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ABSTRACT. Recent works showed that pressure-robust modifications of mixed finite element meth-
ods for the Stokes equations outperform their standard versions in many cases. This is achieved by
divergence-free reconstruction operators and results in pressure independent velocity error estim-
ates which are robust with respect to small viscosities. In this paper we develop a posteriori error
control which reflects this robustness.

The main difficulty lies in the volume contribution of the standard residual-based approach that
includes the L2-norm of the right-hand side. However, the velocity is only steered by the divergence-
free part of this source term. An efficient error estimator must approximate this divergence-free
part in a proper manner, otherwise it can be dominated by the pressure error.

To overcome this difficulty a novel approach is suggested that uses arguments from the stream
function and vorticity formulation of the Navier—Stokes equations. The novel error estimators only
take the curl of the right-hand side into account and so lead to provably reliable, efficient and
pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-
dominant situations. This is also confirmed by some numerical examples with the novel pressure-
robust modifications of the Taylor—-Hood and mini finite element methods.

incompressible Navier—Stokes equations and mixed finite elements and pressure robustness and
a posteriori error estimators and adaptive mesh refinement

1. INTRODUCTION

This paper studies a posteriori error estimators for the velocity of the Stokes equation with a
special focus on pressure-robust finite element methods. Pressure-robustness is closely related to the
L?-orthogonality of divergence-free functions onto gradients of H'-functions. In particular, the exact
velocity u of the Stokes equations (with zero boundary data),

—VvAu+Vp=FfinQ and weV,:={ve H)(Q)?*:divv =0},

is orthogonal onto any ¢ € L%(f2) in the sense that SQ gdiv(u) dz = 0. Consequently, u also solves
the Stokes equations with f replaced by f + Vq for ¢ € H*(£2). This invariance property is in general
not preserved for discretely divergence-free testfunctions of most classical finite element methods that
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relax the divergence constraint to attain inf-sup stability. With an inf-sup-stable pair of a discrete
velocity space V', and some discrete pressure space @, and the discretely divergence-free functions
Vo.n © Vy, the consistency error from the relaxed divergence constraint can be expressed by the
discrete dual norm , for any q € L?(9),

divvy, dz i — if V Vv
(1) quHVS = sup SQ q h < {mIHQhGQh ”q Qh“L2 I 0,h £t Vo,

onevo {0} VU L2 0 if Vo, € V.

Besides some expensive or exotic divergence-free methods like the Scott-Vogelius finite element
method [32, 37], most classical inf-sup stable mixed finite element methods, including the popu-
lar Taylor-Hood [18] and mini finite element families [5] have Vp, € Vo and so the term from (1)
appears in their a priori velocity gradient error estimate [8] scaled with 1/v, i.e.

1
) IV(w—w)lfa < | inf (Vv + IVl
wup=vy} on 0f2
This factor 1/v causes a locking phenomenon. Indeed, for v — 0 or very complicated pressures,
the pressure contribution may dominate and lead to a very bad solution for the discrete velocity uy,
[21, 24, 19, 25].

By a trick of [21] one can introduce a reconstruction operator II, that maps discretely divergence-
free functions onto exactly divergence-free ones, into the right-hand side and so transform any classical
finite element method into a pressure-robust one. This replaces the pressure-dependent term in (2)
by a small consistency error of optimal order [21, 9, 22, 25, 20] and independent of 1/v. Although
this fixes the locking phenomenon and leads to huge gains in many numerical examples, efficient
a posteriori error control for these methods is an open problem. Efficient error estimators for the
velocity error not only have to cope with the variational crime but also, and more importantly, have
to mimic the pressure-independence.

Standard residual-based a posteriori error estimators n usually have the form

[V(u —un)|z2 < 1 := 1nvol + other terms

with a volume contribution 7y, and some other terms, like norms of the normal jumps of u, data
oscillations or consistency errors. In the standard residual-based error estimator for classical finite
element methods [17, 36, 34, 33] the volume contribution takes the form (for any ¢ € H'(Q) and
piecewise Laplacian A7)

(3) ot = v Vallvg, + v b (F = Vg + vATun)| e

< 19w+ (o= dlzs + il = aulse + oseu(f — 9a.7)).
h h

The inequality above states efficiency, i.e. beeing also a lower bound of the real error, and its
dependence on the choice of g. Note, that for ¢ € @ the terms [Vq|vy, < ming,eq, ¢ — qnlr2 =0
vanish, but ||p—g¢| z2 remains, whereas for ¢ = p the term |p—g¢||z2 vanishes, but the other two remain.
If the velocity error is at best as good as the error in the pressure (scaled by 1/v), as it is the case
for classical pressure-inrobust methods, this estimate is fine (e.g. for ¢ chosen as an H '-interpolation
of pr). As a result classical a posteriori error estimates, see e.g. [17, 36, 34, 33|, often perform the
error analysis in a norm that combines the velocity error and the pressure error. A pressure-robust
method, however, allows for a decoupled error analysis of velocity error and pressure error and so
gives more control over both.
For a pressure-robust finite element method, the term (3) can be replaced by

(4) MNvol = l/_thT(_f —Vq+ I/ATuh)”Lz
S [V(u—up)lz2 + v~ (Ip — gl L2 + osex(f — Vg, 7))

Here, the choice ¢ = p leads to a pressure-independent efficient estimate. However, this cannot
be considered a posteriori, since p is unknown. Hence, an efficient error estimator of this form for
pressure-robust methods hinges on a good approximation of ¢ ~ p as already investigated in [15, 23].
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The main result of this paper concerns a different approach to estimate the velocity error that
yields an estimator with the volume contribution

(5) Neurl = 1/_1Hh%—curl7—(f + vATuy)| L2
[V (w —wp) |2 + v oser (hycurl-(f + vAguy), T).

A

The advantage of 7.y over 7y is that the curl operator automatically cancels any Vg from the
Helmholtz decomposition of f + vAsuy and therefore no approximation of p as in (4) is needed.
Also note, that 7cyy is similar to the volume contribution of a residual-based error estimator for the
Navier-Stokes equations in streamline and vorticity formulation [3]. However, the error estimator
with this volume contribution is valid for any pressure-robust finite element method like the Scott—
Vogelius finite element method [32, 37] or the novel family of pressure-robustly modified finite element
methods of [21, 9, 22, 25, 20] that allow for an interesting interplay between the Fortin interpolator
I and the reconstruction operator IT manifestated in the required assumption

(6) J (1-Tl)v -0 dr < ||Vo|2|h3curlf|: for all @ € H(curl,Q) and v € V.
Q

We prove this assumption for certain popular finite element methods including the Taylor—Hood
and mini finite element methods, and some elements with discontinuous pressure approximations.
However, we only focus on the two-dimensional case, since the proofs for the three-dimensional case
are much more involved and therefore discussed in a future publication.

The rest of the paper is structured as follows. Section 2 introduces the Stokes equations and
preliminaries as well as notation used throughout the paper. Section 3 focuses on classical finite
element methods and their recently developed pressure-robust siblings that are based on a suitable
reconstruction operator. Section 4 is concerned with standard residual-based error estimates for clas-
sical and pressure-robust finite element methods and the efficiency of its contributions, in particular
(3) and (4), especially in the pressure-dominated regime. Section 5 derives some novel a posteriori
error bounds with the volume contribution (5) that are efficient and easy to evaluate for the pressure-
robust finite element methods that satisfy Assumption (6). In Section 6 this assumption is verified
for many popular finite element methods and their pressure-robust siblings. Section 7 studies numer-
ical examples and employs the local contributions of the a posteriori error estimates as refinement
indicators for adaptive mesh refinement. The numerical examples verify the theory and show that the
pressure-robust finite element methods converge with the optimal order also in non-smooth examples.

2. MODEL PROBLEM AND PRELIMINARIES

This section states our model problem and the needed notation.

