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ANALYSIS OF FULLY DISCRETE FEM FOR MISCIBLE DISPLACEMENT IN
POROUS MEDIA WITH BEAR-SCHEIDEGGER DIFFUSION TENSOR

WENTAO CAI BUYANG LI, YANPING LIN, AND WEIWEI SUN

Abstract. Fully discrete Galerkin finite element methods are studied for the equations of misci-
ble displacement in porous media with the commonly-used Bear—Scheidegger diffusion-dispersion
tensor:
D(u) = ~vdnI + |u] (aTI—i— (ar — ozﬂ%) .

Previous works on optimal-order L*(0, T’ Lz)-norm error estimate required the regularity assump-
tion V,0:D(u(z,t)) € L*(0,T;L*(2)), while the Bear-Scheidegger diffusion-dispersion tensor
is only Lipschitz continuous even for a smooth velocity field u. In terms of the maximal LP-
regularity of fully discrete finite element solutions of parabolic equations, optimal error estimate in
LP(0,T; L9)-norm and almost optimal error estimate in L*°(0,7T; L)-norm are established under
the assumption of D(u) being Lipschitz continuous with respect to u.

Keywords. miscible displacement in porous media, Bear—Scheidegger diffusion-dispersion tensor,
finite element method, maximal LP-regularity, error estimate

1. Introduction

The incompressible flow of binary miscible fluid in porous media is governed by the miscible
displacement equations

7% — V- (D(u)Ve)+u-Ve=éqr — cqp, (1.1)
Viu=g-gp, u=-"g, (1.2)
p(c)

where u and p are the velocity and pressure of the fluids mixture, respectively, and c is the con-
centration of one fluid. In this model, k(x) is the permeability of the porous medium, p(c) the
concentration-dependent viscosity, v the porosity of the medium, ¢; > 0 and ¢p > 0 the given injec-
tion and production sources, respectively, and ¢ the concentration in the injection source. A popular
diffusion-dispersion tensor D(u) = [D;;(u)]4xq used in reservoir simulations and underground oil
exploration is the Bear—Scheidegger model (cf. [6] [44])

D(u) = vdp, I + |u| (aTI + (ar — aT)u = u) , (1.3)

uf?

where d,,, > 0 denotes the molecular diffusion, and «; and ap the constant longitudinal and
transversal dispersivities of the isotropic porous medium, respectively. We consider (ILT))-(T2]) in a
bounded smooth domain  C R?, with d € {2,3}, up to time T', subject to the no-flux boundary
conditions
u-n=0 and D(u)Ve-n=0 on 90 x (0,7], (1.4)
with the given initial condition
c(x,0) = co(z) for x € Q. (1.5)

Numerical methods and analysis for the miscible displacement system (LI)-(L3) have been
investigated extensively in the last several decades, and numerical simulations have been done for
various engineering applications, e.g., [10} 13 14} [47], 48, [49]. A traditional approach to establish the
optimal L>(0,T’; L?)-norm error estimate is based on an elliptic Ritz projection Ry (t) : H'(Q) —
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S} onto the finite element space, defined by (see [50])
<D(u(-,t))V(¢ ~Ry0), wh) —0, forall g e HY(Q) and ¢, € ST . (1.6)

Most previous works on optimal L>(0,T’; L?) error estimates of Galerkin type FEMs for ((LT))- (5]
follow this way, which requires the following estimate of the Ritz projection:

19:(c = Rue)ll L2022y < OB (1.7)
The estimate above was established by Wheeler [50] under the regularity assumption
V20 D(u(z,t))|| Lo (0.1;05) < C (1.8)

for a general nonlinear parabolic equation. However, less attention was paid to the regularity
of the Bear—Scheidegger diffusion—dispersion tensor. It was shown in [45] that D(u) is Lipschitz
continuous in u. In a more recent work [31], a counter example was presented to show that even
for a smooth velocity field it may hold
V.0 D(u(z,t)) ¢ LP(Qp) for any p > 1.

Clearly, the Bear—Scheidegger dispersion model may not satisfy the regularity condition (L8] and
therefore, optimal L>°(0,T; L?) error estimates of fully discrete Galerkin-Galerkin FEMs, Galerkin-
mixed FEMs and many other numerical methods for this model have not been well investigated in
this case.

In this article, we study the commonly-used Bear—Scheidegger diffusion-dispersion model by a
linearized fully discrete Galerkin FEM and establish an optimal LP(0,T'; L?) error estimate, together
with an almost optimal L>°(0,T"; L?) error estimate. The key to our analysis is the discrete maximal
LP-regularity (LP-stability) of fully discrete finite element solutions of the parabolic equations

Ohp—V-(aVe)+d=Ff—V.g inQ
aVp-n=g-n on 09, (1.9)
d(2,0) = ¢o(z) forx € Q.

In the last several decades, great efforts have been devoted to the maximal LP-stability estimates,

e.g., see [8 @, 16} 17, 19, 26l 27, B6, B7, B9l 40, 42] [43] and references therein. A straightforward

application of the maximal LP-stability estimates is the error estimates
IPro — dnlliro,r:ne) < CUProo(x) — ¢n(0)|La + [[¢ — RudlLro,1;00))5 (1.10)
IPro — dnllLo(o,1500) < ClIProo(x) — ¢n(0)[|Le + CIn(2 +1/h)||Pro — Sl (o,r500),  (1.11)

with p,q € (1,00), where ¢y, is the finite element solution of (LH), P, is the L2-projection operator
onto the finite element space S}, and Ry the Ritz projection operator associated with the elliptic
operator L = —V - (aV) + 1. Early works on such LP(0,7T; L?) and L*°(0,T; L) stability estimates
were done mainly for spatially semi-discrete finite element solutions of linear parabolic equations
with sufficiently smooth time-independent coefficients, e.g., a;; = a;;(z) € C?*T*(2). The extension
to time-independent Lipschitz continuous coefficients a;; = a;j(xz) € WhH*°(Q) was presented in
[28]. Further extensions to fully discrete finite element solutions were done in [22] 23], 27] for linear
autonomous parabolic equations and in [32] for linear nonautonomous parabolic equations (with
coefficients a;; = a;j(x,t)). The former relies on the semigroup approach which is applicable only
for a problem with time-independent coefficients, and the latter uses a perturbation technique
together with a duality argument.

The LP(0,T; L?) approach has apparent advantages over the traditional L>(0,7’; L?) estimate
in dealing with nonlinear parabolic equations. Recently, analysis on semi-discrete nonlinear par-
abolic equations was presented by several authors, see [I7, BI] for semi-discrete finite element
methods and [2 [3, 24] for time discrete systems. However, no analysis has been done for fully
discrete Galerkin FEMs for nonlinear physical equations. The LP(0,T'; L) analysis of a fully dis-
crete FEM for nonlinear parabolic equations is much different from the analysis of time-discrete
systems. In this paper, we apply the LP(0,T; L?) approach to commonly-used linearized fully dis-
crete Galerkin finite element methods for the nonlinear miscible displacement problem (LI])- (5]
with the Bear—Scheidegger diffusion-dispersion tensor to establish optimal LP(0,T; L?) and almost



optimal L*°(0,T; LY) error estimates. More important is that our analysis illustrates a fundamen-
tal tool in establishing optimal error estimates of commonly-used fully discrete Galerkin FEMs for
nonlinear physical equations with more general diffusion coefficients.

2. Main results

For ¢ € [1,00] and any integer k > 0, we denote by W*4 = 1W%4(Q) the usual Sobolev spaces of
functions defined on €, with the abbreviations LY = W%? and H* = W*?2; see [1]. The dual 1 space
of Wk is denoted by Wk , with the notation ¢’ = ¢/(¢—1) and the abbrewatlon H bk =w—+2
For any integer £ > 0 and a € (0,1), we denote by C* the space of functions whose partlal
derivatives up to k:th-order are Holder continuous with the exponent a.

Let 0 =ty <t; <--- <ty =T be a uniform partition of the interval [0, T] for some integer IV,
with the step size t,, —t,,_1 = 7 = T/N. For any sequence of functions {f"}_,, we define

_ fm—1
o o
T
m n|pP 2
Il — (Zn lTHf H )pa p€[1700)7
Lr(X) - 11<nax an”X7 p = o0,

for certain Sobolev space X. The norm || f™||1»(x is simply the LP(0, m7; X) norm of the piecewise
constant function which takes the value f,, on each interval (¢,_1,%,].

