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Abstract This work is concerned with the iterative regularization of a non-smooth

nonlinear ill-posed problem where the forward mapping is merely directionally but not

Gâteaux di�erentiable. Using a Bouligand subderivative of the forward mapping, a modi�ed

Landweber method can be applied; however, the standard analysis is not applicable since

the Bouligand subderivative mapping is not continuous unless the forward mapping is

Gâteaux di�erentiable. We therefore provide a novel convergence analysis of the modi�ed

Landweber method that is based on the concept of asymptotic stability and merely requires

a generalized tangential cone condition. These conditions are veri�ed for an inverse source

problem for an elliptic PDE with a non-smooth Lipschitz continuous nonlinearity, showing

that the corresponding Bouligand–Landweber iteration converges strongly for exact data as

well as in the limit of vanishing data if the iteration is stopped according to the discrepancy

principle. This is illustrated with a numerical example.

1 introduction

We consider the (iterative) regularization of inverse problems F (u) = y for a nonlinear parameter-

to-state mapping F : U → Y between two Hilbert spaces U and Y that is compact and direc-

tionally but not Gâteaux di�erentiable. Speci�cally, we are interested in mappings arising as

the solution operator to nonlinear partial di�erential equations with piecewise continuously

di�erentiable nonlinearities. To �x ideas, let Ω be an open bounded subset of Rd ,d ∈ {2, 3},
with a Lipschitz boundary ∂Ω, and consider the non-smooth semilinear equation

(1.1) − ∆y + y+ = u in Ω, y = 0 on ∂Ω

with u ∈ L2(Ω) and y+(x) := max(y(x), 0) for almost every x ∈ Ω; see [3]. This equation models

the de�ection of a stretched thin membrane partially covered by water (see [12]); a similar

equation arises in free boundary problems for a con�ned plasma; see, e.g., [12, 22, 30]. More

complicated but related models (where the nonlinearity enters into higher-order terms) can be

used to describe problems with sharp phase transitions such as the weak formulation of the

two-phase Stefan problem [19, 33].
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Our goal is to estimate the source term u in such models from noisy measurements yδ of

the state. For the sake of presentation, in this work we will focus on (1.1), although our results

also apply to similar equations with piecewise continuously di�erentiable nonlinearities in

the potential term (cf. Appendix a). Since solution operators to elliptic equations are usually

completely continuous, this problem is ill-posed and has to be regularized. Here we consider

iterative regularization methods of Landweber-type, which for a di�erentiable forward mapping

F : U → Y is given by

(1.2) uδn+1
= uδn +wnF

′(uδn )∗
(
yδ − F (uδn )

)
, n ≥ 0,

for a step size wn > 0 and the adjoint F ′(u)∗ of the Fréchet derivative of F at u ∈ U . For noisy

data, the iteration has to be stopped at a stopping index N = N (δ ,yδ ) < ∞ in order to be stable,

e.g., according to the Morozov discrepancy principle at the �rst index for which the residual norm

‖F (uδN )−yδ ‖Y reaches the noise level δ , where ‖yδ −y†‖Y ≤ δ with y† = F (u†) for someu† ∈ U .

Since the residual is calculated as part of the iteration, this principle can be evaluated cheaply

in every iteration, avoiding unnecessary computational work (in contrast to, e.g., Tikhonov

regularization, where in general the full solution has to be computed for a given regularization

parameter before the principle can be checked). It is then possible to show that uδN → u† as

δ → 0, provided that a tangential cone condition (which bounds the linearization error by the

nonlinear residual) is satis�ed at u†; see [8], [11, Chaps. 2, 3], [27, Chap. 10]. Needless to say, if F
is not Gâteaux di�erentiable, this procedure is not applicable.

However, Scherzer showed in [26] that it is possible to replace the Fréchet derivative F ′(u)
in (1.2) by another linear operator Gu that is su�ciently close to F ′(u) in an appropriate sense,

leading to the so-called modi�ed Landweber method; in [15, 16], such an operator was constructed

for a class of parameter identi�cation problems for linear elliptic equations. The purpose of

this work is to show that the linear operator Gu in the modi�ed Landweber method can be

taken from the Bouligand subdi�erential of F , which is de�ned as the set of limits of Fréchet

derivatives in di�erentiable points (see, e.g., [20, Def. 2.12] or [13, Sec. 1.3]) and in our case can be

explicitly characterized via the solution of a suitable linearized PDE (cf. (3.11) below). We refer

to this special case of the modi�ed Landweber method as Bouligand–Landweber iteration. The

main di�culty here is that the mapping u 7→ Gu is not continuous (cf. Example 3.1), which is a

critical tool in the classical convergence analysis used in [26]. As one of the main contributions

of our work, we therefore provide a new convergence analysis of the modi�ed Landweber

method based on the concept of asymptotic stability of the iterates uδn (cf. De�nition 2.1) which

we show to hold under a generalized tangential cone condition (cf. Assumption (a3)). We verify

that the necessary conditions are satis�ed for the Bouligand–Landweber iteration applied to (1.1)

provided the set of points where the non-smooth nonlinearity is non-di�erentiable at the exact

data y† has su�ciently small Lebesgue measure (cf. Proposition 3.9). Although this analysis

is speci�c to our model problem, we expect that it can serve as a framework for the iterative

regularization of other Bouligand di�erentiable non-smooth mapping such as those involving

variational inequalities [4, 23, 24] and Stefan-type problems.

Let us brie�y comment on related literature. Non-smooth inverse problems have attracted

immense interest in recent years, although the focus has been mainly in the context of non-

di�erentiable regularization methods in Banach spaces; see, e.g., the monographs [25, 29] as
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well as the references therein. One particular aspect relevant in our context are variational

source conditions used to derive convergence rates, which require no explicit assumptions on

the regularity of the forward operator and are thus applicable to non-smooth operators as well;

see [9]. However, none of the works so far focus on inverse problems for non-di�erentiable

operators. In particular, the construction of Gu in [15, 16] crucially depends on the linearity of

the PDE (for a given parameter) and leads to the continuity of the mapping u 7→ Gu , which is

in fact required for their analysis. (Hence, their Landweber method is “derivative-free” in the

same sense that Krylov methods can be implemented in a “matrix-free” way.) An alternative to

iterative regularization is Tikhonov regularization, which for problems of the form (1.1) leads

to optimization problems that are known as mathematical programs with complementarity

constraints, which are challenging both analytically and numerically. Well-posedness and the

numerical solution, but not its regularization properties, for the speci�c example of (1.1) were

treated in [3], on which our analysis is based. Similar results for a parabolic version of (1.1) were

obtained in [18].

This paper is organized as follows. After brie�y summarizing basic notation, we give our new

convergence analysis of the modi�ed Landweber method in Section 2: in Section 2.1, we show its

well-posedness as well as the convergence in the noise-free setting, while Section 2.2 is devoted

to its asymptotic stability and its regularization property. Section 3 then veri�es the necessary

assumptions for the speci�c model problem (1.1), in particular the generalized tangential cone

condition, showing convergence and regularization properties of the corresponding Bouligand–

Landweber iteration. Numerical examples illustrating its properties are presented in Section 4.

Finally, the more technical Appendix a extends the results of Section 3 to a more general class

of non-smooth PDEs involving piecewise di�erentiable nonlinearities.

Notation. For a Hilbert space X , we denote by (·, ·)X and ‖ · ‖X the inner product and the

norm on X , respectively. For a given z ∈ Z and ρ > 0, we denote by BZ (z, ρ) and BZ (z, ρ), the

open and closed balls in Z of radius ρ centered at z. For each measurable function u, we write

{u < 0}, {u = 0}, and {u > 0} for the sets of almost every x ∈ Ω at which u(x) is negative, zero

and positive. For a measurable set S , we denote by |S | its d-dimensional Lebesgue measure of S
and by 1S its characteristic function, i.e., 1S (x) = 1 if x ∈ S and 1S (x) = 0 if x < S . Finally, the

set of all bounded linear operators between the Hilbert spaces X and Y is denoted by L(X ,Y ).

2 a new convergence analysis of the modified landweber method

The goal of this section is to show that the modi�ed Landweber method of [26] converges under

more general conditions that are applicable to the non-smooth model problem (1.1).

We thus consider for some mapping F : U → Y between the real Hilbert spaces U and Y the

inverse problem

(2.1) F (u) = y†

for given y† ∈ R(F ), i.e., there exists a u† ∈ U with F (u†) = y†. For some ρ > 0, let

S(u†, ρ) :=
{
u ∈ BU (u†, ρ) : F (u) = y†

}

3



stand for the set of all solutions in BU (u†, ρ) of (2.1). Obviously, u† ∈ S(u†, ρ) for all ρ > 0.

We assume that F together with a mapping u 7→ Gu ∈ L(U ,Y ) satis�es the following

conditions.

(a1) F : U → Y is completely continuous.

(a2) There exist constants L > 0 and ρ0 > 0 such that ‖Gu ‖L(U ,Y ) ≤ L for everyu ∈ BU (u†, ρ0).

(a3) There exist constants ρ ∈ (0, ρ0] and µ ∈ [0, 1) such that the generalized tangential cone

condition

(GTCC) ‖F (û) − F (u) −Gu (û − u)‖Y ≤ µ‖F (û) − F (u)‖Y

for all u, û ∈ BU (u†, ρ) holds.

(a4) There exists a Banach space Z such that

⋃
u ∈U R(G∗u ) ⊂ Z with Z ⊂ U compactly.

Moreover, there exists a constant L̂ > 0 such that ‖G∗u ‖L(Y ,Z ) ≤ L̂ for all u ∈ BU (u†, ρ).

Note that in contrast to [26], we do not require the continuity of the mapping u 7→ Gu .

Let now yδ ∈ Y with ‖yδ − y†‖Y ≤ δ . The modi�ed Landweber iteration for F and u 7→ Gu is

then given by

(2.2) uδn+1
= uδn +wnG

∗
uδn

(
yδ − F (uδn )

)
, n ≥ 0,

for the starting point uδ
0

:= u0 and the step sizes wn > 0. The iteration is stopped after

Nδ := N (δ ,yδ ) steps according to the discrepancy principle, i.e., such that

(2.3) ‖yδ − F (uδNδ )‖Y ≤ τδ < ‖y
δ − F (uδn )‖Y , 0 ≤ n < Nδ ,

for some constant τ > 1.

2.1 well-posedness and convergence

We �rst show the well-posedness of (2.2) under our new assumptions. The proof of the following

lemma is similar to the one in [8, Prop. 2.2] with some modi�cations.

Lemma 2.1. Assume that Assumptions (a2) and (a3) are ful�lled and let τ > 1, Λ ≥ λ > 0 be such

that

(2.4)

2(µ + 1)
τ

− (2 − 2µ − ΛL2) < 0.

Then, for any δ > 0, any starting point u0 ∈ BU (u†, ρ), and the step sizeswn ∈ [λ,Λ], the sequence
{uδn }0≤n≤Nδ generated by (2.2) with the stopping index Nδ de�ned by the discrepancy principle

(2.3) satis�es the following assertions:

(i) the stopping index is �nite, i.e., Nδ < ∞;

(ii) ‖uδn+1
− ũ‖U < ‖uδn − ũ‖U for all 0 ≤ n ≤ Nδ − 1 and for any ũ ∈ S(u†, ρ). Consequently,

uδn ∈ BU (u†, ρ) for all 0 ≤ n ≤ Nδ .
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Proof. We �rst justify the inequality in assertion (ii) and therefore prove by induction that

uδn ∈ BU (u†, ρ) for all 0 ≤ n ≤ Nδ . By assumption, uδ
0
= u0 ∈ BU (u†, ρ). Let us now assume that

uδn ∈ BU (u†, ρ) for some n ≤ Nδ − 1 and let ũ be an arbitrary element of S(u†, ρ). We have

(2.5) ‖uδn+1
− ũ‖2U − ‖uδn − ũ‖2U

= 2

(
uδn − ũ,uδn+1

− uδn
)
U
+ ‖uδn+1

− uδn ‖2U

= 2wn

(
Guδn
(uδn − ũ),yδ − F (uδn )

)
Y
+ ‖uδn+1

− uδn ‖2U

= 2wn

(
F (ũ) − F (uδn ) −Guδn

(ũ − uδn ),yδ − F (uδn )
)
Y

− 2wn

(
F (ũ) − F (uδn ),yδ − F (uδn )

)
Y
+ ‖uδn+1

− uδn ‖2U

= 2wn

(
F (ũ) − F (uδn ) −Guδn

(ũ − uδn ),yδ − F (uδn )
)
Y
− 2wn ‖yδ − F (uδn )‖2Y

− 2wn

(
y† − yδ ,yδ − F (uδn )

)
Y
+w2

n




G∗uδn (
yδ − F (uδn )

)


2

U
,

which together with Assumption (a3) implies that

(2.6) ‖uδn+1
− ũ‖2U − ‖uδn − ũ‖2U

≤ 2wnµ‖y† − F (uδn )‖Y ‖yδ − F (uδn )‖Y − 2wn ‖yδ − F (uδn )‖2Y
+ 2wnδ ‖yδ − F (uδn )‖Y + L2w2

n ‖yδ − F (uδn )‖2Y
= wn ‖yδ − F (uδn )‖Y

[
2µ‖y† − F (uδn )‖Y − (2 − L2wn)‖yδ − F (uδn )‖Y + 2δ

]
.