2.1. Stokes equations and Helmholtz projector. The Stokes model problem seeks a vector-
valued velocity field u and a scalar-valued pressure field p on a bounded Lipschitz domain Q < R2
with Dirichlet data uw = up along 02 and

—vAu+Vp=Ff and divu=0 in Q.
The weak formulation characterises u € H*(Q2)? by w = up along 02 and
v(Vu, Vo) — (p,dive) = (f,v) for all v e V := Hj(Q)?,
(¢,divu) =0 for all ¢ € Q := L3(9).
In the set of divergence-free functions V := {v € V |divv = 0}, u satisfies
v(Vu, Vo) = (f,v) for all v e V.
The Helmholtz decomposition decomposes every vector field into

f=Va+p=Va+Pf
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with a € H}(Q)/R and B =: Pf € L2(Q) := {w € H(div,Q)|divw = 0,w - n = 0 along 0D} [16].
Note in particular, that the continuous Helmholtz projector satisfies P(Vq) = 0 for all ¢ € H'(Q)
which implies

v(Vu,Vv) = (Pf,v) for all v e Vi,
hence w is steered only by the Helmholtz projector Pf of the right-hand side.

2.2. Notation. The set T denotes a regular triangulation of €2 into two dimensional simplices with
edges £ and nodes N. The three edges of a simplex T' € T are denoted by £(T). Similarly, N(T)
consists of the three nodes that belong to T' € T, N(F) consists of the two nodes that belong to
E € & and T (z) for a vertex z € N consists of all cells T € T with z € N(T). Finally we define £° as
the set of all inner.

As usual L?(Q), HY(Q), H(div,Q) and H(curl,§2) denote the Sobolev spaces and L?(Q)?, H'(£2)?
denote their vector-valued versions. Moreover, several discrete function spaces are used throughout
the paper. The set Py (T') denotes scalar-valued polynomials up to order k that live on the simplex
T € T and generate the global piecewise polynomials of order k, i.e.

Po(T) :={qn € L*(Q)|VT € T : vp|r € Pu(T)}.

The function 7p, () denotes the L? best approximation into Pj(w) for any subdomain w < €. For
approximation of functions in H(div, ) we use the set of Brezzi-Douglas-Marini functions of order
k > 1 denoted by BDMy,(T) := P.(T)? n H(div,) and the subset of Raviart-Thomas functions
of order k > 0 denoted by RTy(T), see [28]. The functions Iry, and Ippys, denotes the standard
interpolator into RTy(7) and BDMj(T), respectively, see e.g. [8]. We are also using lowest order
Nédélec (type I) functions No(T) defined as the 90 degree rotated lowest order Raviart-Thomas
functions with the corresponding interpolator I, see [27].

The diameter of a simplex T' € T is denoted by hr and hy € Py(T) is the local mesh width
function, i.e. hy|r := hp for all T € T. Similarly, hg denotes the diameter of the side E € £. At
some point certain bubble functions are used. The cell bubble function on a cell T € T is defined by
br = [.en = where @, is the nodal basis function of the node z € NV, i.e. ¢.(z) = 1 and ¢.(y) = 0
for y € N\{z}. Similarly, the face bubble bg for some side E € £ is defined by bp = [ [,z ¢.. The
vector ng denotes the unit normal vector of the side F € £ with arbitrary but fixed orientation, such
that the normal jump [v - n] of some function v has a well-defined sign. The vector T denotes a
unit tangential vector of E.

3. CLASSICAL AND PRESSURE-ROBUST FINITE ELEMENT METHODS

This section recalls classical (usually not presssure-robust) inf-sup stable finite element methods
and a pressure-robust modification of these methods.

3.1. Classical inf-sup stable finite element methods. Classical inf-sup stable finite element
methods choose ansatz spaces Vi, €V = H}(Q)? and Q;, < Q = L3(Q) with the inf-sup property
divuy, dz
(7) 0<co:= inf u SQqhih
2 eQn\{0} v, evi\ (0} IVUR[ollgn| L2

This guarantees surjectivity of the discrete divergence operator

divpvp, =g, (divey,) := argmin,, .o, [divoy, — gnllLe2,
but also leads to the set of only discretely divergence-free testfunctions

V()’h = {’Uh € Vh | dth’Uh = O},

that in general is not a subset of the really divergence-free functions V. Table 1 lists some classical
finite element methods that are inf-sup stable and are considered in this paper. Besides the Scott-
Vogelius finite element method (on a barycentric refined mesh bary(7) to ensure the inf-sup stability
(32, 37]), all of them are not divergence-free. The space P, (T) in case of the P2-bubble [13] or
the mini finite element methods [5] indicates that the Py (7) space is enriched with the standard
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TABLE 1. List of classical finite element methods that are considered in this paper
and their expected velocity gradient error convergence order k.

FEM name & reference & order abbr. Vh Qn
Bernardi-Raugel FEM [7] (k=1) BR PER(T) AV Po(T)

Mini FEM [5] (k = 1) MINT PHT)?2 AV Pi(T) n HY(Q)
Pii1 X Py FEM (k > 1) P2P0,... Py (T)2nV Py 1(T)
P2-bubble FEM [13] (k = 2) P2B PHT)?2 AV Pi(T)
Taylor-Hood FEM [18] (k = 2) THy P.(T)2nV Py 1(T) n HY(Q)
Scott-Vogelius FEM [32, 37] (k=2) SV Py(bary(T))2 "V Pyi(bary(T))

cell bubbles by for all T' € 7. For the Bernardi-Raugel finite element method normal-weighted face
bubbles are added [7] defining the space PER(T) := P1(T)? U {bpng : E € &}.

The relaxation of the divergence constraint leads to the usual best approximation error in the
pressure ansatz space, i.e.
§, pdivey, dz
) Vplvy, = sup Sopotor

' v €Vo, 1 \{0} Vo2
(p — qn)divvy, dz .
— < min [p— aulze,
oneVon\{0} IVon L2 an€Qn

and divergence-free methods are characterised by
Voo & Vo = |[Vp|y, =0forallpe L*(Q).

For completeness, we shortly prove the classical a priori error estimate in the following theorem for
the discrete solution uy, € up , + Vj, (where up j, is some suitable approximation of up) and py, € Qy,
defined by
(9) v(Vup, Vog) — (pr, diver) = (f, vn) for all v, € Vj,

(qh,divuh) =0 for all gh € Qh;

or, equivalently,
v(Vuy, Vo) = (f,vn) for all vy, € Vo 5.

Theorem 3.1 (A priori estimate for classical finite element methods). For the discrete velocity up,
of (9), it holds

1

_ 2 ; _ 2 L 2

V-unlfs < | nf V(= o)l + Vel
up=vp on o)

Proof. The best approximation wj, € Vg, with boundary data wj, = wy, along 02 of u in the H'-

seminorm satisfies in particular the orthogonality (V(u —wy,), V(u, —wp,)) = 0 and therefore allows

for the Pythagoras theorem

IV (w = wn)|1Z-

IV (w = wi) 2> + |V (un — w7

inf  |[V(u—wp)|72 + |V(up —wh)|7e.
VLEVD, R,
wup=vp on 0f2

(10)

The same orthogonality allows to estimate
[V (un —wi) 72 = (V(u—up), V(up —wy))

v (p, div(un —wp)) < v V|, [V (un — w2

I

O

The malicious influence of the pressure-dependent error and the factor 1/v in front of it for clas-
sical finite element methods that are not divergence-free was demonstrated and observed in many
benchmark examples, see e.g. [24, 25, 19, 20].
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3.2. Pressure-robust finite element methods. A method is called pressure-robust if its discrete
velocity is pressure-independent, i.e. if the a priori error estimate for the velocity error is independent
of the pressure.

The key feature behind pressure-robustness for the Stokes problem is that the testfunctions in
the right-hand side are divergence-free. This can be achieved e.g. by fully divergence-free finite
element methods (like the Scott-Vogelius finite element method) or, focused on in this paper, by the
application of some reconstruction operator II in the right-hand side of the equation (and in further
terms in case of the stationary and transient Navier—Stokes equations [25, 1]).

