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Abstract

We consider sparsity-based techniques for the approximation of high-dimensional functions from
random pointwise evaluations. To date, almost all the works published in this field contain some a
priori assumptions about the error corrupting the samples that are hard to verify in practice. In this
paper, we instead focus on the scenario where the error is unknown. We study the performance of
four sparsity-promoting optimization problems: weighted quadratically-constrained basis pursuit,
weighted LASSO, weighted square-root LASSO, and weighted LAD-LASSO. From the theoretical
perspective, we prove uniform recovery guarantees for these decoders, deriving recipes for the op-
timal choice of the respective tuning parameters. On the numerical side, we compare them in the
pure function approximation case and in applications to uncertainty quantification of ODEs and
PDEs with random inputs. Our main conclusion is that the lesser-known square-root LASSO is
better suited for high-dimensional approximation than the other procedures in the case of bounded
noise, since it avoids (both theoretically and numerically) the need for parameter tuning.

1 Introduction

Sparse regularization has been recently proved to be a useful tool for the approximation of functions de-
fined over d-dimensional domains, due to its ability to lessen the curse of dimensionality when combined
with compressed sensing principles. This approach is based on three main elements: sparse approxi-
mation of the function with respect to orthogonal polynomials, random pointwise sampling, and sparse
recovery via a (weighted) ℓ1 minimization decoder. Combining these three ingredients, it is possible to
construct approximations using a number of pointwise evaluations that depends only logarithmically
on d [1, 4, 23]. This feature is particularly appealing in uncertainty quantification applications, where
the function to approximate is a quantity of interest of a parametric PDE [48, 67].

This paper concerns the effective treatment of errors in the data by sparse recovery procedures.
There are three primary sources of such error:

(i) Truncation error. This occurs when infinite expansion in an orthonormal polynomial basis is
replaced by a finite expansion. This is an intrinsic source of error in high-dimensional function
approximation, which does not depend on the particular application considered.

(ii) Discretization error. In practice, in applications to parametric PDEs, function samples are com-
puted using a numerical PDE solver. This error arises due to the discretization in the numerical
routine (e.g. introducing a finite element mesh or performing a Galerkin projection).

(iii) Numerical error. Following (ii), this further source of error occurs when the discretized problem
is solved numerically (e.g. via an iterative solver).
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To date, almost all works in sparse regularization for high-dimensional approximation have assumed
an a priori bound for this error. Specifically, if the vector of data is y = yexact + e, where yexact is the
error-free data and e is the vector of errors, then one assumes the bound

‖e‖2 ≤ η, (1)

for some known η > 0. In this case, sparse regularization performed using the (weighted) quadratically-
constrained basis pursuit decoder admits rigorous theoretical recovery guarantees [1, 4, 23, 51, 66]. In
practice, however, a bound of the form (1) is usually unknown, since the sources of error (i), (ii), and
(iii) are function dependent. Cross validation is a common empirical remedy to tune such a parameter
[29, 40, 67]. Yet this is computationally expensive, and lacks theoretical guarantees. We also observe
that for certain model problems (in the context of parametric PDEs) theoretical estimates for η are
available. However, the presence of implicit constants can create numerical issues, as we will demonstrate
in our numerical experiments.

In this paper, we study three different decoders for sparse recovery: weighted quadratically-constrained
basis pursuit, weighted LASSO and weighted square-root LASSO. In all cases, we consider their perfor-
mance for unknown errors : that is, in the absence of the bound (1). These decoders are compared from
both the theoretical and numerical viewpoints. On the theoretical side, we prove uniform and robust
recovery error estimates for the proposed decoders. From the numerical viewpoint, we compare their
recovery performances in the case of pure function approximation and in the case of parametric ODEs
and PDEs.

One of our main messages is that the lesser-known weighted square-root LASSO is more suitable
for sparse high-dimensional function approximation than the commonly-used quadratically-constrained
basis pursuit decoder. It exhibits recovery performances comparable (if not superior) to the others, but
the optimal choice of its tuning parameter does not depend on the noise level in the data. Therefore, it
does not require any a priori knowledge on the error corrupting the samples. This fact is well-known by
statisticians; however, it does not seem to have been fully exploited by the high-dimensional function
approximation and the compressed sensing communities.

To complete the paper, we also consider a fourth type of error. In addition to (i), (ii), and (iii), in
large-scale uncertainty quantification implementations it is increasingly common to encounter

(iv) Corruption error. This occurs when an unknown subset of the measurements are corrupted
arbitrarily, for instance due to a node failure when computations are performed on a cluster.

This is a fundamentally different type of error to the others. Corruption errors can be arbitrarily large,
but only affect a (typically unknown) fraction of the measurements. They arise in modern complex
computational frameworks consisting of many interconnected parallel components, which are subject
to faults. These faults may be hard to detect and heavily pollute the measurements [14].

In this setting, the vector of errors is of the form e = ebounded + esparse, where ebounded is a
combination of (i), (ii), or (iii) and has small norm, and esparse is of type (iv) and it is sparse with large
norm. Methods that are robust to this type of errors are often called fault-tolerant or resilient and
have already been considered in uncertainty quantification and in compressed sensing [3, 41, 52, 63]. To
correct for this type of error, we study a fourth decoder; the weighted LAD-LASSO. Numerically, we
show that this method can achieve quite striking performance; in our experiments, it can easily correct
for over 10% corrupted measurements. Much like the square-root LASSO, we conclude that this should
be the method of choice in the presence of errors (i), (ii), (iii), and (iv).

The paper is organized as follows. In §2, we describe the problem setting, defining the high-
dimensional function approximation framework and the four decoders considered for weighted ℓ1 min-
imization; moreover, we present the main contributions of the paper, i.e. uniform recovery guarantees
for the proposed decoders under unknown error corrupting the measurements. §3 contains a review of
the literature for each decoder. In §4, we compare the four decoders from a numerical perspective in the
case of pure function approximation and in applications to parametric PDEs and ODEs with random
inputs. §5 deals with the theoretical analysis; this is the mathematical core of the paper and it is the
most technical part. Finally, in §6 we give our conclusions and state some open problems.
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2 Main contributions

We now present the main contributions of the paper. We define the sparse high-dimensional approxi-
mation methodology in §2.1. Then, in §2.3 we introduce the concept of sparsity in lower sets and other
related notions, which are necessary to understand the theoretical analysis. Finally, in §2.4 we state the
uniform robust recovery error estimates for the four decoders (proofs of these results are given in §5).

2.1 Sparse high-dimensional approximation

Let d ∈ N := {1, 2, 3, . . .}, with d ≫ 1, and consider a high-dimensional complex-valued function

f : D → C, with D := (−1, 1)d.

We define d probability measures ν(1), . . . , ν(d) on (−1, 1) and the corresponding tensor product measure
on D as

ν := ν(1) ⊗ · · · ⊗ ν(d).

Moreover, we consider d orthonormal bases {φ(ℓ)
j }j∈N0 of L2

ν(ℓ)(−1, 1) for ℓ ∈ [d], where [d] := {1, . . . , d}
and N0 := {0} ∪ N. Then, we build {φi}i∈Nd

0
as the corresponding tensor product basis of L2

ν(D):

φi := φ
(1)
i1

⊗ · · · ⊗ φ
(d)
id

, ∀i ∈ N
d
0. (2)

Assume f ∈ L2
ν(D) ∩ L∞(D) and consider its expansion

f =
∑

i∈Nd
0

xiφi, (3)

where xi = 〈f, φi〉L2
ν
, for every i ∈ Nd

0. Throughout the paper, we define the sequence of coefficients

x := (xi)i∈Nd
0
∈ ℓ2(Nd

0).

where ℓp(Nd
0) denotes the space of sequences with finite ℓp norm. Given a subset Λ ⊆ N

d
0 of finite

cardinality |Λ| = n, we obtain a finite approximation of f by considering the truncated basis {φi}i∈Λ.
The corresponding finite-dimensional vector of coefficients is denoted by xΛ. Assuming the set of
multi-indices in Λ is ordered as i1, . . . , in, we can also write

fΛ :=

n
∑

j=1

xijφij and xΛ := (xij )j∈[n], (4)

The vector xΛ will be equivalently considered as an element of Cn or of ℓ2(Nd
0). In the latter case, the

components xi with i /∈ Λ are implicitly assumed to be zero.
We aim at recovering a sparse approximation of f with respect to the basis {φi}i∈Λ from pointwise

samples. Hence, we define the vector of samples y ∈ Cm and the design matrix A ∈ Cm×n as1

yi :=
1√
m
(f(ti)), Aij :=

1√
m
(φij (ti)), ∀i ∈ [m], j ∈ [n], (5)

where, as in previous works in high-dimensional polynomial approximation [23, 29, 67], the samples are
distributed independently at random according to the orthogonality measure ν, i.e.

t1, . . . , tm
i.i.d.∼ ν(t). (6)

Then, the truncated vector of coefficients xΛ ∈ Cn satisfies

y = AxΛ + e, (7)

1The factor 1/
√
m is needed in order to guarantee the restricted isometry property for the design matrix A. See §5.
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where e ∈ Cm is an unknown source of error corrupting the samples. The vector e contains (at the
very least) the truncation error

(etruncΛ )i :=
1√
m
(f(ti)− fΛ(ti)) =

1√
m

∑

i/∈Λ

xiφi(ti), ∀i ∈ [m]. (8)

In general, e = etruncΛ + emisc, where emisc contains other sources of error, such as discretization error,
numerical error, faults, or other forms of noise, all of which occur commonly in uncertainty quantification
applications. In this paper we shall consider the following two types of noise models:

(a) Bounded noise. Here ‖e‖2 is assumed to be small and the goal is to recover f up to this error.
This is the case for truncation and numerical errors (types (i), (ii), and (iii) in §1), for instance.

(b) Bounded + unbounded sparse noise. In this case, e = ebounded + esparse, where ebounded is as in
(a) and esparse has only a small number of nonzero entries, but which can be arbitrarily large
and whose locations are unknown. This is the case when corruption errors, due for instance to
solver faults, are additionally present (type (iv) in §1). The goal in this case is to correct for the
corruption error, and to recover f up to ‖ebounded‖2.

Note that, since the function to be approximated is high-dimensional, the cardinality n of the truncated
index set Λ is typically large. Therefore, we focus on the regime m < n, where (7) is underdetermined.

Finally, we will consider two particular examples of orthonormal systems of L2
ν(D): the well-known

tensorized Legendre and Chebyshev polynomials. In d dimensions, these are orthogonal with respect
to the tensor uniform and Chebyshev measures

dν =
1

2d
dt (Legendre), dν =

d
∏

ℓ=1

1

π
√

1− t2ℓ
dt (Chebyshev).

In each case, the samples t1, . . . , tm are randomly and independently distributed according to ν.

2.2 Decoders

In order to recover an approximate solution x̂Λ = (x̂ij )j∈[n] ∈ Cn from (7), we use weighted ℓ1 min-
imization. Given a sequence of positive weights w = (wi)i∈Nd

0
, the corresponding weighted ℓp norm,

referred to as the ℓpw norm, is defined as

‖x‖p,w :=

(

∑

i∈Nd
0

w2−p
i |xi|p

)1/p

,

and ℓpw(Nd
0) is the space of sequences having finite ℓpw norm.