Here we have used the fact that ‖G∗u ‖L(Y ,U ) = ‖Gu ‖L(U ,Y ) and the uniform bound from Assump-

tion (a2). From the discrepancy principle (2.3), one has

(2.7) δ <
1

τ
‖yδ − F (uδn )‖Y for all 0 ≤ n < Nδ

and so

‖y† − F (uδn )‖Y ≤ δ + ‖yδ − F (uδn )‖Y

<

(
1

τ
+ 1

)
‖yδ − F (uδn )‖Y for all 0 ≤ n < Nδ .

This together with (2.6) and (2.7) implies for all 0 ≤ n < Nδ that

(2.8) ‖uδn+1
− ũ‖2U − ‖uδn − ũ‖2U < wn ‖yδ − F (uδn )‖2Y

[
2µ

(
1

τ
+ 1

)
− (2 − L2wn) +

2

τ

]
≤ wn

(
2(µ + 1)

τ
− (2 − 2µ − ΛL2)

)
‖yδ − F (uδn )‖2Y

≤ λ
(
2(µ + 1)

τ
− (2 − 2µ − ΛL2)

)
‖yδ − F (uδn )‖2Y

= −α ‖yδ − F (uδn )‖2Y
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with

α := −λ
(
2(µ + 1)

τ
− (2 − 2µ − ΛL2)

)
> 0.

Here we have used the choice of parameterswn ∈ [λ,Λ] and condition (2.4) in the last inequality.

This implies that

(2.9) ‖uδn+1
− ũ‖2U < ‖uδn − ũ‖2U .

Applying (2.9) to the case ũ = u†, we obtain uδn+1
∈ BU (u†, ρ). Proceeding as above, we can show

that (2.9) holds for all 0 ≤ n ≤ Nδ − 1. This yields assertion (ii).

To obtain assertion (i), we �rst de�ne the set

I := {n ∈ N : ‖yδ − F (uδn )‖Y > τδ }.

For any n ∈ I , we see from (2.8) that

‖yδ − F (uδn )‖2Y <
1

α

(
‖uδn − ũ‖2U − ‖uδn+1

− ũ‖2U
)

and thus

(2.10)

∑
n∈I
‖yδ − F (uδn )‖2Y <

1

α
‖u0 − ũ‖2U < ∞.

From the de�nition of the set I , we obtain ‖yδ − F (uδn )‖Y > τδ for all n ∈ I and therefore∑
n∈I
‖yδ − F (uδn )‖2Y >

∑
n∈I
(τδ )2 = (τδ )2 |I |.

This together with (2.10) ensures that the set I and hence Nδ = |I | + 1 is �nite as claimed. �

From now on, we need to di�erentiate between the cases of noise-free (δ = 0) and noisy

(δ > 0) data. Let thus uδn , yδn := F (uδn ) and un , yn := F (un) be generated by the modi�ed

Landweber iteration (2.2) corresponding to δ > 0 and δ = 0, respectively. We �rst consider the

noise-free setting.

Lemma 2.2. Let Assumptions (a2) and (a3) be ful�lled. Let further λ and Λ satisfy Λ ≥ λ > 0 and

(2.11) (2 − 2µ − ΛL2) > 0.

Then, for any starting point u0 ∈ BU (u†, ρ) and the step sizes {wn}n∈N ⊂ [λ,Λ], we have that

(2.12) ‖un+1 − u†‖2U ≤ ‖un − u†‖2U for all n ≥ 0

and

(2.13)

∞∑
n=0

‖y† − F (un)‖2Y < ∞.
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Proof. Similarly to (2.5) with ũ := u†, we obtain that

‖un+1 − u†‖2U − ‖un − u†‖2U = 2wn

(
F (u†) − F (un) −Gun (u† − un),y† − F (un)

)
Y

− 2wn ‖y† − F (un)‖2Y +w2

n




G∗un (
y† − F (un)

)


2

U
,

which together with Assumptions (a2) and (a3) yields that

‖un+1 − u†‖2U − ‖un − u†‖2U ≤ ‖y† − F (un)‖2Y
[
2wnµ − 2wn +w

2

nL
2
]

≤ −λ
(
2 − 2µ − L2Λ

)
‖y† − F (un)‖2Y

for all n ≥ 0, where we have used the fact that wn ∈ [λ,Λ] for all n ≥ 0. Consequently, we

obtain (2.12) and

∞∑
n=0

‖y† − F (un)‖2Y ≤
1

λ (2 − 2µ − L2Λ) ‖u0 − u†‖2U < ∞,

which yields (2.13). �

We can now obtain a convergence result for the noise-free setting, whose proof follows along

the lines of the one of [8, Thm. 2.3].

Theorem 2.3. Under the assumptions of Lemma 2.2, the modi�ed Landweber iteration (2.2) cor-

responding to δ = 0 either stops after �nitely many iterations with an iterate coinciding with an

element of S(u†, ρ) or generates a sequence of iterates that converges strongly to an element of

S(u†, ρ) inU .

Proof. If the algorithm stops after �nitely many iterations, then the last iterate uN satis�es

F (uN ) = y† due to the discrepancy principle (2.3). From (2.12) and the fact that u0 ∈ BU (u†, ρ),
we have uN ∈ BU (u†, ρ) and hence uN ∈ S(u†, ρ).

It remains to prove the claim for the case where the algorithm generates an in�nite sequence

{un}n∈N. To this end, we �rst observe from (2.12) and the factu0 ∈ BU (u†, ρ) thatun ∈ BU (u†, ρ)
for all n ≥ 0. We now set en := u† − un for all n ≥ 0. Then, (2.12) implies that {‖en ‖U }n∈N is

monotonically decreasing and hence

(2.14) lim

n→∞
‖en ‖U = γ

for some γ ≥ 0. For anym, l ∈ N withm ≤ l , choose

(2.15) k ∈ arg min

m≤t ≤l
‖y† − yt ‖Y .

The Cauchy–Schwarz inequality then yields that

(2.16) ‖um − ul ‖2U ≤ 2

(
‖um − uk ‖2U + ‖uk − ul ‖2U

)
,

and the three-point identity

‖a − b‖2U = ‖a − c ‖2U − ‖b − c ‖2U + 2(a − b, c − b)U

7



further implies that

‖um − uk ‖2U = ‖um − u†‖2U − ‖uk − u†‖2U + 2

(
um − uk ,u† − uk

)
U
,

‖ul − uk ‖2U = ‖ul − u†‖2U − ‖uk − u†‖2U + 2

(
ul − uk ,u† − uk

)
U
.

Combining this with (2.16) yields that

(2.17) ‖um − ul ‖2U ≤ 2

[
‖em ‖2U + ‖el ‖2U − 2‖ek ‖2U

]
+ 4 (ek − em , ek )U + 4 (ek − el , ek )U

= am,l,k + bm,l,k

with

am,l,k := 2

[
‖em ‖2U + ‖el ‖2U − 2‖ek ‖2U

]
and

bm,l,k := 4 (ek − em , ek )U + 4 (ek − el , ek )U .

Since l ≥ k ≥ m, it follows that k →∞ and l →∞ wheneverm →∞. From this and (2.14), we

obtain that

(2.18) am,l,k → 0 asm →∞.

Moreover, we have that

(2.19) (ek − em , ek )U =
k−1∑
n=m

(en+1 − en , ek )U ≤
k−1∑
n=m

| (en+1 − en , ek )U |.

From (2.2), we then obtain that en+1 − en = −wnG
∗
un (y

† − yn), and hence

(en+1 − en , ek )U = −wn

(
y† − yn ,Gunek

)
Y

= wn

(
y† − yn ,Gun (uk − u†)

)
Y
.

It follows that

(2.20) | (en+1 − en , ek )U | ≤ wn ‖y† − yn ‖Y ‖Gun (uk − u†)‖Y .

We now estimate the term ‖Gun (uk − u†)‖Y . From Assumption (a3) and the triangle inequality,

it follows that

(2.21) ‖Gun (uk − u†)‖Y ≤ ‖Gun (u† − un)‖Y + ‖Gun (uk − un)‖Y
≤ ‖y† − yn ‖Y + ‖F (u†) − F (un) −Gun (u† − un)‖Y
+ ‖Gun (uk − un)‖Y
≤ (1 + µ)‖y† − yn ‖Y + ‖Gun (uk − un)‖Y .
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In addition, we see from (GTCC) that

‖F (uk ) − F (un) −Gun (uk − un)‖Y ≤ µ‖F (uk ) − F (un)‖Y

and hence

‖Gun (uk − un)‖Y ≤ (1 + µ) ‖F (uk ) − F (un)‖Y
≤ (1 + µ)

(
‖y† − F (uk )‖Y + ‖y† − F (un)‖Y

)
≤ 2 (1 + µ) ‖y† − yn ‖Y .

This and (2.21) give

(2.22) ‖Gun (uk − u†)‖Y ≤ 3(1 + µ)‖y† − yn ‖Y .

The combination of this with (2.20) yields that

| (en+1 − en , ek )U | ≤ 3(1 + µ)wn ‖y† − yn ‖2Y ,

which, together with (2.19), ensures that

| (ek − em , ek )U | ≤ 3(1 + µ)
k−1∑
n=m

wn ‖y† − yn ‖2Y ≤ 3(1 + µ)Λ
k−1∑
n=m

‖y† − yn ‖2Y .

Similarly, we have that

| (ek − el , ek )U | ≤ 3(1 + µ)Λ
l−1∑
n=k

‖y† − yn ‖2Y ,

leading to

bm,l,k = 4 (ek − em , ek )U + 4 (ek − el , ek )U ≤ 12(1 + µ)Λ
l−1∑
n=m

‖y† − yn ‖2Y .

Combining this with (2.13) yields that

(2.23) bm,l,k → 0 as l ≥ k ≥ m →∞.

The limits (2.18) and (2.23) together with (2.17) imply that {un}n∈N is a Cauchy sequence in

U . Thus, there exists an element ū ∈ U such that un → ū and hence F (un) → F (ū) by As-

sumption (a1) as n → ∞. In addition, we see from (2.13) that y† − F (un) → 0 as n → ∞, and

hence y† = F (ū). Since un ∈ BU (u†, ρ) for all n ≥ 0, it holds that ū ∈ BU (u†, ρ) and hence that

ū ∈ S(u†, ρ), which completes the proof. �
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2.2 regularization property

We now consider the convergence of the modi�ed Landweber method for δ → 0. To simplify

the notation in this subsection, for any δk > 0 and corresponding noisy data yδk ∈ BY (y†,δk )
we introduce Nk := N (δk ,yδk ) and uk := uδkNk

.

We �rst note that assertion (ii) in Lemma 2.1 ensures the boundedness of the family {uk }k ∈N,

which together with the re�exivity of U already ensures weak convergence as δk → 0.

Proposition 2.4. Assume that all hypotheses of Lemma 2.1 hold and that in addition Assumption (a1)

is ful�lled. Let {δk }k ∈N be a positive zero sequence. Then, any subsequence of {uk }k ∈N contains

a further subsequence that converges weakly to some ū ∈ S(u†, ρ) in U . In addition, if u† is the
unique solution of (2.1) in BU (u†, ρ), then {uk }k ∈N converges weakly to u† inU .

Proof. Without loss of generality, let {δk }k ∈N itself be an arbitrary subsequence. Since {uk }k ∈N
is bounded in U , there exist a subsequence, also denoted by {uk }k ∈N, and an element ū ∈ U
such that

uk ⇀ ū as k →∞.