Hence, the modified pressure-robust finite element method (of any classical pair of inf-sup stable
spaces V}, and Q},) searches uy, € up,, + Vi, and pj, € Qp, with

(11) v(Vup, Vo) — (pn, divey,) = (f, Ivy,) = (Pf, vy,) for all vy, € Vp,
(gn, divug) =0 for all ¢;, € Q.
The operator IT maps discretely divergence-free functions onto exactly divergence-free ones, i.e.
(12) II:V, - H(div,Q) with div(IIv,) =0 for all vy, € Vi .
This implicitly defines a modified discrete Helmholtz projector
P f = argmin,, oy, [ f — Tvg |2

with P} (Vg) = 0 for any ¢ € H'(Q) or |Vg|Zyy, ). = 0 for all ¢ € L*(Q) and so allows for a
pressure-independent and locking-free a priori velocity error estimate.

Theorem 3.2 (A priori estimate for pressure-robust finite element methods). For the solution wuy,
of (11) with a reconstruction operator Il that satisfies (12), it holds

[V(u—up)|ze < inf  |[V(u—op)|72 + |Auo (1 -5
V€V, by 0,h
wp=vyp on 0N

with the consistency error

Au- (1 -y, d
(13) |Auo(1—T0)|%. = sup o Au - ( vy, dx
OF eV, \{0} [Von| L2

Note, that divergence-free methods (like the Scott-Vogelius finite element method) allow for I = 1
and so attain the same estimate as Theorem 3.1.

Proof. Similar to the proof of Theorem 3.1, it remains to estimate the second term on the right-hand
side of (10). Using the orthogonality (V(u — wy,), V(up — wp)) = 0 we get |[V(up, — wy)|2. =
(V(u—wup), V(up —wp)). The insertion of f = —vAu+ Vp and {, Vp - II(uj, —wp) = 0 (thanks to
(12)) then further shows

(V(u—up), V(wp, —up)) = (Au,up — wp) + %(ﬁl’[(uh —wp))
= (Au, up, — wp) + (Au, I(up — wp))
< [Auo (I =10y,

V(’U,h — ’wh)HLz.
This concludes the proof. O

To gain optimal convergence behavior of (13), the reconstruction operator additionally has to
satisfy another important property that concerns the consistency error of the modified method. For
a finite element method with optimal H'-velocity convergence order k and pressure L2-convergence
order ¢ we require, for all vy € Vg p,

(14) (g, (1 - H)’Uh) < “h%—+1Dq_lg‘|L2(Q) vahHL2 for any g € Hq_l(Q)Q.
In particular, for Au € H?71(Q)2, this property directly implies
(15) |Auwo (1 =)y, < |25 D Aul2(q)

and so ensures that the modified method still converges with the optimal order.
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TABLE 2. Suitable reconstruction operators II for the classical FEMs of Table 1.

FEM name abbr. II & reference
Bernardi—-Raugel FEM BR Ippn, , see [25]
Mini FEM MINI see [20]

Pk+1 X Pk—l FEM (k‘ = 1) PQPO, P3P17 IBDI\/Ik

P2-bubble FEM P2B IBpwm,, see [22, 25]
Taylor-Hood FEM (k > 1) THy see [20]
Scott-Vogelius FEM SV 1 (identity)

To be more precise, we require that the reconstruction operator satisfies some local splitting and
orthogonality property that can be formulated by

(16) (1 — H)vh = Z U'K|K with HUKHLz(K) < hKHv'vhHLz(K) and
KeK

J oK gy dr =0 for aughGPq—l(K)a
K

with hg := diam(K). Reconstruction operators IT with the properties (12)-(14) were already success-
fully designed for finite element methods with discontinuous pressure spaces, like the nonconforming
Crouzeix-Raviart finite element method [21, 9], or the Bernardi-Raugel [25] and P?-bubble finite
element methods [22, 25]. In all these cases I can be chosen as standard BDM interpolators with
elementwise-orthogonality with resepect to I = 7. Recently, also for Taylor-Hood and mini fi-
nite element methods (with k = ¢) of arbitrary order such an operator was found [20]. For these
vertex-based constructions Property (16) holds with K = {w, : z € N'}. Table 2 summarizes suitable
reconstruction operators, that satisfy the needed properties, for the methods from Table 1.

4. (LIMITS OF) STANDARD A POSTERIORI RESIDUAL-BASED ERROR BOUNDS

This section states and proves a posteriori error bounds for the classical and the pressure-robust
finite element methods by classical means. The resulting bounds reflect the pressure-robustness but
are, in case of a pressure-robust finite element method, rather unhandy as their efficiency relies on a
good approximation of Pf. To stress this observation, the analysis is performed in some detail.

First, we define the residual for the Stokes equations by

r(v) :=J v dm—f vVuyp, : Vo dz for all v e V.
Q Q
The dual norm of the residual r with respect to V defined by
r(v)
[7|vx:= sup
© weva\foy IVl

enters the generalised error bound as the central object of a posteriori error estimation. The error
analysis also assumes the existence of a Fortin interpolation operator I that maps from Vg to Vg,
and has first-order approximation properties and is H!-stable, i.e, for all v € Vg, it holds

(17) H(l — ]>'U||L2(T) < hTHVUHL2(wT) forall TeT,

(18) IVIv|L2 < [Vl .

For many classical finite element methods such an operator can be found in [8]. For its existence and

design in the Taylor-Hood case we refer to [26, 12]. Some more details are given in Section 6 below.
The following theorem establishes a general estimate similar to [17, Theorem 5.1] and can be

extended to nonconforming methods in a similar fashion. However, our focus is on the consistency

errors (8) and (13) and the dependency on v.

Theorem 4.1. The following velocity error estimates hold:

(a) In general, the L? gradient error can be estimated by

IV (w = wn)Z> < v=2|rl5y + 1/ch|diven]Z..
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(b) For the discrete solution wy, of the modified method (11) (or of the classical method (9) with
II = 1), the dual norm of the residual r can be bounded by

HTHV(*) < nclass(a—a (]) = nvol(Ja q) + navg(a) + njump(o—) + ncons,l(a) + ncons,Q(q)
for arbitrary q € HY () and o € HY(T)?*2. The subterms read
Muot(0,q) 1= b (f — Vg + vdivi(0))] >

Ua’ug(a) == v|Vuy — o

1/2
Njump(0) 1= [ *[vonp]l2e)
ncons,l(a) = ”Vdivh((:r) o (1 - H)HVO*,h
ncons,Q(Q) = ”vQ”(HVO‘h,)*a

Note that q acts as a conforming approximation of the pressure p and o acts as an approx-
imation of Vu (in particular o = Vuy, is allowed).

Proof. The proof of (a) can be found in [2, 11] and is based on the decomposition vV (u — up) =
vVz + y into some z € V and some remainder

yey = {yeL2(Q)dXd|fy:Vv dx—OforallveVo}.
Q

The orthogonality relations between z and y lead to
|12 (= un) |72 = |2V 2] 7o + [ 2y [ .
Since

12V 2|2, = f vV (u—up): Vz do = r(z) <v 2|r|ve v /?Vz| 2,
Q

—1/2

one arrives at [v'/2Vz|r: < v |7|lvs. This is in fact an identity, since

r(v) = j vVz: Vo dr < vY?|v2Vz| 2| Vo) for any v e V.
Q
Furthermore, there exists some w € L?(2) such that (see [2])

HV_1/22UH2L2 — J;) V(u—wuyp):y de = JQ wdiv(u — up) dz

—1/2

< [w] g2 [div(w — un)| e < w2 /eov™ 2y L2 |diven | 2.