Given weights u and errors of the form (i) and (ii), and (iii) (see §1), we compute x̂Λ with one of
the following decoders:

Weighted Quadratically-Constrained Basis Pursuit (WQCBP)

x̂Λ = arg min
z∈Cn

‖z‖1,u s.t. ‖Az − y‖2 ≤ η, (9)

Weighted LASSO (WLASSO)

x̂Λ = arg min
z∈Cn

‖z‖1,u + λ‖Az − y‖22, (10)

Weighted Square-Root LASSO (WSR-LASSO)

x̂Λ = arg min
z∈Cn

‖z‖1,u + λ‖Az − y‖2, (11)
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The above decoders are designed to deal specifically with bounded noise (model (a) in §2.1). Conversely,
if the measurements additionally contain corruption errors (model (b) in §2.1), in which case e has a
small number of large entries, then we instead consider the following decoder:

Weighted LAD-LASSO (WLAD-LASSO)

x̂Λ = arg min
z∈Cn

‖z‖1,u + λ‖Az − y‖1. (12)

The use of the ℓ1-norm in the fitting term is to exploit the sparsity of the corruptions in this case.
Notice that the minimizer x̂Λ need not be necessarily unique in our framework. Given x̂Λ, the

resulting approximation f̃ of f is then defined by

f̃ :=
∑

i∈Λ

x̂iφi. (13)

We assume throughout that η ≥ 0 and λ > 0. These will be referred to as tuning parameters. When
η = 0, the optimization program (9) is also referred to as weighted basis pursuit (WBP). It is worth
noting that WQCBP is the only optimization program in constrained form. We will comment more on
these decoders while reviewing the literature (§3).

As for the choice of the weights, u is chosen as follows:

ui = ‖φi‖L∞, ∀i ∈ N
d
0. (14)

They are referred to as intrinsic weights [1]. Notice that ui := ‖φi‖L∞ ≥ ‖φi‖L2
ν
= 1. This particular

choice of weights has been proved to be effective for WQCBP, both theoretically and numerically
[1, 4, 23]. For the polynomial bases employed here, we have

ui =

d
∏

ℓ=1

√
2iℓ + 1 (Legendre), ui = 2‖i‖0/2 (Chebyshev). (15)

2.3 Sparsity in lower sets

Compressed sensing theory considers the recovery of sparse vectors from limited numbers of measure-
ments. Many works have sought to apply these principles to high-dimensional approximation (see §3).
Unfortunately, standard application of these principles leads to sample complexities that depend expo-
nentially on the dimension d (see, for example, [4]). More recently [1, 23], it has been shown that this
curse of dimensionality in the sample complexity can be overcome by considering certain structured
sparsity models based on so-called lower sets (also known as downward closed or monotone sets):

Definition 2.1 (Lower set). The set S ⊆ Nd
0 is said to be a lower set if whenever i ∈ S and j ≤ i

(where the inequality holds componentwise) then j ∈ S.

Employing this definition, we consider the space of s-sparse vectors whose supports are lower sets

Σs,L := {z ∈ ℓ2(Nd
0) : | supp(z)| ≤ s, supp(z) lower}.

Here supp(z) := {i ∈ Nd
0 : zi 6= 0}. The corresponding best s-term approximation in lower sets is

σs,L(z)1,u := inf
z′∈Σs,L

‖z − z′‖1,u.

Lower sets are common tools in high-dimensional approximation [21, 26, 30, 45, 46]. The lower set
structure turns out to be crucial when approximating (a quantity of interest of) the solution map of
a parametric PDE. For example, in [22] it has been proved that for a wide class of parametric PDEs
the best s-term approximation error (in the mean square and in the uniform sense) in lower sets of the
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solution map with respect to Legendre polynomials decays algebraically in s and it is independent of
the dimension d of the parametric domain (see also [24, 25]).

An essential property of lower sets is that the union of all lower sets of cardinality s is the well-known
hyperbolic cross of order s, namely

ΛHC
d,s :=

{

i = (i1, . . . , id) ∈ N
d
0 :

d
∏

ℓ=1

(iℓ + 1) ≤ s

}

≡
⋃

|S|≤s
S lower

S. (16)

From now on, this set will be adopted as our truncated multi-index set, i.e.

Λ = ΛHC
d,s .

We note that the cardinality of this index set can be bounded from above as (see, for example, [4])

n = |ΛHC
d,s | ≤ min

{

2s34d, e2s2+log2(d)
}

. (17)

With this in hand, we also define the intrinsic lower sparsity of order s as the quantity

K(s) := max
{

|S|u : S ⊆ N
d
0, |S| ≤ s, S lower

}

, (18)

where
|S|u :=

∑

i∈S

u2
i (19)

is the weighted cardinality of a subset S with respect to the weights u [51]. This quantity is of crucial
importance to our results, since it will determine a sufficient condition on the sample complexity m. In
the case of Chebyshev and Legendre polynomials, K(s) is known to scale proportionally to sγ , with

γ = 2 (Legendre), γ = ln(3)/ ln(2) (Chebyshev). (20)

Specifically, (see [23, Lemma 3.7]) we have the following:

Lemma 2.2 (Intrinsic lower-sparsity bounds). Let 2 ≤ s ≤ 2d+1. If {φi}i∈Nd
0
is the tensor Legendre or

Chebyshev basis, then
sγ/4 ≤ K(s) ≤ sγ , (21)

where K(s) and γ are as in (18) and (20) respectively. Moreover, the upper estimate holds for all s ≥ 2.

2.4 Robust recovery guarantees under unknown error

We now present the recovery guarantees for the decoders (9)-(12). These estimates are robust, in the
sense that they admit the presence of unknown error e corrupting the samples, and uniform since, given
a set of random pointwise samples distributed according to (6), they hold uniformly in f (with high
probability). The proofs of these results are given in §5.

As usual, the expression X . Y means that there exists a constant C independent of X and Y such
that X ≤ CY . The notation X & Y is defined analogously and X ≍ Y means that X . Y and X & Y
hold simultaneously.

In all cases (apart from WLAD-LASSO, where an additional constraint appears), uniform recovery
with probability at least 1− ε holds, provided the sample complexity satisfies

m & sγ · L, (22)

where γ is given by (20) and L is a polylogarithmic factor defined as

L = L(s, ε) = ln2(s)min{ln(s) + d, ln(2d) ln(s)}+ ln(s) ln(s/ε). (23)

Note that the particular dependence on d in this estimates stems from bound (17) on the cardinality n
of the hyperbolic cross.

We now present the recovery guarantees decoder by decoder.
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WQCBP Theorems 5.10 & 5.11 imply that, provided m ≍ sγL, the approximate solution f̃ defined
in (13) obtained via WQCBP satisfies

‖f − f̃‖L∞ . σs,L(x)1,u + sγ/2[(η + ‖e‖2) +Q
√
Lmax{‖e‖2 − η, 0}],

‖f − f̃‖L2
ν
.

σs,L(x)1,u
sγ/2

+ η + ‖e‖2 + ‖f − fΛ‖L2
ν
+Q

√
Lmax{‖e‖2 − η, 0},

with probability at least 1− ε, where

Q = Q(A,Λ,u) :=

√

|Λ|u
n

1

σm(
√

m
n A∗)

,

where σm(
√

m
n A∗) is the mth singular value (in decreasing order) of

√

m
n A∗. Notice that the term

depending on Q
√
L in the error bound vanishes when η ≥ ‖e‖2: that is,

η ≥ ‖e‖2 ⇒ ‖f − f̃‖L2
ν
.

σs,L(x)1,u
sγ/2

+ η + ‖e‖2 + ‖f − fΛ‖L2
ν
,

and similarly for the L∞ error. Moreover, since η and ‖e‖2 both appear in the error bound, the optimal
choice of η is

η = ‖e‖2. (24)

Conversely, when ‖e‖2 is unknown, the price to pay is an additional error term, which depends loga-
rithmically on d and algebraically on s. In particular, the algebraic dependence on s is a consequence
of Theorem 5.11, where we show that Q . sα/2/σm(

√

m
n A∗), with α = 1, 2 for tensor Chebyshev and

Legendre polynomials, respectively.
This bound does, however, suggest that tuning η empirically via cross validation, so as to achieve

η ≈ ‖e‖2 can improve the recovery error. Our numerical results in §4 partially support this conclusion.

WLASSO In Theorem 5.13, we show that, provided (22) holds and

λ ≍
√

K(s)

‖e‖2
≍ sγ/2

‖e‖2
, (25)

the approximate solution f̃ computed by means of WLASSO satisfies

‖f − f̃‖L∞ . σs,L(x)1,u + sγ/2‖e‖2, (26)

‖f − f̃‖L2
ν
.

σs,L(x)1,u
sγ/2

+ ‖e‖2 + ‖f − fΛ‖L2
ν
, (27)

with probability at least 1− ε.
Unfortunately, the choice of tuning parameter (25) requires knowledge of ‖e‖2, similar to WQCBP.

On the other hand, this requirement is certainly less stringent than the one-sided bound η ≥ ‖e‖2: no
logarithmic factors are present in the error bounds if ‖e‖2 is estimated up to a constant.

WSR-LASSO Theorem 5.14 shows that provided (22) holds and

λ ≍
√

K(s) ≍ sγ/2, (28)

the approximate solution f̃ computed using WSR-LASSO satisfies (26) and (27) with probability at least
1 − ε. In other words, WSR-LASSO attains the same recovery guarantees as WLASSO and WQCBP
but without any prior knowledge on the noise e. Specifically, optimal WLASSO tuning parameter (25)
depends on ‖e‖2, whereas the optimal WSR-LASSO tuning parameter (28) is independent of this factor.
We note in passing that λ depends on the sparsity s, but this is always known in our framework since
it is the index of the truncated hyperbolic cross set (16).
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WLAD-LASSO From Theorem 5.25, we see that, given k ∈ N and provided that

m & sγ ·max{L, k}, (29)

the approximate solution f̃ obtained via WLAD-LASSO satisfies

‖f − f̃‖L∞ . σs,L(x)1,u + λσk(e)1,

and also

‖f − f̃‖L2
ν
. (1 +

√
Θ)

(

σs,L(x)1,u
sγ/2

+
σk(e)1√

k

)

+ ‖f − fΛ‖L2
ν
,

with probability at least 1− ε, where

Θ :=

√

K(s) + λ2k

min{
√

K(s), λ
√
k}

, (30)

and
σk(e)1 := inf

d:| supp(d)|≤k
‖e− d‖1,

where supp(d) := {i ∈ [m] : di 6= 0}, is the best k-term approximation error. Notice that the quantity
Θ defined in (30) is minimized for

λ =

√

K(s)

k
. (31)

However, λ = 1 seems to be a better choice in practice (see Fig. 3 and numerical illustrations in [3]).
Observe that the recovery guarantees for WQCBP, WLASSO and WSR-LASSO all depend on ‖e‖2.

Conversely, for WLAD-LASSO this term is replaced by σk(e)1. This suggests WLAD-LASSO, unlike
the other decoders, can effectively correct for errors of type (b). Specifically, if e = ebounded + esparse,
where esparse has at most k nonzero entries, then

σk(e)1 ≤ σk(e
sparse)1 + σk(e

bounded)1 ≤ ‖ebounded‖1 ≤ √
m‖ebounded‖2.

In particular, if λ ≍ sγ/2/
√
k, as suggested by (31), this yields the error bound

‖f − f̃‖L2
ν
.

σs,L(x)1,u
sγ/2

+ sγ/2‖ebounded‖2 + ‖f − fΛ‖L2
ν
, (32)

and similarly for the L∞-norm error. Up to the factor sγ/2 (see Remark 2.3 below) this is the same as
the bounds for WLASSO and WSR-LASSO. Except, of course, that the WLAD-LASSO corrects for an
k-sparse corruption error of arbitrary magnitude, unlike the other decoders.

Remark 2.3 (Sharpness of the sample complexity). The estimate (29) suggests the number of corrupted
samples k can be roughly L while retaining the same sample complexity as in the uncorrupted case.
We do not believe this is sharp. Indeed, there is reason to expect that k = cm corruptions can be
allowed, for some 0 < c < 1. See [3, 43] for further discussion. If this conjecture were true, then the
sγ/2 dependence in the noise term in (32) would vanish.