By virtue of Assumption (a1),

F (uk ) → F (ū) as k →∞

and hence yδk − F (uk ) → y† − F (ū) in Y . From the discrepancy principle, we have that

lim

k→∞
‖yδk − F (uk )‖Y = 0,

which implies that F (ū) = y† and thus ū ∈ S(u†, ρ).
Ifu† is the unique solution of (2.1) in BU (u†, ρ), a subsequence–subsequence argument ensures

that the original, full, sequence {uk }k ∈N converges weakly to u† in U . �

In the remainder of this section, we will show that the modi�ed Landweber iteration together

with the discrepancy principle is a strongly convergent regularization method, i.e., for any

positive zero sequence {δk }k ∈N, the sequence {uk }k ∈N generated by the (2.2) stopped according

to (2.3) admits a subsequence that converges strongly to an element of S(u†, ρ). Note that we

have not assumed the continuity of the mapping U 3 u 7→ Gu ∈ L(U ,Y ), which implies that

uδn is, in general, not continuous with respect to yδ . We therefore cannot apply the standard

technique from [8, 26, 27]. To overcome this di�culty, we need the following notion.

Definition 2.1. Let {uδn }n≤Nδ be a (�nite or in�nite) sequence generated by an iterative method

for some δ > 0. Then the method is asymptotically stable if any positive zero sequence {δk }k ∈N
has a subsequence {δki }i ∈N such that N := limi→∞ Nδki ∈ N∪{∞} and the following conditions

hold:

(i) For all 0 ≤ n ≤ N (where the last inequality is strict if N = ∞),

(2.24) u
δki
n → ũn in U as i →∞

for some ũn ∈ BU (u†, ρ).
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(ii) If N = ∞, there exists a ũ ∈ S(u†, ρ) such that

ũn → ũ in U as n →∞.

We now show that the modi�ed Landweber iteration (2.2) is asymptotically stable under the

Assumptions (a1) to (a4). The proof consists of a sequence of technical lemmas. The �rst lemma

veri�es condition (i) in De�nition 2.1.

Lemma 2.5. Assume that Assumptions (a1) to (a4) as well as (2.4) hold. Let the starting point

u0 ∈ BU (u†, ρ) and the step sizeswn ∈ [λ,Λ] be arbitrary. Assume further that {δk }k ∈N is a positive

zero sequence. Then there exist a subsequence {δki }i ∈N and a sequence {ũn}n∈N ⊂ BU (u†, ρ) such
that condition (i) in De�nition 2.1 is ful�lled.

Moreover, the sequence {ũn}n∈N satis�es

(2.25) ũ0 = u0, ũn+1 = ũn +wnG
∗
ũn (y

† − F (ũn)) +wnrn

for some rn ∈ Z and for all 0 ≤ n < N , where N := limi→∞ Nki .

Proof. We �rst note that since {Nk }k ∈N is a sequence of natural numbers, there exists a subse-

quence {δki }i ∈N such that Nki either is constant for all i large enough or tends increasingly to

in�nity as i →∞.

We now show by induction that there exist a sequence {ũn}n∈N ⊂ BU (u†, ρ) and a subsequence

of {δki }i ∈N, which ful�ll the assertion of the lemma. To this end, we start with the case where

Nki tends increasingly to in�nity as i →∞. In order to simplify the notation, we set uin := u
δki
n ,

y in := F (uδkin ), and y i := yδki .
First, (2.24) holds for n = 0 with ũ0 = u0 ∈ BU (u†, ρ). By a slight abuse of notation, we assume

{δki }i ∈N itself is a subsequence satisfying uin → ũn as i →∞ for some ũn ∈ BU (u†, ρ). Setting

ain := G∗u in
(y i − y in), an := G∗ũn (y

† − ỹn), ζ in := ain − an

with ỹn := F (ũn), we have that

ζ in = G
∗
u in
(y i − y in) −G∗ũn (y

† − ỹn)

=
[
G∗u in
(y† − ỹn) −G∗ũn (y

† − ỹn)
]
+G∗u in

(y i − y in − y† + ỹn)

= ηin − ηn + bin

with

ηin := G∗u in
(y† − ỹn), ηn := an = G

∗
ũn (y

† − ỹn),

bin := G∗u in
(y i − y in − y† + ỹn).

Assumption (a1) together with the fact uin → ũn now implies that y in → ỹn as i →∞. From this

and the boundedness of {‖G∗
u in
‖L(Y ,U )}i ∈N by Assumption (a2), we obtain that

(2.26) bin → 0 in U as i →∞.
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From Assumption (a4), we further see that {ηin}i ∈N and hence {ηin − ηn}i ∈N is bounded in Z .

Since Z ↪→ U compactly, there exist an rn ∈ Z and a subsequence of {δki }k ∈N, denoted in the

same way, such that

(2.27) ηin − ηn → rn in U as i →∞.

Since

uin+1
= uin +wnG

∗
u in

(
y i − y in

)
= uin +wna

i
n

= uin +wnan +wn(ηin − ηn) +wnb
i
n ,

letting i →∞ and using the limits (2.26), (2.27), and uin → ũn implies that

uin+1
→ ũn +wnan +wnrn = ũn +wnG

∗
ũn (y

† − ỹn) +wnrn .

By setting ũn+1 := ũn +wnG
∗
ũn
(y† − ỹn)+wnrn , we obtain (2.24) for n + 1 as well as (2.25). Since

uin+1
∈ BU (u†, ρ) for all i ∈ N, also ũn+1 ∈ BU (u†, ρ).

The argument for the case where N̄ < ∞ proceeds similarly. �

In order to verify condition (ii) in De�nition 2.1, we need the following properties of sequences

{ũn}n∈N and {rn}n∈N.

Lemma 2.6. Assume the conditions of Lemma 2.5 hold. If the sequence

{
δki

}
i ∈N in Lemma 2.5

satis�es Nki →∞ as i →∞, then the sequences {ũn}n∈N and {rn}n∈N given in (2.25) satisfy for

all n ∈ N the following estimates:

(i) ‖rn ‖U ≤ 2L‖y† − ỹn ‖Y ,

(ii) (rn , ũn − ũ)U ≤ (−1 + µ)‖y† − ỹn ‖2Y −
(
y† − ỹn ,Gũn (ũn − ũ)

)
Y ,

(iii) |(rn , ũm − ũ)U | ≤ 2(1 + µ)‖y† − ỹn ‖Y
[
‖y† − ỹn ‖Y + ‖ỹm − ỹn ‖Y

]
for allm ≥ 0,

for ỹn := F (ũn), any ũ ∈ S(u†, ρ), and L > 0 from Assumption (a2).

Proof. We employ the same notation as in the proof of Lemma 2.5. For (i), we obtain from

Assumption (a2) that

‖ηin − ηn ‖U = ‖G∗u in (y
† − ỹn) −G∗ũn (y

† − ỹn)‖U ≤ 2L‖y† − ỹn ‖Y .

Combining this with (2.27) yields that

‖rn ‖U = lim

i→∞
‖ηin − ηn ‖U ≤ 2L‖y† − ỹn ‖Y ,

which gives assertion (i).

For (ii), let ũ ∈ S(u†, ρ) be arbitrary. We then see from (2.27) that

(2.28) (rn , ũn − ũ)U = lim

i→∞

(
ηin − ηn , ũn − ũ

)
U

= lim

i→∞

(
y† − ỹn ,Gu in (ũn − ũ)

)
Y
−

(
y† − ỹn ,Gũn (ũn − ũ)

)
Y

= lim

i→∞
Ai
n − Bn
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with

Ai
n :=

(
y† − ỹn ,Gu in (ũn − ũ)

)
Y
,

Bn :=
(
y† − ỹn ,Gũn (ũn − ũ)

)
Y
.

Moreover,

Ai
n =

(
y† − y in ,Gu in (ũn − ũ)

)
Y
+

(
y in − ỹn ,Gu in (ũn − ũ)

)
Y

=
(
y† − y in ,y† − y in −Gu in (ũ − ũn)

)
Y

− ‖y† − y in ‖2Y +
(
y in − ỹn ,Gu in (ũn − ũ)

)
Y

=
(
y† − y in ,y† − y in −Gu in (ũ − u

i
n)

)
Y
−

(
y† − y in ,Gu in (u

i
n − ũn)

)
Y

− ‖y† − y in ‖2Y +
(
y in − ỹn ,Gu in (ũn − ũ)

)
Y

≤ (−1 + µ)‖y† − y in ‖2Y + L‖y† − y in ‖Y ‖uin − ũn ‖U
+ L‖y in − ỹn ‖Y ‖ũn − ũ‖U ,

where the last inequality follows from Assumptions (a2) and (a3) together with the Cauchy–

Schwarz inequality. Letting i →∞, we have that uin → ũn and y in → ỹn , and hence

lim

i→∞
Ai
n ≤ (−1 + µ)‖y† − ỹn ‖2Y .

From this and (2.28), we obtain assertion (ii).

For assertion (iii), we �rst estimate

|(rn , ũm − ũ)U | = lim

i→∞

�� (ηin − ηn , ũm − ũ)U ��
= lim

i→∞

���(y† − ỹn ,Gu in (ũm − ũ)
)
Y
−

(
y† − ỹn ,Gũn (ũm − ũ)

)
Y

���
≤ ‖y† − ỹn ‖Y

[
lim sup

i→∞
‖Gu in (ũm − ũ)‖Y + ‖Gũn (ũm − ũ)‖Y

]
.

Due to Assumption (a3), we can apply the (GTCC) to obtain

‖Gu in (ũm − ũ)‖Y ≤ ‖Gu in (u
i
n − ũ)‖Y + ‖Gu in (ũm − u

i
n)‖Y

≤ (1 + µ)‖y† − y in ‖Y + (1 + µ)‖ỹm − y in ‖Y
= (1 + µ)

[
‖y† − y in ‖Y + ‖ỹm − y in ‖Y

]
,

which implies that

lim sup

i→∞
‖Gu in (ũm − ũ)‖Y ≤ (1 + µ)

[
‖y† − ỹn ‖Y + ‖ỹm − ỹn ‖Y

]
.

Also, (GTCC) yields that

‖Gũn (ũm − ũ)‖Y ≤ (1 + µ)
[
‖y† − ỹn ‖Y + ‖ỹm − ỹn ‖Y

]
.
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From the above inequalities, we obtain that

|(rn , ũm − ũ)U | ≤ 2(1 + µ)‖y† − ỹn ‖Y
[
‖y† − ỹn ‖Y + ‖ỹm − ỹn ‖Y

]
,

which yields (iii). �

The following lemma completes the veri�cation of condition (ii) in De�nition 2.1. Its proof is

a modi�cation of the proof of Theorem 2.3.

Lemma 2.7. Assume that Assumptions (a1) to (a4) hold. Let further λ and Λ satisfy Λ ≥ λ > 0 and

(2.29) − 1 + µ + 5ΛL2 < 0.

Let the starting pointu0 ∈ BU (u†, ρ) and the step sizeswn ∈ [λ,Λ] be arbitrary. Assume furthermore

that {ũn}n∈N is de�ned by (2.25) and satis�es conditions (i)–(iii) of Lemma 2.6. Then {ũn}n∈N
converges strongly to some ū ∈ S(u†, ρ) as n →∞.

Proof. From (2.25), assertions (i) and (ii) of Lemma 2.6 for the case where ũ := u†, and the

Cauchy–Schwarz inequality, we have that

(2.30) ‖ũn+1 − u†‖2U − ‖ũn − u†‖2U
= 2

(
ũn − u†, ũn+1 − ũn

)
U
+ ‖ũn+1 − ũn ‖2U

= 2wn

(
Gũn (ũn − u†),y† − ỹn

)
Y
+ 2wn

(
rn , ũn − u†

)
U
+ ‖ũn+1 − ũn ‖2U

≤ 2wn(−1 + µ)‖y† − ỹn ‖2Y +w2

n ‖G∗ũn (y
† − ỹn) + rn ‖2U

≤ 2wn(−1 + µ)‖y† − ỹn ‖2Y + 2w2

n ‖G∗ũn (y
† − ỹn)‖2U + 2w2

n ‖rn ‖2U
≤ 2wn(−1 + µ)‖y† − ỹn ‖2Y + 2w2

nL
2‖y† − ỹn ‖2Y + 8w2

nL
2‖y† − ỹn ‖2Y

≤ 2wn ‖y† − ỹn ‖2Y
[
−1 + µ + 5ΛL2

]
for all n ≥ 0. Consequently,

(2.31)

∑
n≥0

‖y† − ỹn ‖2Y ≤
1

2λ (1 − µ − 5ΛL2) ‖u0 − u†‖2U < ∞.