Let Q C R? with d € {2,3}, be a bounded domain with smooth boundary 99, and let 7T,
be a shape-regular and quasi-uniform triangulation of §2 into triangles or tetrahedra which fit the
boundary 02 exactly, with possibly curved triangles or tetrahedra near on the boundary. We denote
by h the mesh size of triangulation, and define the following finite element spaces:

Sr = {¢, € HY(): ¢, is a polynomial of degree  on each triangle (or tetrahedra)},
St ={¢n € Si: |, ondx =0}

We consider a linearized and stabilized fully-discrete FEM for (ILI))-(LH), which seeks P/~ ' € S}%
and C} € S} such that

k(z .
( (c(" )1)Vpn 1 Wh) = (g7~ —ap hon), Yun€SE, nm=1... N+1, (2.1)
— n 1 n n n
(/VDTC}TLvah) + (D(UZ 1)vchvvwh) + <§(QI + QP)C}wwh) (22)
1
+5(U,” Lover, wy,) - (Ug—lc;;,wh) = (éqt,wp), Ywp €S, n=1,...,N,
where
Z_l = - k(:_)l VP}:L_la (2.3)
M(Ch )

and C,OL = IIj¢(+,0), with II; being the Lagrange interpolation operator onto S,ll.
We assume that g7, gp, ¢ € C([0,T]); L®(Q)), k € W22(Q), u € W22(R), kg < k(z) < ki,
o < p(e) < py, and the system ([LI)-(LH) has a unique solution satisfying
lelleqommw2ay + [10ccllcqorwra) + 10ucl oo 297 -1.0) + 1Pl comrwse) < K. (2.4)

This only guarantees the Lipschitz continuity D(u) € L*(0,T; W) n Whe(0,T; L>), instead
of (L.8)), for the Bear—Scheidegger diffusion-dispersion tensor (I3]). Our main result is presented in
the following theorem, with the notations

" =c(tn), p'=p(,ty), and u"=u(,t,).
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Theorem 2.1. Suppose that the system (LI)-(L3D) has a unique solution (c,u,p) satisfying (2.4)
for some q € (d,00). Then the finite element system 2.I)-(Z3]) admits a unique solution (P}',C}!),
n=1,...,N, satisfying
127 = 0" owray + 1O} — 0| po(zay + 1ICF — ¢l zo(ray < Cpg(T + h?), (2.5)

for any p € (1,00), where Cp 4 is a constant, independent of n, T and h and dependent upon p, q.
Corollary 2.2. Under the assumptions of Theorem [21), it holds that

157 = 2™ | oo wray + U = 0| poe(zay + (I = €[l oo (zay < Cel(7'7¢ + h*7), (2.6)
for an arbitrary small € > 0.

The rest of this paper is devoted to the proofs of Theorem 1] and Corollary The main
difficulty iis to prove an upper bound for ||C}}|| 1. in order to control the nonlinear terms involved
in the analysis. To this end, we adopt the the error splitting approach developed in [29] [30] and
the discrete maximal LP-regularity of parabolic equations developed in [22] 23] 28] 31, [32]. By this
approach, we first prove in Section M that the semi-discretization in time has sufficient regularity
uniformly with respect to the time-step size, i.e.,

1D-CN | Loray + 1ICY | Lo qw2a) < Chpogs
where C) 4 is a constant independent of the time-step size 7. The estimate above implies an upper
bound for ||C™||yyr1,0c through the following discrete inhomogeneous Sobolev embedding:
ICY | oo (wrioey < CUIDCN | poray + ICY | Lowza)) < Cpogs

which holds for sufficiently large p and ¢ such that % + g < 1.
By using the regularity estimate above, in Section Bl we further derive error estimate for the

fully discrete solution in the LP(W~%4) and LP(W9) norm, i.e.,
IDA(C} = TC™) o1y + G = TC gy <

which yields an error estimate in L>°(L>) through the discrete inhomogeneous Sobolev embedding
ICh = TnC" || oo ooy < CUID7(Ch = TC™)| 1 57-1.0) + €1 = TAC" [ Lo (wrr0)) < Ch

for sufficiently large p and ¢ such that % + g < 1. By using the inverse inequality of the finite
element space, we further obtain

ICE — TAC™ | oo (1.00) < CRTHICH — TAC™ | oz < C

which implies upper bound for ||C}'{|yy1.0.

Throughout we denote C), . ,, a generic positive constant which may be different at different
occurrence, independent of n, 7 and h, while possibly depend upon K, T, 2 and the parameters
D1, - - -, P in the subscript.

3. Preliminaries

In this section we introduce some notations and lemmas to be used in our proof of Theorem 211
The basic ideas for proving these lemmas are described, and the detailed proof can be found in
Appendix.

We define a Ritz operator Ry, (t) : H' — S}L and an L2-projection operator | L? - Sp by

(D(u('7 t))V(qb - Rh¢)7 V(')Dh) + (¢ - Rh¢7 (ph) = 07 qu € Hlv V‘Ph € Silv
and
(¢_PZ¢7§0h):O7 V¢EL27 v‘phes;;a

respectively, with the abbreviations Py, := P}L and Py, := P%L, which satisfy the following estimates:

e — Phollweos < ChA™lp|lwrma, Vip € W™, (3.1)
e — RugllLs + hlle — Rupllws < ChYlollypis, Y € Whe, (3.2)
o = RuellLs < Chlle — Rygpllws, Vo € Wh, (3.3)



for bo=0,1,lp<m<r+1,1<I<r+1,1<g<oo0and 1 <s < oo. Similarly, the Lagrangian
interpolation operator IIj, : C(2) — S} satisfies

Mhe = @llpe + IV [he = 9)|lne < CR?|lpllwe, Vo e W, Vg€ [2,00).  (34)
For the system (L3, we define a corresponding time-discrete (spatially continuous) system
D;®" —V - (a(-,t,)VO") + " = f* =V -g" in Q,
a(+,t,)V®" -n=g"-n on 01, n=1,...,N, (3.5)
PO = ¢p(x) for x € Q,
and a fully-discrete finite element system of ®y € S;, n=1,2,...,
(D@3, vp) + (al-, tn) VY, Vo) + (OF, vp) = (f",vn) + (8", Vuy), Yo, €5}, (3.6)

where " = f(-,t,) and g" = g(-,t,). Some existing estimates for the solutions of ([B.5]) and (B.6])
are given in the following two lemmas.

Lemma 3.1. If the coefficient matriz a(z,t) = (a;j(x,t))axq tn BD) and BE) satisfies

d d d
AT IGP < Y ai(@0)6E < A ISP, VEER, V(at) € Qx[0,T], (3.7)
i=1 =1

ij=1
aij € L0, T; Wh(Q))  and  da;; € L(0,T; L°()), (3.8)
then the time-discrete solutions defined by [B.3) satisfy
1D 0|1y + 10" i) < CUS oy + €71 oe)s ¥pog € (L), (3.9)
| D+ @"(| Lo (L) + (12" (| o w20y < CIf"[| Lo (La)s if g=0, Vp,g€ (l,00).  (3.10)

The proof of [BI0) was given in [4] (also see [23, Theorem 3.1]) and the proof for ([B9) can be
found in [32]. The following lemma is a consequence of [32, (1.18) and (2.3)-(2.4)].

Lemma 3.2. Let ¢" = ¢(-,t,), " and D} denote the solutions of ([LI), BH) and [B.6), respec-
tively. Under the assumption of Lemma [3_1], there exist positive constants To and hy such that the
following estimates hold for T < 15, h < hy and p,q € (1,00) :

D@51l i1y T 1@ owray < C UL e (ray + 18" N Le(ay), (3.11)
||Ph¢n - q’ZHLP(Lq)

< C([6" = Rad"l|o(ra) + IPro(@) = e + 710wl 1o o 157 10)): (3.12)
[1Dr(Pp®"™ = )| 1 57-1.0) + [PR®" = O3l Lo 1.0

< O)|9" = Rp®"|| powriay + Ch™H|PR®° — @) - (3.13)

The estimates (BI1) and BI2) can be found in [32] (1.18)] and [32, (2.4)], respectively, and

(3I3) can be proved by using [32] (2.3)].
In addition, for the elliptic boundary value problem

V-(@aVu)=f+V-g in Q,
(aVu) = f+V g in )
aVu-n=g-n on 0f),

with the constraint fQ udz = 0, the following W29 and C?® estimates are consequences of [I8]
Theorem 2.4.2.7] and [35, Theorem 4.40 and Corollary 4.41].

Lemma 3.3. Assume that g = 0, f € L% with q € [2,00) and [, fdz = 0, and the matriz
a = (asj)axad satisfies the ellipticity condition ([B.1).
(1) If a;j € WH°, then BI4) has a unique solution u € W4 satisfying

lullw2a < Cyll fllza, (3.15)

where the constant Cy may depend on Zf’j:l @il
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(2) If a;j € CY2, then BI4) has a unique solution u € C** satisfying
[ullcze < Cllflloe, (3.16)

where the constant C' may depend on o and Zf’j:l llaij||cta -

Moreover, we need the following C™® estimate, which is a consequence of the steady-state case
of the estimate in [34] Theorem 4.30].

Lemma 3.4. Assume that f € L™, g € C® for a given o € (0,1), and a;; € C satisfies the
ellipticity condition B). Then the solution of [BI4) satisfies

[ullcre < O£z + llgllee), (3.17)

where the constant C' may depend on « and Zf’j:l llaijllce.

