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Abstract. In this paper we deal with the numerical solution of a Hele–Shaw-like system via a
cell model with active motion. Convergence of approximations is established for well-posed initial
data. These data are chosen in such a way the time derivate is positive at the initial time.

The numerical method is constructed by means of a finite element procedure together with
the use of a closed-nodal integration. This gives rise to an algorithm which preserves positivity
whenever a right-angled triangulation is considered. As a result, uniform-in-time a priori estimates
are proven which allows us to pass to limit towards a solution to the Hele–Shaw problem.
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1. Introduction

1.1. The models. Tumour cells are active mechanical systems that are able to produce forces
which cause random migration [3, 8, 14]. This movement is due to rather complicate mechanisms
which occur inside cells and give rise to changes in cell shape. Another important mechanism
under which cells move is pressure [5, 8, 13] as a consequence of space competition generated by
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cell proliferation itself. In the setting up we take into consideration a very simplified model which
incorporates the two spatial effects for describing tumour growth.

Let Ω be a connected, open, bounded set of Rd, with d = 2 or 3, and [0, T ] a time interval.
Consider the cell model with active motion [11] which consists in finding a tumour cell population
density n : Ω× [0, T ]→ R+ satisfying

(1) ∂tn−∇ · (n∇p(n))− ν∆n = nG(p(n)) in Ω× (0, T ),

subject to the (natural) boundary condition

(2) ∇n · n = 0 on ∂Ω× (0, T ),

with n being the outwards unit normal vector on the boundary ∂Ω, and the initial condition

(3) n|t=0 = n0 in Ω.

Here p : [0,+∞)→ [0,+∞) is defined by

(4) p = p(n) :=
k

k − 1
nk−1 ∀n ≥ 0, (k ∈ N, k ≥ 2),

and G = G(p) is a truncated decreasing function such that there exists Pmax > 0 (the homeostatic
pressure) with

(5) G(0) > 0, G(p) = 0 ∀ p ≥ Pmax > 0, and G′(p) < 0 ∀ p ∈ (0, Pmax).

In the above, G stands for the decrease in the tumuor cell growth rate when space is limited;
the lack of space is governed by the local pressure p, the parameter Pmax is the maximum pressure
threshold that tumour cells can exceed before entering a quiescent state, and the parameter ν > 0
represents the effect of including the active (random) motion of cells.

It should be noted that the relationship of p(n) given in (4) is invertible for n ≥ 0:

(6) n(p) :=

(
k − 1

k
p

)1/(k−1)

∀ p ≥ 0.

In this work we assume that {n0
k}k∈N is a sequence of initial data (3) for (1) such that

(7) 0 ≤ p(n0
k) ≤ Pmax in Ω,

and that there exists a limit function n0
∞ such that

(8) n0
k → n0

∞ in Lp(Ω)-strongly for any p <∞ as k →∞.

Consequently, defining Nmax(k) := n(Pmax) with n(·) being given in (6), we have

(9) 0 ≤ n0
k ≤ Nmax(k) in Ω.

from which we infer that there must exist N0 > 0 such that Nmax(k) ≤ N0. Under the above
assumptions, equation (1) generates a sequence of solutions {nk}k∈N which lead to a solution
describing the dynamics of tumour growth as a free-boundary problem. To be more precise, the
convergence of the solutions {nk}k∈N of the active motion cell model problem (1)-(3) towards a
weak solution to a Hele–Shaw-like system, as the parameter k goes to infinity, was proven in [11].
This limit system reads as follows. Find n∞ : Ω× [0, T ]→ R+ and p∞ : Ω× [0, T ]→ R+ such that

(10) ∂tn∞ −∆p∞ − ν∆n∞ = n∞G(p∞) in Ω× (0, T ),

subject to

(11) n∞|t=0 = n0
∞ in Ω,

(12) ∇n∞ · n = 0 and ∇p∞ · n = 0 on ∂Ω× (0, T ),
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jointly to the complementary relation

(13) p∞(∆p∞ +G(p∞)) = 0 in Ω× (0, T ).

The key point in establishing convergence is imposing that ∂tnk(0) ≥ 0. Moreover, equation (10)
is equivalent to solving

(14) ∂tn∞ −∇ · (n∞∇p∞)− ν∆n∞ = n∞G(p∞) in Ω× (0, T ).

This equivalence will be accomplished due to the equality ∇p∞ = n∞∇p∞, which comes from the
equalities p∞∇n∞ = 0 and p∞n∞ = p∞.

In this paper, we shall be concerned with the convergence of a finite element scheme, the time
variable being continuous, for the active motion cell model problem (1)-(3) towards the Hele-Shaw
system (10)-(13) as the space discrete parameter h goes to zero and k goes to infinity.

1.2. Notation. We will assume the following notation throughout this paper. Let O ⊂ RM , with
M ≥ 1, be a Lebesgue-measurable set and let 1 ≤ p ≤ ∞. We denote by Lp(O) the space of
all Lesbegue-measurable real-valued functions, f : O → R, being pth-summable in O for p < ∞
or essentially bounded for p = ∞, and by ‖f‖Lp(O) its norm. When p = 2, the L2(O) space is a
Hilbert space whose inner product is denoted by (·, ·). To shorten the notation, the norm ‖ · ‖L2(Ω)

is abbreviated by ‖ · ‖.
Let α = (α1, α2, ..., αM) ∈ NM be a multi-index with |α| = α1 +α2 + ...+αM , and let ∂α be the

differential operator such that

∂α =
( ∂

∂x1

)α1

...
( ∂

∂xd

)αM

.

For m ≥ 0 and 1 ≤ p ≤ ∞, we define Wm,p(O) to be the Sobolev space of all functions whose
m derivatives are in Lp(O), with the norm

‖f‖Wm,p(O) =

∑
|α|≤m

‖∂αf‖pLp(O)

1/p

for 1 ≤ p <∞,

‖f‖Wm,p(O) = max
|α|≤m

‖∂αf‖L∞(Ω), for p =∞,

where ∂α is understood in the distributional sense. For p = 2, Wm,2(O) will be denoted by Hm(O).
We also consider C∞(O) to be the space of functions continuously differentiable any number of
times, and C∞c (O) to be the subspace of C∞(O) with compact support in O.

Spaces of Bochner-measurable functions from a time interval [0, T ] to a Banach space X will

be denoted as Lp(0, T ;X) with ‖f‖L2(0,T ;X) =
∫ T

0
‖f(s)‖pXds if 1 ≤ p < ∞ or ‖f‖L∞(0,T,X) =

ess sups∈(0,T ) ‖f(s)‖X <∞ if p =∞.

1.3. Outline. Next we sketch the remaining content of this work. In section 2 we present our
finite-element spaces and some preliminary result mainly concerning interpolation operators. Fur-
thermore, we set out our finite element numerical method, where the time variable remains contin-
uous, and the main result of this paper. Next is section 3 which is devoted to demonstrating the
main result. Firstly, a discrete maximum principle for finite-element approximations is achieved
by assuming a partition of the computational domain being made up of right-angled simplexes,
and a priori estimates are also established independent of (h, k) with h being the space parameter
associated to our finite-element space. As a result, we are able to prove positivity for the time de-
rivative of finite-element approximations. Then better a priori energy estimates lead to obtaining
compactness for passing to the limit as (h, k)→ (0,+∞). In section 4, we propose a variant of our
numerical algorithm for nonobtuse triangulations which keeps with a discrete maximum principle
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and positive for the discrete time but whose convergence is not clear. Finally, in section 4, some
numerical experiments are presented for studying the behavior of several parameters.