The inequality (2.30) also yields that {‖ẽn ‖U }n∈N with ẽn := u†−ũn is monotonically decreasing,

and hence limn→∞ ‖ẽn ‖U = γ̃ for some γ̃ ≥ 0.

For anym, l ∈ N withm ≤ l , we now choose

(2.32) k ∈ arg min

m≤t ≤l
‖y† − ỹt ‖Y .

As in (2.17), it holds that

(2.33) ‖ũm − ũl ‖2U ≤ ãm,l,k + ˜bm,l,k

with

ãm,l,k := 2

[
‖ẽm ‖2U + ‖ẽl ‖2U − 2‖ẽk ‖2U

]
→ 0 as l ≥ k ≥ m →∞(2.34)
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and

˜bm,l,k := 4 (ẽk − ẽm , ẽk )U + 4 (ẽk − ẽl , ẽk )U .

Furthermore,

(2.35) (ẽk − ẽm , ẽk )U =
k−1∑
n=m

(ẽn+1 − ẽn , ẽk )U ≤
k−1∑
n=m

| (ẽn+1 − ẽn , ẽk )U |.

From (2.25), we obtain ẽn+1 − ẽn = −wnG
∗
ũn
(y† − ỹn) −wnrn and hence

(ẽn+1 − ẽn , ẽk )U = −wn

(
y† − ỹn ,Gũn ẽk

)
Y
−wn (rn , ẽk )U

= wn

(
y† − ỹn ,Gũn (ũk − u†)

)
Y
+wn

(
rn , ũk − u†

)
U
.

It follows that

(2.36) | (ẽn+1 − ẽn , ẽk )U | ≤ wn ‖y† − ỹn ‖Y ‖Gũn (ũk − u†)‖Y +wn

���(rn , ũk − u†)
U

��� ,
and proceeding as in the proof of estimate (2.22) shows that

(2.37) ‖Gũn (ũk − u†)‖Y ≤ 3(1 + µ)‖y† − ỹn ‖Y .

On the other hand, assertion (iii) of Lemma 2.6 implies that���(rn , ũk − u†)
U

��� ≤ 2(1 + µ)‖y† − ỹn ‖Y
[
‖y† − ỹn ‖Y + ‖ỹk − ỹn ‖Y

]
≤ 2(1 + µ)‖y† − ỹn ‖Y

[
‖y† − ỹn ‖Y
+‖ỹk − y†‖Y + ‖ỹn − y†‖Y

]
≤ 6(1 + µ)‖y† − ỹn ‖2Y .

In combination with (2.36) and (2.37), we obtain that

| (ẽn+1 − ẽn , ẽk )U | ≤ 9(1 + µ)wn ‖y† − ỹn ‖2Y ,

which together with (2.35) ensures that

| (ẽk − ẽm , ẽk )U | ≤ 9(1 + µ)
k−1∑
n=m

wn ‖y† − ỹn ‖2Y ≤ 9(1 + µ)Λ
k−1∑
n=m

‖y† − ỹn ‖2Y .

Similarly,

| (ẽk − ẽl , ẽk )U | ≤ 9(1 + µ)Λ
l−1∑
n=k

‖y† − ỹn ‖2Y .

We therefore obtain that

˜bm,l,k = 4 (ẽk − ẽm , ẽk )U + 4 (ẽk − ẽl , ẽk )U ≤ 36(1 + µ)Λ
l−1∑
n=m

‖y† − ỹn ‖2Y ,
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which together with (2.31) yields that

(2.38)
˜bm,l,k → 0 as l ≥ k ≥ m →∞.

From (2.34), (2.38), and (2.33), we now obtain that {ũn}n∈N is a Cauchy sequence in U . Thus,

there exists a ū ∈ BU (u†, ρ) such that ũn → ū and thus F (ũn) → F (ū) by Assumption (a1) as

n → ∞. Now (2.31) implies that y† − F (ũn) → 0 as n → ∞. Hence, y† = F (ū) and therefore

ū ∈ S(u†, ρ), which completes the proof. �

We have thus shown the following result.

Corollary 2.8. Under Assumptions (a1) to (a4), the modi�ed Landweber iteration (2.2) stopped

according to the discrepancy principle (2.3) for τ > 1 is asymptotically stable for any starting point

u0 ∈ BU (u†, ρ) and any step sizes {wn}n∈N ⊂ [λ,Λ] for Λ ≥ λ > 0 satisfying (2.4) as well as

(2.29).

We are now well prepared to prove our main result.

Theorem 2.9. Let Assumptions (a1) to (a4) hold and τ > 1 and Λ ≥ λ > 0 satisfy conditions

(2.4) as well as (2.29). Assume further that {δk }k ∈N is a positive zero sequence. Let the starting

point u0 ∈ BU (u†, ρ) and the step sizeswn ∈ [λ,Λ] be arbitrary and let the stopping index Nk be

chosen according to the discrepancy principle (2.3).Then, any subsequence of {uδkNk
}k ∈N contains

a subsequence that converges strongly to an element of S(u†, ρ). Furthermore, if u† is the unique

solution of (2.1), then uδkNk
→ u† inU as k →∞.

Proof. Let {δki }i ∈N be an arbitrary subsequence of {δk }k ∈N. By virtue of Corollary 2.8, there

exist a sequence {ũn} ⊂ BU (u†, ρ) and a subsequence of {δki }i ∈N, denoted in the same way,

satisfying conditions (i)–(ii) in De�nition 2.1.

Assume �rst that limi→∞ Nki = N for some N ∈ N. From condition (i) of De�nition 2.1, we

then have

(2.39) u
δki
N → ũN as i →∞.

Furthermore, we see from the discrepancy principle that

‖yδki − F (uδkiN )‖Y ≤ τδki for all i large enough.

Letting i →∞ in the above estimate and using (2.39) together with the continuity of F yields

that y† = F (ũN ) and hence ũN ∈ S(u†, ρ).
It remains to consider the case where Nki → ∞ as i → ∞. Since {Nk }k ∈N ⊂ N, we can

assume without loss of generality that {Nki }i ∈N is monotonically increasing. Condition (ii) of

De�nition 2.1 then provides some ũ ∈ S(u†, ρ) that together with {δki }i ∈N and {ũn}n∈N satis�es

u
δki
n → ũn as i →∞, for 0 ≤ n ≤ Nki with all i large enough(2.40)

ũn → ũ as n →∞.(2.41)
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From (2.41), for each ε > 0, there exists an integer n∗ such that

‖ũn∗ − ũ‖U <
ε

2

.

It also follows from (2.40) and the fact Nki tends increasingly to in�nity as i →∞ that an ī ∈ N
exists such that

n∗ ≤ Nki and ‖uδkin∗ − ũn∗ ‖U <
ε

2

for all i ≥ ī .

Lemma 2.1 thus implies that

‖uδkiNki
− ũ‖U ≤ ‖u

δki
n∗ − ũ‖U ≤ ‖u

δki
n∗ − ũn∗ ‖U + ‖ũn∗ − ũ‖U < ε for all i ≥ ī .

We thus obtain that limi→∞ ‖u
δki
Nki
− ũ‖U = 0 as claimed. �

3 iterative regularization for a non-smooth forward operator

In this section, we study the solution operator for our model problem. In particular, we show that

a Bouligand subderivative of the solution operator satis�es the assumptions – in particular, the

generalized tangential cone condition (GTCC) – for our convergence analysis of the modi�ed

Landweber method in Section 2, thus justifying our Bouligand–Landweber method.

3.1 well-posedness and directional differentiability

Let Ω ⊂ Rd
, 2 ≤ d ≤ 3, be a bounded domain with Lipschitz boundary ∂Ω. For u ∈ L2(Ω), we

consider the equation

(3.1)

{
−∆y + y+ = u in Ω,

y = 0 on ∂Ω,

which, as all partial di�erential equations from here on, is to be understood in the weak sense.

From [31, Thm. 4.7], equation (3.1) admits, for each u ∈ L2(Ω), a unique solution yu belonging to

H 1

0
(Ω) ∩C(Ω) and satisfying the a priori estimate

‖yu ‖H 1

0
(Ω) + ‖yu ‖C(Ω) ≤ c∞‖u‖L2(Ω)

for some constant c∞ > 0 independent of u.

Let us denote by F : L2(Ω) → H 1

0
(Ω)∩C(Ω) the solution operator of (3.1). The global Lipschitz

continuity of F is established by the following proposition.

Proposition 3.1 ([3, Prop. 2.1]). F is globally Lipschitz continuous as a function from L2(Ω) to
H 1

0
(Ω) ∩C(Ω), i.e., there is a constant CF > 0 satisfying

‖F (u) − F (v)‖H 1

0
(Ω) + ‖F (u) − F (v)‖C(Ω) ≤ CF ‖u −v ‖L2(Ω)(3.2)

for all u,v ∈ L2(Ω).

17



Proof. Let us set yu := F (u) and yv := F (v). By subtracting equation (3.1) corresponding to yu
and yv , we have

(3.3)

{
−∆(yu − yv ) + (yu )+ − (yv )+ = u −v in Ω,

yu − yv = 0 on ∂Ω.

Testing the above equation with yu − yv and exploiting the monotonicity of the max-operator,

we arrive at

‖∇yu − ∇yv ‖2L2(Ω) ≤ ‖u −v ‖L2(Ω)‖yu − yv ‖L2(Ω),

which together with the Poincaré inequality yields that

(3.4) ‖yu − yv ‖L2(Ω) ≤ C1‖u −v ‖L2(Ω)

for some constant C1 > 0. We now apply [31, Thm. 4.7] to equation (3.3) to obtain that

‖yu − yv ‖H 1

0
(Ω) + ‖yu − yv ‖C(Ω) ≤ C2‖u −v −

(
(yu )+ − (yv )+

)
‖L2(Ω)

≤ C2

[
‖u −v ‖L2(Ω) + ‖(yu )+ − (yv )+‖L2(Ω)

]
≤ C2

[
‖u −v ‖L2(Ω) + ‖yu − yv ‖L2(Ω)

]
.

Here we have used the global Lipschitz continuity of the max-operator to derive the last

inequality. From this and the estimate (3.4), we deduce (3.2). �

This implies a fortiori that F is continuous from L2(Ω) to L2(Ω). In our analysis, we will also

need the complete continuity of F between these spaces.

Lemma 3.2. The mapping F : L2(Ω) → L2(Ω) is completely continuous, i.e., un ⇀ u implies

F (un) → F (u).

Proof. From [3, Cor. 3.8], we obtain that F is weakly continuous from L2(Ω) to H 1

0
(Ω). The

compact embedding H 1

0
(Ω) ↪→ L2(Ω) then yields that F : L2(Ω) → L2(Ω) is completely continu-

ous. �

We now turn to the di�erentiability of the solution mapping. We �rst recall that F is direc-

tionally di�erentiable.

Proposition 3.3 ([3, Thm. 2.2]). For anyu ∈ L2(Ω) andh ∈ L2(Ω), the mapping F : L2(Ω) → H 1

0
(Ω)

is directionally di�erentiable, with the directional derivative F ′(u;h) in direction h ∈ L2(Ω) given
by the solution η ∈ H 1

0
(Ω) to

(3.5)

{
−∆η + 1{yu=0}η

+ + 1{yu>0}η = h in Ω,

η = 0 on ∂Ω,

where yu = F (u).

However, F is in general not Gâteaux di�erentiable.
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Proposition 3.4. Let u ∈ L2(Ω). Then F : L2(Ω) → L2(Ω) is Gâteaux di�erentiable in u if and only

if |{yu = 0}| = 0.

Proof. Assume that |{yu = 0}| = 0. Then by virtue of [3, Cor. 2.3], F : L2(Ω) → H 1

0
(Ω) is

Gâteaux di�erentiable in u. Since H 1

0
(Ω) ↪→ L2(Ω) continuously, F is Gâteaux di�erentiable

in u as a function from L2(Ω) to L2(Ω). It remains to prove that Gâteaux di�erentiability of

F : L2(Ω) → L2(Ω) in u implies that |{yu = 0}| = 0. First, there exists a bounded operator

S : L2(Ω) → L2(Ω) such that

(3.6)

F (u + th) − F (u)
t

→ Sh in L2(Ω) as t → 0
+

for any h ∈ L2(Ω). Moreover, the right hand side of (3.6) tends to F ′(u;h) in H 1

0
(Ω) and so in

L2(Ω) whenever t → 0
+

. It must hold that S = F ′(u; ·) and thus F ′(u;h) = −F ′(u;−h) for any

h ∈ L2(Ω). Fixing h ∈ L2(Ω) and setting η := F ′(u;h), we see from (3.5) that

(3.7)

{
−∆η + 1{yu=0}η

+ + 1{yu>0}η = h in Ω,

η = 0 on ∂Ω.