A W4 estimate of the corresponding finite element solution is given in the following lemma (a
consequence of [17, Corollary A.6]).

Lemma 3.5 (W' estimate of elliptic finite element equations). Let r > 1, ¢ € [2,00), and
€ (LY. If the matriz a = (a;j)axa € W™ satisfies the ellipticity condition B0, then the finite
element system

(aVup, Vo,) = (g, Vuy), Yoy, €5, (3.18)
has a unique solution up € S,’;, satisfying
lunllwra < Cllgllza, (3.19)

where Cy may depend on Zgjzl @il

The following discrete version of inhomogeneous Sobolev embedding (as a consequence of [38]
Proposition 1.2.10]) establishes a connection between Lemmas B.IH3.2] and the L> boundedness of
numerical solutions.

Lemma 3.6 (Discrete inhomogeneous Sobolev embedding). Let p,q € (1,00) satisfy 2/p + d/q <

1, and let ¢" € W4, n = 0,1,2,..., be a sequence of functions such that ¢° = 0. Then for
a€ (0,1 —2/p—d/q) there holds
16" | oo o0y + 10" | oo (o) < CUID2 " || o i7-1.0) + 16" Lo (w10)), (3.20)
[¢"]| oo (wiiooy + 10" [ Lo (cr0) < C([Dr¢"|| Lo (1a) + [|0™ | Lo wr20)), (3:21)

where the constant C' is independent of n > 1.

The following lemma is an extension of the generalized Gronwall’s inequality [31, Lemma 3.2] to
the time-discrete setting.

Lemma 3.7. Let 1 <p<ooandlet Y™ >0,n=0,1,...,N, be a sequence of numbers such that

1
(T e Y"P)? <a(Yr4r>m,  Y")+8, VO<k<m<N, (3.22)
for some positive constants o and 3. Then there exists T, such that for T < 7,
1
(FNo Y P) < Crap(Y0 +8), (3.23)
where the constants 7, and Cr . are independent of T, B and the sequence Y™, n=0,1,...,N.

Besides the lemmas above, the following interpolation inequality will be frequently used:
[ollze < Cellvllzer + €ellvllzs2, Vs € (s1,52), (3.24)
where € > 0 can be arbitrarily small at the expense of enlarging the constant C,. Since W4 — L
it follows that
[vllzs < Cellvflz2 + elvl|e < Cellvllzz + €llv]lwra, Vs € (2,00). (3.25)



4. LP estimates for a time-discrete system
We define a time-discrete system corresponding to (LI)-(L3) by
V. (%v}m—l) =t —gv o n=1,...,N+1, (4.1)
vD,C" — V - (D(UHver) 4+ ¢
=g + (1 — a7t + qg)>c" —iurl.yer — iV (UTIen), n=1,...,N, (4.2)

with the boundary and initial conditions

DU HVC" -n =0, %VP"‘1 ‘n =0, for x € 09, (4.3)
C° = co(x), for z € Q, (4.4)
where
Ul — _ k(x) v pr-1 (4 5)
TouenTh ’ ’

and the condition [, P""'dxz = 0 is enforced for the uniqueness of the solution of (EII).

The fully discrete system (2Z.I))-(23]) can be viewed as the spatial discretization of (4.1])-(3]) by
the FEM with P2 and P1 elements for P"~! and C", respectively. The main result of this section
is the following lemma on the LP and L estimates for the time-discrete system (Z.1)-(@3]). These
estimates are needed for analyzing the fully discrete finite element solutions in the next section.

Lemma 4.1. Suppose that (LI))-(L3) has a unique solution satisfying Z4) for some q € (d, o),
and let p € (2,00) satisfy 2/p +d/q < 1. Then the time-discrete system ([@I)-{HID) has a unique
solution (P",C") € W24 x W24 n=0,1,...,N, such that

1DC¥ | zozay + ICY | owaay < Crg (46)
IP" iz + [U e + 1D U [z + € ne < Cg (4.7)

Proof. For a given C"~! € W24 — Ob¢ with a = 1 —d/q € (0,1), we have ﬁ € obe,
Then, by Lemma B3] (@) has a unique solution P"~' € C*% < W2 such that
||Pn_1HCQ’a é O”Cn71||cl,a' (48)

where Cjen-1), , is a constant depending on IC" ot In view of @H), Ut e L@ — Wheo,
i.€.,

-1

0" lcre < Clen-1) 1 - (4.9)

Thus by [I8, Theorem 2.4.2.7], the elliptic equation ([Z2) has a unique solution C" € W24, i.e.,
HC”HWQ"Z < C”Un—lucla < C”Cn—l”CLa < CHC”*lHWz,q' (410)
This proves the existence and uniqueness of solutions (P",C") € W24 x W24, n =0,1,...,N. In

particular, there exists an increasing function ¢ : Ry — R, such that ¢(s) > s and
-1

IC" lw2a + [[P"lc2e + [[U" |cra < @([IC™ [lyyr2.a).- (4.11)

It remains to prove the quantitative regularity estimate (£.0)-(7). To simplify the notations,
we omit the dependence on p and ¢ in the subscripts of the generic constant C'.
We start with proving the following suboptimal L error estimate by mathematical induction:

[u™ — U™ oo + || = C|| 1o < TV2. (4.12)

Since ¥ — C% = 0, the inequality above holds for n = 0. We assume that ([IZ) holds for 0 < n <
m — 1 and below, we prove that it also holds for n = m.

From (L2)) and (£I]), we see that
(k=) n-1_ pn-1\) _v7. k(z) _ _k(x) n—1 _ pn-1
\Y (u(cnfl)v(p P )) =V <<u(0n71) u(gnﬂ)) V(p P ))
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, k() __ k(x) n—1
+V ((“(CH) pac) 1)) p ) (4.13)
By the W14 estimate of elliptic equations (see [5, Theorem 1]), we get

lp" ™t = P"

<C | (e - 7o) Vot = P+ G| (e — e ) V|
<Cylle™™ = e [V (" = PP [|na + Colle™ ™ = €[ VP T e

§C’q7'%\|p"_1 — P" Y pra + Gyl — €Y 1a, for n=1,...,m,

where we have used the induction assumption ([4.I2]) in the last inequality. When 7 < 7y for some
71 > 0, the last inequality further implies

0"~ P < Gyl =€ e, for =1, m (1.14)
By using (L2) and ([@5]), we have

o = 0" e == (G5 — i) V"~ e Ve - )

La

s
<Cl|c* = C™"|s VP Iz + Cllp™ = P"[l1.s
<C|lc™ = C"|s + C||p"™ — P™||rs,  for n=0,1,...,m, (4.15)
for any s € [1, 00].
We rewrite (1) into
YD " =V - (D" V) + ¢
=g} + (1 5(qf +qp)) " — gu" ™1 V" — 5V - (u" ") + By, (4.16)

where

E =yD,c" — yct + V- ((D(u") — D(u" 1)V + (u"' —u™) - V"

1 1 -1
—2((qf —ap) — (7™ —aqp )"
denotes the truncation error, satisfying the following estimate under the regularity assumption

&4):
1 1) < O
Subtracting ([4£.2) from (4.I0) gives
YD, (" —C") =V - (D" HV(c" = C")) + " - C" (4.17)
= (1= 50 +dp) (" = C") +5(af ™" ~ q;@_l)( O () VA R/
— 3V (U = C") = gV (T = U et U (e - C)

+ V- (D" = DU )V — ")+ V- (D™ !) = DU 1))Ve) + EfL.
Applying Lemma [B1] to the last equation yields, for p € (2,00) and n=1,...,m,
1D = ™) sy + 1" = C i
<CO[(1 = 3(a7 +ap) (" = C)| popy + Clla; ™ = @B~ = C™)lwo(ra)
+ O™ = U™ Y o1y [V | oo 2oy + CIU™ | oo ooy €™ = C| Loy
+ O = U Y ooy € oo ooy + U™ oo (poey 1€ = ™I Lo (1)
+ DY) = DU )| oo (o) [V(C™ = )| o (10
+ CIDE) — DU [V e ooy + CIER i1
<C(|jc" " - Cn_l”LP(L‘I) +[le" = C™ || p(zay) + Cr'| e — C"|Lewray + CT
<C|lc"™ = C™| po(ray + CT3| ™ = C™|| Lo (wrray + C'T, (4.18)



where we have used induction assumption EI2) to estimate [[D(u"1) — D(U" )| 10010 and
||Un_1HLoo(Loo), and used ([@I4)-([@I5) to estimate [[u"~! — Un_1||Lp(Lq). When 7 < 75 for some
o > 0, the last inequality reduces to
| D (" —C™) )+ " = C™"|ppwray < Cllc™ = C™|ppay + C1, n=1,...,m. (4.19)
By Lemma [3.0]
€% = Cllpzmey < CUDAE =€)l vy + 1" = Cll o)
<Ol = C"||pp(ray + CT [([ATI9) is used here]
< CHC” - CnHLp(Loo) +CT1