3 Literature review

For a general introduction to the optimization programs (9)-(12) in the unweighted case, we refer the
reader to, e.g., [31, 61, 37]. We now briefly review the literature regarding each decoder.
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WQCBP This optimization program has a long history [28, 44], but here we are particularly interested
in its application in compressed sensing [18, 27, 31]. The weighted version of QCBP has been introduced
in the context of function approximation with bounded orthonormal systems in [51], although previously
studied in [19, 32, 48, 68]. For applications of WQCBP to high-dimensional function approximation and
uncertainty quantification, we refer the reader to [1, 2, 4, 23, 48, 50, 67] and references therein. All these
works focus on the error-aware scenario, where upper bounds of the form (1) are assumed to be known
a priori, even though this assumption is unlikely to be met in practice. It is worth mentioning that
robust recovery guarantees for unweighted ℓ1 minimization have been recently proved in the error-blind
scenario, where upper bounds of the form (1) are not assumed to be known (see [15, 16] and references
therein). In this paper, these results are generalized to the weighted case.

WLASSO The literature regarding LASSO (Least Absolute Shrinkage and Selection Operator) is
boundless. The pioneering paper [60] by R. Tibshirani has already reached more than twenty thousand
citations according to Google Scholar (roughly one thousand citations per year on average). We refer
the reader to [37, §2.10] and references therein for an extensive review on the state-of-the-art of LASSO
and for historical remarks. A weighted variant of LASSO, called the “adaptive LASSO” due to the
iterative and adaptive procedure used to update the weights, is considered in [39, 69].

WSR-LASSO The unweighted version of SR-LASSO has been introduced in [12] and studied under
the name “scaled LASSO” in [58]. Further results about SR-LASSO can be found in [8, 13, 17, 49, 59].
In [54], the authors consider a version of the SR-LASSO where the ℓ1 norm is replaced by a generic
sparsity-inducing norm, admitting the weighted SR-LASSO as a particular case. For the statisticians, an
attractive feature of SR-LASSO is that the optimal tuning parameter does not depend on the variance
of the random noise corrupting the observations, like in the LASSO case. Our study confirms that this
is the case also in high-dimensional function approximation.

WLAD-LASSO The LAD (Least Absolute Deviation) regression and the LASSO program have
been combined into the so-called LAD-LASSO decoder in order to make the LASSO more robust to
the presence of heavy-tailed errors or outliers in the response [33, 34, 62, 64, 65]. In the context
of compressed sensing, this decoder is also known as a fault-tolerant version of ℓ1 minimization. It
has been considered in [41, 43, 47, 53, 55, 56, 57, 63] and in [3, 52] with applications to uncertainty
quantification. In [7], the author introduces the weighted variant of LAD-LASSO and proves that is has
some statistical properties (asymptotic normality and consistency). An adaptively reweighted version
of LAD-LASSO is considered in [42].

4 Numerical experiments

We compare the decoders (9)-(12) from the numerical viewpoint. The section is structured as follows.
First, we formally define the cross-validation procedure employed to choose the tuning parameters in
§4.1. Then, we compare the four decoders by studying their recovery error as a function of the tuning
parameter (§4.2) and of the sample complexity (§4.3). Finally, we compare the performance of the
four decoders in an application to the uncertainty quantification of parametric ODEs and PDEs with
random inputs in §4.4.

All the numerical experiments have been performed in Matlab
R© using CVX, an optimization

toolbox for solving convex problems [35, 36]. We always run CVX setting cvx precision best and
cvx solver mosek. We have used Matlab

R© R2016b version 9.1 64-bit on a MacBook Pro equipped
with a 3 GHz Intel Core i7 processor and with 8 GB DDR3 RAM. For the sake of convenience, we will
sometimes use the Matlab

R© vector notation to denote objects like 10.ˆ(1 : 0.5 : 2) = (101, 101.5, 102).
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4.1 Cross validation

We define the cross-validation procedure that will be employed in the next sections. The pseudo-code
is reported in Algorithm 4.1. It corresponds to the cross-validation procedure described in [37, §2.3],
usually referred to as K-fold cross validation [6]. It is worth noticing that step 9 of Algorithm 4.1
can be replaced with ε(t, g, p) = ‖Avx̂− yv‖2, as it is done in [29, 67]. However, we prefer to use the
squared residual, in accordance with [37]. In addition to the design matrix A and the vector of samples
y, the cross-validation procedure takes as input:

• a number G ∈ N of sample groups;
• a decoder ∆ with tuning parameter p such that x̂ = ∆(A,y; p) approximately solves Ax = y;
• a finite set P of parameters;
• a number T ∈ N of repeated random tests to run.

The procedure gives as output a tuning parameter pcv ∈ P .

Algorithm 4.1 Cross-validation procedure

1: procedure pcv = CrossValidation(A,y, G,∆,P , T );
2: for all t ∈ [T ] do
3: Randomly partition [m] = I1 ⊔ · · · ⊔ IG into G sets of cardinality ⌊m/G⌋ or ⌊m/G⌋+ 1;
4: for all g ∈ [G] do

5: Av =
√

m
|Ig | (Aij)i∈Ig ,j∈[n], yv =

√

m
|Ig | (yi)i∈Ig ;

6: Ar =
√

m
m−|Ig| (Aij)i∈[m]\Ig ,j∈[n], yr =

√

m
m−|Ig| (yi)i∈[m]\Ig ;

7: for all p ∈ P do

8: x̂ = ∆(Ar,yr; p);
9: ε(t, g, p) = ‖Avx̂− yv‖22;

10: end for

11: end for

12: end for

13: pcv = argmin
p∈P

1

T ·G
∑

t∈[T ]

∑

g∈[G]

ε(t, g, p).

4.2 Tuning parameter vs. error

We compare WQCBP, WLASSO, WSR-LASSO, and WLAD-LASSO by studying the behavior of the
recovery error as a function of the tuning parameter when approximating the function

f(t) = exp

(

−1

d

d
∑

ℓ=1

cos(tℓ)

)

, with d = 15. (33)

The aim of this experiment is to both compare the performance of the four decoders, and to validate
the optimal choices of the tuning parameters suggested by the theory (see §2.4).

We consider a sparsity level s = 10, corresponding to n = |ΛHC
15,10| = 1432 and a number of samples

m = ⌈sγ log(n)⌉, with γ defined as in (20). In particular, this corresponds to a sample complexity
m = 727 for Legendre and m = 280 for Chebyshev polynomials. Then, we repeat the following
experiment 50 times: we generate m random samples and corrupt them by random noise e = βn/‖n‖2
with β ∈ {0, 10−3, 10−2, 10−1}, where n ∈ Rm is a random vector with independent entries uniformly
distributed over [−1, 1], and we solve the resulting system (7) by means of WQCBP, WLASSO, WSR-
LASSO, and WLAD-LASSO for each value of the tuning parameter, as specified in Table 1.2

2In practice, for WLAD-LASSO we use λ = 1.01 instead of λ = 1 since the choice λ = 1 leads to the presence of
spurious outliers in the box plot. We think that this behavior is due to CVX and not to the decoder itself.
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WQCBP (η) WLASSO (λ) WSR-LASSO (λ) WLAD-LASSO (λ)
10.ˆ(−7 : 0.5 : 1) 10.ˆ(−1 : 0.5 : 8) 10.ˆ(−2 : 0.25 : 5) 10.ˆ(−2 : 0.25 : 3)

Table 1: Sets of tuning parameters for WQCBP, WLASSO, WSR-LASSO, and WLAD-LASSO used to generate
Figs. 1 & 2.

The results are shown in Figs. 1 and 2. In order to make the statistics of the randomized experiments
transparent, we visualize the results in a box plot. The continuous lines represent the median values
(in accordance with the box plot information). We consider the L2

ν error with respect to a high-fidelity
approximation to f , computed using least squares and 20n = 28620 random pointwise evaluations.3

It is remarkable that all the decoders are able to reach an accuracy below the noise level for suit-
able values of the parameter. Moreover, the optimal choice of the tuning parameters seems to be in
accordance with the theory provided in §2.4. Indeed, we observe a direct proportionality between the
optimal value of η and the noise level for WQCBP, and an inverse proportionality between the optimal
value of λ and the noise level for WLASSO. For WSR-LASSO and WLAD-LASSO, the optimal values
of λ are independent on the noise level. We also notice that the limit value of the L2

ν recovery error
associated with the unconstrained optimization programs for λ → ∞ coincides with the limit value of
the L2

ν error associated with WQCBP for η → 0. This suggests that the solution to the unconstrained
programs tends to the solution of WBP as λ → ∞. In other words, choosing a very large λ forces the
data fidelity constraint to be realized exactly, as it is natural to expect.

Let us take a closer look to the performance of WSR-LASSO and WLAD-LASSO, recalling the
optimal choices for λ given by (28) and (31), respectively. For WSR-LASSO, being s = 10, we have
√

K(s) ≈ 10 for Legendre and
√

K(s) ≈
√
10log(3)/(2 log(2)) ≈ 6.2 for Chebyshev polynomials. From

the box plots, the optimal value of λ seems to be around 101.5 ≈ 31.6 (Legendre) and 101.25 ≈ 17.8
(Chebyshev). Therefore, λ ≈ 3

√

K(s). For the WLAD-LASSO, in principle the theory predicts that

λ ≈
√

K(s)/K. Since the error e is nonsparse in this case, we have K = m ≈ K(s) log(n). We see

that λ ≈ 3/
√

log(n) ≈ 1.1129 seems to match the numerics well. This is the reason why we choose the
hidden constant to be 3 in (28) and (31) for the subsequent experiments.

4.3 Sampling complexity vs. error

We make another comparison of the four decoders by studying the decay of the L2
ν error as a function of

the sampling complexity m when approximating the function f defined in (33) with d = 10, employing
tensorized Chebyshev polynomials. We set s = 15, corresponding to n = |ΛHC

10,15| = 1341 and consider

a number of samples m = ⌈C ·K(s)⌉ for C = 2 : 0.5 : 4, where K(s) ≈ 15log(3)/ log(2) ≈ 73.1. First, we
compute a high-fidelity solution x̂LS by means of least squares, using 20 · n = 26820 random pointwise
samples. Then, we consider ten different combinations of solvers and parameters. For the sake of
the comparison, we use the high-fidelity solution x̂LS to produce “oracle” estimates of the noise level
(notice that this is an idealized scenario since x̂LS is not available in practice). Moreover, we employ
the cross-validation procedure described in Algorithm 4.1, and the values of the parameters suggested
by the theoretical analysis for WSR-LASSO (λ = 3

√

K(s)) and WLAD-LASSO (λ = 3/
√

log(n))
(see §2.4 and the discussion at the end of §4.2). The cross-validation procedure is always employed
as CrossValidation(A,y, 5,∆,P , 3), where ∆ and P are specified on a case-by-case basis. The ten
combinations considered are the following:

1. WQCBP with η = 0;
2. WQCBP with η = ηoracle = ‖Ax̂LS − y‖2;
3. WQCBP with cross validation, where P = ηoracle · 10.ˆ(-2:0.5:2);
4. WLASSO with λ = λoracle =

√

K(s)/‖Ax̂LS − y‖2;
3Notice that the outliers are sometimes aligned (e.g., in the tail of the blue curve in Fig. 1 bottom right). This is due

to the structure of the proposed numerical experiment: for each randomized choice of samples, all the parameters are
tested using the same samples.
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Figure 1: Box plot of the recover L2

ν error as a function of the tuning parameter for WQCBP (top left),
WLASSO (top right), WSR-LASSO (bottom left), and WLAD-LASSO (bottom right) when computing the
sparse approximation of the function f defined in (33) with respect to tensorized Legendre polynomials.

5. WLASSO with cross validation, where P = λoracle · 10.ˆ(-2:0.5:2);
6. WSR-LASSO with λ = 3

√

K(s);

7. WSR-LASSO with , where P = 3
√

K(s) · 10.ˆ(-2:0.5:2);
8. WLAD-LASSO with λ = 3/

√

(k/m) log(n);

9. WLAD-LASSO with cross validation, where P = 3
√
H√

m log(n)
· 10.ˆ(-2:0.5:2);

10. WLAD-LASSO with λ = 1.

Notice that for WLAD-LASSO we set v = 1 in (12).
This comparison is performed in three different scenarios. First, without corrupting the samples,

thus having only truncation error (8) (Fig. 3, top right). Second, corrupting the measurement by random
noise e = 10−2n/‖n‖2, where n is a random vector with independent entries uniformly distributed over
[−1, 1] (Fig. 3, bottom left). Third, corrupting 10% of the measurements by a random noise uniformly
distributed over [−10, 10] (Fig. 3, bottom right). The respective curves show the L2

ν error with respect
to the high-fidelity solution, averaged over 25 trials.