Hence, |v=2y||z> < v'/?/co|divus| 2. This concludes the proof of (a) and it remains to prove (b).
Given any v € V', subtraction of its Fortin interpolation Iv € V45, and (11) lead to

T(U)=J9f-v dx—JQVVuh:Vv dz
:J f-(1-TIIv dm—f vVuy : V(1 — 1T dzx
Q Q

:J -1 -1 daz—f vo:V(1—1T)v dx—f v(Vup —o): V(1 —Iv dzx
Q Q Q

= L(f — Vq +vdivyo) - (1 = dz +;LT(VO7L) -(1=Iv ds

N JQ U(Vuy — o) : V(1 — D dx+f

vdivpo - (1 — ) Iv dI+J Vg -IIv dz.
Q Q

In the last step it was used that { Vg-v dz = 0 for any ¢ € H'(Q), since v € V is divergence-free. The
third integral is estimated by a Cauchy inequality and the H'-stability of I. The last two integrals
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are estimated by discrete dual norms and the H!-stability of I. Properties (17)-(18) of I and (16) of
IT show
17 (1 = Tl gy < 75 (1= Dol + A7 (1 = D) Io] 12y
S [Volz2r) + b7V V)| L2 (wr) S V] L2000)

and hence together with some Cauchy inequalities

J (f —Vq+vAruy) - (1-I)v dz
Q

< Z |h7(f = Va + vAgup)| 2 |h7 (1 = TH)v| 27y
TeT

1/2
< Mol (7, Q) (Z IVol32(or) ) < Mvot(0, @) [V 2.
TeT

Similar arguments hold for the edge-based integral using a trace inequality and Properties (17)-(18),
ie.

> [ on)- 0= 10) ds < 3 onllua o - Tolsam)
FegoVE Ee&°

1/2
< Z hy|[von] 222y [Vl L2 ()
Eeé&e°
1/2
< |h*vonll e [Vol 12 = Djump(0) V0] 1.
This concludes the proof of (b). O

Remark 4.2. Some remarks are in order:
e The existence of w in the last part of the proof of (a) needs uw — uy, € H(Q)2. In case of inhomo-

geneous Dirichlet boundary data or nonconforming discretisations uy, ¢ H'(Q)?, one can introduce a

function w € HY(Q) (e.g. the harmonic extension of the boundary data error wp —wup p, [6] plus some
H'-conforming boundary-data preserving interpolation of wy, [2, 17, 11]) with w = up along 0 and
attains u — w € H}(w). Then, a modified estimation of the second term yields

v 2y| 2 < V2 Jeo|divaw| pz + 12| Vi (up — w))| 2.

o The term Neons,1(0) = [vA7(dive) o (1 —)|vy, only appears for 11 # 1 as in the novel pressure-
robust methods and equals the consistency error (13) for o = Vuy,.

o Recall that Neons,2(q) = 0 if II satisfies (12) or if g€ Qp and IT = 1.

The following theorem studies the efficiency of the contributions of the standard residual error
estimators from Theorem 4.1 for the explicit choice o = Vuy,.

Theorem 4.3 (Efficiency for o = Vuy,). For o = Vuy, all terms of the residual-based error estimator
of Theorem 4.1 are efficient possibly up to data oscillations

oscy (e = > b7 (1= 7)) @ |22
TeT

and up to pressure contributions (either from the lack of pressure-robustness or from the quality of
the approximation of p by q) in the following sense.

(a) For the divergence term it holds |divuy|rz < |V(w — up)| 2.
(b) For the volume term ny01(q, Vuy,), it holds

v e (f — Vg +vAruy)|e < [V(u —up)| e
+ v (p —al 2 + ose(f — Vg, T)).
(c) For the jump term njymp(Vuy), it holds

v R P V]| ey S |V (@ — up)| e + v toser(f — Vp, T).
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(d) IfII satisfies (16), the consistency error Neons,1(Vu) is efficient in the sense
[A7un o (1 =1]vy, < [V(w—wup)|r
+ v (oscx(f — Vp, T) + oscq—1(f — Vp,K))
(e) For the consistency error Neons 2(q), it holds

0 if 11 satisfies (12),

v . <
IValae {minthQh lg—anlzz if T =1 without (12).

Proof. The proof of (a) simply uses divu = 0 to estimate
[diveg |2 = |div(iu — up)|r2 < [V(w —up)| Lz

The last inequality follows from the identity |Vv|? = |curlv|? + |dive|? for any v € H ()2, see e.g.

[4, Remark 2.6].

The proof of (b) and (c) is standard and employs the bubble-technique of Verfiirth, see e.g. [34, 35]
or into the proof of Theorem 5.4 below.

To show (d), observe that Property (16) leads to

f vAruy, - (1 — vy, de = Z J vATuy - ox dz
Q Kek VK

- KEKJ‘K(f_vP—FVATuh)'UK dﬁU—L{(l —7p, () (f — VD) oK dz

< Z hg (Hf—Vp—l—uATuhHLz(K)
KeK

(1 =7p, ) (f = VD) r2(r)) P okl 2 (i)

1/2
S ( Dk (F = Vp+ VATUh)|2L2(K)> IVop|z2 +oscq—1(f — Vp,K)[ Vo2
KeK

= (Mvol(p, V) + oscq—1(f — Vp,K)) [Vop| 2.

A division by |Vwvy |2 and the result from (b) conclude the proof of (d).

The proof of (e) is straight forward and employs integration by parts and the orthogonality of
div(vp) onto all g, € @y, if II = 1 does not satisfy (12). Otherwise, if II satisfies (12), the assertion
follows from div(Ilv,) = 0. O

Remark 4.4. Theorem 4.5.(b) shows the pressure-dependence also in the efficiency estimate. The
volume term ny01(q, Vuy) scales with the term v=1|p — q| 2. Hence, a pressure-robust method is
only efficient with a good approximation q¢ ~ p. In the hydrostatic (worst) case with wp, = 0 and
T = Vb, nuoi(q, Vu) is not zero (hence inefficient with efficiency index infinity) as long as q # p is
inserted. To compute the correct pressure is in general impossible or expensive. Some strategy to find
an approximation that at least yields a higher-order term is discussed in [23].

Note however, that n,01(q, Vuy) is efficient for a classical pressure-inrobust method with qp, = pp
(or some suitable H'-approximation), since then the discrete velocity error and its velocity error also
depends on v=t|p — pp| 12, see e.g. our numerical examples in Section 7.

5. REFINED RESIDUAL-BASED ERROR BOUNDS

This section offers an alternative a posteriori error estimator and is related to the stream function
and vorticity formulation of the Navier—Stokes equations. The analysis employs the two-dimensional
curl operators for vector and scalar fields

curlg := (0¢o/0x — 01 /0y) for ¢ = (¢1,¢2) € H'(Q)?,

curlg = (‘ai%iﬂ for ¢ € H'(Q).
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The outcome of this alternative approach is a different volume term that only takes curl(f) into
account and so automatically cancels the gradient part of the Helmholtz decomposition. Hence, no
knowledge or good approximation of Pf is needed. The resulting terms are related to the terms in
[3] where error indicators for discretisations of the streamline and vorticity formulation were derived.
However, our error estimator holds for pressure-robust finite element methods for the velocity and
pressure formulation of the Navier—Stokes equations.

Given a Fortin interpolator I and a reconstruction operator II with (12) (possibly II = 1 for
divergence-free finite element methods like the Scott-Vogelius finite element method), the novel ap-
proach exploits that ITJ/v for some divergence-free function v € Vg is again a divergence-free function
in L2(€). Our analysis needs the following assumption on the two operators additional to (12) and

(17)-(18).

Assumption 5.1. For every v € V, the Fortin interpolator I and the reconstruction operator 11
satisfy

MIve L2(Q) and hence J (1—Tv-Vqdz =0 forallqge H(Q),
Q
and the estimate
J (1-T)v -0 do < |Vo|pe|h3-curlf| 2 for all 6 € H(curl, Q).
Q

Theorem 5.2 (Novel error estimator for pressure-robust methods). For u; of (11) and any o €
HY(T)?**2 (that approzimates or equals Vuy, ), the error estimator

nnew(U) = ncurl(U) + njump(a) + njump,Q(U) + navg(U) + ncons,l(g)

with the subterms

Neurt\O Hh%—curlf(‘f + VdthO') HL2

0) i= |h*[vonp] |z

Njump

(o) :=
(0) =
Tjump, 2 2(0) = th/z[(f + vdivyo) 'TE]”L2(€°)
(o) :
(o) :

Navg(T v|Vuyp, — o2

Tlcons, 1\O

Jvdivi(o) o (1= 1)y,
satisfies
_ 1, ..
Irlv < nla) and hence  [V(u—wn)[72 < v*n(a)® + —[diven|7..
0

Note in particular, that the volume contribution nyei(q, o) from Theorem 4.1 has been replaced by the
quantity Neur(o) that is pressure-independent (or g-independent).