HLP(W*LQ

< 1" = Cpquoey + Cpalle” = Collgs(gmy + Cr, m=1,...,m,
which further implies (through applying Gronwall’s inequality, i.e., Lemma [3.7))
[c™ = C™|[peo(poy < CT. (4.20)
Substituting the inequality above into (4.1I9]), we have
1D+ (€™ =€)y i+ €7 = Ol yn) < Cr (121)
which with ([B20) shows
[ = C™ | oo oy < CUIDA(E™ = C™" ) o710y + 1€ = C™ | o)) < O (4.22)
By using an inverse inequality in time, ([L21]) implies
le™ = C™ | oo rray < CTITNP, (4.23)
Moreover, applying (3.15) to (£I3) leads to, for n =0,1,...,m,
[p" = P"[lw2a (4.24)

<cf[v- (e i) vor - )|, + e v (Gieh i) )
< C(l" = C*l|zllp™ = P llw2a + llc" = C* lwrallp™ — P*{lw1.e)

+C(llc" = C||zeollp" lw2a + [l = C™ lwrallp™[lw.o)
< C(rllp" = P"lwaa + 7' 2p" = P lwa) + C(7 + 1€ = C"lwra),

where we used ([@20)-(£23) in deriving the last inequality. When 7 < 73 for some 73 > 0, we see
that

La

||pn - PnHWz’q éC’(T + ||Cn - CnHWl’q)) n = 07 17 sy MM
By noting (&21)) and the Sobolev embedding W24 < W1 for ¢ > d, we obtain

6™ — Pl iaqwiey < CIP™ = PP |nqyeay SO+ €7 = Cllpnuriay) < O (4:25)
which, together with an inverse inequality in time, leads to
[p™ = P™[| oo (wrioey + 9™ = P™|| oo (ray < O P (4.26)
By taking s = oo in (@10 and using (£20]), we get
[u™ — U™ || ooy < CTI7HP. (4.27)

Since % + g < 1 implies p > 2 and therefore C7'~YP < 71/2 for sufficiently small stepsize 7, by

combining above result and ([£.20), the mathematical induction on ([AI2]) is closed as 7 < 74 for
some 74 > 0. Consequently, the estimates ({.20), (£.23)), [@.26) and {.27) hold for m = N. When
T < mig 7j, we have the following estimates:

1<j<4
IC™ 1 Loe + [IC" [lwra + [[P" [lw1eo + ([P lw2a + U™ | Loe + [[D-C™|[pee < C. (4.28)
From (4] we further see that
(U [wra < CUP" lw2a + [IC" [wral[ P [lwree) <C, n=0,1,..,N. (4.29)



Now we are ready to prove (L0)-([Z7T). To prove [@G), we rewrite [£2]) into
vD,C" — V - (D(u""Hver) 4 ¢
=cqp + (1 - 3(qf +qp)) " —dunt.ver — Iv . (unicn)
+ V- ((D(U™Y) - D" hH)ver)
and by Lemma Bl we obtain
HDTCN”LP(L‘I) =+ ||CNHLP(W2"1) (4.30)
<Clleq lpr(zay + C||(1 = 2(af + qg))CNHLp(Lq) + CIUN Y| poe (o) [IVEN || o (L
+ OV - (UNCN) | ooy + OV - (DUNY) = D@V 1) VEY) [ 1o (1)
<C+ OV - (DU = D)) VCY) [ Lo(ra) (use (£.28)-(.29))
<C+ C(IVUY ooz + V0N Lo () IVEN [ Lo (oo
+ DU = D™ ) || oo (o) ICY || Lo w0
<O+ CICY ey + CTHICY o (use (T2 and (EZI))

By noting [|C"[|y1. < 1[|C"lw2a + C[|C"|lw1a and @28), when 7 < 75 for some 75 > 0, (E30)
reduces to

IDCN| Lo Loy + ICV w20y < C + CICN || Loqwiay < C. (4.31)

([#5) is obtained.
To prove (A7), we use (L31]) and Lemma [B.6] which imply

ICN | oo 1.0y < CUIDCN | ooy + 1Y 1o w2ay) < C- (4.32)
With the regularity estimate above, applying [Lemma B3] (BI6])] to ({I) yields
| P"*|c2.0 < CllgT — qpllce <C, n=0,1,...,N, (4.33)
and substituting (£32])-([4.33]) into (&3] gives
U |c1e <C, n=0,1,...,N. (4.34)
Again, applying the backward difference operator D, to (1) yields
V. (H’“g,?) VDTP") _v. <DT (ﬁ%) vpn—1> = D,q} — Drgp. (4.35)
By Lemma [3.4],
1D, P llne < € || (8 — iy ) v + CUDea} — Drgpllees
< Zle" =" Hiea VP Hleo + C10uar o, + 18ap |l Lo 0.7:<))

A

<Ee — " Vga + E|IC" = |oa + € = H|ea + C
<C, n=1,...,N, (4.36)
where we have used ([£.22]) in the last inequality. Finally, from (435]) we see that

1D, U1 < C <||VDTP"||Loo + HDT (j{g%) ‘Lm> <C, n=1,...,N, (4.37)

and (7)) follows immediately. This proves Lemma BTl in the case 7 < 7, := min 7;.

P 1<<a
Ifr>7 ,N=T/T<T/7;,<C, and therefore, [EII)) implies
IC™ lw2a + 1P| cze + U™ |ore < @™ (IC0Iw2a) < T/ a) ([ICO| ) < C, (4.38)

where ¢ := (=1 6 . This proves Lemma E Il in the case 7 > .

q

5. The proof of Theorem [2.7]

Before proving Theorem 2.1], we show the boundedness of the numerical solutions based on the
uniform regularity estimates given in Lemma [T for the time-discrete system (41))-(Z5).
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5.1. Boundedness of the numerical solutions

Lemma 5.1. Under the assumption of Theorem [21), there exist positive constants T, and hy such

that for 7 < 14 and h < hy the finite element system (ZI)-@23) has a unique solution (P}',C}l),
n=0,1,...,N, satisfying the following estimates:

ICh w00 + TR~ < C. (5.1)

Proof. Since both coefficient matrices of the linear systems (2.I) and (2.2)) are positive definite

(possibly non-symmetric), it follows that the linear system (2.I))-(22) has a unique solution.
Next, we prove a primary estimate

PyC" — | < hZ, n=0,...,m—1 5.2
h hilL 3 ; ; )

by mathematical induction. For the given ¢ > d, we choose a fixed p € (2, 00) satisfying 2/p+d/q <
1, and omit the dependence on p and ¢ in the subscripts of generic constants below.

Since ||P,C° — CY||1e = ||Prco — Hpeollne < Chllcollwioo, (B2) holds for m = 1 when h < hy
for some hy > 0. Therefore, we can assume that it holds for some positive integer m.

From (@II), we see that

<H(IZ(7T,)1)VP"‘1, Vvh> = (q?_l — qlré_l,vh), Yoy, € Sg (5.3)

and therefore, subtracting the equation above from (2.1) yields

k(z) P pn—1 n—1y\ _ k(x) k(z) n_1 n—1
V . <“(Cn71)v(Ph—P - Ph )) —V . <<;L(C7L1) - U’(C;lll)> V(P - Ph )>

. k(z)  k(z) n—1

4V (%V(Fhm—l - Pn—l)). (5.4)

Since H%HWLOO < O (as a consequence of [Lemma A1l {@7)]), by the Wh* estimate of elliptic
finite element system (Lemma [3.35]), we have
[P — PP s (5.5)

k(z) k(=z) n—1_ pn-—1 k(z)  k(=z) n1

+ C|[PpP™t — P |y
< et = e 1P = PR Hlwns + ClIC™ = G s [P Hlwnee + ChIP™ | lyp2.s
< Ch2| PP = PP Y pis +CIIC" = CP s +Ch, n=1,...,m, Vse (1,00),

where we have used the induction assumption (5.2) to estimate ||C"~* — C}'~!|| =, and Lemma [.T]

to estimate ||P""!|jy1,00 and ||P"7Y|jy2s. Choosing s = 4d in the last equation, we can see that
when h < hy for some hy > 0,

[Pt = P Hlyraa < OIC™ = CP M| paa + Ch,  n=1,...,m. (5.6)
By an inverse inequality,
1Pt = P lwee < (1P =PRP™ Hlree + [PRP" ™ = B iy

< Ch||P" Mlyyzce + CH™ 3 [PRP™ ! = PP Y|ppia

< Ch|| P Y|ppaee + ChT(|JC"! = Ci | paa + 1) (use (5.6) here)

< Ch+ C’h_%(h% + h) (use (B.2) here)
<Chi, n=1,...,m, (5.7)

