( T T h m:ZN+1g

Substituting this identity into (B.5) yields, for 1 <n < N,

5 — Pubo
(h)
=wvp ' — Ppio
1 1—¢\ " Y//1=¢\@ 11
- L c*"( C) (( C) —Ah) L A Puthodc
21t J|¢|=0n T T T (B.6)
=Tz —1 L —TzZ\ @ -1
:L' etw,ze—z‘r-(lL) ((L) 7Ah) Ap Ppipo dz
2w Jpr T T
1

= — et”287ZT(5(67zT)71 (5(67Z7)a — Ah)_lﬂhp}ﬂ,b() dz,
21 bk

where we have used the change of variable ( = e™*7, which converts the path of integration to the
contour

I''={z=k+1+4+iy: y€R and |y| <=w/7}.

The angle condition (3.4) and [3, Theorem 3.7.11] imply that the integrand on the right-hand side of
(B.6) is analytic in the region

Tgn={2€C:lag(x)| <0, |2 > 5, Im(z)| < =
’ T

, Re(z) <r+1},
enclosed by the four paths I'™, I'{") and Retir/7, where I'7) = {z € Iy ,, : [Im()| < T }. Then Cauchy’s

theorem allows us to deform the integration path from I'” to Fé(,‘rn) in the integral (B.6) (the integrals on
R + im/7 cancels each other). This yields the desired representation (B.2).

C Some inequalities

In this appendix, we prove the following two inequalities:

C#lzlr < 1 — e*7| < CF 2|, vzery), (c.1)
[1—e| < Clz|'/art/a, VzE€Tlpn 1<q< o0, (C.2)

which have been used in (3.27), (4.26) and (4.32).
Proof of (C.1). Note that

FG(TN) ={z€C:|z| =k, |arg % SO}U{ZGC:z=peiw,p2/~c,\1m(z)\ < E}
! T
—. ()l (7),2
=T UL, " (C.3)
For z € FG(TN) we have |z|T < m/sin(@). Since |z|7 is bounded, the following Taylor expansion holds:

1—e*" = —27 4 O0(|2*72), (C.49)
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which imiplies
[1—e*T| < CFz|r, if 2z € Fe(;)

This proves the right-half inequality of (C.1).
From (C.4) we also see that there exists a small constant v such that

CHzlr <t —e|, if ze "), |2|r <. (C.5)

If |z|7 > ~, then the following inequality holds for 6 satisfying the condition of Lemma 1:

T 3
< lzlr < <m/144/72 < °r.
7—"Z|T—sm(a)—7r +ajm < om

Since the function g(w) := |1 — €| is not zero for v < |w| < %TI', the function g(w) must have a positive

minimum value w for v < |w| < %W, i.e., g(w) > w. Consequently, we have

in(0
w0 <o <], s D, falr 2, (C6)

where we have used the inequality %P&‘T < 1 in the last inequality. Combining (C.5) and (C.6) yields
(C.1). m]
Proof of (C.2). If z € Iy ,, and |z|7 < 7/sin(6), then z € F‘;Tﬁ). In this case, (C.1) implies

[1—€*T| < Clz|T Vz€Tly,, |z|T<m/sin(h),
[1—e*T| < C VzeTly,, |z|T<m/sin(h).

The combination of the two inequalities above yields
[1—e*T| < Clz|V/art/a Vz €Ty, |27 <m/sin8). (c.7)
If z € Ty, and |z|T > 7/ sin(0), then
77| = e~ 1#Imcos(0) < o=/ tan(0)
which implies

sin(0)

™

1
[1—e*T| < 1+4e ™/ 000 <9< 2( ) “lz|Varl/e VzeT,,, |t >x/sin(6).  (C.8)

Combining (C.7) and (C.8) yields (C.2). O
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