Proof. As in the estimation of ||y in the proof of Theorem 4.1.(b), we subtract the Fortin inter-
polation Tv of any testfunction v by employing (11), i.e

:J f - (v—1IIIv) dx—uf Vauy, : V(v — Iv) d.
) )
Given any o € H'(T)?*2) an (element-wise) integration by parts shows

r(v) = f (f +vdivpo) - (v —I1Iv) dz +VJ (6 = Vup) : V(v —1v) dz
Q Q

+v Z J [on] - (v — Iv) ds—i—uf (divpo) - (v — Iv) de =: A+ B+ C + D.



12 ERROR CONTROL FOR PRESSURE-ROBUST FINITE ELEMENT METHODS

The terms B, C and D are estimated as in Theorem 4.1.(b) by

Bi=v ), f (0 — V) : V(v — Iv) di < vl|o — V| 2] Vvl 2
TeT VT

Ci=v ), f [on] - (v — Tv) ds < v|hy*[on]| L2 (e0) | Vo 2
Eego JVE

D= ”f (divyo) - (v — Iv) dz < v|(divyo) o (1 —10)|ve, [Vo] e
o ,

It remains to estimate term A. As v —IIlv is exactly divergence free and has a zero normal trace we
can apply Theorem 3.1, chapter 1 in [16] to find a scalar potential ¢ € Hg () with curly) = v — I Iv.
In the following we bound the weighted L? norm of . Note that from h3'y e L2(Q2) follows
h}Qz/J € h3-curl(H (curl,)), due to the surjectivity of the curl operator (de Rham complex) and so

Sa h*bh Y dx

WY 20y = —
T T Y g
h=2yhZcurld dz curl@ dz
< sup SQ g Vvhy = sup Sg’d)—
ocH(curl,)  |heurld|pz ) ocH (curl,Q) ||RFcurld|2(q)

On the other hand one can bound the supremum by Hh}2w|| r2() with a simple Cauchy Schwarz
estimate. Using Assumption 5.1 it follows by an integration by parts and ¢ € Hj(£2) that

) Yeurl dz
19 h7* 2@ = sup e
( ) H T HL () OcH (curl,Q) Hh%—CUTIOHLQ(Q)

Iy -6 d
~ s SQ curly z

< | Voliz).
oeH (curl,) |h5-curld] L2 (q) IVoliz@

With 6y, := f + vdivio and ¢ = 0 on 02 a piecewise integration by parts yields

A:=f 0y, - (v —TlIv) dx=f 0y, - curly dx
Q Q

= Z JT curl@,y dr + Z J (01 - TE]Y ds

TeT EegoVE
< Y [hdcunln] oy |hp ¢l ey + > 1BS20h - Bl 2 () h” 0l 22y
TeT FEe&e°

< (In3curlr6ul ey + 1172100 - Telliaer) ) (10720 Iac) + Ihe " *Vlsacer ) -
Using a standard scaling argument we get, for each edge FE € £°,
—3/2 - _
e 0 lee) < b9 leer) + b IV ey,
For the second term in the previous estimate we have
hp V9] 2oy = byt ewrl| L2y = byt o = T 201y S [V L2 (0or) -
Together with (19) and an overlap argument this leads to
—3/2 _ _
07 ey < Ih7* @) + 07! Vol ey € V0] 20
This concludes the estimate for A, i.e.
A < (Newrt(0) + Mjump,2(0)) [V £2(0).-
The collection of all separate estimates for A to D shows
r(v) s n(o)| Vol
and a division by |Vwv| 2 concludes the proof. O

The same techniques also a yield a novel error estimate for classical methods.
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Proposition 5.3 (Novel error estimator for classical methods). For wy, of (9) and any o € H'(T)?*?
(that approzimates or equals Vuy ), the error estimator

Nnew(0) = Newrt(0)  + Njump(0) + Navglo) + |(f + vdivpo) o (1 — H)Hvoﬁh
satisfies

_ 1.
Irlv < nla) and hence  [V(u—un)[7z < vn(a)” + = [diven |7z
0

Note, that I1 is used only in the error estimator here, but not in the calculation of wy. It is not allowed
to set I1 = 1 if the classical method is not divergence-free, i.e. 11 has to satisfy (12). The difference to
the previous theorem lies in the appearence of f in the consistency error ||(f + vdivyo)o (1 —1D)|vy, .

Proof. The proof follows the proof of Theorem 5.2 but one has to add the term SQ f(v—Tv) dz
which can be added to the estimate of term C'. d

The next theorem establishes the efficiency of the novel terms 7eu1(0) and Njump,2(0) for o = Vauy,.
For the efficiency of the other terms see Theorem 4.3.

Theorem 5.4 (Efficiency for o = Vuy). It holds

(a) v Wi |eurly (f + vATus)| L2y S |V(w = wp)| 21
+v L hroscg (curl(f + vAguy), T),

(6) v + vATwn) - el < |V — wn)| 2wy
+v L hposci (curlr (f + vA7uy), T(E))
+v " hgoscr([f - TE], E) + osck (f — Vp, T(E)),
forallT €T and E € £°.

Proof. The proof employs the standard Verfiirth bubble-technique. To shorten the notion in the proof
of (a), we define

Qr = curl(f + vAguy)|r forany T eT.
Then, it holds (similarly to [35])

|7 p, QT HLz(T)

< sup JWPk(T)QT'(b%“UT) dz /|vr| L2 (1)
T

’UTEPk (’I‘)2
< swp §p Qrbjvr do sup 1Qr — 7p, (1) Q7 L2(1) |07V L2(1) .
vrepu(r)?  |vrlLe () vrePy(T)? lvr|lze2 (1)

Testing the continuous system with the (divergence-free) testfunction curl(b3vr) € H2(T)? n H} ()2
and an integration by parts leads to

J Qrbivr dr = J (f + vA7uy) - curl(bavr) do
T T

= J vV(u —uy) : Veurl(brvr) do
T
< V|V (u—wup)| 2 | Veurl(bFor)| 22 (1)
A discrete inverse inequality shows |Veurl(bjvr)|p2(r) < h;QHb%vTHLz(T). This and the norm
equivalence [b3vr| 27y ~ |vr|L2(r) lead to
ho |7 QrllL2(ry S VIV(w = wn) |27y + W7 | Q1 — Tp, (1) Q| L2(7)-

This concludes the proof of (a).
In the proof of (b), we use the notation

Qp:=[f+vAyuy]-7g forany E€&
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and the face bubble by with support wg for every face E € £. Then,

QE' . (b2 ’UE) dS
I7p,(2)QElr2() S  sup o £
vpeP(E)? H’UEHL2(E)

+ Qe — 7p,(r)RE|L2(E)-

Testing the continuous equation with the divergence-free testfunction curl(b4vg) € H}(Q) (where vg
is reasonably extended to wg) and an integration by parts show

JE Qp - (bpvp) ds
- .[E[(f +vATup) - 7] - (VpvE) ds

= J (f + vATuy) : curl(byvg) dr —f curl(f + vATuy,) : (bivg) do

WE

< |F + vATUR] L2 (o) lewrl (050 E) [ 12wy + 1QT ] 2 (wr) [0V B[ L2 (o) -
A discrete inverse inequality [curl(b3vg)|r2(ws) < h7'[03VE|12(ws) and a scaling argument (see
[35)), that yields [b2v g 12(wp) < hit” 05|12 (), show
Wt |y () @il 2y Shrlf + vATun| L2 gy + B3 1QT 22w
+ h?gQHQE — Tp)RE|L2(B)-
The proof of Theorem 4.3.(c) yields
|f + vATuR|L2(0g) S V[V(6—un)|L2 + ose(f — Vg, T(E)).