Let us comment the results in Fig. 3. First, the choices of the parameters predicted by the theory
give good results in general. Moreover, the performance of each decoder is usually improved by cross
validation. WBP slightly underperforms with respect to all the other solvers apart from the case without
extra noise and for m large enough (Fig. 3 top right). The performance of WSR-LASSO is comparable
with those of WQCBP and WLASSO, but for WSR-LASSO the optimal parameter choice does not
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Figure 2: Same experiment as in Fig. 1, but for tensorized Chebyshev polynomials.

depend on the noise level. Finally, in the case of sparsely corrupted measurements, WLAD-LASSO
outperforms the other decoders, as expected (Fig. 3 bottom right). The choice λ = 1 is particularly
good in the sparsely corrupted case. It is also worth noting that cross validation does not seem to help
in this case. This is natural, since Algorithm 4.1 chooses the tuning parameter that minimizes the ℓ2

norm of the residual, which is not small in this case. A possible remedy could be to replace step 9 in
Algorithm 4.1 with ε(t, g, p) = ‖Avx̂− yv‖1.

We note in passing that the experiments in Figs.1, 2 & 3 yield analogous results when the random
noise n used to corrupt the samples has independent normal Gaussian entries N (0, 1). We do not add
the resulting figures for the sake of brevity.

4.4 Application to parametric ODEs and PDEs with random inputs

Finally, we compare the performance of the decoders under exam when the function begin approximated
is a quantity of interest of the solution to a parametric ODE or PDE random inputs.

4.4.1 Parametric PDEs: Diffusion equation

We consider the following diffusion equation:

{

−∇ · (at(x, y)∇ut(x, y)) = F, ∀(x, y) ∈ Ω,

ut(x, y) = 0, ∀(x, y) ∈ ∂Ω,
(34)
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Figure 3: Comparison among WQCBP, WLASSO, WSR-LASSO, and WLAD-LASSO for the approximation of
(33) with d = 10. The ten combinations of decoder and parameter considered are described in §4.3.

where Ω = [0, 1]2 is the physical domain, at is a parametric diffusion coefficient, ut is the unknown
solution, and F is a nonparametric forcing term. This example and analogous variations have been
considered in [9, 10, 20]. The parametric space is D = (−1, 1)8 and the diffusion coefficient affinely
depends on the parameters

at(x, y) = 1−
8
∑

ℓ=1

1Ωℓ
(x, y)(0.595 + 0.395tℓ), ∀(x, y) ∈ Ω, ∀t ∈ D,

where Ω1, . . . ,Ω8 are circular subregions of Ω of radius 0.13 placed symmetrically with respect to the
center of Ω (see Fig. 4). If we think about t as a random vector uniformly distributed in D, then at|Ωℓ

can be thought as a random variable uniformly distributed [0.01, 0.99]. The forcing term is

F (x, y) = 100 · 1ΩF
(x, y), ∀(x, y) ∈ Ω,

where ΩF = [0.4, 0.6]2. We are interested in the function defined by the following quantity of interest:

f(t) =

∫

ΩF

ut(x, y)dxdy. (35)

We sample f(t) by solving the PDE (34) with FreeFem++ (version 3.42, 64 bits), employing triangular
P1 elements and generating finer and finer meshes [38]. The mesh is generated with the FreeFem++
mesher, by controlling its resolution by a parameter Nel. In particular, we parametrize each edge of Ω
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Figure 4: The physical domain Ω discretized with increasing mesh resolution, corresponding to Nel = 1, 2, 3, 5
(from left to right). The circular regions Ω1, . . . ,Ω8 and the central square region ΩF are highlighted.

using 5Nel elements, the circumference of each Ωℓ with 4Nel elements and each edge of ΩR using Nel

elements. Then, we let Nel = 1, 2, 3, 5. The corresponding meshes are represented in Fig. 4 and have
a number of degrees of freedom equal to 56, 141, 267, and 715, respectively. Each sample f(ti) is then
computed by considering the integral of the resulting piecewise linear approximation to uti over ΩF . In
this case, the unknown error affecting the samples contains the truncation error (8), the discretization
error due to the Galerkin projection, and the numerical error associated with the FreeFem++ solver.
We only expect this unknown error to decrease with respect to Nel.

Similarly to §4.2 & 4.3, we study the behavior of the recovery error as a function of the tuning
parameter and of the sample complexity. Since t is uniformly distributed in D, we employ tensorized
Legendre polynomials.

In Fig. 5 we consider an experiment analogous to Figs. 1 & 2 for the function f defined in (35).
Namely, we plot the L2

ν error as a function of the tuning parameter (chosen as in Table 1) for the four
decoders. We set s = 10, resulting in n = 353, and m = 30. For each value of Nel = 1, 2, 3, 5, we run
50 random experiments. The L2

ν error is computed with respect to a high-fidelity solution computed
using a mesh size Nel = 100 (with 267076 degrees of freedom) and approximated with least squares
from 50000 random samples.

As expected, the best accuracy achieved by each solver is a decreasing function of Nel. We can
still see that the best choice of the parameter depends on the noise level for WQCBP and WLASSO,
whereas it is independent of the noise for WSR-LASSO and WLAD-LASSO. Surprisingly, the strict
global minima corresponding to the optimal choice of the parameter observed in Figs. 1 & 2 do not
appear here. In fact, all solvers exhibit a plateau. We may argue that the optimal choices (24), (25),
(28), and (31) hold under the form of inequality, and not of equality. Namely, η . ‖e‖2 for WCQBP,
λ &

√

K(s)/‖e‖2 for WLASSO, λ &
√

K(s) for WSR-LASSO, and λ & 1/
√

log(n) for WLAD-LASSO.4

See §4.4.3 for some further discussion.
Next, we compare the performance of the four decoders using the ten combinations of decoders and

tuning parameters described in §4.3. We let m = (20 : 20 : 100) and use Nel = 5. Fig. 6 shows the
L2
ν error as a function of m, averaged over 25 trials. Overall, the decoders have similar performances,

in that the recovery error differs by less than one digit. Cross validation is able to achieve the best
accuracy level in all cases. Remarkably, WSR-LASSO achieves the best accuracy using the choice (28)
suggested by the theory.

4We have performed the same experiment for quantities of interest different from (35), such as the integral of ut over
the regions Ωi, pointwise evaluations of ut, or the integral of u2

t
over Ωi or ΩF . In all these cases, we do not observe the

strict global minima in the parameter-vs-error plot. These experiment are not reported here for the sake of brevity.
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Figure 5: Box plot of the recovery error as a function of the tuning parameter for WQCBP (top left), WLASSO
(top right), WSR-LASSO (bottom left), and WLAD-LASSO (bottom right) for the sparse approximation of the
quantity of interest f defined in (35) with respect to tensorized Legendre polynomials.

Figure 6: Comparison among WQCBP, WLASSO, WSR-LASSO, and WLAD-LASSO for the approximation of
the quantity of interest f defined in (35).
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Figure 7: Boxplot of the L2

ν error as a function of the tuning parameter for WQCBP (left) and WSR-LASSO
(right) when approximating the quantity of interest (37) in the damped harmonic oscillator case.

4.4.2 Parametric ODEs: Damped harmonic oscillator

We study an application to parametric ODEs with random inputs, considering the equation of a damped
harmonic oscillator subject to external forcing

{

u′′
t (x) + γu′

t(x) + kut(x) = g cos(ωx), ∀x > 0,

ut(0) = u0, u′
t(0) = v0,

(36)

where the parameters γ, k, g, ω, u0, v0 are defined as a function of a random vector t uniformly distributed
in D = [−1, 1]6 as follows:

γ = 0.1 + 0.02t1 ∈ [0.08, 0.12], k = 0.035 + 0.05t2 ∈ [0.03, 0.04], g = 0.1 + 0.02t3 ∈ [0.08, 0.12],
ω = 1 + 0.2t4 ∈ [0.8, 1.2], u0 = 0.5 + 0.05t5 ∈ [0.45, 0.55], v0 = 0.05t6 ∈ [−0.05, 0.05].

These restrictions make the oscillator always underdamped. We are interested in approximating the
following quantity of interest:

f(t) = ut(20). (37)

An analogous experiment is considered in [3].
We generate the pointwise samples by solving (36) in Matlab

R© using the command ode23 and
setting different values for the tolerance parameter AbsTol ∈ {10−1, 10−3, 10−5} within odeset. We
employ the Legendre polynomials as sparsity basis and set s = 20 (corresponding to n = 795) and m =
100. In Fig. 7 (left), we show the boxplot of the L2

ν error as a function of the parameter η for WQCBP
and WSR-LASSO over 25 runs, where the L2

ν error is computed with respect to a high-fidelity reference
solution xref , approximated via least squares from 10000 random samples with AbsTol = 10−14.

Analogously to the case of the parametric PDE (Fig. 5 top left), we see that there are no strict global
minima. The optimal parameter choices appear to be η . ‖e‖2 and λ &

√

K(s) as in the previous
experiment.5

4.4.3 Discussion

Both the parametric PDE and ODE problems considered fail to exhibit the strict global minima in
the error versus parameter plots as seen in the synthetic examples (Figs. 1 & 2). We conjecture that
this stems from the fact that errors produced by the numerical solvers are structured, as opposed to

5The same phenomenon is observed for WLASSO and WLAD-LASSO, but the plots are not shown here for the sake
of brevity.
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random. Note that our theoretical recovery guarantees are adversarial, i.e. uniform with respect to
the 2-norm ‖e‖2 of the error e ∈ Cm, and therefore cannot explain this behaviour. Evidently, the
structured errors produced by the solvers are quite far from this worst-case scenario. This may imply
that careful parameter tuning is not required in practice, although such a conclusion requires more broad
examination. In particular, understanding this phenomenon from the theoretical viewpoint remains an
open problem.

5 Theoretical analysis

This section contains the proofs of the results of §2.4. It is organized in two main parts. First, we
prove recovery error estimates for WQCBP, WLASSO, and WSR-LASSO in §5.1. Then, in §5.2 we deal
with WLAD-LASSO. This section structure depends on the fact that the proof strategy adopted for
the WLAD-LASSO contains some additional technicalities with respect to the other three decoders.

Remark 5.1 (Proof strategy). In order to prove robust recovery error estimates, we will follow a con-
ceptual roadmap commonly employed in compressed sensing [31]. This is composed of the following
elements: (LB) lower bound on the sample complexity m; (RIP) restricted isometry property for A;
(RNSP) robust null space property for A; (DB) distance bound; (REE) recovery error estimate. The
chain of implications showed is then:

(LB) ⇒ (RIP)whp ⇒ (RNSP)whp ⇒ (DB)whp ⇒ (REE)whp,

where the notation (x)whp indicates that the property (x) holds with high probability.

5.1 WQCBP, WLASSO, and WSR-LASSO

Before showing recovery error estimates for WQCBP,WLASSO, andWSR-LASSO, we need to introduce
suitable versions of the restricted isometry property and of the robust null space property, adapted to
the lower set setting (§5.1.1). Then, we prove the recovery error estimates for WQCBP, WLASSO, and
WSR-LASSO in §5.1.2, 5.1.3, and 5.1.4, respectively.