2. Spatial discretization

2.1. Finite-element approximation. Herein we introduce the hypotheses that will be required
along this work.

(H1) Let Ω be a bounded domain of Rd (d = 2 or 3) with a polygonal or polyhedral Lipschitz-
continuous boundary.

(H2) Let {Th}h>0 be a family of shape-regular, quasi-uniform triangulations of Ω made up of
right-angled simplexes being triangles in two dimensions and tetrahedra in three dimen-
sions, so that Ω = ∪K∈ThK, where h = maxK∈Th hK , with hK being the diameter of K.
Further, let Nh = {ai}i∈I denote the set of all the nodes of Th.

(H3) Conforming piecewise linear, finite element spaces associated to Th are assumed for approx-
imating H1(Ω). Let P1(K) be the set of linear polynomials on K; the space of continuous,
piecewise P1(K) polynomial functions on Th is then denoted as

Nh =
{
nh ∈ C0(Ω) : nh|K ∈ P1(K) ∀K ∈ Th

}
,

whose Lagrange basis is denoted by {ϕa}a∈Nh
.

We now give some auxiliary results for later use. We begin by an inverse inequality whose proof
can be found in [4, Lem. 4.5.3] or [9, Lem. 1.138].

Proposition 2.1. Under hypotheses (H1)–(H3), it follows that,

(15) ‖∇nh‖L2(K) ≤ Cinv h
−1
K ‖nh‖L2(K) ∀K ∈ Th, ∀nh ∈ Nh,

where Cinv > 0 is a constant independent of h.

Let Ih be the nodal interpolation operator from C0(Ω) to Nh and consider the discrete inner
product

(nh, nh)h =

∫
Ω

Ih(nh nh) =
∑
a∈Nh

nh(a)nh(a)

∫
Ω

ϕafo ∀nh, nh ∈ Nh,

which induces the norm ‖nh‖h =
√

(nh, nh)h defined on Nh. We recall the following local error
estimate. See [4, Thm. 4.4.4] or [9, Thm. 1.103] for a proof.

Proposition 2.2. Under hypotheses (H1)–(H3), it follows that,

(16) ‖ϕ− Ihϕ‖L∞(K) ≤ Capph
2
K‖∇2ϕ‖L∞(K) ∀K ∈ Th, ∀ϕ ∈ W 2,∞(K),

where Capp > 0 is independent of h.

We next state the equivalence between the norms ‖ · ‖h and ‖ · ‖ in Nh and a discrete commuter
approximation property for Ih.

Proposition 2.3. Under hypotheses (H1)–(H3), it follows that, for all nh, nh ∈ Nh,

(17) ‖nh‖ ≤ ‖nh‖h ≤ 51/2‖nh‖

and

(18) ‖nhnh − Ih(nhnh)‖L1(Ω) ≤ Capph ‖nh‖ ‖∇nh‖,

where Capp > 0 is independent of h.
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Proof. We have

‖nh‖2 =
∑
a∈Nh

n2
h(a)

∫
Ω

ϕ2
a +

∑
a6=ã∈Nh

nh(a)nh(ã)

∫
Ω

ϕaϕã

and

‖nh‖2
h =

∑
a∈Nh

n2
h(a)

∫
Ω

ϕa.

Since 1 =
∑

ã∈Nh
ϕã, we write

‖nh‖2
h =

∑
a,ã∈Nh

n2
h(a)

∫
Ω

ϕaϕã =
∑
a∈Nh

n2
h(a)

∫
Ω

ϕ2
a +

∑
a6=ã∈Nh

n2
h(a)

∫
Ω

ϕaϕã.

Then

‖nh‖2
h − ‖nh‖2 =

∑
a>ã∈Nh

(n2
h(a) + n2

h(ã)− 2nh(a)nh(ã))

∫
Ω

ϕaϕã

=
∑

a>ã∈Nh

(nh(a)− nh(ã))2

∫
Ω

ϕaϕã ≥ 0.

From the above equality and Young’s inequality, we have

‖nh‖2
h = ‖nh‖2 +

∑
a>ã∈Nh

(nh(a)− nh(ã))2

∫
Ω

ϕaϕã

≤ ‖nh‖2 + 2
∑

a>ã∈Nh

(n2
h(a) + n2

h(ã))

∫
Ω

ϕaϕã

= ‖nh‖2 + 2
∑
a∈Nh

n2
h(a)

∫
Ω

ϕa

∑
ã<a

ϕã + 2
∑
ã∈Nh

n2
h(ã)

∫
Ω

ϕã

∑
a>ã

ϕa

≤ ‖nh‖2 + 4‖nh‖2 ≤ 5‖nh‖2.

We now prove (18). By using (16), we obtain

‖Ih(nhnh)− nhnh‖L1(Ω) =
∑
K∈Th

‖Ih(nhnh)− nhnh‖L∞(K)

∫
K

1

≤ Capp

∑
K∈Th

h2
K‖∇2(nhnh)‖L∞(K)

∫
K

1.

Since nh, nh ∈ P1(K) on K ∈ Th, we write

∇2(nhnh) = 2
d∑

i,j=1

∂inh∂jnh.

Then, from (15) and on noting that ∇nh,∇nh are piecewise constant on each K ∈ Th, we deduce
that

‖Ih(nhnh)− nhnh‖L1(Ω) ≤ Capp

∑
K∈Th

h2
K‖∇nh‖L∞(K)‖∇nh‖L∞(K)

∫
K

1

≤ Capp

∑
K∈Th

h2
K

∫
K

|∇nh| |∇nh|

≤ CappCinv

∑
K∈Th

hK‖nh‖L2(K)‖∇nh‖L2(K)

≤ CappCinv h ‖nh‖ ‖∇nh‖,
from which we conclude that (18) holds. �
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We will need to use an (average) interpolation operator into Nh with the following properties.
In particular we use an extension of the Scott-Zhang interpolation operator to L1(Ω) function. We
refer to [15, 10] and [2].

Proposition 2.4. Under hypotheses (H1)–(H3), there exists an (average) interpolation operator
Qh from L1(Ω) to Nh such that

(19) ‖Qhψ‖W s,p(Ω) ≤ Csta‖ψ‖W s,p(Ω) for s = 0, 1 and 1 ≤ p ≤ ∞,

(20) ‖Qh(ψ)− ψ‖W s,p(Ω) ≤ Capph
1+m−s‖ψ‖Wm+1,p(Ω) for 0 ≤ s ≤ m ≤ 1,

and, for all ψ ∈ C∞(Ω) and nh ∈ Nh,

(21) ‖Qh(nhψ)− nhψ‖W s,p(Ω) ≤ Capph
1+m−s‖nh‖Wm,p(Ω)‖ψ‖Wm+1,∞ for 0 ≤ s ≤ m ≤ 1.

The key point in proving a discrete maximum principle is the following property which is ac-
complished for right-angled simplexes assumed in (H2).

Proposition 2.5. Under hypotheses (H1)–(H3), it follows that, for any diagonal nonnegative
matrix D = diag(di)

d
i=1 (with di ≥ 0),

(22) D∇ϕa · ∇ϕã ≤ 0 a.e. in Ω

if a 6= ã with a, ã ∈ Nh.

Proof. For every right-angled d-simplex K ∈ Th of vertices {ai}i=0,...,d with a0 being the vertex
supporting the right angle, we denote by Fai

the opposite face to ai and by nai
the exterior (to

the d-simplex K) unit normal vector to the face Fai
. Let K̂ be the reference unit d-simplex with

vertices â0 = 0 and âi = ei, i = 1, · · · , d, where {ei}i=1,··· ,d is the canonical basis of Rd. Let FK be

the invertible affine mapping that maps K̂ onto K defined by FKx̂ = a0 +BKx̂, where BK ∈ Rd×d

is orthogonal.
Let ϕ̂âi

(x̂) = ϕai
(FKx̂). Then we have

∇̂ϕ̂âi
= −1

d

|F̂âi
|

|K̂|
nâi

.