This and the already proven result from (a) conclude the proof. O

6. PROOF OF ASSUMPTION 5.1 FOR CERTAIN FINITE ELEMENT METHODS

This section proves Assumption 5.1 for certain finite element methods. For the analysis several
standard interpolation operators that are related to the de Rahm complex (see e.g. [31]) are employed.
These are a (projection based) nodal interpolation operator I, the lowest order Raviart-Thomas
interpolation operator Ir7, and the lowest-order Nédélec interpolation operator In;,. These operators
satisfy in particular the commuting diagram properties in two dimensions (see [14])

(20) curl(Ipv) = Igp, (curlv) and V(Ipv) = In, (Vo)
for arbitrary sufficiently smooth functions v. Furthermore we need a refined Helmholtz decomposition.

Lemma 6.1 ([31)). It exists an operator Wy, : H(curl,Q) — No(T) with the property: for every
0 € H(curl, Q) ezxists a decomposition

01,0 =Vo+y
with ¢ € HY(Q), y € HY(Q)?, and
hi' Y2y + VYl L2y < Jcurl®| 2y for all T e T.
Proof. In [31] a proof for three dimensions is given. The two dimensional case follows similarly. O

Lemma 6.2 (Regular decomposition). For each 6 € H(curl,w) there exists a decomposition with
a€ H*(w) and B € H'(w)? such that

0 =Va+ 3,
with

[IVB|lL2(wy < llcurlf||p2,y  and f B dz =0.
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Proof. Let q := curl@ and @ be a convex domain such that w < @. We define ¢ as a trivial extension
of ¢ by zero, ie. Gl = ¢ and |z, = 0. In the next step we seek the solution w € HY(@) of the
Poisson problem Aw = curlcurlw = ¢ on @. Using a regularity estimate for the Poisson problem on
the convex domain @, it follows for 8 := curlw and 8 := B, — 5. B dz /|w| that

IVBIlL2w) S [IVBllL2@) S [wllm2@) S lldllez@) = [lall2w) = lleurl]] g2 ().
Since curl(6 — B) = 0 in w, its exists a vector potential o € H?(w) such that Va = @ — 8. This

concludes the proof. O

Theorem 6.3 (Proof of Assumption 5.1 for finite element methods with Py pressure space). If the
reconstruction operator I1 and the Fortin operator I satisfy (16) and

(21) f(1—I)v~ﬁEd5=J(lfHI)v~ﬁEd5=O forall E€é&,
E E

also Assumption 5.1 is satisfied.

Remark 6.4. Condition (21) is satisfied for the Forint interpolators for the Py x Py, Py x Py and
the Bernardi-Raugel finite element methods [8, Section 8.4.3]. For these methods the reconstruction
operator 11 is the standard interpolation into the space BDMy or RTy [25].

Proof. Since every function g € H*(T') with §,g-n ds = 0 along all edges E € £(T) of T satisfies a
discrete Friedrichs inequality ||g||z2(ry < hr|Vg|L2(r), see e.g. [10], it follows together with (16)

[(1 =T)v| 27y < (1 = D[ 2y + [1(1 =T (Tv) | L2(7)
< hr |Vl (ry + hr[VIV| 21y < e[V L2 ().

Since (1 — III)v is divergence-free, it holds (1 — III)v = curly for some v € H}(Q) n H?(Q2), see
Corollary 3.2 in [16]. Condition (21) implies that the standard interpolator into RT, vanishes, i.e.
Ipg,curlyy = 0. Moreover, by the commuting properties (20) of the de Rham complex, it also holds
curl(Izy) = Igpg,curlyy = 0. An integration by parts and standard interpolation estimates yield

f 0-(1-Tv dz = J 0 - curl(v) — Io)) dx = J curl@ - (¢p — Ipe) do
Q Q Q
< || PFcurlf| 2 |7 (¥ — 1) 12
< B2 curld| 2 [h7AV (6 — Tt 1o
= |hZ-curlf| p2 |hF curl(¥) | 2
= |h%curlf| 2[R (1 — IL)v| 22 < ||h3-curl®| 2 |Vl 12,

where we used that the curl is just the rotated gradient in two dimensions. This concludes the
proof. O

Theorem 6.5 (Proof of Assumption 5.1 for finite element methods with discontinuous P; pressure
space). If the reconstruction operator II and the Fortin operator I satisfy

(22) JT(l —DNv dz = JT(I —INv dc =0 forallTeT,

also Assumption 5.1 is satisfied.

Remark 6.6. Condition (22) is satisfied by the Pa-bubble finite element method and its Fortin in-
terpolator [8, Section 8.6.2]. A suitable reconstruction operator 11 is the standard interpolation into
the space BDMy or RTy [22, 25]. Moreover, the result generalises to all P, x Py_o finite element
methods with k > 2.

Proof. A triangle inequality, interpolation properties of II, a Poincaré inequality, and the H'-stability
of I show

(1= MYl gy < (L= D T0] ey + (L = Doliary < hel Vol war).
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To estimate the dual norm, Lemma 6.1 yields 8 — IIx,, 0 = V¢ + y with
|h7ylre < |h3-curld| e,

Also note that due to IIx, 0 € H(curl,T') we can use the regular decomposition from Lemma 6.2 to
find

A, 0|7 =Var + By forallTeT
with some ap € H*(T) and B € [H*(T)]? such that §, B, dz =0 and
IVBzlr2ery S leurl(Mng 0)[L2(ry < [curl®] p2(r).

Together with the projection property of Ins,, the commuting properties (20) of the de Rham complex
and the continuity of the nodal interpolation I, for H? functions, the Helmholtz decomposition can
be cast into the discrete version

HN00|T =In, (VaT + IBT) = V(IﬂaT) + In, B
The combination of all decompositions defines some function ar € P;(T) and Br € Py(T)? with
W28 1 < [hcurl6) 2.

Since z := (1—1III)v is orthogonal onto piecewise constants (by (22)), in particular the piecewise con-
stant function V(I a)7 € Py(T)?, and gradients (because z is divergence-free and has zero boundary
data), it follows

f@-(l—HI)v da:=f z-0 dx=f z-(0 —Typ,0) dx—&-f z-llyp,0 dx
Q Q Q Q
=J z-y dac—i—f z-By dx
Q Q

=J h7'z - hry dx+f hi'z - hrBy do

Q Q

< 17 2l (Ihrylze + 15 VaBrlLe)

< |7 2| 2 |Rewnlf) 12 < |V g2 | hFcurld) 1e.

Note, that we used an elementwise Poincaré inequality for B, (which has piecewise integral mean
zero). This concludes the proof. O

Theorem 6.7 (Proof of Assumption 5.1 for the mini finite element method). The mini finite element
method family with the reconstruction operator from [20] and a Fortin operator I with the property
(see e.g. [8, Section 8.4.2])

(23) JT(I —DNvds=0 forall TeT

satisfies Assumption 5.1.

Proof. For the mini finite element method, the reconstruction operator is given in [20]. It in particular
satisfies (16) in the sense

(24) 1-Iv= ) o,
yeN

where o, € BDMy(T (w,)) satisfies |0y |z2(w,) S hylVIV|L2(,) on the nodal patch w, of the node
y € N and (at least) the local orthogonality

J oy, dz = 0.

Yy
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Furthermore we have o, -n = 0 on the boundary dw,. This time, the operators I and II do not share
the same orthogonality on cell-wise constants as in Theorem 6.5, but one can split up the L?-norm
by a triangle inequality

(1 =T)v|r> < [(1 = IDTv|z2 + (1 = Do 2.

Due to (23) the norm ||(1 — I)v|z2(7 can be estimated as in Theorem 6.5 and it remains to estimate
[(1 —TI)Iv|g2. For the first one, it holds

[0 =M Lvffery = Y, | oo (L-Iv do
zeN(T) T

< D) ol = Iv| g2
2eN(T)

< hr|[VIv| g2 |1 = I Tvp| 27
and hence
(1= I Iv|r2() € hr|[VIV|2@0r) < hr[VVlL2@0r)-

For the estimate of the dual norm, inserting the decomposition from Lemma 6.1 leads to

JB-(l—HI)v dm:J z-0 da::J z-y dx—i—f z - 1p, 0 dx.
Q Q Q Q

The first integral can be estimated as in Theorem 6.5 and it remains to estimate the second integral
where we employ the decomposition (24) for (1 — II)Iv = Zye A~ Oy and its orthogonality properties,
ie.