5.1.1 Preliminaries

We first recall the lower restricted isometry property and of lower robust null space property [23]:

Definition 5.2 (Lower restricted isometry property). A matrix A ∈ C
m×n is said to have the lower

restricted isometry property of order s if there exists a constant 0 < δ < 1 such that

(1 − δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22, ∀z ∈ C
n, | supp(z)|u ≤ K(s),

where supp(z) := {i ∈ [n] : zi 6= 0} and | supp(z)|u is its weighted cardinality defined as in (19). The
smallest constant such that this property holds is called the sth lower restricted isometry constant of A
and it is denoted as δs,L.

Definition 5.3 (Lower robust null space property). Given 0 < ρ < 1 and τ > 0, a matrix A ∈ C
m×n

is said to have the lower robust null space property of order s if

‖zS‖2 ≤ ρ
√

K(s)
‖zSc‖1,u + τ‖Az‖2, ∀z ∈ C

n,

for any S ⊆ Λ such that |S|u ≤ K(s), where K(s) is defined as in (18).

The lower restricted isometry and the lower robust null space properties of order s are equivalent to
the weighted restricted isometry and weighted robust null space properties of order K(s), respectively
(see [51, Definition 1.3] and [51, Definition 4.1]).

The following result, corresponding to [23, Proposition 4.4], states that the lower restricted isometry
property implies the lower robust null space property up to a suitable restriction on the lower restricted
isometry constant.
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Lemma 5.4 (Lower restricted isometry property ⇒ lower robust null space property). Let s ≥ 2 and
A ∈ Cm×n satisfy the lower restricted isometry property of order αs with constant

δ = δαs,L <
1

5
,

where α = 2 if the intrinsic weights u arise from the tensor Legendre basis and α = 3 if the weights
arise from the tensor Chebyshev basis. Then A has the lower robust null space property of order s with

ρ =
4δ

1− δ
and τ =

√
1 + δ

1− δ
.

In [23, Theorem 2.2] it is proved that a sufficient condition for the lower restricted isometry property
of order s to hold with high probability is that the sample complexity m must scale linearly with the
intrinsic sparsity K(s) up to a polylogarithmic factor. This result is stated below.

Theorem 5.5 (Sample complexity ⇒ lower restricted isometry property). Fix 0 < ε < 1, 0 < δ < 1,
let {φi}i∈Nd

0
be as in (2) and u be the intrinsic weights defined in (14) and suppose that

m & K(s) · L(s, n, δ, ε), (38)

where K(s) is as in (18) and where L = L(s, n, δ, ε) is a polylogarithmic factor defined as

L =
1

δ2
ln

(

K(s)

δ2

)

max

{

1

δ4
ln

(

K(s)

δ2
ln

(

K(s)

δ2

))

ln(n),
1

δ
ln

(

1

δε
ln

(

K(s)

δ2

))}

. (39)

Then with probability at least 1 − ε the design matrix A defined in (5) satisfies the lower restricted
isometry property of order s with constant δs,L ≤ δ.

A fundamental feature of the lower (or weighted) robust null space property is that it implies a
suitable ℓ1u distance bound. This is stated in the following theorem, an immediate consequence of [51,
Theorem 4.2] (notice that σK(s)(z)1,u ≤ σs,L(z)1,u, for any z ∈ Cn). This can also be viewed as a
corollary of the Theorem 5.18, which deals with the framework of 2-level sparsity.

Theorem 5.6 (Lower robust null space property ⇒ ℓ1u distance bound). If the matrix A ∈ Cm×n has
the lower null space property of order s, then for every z, ẑ ∈ Cn the following holds:

‖z − ẑ‖1,u ≤ 1 + ρ

1− ρ
(2σs,L(z)1,u + ‖ẑ‖1,u − ‖z‖1,u) +

2τ
√

K(s)

1− ρ
‖A(ẑ − z)‖2.

The next step is to convert an ℓ1u error estimate into an L2
ν error estimate. In order to do this, we

need to recall two technical lemmas. Namely, an upper bound on the ℓ∞ norm of the intrinsic weights
and a weighted version of the Stechkin inequality. Their proofs can be found in [23, Lemma 4.1] and
[51, Theorem 3.2], respectively.

Lemma 5.7 (ℓ∞ bound on the intrinsic weights). For any s ≥ 2 and d ≥ 1, let Λ = ΛHC
d,s . Then

‖uΛ‖2∞ ≤ 3

4
K(s),

where (ui)i∈Nd
0
are the weights (14) associated with the tensor Chebyshev or Legendre polynomials.

Lemma 5.8 (Weighted Stechkin inequality). For any z ∈ ℓ1u(N
d
0) and K ∈ N, with K > ‖u‖2∞, the

following holds

inf{‖z − z′‖2 : | supp(z′)|u ≤ K} ≤ ‖z‖1,u
√

K − ‖u‖2∞
.
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Thanks to Lemma 5.7, Lemma 5.8, we are able to give a way to convert an ℓ1u error estimate (on
the coefficients) into an L2

ν error estimate (on the function) under the lower robust null space property.

Lemma 5.9 (Lower robust null space property ⇒ ℓ1u → L2
ν estimate conversion). Let x̂Λ be the output

of any decoder and assume that A has the lower robust null space property of order s. Then,

‖f − f̃‖L2
ν
≤ ‖f − fΛ‖L2

ν
+

2 + ρ
√

K(s)
‖xΛ − x̂Λ‖1,u + τ‖A(xΛ − x̂Λ)‖2.

where f̃ is as in (13).

Proof. First, observe that

‖f − f̃‖L2
ν
= ‖x− x̂Λ‖2 ≤ ‖xΛc‖2 + ‖xΛ − x̂Λ‖2 = ‖f − fΛ‖L2

ν
+ ‖xΛ − x̂Λ‖2.

Now, choose a (not necessarily lower) set S ⊆ Λ such that

‖(xΛ − x̂Λ)Sc‖2 = inf
z:| supp(z)|u≤K(s)

‖z − (xΛ − x̂Λ)‖2.

(Notice that the infimum is actually a minimum because it is defined over a finite union of linear
subspaces). Employing the weighted Stechkin inequality (Lemma 5.8) and the upper bound ‖u‖2∞ ≤
3
4K(s) (Lemma 5.7), we obtain

‖(xΛ − x̂Λ)Sc‖2 ≤
‖xΛ − x̂Λ‖1,u
√

K(s)− ‖uΛ‖2∞
≤ 2‖xΛ − x̂Λ‖1,u

√

K(s)
.

Moreover, the lower robust null space property implies

‖(xΛ − x̂Λ)S‖2 ≤
ρ

√

K(s)
‖(xΛ − x̂Λ)Sc‖1,u + τ‖A(xΛ − x̂Λ)‖2.

Combining the above inequalities with the triangle inequality ‖xΛ − x̂Λ‖2 ≤ ‖(xΛ − x̂Λ)S‖2 + ‖(xΛ −
x̂Λ)Sc‖2 concludes the proof.

5.1.2 Robustness of WQCBP

In this section, we prove that the WQCBP decoder (9) is robust under unknown error. In particular,
we will assume to be in the error-blind scenario, where upper bounds of the form ‖e‖2 ≤ η are not
available. The results proved here generalize the robust recovery error guarantees given in [15] for the
unweighted case. The recovery error estimate depends on the best s-term approximation error in lower
sets, on the parameter η, on the unknown error norm ‖e‖2, and on a tail term T whose behavior is
studied in Theorem 5.11. We follow the proof strategy explained in Remark 5.1.

Theorem 5.10 (Robust recovery for WQCBP). Let 0 < ε < 1, 0 < δ < 1, 2 ≤ s ≤ 2d+1, Λ = ΛHC

d,s

be the hyperbolic cross index set defined in (16), and {φi}i∈Nd
0
be the tensor Legendre or Chebyshev

polynomial basis. Draw t1, . . . , tm independently according to the corresponding measure ν, with

m & sγL(s, n, δ, ε), (40)

where γ is defined as in (20) and L(s, n, δ, ε) is the polylogatrithmic factor defined in (39). Then, the
following holds with probability at least 1 − ε. For any η ≥ 0 and f ∈ L2

ν(D) ∩ L∞(D) expanded as in
(3), the approximation f̃ defined as in (13) computed using the WQCBP decoder (9) satisfies

‖f − f̃‖L∞ ≤ C1σs,L(x)1,u + sγ/2[C2(η + ‖e‖2) + C3T ], (41)

‖f − f̃‖L2
ν
≤ C4

σs,L(x)1,u
sγ/2

+ C5(η + ‖e‖2) + C6T + ‖f − fΛ‖L2
ν
, (42)
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where fΛ is defined as in (4),

T = T (A,Λ, e,u, η) := min

{‖z‖1,u
sγ/2

: z ∈ C
n, ‖Az − e‖2 ≤ η

}

. (43)

and with constants

C1 =
3 + ρ

1− ρ
, C2 =

2τ

1− ρ
, C3 =

1 + ρ

1− ρ
, C4 =

2(1 + ρ)(2 + ρ)

1− ρ
, C5 =

τ(9 + 3ρ)

1− ρ
, C6 = C4,

where ρ = 4δ/(1− δ) and τ =
√
1− δ/(1− δ).

Proof. Thanks to Theorem 5.5 and Lemma 5.4, the sample complexity bound (40) guarantees that A
has the lower robust null space property with probability at least 1− ε. As a consequence, Theorem 5.6
holds with probability at least 1− ε.

Now, we observe that, on the one hand,

‖A(xΛ − x̂Λ)‖2 ≤ ‖AxΛ − y‖2 + ‖Ax̂Λ − y‖2 ≤ ‖e‖2 + η (44)

and, on the other hand,

‖x̂Λ‖1,u − ‖xΛ‖1,u = min{‖z‖1,u : z ∈ C
n, ‖Az − y‖2 ≤ η} − ‖xΛ‖1,u

≤ min{‖z − xΛ‖1,u : z ∈ C
n, ‖Az − y‖2 ≤ η}

= min{‖z‖1,u : z ∈ C
n, ‖Az − e‖2 ≤ η}

= sγ/2T (A,Λ, e,u, η).

Noting that σs,L(xΛ)1,u = σs,L(x)1,u (since Λ is the union of all lower sets of cardinality s), that
K(s) ≤ sγ (due to Lemma 2.2), and employing Theorem 5.6 with z = xΛ and ẑ = x̂Λ, we obtain

‖xΛ − x̂Λ‖1,u ≤ 2(1 + ρ)

1− ρ
σs,L(x)1,u + sγ/2

[

2τ

1− ρ
(‖e‖2 + η) +

1 + ρ

1− ρ
T
]

. (45)

Using ‖x− xΛ‖1,u ≤ σs,L(x)1,u and plugging (45) into

‖f − f̃‖L∞ ≤ ‖x− x̂Λ‖1,u ≤ ‖x− xΛ‖1,u + ‖xΛ − x̂Λ‖1,u,

gives (41).
Finally, we employ the ℓ1u → L2

ν estimate conversion result (Lemma 5.9) combined with (44), (45),
and with the fact that K(s) ≥ 1

4s
γ (Lemma 2.2), to obtain (42).

In the following result, we give an upper bound to the tail term T defined in (43) in terms of the
mth singular value (in decreasing order) of the matrix

√

m
n A∗, denoted as σm(

√

m
n A∗).

Theorem 5.11 (Tail term bound). Consider the setup of Theorem 5.10 with

m ≍ sγL(s, n, δ, ε), (46)

and let T = T (A,Λ, e,u, η) be as in (43). Then,

T .
sα/2

√
L

σm(
√

m
n A∗)

max{‖e‖2 − η, 0}, (47)

where L is as in (39) and α = 1, 2 in the Chebyshev or Legendre case, respectively.
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Proof. Notice that if the rank of A is not full, then σm(
√

m
n A∗) = 0 and (47) is trivially satisfied.

Hence, we assume that A has full rank. Also if η ≥ ‖e‖2 the result holds trivially. Then, we also
suppose that η < ‖e‖2.