Ls
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where we have used Lemma [L] and the induction assumption (5.2)). Moreover, subtracting (5]
from (23] and using Lemma 3.1 and Lemma 4.1, we derive

o=t = U1

k(z) n—1 __ pn—1 k(z) k(z) n—1
éHMCZl)V(Ph P )+<H(C}?1) u(cn1)>VP

< O|P* = B Hlwns + ClIC* T = G s [P e
<Pt =Py +OICTTE = C Y s, n=1,...,m, Vsé&ll, o] (5.8)

Setting s = oo in the inequality above and using (5.7)) and the induction assumption (5.2]), we
obtain

Ls

[0t~ Up o
< COIP" = PP Yl + ClC = € Y|pe < ChA, n=1,...,m. (5.9)
Similarly, choosing s = ¢ in (55) and (5.8]), we have
Ot = Uz + 1P = Bl
<clct =Cp Y +Ch, n=1,...,m. (5.10)
To estimate ||C"~! — C'"!|| 14, we rewrite the finite element system (Z.2) as
(vD+CJl,wp) + (D(UMHVCR, V) + (Cfl wn)
= (ear + (1= $(aF +aB)C"wn ) = 3(U"1- V€, wy) + (U - Vay, €7
+ ((DU™™) = DU)VCE, Vun) + (1= 3(aF +a3)) (€ =€), )
— (U = U - VR wp) + 5 (a7 = a5 )(CR =€), wp)
+ 32Ut UMY Vg, C) + (UM YV, G —C™), Yuwy, € ). (5.11)

In view of the difference between the right-hand sides of ([£2]) and (5.I1J), and in order to invoke
Lemma 3.2, we define 8" to be the solution of the following auxiliary time-discrete equation

yD" — ¥V - (D(U"H)Ve™) + 6™
= V- (D(U") = DU )VC) + (1= 5(af +4p))(C —C™)
= 3(Up T = U VG 4 5 (0 —ap (G —C")
SV (U - UThe) - Y (U e ). (5.12)
with the boundary and initial conditions
~ DU HVe" -n=—(D(U") - DU} ) VCr -n— (U —UCp - n
U e —-C") - n on 99,
0° =0 in Q,
and define 0} € S,ll to be the solution of the corresponding fully-discrete finite element system:
(vD76}y,wp) + (DU V8, V) + (6], wp)
= ((D(U™™") = DU ) VCh, Vun) + (1= 3(aF +ap)) (GGt = C),wn )
— 5O = U™ VR wp) + 5 (a7 — g )(Ch = C™), wn)

+ iUyt —Uunh) v, CF) 4+ (U Y, Cp = €M), Ywy, € S), (5.13)
with the initial condition 6 = 0. From (5I2)) and (GI3) we see that 6 — 6™ satisfies the equation
(YD (8 — 6™),wn) + (D(U"H)V (6] — 6™), V) + (6 — 6", wp,) =0,

Yy, € S}, (5.14)
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Similarly, subtracting (5.13) and (£2) from (5.11)) gives
(VD= (Ch — 85 — C™),wp) + (DU HV(CR — 6] — C"), Vay) + (Cf — 6 — C" wy) =0,
Ywy, € Sp. (5.15)
Here C;} — 0} and 6} can be viewed as finite element approximations of C" and 6", respectively.

In view of {@T), D(U"!) can be viewed as the value of a piecewise linear function (in time) at
time t,,—1 and therefore, the conditions ([B.7))-(B.8)) are satisfied. Applying Lemma [3.2] to (5.135]) and

([ET4) yields
1D+ (Ch = O = PuC™) | 1o ir-1.0) + IC = O = PrC™ || oqwr.a)
( )

< C(lIC™ = RuC™ || Loqwray + b7 HIPAC® = Cpl|14)
< Ch|IC™||ow2a) + CRIC lw2a, n=1,....,m. (use @B.I), B.2) and @B.4)) (5.16)

and
1D (0~ 0" -0y + 165 — "L oo
< OD(0F ~ Put™) |y 1.0y + ClI0F — Pub™ Loy
£ CDo0" — PuDo0 | 1.0y + C0" — Pat| o
< C[6" ~ R 1s sy + CUDO |y i1 + CI6 1
< C”DTHHHLP(W—L(;) + 0" | pwray, n=1,...,m, (5.17)

where we have used ([B.:2]) to derive the last inequality, and ([B.I) to get the second last inequality
(with m = £y = 1 and the dual case m = ¢y = —1). Therefore,

1D -2y + 108 5wy < CUD iy + 10 o). (5.18)
Applying Lemma Bl to (512) leads to
HDT@nHLP(W*Lq) + HHHHLP(WLQ)
< CID(UL™) ~ DU VR [ 1o(any + CI(1 — 3aF +a3) (G~ C)lmaoy
L CIUF = U VG oy + O™ = a3)E = C)lioqen
+ONU =0 + U™ = € ey
= I+ 13+ I3 +I)+ 15+ I . (5.19)
By (£39)-(E10), we have the estimate
I = CI(D(UR™Y) = DU 1) VO 1o 1oy
< CIDUR™) = DU 1) V(CF = C™)l|o(ray + CI(D(UR™Y) = DU 1) V|| Lo(10)
< OO = U oo (2o IV (CR = C) ooy + CIUR ™ = U™ 1o (10) [ VC | oo 10
< Chi IV(Ch = C")l Lo (nay + c(lept - C" Nowpay+h). n=1,....m,
Similarly, we get
I§ = C||(Uy ™" = U™ H) VC | oz
< (VG = )| zouey + CUCE™ = € Mooy + ),
I3 = OO = U Y Cl oy < Chi||cy - C™|zo(zay + CUICE™ = C" M poray + h),
and also
Iy + I} + 1§ < C|IC = C™ [ 1oLy -
Substituting the estimates of I, j=1,...,6, into (EI8)-([EI9), we obtain

HDTHZHLP(erflyq) + HH;LL”LP(WL‘])
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< Chi|[V(C} = C)lmo(a) + CIICE = C\lpopay + Chy, n=1,...,m, (5.20)
which together with (B.I6]) implies
1D+ (Ch = PrC™) o (i7-1.0y + 1€ = PaC[| Lo w10
<D (Ch = O = PrC™) o710y + [ICh = O = PrC" | Lo w10y
+ D208 o 5710y + 11O [ Lo
< CRT|V(Ch = C™)lozo) + CIIC: = C™ |l o(zay + Ch
< Chi|V(C} = PhC™) | Lo(za) + ClICE — PhC™|1o(zay + Chy, n=1,...,m, (5.21)

where we have used (B.1)) to derive the last inequality. When h < hg for some hg > 0, we can get
from above result that

1D-(Cly = PrC™) | o ii7-1.) + ICk = PaC* | Lowray < ClICH = PrC" |19y + Ch. (5.22)
By using ([34) and the triangle inequality, we further derive that
1D+ (Chy = ThC™) | Lo 710y + [ICh = TC™ [ Lo wray < CIICy = TC™ (| Lo 20y + Ch, (5.23)
n=1,...,m,

and by Lemma [3.0]
G = L€ e 1) < CUIDACE = TC) 1.y + 1CE = TC™ )
< C|Cy —pC™ | pp(ray + Ch
< LCH = T,C" || oo (1) + CICR — TRC™ |1 (poy + Chy, m=1,...,m,
(5.24)
Applying Gronwall’s inequality, we see that
ICh —HhanLoo(Loo) < Ch, n=1...,m. (5.25)
Finally, using 3.1]), (3.4) and the triangle inequality, we have
ICh — PrC"[| Lo (pooy < (ICh — TAC™ || oo (ro0y + [[HRC™ — PrC™ || oo (100)
< Ch+ Ch||C™||pee(wroey < Ch, n=1,...,m,

which completes the mathematical induction on (5.2]) when h < hg for some hs > 0. Consequently,
(E26)) holds for m = N and (E3) holds for m = N + 1.
By an inverse inequality and (5.26]), we have

HPhcn - C;LL”LOO(WI,OO) S Ch_l”Phcn - C}TZHLOO(LOO) S C, n = 1, ce ,N. (527)
and therefore,
IU Iz < U} — U |[p + [[U"|z < Ch1 +C < C, n=1,...,N,
ICH [wi.ee < IPRC™ — Ci|lwioo + |IPRC" liwro < C 4 [|IC™||ppr1.0e < C, n=1,...,N,

where we have used (5.9)) to estimate ||U} — U"||r~ and [@1) for ||[U"||z~ and ||C™||y 1.0, respec-
tively.
The proof of Lemma [5.1] is completed.

(5.26)

5.2. Proof of (2.5)
Now we turn back to the proof of Theorem 2.1. We rewrite the system (LI)-(L2) into

—V- <H(IZ@1)VP"_1> =q " =gy, (5.28)
7O, — V- (D(u" )V 4 = cqt + (1 — % (g} + q%)) c"
—tun L. Vet — IV (ulen) + BT (5.29)
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where

ul = D pn (5.30)

and E" denotes the truncation error of the linearized scheme, given by
E" =V - (D(") = D@ ™)Ve") + (w'™ —u") - Ve — 3((af — g3) — ()" — g3
The regularity assumption (24]) implies
HEnHLP(Lq) < Cr.