(25) J z -, 0 dx :J (1=T1v -, 0 dz+ Z hy oy hyllx, 0 do
Q Q yeN Y@y ’

and we bound both integrals separately. The first integral of (25) can be estimated exactly as in
Theorem 6.5 due to (23) by a element-wise Helmholtz decomposition such that

L)(l — v T, 0 dz < |Vl g2 |h3-curld] Lz

For the second integral, first note that due to IIx, @ € H (curl, w,) we can use the regular decomposition
of Lemma 6.2 on each patch to get
Mp, 0], = Va, + B, forallyeN.
with some a,, € H'(w,) and 3, € [H'(wy)]* such that Swy B, dx =0 and
1Byl 1 (w,) < llcwrl(Tnp,0)[L2(w,) < [curl®|rz,, ).
Next note, that on each element T' < w, we have IIxp, 0|7 € [H'(T)]? and thus
Vaylr = Unp,blr — Bylr € [HND)P = aylr € HX(T).

Together with the projection property of Ixs,, the commuting properties (20) of the de Rham complex
and the continuity of the nodal interpolation I for H? functions, the Helmholtz decomposition can
be cast into the discrete version

Np,Olw, = Ing(Vay, + B,) = V(Icay) + In, B,
Finally, a scaling argument and a Poincaré inequality shows

HnoByllzzw,) S 18yl2w,) + hylVBylL2w,) S hlVBylL2(w,) S hylcurl®| 2,
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Furthermore, note that the reconstruction operator is orthogonal on gradients of continuous P;-
functions like V(Izay) due to [20, Proposition 16.ii], i.e. § oy, -V(Izay) dz = 0. Now, the second
Y

integral of (25) is bounded by

Z J hytoy - hyTlx,0 do < Z Ihy oyl ) 12V B, L2 w,)
Wy

yeN yeN
< Y|Vl e |h2eurl®| 2,y S |V L2 ||hEcurld] pe.
N 2|1y L2 (wy) S Lzl L
yeN
The combination of all previous results concludes the proof. O

Theorem 6.8 (Proof of Assumption 5.1 for the Taylor—Hood finite element method). The Taylor—
Hood finite element method family with the reconstruction operator from [20] and the Fortin operator
I from [26, 12] in two dimensions with the property

(26) JQ(l—I)U-w ds =0 for all w e Ny(T),

where No(T) is a subset of No(T) as defined in [26, 12], satisfy Assumption 5.1.

Remark 6.9. The proof requires some assumption on the mesh, i.e. we require that each interior
face E € E° has at most one node on the boundary 0Q0. This assumption was also needed in [26]
for the construction of a stable the Fortin interpolator and was later removed in [12]. Maybe similar
arguments can be used in our case.

Proof. A triangle inequality, properties of IT, and the H'-stability of I show
(= Tl ey < |2 =~ D Tv] 2y + 11— Dolzecr) < hrl Vol ar).

Again using the decomposition from Lemma 6.1 and the orthogonality between gradients and (1 —
II7)v leads to

J(l—HI)er dm:f(l—HI)'u-y da:-l—‘[(l—HI)'v-HNOG dz
Q Q Q

The first integral can be estimated similarly as in the proof of Theorem 6.7. For the second integral
we use (1 —IDIv =3} \ oy to get

J (1-Tv -1y, 0 dz = f (1—-1v-Ix,0 dz+ Z hy oy - hyTlx, 0 dz.

Q Q yeN YWy

Similarly as in the proof of Theorem 6.7 we bound the first term. However the integral (using the
orthogonality (26))

J (1= 1) T, 6 de =J (1= D)o+ (1 - Iy )Tx, 8 do
Q Q

needs a different treatment. To estimate this integral we have to design a proper interpolation
Iﬁg(HNo 0) of I, @ into the space Ny(T). To do so, we can write Iy, @ as a linear combination

In, 0 = Z apNg with coefficients ag := f Ip, 0 - T ds
Eec& E

and Nédélec basis functions N with SF NgTp ds = 0gp for E,F € £. Then, we choose I/\“rg(HNo 0)

as

where £° are the interior edges and NE are the modified basis functions as in [12], i.e. NE = Ng for
all edges F with two interior endpoints and N g = Ng + Ny for interior edges E with one boundary
endpoint and F is a boundary edge with the same boundary endpoint and in the same triangle of
E. The sign depends on the orientation of the tangent vectors. Assume a boundary triangle Tk with
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E, 2
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Es

1

FIGURE 1. Enumeration of the vertices and edges in a boundary triangle with bound-
ary edge Ej3.

nodes 1,2, 3, boundary edge E3 = conv{l, 2} and two adjacent interior edges F; and E> as depicted
in Figure 1. We further assume, that the tangential vectors are pointing from the lower to the larger
node number. Then, according to [12], the modified basis functions read N 5, = Ng, + Ng, and
Ng, = Ng, — Ng,. Hence, locally on T', we have

((1 — IN-B)HNOG) ‘T = aElNEl + (XE2NE2 + OéE3NE3 — (04E1NE1 + OcEQNE2)
= Ng,(ag, + ag, —ag,).
The definition of ag; and an easy calculation plus the Stokes theorem show
ap, + ap, —ag, = J I\, 0 - T ds = J curl(Ilx, 0) dx
oT T
and hence the estimate

I~ Il < | [ cuniygo) as
T

INElL2(ry < hrlcarl(Tlx, 0)] L2 (1)

On interior triangles, it holds ITx;,0 — INS(HNDB) = 0 and hence

J (1 - Dolly,0 dz = f (1- I (I, — Iy (Tx, 0)) do
Q Q

S D hplewd (Mg 0)| p2er) [Vl 2 () < [hFcurld] 12| Vo 2.
TeT (09)

This concludes the proof.

7. NUMERICAL EXPERIMENTS

In the following two numerical examples, the novel error estimator
Miew = V_277nevv<vuh)2 + ‘|divuhH%2
from Theorem 5.2 (for pressure-robust methods) or Proposition 5.3 (for classical methods) is compared
to the classical error estimator
s = V" 2 Netass(Vun, pr)? + ||[divaes |2

from Theorem 4.1, with respect to the H'-seminorm errpi(up) := ||[Vu — Vuy||p2. Our adaptive
mesh refinement algorithm follows the loop

SOLVE — ESTIMATE — MARK — REFINE — SOLVE — . ..
and employs the local contributions to the error estimator as element-wise refinement indicators. In
the marking step, an element T € 7 is marked for refinement if u(7T) > 1 max #(K). The refinement
€

step refines all marked elements plus further elements in a closure step to guarantee a regular trian-
gulation. The implementation and numerical examples where performed with NGSolve/Netgen [30],
[29].
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TABLE 3. The H! error and the old and new error estimators including the efficiency
for the example of section 7.1 for varying v using the classical Taylor Hood element
TH5 and its pressure robust modification.

(classical) (p-robust)

__Hclass —linew
v err 1 (up,) Heclass ot 1 (un) err g1 (up) Hnew err 1 (up,)

101 1.27-1073% 1.99-10~2  1.58-10' 1.30-103 5.19-10~2  3.98-10!
10  1.30-1073 1.42-1072  1.09-10'  1.30-103 3.47-10~2  2.66- 10!
10-1  3.12-1073% 1.12-10~' 3.58-10' 1.30-103 3.29-10~2  2.53-10!

1072 2.85-1072 1.11 3.90-101 1.30-10~3 3.28-1072  2.51-10!
10-2 2.85-10~'  1.11-10! 3.90-10'  1.30-1073 3.27-1072  2.51-10!
10~4 2.85 1.11- 102 3.90-101 1.30-10~3 3.27-1072  2.51-10!

107%  2.85-10! 1.11-10% 3.90-10'  1.30-1073 3.27-1072  2.51-10!
1076 2.85.102 1.11-10% 3.90-101  1.30-1073 3.27-1072  2.51-10!