In particular, nâi
= −ei if i 6= 0 and nâ0 = [1, · · · , 1]T . Thus, we obtain

∇̂ϕ̂âi
· ∇̂ϕ̂âj

=
1

d2

|F̂âi
||F̂âj

|
|K̂|2

nâi
· nâj

≤ 0 if i 6= j.

Therefore, by means of the change of variable x = a0 +BKx̂, it follows that ∇ϕai
= BK∇̂ϕ̂âi

and
hence

D∇ϕai
· ∇ϕaj

= DBK∇̂ϕ̂âi
·BK∇̂ϕ̂âj

=
1

d2

|F̂âi
||F̂âj

|
|K̂|2

nTâi
BT
KDBKnâj

≤ 0 if i 6= j

because, since BK is a orthogonal matrix, the inner products defined by D and BT
KDBK preserves

angles. �

Remark 2.1. When D = Id with Id being the d×d identity matrix, property (22) can be proved for
nonobtuse triangulations [7]. Then property (22) can be somewhat seen a generalization restricted
for right-angled triangulations.
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Let us now introduce the discrete Laplacian associated to the mass-lumping scalar product

(·, ·)h. For any Σh ∈ Nh, let −∆̃hΣh ∈ Nh solve

(23) − (∆̃hΣh, nh)h = (∇Σh,∇nh) ∀nh ∈ Nh.

We end up with a compactness result [1, Lm. 2.4] needed in proving the equivalence between
problems (10) and (14).

Theorem 2.1. Assume that (H1)-(H3) holds. Let 2d
d+2

< ` < ∞. Suppose that {ρh,k}h,k≥0 ⊂
L2(0, T ;L2(Ω)) is such that ρh,k(t, ·) ∈ Nh for all t ∈ [0, T ] and satisfies

‖ρh,k‖H1(0,T ;L`(Ω)) + ‖ρh,k‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) + ‖∆̃hρh,k‖L2(0,T ;L2(Ω)) ≤ Cdat.

Then there exist a subsequence {ρh,k}h,k>0 (not relabeled) and a limit function ρ, such that

ρh,k → ρ in L2(0, T,H1(Ω))-strongly as (h, k)→ (0,+∞).

Hereafter C will denote a generic constant whose value may change at each occurrence. This
constant may depend on the data problem and the constants Cinv, Capp, Ccom and Cdat.

2.2. The numerical scheme. In order to avoid dense technical calculations, we assume for sim-
plicity that each element K ∈ Th has its edges lined up with the axes.

The numerical scheme relies on a finite-element method combined with a closed-nodal integration
applied to the time-derivative and pressure-migration terms. Thus our numerical method which
consists in finding nh,k ∈ C1([0, T ];Nh) such that

(24)

{
(∂tnh,k, nh)h + (∇Ih((nh,k)k),∇nh) + ν(∇nh,k,∇nh) = (G(p(nh,k))nh,k, nh)h ∀n ∈ Nh

nh,k(0) = n0
h,k,

with p(nh,k) =
k

k − 1
(nh,k)

k−1.

Equivalently, we may write (24)1 as

(25) (∂tnh,k, nh)h + (D(nh,k)∇nh,k,∇nh) + ν(∇nh,k,∇nh) = (G(p(nh,k))nh,k, nh)h,

where D(nh,k) is a piecewise constant, d × d diagonal matrix function with respect to Th defined
as follows. Let K ∈ Th with vertices {ai}i=0,··· ,d where a0 corresponds to the right angle. Then

(26) [D(nh,k)|K ]ii =


(nh,k)

k(ai)− (nh,k)
k(a0)

nh,k(ai)− nh,k(a0)
if nh,k(ai)− nh,k(a0) 6= 0,

0 if nh,k(ai)− nh,k(a0) = 0.

By the mean value theorem, one can write

(27) [D(nh,k)|K ]ii = k (nh,k)
k−1(ξi),

where ξi = αai + (1− α)a0 for a certain α ∈ (0, 1).
The above choice for the sequence of {n0

h,k}h,k>0 is as follows. Let {n0
k}k∈N ⊂ H1(Ω) ∩ L∞(Ω)

satisfy (7) and (9). Then we select n0
h,k = Qh(n0

k) so that

(28) 0 ≤ n0
h,k(a) ≤ Nmax(k) ∀a ∈ Nh, ‖∇n0

h,k‖ ≤ Cstab‖∇n0
k‖,

(29) n0
h,k → n0

k in H1(Ω)-strongly as h→ 0.

There is an additional technicality regarding the sequence of initial data that we must consider:

(H4) Assume {nh,k}h,k>0 to be such that

(30) − (∇Ih(n0
h,k)

k,∇nh)− ν(∇n0
h,k,∇nh) + (G(p(n0

h,k))n
0
h,k, nh)h ≥ 0 ∀nh ∈ Nh with nh ≥ 0.
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Remark 2.2. This last condition is related to imposing ∂tnh,k(0) ≥ 0 which is crucial to prove the
k → +∞ limit.

The existence and uniqueness of a solution to scheme (24) may be readily justified by Picard’s
theorem. To be more precise, one may prove that there exists a time interval [0, Th) for which
problem (24) is uniquely solvable. As a consequence of a priori energy estimates, which we shall
prove in the next section, one deduces that Th = T for all h > 0.

2.3. Main result. We now are ready to state our main result of this paper. We shall prove that
scheme (24) produces a sequence of discrete solutions which satifies a priori energy bounds uniform
with respect to (h, k) allowing us to pass to the limit as (h, k)→ (0,+∞) towards weak solutions
of the Hele–Shaw-like system (10)-(13).

Theorem 2.2. Assume that (H1)-(H3) hold. Then the discrete solution {(nh,k, ph,k)}h,k of (24)
satisfies the following estimates, for all a ∈ Nh and t ∈ [0, T ]:

0 ≤ nh,k(a, t) ≤ Nmax(k),

0 ≤ p(nh,k(a, t)) ≤ Pmax,

∂tnh,k(a, t) ≥ 0, ∂tp(nh,k(a, t)) ≥ 0.

Furthermore, {nh,k, Ih((nh,k)k)}h,k converges towards weak solutions (n∞, p∞) of problem (10)-(13)
in the sense that

nh,k → n∞ in L∞(0, T ;H1(Ω))-weakly-? and in Lp((0, T )× Ω)-strongly,

and
Ih((nh,k)k)→ p∞ in L∞(0, T ;H1(Ω))-weakly-? and in Lp((0, T )× Ω)-strongly,

for any 1 < p <∞ provided that

(H5) k h→ 0 as (h, k)→ (0,+∞).

3. Proof of Theorem 2.2

3.1. A priori energy estimates. Our goal is to prove a priori energy estimates for the discrete
solution nh,k of (24) independent of (h, k).

This first lemma will be focused on proving a discrete maximum principle for nh,k based on the
hypothesis of right-angled triangulations. Moreover, some a priori energy estimates are obtained.

Lemma 3.1. Assume that (H1)-(H3) hold. Then the solution nh,k of scheme (24) satisfies

(31) 0 ≤ nh,k(a, t) ≤ Nmax(k) ∀a ∈ Nh and ∀ t ≥ 0,

and

(32) ‖nh,k‖L∞(0,T ;L2(Ω)) + ‖nh,k‖L2(0,T ;H1(Ω)) ≤ C,

where C > 0 is independent of (h, k).