Since −η = F ′(u;−h), it also holds that

(3.8)

{
−∆(−η) + 1{yu=0}(−η)+ + 1{yu>0}(−η) = −h in Ω,

−η = 0 on ∂Ω.

Adding (3.7) and (3.8), we obtain that 1{yu=0}η
++1{yu=0}(−η)+ = 0 a.e. in Ω, which is equivalent

to

(3.9) 1{yu=0} |F ′(u;h)| = 1{yu=0} |η | = 0.

Now by [3, Lem. A.1], there exists a function ψ ∈ C∞(Rd ) satisfyingψ > 0 in Ω andψ = 0 in

Rd\Ω. Setting

h := −∆ψ + 1{yu ≥0}ψ ∈ L2(Ω),
we then have F ′(u;h) = ψ . Plugging this into (3.9) yields 1{yu=0}ψ = 0. Consequently, we have

|{yu = 0}| = 0 as claimed. �

The directional derivative is di�cult to exploit algorithmically. A more convenient object can

be constructed using the Bouligand subdi�erential, which also arises in the de�nition of the

Clarke subdi�erential [5] (as the convex hull of the Bouligand subdi�erential) and is used in the

construction of semi-smooth Newton methods [1, 32] (as a set of candidates for slant or Newton

derivatives). We �rst de�ne the set of Gâteaux points of F as

D := {v ∈ L2(Ω) : F : L2(Ω) → H 1

0
(Ω) is Gâteaux di�erentiable in v}.

The (strong-strong) Bouligand subdi�erential at u ∈ L2(Ω) is then de�ned as

∂BF (u) := {Gu ∈ L(L2(Ω),H 1

0
(Ω)) : there exists {un}n∈N ⊂ D such that

un → u in L2(Ω) and F ′(un ;h) → Gu h in H 1

0
(Ω) for all h ∈ L2(Ω)}.
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From the de�nition and the Lipschitz continuity of F , it follows that anyGu ∈ ∂BF (u) is uniformly

bounded for all u ∈ L2(Ω) and that if F is Gâteaux di�erentiable in u, then F ′(u) ∈ ∂BF (u); cf. [3,

Lem. 3.3]. In particular, we deduce that there exist constants L and L̂ satisfying

(3.10) ‖Gu ‖L(L2(Ω),L2(Ω)) ≤ L, ‖Gu ‖L(L2(Ω),H 1

0
(Ω)) ≤ L̂.

We can give a convenient characterization of a speci�c Bouligand subderivative of F .

Proposition 3.5 ([3, Prop. 3.16]). Given u ∈ L2(Ω), let Gu : L2(Ω) → H 1

0
(Ω) ↪→ L2(Ω) be the

solution operator mapping h ∈ L2(Ω) to the unique solution η ∈ H 1

0
(Ω) to

(3.11)

{
−∆η + 1{yu>0}η = h in Ω,

η = 0 on ∂Ω,

where yu := F (u). Then Gu ∈ ∂BF (u).

Remark 3.6. We refer to [3, Thm. 3.18] for a precise characterization of the full Bouligand subd-

i�erential. By replacing one or both convergences with the corresponding weak convergence,

we further arrive at di�erent variants of the Bouligand subdi�erential; see [3, Sec. 3.1] for the

precise de�nitions and the relations between them. For our purposes, however, the strong notion

su�ces. Furthermore, although the results in this section also hold for arbitrary elements from

these weaker notions of the Bouligand subdi�erential as well as for slant derivatives, there is

no obvious bene�t of these choices in our context, and we thus restrict ourselves to (3.11) to

keep the presentation concise.

Clearly,Gu is a self-adjoint operator when considered acting from L2(Ω) toL2(Ω). Furthermore,

for this speci�c choice of the subderivative, we can derive an Lp version of the estimates (3.10)

that will be needed in the following.

Lemma 3.7. Let d
2
< p ≤ 2. Then there exists a constant Lp > 0 such that

(3.12) ‖Gu ‖L(Lp (Ω),C(Ω)) ≤ Lp for all u ∈ U .

Proof. Let h ∈ Lp (Ω) with
d
2
< p ≤ 2 and u ∈ U be arbitrary. From Proposition 3.5, we have

that η = Guh satis�es {
−∆η + aη = h in Ω,

η = 0 on ∂Ω

for some a ∈ L∞(Ω) with 0 ≤ a(x) ≤ 1 for a.e. x ∈ Ω. Stampacchia’s theorem [2, Thm. 12.4] and

[31, Thm. 4.7] thus ensure η ∈ C(Ω) ∩ H 1

0
(Ω) and satis�es

(3.13) ‖η‖C(Ω) ≤ Lp ‖h‖Lp (Ω)

for some constant Lp independent of a and h, i.e., (3.12). �

Finally, the following example shows that the mapping u 7→ Guh is in general not continuous,

which is the main di�culty in showing convergence of a modi�ed Landweber method.
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Example 3.1. Let Ω = {x ∈ R2
: |x |2 ≤ 1} be the unit ball in R2

. For each ε > 0, we set

uε (x) := ε
(
5 − x2

1
− x2

2

)
.

Then uε tends to ū := 0 as ε → 0
+

. Furthermore, we have yε (x) = F (uε )(x) = ε(1 − x2

1
− x2

2
) > 0

for all x = (x1,x2) ∈ Ω. It follows that 1{yε>0}(x) = 1 almost everywhere in Ω, and hence

Guε ≡ G for the operator G : L2(Ω) → L2(Ω) de�ned by z := Gh being a unique solution to{
−∆z + z = h in Ω,

z = 0 on ∂Ω.

On the other hand, z̄ := Gūh satis�es {
−∆z̄ = h in Ω,

z̄ = 0 on ∂Ω

for any h ∈ L2(Ω). We thus have z , z̄ whenever h , 0. Therefore, if h , 0,

Guεh 9 Gūh as ε → 0
+.

3.2 generalized tangential cone condition

We now verify that the solution mapping for our example satis�es the generalized tangential

cone condition (GTCC). We begin with a crucial lemma deriving a “pointwise” tangential cone

condition.

Lemma 3.8. Let u, û ∈ L2(Ω) and d
2
< p < 2. Then, one has

‖F (û) − F (u) −Gu (û − u)‖L2(Ω) ≤ Lp |Ω |1/2M(u, û)1/p
′ ‖F (û) − F (u)‖L2(Ω)

with p ′ = 2p
2−p , Lp as in Lemma 3.7, and

M(u, û) := |{yu ≤ 0,yû > 0} ∪ {yu > 0,yû ≤ 0}| .

Proof. Setting y := yu , ŷ := yû , ζ := Gu (û −u), and ω := ŷ −y − ζ , we have from the de�nitions

that

−∆ŷ + ŷ+ = û,
−∆y + y+ = u,

−∆ζ + 1{y>0}ζ = û − u .

This implies that

−∆ω + 1{y>0}ω =
(
1{y>0} − 1{ŷ>0}

)
ŷ .

By simple computation, it follows that

a :=
(
1{y>0} − 1{ŷ>0}

)
ŷ =

(
1{y>0, ŷ ≤0} − 1{y ≤0, ŷ>0}

)
ŷ
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and hence

0 ≥ a ≥
(
1{y>0, ŷ ≤0} − 1{y ≤0, ŷ>0}

)
(ŷ − y).

Consequently,

|a(x)| ≤ |e(x)| |ŷ(x) − y(x)| for a.e. x ∈ Ω

with

e :=
(
1{y>0, ŷ ≤0} − 1{y ≤0, ŷ>0}

)
.

From this, Lemma 3.7, and the Hölder inequality, we obtain

‖ω‖C(Ω) ≤ Lp ‖a‖Lp (Ω)
≤ Lp ‖ŷ − y ‖L2(Ω)‖e‖Lp′ (Ω)
≤ LpM(u, û)1/p

′ ‖ŷ − y ‖L2(Ω).

This together with the inequality ‖ω‖L2(Ω) ≤ ‖ω‖C(Ω) |Ω |1/2 implies the desired estimate. �

The following result veri�es that the solution mapping satis�es a generalized tangential cone

condition, which is close to the classical tangential cone condition [8, 17, 26] and will be crucial

in the convergence analysis of the following section.

Proposition 3.9. Let ū ∈ L2(Ω) and µ > 0 and assume that

(3.14) Lp |Ω |1/2 (2|{F (ū) = 0}|)1/p′ < µ

with p ′ :=
2p

2−p and Lp as in Lemma 3.7. Then there exists ρ > 0 such that (GTCC) holds in ū for ρ
and µ.

Proof. Set ȳ = F (ū) and let ρ > 0 be arbitrary. Due to Proposition 3.1, we then have for any

u ∈ BL2(Ω)(ū, ρ) that

‖ȳ − yu ‖C(Ω) ≤ CF ‖ū − u‖L2(Ω) ≤ CF ρ =: ε .

Hence, for any u ∈ BL2(Ω)(ū, ρ), it follows that

−ε + yu (x) ≤ ȳ ≤ ε + yu (x)

for all x ∈ Ω̄. This implies for any u, û ∈ BL2(Ω)(ū, ρ) that

{yu > 0,yû ≤ 0} ⊂ {−ε ≤ ȳ ≤ ε},
{yu ≤ 0,yû > 0} ⊂ {−ε ≤ ȳ ≤ ε},

and thus

M(u, û) ≤ 2|{0 ≤ |ȳ | ≤ ε}|.

From condition (3.14), we have

lim

ε→0
+
Lp |Ω |1/2 (2|{0 ≤ |ȳ | ≤ ε}|)1/p

′
< µ .
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Note that ε → 0
+

as ρ → 0
+

. Hence, choosing ρ > 0 small enough such that

Lp |Ω |1/2 (2|{0 ≤ |ȳ | ≤ ε}|)1/p
′ ≤ µ

yields that

‖F (û) − F (u) −Gu (û − u)‖L2(Ω) ≤ µ‖F (û) − F (u)‖L2(Ω)

for all u, û ∈ BL2(Ω)(ū, ρ). �

The condition (3.14) is related to – but weaker than – the active set condition introduced in

[34, 35] in order to derive strong convergence rates for the Tikhonov regularization of singular

and non-smooth optimal control problems. We stress that the condition (3.14) does not require

that F is di�erentiable at the exact solution u†.

3.3 bouligand–landweber iteration

The results obtained so far show that the solution mapping F to (3.1) together withu 7→ Gu with

Gu the Bouligand subderivative given in Proposition 3.5 satis�es the assumptions of Section 2,

provided that condition (3.14) is valid. We also note that in this case F is injective, i.e., u† is the

unique solution to (2.1). We can thus use Gu in the modi�ed Landweber iteration (2.2) to obtain

a convergent Bouligand–Landweber method for the iterative regularization of the non-smooth

ill-posed problem F (u) = y .

Corollary 3.10. Assume that (3.14) holds for u† ∈ L2(Ω). Then there exists ρ > 0 and 0 < λ ≤ Λ
such that for all starting points u0 ∈ B(u†, ρ) and step sizeswn ∈ [λ,Λ], the Bouligand–Landweber
iteration (2.2) stopped according to the discrepancy principle (2.3) is a well-posed and strongly

convergent regularization method.

Proof. We merely have to argue that Assumptions (a1) to (a4) of Section 2 are satis�ed. Taking

U = Y = L2(Ω), Assumptions (a1) and (a2) follow from Proposition 3.1 and Lemma 3.2, respec-

tively, where we can take any ρ0 > 0 in the latter. Under the condition (3.14), Proposition 3.9

guarantees that Assumption (a3) holds for some choice of ρ > 0. Finally, Assumption (a4) holds

for Z = H 1

0
(Ω) due to the self-adjointness of Gu and Lemma 3.2 again. The claim now follows

from Theorems 2.3 and 2.9. �

We note that if |{yδn = 0}| = 0 withyδn := F (uδn ) for somen ∈ N, we obtain from Proposition 3.4

that F is Gâteaux di�erentiable inuδn and thatGuδn
= F ′(uδn ). Hence in this case, the corresponding

Bouligand–Landweber step (2.2) coincides with the classical Landweber step (1.2).