Since ‖e‖2 6= 0, we can define the ansatz z := (1 − η/‖e‖2)A†e, where A† = A∗(AA∗)−1 is the
pseudoinverse. Then z satisfies ‖Az − e‖2 = η, and hence, recalling the definition (43) of T , we have

sγ/2T ≤ ‖z‖1,u ≤
√

|Λ|u‖z‖2 ≤
√

|Λ|u
σm(A∗)

(‖e‖2 − η) .

Equation (46) implies that
√

m
sγ .

√
L, and therefore

T .

√

|Λ|u
n

√
L

σm

(√

m
n A∗) (‖e‖2 − η) . (48)

The last step is to estimate |Λ|u using the explicit formulae (15) for the intrinsic weights. For the
Chebyshev case, we have

|Λ|u =
∑

i∈Λ

2‖i‖0 ≤
∑

i∈Λ

d
∏

ℓ=1

(iℓ + 1) ≤ s
∑

i∈Λ

1 = sn

where in the penultimate step we used the definition of the hyperbolic cross (16). For the Legendre
case, we have

|Λ|u =
∑

i∈Λ

d
∏

ℓ=1

(2iℓ + 1) ≤
∑

i∈Λ

2‖i‖0

d
∏

ℓ=1

(iℓ + 1) ≤ s2n.

This completes the proof.

Theorems 5.10 & 5.11 show that the robustness of WQCBP is implied by inequalities of the form
σm(

√

m
n A∗) & 1. When d = 1, this can be achieved by resorting to the spectral theory of random

matrices with heavy-tailed rows [15]. Showing this type of inequality when d > 1 is still an open
problem. However, it is not difficult to show that (see [4, Lemma 3])

λmin

(

E

[m

n
AA∗

])

= 1− 1

n
.

By inspecting the proof of Theorem 5.11, we notice that

T . Q
√
Lmax{‖e‖2 − η, 0},

where

Q = Q(A,Λ,u) :=

√

|Λ|u
n

1

σm(
√

m
n A∗)

. (49)

This constant can be easily estimated numerically and turns out to have moderate size (see [4]).
To conclude, we notice that Theorem 5.10 implies an analogous result in the error-aware scenario,

i.e. when ‖e‖2 ≤ η.

Theorem 5.12 (Robust recovery of WQCBP in the error-aware setting). Consider the same setup of
Theorem 5.10 and let ‖e‖2 ≤ η. Then, with probability at least 1− ε the following inequalities hold:

‖f − f̃‖L∞ . σs,L(x)1,u + sγ/2η,

‖f − f̃‖L2
ν
.

σs,L(x)1,u
sγ/2

+ η + ‖f − fΛ‖L2
ν
.
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5.1.3 Robustness of WLASSO

In this section, we prove that the WLASSO decoder is robust under unknown error, when the tuning
parameter is chosen proportionally to the ratio

√

K(s)/‖e‖2.

Theorem 5.13 (WLASSO robust recovery). Let 0 < ε < 1, 0 < δ < 1, 2 ≤ s ≤ 2d+1, Λ = ΛHC

d,s be the
hyperbolic cross index set defined in (16), and {φi}i∈Nd

0
be the tensor Legendre or Chebyshev polynomial

basis. Draw t1, . . . , tm independently according to the corresponding measure ν, with

m & sγL(s, n, δ, ε),

where γ is defined as in (20) and L(s, n, δ, ε) is the polylogatrithmic factor defined in (39). Then, the
following holds with probability at least 1 − ε. For any f ∈ L2

ν(D) ∩ L∞(D) expanded as in (3), the
approximation f̃ defined as in (13) computed using the WLASSO decoder (10) with tuning parameter

λ = θ

√

K(s)

‖e‖2
, with θ > 0, (50)

satisfies

‖f − f̃‖L∞ ≤ C1σs,L(x)1,u + C2s
γ/2‖e‖2, (51)

‖f − f̃‖L2
ν
≤ C3

σs,L(x)1,u
sγ/2

+ C4‖e‖2 + ‖f − fΛ‖L2
ν
, (52)

where fΛ is defined as in (4), and the constants are

C1 =
3 + ρ

1− ρ
, C2 =

1

1− ρ

[

τ2

(1 + ρ)θ
+ (1 + ρ)θ + 2τ

]

,

and

C3 =
4(1 + ρ)(2 + ρ)

1− ρ
C4 =

1

1− ρ

[

(5 + ρ)2τ2

4(1 + ρ)(2 + ρ)θ
+ (1 + ρ)(2 + ρ)θ + (5 + ρ)τ

]

,

where ρ = 4δ/(1− δ), τ =
√
1− δ/(1− δ).

Proof. First, notice that (10) can be reformulated in augmented form as

(x̂Λ, ê) := arg min
(z,d)∈Cn×Cm

‖z‖1,u + λ‖d‖22 s.t. Az + d = y.

Moreover, Theorem 5.6 (that holds with probability at least 1− ε) implies

‖xΛ − x̂Λ‖1,u ≤ 2(1 + ρ)

1− ρ
σs,L(x)1,u +

ξ

1− ρ
, (53)

where
ξ := (1 + ρ)(‖x̂Λ‖1,u − ‖xΛ‖1,u) + 2τ

√

K(s)‖A(x̂Λ − xΛ)‖2. (54)

Since ‖A(x̂Λ − xΛ)‖2 ≤ ‖ê‖2 + ‖e‖2, we estimate

ξ ≤ (1 + ρ)‖x̂Λ‖1,u + 2τ
√

K(s)‖ê‖2 − (1 + ρ)‖xΛ‖1,u + 2τ
√

K(s)‖e‖2.

Now, we employ Young’s inequality ab ≤ ωa2 + b2

4ω , with ω = (1 + ρ)λ, a = ‖ê‖2, and b = 2τ
√

K(s).
This, combined with the optimality of (x̂Λ, ê) yields

ξ ≤ τ2K(s)

(1 + ρ)λ
+ (1 + ρ)λ‖e‖22 + 2τ

√

K(s)‖e‖2.
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Now, plugging (50) into the above relation, we see that

ξ ≤
[

τ2

(1 + ρ)θ
+ (1 + ρ)θ + 2τ

]

√

K(s)‖e‖2.

Finally, recalling Lemma 2.2, from (53) we obtain (51) as in Theorem 5.10.
Now, Lemma 5.9 combined with (53) yields

‖f − f̃‖L2
ν
≤ ‖f − fΛ‖L2

ν
+

2(1 + ρ)(2 + ρ)

1− ρ

σs,L(x)1,u
√

K(s)
+

ζ

(1− ρ)
√

K(s)
(55)

where
ζ := (1 + ρ)(2 + ρ)(‖x̂‖1,u − ‖x‖1,u) + (5 + ρ)τ

√

K(s)‖A(x̂Λ − xΛ)‖2 (56)

Employing Young’s inequality with ω = (1 + ρ)(2 + ρ)λ, a = ‖ê‖2, and (5 + ρ)τ
√

K(s) and using
analogous manipulations as before, we have

ζ ≤
[

(5 + ρ)2τ2

4(1 + ρ)(2 + ρ)θ
+ (1 + ρ)(2 + ρ)θ + (5 + ρ)τ

]

√

K(s)‖e‖2.

Combining the above inequality with (55) and recalling Lemma 2.2 gives (52), as required.

5.1.4 Robustness of WSR-LASSO

We prove a robustness under unknown error for the WSR-LASSO decoder (11). Our theory suggests
that the tuning parameter should be chosen directly proportional to the quantity

√

K(s). This choice
is advantageous, since it is independent of the unknown error e.

Theorem 5.14 (WSR-LASSO robust recovery). Let 0 < ε < 1, 0 < δ < 1, 2 ≤ s ≤ 2d+1, Λ = ΛHC

d,s

be the hyperbolic cross index set defined in (16), and {φi}i∈Nd
0
be the tensor Legendre or Chebyshev

polynomial basis. Draw t1, . . . , tm independently according to the corresponding measure ν, with

m & sγL(s, n, δ, ε),

where γ is defined as in (20) and L(s, n, δ, ε) is the polylogatrithmic factor defined in (39). Then, the
following holds with probability at least 1 − ε. For any f ∈ L2

ν(D) ∩ L∞(D) expanded as in (3), the
approximation f̃ defined as in (13) computed using the WSR-LASSO decoder (11) with tuning parameter

λ = θ
√

K(s), with θ ≥ (5 + ρ)τ

(1 + ρ)(2 + ρ)
(57)

where ρ = 4δ/(1− δ) and τ =
√
1− δ/(1− δ), satisfies

‖f − f̃‖L∞ ≤ C1σs,L(x)1,u + C2s
γ/2‖e‖2, (58)

‖f − f̃‖L2
ν
≤ C3

σs,L(x)1,u
sγ/2

+ C4‖e‖2 + ‖f − fΛ‖L2
ν
, (59)

where fΛ is defined as in (4) and the constants are

C1 =
3 + ρ

1− ρ
, C2 =

(1 + ρ)θ + 2τ

1− ρ
, C3 =

4(1 + ρ)(2 + ρ)

1− ρ
, C4 =

(1 + ρ)(2 + ρ)θ + (5 + ρ)τ

1− ρ
.

Proof. The proof is similar to that of Theorem 5.13. First, observe that (11) admits the equivalent
augmented formulation

(x̂Λ, ê) = arg min
(z,d)∈Cn×Cm

‖z‖1,u + λ‖d‖2 s.t. Az + d = y.
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Moreover, Theorem 5.6 (that holds with probability at least 1− ε) implies the ℓ1u estimate (53). Now,
we observe that ρ < 1 and (57) yield

λ ≥ (5 + ρ)τ
√

K(s)

(1 + ρ)(2 + ρ)
≥ 2τ

√

K(s)

1 + ρ
.

Therefore, using the above inequality and the optimality of (x̂Λ, ê), we obtain

ξ ≤ (1 + ρ) (‖x̂Λ‖1,u + λ‖ê‖2) + 2τ
√

K(s)‖e‖2 − (1 + ρ)‖xΛ‖1,u
≤ [(1 + ρ)λ+ 2τ

√

K(s)]‖e‖2 = [(1 + ρ)θ + 2τ ]
√

K(s)‖e‖2,

where ξ is defined as in (54). Plugging the above inequality into (53) gives (58).
Again, analogously to the proof of Theorem 5.13, we have that the L2

ν estimate (55) holds. Then,
using (57) and an argument analogous to that employed to bound ξ, we obtain

ζ ≤ [(1 + ρ)(2 + ρ)θ + (5 + ρ)τ ]
√

K(s)‖e‖2,

where ζ is defined as in (56). Recalling Lemma 2.2, we have (59). The proof is thus complete.

5.2 WLAD-LASSO

The proof strategy to show the robustness of WLAD-LASSO under unknown error still follows the
guidelines of Remark 5.1. Yet, in this case we need to introduce a further level of technical difficulty,
dealing with the framework of sparsity in levels, introduced in [5]. In particular, we will make use of a
weighted version of the 2-level sparsity. We introduce this notion and some related technical lemmas in
§5.2.1. Then, we show the robustness of WLAD-LASSO in §5.2.2.

For the sake of generality, the results in this section are proved for a variant of (12) with weighted
ℓ1 penalization of the data-fidelity term

x̂Λ := arg min
z∈Cn

‖z‖1,u + λ‖Az − y‖1,v, (60)

where v ∈ R
m is such that vi ≥ 1 for every i ∈ [m].

5.2.1 Preliminaries

We first introduce some notation regarding the weighted 2-level sparsity framework [5].

Definition 5.15 (Weighted 2-level sparsity notation). Let n, p ∈ N. Consider a vector z ∈ Cn+p and
weights w ∈ Rn+p, partitioned as

z =

[

z1

z2

]

, w =

[

w1

w2

]

,

such that z1 ∈ Cn, z2 ∈ Cp, w1 ∈ Rn, and w2 ∈ Rp. Then, given J := (J1, J2) ∈ R2, z is said to be
weighted J-sparse if

| supp(zi)|wi
≤ Ji, ∀i = 1, 2.