Proof. We first proceed to verify (31). In doing so, we introduce a modification to scheme (25)
which truncates the nonlinear diffusion term as follows:

(33) (∂tnh,k, nh)h + (D([nh,k]T )∇nh,k,∇nh) + ν(∇nh,k,∇nh) = (G(p([nh,k]T ))nh,k, nh)h,

where [nh,k]T is the usual truncation of nh,k from below by 0 and from above by Nmax(k). Again,
by means of Picard’s theorem, one has the existence and uniqueness of a solution nh,k to (33).

Let nmin
h,k = Ih(n−h,k) ∈ Nh be defined as

nmin
h,k =

∑
a∈Nh

n−h,k(a)ϕa,
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where n−h,k(a) = min{0, nh,k(a)}. Analogously, one defines nmax
h,k = Ih(n+

h,k) ∈ Nh as

nmax
h,k =

∑
a∈Nh

n+
h,k(a)ϕa,

where n+
h,k(a) = max{0, nh,k(a)}. Notice that nh,k = nmin

h,k + nmax
h,k .

On choosing nh = nmin
h,k in (33), it follows that

(34)
1

2

d

dt
‖nmin

h,k ‖2
h + (D([nh,k]T )∇nh,k,∇nmin

h,k ) + ν(∇nh,k,∇nmin
h,k ) = ‖G(p([nh,k]T ))1/2nmin

h,k ‖2
h

≤ G(0)‖nmin
h,k ‖2

h.

Next observe that

(D([nh,k]T )∇nh,k,∇nmin
h,k ) = (D([nh,k]T )∇nmin

h,k ,∇nmin
h,k ) + (D([nh,k]T )∇nmax

h,k ,∇nmin
h,k )

= ‖D([nh,k]T )1/2∇nmin
h,k ‖2 +

∑
a6=ã∈Nh

n−h,k(a)n+
h,k(ã)(D([nh,k]T )∇ϕa,∇ϕã).

Then, using the fact that n−h,k(a)n+
h,k(ã) ≤ 0 if a 6= ã and that D([nh,k]T ) is a nonnegative diagonal

matrix function, one deduces, from (22), that

D([nh,k]T )∇ϕa · ∇ϕã ≤ 0 ∀a 6= ã ∈ Nh

and thereby

(35) (D([nh,k]T )∇nh,k,∇nmin
h,k ) ≥ ‖D([nh,k]T )1/2∇nmin

h,k ‖2.

Analogously, one obtains

(36) ν(∇nh,k,∇nmin
h,k ) ≥ ν‖∇nmin

h,k ‖2,

where we have used again (22) but now for D = Id, with Id being the d× d unit matrix. Inserting
(35) and (36) into (34) yields

1

2

d

dt
‖nmin

h,k ‖2
h + ‖D([nh,k]T )1/2∇nmin

h,k ‖2 + ν‖∇nmin
h,k ‖2 ≤ G(0)‖nmin

h,k ‖2
h.

By Grönwall’s lemma, we have nmin
h,k (t) ≡ 0 in Ω, for any t ≥ 0, since nmin

h,k (0) ≡ 0 in Ω; thereby this
implies 0 ≤ nh,k in (31). For the other inequality nh,k ≤ Nmax(k) in (31), we proceed in a similar
fashion. In this case, one chooses nh = (nh,k − Nmax(k))max in (33) and takes into account that
G(p([nh,k]T ))nh,k(nh,k −Nmax(k))max ≡ 0 due to p([nh,k]T ) = Pmax if nh,k ≥ Nmax(k).

It should be noted that any solution nh,k of the modified scheme (33) satisfies the discrete
maximum principle (31), and consequently [nh,k]T ≡ nh,k; hence nh,k satisfies the non-truncated
scheme (24) as well. Finally, by uniqueness of solutions for scheme (24), the solution of (24) takes
values between 0 and Nmax(k); that is (31).

Now selecting nh = nh,k in (25) and invoking Grönwall’s lemma, the following energy estimate
holds, for all t ∈ [0, T ]:

(37)
1

2
‖nh,k(t)‖2

h +

∫ T

0

‖D(nh,k)
1/2∇nh,k‖2 + ν

∫ T

0

‖∇nh,k‖2 ≤ exp(2G(0)T )
1

2
‖n0

h,k‖2
h.

Then the weak estimates (32) are deduced from (37) and (17). �

A discrete maximum principle for (nh,k)
k−1 and (nh,k)

k follows as a direct consequence of (31).
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Corollary 3.1. There holds

(38) 0 ≤ (nh,k)
k−1(a, t) ≤ Pmax ∀a ∈ Nh and ∀ t ≥ 0.

and

(39) 0 ≤ (nh,k)
k(a, t) ≤ PmaxNmax(k) ∀a ∈ Nh and ∀ t ≥ 0.

Proof. Assertions (38) and (39) are satisfied in view of (31) and the bounds

nk−1
h,k (a, t) ≤ Nmax(k)k−1 =

k − 1

k
Pmax ≤ Pmax

and

nkh,k(a, t) ≤ Nmax(k)k = Nmax(k)k−1Nmax(k) ≤ PmaxNmax(k).

�

The following lemma provides the positivity and some a priori estimates for the time derivative
of nh,k and (nh,k)

k.

Lemma 3.2. Suppose that (H1)-(H4) hold. Then it follows that

(40) ∂tnh,k(a, t) ≥ 0, ∂t(nh,k(a, t))
k ≥ 0 ∀a ∈ Nh and ∀ t ∈ [0, T ],

and the a priori estimates

(41) ‖∂tnh,k‖L∞(0,T ;L1(Ω)) ≤ C,

(42) ‖∂t(nh,k)k‖L1(0,T ;L1(Ω)) ≤ C,

where C > 0 is a constant independent of (h, k).

Proof. Let us define Σ(nh,k) ∈ Nh such that

Σ(nh,k) = Ih((nh,k)k) + ν nh,k = Ih((nh,k)k + ν nh,k).

Moreover, let Σ′(nh,k) ∈ Nh and Σ′′(nh,k) ∈ Nh be defined as

Σ′(nh,k) = k Ih((nh,k)k−1) + ν and Σ′′(nh,k) = k(k − 1) Ih((nh,k)k−2).

Then scheme (24) can be rewritten as

(∂tnh,k, nh)h + (∇Σ(nh,k),∇nh) = (G(p(nh,k))nh,k, nh)h,

and equivalently, from (23), as

(43) (∂tnh,k, nh)h − (∆̃hΣ(nh,k), nh)h = (G(p(nh,k))nh,k, nh)h.

Now take nh = Ih(Σ′(nh,k)wh), for any wh ∈ Nh to get

(∂tΣ(nh,k), wh)h − (Σ′(nh,k)∆̃hΣ(nh,k), wh)h = (Σ′(nh,k)G(p(nh,k))nh,k, wh)h.

Differentiating with respect to time and defining wh,k ∈ Nh such that, for each a ∈ Nh and
t ∈ [0, T ],

wh,k(a, t) := ∂tΣ(nh,k)(a, t) = Σ′(nh,k)(a, t)∂tnh,k(a, t),

one arrives at

(∂twh,k, wh)h − (Σ′(nh,k)∆̃hwh,k, wh)h = (Σ′′(nh,k)∂tnh,k∆̃hΣ(nh,k), wh)h

+(Σ′′(nh,k)∂tnh,kG(p(nh,k))nh,k, wh)h + k (Σ′(nh,k)G
′(p(nh,k))(nh,k)

k−1∂tnh,k, wh)h

+(Σ′(nh,k)G(p(nh,k))∂tnh,k, wh)h,
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for any wh ∈ Nh. Since wh,k(a, t) = Σ′(nh,k)(a, t)∂tnh,k(a, t) and Σ′(nh,k)(a, t) ≥ ν > 0, we have

∂tnh,k(a, t) =
wh,k(a, t)

Σ′(nh,k)(a, t)
∀a ∈ Nh ∀ t ∈ [0, T ].