We subtract (528) from (21]) to get
(e v (B = ), Vo)
_ ( k(z) V(p”—F pn) Vo ) + << k(z) _ k(z) )Vpn \YT > Y € SQ
) hp"), VUn ()~ wicy AR
By Lemma 5.1l and Lemma 3.5,
I1PE =Pl < C | A T6r —Bm|| + 0| (£ - A62) vy

< Clp" - Php lwia + Clle" = Cyllza
< CR*||p"|wsa + C|lc" = Clze, n=0,1,...,N. (5.31)
Moreover, subtracting (5.30) from (23] yields

n_yunr k(=) n __ N k() _ k(=) n
"~ URllzs < |56V (B =0 + (G — ey ) O

< OB = p"llwra + ClICh = "l Lal[p" [0
< Ch2HanW3’q +C||CfTLL_Cn||Lq7 ’I’LZO,l,...,N, (532)

where we have used (5.31)) to derive the last inequality.
We take the same approach as used for ||C" —C}'|| 1« in the last subsection to estimate ||c" —C}}||La.
We rewrite the finite element system (2.2]) into

=
|

La

La

(YD-C wp,) 4 (D(u"1)VCR, Vuwy,) + (CF, wy,) (5.33)
— (éq? +(1—L(qF + q?;))c”,wh) — Lt Ve wp) + (T Vo, ) + (E™, wy)
+ (D) = DU VER, Vun) + (1= 3(aF + b)) (Gt = "))

— (Ut —a™ Y VO wp) + (0 = g h(CE = ), wn)
+ %((Uz_l u"” 1) Vuwp,Cp) 4+ (u"™ 1 -Vwp, Cpp — ") — (E™, wy), Ywy, € S}L.

In view of the difference between the right-hand sides of (£.29) and (533]), and in order to invoke
Lemma 3.2, we define x™ to be the solution of an auxiliary parabolic equation:

YD X" =V - (D" V") + "
==V ((D@"™!) = DU~ ) VCR) + (1= 5(af +ap)) (Cf — ")
— (Ut —u"™) VO + (e — g (- )
V(U ) -V (aC — e) — E (5.34)
with the boundary and initial conditions
~D(u"HVx" -n=—(Du" ) - DU} )VCr -n— (U} —u"1)CP - n
—u" e ") - n on 04,
=0 in €.
The corresponding finite element approximation of (5.34]) is defined as: find x} € S}L, such that
(YDrx}, wn) + (D" M) Vg, V) + (X7, wn)
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= ((D("™) = DU~ VC, V) + (1= 3(a7 + b)) (Ch — ") wn)
— 5O —uh) - VO wp) + 5 (077 — g )(Ch — ) wn)
+ (U —u" ) YV, C) + (0 Vo, CfF — ") — (B™, wy), Ywy, € St (5.35)
with the initial condition x) = 0. By comparing (5.34) and (5.37), we see that
(YD+(xh = X", wn) + (D" )V (xf, = X"), Vwg) + (xf = X" wn) = 0,
Yy, € Si. (5.36)
Subtracting (5.35) and (5:29) from (B33)) yields
(YD+(CJl = xi) — 0", wp) + (D" HV(Ch — Xy — ), Vaun) + (Cff — X — ¢, wp) =0,
Vuwy, € St (5.37)
Again C;! — x} can be viewed as the finite element approximation of ¢". Then by Lemma [3.2]
ICh = Xk — Prc™l|Lr(ra)

< C|Ppc” = Ry || o(ra) + ClIPrco — CpllLe + Cllowe™ | Lo -1.0)T
< | = collra + C(T + h?) (use (BI)-(B4)). (5.38)
Similarly, applying Lemma [B2] to (5.30]) yields
IXkllr ey < IXh — PuX"loney + IPRX" | 2p (19 (triangle inequality)
< OUPaX" = Rax"l|r(zay + CllOuxll 1o g7-1.0)7) + ClIX Lo (L9) (use (3.120)
< ChlX"lprwray + COT + ClIX"|| Lr(La)- (use (B.1)-(B.2)

Substituting the last inequality into (5.38]), we have
ICly = Pl oray < ClICR — Pllza + C(r + B?) + CRIX |l o wray + CT + ClIX" |l Lr()
< ClIc) = Pllza + C(r + h?) + ChlX | Lowray + ClIX" lLe =y, (5.39)
and therefore,
ICr = " llp(ray < NICK — Prc” [ Le(pay + [Prc™ = €[ Lo(La)
< OlCy = llzs + C(r+ 1) + ChlX" [ owray + ClIX" L), (5.40)
where we have used ([B.I) to estimate ||Pyc" — ¢ | 1p(1q)-

Since 2/p +d/q < 1, there exists py € (2,p) such that 2/pg + d/q < 1. To estimate |[x"|| oo (),
we apply Lemma [B3.6] and Lemma B1] to (5:34]) to get

X" ([ zoe (zoey < CUDX | oo 75710y + X" ([ £r0 (w1.9))
< C(D(™) = DU ) VC | o (ay + CII(L = 5(af +a)) (Ch — €| oo (1)
+ (U = u") - VC | pwo nay + Cll(a7 ™" = dpCE = ¢)lpwo za)
+ OO = u" HC o (zay + ClU"HC = oo za)y + CIE" || oo (ra)
< OO = 0" s (o) + 1€ = oo (o) + IE" | oo (1)
< ey = Pllpa + C|C = |l pro(za) + C(T + h?),

where we have used Lemma 5.1 to estimate ||VC}!|| o and ||C}|| o, and (B:32) in deriving the last
inequality. Similarly, replacing pg by p in the last inequality yields

(DX o 51y + X)) < CICE = Pllza + CICE — lgagen) + Ol + 1),
By substituting the last two estimates into (5.40), we obtain
ICh — Cn”LP(Lq)
< C|Ch — Ellza + C(r +h?*) + Ch|ICl — "l o(zay + ClICH — [l ro(za)
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n n 1 n 3 mn T
< ClIc) = llza + C(r + h?) + ChIC} = || o(ra) + SICE = "Il way + ClCE = ¢ [lL1(La)-
When h < hy for some hy > 0, we have

I = [l zo(zay < ClICR = Cllza + CICE = " llLr(pay + C(7 + h?). (5.41)
or equivalently
< Z Icp —c||b ) <C|C¥ - e + CTZ ICR — ™|l za + C(T + h?). (5.42)
n=1

By a similar approach, we can obtain the estimate:
1

m > m
<T > ler - cnulgq) < ClCk = Fllpa +CT Y ICh = ™llza + C(r + h?). (5.43)
n=k+1 n=k
By the generalized Gronwall inequality (Lemma B.7]),

I = Mo (zay < CICh = Cllzo(ray + O (7 +h?) < C(7 + h?). (5.44)

Finally combining the estimates (5.31])-(5.32) and (5.44)), we obtain the following error estimate
when h < hp,= min hj and 7 <7, , = mln Tj,
1<j<4 <j<5
1P = ™| o wray + U5 — uNHLP(Lq) HIC = Mlzp(zay < C(1 +h?). (5.45)

Since ¢ > d, the inequality above implies ([2.5). This proves Theorem 2.1l in the case 7 < 7, , and
h S hp7q'

5.3. The case 7 > 7,, 0or h > h,,

For any 7 and h, substituting (vh,wh) = (PP1,C) into (I?:I:I) 22) yields

VB G2 < llap ™ = ap el P Hiee < llaf ™ = a2 VP e,
Dy (3lC11Z2) < ZlCRIT2 + Zléar 7o
which further imply
P Cy < C. 5.46
s (1l + 1) < (5.46)

If 7 > 7,4, (6:22)) still holds for h < h;, , < h3, which implies that
1D (Ch = PaC™) 1o 7-1.0) + ICh = PrC"[| Lo wri.a)
< C|Cy —PuC"||p(ray + Ch
< 3CE = PrC™| o wray + ClICE = PrC™|| o2y + Ch - (use B.25) here)
< 3lCk = PuC" (|l o ey + C,
where the last inequality is due to (5.46]). Then we see that
ICh — c"llLpwray < |ICh — PhanLP wiay + [PRC™ — | o)
<C= CT 1 Tpa S OTy, (T + h?). (5.47)
On the other hand, (5.7)) and (5.9]) imply that for h < hp7q < ho,
0™ = Uiz + [[p" = Pllwee
< " — U"||Lc><> +[Ip" = P [wree + 0" = Ullzee + [P = By [lwr.o
<C= CT Tpa S CT,. (T + h?). (5.48)

This proves TheoremIZ[I in the case 7 > 7, , and h < hy 4.
If h > hy 4, by (546]) and an inverse inequality, we have

omax (1P lwra + 17 le) < Chi ™ omax (I1E e+ IICFl2)
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d_d
< Chiy* max (IBfllm + G ]) < C, (5.49)

and therefore, by noting ||[U} ||z« < C||P}|w1e < C,

s (9" = Bl + 0" = Uplu + e = Cflo)

< C=Chy2h2, < Chy2(t + 7). (5.50)

P9 "pP,q —
This proves Theorem 2] in the case h > hy, .