The weighted best J-term approximation error to z is

σJ (z)1,w := inf
z′:| supp(z′

i)|wi
≤Ji

‖z − z′‖1,w.

We also introduce a scale λ > 0 that will allow us to switch from the two- to the one-level formalism.

Definition 5.16 (Scaled weights and scaled sparsity). Let λ > 0 be a scale, then for every w =

[

w1

w2

]

∈
Cn+p and J = (J1, J2) ∈ R2, we define the scaled weights wλ and the scaled sparsity Jλ as

wλ :=

[

w1

λw2

]

, Jλ = J1 + λ2J2. (61)
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Notice that if z is J -sparse, then

‖z‖1,wλ
≤
√

Jλ‖z‖2. (62)

Using the notation above, the WLAD-LASSO optimization program (60) admits an equivalent aug-
mented formulation as a weighted basis pursuit program, i.e.

[

x̂Λ

ê

]

= arg min
z∈Cn+m

‖z‖1,wλ
s.t. Mz = y, (63)

where w :=

[

u

v

]

, M :=
[

A I
]

and wλ is defined as in (61).

We are now in a position to define the 2-level weighted robust null space property.

Definition 5.17 (2-level weighted robust null space property). A matrix M ∈ Cm×(N+p) is said to
satisfy the 2-level weighted robust null space property of scale λ > 0 and order J = (J1, J2) if

‖zS1∪S2‖2 ≤ ρ√
Jλ

‖z(S1∪S2)
c‖1,wλ

+ τ‖Mz‖2,

for every S1 ⊆ [n], S2 ⊆ n+ [p], such that |Si|wi
≤ Ji, for i = 1, 2.

Notice that in the one-level case (i.e., when p = 0) and with J1 = K(s) Definition 5.17 and Defini-
tion 5.3 are equivalent.

We now prove a result analogous to Theorem 5.6. It is an upper bound to the ℓ1wλ
distance between

two arbitrary finite-dimensional vectors under the weighted robust null space property. This result is
the 2-level generalization of [51, Theorem 4.2] and is based on the same proof strategy.

Theorem 5.18 (ℓ1wλ
distance bound). If the matrix M ∈ Cm×(N+p) has the 2-level weighted robust

null space property, then for every z, ẑ ∈ Cn+p the following holds:

‖z − ẑ‖1,wλ
≤ 1 + ρ

1− ρ
(2σJ (z)1,wλ

+ ‖ẑ‖1,wλ
− ‖z‖1,wλ

) +
2τ

√
Jλ

1− ρ
‖M(z − ẑ)‖2. (64)

Proof. Choose S1 ⊆ [n] and S2 ⊆ [p] such that σJ (z)1,wλ
= ‖z − zT ‖1,wλ

= ‖zT c‖1,wλ
and define

T := S1 ∪ S2. Using the 2-level weighted robust null space property and recalling (62), we obtain

‖(z − ẑ)T ‖1,wλ
≤ ρ‖(z − ẑ)T c‖1,wλ

+ τ
√

Jλ‖M(z − ẑ)‖2. (65)

Then, we estimate

‖(z − ẑ)T c‖1,wλ
≤ ‖zT c‖1,wλ

+ ‖ẑT c‖1,wλ

= 2‖zT c‖1,wλ
+ ‖zT ‖1,wλ

− ‖ẑT ‖1,wλ
+ ‖ẑ‖1,wλ

− ‖z‖1,wλ

≤ 2σJ (z)1,wλ
+ ‖(z − ẑ)T ‖1,wλ

+ ‖ẑ‖1,wλ
− ‖z‖1,wλ

.

Plugging (65) into the inequality above and solving for ‖(z − ẑ)T c‖1,wλ
, we see that

‖(z − ẑ)T c‖1,wλ
≤ 2σJ (z)1,wλ

+ τ
√
Jλ‖M(z − ẑ)‖+ ‖ẑ‖1,wλ

− ‖z‖1,wλ

1− ρ
. (66)

Combining (65) and (66) with the triangle inequality ‖z− ẑ‖1,wλ
≤ ‖(z − ẑ)T ‖1,wλ

+ ‖(z − ẑ)T c‖1,wλ

concludes the proof.

Before proving Theorem 5.25, we need to introduce some more technical elements to the picture.
First, we consider the 2-level weighted restricted isometry property (a weighted version of the restricted
isometry property in levels, introduced in [11], also studied in [3] for sparse corruptions).
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Definition 5.19 (2-level weighted restricted isometry property). Let J ∈ R2, andw ∈ Rn+p partitioned
as in Definition 5.15. Then, a matrix M ∈ Cm×(n+p) is said to have the 2-level weighted restricted
isometry property of order J if there exists a constant 0 < δ < 1 such that

(1− δ)‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δ)‖z‖22, ∀z ∈ C
n+p : | supp(zi)|wi

≤ Ji, ∀i = 1, 2.

The smallest constant such that this property holds is called the J th 2-level weighted restricted isometry
constant of M and it is denoted as δJ .

As a consequence of the definition above, we have the following technical result.

Lemma 5.20. Consider z, ẑ ∈ Cn+p, weights w ∈ Rn+p, and J , Ĵ ∈ R2 partitioned as in Defini-
tion 5.15 and such that | supp(zi)|wi

≤ Ji and | supp(ẑi)|wi
≤ Ĵi, for i = 1, 2. Moreover, assume that

supp(z1) ∩ supp(ẑ1) = supp(z2) ∩ supp(ẑ2) = ∅. Then, it holds

| 〈Mz,Mẑ〉 | ≤ δ
J+Ĵ

‖z‖2‖ẑ‖2, with M =
[

A I
]

.

Proof. Let S1 := supp(z1)∪supp(ẑ1) and S2 := supp(ẑ2)∪supp(ẑ2). Then |Si|wi
≤ Ji+ Ĵi, for i = 1, 2.

Using the disjointedness of the supports of z1 and ẑ1 and of those of z2 and ẑ2, we have

| 〈Mz,Mẑ〉 | = |〈Mz,Mẑ〉 − 〈z, ẑ〉|
=
∣

∣

〈[

AS1 IS2

]

zS1∪S2

[

AS1 IS2

]

ẑS1∪S2

〉

− 〈zS1∪S2 , ẑS1∪S2〉
∣

∣

=
∣

∣

∣

〈(

[

AS1 IS2

]∗[
AS1 IS2

]

− I
)

zS1∪S2 , ẑS1∪S2

〉∣

∣

∣

≤ ‖
[

AS1 IS2

]∗[
AS1 IS2

]

− I‖2→2 ‖zS1∪S2‖2 ‖ẑS1∪S2‖2
≤ δ

J+Ĵ
‖z‖2‖ẑ‖2.

This completes the proof.

In view of Remark 5.1, we now prove that the restricted isometry property implies the robust null
space property in the 2-level weighted setting.

Theorem 5.21 (2-level weighted restricted isometry property ⇒ 2-level weighted robust null space
property). Given J = (K,H) ∈ R2, any matrix M ∈ Cm×(n+p) of the form M =

[

A I
]

with (3J)th

weighted restricted isometry constant

δ3J <
1

1 + 4Θ
, with Θ :=

√
K + λ2H

min{
√
K,λ

√
H}

, (67)

with respect to weights w =

[

u

v

]

∈ Rn+p such that J ≥ 4
3 (‖u‖2∞, ‖v‖2∞) satisfies the 2-level weighted

robust null space property of order J with constants

ρ =
4δ3JΘ

(1− δ3J )
, τ =

√
1 + δ3J
1− δ3J

. (68)

Proof. Consider x ∈ Cn and S ⊂ [n] with |S|u ≤ K. We partition Sc = [n] \ S into disjoint blocks
S1, S2, . . . with K−‖u‖2∞ ≤ |Sℓ|u ≤ K according to the non-increasing rearrangement of (|xj |u−1

j )j∈Sc .

As a result, we have |xj |u−1
j ≤ |xk|u−1

k for all j ∈ Sℓ, k ∈ Sℓ−1, and ℓ ≥ 2. Similarly, we let e ∈ C
p and

T ⊂ [p] with |T |w2
≤ H . We partition T c into blocks T1, T2, . . . with H − ‖v‖2∞ ≤ |Sℓ|v ≤ H according

to the non-increasing rearrangement of (|ej |v−1
j )j∈T c . We have |ej |v−1

j ≤ |ek|v−1
k for all j ∈ Tℓ, k ∈ Tℓ−1,
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and ℓ ≥ 2. Using and the 2-level weighted restricted isometry property, we have

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

2

≤ 1

1− δ2J

∥

∥

∥

∥

M

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

2

=
1

1− δ2J

〈

M

[

xS∪S1

eT∪T1

]

,M

[

x

e

]

−
∑

ℓ≥2

M

[

xSℓ

eTℓ

]

〉

=
1

1− δ2J





〈

M

[

xS∪S1

eT∪T1

]

,M

[

x

e

]〉

−
∑

ℓ≥2

〈

M

[

xS∪S1

eT∪T1

]

,M

[

xSℓ

eTℓ

]〉





Then, employing agin the restricted isometry property, Lemma 5.20, and the Cauchy-Schwarz inequality,
we see that

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

2

≤ 1

1− δ2J





∥

∥

∥

∥

M

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

‖Ax+ e‖2 + δ3J

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

∑

ℓ≥2

∥

∥

∥

∥

[

xSℓ

eTℓ

]∥

∥

∥

∥

2





≤
√
1 + δ2J
1− δ2J

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

‖Ax+ e‖2 +
δ3J

1− δ2J

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

∑

ℓ≥2

∥

∥

∥

∥

[

xSℓ

eTℓ

]∥

∥

∥

∥

2

.

Dividing both sides by

∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

and using the fact that δ2J ≤ δ3J yields

∥

∥

∥

∥

[

xS

eT

]∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

xS∪S1

eT∪T1

]∥

∥

∥

∥

2

≤
√
1 + δ3J
1− δ3J

‖Ax+ e‖2 +
δ3J

1− δ3J

∑

ℓ≥2

∥

∥

∥

∥

[

xSℓ

eTℓ

]∥

∥

∥

∥

2

.

Thanks to the definition of the Sℓ’s, for every j ∈ Sℓ and k ∈ Sℓ−1 with ℓ ≥ 2, we have |xj |u−1
j ≤ |xk|u−1

k .

Moreover, let αk := u2
k/|Sℓ−1|u. Then,

∑

k∈Sℓ−1
αk = 1 and, for every j ∈ Sℓ and ℓ ≥ 2, we see that

|xj |
uj

≤
∑

k∈Sℓ−1

αk
|xk|
uk

=
‖xSℓ−1

‖1,u
|Sℓ−1|u

≤ ‖xSℓ−1
‖1,u

K − ‖u‖2∞
.

Therefore, for any ℓ ≥ 2, using that K ≥ 4
3‖u‖2∞, we have

‖xSℓ
‖2 ≤

√
K

‖xSℓ−1
‖1,u

K − ‖u‖2∞
≤ 4‖xSℓ−1

‖1,u√
K

.

Using an analogous argument, we obtain ‖eTℓ
‖2 ≤ 4‖eTℓ−1

‖1,v√
H

for every ℓ ≥ 2.

Therefore, we estimate
∥

∥

∥

∥

[

xS

eT

]∥

∥

∥

∥

2

≤ δ3J
1− δ3J

∑

ℓ≥2

∥

∥

∥

∥

[

xSℓ

eTℓ

]∥

∥

∥

∥

2

+

√
1 + δ3J
1− δ3J

‖Ax+ e‖2

≤ δ3J
1− δ3J

∑

ℓ≥2

(‖xSℓ
‖2 + ‖eTℓ

‖2) +
√
1 + δ3J
1− δ3J

‖Ax+ e‖2

≤ 4δ3J
1− δ3J

∑

ℓ≥2

(‖xSℓ−1
‖1,u√

K
+ λ

‖eTℓ−1
‖1,v

λ
√
H

)

+

√
1 + δ3J
1− δ3J

‖Ax+ e‖2

=
4δ3J

1− δ3J

(‖xSc‖1,u√
K

+
λ‖eT c‖1,v
λ
√
H

)

+

√
1 + δ3J
1− δ3J

‖Ax+ e‖2

≤ 4δ3J
1− δ3J

max

{

1√
K

,
1

λ
√
H

}∥

∥

∥

∥

[

xSc

eT c

]∥

∥

∥

∥

1,wλ

+

√
1 + δ3J
1− δ3J

∥

∥

∥

∥

M

[

x

e

]∥

∥

∥

∥

2

.
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Now, observing that

max

{

1√
K

,
1

λ
√
H

}

=
Θ√

H + λ2K
,

we have shown the 2-level null-space property with constants ρ and τ defined by (68). For ρ to be
strictly smaller than 1, we need condition (67). This concludes the proof.