Both previous equalities yield

(∂twh,k, wh)h − (Σ′(nh,k)∆̃hwh,k, wh)h = (F (nh,k)wh,k, wh)h,

for any wh ∈ Nh, where

F (nh,k) :=
Σ′′(nh,k)

Σ′(nh,k)

{
∆̃hΣ(nh,k) + nh,kG(p(nh,k))

}
+ k(nh,k)

k−1G′(p(nh,k)) +G(p(nh,k)).

Taking wh = wmin
h,k = Ih(w−h,k) in the above variational formulation, we get

(44)
1

2

d

dt
‖wmin

h,k ‖2
h − (Σ′(nh,k)∆̃hwh,k, w

min
h,k )h ≤ ‖F (nh,k)‖L∞‖wmin

h,k ‖2
h.

Since nh,k ∈ C0([0, T ];Nh) and Nh is a finite dimensional space, we have that ‖F (nh,k)(t)‖L∞(Ω) ≤
Ch,k for all t ∈ [0, T ], where Ch,k > 0 may depend on h and k. It should also be noted that

−(Σ′(nh,k)∆̃hwh,k, w
min
h,k )h ≥ 0. Indeed, choose nh = ϕa in (23) to obtain

−(∆̃hwh,k)(a)

∫
Ω

ϕa = (∇wh,k,∇ϕa).

Then

−(Σ′(nh,k)∆̃hwh,k, w
min
h,k )h = −

∑
a∈Nh

Σ′(nh,k(a))(∆̃hwh,k)(a)wmin
h,k (a)

∫
Ω

ϕa

=
∑
a∈Nh

Σ′(nh,k(a))(∇wh,k,∇ϕa)wmin
h,k (a)

=
∑
a∈Nh

Σ′(nh,k(a))(∇wmax
h,k ,∇ϕa)wmin

h,k (a)

+
∑
a∈Nh

Σ′(nh,k(a))(∇wmin
h,k ,∇ϕa)wmin

h,k (a).

Therefore, using the fact that Σ′(nh,k) ≥ ν > 0, we obtain∑
a∈Nh

Σ′(nh,k(a))(∇wmax
h,k ,∇ϕa)wmin

h,k (a) =
∑

a6=ã∈Nh

Σ′(nh,k(a))wmax
h,k (ã)wmin

h,k (a)(∇ϕã,∇ϕa) ≥ 0

and ∑
a∈Nh

Σ′(nh,k(a))(∇wmin
h,k ,∇ϕa)wmin

h,k (a) ≥ ν‖∇wmin
h,k ‖2 ≥ 0.

Thus, (44) leads to
1

2

d

dt
‖wmin

h,k ‖2
h ≤ ‖F (nh,k)‖L∞‖wmin

h,k ‖2
h

and hence, by Grönwall’s lemma,

‖wmin
h,k (t)‖2

h ≤ exp(2T‖F (nh,k)‖L∞)‖wmin
h,k (0)‖2 ∀ t ∈ [0, T ].

From (30) in (H4), we deduce that wh,k(a, 0) = Σ′(nh,k)(a, 0)∂tnh,k(a, 0) ≥ 0 holds; therefore
wmin
h,k (t) ≡ 0 since wmin

h,k (0) ≡ 0. As a result, we have that ∂tnh,k ≥ 0 and in particular ∂t(nh,k)
k =

k(nh,k)
k−1∂tnh,k ≥ 0. Thus, (40) is true.
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Now we are going to obtain bounds (41) and (42). For this, we take nh = 1 in (25) and use (40)
to have

‖∂tnh,k‖L1(Ω) = (∂tnh,k, 1) = (∂tnh,k, 1)h ≤ G(0)‖nh,k‖L1(Ω) ≤ G(0)|Ω|Nmax(k);

hence estimate (41) holds. Furthermore, we have, by (39) and (40), that

‖∂t(nh,k)k‖L1(0,T ;L1(Ω)) =

∫ T

0

d

dt
((nh,k)

k, 1) dt = ((nh,k)
k(T )− (nh,k)

k(0), 1) ≤ 2|Ω|Nmax(k)Pmax;

hence estimate (42) holds. �

We are now concerned with an a priori estimate for the gradient of nh,k and Ih((nh,k)k). These
estimates will play an important role in obtaining compactness results which allow us to pass to the
limit as (h, k)→ (0,+∞) from scheme (24) towards weak solutions (n∞, p∞) of problem (10)-(13).

Lemma 3.3. Suppose that (H1)-(H4) are satisfied. Then there exists a constant C > 0, indepen-
dent of h and k, such that

(45) ‖D(nh,k)
1/2∇nh,k‖L∞(0,T ;L2(Ω)) + ‖∇nh,k‖L∞(0,T ;L2(Ω)) ≤ C

and

(46) ‖∇Ih((nh,k)k)‖L∞(0,T ;L2(Ω)) ≤ C.

Proof. Select nh = nh,k ∈ Nh in (24) to obtain

(∂tnh,k, nh,k)h + (D(nh,k)∇nh,k,∇nh,k) + ν‖∇nh,k‖2 = ‖G(p(nh,k))
1/2nh,k‖2

h ≤ G(0)‖nh,k‖2
h.

From (31) and (40), we deduce that (∂tnh,k, nh,k)h ≥ 0. Therefore,

‖D(nh,k)
1/2∇nh,k‖2 + ν‖∇nh,k‖2 ≤ G(0)‖nh,k‖2

h.

This last expression combined with (32) gives (45).
Take nh = Ih((nh,k)k) in (24) to have

(∂tnh,k, Ih((nh,k)k))h + ‖∇Ih((nh,k)k)‖2 + ν(D((nh,k)
k)∇nh,k,∇nh,k)

= (G(p(nh,k))nh,k, Ih((nh,k)k))h ≤ G(0)‖(nh,k)k−1‖L∞(Ω)‖nh,k‖2
h ≤ G(0)Pmax‖nh,k‖2

h.

From this, it follows that (46) holds from (32), (40) and from noting that (D((nh,k)
k)∇nh,k,∇nh,k) ≥

0 on recalling (26).
�

3.2. Passing to the limit. From estimates (31) and (45) jointly with (39) and (46), we have that
there exist two limit functions (n∞, p∞) ∈ L∞(0, T ;H1(Ω))2 and a subsequence of {(nh,k, Ih((nh,k)k)}h,k,
which we still denote in the same way, such that the following convergences hold, as (h, k)→ (0,∞):

(47) nh,k → n∞ in L∞(0, T ;H1(Ω) ∩ L∞(Ω))-weakly-?,

and

(48) Ih((nh,k)k)→ p∞ in L∞(0, T ;H1(Ω) ∩ L∞(Ω))-weakly-?.

Before proceeding to pass to the limit, we need to obtain some strong convergences via an Aubin-
Lions campactness lemma [16]. From (31), (41) and (45), we have that there exists a subsequence
(not relabeled) such that, as (h, k)→ (0,∞),

(49) nh,k → n∞ in Lp(Ω× (0, T ))-strongly, ∀ p <∞,
and

(50) nh,k → n∞ in C0([0, T ];Lq(Ω))-strongly, ∀ q < 2∗,
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where 2∗ stands for the conjugate exponent of 2 defined by 1/2∗ = 1/2− 1/d. Analogously, from
(39), (42), and (46), we have

(51) Ih((nh,k)k)→ p∞ in Lp(Ω× (0, T ))-strongly, ∀ p <∞.