6. Proof of Corollary 2.2
By using an inverse inequality noting [Lemma [B.] (B.])], we can derive from (2.2]) that
1D-CR | o ey < CH™HID(UR )V o (zay + Cli(af + a)Chl| o)
+ CHUZ_l “VC; |l (L) + C'h_luUZ_lC;ZHLP(Lq) + Clléqr e Loy
< Ch™ Y UR oo ooy ICH | oo wrioey + CICH || oo (10
+ CIUR Y oo (o) ICH | oo ooy + CRTHUR oo (poo) ICH | oo (100 + C

<Ch! (6.1)
which in turn shows || D7 (C} — ¢")||gp(ze) < Ch™' and
ID=(Ch = €loray < CTTHICE = M llpo(ray < CT7H7 + h*) < C77% (6.2)

Moreover, by the Sobolev interpolation inequality, we have
1

1—1 1
0 = Mz < 1E) — llia + CIEY — N it 1D = M0 e
211.0 XN R S [ N
< Ch*||c”|lw2a + C(T+ h%) P min(r™ ", h™")?
<CRE 4 O(r 7 + 127, (6.3)

where we have used (Z5]) to estimate ||Co' — /|| Lp(Le)- Since p can be chosen arbitrarily large,

combining the above inequality and (0.31)-([.32), we obtain (2.6) immediately and the proof of
Corollary 2.2 is completed.

7. Numerical results

In this section we present numerical results to support our theoretical analysis. All the compu-
tations are performed by using FreeFEM++ [15].
We consider the equations

% —V-(D(u)Ve)+u-c=g, (7.1)
2
<u(6) I 72
in the circular domain Q = {(z,y) : (x — 0.5)% + (y — 0.5)% < 0.52}, with
2
u=——Vp, c)=1+4c¢, D(u)=1+0.1ul,
Vi) () |
and an artificially constructed exact solution
p=100(x — t)%e, c=0.5+0.2¢"" cos(x) sin(y). (7.3)

Substituting this exact solution into the equations ((.I])-([7.2)) yields the source terms g, f and the
boundary conditions

u-n=f, and D(u)Vc-n=g, on 0. (7.4)
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These are the same type of boundary conditions with given nonzero right-hand sides.

A quasi-uniform triangulation is made by FreeFEM++ with M nodes uniformly distributed on
the boundary of the circular domain. For simplicity, we denote h = 1/M. We solve the system
(ZI)-(Z4) by the proposed method on the quasi-uniform mesh up to time 7' = 1. The L? and L*
errors of the numerical solutions at time ¢ = 1 are presented in Table [Z.]] with a small fixed time
step size 7 = 27 such that the errors from time discretization can be negligible in observing the
convergence rate in the spatial direction. We can see from Table [[1] that the proposed method
provides the accuracy of the optimal order O(1/M?) for both C' and U%. On the other hand, we
present in Table the L? and L errors of the numerical solutions with a small fixed mesh size
h =1/256 to show the convergence rate in the temporal direction. From Table[T.2] one can observe
clearly that the accuracy of the proposed method in time direction is of first order. The numerical
results are consistent with the analysis given in this paper.

TABLE 7.1. Errors of numerical solutions in spatial direction (7 = 27!4)

he [l =Gz Ju? U lpe fle¥ —Ciflree [u — U3
/16 | 1.3995E-04  3.0027E-03  5.1714E-04  1.7159E-02
1/32 | 2.8838E-05  6.9765E-04  14176E-04  5.2594E-03
1/64 | 7.1872E-06  1.7068E-04  3.4551E-05  1.2412E-03
order 2.00 2.02 2.03 2.08

TABLE 7.2. Errors of numerical solutions in time direction (h = 1/256)

7 [N =l ™ U [l = Cllre Ju — U1~
1/32 4.1618E-04 6.2041E-04 2.3635E-03 2.4287E-03
1/64 1.8478E-04 2.8533E-04 1.1310E-03 1.0462E-03
1/128 | 8.5562E-05 1.3755E-04 5.3595E-04 4.7889E-04
order 1.06 1.06 1.07 1.12

8. Conclusion

In this paper, we have presented an error estimate for the system of PDEs governing miscible
displacement in porous media with the Bear—Scheidegger diffusion-dispersion coefficient, which
is time-dependent and only “Lipschitz continuous”. The analysis utilizes the discrete maximal
LP-regularity of finite element solutions of parabolic equations, which was established in [28] [31],
[32] for parabolic equations with Lipschitz continuous coefficients in smooth domains, for time-
independent coefficients, time-dependent coefficients with semi-discrete finite element method, and
time-dependent coefficients with fully discrete finite element method, respectively. In these articles
(as well as this paper), the domain is assumed to be partitioned into triangles or tetrahedra which
fit the boundary 02 exactly, with possibly curved triangles or tetrahedra near on the boundary.

In the two-dimensional case, the finite element space can be naturally extended (or restricted)
to the curved triangle near the boundary. However, in the three-dimensional case, if the boundary
faces of the tetrahedra do not exactly lie on 9f) then the curved tetrahedra near the boundary
should be specifically constructed instead of being an natural extension of the tetrahedra as in the
two-dimensional case. For example, for a point = on a boundary face of a tetrahedron one can
associate a unique point y = y(z) € 0 such that

y == +n(y)d),
where n(y) is the outward unit normal vector on the point y € 92, and d(z) is the signed distance

from x to y. For x € Q there holds d(z) > 0, and 2 € RN\Q there holds d(z) < 0. Such a transition
between the interpolated surface 9§, and the exact surface 02 was introduced as a lift operator in
[I1L12]. For a tetrahedron T with a triangular face e C 9y, the lift of e onto the smooth boundary
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0f) is a curved triangle on 9. The lift of all such triangles on 9€2;, form a curved triangulation of
0€). One can define a region

T = Upee{z + Ov(y)d(z) : 6 € [0,1)}.

Then ¥ := 7 U7 is a curved tetrahedron which fit the boundary exactly.

Such a triangulation with possibly curved tetrahedra on the boundary exists theoretically, as
shown above, but is not convenient for practical computation. In practical computation, people
often replace the original domain 2 by a triangulated polygonal /polyhedral domain €2j. For exam-
ple, FreeFEM++ solved PDEs in this way. Therefore, our numerical example in Section [7 actually
neglects the quadrature error on the boundary triangles (neglecting the quadrature on Q\Qy,). This
gap between theoretical analysis and practical computation by using FreeFEM++4 can possibly be
filled in the future by either of the following two approaches:

(1) Instead of assuming that the triangulation fit the boundary exactly, one can use the discrete
maximal LP-regularity result established by Kashiwabara and Kemmochi [2I], who worked on
the triangulated domain €} instead of the original domain §2. In order to apply such results to
miscible displacement in porous media, one needs to first extend the result of [21] to parabolic
equations with time-dependent Lipschitz continuous coefficients.

(2) Instead of assuming € to be smooth, one can work on a polygonal/polyhedronal domain di-
rectly. However, the discrete maximal LP-regularity of parabolic equations was only established
for the Dirichlet boundary condition so far, see [33]. In order to apply such results to miscible
displacement in porous media, one needs to first extend the result of [33] to the Neumann
boundary condition. In this case, the error estimates in Theorem 2] can only be proved for
some ¢ depending on the interior angles of the corners and edges, instead of all g € (d, ).
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Appendix: Proof of Lemmas [3.2H3.7]

Proof of Lemma 3.2. (3.11]) and (812) can be found in [32] (1.18)] and [32] (2.4)], respectively.
We prove ([BI3]) by using [32], (2.3)], which implies (via using inverse inequality)

[Pr®" — @l Lo (wria) (A.1)
< Ch™YP,o" — il Lr(ra)
< Ch™H(|[Pr®" = Ry®"|| o (10) + [Pa®° — 310) (use |32} (2.3)))
< Ch Yo" — R, ®"||1p(pay + Ch|PL®° — Y| L (use L7 stability of Py,)
< O)|9" — Rp®" || powiay + Ch™H|PR@° — 6| o (use B2) with [ = 0)
From (3.5) and (3.6) we derive
(D (Pp®" — o), vp) + (a(-, ) V(PRL®" — ¢}), Vup) + (PL®" — ¢, vp) (A.2)

=(a(-,t)V(P®" — Rp,®"),Vuvy), n=1,...,N,
which implies
[1Dr(Pr®"™ = )l 1o 7-1.0) SCllal-, )V (PRO"™ — @p)|| 1o (La) + CIPRO"™ — Gl 1o (L)
+ Clla(-,)V(Pr2" — Ry ®")|| Lo (La)
<CPr®" — ¢pllLr(wra) + CPR(®" — Rp®"™)| Lo (w10
<C[@" — Ry ®"| oy + Ch7H [P0 — 60 o, (A.3)
where we have used (Al in the last inequality. The proof is completed.