Remark 3.11. The results of this section – and hence of this work – can be extended to the case

of piecewise continuously di�erentiable nonlinearities, i.e., to a forward operator given as the

solution mapping to

(3.15)

{
Ay + f (y) = u in Ω,

y = 0 on ∂Ω,

where A is a second-order strongly uniformly elliptic operator and f is a superposition operator

de�ned by a piecewise continuously di�erentiable and non-decreasing function; see Appendix a.
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4 numerical experiments

In this section, we present results of numerical experiments illustrating the performance of the

Bouligand–Landweber iteration for the model problem (1.1). Although our focus is not on the

numerical approximation, we �rst give a short description of our discretization scheme and the

solution of the non-smooth PDE (1.1) using a semi-smooth Newton (SSN) method for the sake

of completeness. The last subsection then contains numerical examples.

4.1 discretization and semi-smooth newton method

For the discretization of the non-smooth semilinear elliptic problem (3.1) and the generalized

linearization equation (3.11), we use standard continuous piecewise linear �nite elements (FE),

see, e.g., [7, 14] . From now on, we restrict ourselves to the case Ω ⊂ R2
. Denote by Th the

triangulation of Ω with the discretization parameter h indicating the maximum length of the

edges of all the triangles ofTh . For each triangulationTh , letVh be the �nite-dimensional subspace

of H 1

0
(Ω) consisting of functions whose restrictions to a triangle T ∈ T are polynomials of �rst

degree. By {φ j }nj=1
, we denote the basis ofVh corresponding to the set of nodesNh := {p1, . . . ,pn},

i.e., Vh is spanned by functions φ1, . . . ,φn and φ j (pi ) = δ ji where (δ ji )nj,i=1
is the Kronecker

delta. Note that for vh ∈ Vh , we do not necessarily have v+h ∈ Vh . We thus use a mass lumping

approach to discretize the non-smooth semilinear elliptic equation (1.1) in weak form as

(4.1)

∫
Ω
∇yh ·∇vh dx+

1

3

∑
T ∈Th

|T |
∑

pi ∈Nh∩T

max(yh(pi ), 0)vh(pi ) =
∫
Ω
uhvh dx for all vh ∈ Vh ,

where yh and uh ∈ Vh denote the FE approximation of y and u, respectively, andT stands for the

closure ofT (i.e., the inner sum is over all vertices of the triangleT ). By a slight abuse of notation,

from now we on write y ∈ Rn
and u ∈ Rn

instead of (yh(pi ))ni=1
and (uh(pi ))ni=1

, respectively.

The discrete equation (4.1) is then equivalent to the nonlinear algebraic system

(4.2) Ay + D max(y, 0) = Mu

with the sti�ness matrix A :=
(
(∇φ j ,∇φi )L2(Ω)

)n
i, j=1

, the mass matrix M :=
(
(φ j ,φi )L2(Ω)

)n
i, j=1

,

the lumped mass matrix D := 1

3
diag (ω1, . . . ,ωn), ωi := |{φi , 0}|, and max(·, 0) : Rn → Rn

the componentwise max-function.

Similarly, the equation (3.11) characterizing the Bouligand subderivative is discretized as

(4.3)

∫
Ω
∇ηh · ∇vh dx +

∫
Ω
1{y>0}ηhvh dx =

∫
Ω
whvh dx for all vh ∈ Vh .

Here ηh and wh stand for the FE-approximation of η and w , respectively. Using the continuity

of integrands and the two-dimensional trapezoidal method, the second term on the left hand

side of (4.3) can be approximated by

1

3

∑
T ∈Th

|T |
∑

pi ∈Nh∩T∩{y>0}

ηh(pi )vh(pi ) =
1

3

∑
T ∈Th

|T |
∑

pi ∈Nh∩T

1{y (pi )>0}ηh(pi )vh(pi )
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for h small enough. From this and y(pi ) = yh(pi ), the discrete equation (4.3) can be rewritten as

(4.4)

∫
Ω
∇ηh · ∇vh dx +

1

3

∑
T ∈Th

|T |
∑

pi ∈Nh∩T

1{yh (pi )>0}(pi )ηh(pi )vh(pi )

=

∫
Ω
whvh dx for all vh ∈ Vh .

Again, by a slight abuse of notation, we denote the coe�cient vectors (ηh(pi ))ni=1
and (wh(pi ))ni=1

by η ∈ Rn
and w ∈ Rn

, respectively. The discrete equation (4.4) thus becomes the linear

algebraic system

(4.5) (A + Ky )η = Mw,

where the matrix Ky is de�ned by

Ky =
1

3

diag

(
ωi1{yi>0}

)
∈ Rn×n .

By standard arguments, the variational equations (4.1) and (4.4) as well as the corresponding

algebraic systems (4.2) and (4.5) admit unique solutions, whose relation is given in the following

lemma.

Lemma 4.1. Let Fh : Rn 7→ Rn
be the mapping that assigns u ∈ Rn

to the unique solution y ∈ Rn

to (4.2). Similarly, denote for arbitrary u ∈ Rn
by Gu,h : Rn → Rn

the mapping that assigns

w ∈ Rn
to the unique solution η ∈ Rn

to (4.5). Then Gu,h ∈ ∂BFh(u).

Proof. First, the Lipschitz continuity of Fh implies that for any ũ ∈ Rn
with (Fh(ũ))i , 0 for

all 1 ≤ i ≤ n, we have that Fh(ũ + v) = Fh(ũ) + Gu,hv provided that |v |2 is small enough.

Consequently, Fh is di�erentiable at ũ and F ′h(ũ) = Gũ,h . For each k ≥ 1, we now choose

yk ∈ Rn
componentwise as

yki :=

{
yi if yi , 0,

− 1

k if yi = 0,
for 1 ≤ i ≤ n,

set uk := M−1
(
Ayk + D max(yk , 0)

)
. Since yki , 0 and 1{yki >0} = 1{yi>0} for all 1 ≤ i ≤ n, the

mapping Fh is Gâteaux di�erentiable at uk , and F ′h(u
k ) = Gu,h . Since A and the componentwise

max are continuous, we obtain that uk → u in Rn
and hence Gu,h ∈ ∂BFh(u). �

We now show that the non-smooth nonlinear system (4.2) can be solved by a semi-smooth

Newton method. De�ning the mapping H : Rn → Rn
by

H (y) = Ay + D max(y, 0) −Mu,

the discrete system (4.2) is equivalent to H (y) = 0. For each yk ∈ Rn
, we now set

Mk := A + DEk , Ek := diag

(
1{yki ≥0}

)
.
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Since the componentwise max function is locally Lipschitz and piecewise continuously di�eren-

tiable in each component, we deduce from [32, Props. 2.26, 2.10, 3.5, 3.8] that Mk is a Newton

derivative of H at yk . Denoting the active set at yk by

(4.6) ACk
:=

{
i : 1 ≤ i ≤ n,yki ≥ 0

}
,

we have for any y ∈ Rn
that

yTMky = y
TAy + yTDEky = y

TAy +
∑

i ∈ACk

dii |yi |2 ≥ yTAy ≥ c0 |y |22

for some constant c0 > 0 and hence that ‖M−1

k ‖2 ≤ c−1

0
. Here, |y |2 and ‖M ‖2 denote the Euclidean

norm of y ∈ Rn
and the induced (spectral) norm of M ∈ Rn×n

, respectively. By [32, Prop. 2.12],

the semi-smooth Newton iteration

(4.7) Mkδy = −H (yk ), yk+1 = yk + δy,

then converges locally superlinearly to a solution to (4.2). Furthermore, since the equation is

piecewise linear, the semi-smooth Newton method has a �nite termination property: If the active

sets (4.6) coincide between successive iterations k and k + 1, then H (yk+1) = 0; cf. [10, Rem. 7.1.1].

Correspondingly, we terminate the iteration as soon as the active sets remain unchanged.

4.2 numerical examples

We consider Ω = (0, 1)2 ⊂ R2
and use a uniform triangular Friedrichs–Keller triangulation

with nh × nh vertices for nh = 512 unless noted otherwise. The semi-smooth Newton systems

are solved by a direct sparse solver, and the semi-smooth Newton iteration for solving the

non-smooth nonlinear system (4.2) is started from y0 = 0 and terminated when the active

sets corresponding to two consecutive steps coincide. The Python implementation used to

generate the following results (as well as a Julia implementation) can be downloaded from

h�ps://www.github.com/clason/bouligandlandweber.
The exact solution to be reconstructed is de�ned as

u†(x1,x2) = max(y†(x1,x2), 0)
+

[
4π 2y†(x1,x2) − 2

(
(2x1 − 1)2 + 2(x1 − 1 + β)(x1 − β)

)
sin(2πx2)

]
1(β,1−β ](x1)

where

y†(x1,x2) =
[
(x1 − β)2(x1 − 1 + β)2 sin(2πx2)

]
1(β,1−β ](x1)

with constant β = 0.005 is the corresponding exact state; see Figure 1. It is easy to see that y† ∈
H 2(Ω) ∩H 1

0
(Ω) satis�es (3.1) for the right-hand side u† and that y† vanishes on a set of measure

2β . Therefore, the forward operator F is not Gâteaux di�erentiable at u†; see Proposition 3.4.

We then add random Gaussian noise componentwise to the discrete projection y†h to obtain

noisy data yδh with (L2
) noise level

δ := ‖y†h − y
δ
h ‖L2(Ω).
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Figure 1: exact data u† Figure 2: starting point u0 = ū

Here and below, all norms for discrete functionsvh are calculated exactly via ‖vh ‖2L2(Ω) = v
T
hMvh

(identifying again the functionvh with its vector of expansion coe�cients). To keep the notation

simple, we omit the subscript h from now on.

In the following, we illustrate the convergence for both noise-free and noisy data and two

di�erent choices of starting points: the trivial point u0 ≡ 0 and the discrete projection of

(4.8) ū := u† − 2ρ sin(πx1) sin(2πx2),

see Figure 2. We point out that for the second starting point, u† satis�es the generalized source

condition

(4.9) u† − u0 ∈ R
(
G∗u†

)
,

where R(T ) denotes the range of operatorT . Note also that this choice ofu0 is far from the exact

solution u†. In all cases, the parameters in the Bouligand–Landweber iteration (2.2) are set to

µ = 0.1, τ = 1.4, ρ = 5, wn = λ = Λ =
2 − 2µ

L̄2

, L̄ = 5 · 10−2,

and the Bouligand–Landweber iteration is terminated at Nmax = 5000.

We �rst address the convergence for noise-free data y† from Theorem 2.3 by plotting in

Figure 3 the relative error

(4.10) En :=
‖u† − un ‖L2(Ω)

‖u†‖L2(Ω)

of the iterates un as a function of the iteration index n. As Figure 3a shows, the iteration

slows down for the trivial starting point u0 ≡ 0 after 100 steps of rather fast convergence.

However, the relative error continues to decrease signi�cantly even after that. In contrast,

Figure 3b demonstrates that the rate of convergence for the starting point u0 = ū from (4.8) is

substantially higher. Although here the initial relative error is three times greater than for the
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Figure 3: relative error En from (4.10) of iterates in the noise-free setting

trivial starting point, the relative error drops quickly from 3.33460 to less than 10
−3

after 25

steps and then continues to reduce.

We next turn to the regularization property from Theorem 2.9. Table 1 shows for a decreasing

sequence of noise levels and both starting points (for the same realization of the random data)

the stopping index Nδ = N (δ ,yδ ), the total number of semi-smooth Newton steps, and the

relative error

(4.11) EδN :=
‖u† − uδNδ ‖L2(Ω)

‖u†‖L2(Ω)
.

First we note that since the trivial starting point u0 ≡ 0 is actually closer to u† than to ū, the

discrepancy principle is satis�ed earlier for the former when δ > 5 · 10−3
although the relative

error is smaller for the latter. Considering the convergence behavior for u0 ≡ 0, the relative

error decreases slowly from 5.35 · 10−1
to 1.23 · 10−1

; however, the stopping index Nδ increases

rapidly from 3 to 3224 before failing to converge within the prescribed maximum number of

5000 iterations. This is reasonable as the classical Landweber iteration is known to be similarly

slow but reliable. In contrast, for the starting point u0 = ū, the relative error decreases rapidly

from 3.04 · 10−1
to 4.93 · 10−4

while the stopping index Nδ increases only slightly from 7 to 35.