As a result, we also have the strong convergence of p(nh,k) towards p∞, but under hypothesis
(H5) in Theorem 2.2.

Lemma 3.4. Assuming hypotheses (H1)-(H5), it follows that, as (h, k)→ (0,∞),

(52) p(nh,k)→ p∞ in Lp((0, T )× Ω)-strongly for any p <∞.

Moreover,

(53) p∞n∞ ≡ p∞ a.e. in (0, T )× Ω.

Proof. For each element K ∈ Th with vertices {a0, · · ·ad}, we associate once and for all a vertex
aK of K. Thus we define a piecewise constant function Ph(nkh,k)(x) = nkh,k(aK) for all x ∈ K,
which satisfies

Ph(nkh,k)(x)− nkh,k(x) = ∇(nkh,k(ξaK
)) · (aK − x) = k nk−1

h,k (ξaK
)∇nh,k|K · (aK − x)

where ξaK
= λaK + (1− λ)x with λ ∈ (0, 1). Then we have, by (38) and (45), that

‖Ph(nkh,k)− nkh,k‖L∞(0,T ;L2(Ω)) ≤ C k h ‖nk−1
h,k ‖L∞(0,T ;L∞(Ω))‖∇nh,k‖L∞(0,T ;L2(Ω)) ≤ C k hPmax.

The above argument also shows by replacing nkh,k by Ih(nkh,k) and using (46) that

‖Ih(nkh,k)− Ph(nkh,k)‖L∞(0,T ;L2(Ω)) ≤ C h ‖∇Ih(nkh,k)‖L∞(0,T ;L2(Ω)) ≤ C h.

Thus, by (51) and (H5), we deduce, the following convergence, as (h, k)→ (0,∞):

(54) nkh,k → p∞ in Lp((0, T )× Ω)-strongly ∀p <∞.

In view of (49) and (54), there is a subsequence (not relabeled) of {(nh,k, nkh,k)}h,k such that, as
(h, k)→ (0,∞):

(nh,k(x, t), n
k
h,k(x, t))→ (n∞(x, t), p∞(x, t)) a.e. (x, t) ∈ Ω× (0, T ).

Thus, defining

p̃∞(x, t) =


p∞(x, t)

n∞(x, t)
if n∞(x, t) 6= 0,

0 otherwise,

it follows that, as (h, k)→ (0,∞),

p(nh,k(x, t)) =
k

k − 1

nkh,k(x, t)

nh,k(x, t)
→ p̃∞(x, t) a.e. (x, t) ∈ Ω× (0, T );

furthermore,

p∞(x, t)← k

k − 1
nkh,k(x, t) =

(
1− 1

k

) 1
k−1
p(nh,k(x, t))

k
k−1 → p̃∞(x, t).

Thus, p∞ ≡ p̃∞ a.e. (x, t) ∈ Ω× (0, T ) and, in particular, one has equality (53) and the pointwise
convergence

p(nh,k(x, t))→ p∞(x, t) a.e. (x, t) ∈ Ω× (0, T ).

Finally, (52) is deduced from the dominated convergence theorem since p(nh,k) is bounded in
L∞(Ω× (0, T )). �
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3.2.1. Convergence towards (10). We are now ready to pass to the limit in scheme (24) as (h, k)→
(0,∞). Let n ∈ C∞c (Ω) and φ ∈ C∞c (0, T ). Consider nh = Qh(n) in (24), multiply by φ and
integrate on (0,T) to get

−
∫ T

0

(nh,k,Qh(n))hφ
′(t)dt +

∫ T

0

(∇Ih(nkh,k),∇Qh(n))φ(t)dt

+ν

∫ T

0

(∇nh,k,∇Qh(n))φ(t)dt =

∫ T

0

(G(p(nh,k))nh,k,Qh(n))hφ(t)dt.

We briefly outline the main steps of the passage to the limit since the arguments are quite classical.
We write∫ T

0

(nh,k,Qh(n))hφ
′(t)dt =

∫ T

0

(nh,k,Qh(n))φ′(t)dt +

∫ T

0

[
(nh,k,Qh(n))h − (nh,k,Qh(n))

]
φ′(t)dt.

It is an easy matter to show, from (20) and (49), that∫ T

0

(nh,k,Qh(n))φ′(t)dt→
∫ T

0

(n∞, n)φ′(t)dt,

and, from (18) and (19), that∫ T

0

[
(nh,k,Qh(n))h − (nh,k,Qh(n))

]
φ′(t)dt→ 0.

Therefore, ∫ T

0

(nh,k,Qh(n))hφ
′(t)dt→

∫ T

0

(n∞, n)φ′(t)dt.

Analogously, we obtain∫ T

0

(G(p(nh,k))nh,k,Qh(n))hφ(t)dt→
∫ T

0

(G(p∞)n∞, n)φ(t)dt

from (20), (49) and (52). The diffusion terms are treated as follows. In view of (20), (47) and
(48), it is easy to check that∫ T

0

(∇Ih(nkh,k),∇Qh(n))φ(t)dt→
∫ T

0

(∇p∞,∇n)φ(t)dt

and

ν

∫ T

0

(∇nh,k,∇Qh(n))φ(t)dt→ ν

∫ T

0

(∇n∞,∇n)φ(t)dt.

We have thus proved that (10) holds in the distributional sense.

3.2.2. Initial condition (11). The initial condition (11) can be recovered from (50), which gives
nh,k|t=0 → n∞|t=0 in Lq(Ω), for 1 ≤ q < 2∗, and from (8) and (29), which give n0

k,h → n0
∞ in Lp(Ω),

for 1 ≤ p <∞ as (h, k)→ (0,+∞).

3.2.3. Equivalence between (10) and (14). In order to see the equivalence between (10) and (14)
we must prove that ∇p∞ ≡ n∞∇p∞ which will be obtained by proving p∞∇n∞ ≡ 0 and using
the equality in (53). Indeed, for each x ∈ K, we decompose p(nh,k(x))∂xi

nh,k(x) by using the
intermediate vector ξi given in (27) into

p(nh,k(x))∂xi
nh,k(x) =

k

k − 1
nk−1
h,k (ξi)∂xi

nh,k(x) +
k

k − 1
(nk−1

h,k (x)− nk−1
h,k (ξi))∂xi

nh,k(x)

=

√
k

k − 1
n

k−1
2

h,k (ξi)
√
k n

k−1
2

h,k (ξi)∂xi
nh,k(x) + k(x− ξi)nk−2

h,k (ηi)(∂xi
nh,k(x))2,
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where we have utilized the mean value theorem in the last term for ηi = αξi + (1 − α)x with
α ∈ (0, 1) and that ∂xi

nh,k(x) is constant on K. Thus, by virtue of (27), we find

‖p(nh,k)∂xi
nh,k‖L1(K) ≤

√
k

k − 1
‖n

k−1
2

h,k (ξi)
√
k n

k−1
2

h,k (ξi)∂xi
nh,k‖L1(K)

+k h ‖nk−2
h,k (ηi)(∂xi

nh,k(x))2‖L1(K)

≤
√
k

k − 1

√
Pmax‖D(nkh,k)

1/2∇nh,k‖L2(K)

+Ck hPmax‖∇nh,k‖2
L2(K),

where we have used nk−2
h,k (ηi) ≤ Nmax(k)k−2 = ( k

k−1
Pmax)

k−2
k−1 → Pmax as k → +∞ in the last line.