Remark 5.22. The constant 4/3 in the hypothesis J ≥ 4
3 (‖u‖2∞, ‖v‖2∞) of Theorem 5.21 can be made

arbitrarily close to 1. This particular choice has been made in view of Lemma 5.7.

Finally, we establish the 2-level weighted restricted isometry property for the augmented matrix
[

A I
]

with high probability provided a suitable lower bound for the sample complexity m.

Theorem 5.23 (Sample complexity⇒ 2-level weighted restricted isometry property). Let J = (K(s), H),
0 < δ < 1, and suppose that

m & K(s)max{L(s, n, δ, ε), δ−2H}
Then, with probability at least 1 − ε, the matrix

[

A I
]

has the 2-level weighted restricted isometry
property of order J with weights (uΛ,v) and constant δJ ≤ δ.

Proof. First, notice that [3, Lemma 3.14] can be easily adapted to the weighted case by noticing that

| 〈Ax, e〉 | ≤
√

K(s)H
m ‖x‖2‖e‖2, due to the assumption v ≥ 1. As a consequence, [3, Theorem 3.15]

admits an analogous generalization to the weighted case. The thesis now follows from Theorem 5.5.

Finally, we introduce the concept of quasi-best weighted K-term approximation, introduced and
studied in [51].

Definition 5.24 (Quasi-best weighted K-term approximation). Given z ∈ Cn, the corresponding
weighted quasi-best K-term approximation error is defined as

σ̃K(z)p,w = ‖z − zS‖p,w,

where S = {π(1), . . . , π(s)} where s is the maximal number such that
∑s

j=1 w
2
π(j) ≤ K, and π is some

permutation such that |zπ(j)|pw−p
j ≥ |zπ(j+1)|pw−p

j+1 for every j ∈ [n].

Equipped with the technical elements discussed above, we are now ready to prove the robustness of
WLAD-LASSO under unknown error.

5.2.2 Robustness of WLAD-LASSO

We prove robust recovery error estimates for the WLAD-LASSO decoder (60) under unknown error.

Theorem 5.25 (WLAD-LASSO recovery estimate). Let 0 < ε < 1, 2 ≤ s ≤ 2d+1, H > 0, Λ = ΛHC

d,s

be the hyperbolic cross index set defined in (16), and {φi}i∈Nd
0
be the tensor Legendre or Chebyshev

polynomial basis. Let 0 < δ < 1 be such that

δ ≤ 1

1 + 4Θ
, with Θ =

√

K(s) + λ2H

min {
√

K(s), λ
√
H}

.

Draw t1, . . . , tm independently according to the corresponding measure ν, with

m & sγ/2max{L(s, n, δ, ε), δ−2H} (69)

where γ is defined as in (20) and L(s, n, δ, ε) is the polylogarithmic factor defined in (39). Then, the
following holds with probability at least 1 − ε. For any f ∈ L2

ν(D) ∩ L∞(D) expanded as in (3), the
approximation f̃ defined as in (13) computed using the WLAD-LASSO decoder (60) satisfies

‖f − f̃‖L∞ + λ‖e− (y −Ax̂Λ)‖1,v ≤ C1 (σs,L(x)1,u + λσH(e)1,v) . (70)

29



and, additionally assuming H ≥ 2‖v‖2∞,

‖f − f̃‖L2
ν
+ ‖e− (y −Ax̂Λ)‖2 ≤ C2(1 +

√
Θ)

(

σs,L(x)1,u
sγ/2

+
σH(e)1,v√

H

)

+ ‖f − fΛ‖L2
ν
, (71)

where fΛ is defined as in (4) and the constants are

C1 =
3 + ρ

1− ρ
, C2 =

4
√
2(1 + ρ)max{ρ, 2√ρ}

1− ρ
,

where ρ = 4δ/(1− δ), τ =
√
1− δ/(1− δ).

Proof. First, we observe that the sample complexity lower bound (69) is sufficient to guarantee the
2-level weighted restricted isometry property and the 2-level weighted robust null space property for
the matrix

[

A I
]

with probability at least 1− ε, due to Theorems 5.23 & 5.21.
Now, considering the augmented formulation (63) of WLAD-LASSO, we apply Theorem 5.18 with

M =
[

A I
]

, z =

[

xΛ

e

]

, and ẑ =

[

x̂Λ

ê

]

. We obtain

‖xΛ − x̂Λ‖1,u + λ‖e− ê‖1,v ≤ 2(1 + ρ)

1− ρ
(σs,L(x)1,u + λσH(e)1,v) , (72)

which, for reasons analogous to those of the previous robust recovery theorems, implies (70).6

As a second step, we now convert the weighted ℓ1 error estimate (72) into an L2
ν error estimate as

usual. This will require some extra work in this case.
Recalling Definition 5.24, let d := xΛ− x̂Λ and f := e− ê. Let S and T be such that ‖d−dS‖1,u =

‖dSc‖1,u = σ̃K(s)(d)1,u and ‖f−fS‖1,v = ‖fT c‖1,v = σ̃H(f )1,v. Moreover, using the 2-level notation of

Definition 5.15, define g :=

[

d

f

]

and J := (K(s), H). Recalling (61), let wλ :=

[

u

λv

]

, Jλ := K(s)+λ2H .

Moreover, define

θd := min
i∈S

|di|
ui

, θf := min
j∈T

|fj|
vj

, θ := max

{

θd,
θf
λ

}

.

Using the fact that S and T realize the quasi-best approximation error, we estimate

‖g(S∪T )c‖22 =
∑

i/∈S

|di|2 +
∑

j /∈T

|fj|2 ≤ θd
∑

i/∈S

ui|di|+ θf
∑

j /∈T

vj |fj| (73)

≤ θ





∑

i/∈S

ui|di|+ λ
∑

j /∈T

vj |fj |



 = θ‖g(S∪T )c‖1,wλ
(74)

Similarly to the proof of Theorem 5.21, let αk := u2
k/|S|u. Notice that αk ≤ (K(s)−‖uΛ‖2∞)−1u2

k (due
to the maximality of S, realizing the quasi-best term approximation) and that

∑

k∈S αk = 1. Now we
observe that

θ2d =
∑

i∈S

αi min
k∈S

( |dk|
uk

)2

≤
∑

i∈S

αi

( |di|
ui

)2

≤ 1

K(s)− ‖uΛ‖2∞
∑

i∈S

u2
i

( |di|
ui

)2

=
1

K(s)− ‖uΛ‖2∞
‖dS‖22.

Recalling that 3
4K(s) ≥ ‖uΛ‖2∞ (due to Lemma 5.7), we get θd ≤ 2√

K(s)
‖dS‖2. Similarly, we can deduce

that θf ≤
√
2√
H
‖fT ‖2 thanks to the hypothesis H ≥ 2‖v‖2∞. Therefore, using the 2-level weighted robust

null space property, we obtain

θ = max

{

θd,
θf
λ

}

≤ 2 (‖dS‖2 + ‖fT ‖2)
min {

√

K(s), λ
√
H}

≤ 2
√
2‖gS∪T ‖2

min {
√

K(s), λ
√
H}

≤
2
√
2ρ‖g(S∪T )c‖1,wλ

min {
√

K(s), λ
√
H}√Jλ

.

6Notice that since M(z − ẑ) = 0 the constant τ does not appear in (72). Indeed, we are just using a 2-level weighted
version of the so-called stable null space property (see [31, §4.2]).
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Plugging the above inequality into (74) and defining β :=
‖g(S∪T )c‖1,wλ√

Jλ
, we deduce that

‖g(S∪T )c‖22 ≤ θ‖g(S∪T )c‖1,wλ
≤ 2

√
2ρΘβ2 ≤ 4ρΘβ2.

Using the above estimate and the weighted 2-level robust null space property again, we see that

1√
2
(‖d‖2 + ‖f‖2) ≤ ‖g‖2 ≤ ‖gS∪T ‖2 + ‖g(S∪T )c‖2

≤ ρ√
Jλ

‖g(S∪T )c‖1,wλ
+ ‖g(S∪T )c‖2

≤ ρβ + 2
√

ρΘβ ≤ max{ρ, 2√ρ}
(

1 +
√
Θ
)

β.

Now, taking advantage of (72), we have

β ≤ ‖g‖1,w√
Jλ

≤ 2(1 + ρ)

1− ρ

σs,L(x)1,u + λσH(e)1,v
√

K(s) + λ2H
≤ 2(1 + ρ)

1− ρ

(

σs,L(x)1,u
√

K(s)
+ λ

σH(e)1,v√
H

)

,

The above inequalities, combined with Lemma 2.2 and with the inequality ‖f−f̃‖L2
ν
≤ ‖f−fΛ‖L2

ν
+‖d‖2

yield (71). This concludes the proof.

6 Conclusions

In the context of sparse high-dimensional approximation from pointwise samples, we have considered
four decoders for weighted ℓ1 minimization: weighted quadratically-constrained basis pursuit, weighted
LASSO, weighted square-root LASSO, and weighted LAD-LASSO. We have compared these decoders
from the theoretical and the numerical perspectives, focusing on the case where the samples are cor-
rupted by unknown error (such as truncation, discretization, and numerical error).

On the theoretical side, we have proved uniform robust recovery guarantees for all the decoders
considered, showing that they achieve the best s-term approximation error in lower sets, provided a
suitable lower bound on the sample complexity and up to the error level (see §2.4 and Theorems 5.10,
5.13, 5.14, and 5.25). Our analysis suggests optimal strategies for the choice of the respective tuning
parameters (see equations (24), (25), (28), and (31)).

From the numerical viewpoint, we have compared the decoders’ performance on a synthetic example,
were f is explicitly available (§4.2 & 4.3), and on a more applicable case, where the function is defined
as the quantity of interest of a parametric ODE or PDE with random inputs (§4.4). The first set
of experiments corroborates the robustness and the reliability of the decoders under examination and
confirms the optimality of the choices of the tuning parameters suggested by the theory. Conversely,
for the latter examples, our numerical results suggest that careful parameter tuning may not always
be needed, possibly due to the structured nature of the error arising in these types of problems (see
§4.4.3). A proper theoretical understanding of this phenomenon is still an open issue. Moreover, devising
suitable strategies to incorporate some a priori information on f to the proposed approximation scheme
is another open problem. For example, when f is known to have more variability along certain axial
directions than others, one might replace the hyperbolic cross with some anisotropic set Λ or modify
the weights u used in the decoders. Analyzing these issues is beyond the scope of this paper and it is
left to future work.

Finally, we remark the following. In light of the comparison made in this paper, we suggest that
the square-root LASSO should be the decoder of choice out of those studied (apart from the case
of sparse corruptions, where the best choice is of course the weighted LAD-LASSO). Indeed, this
decoder has the same theoretical guarantees as the other ones and exhibits comparable (and sometimes
better) numerical performance. Yet, the optimal choice of its tuning parameter does not depend on the
unknown error. Although this fact is well-known in the statistics community, we think that it has not
been fully exploited in high-dimensional function approximation and in compressed sensing. We hope
that this paper could convince the reader to consider the square-root LASSO as a valid alternative to
quadratically-constrained basis pursuit and LASSO in their future investigations.
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