As expected, we thus see much faster convergence for the Bouligand–Landweber iteration if

the exact solution satis�es a generalized source condition. For u0 = ū, Table 1 also shows the

empirical convergence rate

(4.12) RδN :=
‖u† − uδNδ ‖L2(Ω)

√
δ

,

which stabilizes around 0.3 for δ ≤ 5 · 10−5
. This corresponds to the convergence rate O(

√
δ )

expected from the classical source condition u† − u0 ∈ R(F ′(u†)∗). For both starting points,

the average number of semi-smooth Newton iterations per Bouligand–Landweber iteration is
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u0 ≡ 0 u0 = ū

δ Nδ EδN # SSN Nδ EδN RδN # SSN

1.06 · 10−2
3 5.35 · 10−1

7 7 3.04 · 10−1
4.43 23

5.29 · 10−3
6 4.18 · 10−1

16 9 1.54 · 10−1
3.17 31

1.06 · 10−3
42 2.66 · 10−1

125 14 2.76 · 10−2
1.27 50

5.30 · 10−4
106 2.25 · 10−1

342 16 1.41 · 10−2
0.92 55

1.06 · 10−4
1120 1.49 · 10−1

4409 21 2.68 · 10−3
0.39 75

5.29 · 10−5
3224 1.23 · 10−1

12 562 23 1.49 · 10−3
0.31 84

1.06 · 10−5
— — — 28 6.80 · 10−4

0.31 102

5.29 · 10−6
— — — 35 4.93 · 10−4

0.32 133

Table 1: regularization property: noise level δ ; stopping index Nδ = N (δ ,yδ ); relative error EδN
from (4.11); empirical convergence rate RδN from (4.12); total number of semi-smooth

Newton steps (— : not converged)

consistently between 2 and 4, increasing slightly as δ decreases (which can further be reduced

by warm-starting the Newton iteration, i.e., starting with y0 = yn−1 instead of y0 = 0).

Finally, we illustrate the e�ects of discretization by showing for nh = 256 in Figures 4 and 5

the noisy data yδ for the noise levels δ ∈ {1.049 · 10−2, 1.060 · 10−3, 1.055 · 10−4} together with the

corresponding reconstructionsuδNδ and the starting pointsu0 ≡ 0 andu0 = ū, respectively. As can

be seen, the stopping indices (Nδ = 4, 42, 1119 for u0 ≡ 0 and Nδ = 7, 14, 21 for u0 ≡ ū) are very

similar to the results fornh = 512. The same holds for the relative errors (not shown in the �gures),

which are EδN ≈ 4.74·10−1, 2.62·10−1, 1.42·10−1
foru0 ≡ 0 andEδN ≈ 3.00·10−1, 2.76·10−2, 2.68·10−3

for u0 = ū.

5 conclusion

We have considered the iterative regularization of an inverse source problem for a non-smooth

elliptic PDE. By using a Bouligand subderivative in place of the non-existent Fréchet derivative

of the forward mapping, a modi�ed Landweber method (which we call Bouligand–Landweber

iteration in this case) can be applied. To account for the missing continuity of the Bouligand

subderivative mapping, a new convergence analysis of the modi�ed Landweber method is

provided that is based on the concept of asymptotic stability and merely requires a generalized

tangential cone condition together with some boundedness assumptions. This condition is

veri�ed for our non-smooth model problem provided that the non-di�erentiability of the forward

mapping is su�ciently “weak” at the exact solution, and thus the Bouligand–Landweber iteration

provides a convergent regularization method. Numerical examples verify the convergence of

the iteration for exact as well as for noisy data. While the convergence is slow for an arbitrary

starting point (su�ciently close to the solution), it is signi�cantly faster for a starting point for

which the exact solution satis�es a generalized source condition.

This work can be extended in a number of directions. First, it would be interesting to derive

convergence rates under the generalized source condition (4.9). Another practically relevant
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(a) yδ , δ = 1.049 · 10−2 (b) uδNδ , Nδ = 4

(c) yδ , δ = 1.060 · 10−3 (d) uδNδ , Nδ = 42

(e) yδ , δ = 1.055 · 10−4 (f) uδNδ , Nδ = 1119

Figure 4: noisy data yδ and reconstructions uδNδ for starting point u0 ≡ 0
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(a) yδ , δ = 1.049 · 10−2 (b) uδNδ , Nδ = 7

(c) yδ , δ = 1.060 · 10−3 (d) uδNδ , Nδ = 14

(e) yδ , δ = 1.055 · 10−4 (f) uδNδ , Nδ = 21

Figure 5: noisy data yδ and reconstructions uδNδ for starting point u0 = ū
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issue would be to extend the analysis of the method to cover other classes of non-smooth

PDEs such as time-dependent equations or equations with non-smooth nonlinearities entering

higher-order terms as for the two-phase Stefan problem; further work will also consider solution

operators for variational inequalities for which Bouligand di�erentiability has recently been

shown [4, 23, 24]. For practical applications, the convergence analysis of the modi�ed Landweber

method should also take into account the discretization of the non-smooth PDE, where adaptivity

can be used to further reduce the computational e�ort as in [21] for linear inverse problems

in Besov spaces. Finally, similar non-smooth extensions of iterative regularization methods of

Newton-type should lead to signi�cantly faster convergence.
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appendix a elliptic equations with piecewise differentiable
nonlinearities

In this appendix, we show that Assumptions (a1) to (a4) are satis�ed for a general class of

non-smooth semilinear elliptic equations with PC1
-nonlinearities.

We �rst recall the following de�nition from, e.g., [28, Chap. 4] and [32, Def. 2.19]. Let V ⊂ R

be an open set. A function f : V → R is called a piecewise di�erentiable function or PC1
-function

if f is continuous, and for each point x0 ∈ V there exist a neighborhoodW ⊂ V and a �nite set

of C1
-functions fi : W → R, i = 1, 2, . . . ,N , such that

f (x) ∈ { f1(x), f2(x), . . . , fN (x)} for all x ∈W .

The set { f1, f2, . . . , fN } is said to be the selection functions of f onW . We denote by Sf ⊂ V the

set of all points in V at which f is not di�erentiable, i.e.,

(a.1) Sf := {x ∈ V : f ′ does not exist at x}.

We assume in the following that the set Sf consists of a �nite number of points t1, t2, . . . , tk . By

virtue of the decomposition theorem for piecewise smooth functions [6, Prop. 2D.7], f can be

represented as

f (t) =
k+1∑
i=1

1(ti−1,ti ](t)fi (t) for all t ∈ R,

where fi , 1 ≤ i ≤ k + 1, are C1
-functions on R and

−∞ =: t0 < t1 < · · · < tk < tk+1 := ∞

32



with the convention (tk , tk+1] := (tk ,∞). Moreover, we assume that each fi is non-decreasing

on (ti−1, ti ), 1 ≤ i ≤ k + 1, and that

(a.2) fi (ti ) = fi+1(ti ) for all 1 ≤ i ≤ k .

We require the following technical lemma regarding the nonlinearity.

Lemma a.1. For eachM > 0, let riM : [−M,M] ×R→ [0,∞), i = 1, 2, . . . ,k + 1, be de�ned as

(a.3) riM (t , s) :=

{��� fi (t+s)−fi (t )s − f ′i (t)
��� s , 0,

0 s = 0.

Then, riM is continuous and satis�es

(a.4) riM (t , s) → 0 as s → 0 uniformly in t ∈ [−M,M].

Proof. Clearly, riM is continuous at every point (t , s) with s , 0. Moreover, we have for any

t ∈ [−M,M] and s , 0 that

riM (t , s) =
����∫ 1

0

(
f ′i (t + sτ ) − f ′i (t)

)
dτ

���� ≤ ∫
1

0

��f ′i (t + sτ ) − f ′i (t)
��dτ .

From this and the uniform continuity of f ′i on bounded sets, Lebesgue’s dominated convergence

theorem yields (a.4). Consequently, riM is continuous at (t , 0). �

We now consider the non-smooth semilinear elliptic equation

(a.5)

{
Ay + f (y) = u in Ω,

y = 0 on ∂Ω,

with u ∈ L2(Ω), Ω ⊂ Rd
for d ≤ 3, A an elliptic second-order partial di�erential operator with

bounded and measurable coe�cients satisfying

c0‖y ‖2H 1

0
(Ω) ≤ 〈Ay,y〉 ≤ c1‖y ‖2H 1

0
(Ω) for all y ∈ H 1

0
(Ω)

for some c1 ≥ c0 > 0, and a given PC1
-function f satisfying the above assumptions. Here 〈·, ·〉

stands for the pairing between H 1

0
(Ω) and H−1(Ω). From [31, Thm. 4.7], we know that for each

u ∈ L2(Ω), the equation (a.5) admits a unique weak solution yu ∈ H 1

0
(Ω) ∩C(Ω). Furthermore,

a constant C∞ exists such that

(a.6) ‖yu ‖H 1

0
(Ω) + ‖yu ‖C(Ω) ≤ C∞‖u − f (0)‖L2(Ω) for all u ∈ L2(Ω).

From now on, we denote by F : L2(Ω) → H 1

0
(Ω) ∩ C(Ω) ↪→ L2(Ω) the solution operator

of (a.5). Since the fi are all C1
-functions, they are thus Lipschitz continuous on bounded sets.

From this and [28, Prop. 4.1.2], f is also Lipschitz continuous on bounded sets. By a standard

argument, we arrive at the following result, which generalizes Proposition 3.1.

33



Proposition a.2. The solution operator F : L2(Ω) → H 1

0
(Ω) ∩ C(Ω) is Lipschitz continuous on

bounded sets in L2(Ω), i.e., for any bounded setW ⊂ L2(Ω) there exists a constant LW > 0 such

that

(a.7) ‖F (u) − F (v)‖H 1

0
(Ω) + ‖F (u) − F (v)‖C(Ω) ≤ LW ‖u −v ‖L2(Ω) for all u,v ∈W .

Proof. Take any u,v ∈W and set y := F (u) and z := F (v). We then have

(a.8)

{
A(y − z) = u −v − (f (y) − f (z)) in Ω,

y − z = 0 on ∂Ω,

which together with [31, Thm. 4.7] leads to

(a.9) ‖y − z‖H 1

0
(Ω) + ‖y − z‖C(Ω) ≤ C‖u −v − (f (y) − f (z)) ‖L2(Ω)

≤ C
(
‖u −v ‖L2(Ω) + ‖ f (y) − f (z)‖L2(Ω)

)
for some constant C > 0. Moreover, (a.6) implies that y and z belong to a bounded set in C(Ω).
From this and the Lipschitz continuity on bounded sets of f , we obtain

(a.10) ‖ f (y) − f (z)‖L2(Ω) ≤ CW ‖y − z‖L2(Ω).

In addition, testing the �rst equation in (a.8) with (y − z) and using the non-decreasing mono-

tonicity of f yields that

〈A(y − z),y − z〉 ≤ (u −v,y − z)L2(Ω) ≤ ‖u −v ‖L2(Ω)‖y − z‖L2(Ω).

The uniform ellipticity of A and the Poincaré inequality thus imply that

(a.11) ‖y − z‖L2(Ω) ≤ CP ‖u −v ‖L2(Ω)

for some constant CP > 0. By inserting (a.11) into (a.10) and then using (a.9), we obtain the

desired estimate. �

By virtue of Proposition a.2 and the compact embedding H 1

0
(Ω) ↪→ L2(Ω), the uniqueness

of solutions to (a.5) guarantees that F : L2(Ω) → L2(Ω) is completely continuous and hence

satis�es Assumption (a1).

For each u ∈ L2(Ω), we further denote byGu : L2(Ω) → H 1

0
(Ω) ∩C(Ω) ↪→ L2(Ω) the solution

operator of the linear equation

(a.12)

{
Aη + auη = w in Ω,

η = 0 on ∂Ω,

for given w ∈ L2(Ω) and

au (x) :=

k+1∑
i=1

1(ti−1,ti ](yu (x))f ′i (yu (x)) for all x ∈ Ω

with yu := F (u). It is easy to see that

au (x) ∈ ∂B f (yu (x)) for all x ∈ Ω,

where ∂B f (t) stands for the Bouligand subdi�erential of f at t .
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Remark a.3. When f (t) := t+, we have k = 1, f1(t) = 0, f2(t) = t , and Sf = {t1} for t1 = 0.

In this case, au = 1{yu>0}, and so (for A = −∆), Gu coincides with the operator de�ned in

Proposition 3.5.

LetW be an arbitrary bounded subset in L2(Ω). From the a priori estimate (a.6), we see that

the set {yu = F (u) : u ∈W } is bounded inC(Ω). Therefore, there exists a constantCW > 0 such

that

0 ≤ au (x) ≤ CW for all x ∈ Ω
for all u ∈W . From [31, Thm. 4.7], we obtain for each

d
2
< p ≤ 2 a constant CW ,p > 0 such that

(a.13) ‖Guw ‖H 1

0
(Ω) + ‖Guw ‖C(Ω) ≤ CW ,p ‖w ‖Lp (Ω) for all u ∈W ,w ∈ Lp (Ω).