Summing over K ∈ Th, noting (45) and recalling the constraint h k → 0 given in (H5), we
conclude that

p(nh,k)∇nh,k → 0 in L∞(0, T ;L1(Ω))-strongly as (h, k)→ (0,∞).

We further know, by (47) and (52), that

p(nh,k)∇nh,k → p∞∇n∞ as (h, k)→ (0,∞),

and hence p∞∇n∞ ≡ 0 a.e. in Ω× (0, T ).

3.2.4. Convergence towards the complementary relation (13). To finish the proof of Theorem 2.2,
it remains to prove that (13) holds in the distributional sense. In doing so, we will start by proving
that

(55) 0 ≤
∫ T

0

(G(p∞)n∞, p∞ψ)− (∇(p∞ + νn∞),∇(p∞ψ))ds

and

(56) 0 ≥
∫ T

0

(G(p∞)n∞, p∞ψ)− (∇(p∞ + νn∞),∇(p∞ψ))ds

hold for all ψ ∈ C∞c (Ω× [0, T ]) with ψ ≥ 0.
• To begin with, we prove that (55) is true. We use (43) to write

∂tnh,k − ∆̃hΣ(nh,k) = Ih(G(p(nh,k))nh,k).

Let ρε = ρε(t) be a time regularizing kernel with compact support of length ε > 0. Then, extending
nh,k by zero outside [0, T ], we have

(57) ∂tnh,k ∗ ρε − ∆̃h(Σ(nh,k) ∗ ρε) = Ih((G(p(nh,k))nh,k) ∗ ρε),

where we have used the equalities ∆̃h(Σ(nh,k)∗ρε) = ∆̃h(Σ(nh,k))∗ρε and Ih((G(p(nh,k))nh,k)∗ρε) =
Ih(G(p(nh,k))nh,k) ∗ ρε owing to the separation between spatial and temporal variables.

Since ∂tnh,k ∗ρε and (G(p(nh,k))nh,k)∗ρε are uniformly bounded in Lp(Ω× (0, T )) for 1 ≤ p ≤ ∞
with respect to (h, k) for each fixed ε, we also have that

−∆̃h(Σ(nh,k) ∗ ρε) is bounded in Lp(Ω× (0, T )).

as well. In virtue of Theorem 2.1 and the above bounds combined with (49) and (51), we infer the
following convergence, as (h, k)→ (0,∞):

(58) ∇(Σ(nh,k) ∗ ρε)→ ∇((p∞ + νn∞) ∗ ρε) in L2(Ω× (0, T ))-strongly.
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On testing (57) against Qh(Ih(nkh,k)ψ) with ψ ∈ C∞c (Ω× [0, T ]) such that ψ ≥ 0, it follows that

(59)

∫ T

0

(∂tnh,k ∗ ρε,Qh(Ih(nkh,k)ψ))h =

∫ T

0

((G(p(nh,k))nh,k) ∗ ρε,Qh(Ih(nkh,k)ψ))h

−
∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇Qh(Ih(nkh,k)ψ)).

Since (∂tnh,k ∗ ρε,Qh(Ih(nkh,k)ψ))h ≥ 0, we obtain

(60) 0 ≤
∫ T

0

((G(p(nh,k))nh,k) ∗ ρε,Qh(Ih(nkh,k)ψ))h −
∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇Qh(Ih(nkh,k)ψ)).

Taking the limit as (h, k)→ (0,∞) yields

(61)

∫ T

0

((G(p(nh,k))nh,k) ∗ ρε,Qh(Ih(nkh,k)ψ))hdt→
∫ T

0

((G(p∞)n∞) ∗ ρε, p∞ψ)dt

and

(62)

∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇Qh(Ih(nkh,k)ψ))dt→
∫ T

0

(∇((p∞ + νn∞) ∗ ρε),∇(p∞ψ))dt.

In order to prove (61), we use the decomposition (uh, vh)h = (uh, vh) + (Ih(uhvh)− uhvh, 1) for
uh = (G(p(nh,k))nh,k) ∗ ρε and vh = Qh(Ih(nkh,k)ψ) to write∫ T

0

((G(p(nh,k))nh,k) ∗ ρε,Qh(Ih(nkh,k)ψ))h =

∫ T

0

((G(p(nh,k))nh,k) ∗ ρε,Qh(Ih(nkh,k)ψ))

+

∫ T

0

(Ih((G(p(nh,k)))nh,k) ∗ ρεQh(Ih(nkh,k)ψ)− (G(p(nh,k))nh,k) ∗ ρεQh(Ih(nkh,k)ψ), 1).

Then, it follows from (21), (49) and (52) that the first term converges to
∫ T

0
((G(p∞)n∞) ∗

ρε, p∞ψ)dt, and, on noting that

‖∇Qh(Ih(nkh,k)ψ)‖ ≤ C‖∇Ih(nkh,k)‖‖ψ‖L∞ + C‖Ih(nkh,k)‖L∞‖∇ψ‖

from (19), and on recalling (18) and (46), the second term converges to zero; thereby (61) holds.
In order to prove (3.2.4), we write∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇Qh(Ih(nkh,k)ψ)) =

∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇(Ih(nkh,k)ψ))

−
∫ T

0

(∇(Σ(nh,k) ∗ ρε),∇(Ih(nkh,k)ψ −Qh(Ih(nkh,k)ψ))).

Then, it follows from (58), (48) and (51) that the first term converges to
∫ T

0
(∇((p∞ + νn∞) ∗

ρε),∇(p∞ψ))dt, and on noting that

‖∇(Ih(nkh,k)ψ −Qh(Ih(nkh,k)ψ))‖ ≤ h‖∇Ih(nkh,k)‖‖ψ‖W 2,∞(Ω)

from (21) and on recalling (46), the second term converges to zero; thereby (3.2.4) holds.
Thus, by applying the previous convergences (61) and to (60), we arrive at

0 ≤
∫ T

0

(G(p∞)n∞ ∗ ρε, p∞ψ)− (∇((p∞ + νn∞) ∗ ρε),∇(p∞ψ))dt,

and finally (55) holds by taking the limit as ε→ 0.
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• We proceed to prove (56). Write the first term on the right-hand side of (59) as

(63)

∫ T

0

(∂tnh,k ∗ ρε,Qh(Ih(nkh,k)ψ))h =

∫ T

0

(∂tnh,k ∗ ρε, Ih(nkh,k)ψ)h

+

∫ T

0

(∂tnh,k ∗ ρε,Qh(Ih(nkh,k)ψ)− Ih(nkh,k)ψ)h.

These two terms are handled as follows. For the second term of (63), we have, by (17), (21) and
(41), that ∫ T

0

(∂tnh,k ∗ ρε,Qh(Ih(nkh,k)ψ)− Ih(nkh,k)ψ)hds→ 0 as (h, k)→ (0,∞).

For the first term of (63), we have that, for each a ∈ Nh,

(∂tnh,k(a, t) ∗ ρε)nkh,k(a, t) = nkh,k(a, t)

∫
R

∂tnh,k(a, s)ρε(t− s)ds

=

∫
R

nkh,k(a, s)∂tnh,k(a, s)ρε(t− s)ds

+

∫
R

(nkh,k(a, t)− nkh,k(a, s))∂tnh,k(a, s)ρε(t− s)ds.

On integrating by parts in time and using (31) and (39), we obtain∫
R

nkh,k(a, s)∂tnh,k(a, s)ρε(t− s)ds =
1

k + 1

∫
R

nk+1
h,k (a, s)∂tρε(t− s)ds→ 0

as (h, k)→ (0,∞). Furthermore, for s > t, we have that nkh,k(a, t)− nkh,k(a, s) ≤ 0 owing to (40).
Then, if we choose supp(ρε) ⊂ (−ε, 0), then∫

R

(nkh,k(a, t)− nkh,k(a, s))∂tnh,k(a, s)ρε(t− s)ds ≤ 0.