Remark 7.1. For reducing the costs of the estimator, we estimated the consistency error Neons, 1(Vup) =
|lvdivy (Vup) o (1 —)|lvy, according to (16) by

1/2
nconS,l(vuh) v ( Z h%(“(l - 7"'Pq1(K))Ahuh%2(K)> :
KeK

7.1. Smooth example on unit square. This example concerns the Stokes problem for
u(z,y) :=curl (z*(z — 1)*y*(y — 1)®) and p(z,y) = 2" +y° —1/3

on the unit square € := (0,1)? with matching right-hand side f := —vAw + Vp for variable viscosity
v.

Table 3 lists the error of the classical and pressure-robust Taylor-Hood finite element methods with
their error estimators ficlass and fineyw on a fixed mesh with 1139 degrees of freedom but varying vis-
cosities v € (107%,10). As expected by the a priori error estimates of Theorems 3.1 and Theorem 3.2,
the error of the classical solution scales with v~!, while the error of the pressure-robust method is
v-invariant. Another observation is that both error estimators are efficient for their respective discrete
solution.

Figure 2 compares the errors and error estimators of the Taylor-Hood finite element method of
order 2 and the MINI finite element method with and without the pressure robust modification for
uniform mesh refinement as in the case v = 1 and a pressure-dominant case with v = 1073,

In the pressure dominant case ¥ = 1073 the right hand side f tends to have a large irrotational
part. The left plot of Figure 2 confirms once again that the velocity error scales with 1/v and that
pressure-robust methods result in much more accurate solutions. For the classical methods both
estimators pinew and piclass are efficient, i.e. have comparable overestimation factors and the same
optimal convergence order as the velocity error. In case of the MINI finite element method, all
quantities even converge quadratically. This is due to the dominance of the pressure error and the
higher approximation order of the pressure. In this sense, we are in a pre-asymptotic range and the
error will convergence linearly as soon as the v~3-weighted pressure error is of same magnitude (as
it is the case for v = 1 from the very beginning). Also for the classical MINI element fipew and ficlass
are efficient with a comparable overestimation factor.

For the pressure-robust methods we observe that for both elements the novel estimator pipew is
much smaller than picass- To be more precise, it scales with finew & 1/V ficlass in case of the Taylor-
Hood method as expected by the theory. This is again due to the discrete pressure that is used
in pclass (Pn replaced by some better approximation of p would reduce the gap between finen and
Leclass). Hence, fineyw is efficient and picjass is not efficient for the pressure-robust Taylor—-Hood finite
element method. In case of the pressure-robustly modified MINI method, the velocity error and the
novel estimator i, now have the expected optimal linear order of the MINI finite element method.
Otherwise, the conclusions are similar to the ones for the Taylor-Hood method.
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TH, with v = 1073 THy with v =1
1w e
10" - |10t y
T 1107t 2
1073 1 11073 y
1075 1 11075 a
| | | | | | | |
102 10° 10* 10° 10? 10? 10? 10°
ndof ndof
MINI with v = 1073 MINI with v =1
103?” — — — T 103?” —
102 4 102 .
10t 1 10t E
100 4 100
1071 41071
10-2 4102
1073 ;T\H‘ | L 11l | E 10737
10? 10? 10* 10°
ndof
eITr g1 (’U,h) — HMnew Mclass O(h)

--- O(h?) x p-robust method o classical method

FIGURE 2. The H'-error, ficlass and finew for the example of section 7.1 with v = 1
and v = 1073, At the top the TH; element, and at the bottom the MINI element.

In this case v = 1 the irrotational part and the rotational part of the right hand side f have the
same magnitude, thus the pressure error has not such a big impact on the accuracy of the discrete
velocity. Accordingly, there is only little to no improvement by the application of the pressure-robust
modification. Thus, in the right plots of Figure 2 we can see that the velocity error of both methods,
the pressure robust and the classical one, is of the same magnitude and order. Both estimators are
efficient with slightly less overestimation by 7cjass-

7.2. L-shape example. This example studies a velocity u and a pressure pg on the L-shaped domain
Q:=(—1,1)%\((0,1) x (—1,0)) taken from [34] that satisfy —vAwu + Vpg = 0. The fields are defined
in polar coordinates and read

o [ @+ Dsin(@)i(e) +cos(@)v/(¢) |
u(r,p) =r <—(a + 1) cos(p) () + Sin(so)w’(so)> ’
po = v I ((L+ ) () + 0" (9)/(1 - @)

where

P(p) :=1/(a+ 1) sin((a + 1)¢) cos(aw) — cos((a + 1))
—1/(a—=1) sin((a — 1)) cos(aw) + cos((a — 1))
and a = 856399/1572864 ~ 0.54, w = 37/2. To have a nonzero right-hand side we add the pressure

py = sin(xym), i.e. p:=po+ps and f := V(p;). We generate a pressure dominant case by using
a small viscosity ¥ = 1073, In Figure 3 and 4 the velocity error and the novel estimator npe, are
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P2P0 (p-robust) P2P0 (classical)
103; e e e 3 103§ T E
102 E E 102 E E
10" |- 1 101 ¢ E
10° E 4 100 E
107 - 1107
| Ll PR B L vl | Ll ]
102 10 10t 10° 10? 10 10t 10°

ndof ndof

P2B (p-robust) P2B (classical)

T T T r T T T
10° |
10! i
10° ; ;

1071 ¢ 3
1072 .
1073 ! | ri
107
ndof ndof
—erryi(up) O(h) --- 0O(h?)
——  Hnew x adaptive ref. o uniform ref.

F1GURE 3. Error for L-shape example of section 7.2 using the discontinuous pressure
elements P2P0 (top) and the P2B (bottom) with v = 1073

plotted for the classical and modified version of four different finite element methods and uniform and
adaptive mesh refinement. For this example an adaptive refinement is expected to refine the generic
singularity of the velocity in the corner (0, 0).

We first discuss the pressure-robust variants of the finite element methods. Looking at the left
plots of Figure 3 and 4 we can see that there is a major difference between adaptive and uniform mesh
refinement. The adaptive algorithm results in optimal orders of the velocity error and the estimator,
while uniform refinement only leads to suboptimal orders as the singularity is not resolved well
enough. The only exception is the MINI finite element method which pre-asymptotically converges
with quadratic speed. This is again thanks to the better polynomial order in the pressure ansatz
space and the smooth pressure p™. Asymptotically also the MINI finite element method shows
the suboptimal behaviour in case of uniform mesh refinement and first-order convergence in case of
adaptive mesh refinement. In all cases, the new error estimator piyey is efficient and gives reasonable
refinement indicators.

In case of the classical variants of the finite element methods, totally different observations can be
made. In the right pictures of Figure 3 and 4 we first note that the error is much larger compared to
the pressure-robust method. Furthermore similar as before only adaptive mesh refinement leads to
optimal orders. However, it is important to note that the gap between the velocity error of the classical
method and the velocity error of the pressure-robust method stays as large as in the beginning also
under adaptive mesh refinement. A possible explanation is given by Figure 5 which shows that the
classical method refines the mesh almost uniformly. This is reasonable in the sense that the pressure
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MINT (p-robust)

MINT (classical)
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F1GURE 4. Error for L-shape example of section 7.2 using the continuous pressure
elements MINI (top) and the THj3 (bottom) with v = 1073

VN

(a) (b) (c) (d)
FIGURE 5. (a): according to pinew adaptively refined mesh with 4584 degrees of free-
dom for the pressure-robust Taylor-Hood method; (b): according to pnew adaptively
refined mesh with 3971 degrees of freedom for the classical Taylor-Hood method;
(c): according to piclass adaptively refined mesh with 5119 degrees of freedom for
the pressure-robust Taylor-Hood method; (d): according to ficlass adaptively refined
mesh with 5320 degrees of freedom for the classical Taylor—-Hood method
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error of the smooth pressure p, dominates the (real and the estimated) discretisation error in the
beginning. The pressure-robust method on the other hand is not polluted by this influence and can
concentrate immediately on the corner singularity. However, it is important that the error estimator
is also pressure-robust. If the refinement indicators are taken from piclass, the corner singularity
remains unrefined until the dominance of the pressure error in the error bound is removed. Hence,
the main conclusion is that only a pressure-robust finite element method with a pressure-robust error
estimator leads to optimal meshes with the smallest velocity error.
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