Proof of Lemma
(1) Under the conditions of Lemma[3.3] the Lax—Milgram lemma implies that ([8.14)) has a unique
weak solution u € H' < L® under the constraint [, udz = 0, satisfying |lul|g: < C| f||r2. Thus u

is also a weak solution of
d

0 ou .

p (A.4)
Z a;jn;0ju = 0 on 0f),
ij=1
which satisfies the following estimate (applying [I8, Theorem 2.4.2.7] with p = 2)
ullgrz < C|If —ullz < O fllL2 + llullz2)
< C(1fllzz + llullm)
< C|[fllze- (A.5)
Since H? < L™ in both two- and three-dimensional spaces, we have
[ullee < [ullg2 < C[f| L2 (A.6)
Applying [I8, Theorem 2.4.2.7] again yields
[ullwza < Collf + ullLa
< Co(Ifllea + llullLa)
< Collfllra + llullze)
< Co(llflla + 1 f1z2)
Cyll flLa- (A7)

IN |

This proves ([B.15).
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(2) By choosing ¢ > d we have f € C% — L9 @B.I5) implies u € W4 — CL® — C% with
a=1-—d/qe (0,1). Thus u is also a solution of
d

Z 9 aij% —u=f—-—ueC” in Q,
i1 8%2 (%cj
p (A.8)
Z a;jn;0ju = 0 on 0,
ij=1
which satisfies the following Holder estimate (applying [35] Theorem 4.40 and Corollary 4.41])
[ullcza < ClIf —ullce < C([[fllce + lullee) < C|[fllce- (A.9)

This completes the proof of Lemma [3.16

Proof of Lemma 3.4l Since f € C* < L?, the Lax-Milgram lemma implies the existence of

a unique weak solution u € H! < L5 and the W estimate of elliptic equations (cf. [5, Theorem
1]) implies ||u||y1.a+1 < C| ]| pa+1. Since Whdtl < [, it follows that

[ullzee < CllgllLee + 1 fllas) < CllgllLee + 1 fllo)- (A.10)

Let x = x(t) be a smooth cut-off function defined for ¢ € [0, 2] such that x(¢) = 1 for t € [1,2] and
x(0) = 0, satisfying |0, x| < C. Then yu satisfies the parabolic equation (u is time-independent)

d d
a [ Olxu)\ _ e
Oh(xu) — ;1 P, (au o, > — udyx + X9 + ; ai(xfi) in Qx[0,2],
d d (A.11)
Z aij”i% = fomi on 99 x [0,2],
1,j=1 T i=1
x(0)u(z,0) =0 for = € (.

[34] Theorem 4.30] immediately implies
x| Loe 0,2:010)
< Clludexll Lo (0,2:000) + ClixgllLe(0,2:000) + CUIx Sl Lo (0,2:00) + X lco(0,2:L¢))
< Cllullze + Cligllie + Cl fll e
< C(llgllze + [ fllce), (A.12)

where the last inequality is due to (A.I0). Since x is independent of the x variable and u is
independent of the ¢ variable, it follows that

Ixull oo 0,2:01.0) = Xl [[ull e
Thus (AI2) implies
[ullcra < C(llgllze + [|.fllc)- (A.13)
This completes the proof of Lemma 341

Proof of Lemma The existence and uniqueness of solution uy, € S}; is standard. It suffices
to prove the estimate (3:19). Note that (B.I8) is equivalent to

(aVup, Vup) + (up,vp) = (£, Vop) + (up,vp), Yo € Sy (A.14)
Let u € H' be the solution of the PDE problem
—V-(aVu)+u=-V-f+u, in Q,
{aVu'n:f-n on 0f),

so that uy, is the Ritz projection of u. Then the W14 stability of Ritz projections (as an interpolation
[17, Corollary A.6]) says that

(A.15)

[unllwra < Cllullwa, (A.16)
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and the W14 estimate of elliptic equations (cf. [5, Theorem 1]) says that
[ullwra < Colllfllza + [lunllze) < Collfllze + Coellunllr> + ellunllwra, (A.17)

where € € (0,1) can be arbitrarily small at the expense of enlarging the constant Cj, .. The two
estimates above imply

lunllwia < CgllfllLa + Cqllunl 2
§ Ch”fHLq%-C%”uh”Hl

A.18
< Cylfllze + Gyl 2 (4.18)
< Cyllfll za-
Proof of Lemma If we define
tr — 1t t—t._
k—(bk_l + ¢¢k, for t € [ty—1,tk], k=1,...,n,
T T
o) =\ o(2t, — 1), for t € [tn, 2tn], (A.19)

0, for t € [2t,,0),

then the function ¢ is piecewise linear in time and supported in the time interval [0, 2¢,], satisfying
the following estimate:

106 o g 71+ 1Dl oy < CUUDS" o sy + 167 | musn): (A.20)

Let E denote a global extension operator which maps W19 boundedly into W19(R%) and maps

W14 boundedly into W~14(R%), such that Fu = u in Q for all w € W~19. Such an extension
operator exists, by reflecting the function with respect to the boundary 9%; see [Il, Theorems 5.19
and 5.22]. By the real interpolation method, we have

E maps (W‘lvq, leq)l_l/p,p boundedly into (W ~19(R%), leq(Rd))l_l/pm,
(W HIRY), WH(RY)), gy, = B'7HPIP(RY) 5 C*(RY), for o € (0,1 —2/p —d/q),

where B'~%/P4P(R?) denotes the Besov space in R? (cf. [I, §7.32]), with the embedding property

B=2/pap(RY) s C*(R?) for 0 < a < 1 —2/p —d/q (cf. [, §7.34]). Then the inhomogeneous
Sobolev embedding (see [38] Proposition 1.2.10])

(A.21)

101l oo (g, -1y wray), oy S CUGSN o, g7-10) + 19l Lo R4 w10)),s (A.22)
( +7( )7 ))1 l/p,p) ( +5 )
together with (A.20)-(A.21]), implies
10l Lo & 300) < CUIDO" | o i7-1.0) + 19" Lo (wrra))- (A.23)
( )
This proves ([3.20).

The inequality ([B.2I)) can be proved similarly in view of the interpolation result
(LI(RY), W2UR)), 4y = B HPOP(RY) 5 CH(RY), for a € (0,1 —2/p—d/q).  (A.24)
The proof of Lemma is complete.

Proof of Lemma [3.7] Holder’s inequality implies that

<7’ Z |Y"|p>5§0z<Yk+T Z |Y"|>—|—5

n=k+1 n=k+1
m 1
1 p
§a<Yk+(tm—tk)l_P <T > \Y"yp> >+5.
n=k+1

1
If (ty, — t5)' 7 < (2a)~! then the last inequality is reduced to

1

<T 3 \Yﬂp)” < 2aY*1 4 28. (A.25)

n=k+1
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1

_1
Let 7, = m and m = [m] so that (2m7) "7 < (20)7", and
1 1 1
_ > Y D L — <
= | | 2 G 2 s o TS

We choose a sequence 0 = t,, < tp, <--- <t,, =T (sony = N) in the following way.
If t,,; + 2m7 > T then we choose t,,,,, =T.
If t,; +2m7 < T then we choose t,, , € [tn;, +mT,t,, +2m7] such that

Yt = min Y™
nj+m+1<n<n;+2m
Then
1 n;+2m 1 1 n;+2m 1 . n;+2m 1
p P p
Yyt < | iz Y Y|P < —= ynp
<m0 X ) = (o X o) s (X v
n=n;+m+1 n=n;+m n=n;-+1
and (A.28) implies
n;+2m 1
p
<T > ymp) < 2aY™i +28. (A.26)
n=n;+1
The last two estimates show that
. ) nj+2m 1
p
Y™ < 20 AT Y <T > ]Y"\p>
n=n;+1

< BAT b aY™ 4 2B AT 8
< CapY™ 4 Copf.
Tterations of the above two estimates give (the number of iterations is bounded by 2(2a)'/(=1/P)T)
max Y™ < Cr.,(Y?+ ),

0<y<t—1
n;+2m 1
P
max |7 Z Y*r) < Yo+
0<j<i—1 < | | = T,a,p( 5)7
n=n;+1

and applying (A.26)) again yields

ng % .
Ty Y] <20Y 428 < Crap(YO 4 B).
n=ng_1+1
Since ¢ < 142(2a)"/0=1/P)T (a bounded number independent of 7), the last two inequalities imply
23). This completes the proof of Lemma B.7
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