This yields the boundedness of {‖Gu ‖L(L2(Ω),H 1

0
(Ω))}u ∈W and so of {‖Gu ‖L(L2(Ω),L2(Ω))}u ∈W . On

the other hand, for any h ∈ L2(Ω), ζ := G∗uh satis�es{
A∗ζ + auζ = h in Ω,

ζ = 0 on ∂Ω,

where A∗ stands for the adjoint operator of A. Similar to (a.13), there holds

‖G∗uh‖H 1

0
(Ω) + ‖G∗uh‖C(Ω) ≤ L̂‖h‖L2(Ω) for all u ∈W ,h ∈ L2(Ω)

for some constant L̂ > 0. Thus, Gu ful�lls Assumptions (a2) and (a4) with U = Y := L2(Ω) and

Z := H 1

0
(Ω) for any ρ0 > 0.

It remains to verify the generalized tangential cone condition for Assumption (a3). We start

with a further technical lemma regarding the nonlinearity.

Lemma a.4. Let ρ∗ > 0 and

|t | ≤ M := max

{
supu ∈BL2(Ω)(u†,ρ∗)

‖yu ‖C(Ω), |t1 |, . . . , |tk |
}
.

Then, for any 1 ≤ i ≤ k , we have

| fi (t) − fi (ti )| ≤ βi |t − ti |,(a.14)

| fi+1(t) − fi+1(ti )| ≤ βi |t − ti |,(a.15)

with

βi := max

{
sup |s | ≤2M riM (ti , s) + | f ′i (ti )|, sup |s | ≤2M r(i+1)M (ti , s) + | f ′i+1

(ti )|
}
< ∞.

Proof. We �rst note that βi < ∞ for all 1 ≤ i ≤ k since the functions riM and r(i+1)M are

continuous due to Lemma a.1. For any t ∈ [−M,M], we see from the de�nition of riM that��fi (t) − fi (ti ) − f ′i (ti )(t − ti )
�� = riM (ti , t − ti )|t − ti |,

which implies that

| fi (t) − fi (ti )| ≤
(
| f ′i (ti )| + riM (ti , t − ti )

)
|t − ti | ≤ βi |t − ti |

and hence (a.14). The inequality (a.15) can be shown similarly. �
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The following lemma is a generalization of the key Lemma 3.8.

Lemma a.5. Let ρ∗ > 0 be given as in Lemma a.4 and ε > 0 be such that

(a.16) ε <
ti − ti−1

2

for all 2 ≤ i ≤ k

and
d
2
< p < 2. Then there exists a ρ̄ ∈ (0, ρ∗] such that for all u, û ∈ BL2(Ω)(u†, ρ̄), one has

F (u), F (û) ∈ BC(Ω)(y†, ε), and

‖F (û) − F (u) −Gu (û − u)‖L2(Ω) ≤ Lp |Ω |1/2‖ζ (u, û)‖Lp′ (Ω)‖F (û) − F (u)‖L2(Ω)

for some constant Lp > 0 with p ′ :=
2p

2−p and

ζ (u, û) :=

k∑
i=1

[
1{yu ∈(ti−ε,ti ],yû ∈(ti ,ti+ε )} + 1{yû ∈(ti−ε,ti ],yu ∈(ti ,ti+ε )}

]
βi

+

k+1∑
i=1

1(ti−1,ti ](yu )riM (yu ,yû − yu ),

where the constants βi andM are those from Lemma a.4.

Proof. Set ŷ := F (û), y := F (u), ξ := Gu (û − u), and ω := ŷ − y − ξ . We then have that

Aŷ + f (ŷ) = û,
Ay + f (y) = u,
Aξ + auξ = û − u .

This implies that

A(ŷ − y − ξ ) + au (ŷ − y − ξ ) = f (y) − f (ŷ) + au (ŷ − y)

or, equivalently,

(a.17) Aω + auω = b

with

b := f (y) − f (ŷ) + au (ŷ − y).
A computation then yields that

(a.18) b =
k+1∑
i=1

1(ti−1,ti ](y)fi (y) −
k+1∑
i=1

1(ti−1,ti ](ŷ)fi (ŷ) +
k+1∑
i=1

1(ti−1,ti ](y)f ′i (y)(ŷ − y)

= b1 + b2

with

b1 := −
k+1∑
i=1

1(ti−1,ti ](y)
(
fi (ŷ) − fi (y) − f ′i (y)(ŷ − y)

)
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and

b2 :=

k+1∑
i=1

(
1(ti−1,ti ](y) − 1(ti−1,ti ](ŷ)

)
fi (ŷ).

From the de�nition of riM , it holds that

(a.19) |b1 | ≤
k+1∑
i=1

1(ti−1,ti ](y)riM (y, ŷ − y)|ŷ − y |.

To estimate b2, we �rst observe that

(a.20) di := 1(ti−1,ti ](y) − 1(ti−1,ti ](ŷ) =


1 if y ∈ (ti−1, ti ] and ŷ < (ti−1, ti ],
−1 if ŷ ∈ (ti−1, ti ] and y < (ti−1, ti ],

0 otherwise.

Secondly, using the local Lipschitz continuity (a.7), we can �nd a constant ρ̄ > 0 such that

(a.21) ‖ŷ − y ‖C(Ω) = ‖F (û) − F (u)‖C(Ω) < ε for all u, û ∈ BL2(Ω)(u†, ρ̄).

Moreover,

{y ∈ (ti−1, ti ], ŷ < (ti−1, ti ], |y − ŷ | < ε}
= {y ∈ (ti−1, ti−1 + ε), ŷ ∈ (y − ε, ti−1]} ∪ {y ∈ (ti − ε, ti ], ŷ ∈ (ti ,y + ε)}
= {ŷ ∈ (ti−1 − ε, ti−1],y ∈ (ti−1, ŷ + ε)} ∪ {ŷ ∈ (ti , ti + ε),y ∈ (ŷ − ε, ti ]}

and

{ŷ ∈ (ti−1, ti ],y < (ti−1, ti ], |y − ŷ | < ε}
= {ŷ ∈ (ti−1, ti−1 + ε),y ∈ (ŷ − ε, ti−1]} ∪ {ŷ ∈ (ti − ε, ti ],y ∈ (ti , ŷ + ε)}

with the convention that

(−∞ − ε,−∞) = (−∞,−∞ + ε) = (+∞− ε,+∞) = (+∞,+∞ + ε) = ∅.

Hence, for all y, ŷ satisfying (a.21), we can decompose (a.20) into

(a.22) di = 1{ŷ ∈(ti−1−ε,ti−1],y ∈(ti−1, ŷ+ε )} + 1{ŷ ∈(ti ,ti+ε ),y ∈(ŷ−ε,ti ]}

− 1{ŷ ∈(ti−1,ti−1+ε ),y ∈(ŷ−ε,ti−1]} − 1{ŷ ∈(ti−ε,ti ],y ∈(ti , ŷ+ε )} .

Multiplying both sides of (a.22) by fi (ŷ) and then summing up, we obtain that

k+1∑
i=1

di fi (ŷ) =
k∑
i=1

[
1{ŷ ∈(ti ,ti+ε ),y ∈(ŷ−ε,ti ]} − 1{ŷ ∈(ti−ε,ti ],y ∈(ti , ŷ+ε )}

]
(fi (ŷ) − fi+1(ŷ))
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and hence that

|b2 | ≤
k∑
i=1

[
1{ŷ ∈(ti ,ti+ε ),y ∈(ŷ−ε,ti ]} + 1{ŷ ∈(ti−ε,ti ],y ∈(ti , ŷ+ε )}

]
| fi (ŷ) − fi+1(ŷ)|

≤
k∑
i=1

[
1{ŷ ∈(ti ,ti+ε ),y ∈(ti−ε,ti ]} + 1{ŷ ∈(ti−ε,ti ],y ∈(ti ,ti+ε )}

]
| fi (ŷ) − fi+1(ŷ)| .

Furthermore, on the set {y ∈ (ti − ε, ti ], ŷ ∈ (ti , ti + ε)} we deduce from the non-decreasing

monotonicity of fi and fi+1 that

fi (ŷ) ≥ fi (ti ) = fi+1(ti ) ≤ fi+1(ŷ),

which gives

fi+1(ti ) − fi+1(ŷ) ≤ fi (ŷ) − fi+1(ŷ) ≤ fi (ŷ) − fi (ti ).

Consequently,

| fi (ŷ) − fi+1(ŷ)| ≤ max{| fi+1(ti ) − fi+1(ŷ)|, | fi (ŷ) − fi (ti )|}

on the set {y ∈ (ti − ε, ti ], ŷ ∈ (ti , ti + ε)}. Combining this with (a.14) and (a.15) from Lemma a.4

yields

1{y ∈(ti−ε,ti ], ŷ ∈(ti ,ti+ε )} | fi (ŷ) − fi+1(ŷ)| ≤ 1{y ∈(ti−ε,ti ], ŷ ∈(ti ,ti+ε )}βi |ŷ − ti |
≤ 1{y ∈(ti−ε,ti ], ŷ ∈(ti ,ti+ε )}βi |ŷ − y |.

Similarly, we obtain that

1{ŷ ∈(ti−ε,ti ],y ∈(ti ,ti+ε )} | fi (ŷ) − fi+1(ŷ)| ≤ βi1{ŷ ∈(ti−ε,ti ],y ∈(ti ,ti+ε )} |ŷ − y |.

These inequalities show that

|b2 | ≤
k∑
i=1

βi
(
1{y ∈(ti−ε,ti ], ŷ ∈(ti ,ti+ε )} + 1{ŷ ∈(ti−ε,ti ],y ∈(ti ,ti+ε )}

)
|ŷ − y |.

Combining this with (a.18) and (a.19) yields that

|b | ≤ ζ (u, û)|y − ŷ |.

We now apply the estimate (a.13) to (a.17) to estimate

‖ω‖C(Ω) = ‖Gub‖C(Ω) ≤ Lp ‖b‖Lp (Ω)

for some constant Lp > 0. From this and the Hölder inequality, we obtain the desired result. �

We can now verify Assumption (a3).

Corollary a.6. Let µ > 0 and assume that |{y† = ti }| is su�ciently small for all 1 ≤ i ≤ k . Then
there exists a ρ > 0 such that (GTCC) holds for all u, û ∈ BL2(Ω)(u†, ρ).
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Proof. Since |{y† = ti }| is su�ciently small for all 1 ≤ i ≤ k , there exists a constant ε > 0

satisfying (a.16) and

(a.23) 2Lp |Ω |1/2
k∑
i=1

��{ |y† − ti | < ε}��1/p′ βi ≤ µ

2

with Lp and p ′ as in Lemma a.5. Let ρ̄ be de�ned as in Lemma a.5. Since yu ,yû ∈ BC(Ω)(y†, ε)
for all u, û ∈ BL2(Ω)(u†, ρ̄) with yu := F (u), ŷ := F (û), we have that

{yu ∈ (ti − ε, ti ],yû ∈ (ti , ti + ε)} ⊂
{
|y† − ti | < ε

}
,(a.24)

{yû ∈ (ti − ε, ti ],yu ∈ (ti , ti + ε)} ⊂
{
|y† − ti | < ε

}
,(a.25)

for all 1 ≤ i ≤ k . On the other hand, using the continuity of F from L2(Ω) to C(Ω) and the

uniform limit (a.4), Lebesgue’s dominated convergence theorem implies that the superposition

operators riM : L2(Ω) → Lp
′(Ω) de�ned by (a.3) satisfy

riM (yu ,yû − yu ) → 0 in Lp
′(Ω) as u, û → u† in L2(Ω)

for all 1 ≤ i ≤ k + 1. We can thus �nd a ρ ∈ (0, ρ̄] such that

(a.26) Lp |Ω |1/2
k+1∑
i=1

‖riM (yu ,yû − yu )‖Lp′ (Ω) ≤
µ

2

for all u, û ∈ BL2(Ω)(u†, ρ). Using (a.23), (a.24), (a.25), and (a.26), the de�nition of ζ (u, û) now

ensures that Lp |Ω |1/2‖ζ (u, û)‖Lp′ (Ω) ≤ µ for all u, û ∈ BL2(Ω)(u†, ρ). The generalized tangential

cone condition (GTCC) then follows from Lemma a.5. �
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