Letting first (h, k) → (0,∞) in (63) and then ε → 0, we obtain (56) by repeating the arguments
that led to (55).

As a result of (55) and (56), we note that

(64)

∫ T

0

(G(p∞)n∞, p∞ψ)− (∇(p∞ + νn∞),∇(p∞ψ))ds = 0

is satisfied for all ψ ∈ C∞c (Ω× [0, T ]) with ψ ≥ 0, and therefore it also holds for all ψ ∈ C∞c (Ω×
[0, T ]).

From the fact that p∞∇n∞ = 0 and p∞ ≥ 0 a.e. in Ω×(0, T ), we also deduce that∇p∞ ·∇n∞ = 0
a.e. in Ω× (0, T ). As a consequence, the above variational equation (64) is equivalent to∫ T

0

(G(p∞)n∞, p∞ψ)− (∇p∞,∇(p∞ψ))ds = 0

which, taking into account (53), implies (13) in the distributional sense.

4. An algorithm on unstructured meshes

In order to avoid using structured meshes, we propose the following scheme. Find nh,k ∈
C1([0, T ];Nh) such that
(65){

(∂tnh,k, nh)h + k((nh,k)
k−1∇nh,k,∇nh) + ν(∇nh,k,∇nh) = (G(p(nh,k))nh,k, nh)h ∀nh ∈ Nh,

nh,k(0) = n0
h,k.
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Equivalently, we may write (65)1 as

(∂tnh,k, nh)h + (nh,k∇p(nh,k),∇nh) + ν(∇nh,k,∇nh) = (G(p(nh,k))nh,k, nh)h.

Here the finite-element space Nh is constructed over a family of triangulations {Th}h>0 of Ω
being shape-regular, quasi-uniform and with acute angles. This acuteness property implies (22)
for the particular case where D is the d × d identity matrix [7]. We summarize the properties of
scheme (65) in the following theorem.

Theorem 4.1. Suppose that (H1)-(H4) are satisfied. Then scheme (65) satisfies the following
properties. For all a ∈ Nh and t ≥ 0, we have:

0 ≤ nh,k(a, t) ≤ Nmax(k)

0 ≤ nkh,k(a, t) ≤ PmaxNmax(k),

∂tnh,k(a, t) ≥ 0, ∂tn
k
h,k(a, t) ≥ 0,

and the a priori estimates:

‖nh,k‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ C,

‖∂tnh,k‖L∞(0,T ;L1(Ω)) + ‖∂tnkh,k‖L1(0,T ;L1(Ω)) ≤ C,

with C > 0 being a constant independent of (h, k).

Proof. Full details of the proof are left to the interested reader since it follows mutatis mutandis
the same arguments as for scheme (24). �

Corollary 4.1. Under hypotheses (H1)-(H4), it follows that

(66)
∑
K∈Th

(∫
K>

|∂xi
nkh,k(x)|2 +

∫
K<

|∂xi
Ihnkh,k(x)|2

)
dx ≤ C,

where

K> =

{
x ∈ K :

nk−1
k,h (ξi)

nk−1
h,k (x)

> 1

}
and

K< =

{
x ∈ K :

nk−1
k,h (ξi)

nk−1
h,k , (x)

< 1

}
,

with C > 0 being a constant independent of (h, k).

Proof. Choose n̄h = Ih(nkh,k) to get
(67)
(∂tnh,k, Ih(nkh,k))h+((nh,k)

k−1∇nh,k,∇Ih(nkh,k))+ν(∇nh,k,∇Ih(nkh,k)) = (G(p(nh,k))nh,k, Ih(nkh,k))h.

It follows immediately from (39) and (41) that

(68) (∂tnh,k, Ih(nkh,k))h ≥ 0,

and from (26) that

(69) ν(∇nh,k,∇Ih(nkh,k)) = ν(D(nh,k)∇nh,k,∇nh,k) ≥ 0.

Combining (67)-(69) yields on noting (31) and (39) that

((nh,k)
k−1∇nh,k,∇Ih(nkh,k)) ≤ G(0)|Ω|Nmax(k)2Pmax.
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Finally, we invoke again (26) and recall (27) to set

k((nh,k)
k−1∇nh,k,∇Ih(nkh,k)) = (∇nkh,k,∇Ih(nkh,k))

=
∑
K∈Th

∫
K

(
nk−1
k,h (ξi)

nk−1
h,k (x)

|∂xi
nkh,k(x)|2 +

nk−1
h,k (x)

nk−1
k,h (ξi)

|∂xi
Ihnkh,k(x)|2

)
dx.

This completes the proof via the definitions of K< and K>. �

Remark 4.1. Unfortunately, convergence for scheme (65) is not clear because estimate (66) does
not provide enough control over the gradient of {nkh,k}h,k or {Ihnkh,k}h,k in order to obtain compact-
ness and therefore to pass to the limit as (k, h)→ (0,+∞).

5. Numerical simulation

5.1. Temporal integration. It is assumed here for simplicity that we have a uniform partition of
[0, T ] into M pieces, with time step size τ = T/M and the time values (tm = mτ)Mm=0. To simplify

the notation let us denote δtn
m+1 =

nm+1 − nm

τ
.

First we present a first-order time integration for scheme (65).

Algorithm 1: Linear semi-implicit time-stepping scheme

Step (m + 1): Given nmh,k ∈ Nh, find nm+1
h,k ∈ Nh solving the algebraic linear

system

(70)

{
(δtn

m+1
h,k , nh)h + k((nmh,k)

k−1∇nm+1
h,k ,∇nh)

+ν(∇nm+1
h,k ,∇nh) = (G(p(nmh,k))n

m
h,k, n)h,

for all nh ∈ Nh.

5.2. Computational experiments. In this section, we present several numerical experiments to
test the algorithm presented herein. To do this, we consider the evolution of problem (1)-(3) with

n0(x, y) = α e−(x2+y2)

on the computational domain Ω = (−10, 10)× (−10, 10) with α > 0.
In the numerical setting, we construct a structured triangulation partitioning the edges of square

into 100 subintervals, corresponding with the mesh size h = 0.12582843 and the time step size is
τ = 10−5. The choice of the time step τ is such that it helps to mitigate the possibly numerical
deviation of the d-simplexes K ∈ Th from the right-angled structure. The resulting matrix is
strictly diagonally dominant.

Our intention is to illustrate the behavior exhibited by the solution to problem (1)-(3) when the
diffusion coefficient ν, the parameter k and the homeostatic pressure Pmax vary.

We will set α and Pmax to be 1 and k to be 100 if not stated otherwise. Moreover, we consider

G(p) =
200

π
arctan(4(Pmax − p)+),

5.2.1. Analysis of the effect of α (contraction/dilation coefficient of the initial datum). In this test
we choose α = 0.5 and 1. We are interested in comparing the evolution of the density n and the
pressure p(n) when the maximum of the initial density takes different values. In particular, we have
for α = 0.5 that the maximum value of n0 occurs only at the point (0, 0) and is 0.5, hence Nmax(k)
remains below of 1. We thus observe that the maximum increases without modifying essentially
the exponential shape of the initial datum n0 until reaches Nmax(k) = 1. Once the density takes
the value 1 at t = 0.01583 the measure of points at which the density reaches the maximum grows
radially around (0, 0) due to the fact that the pressure starts increasing and pushes forward the
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tumor cells. Then the exponential structure of the initial datum n0 becomes a traveling wave shape
which moves outwards as t increases. This behavior causes that the evolution of the interface is
delayed concerning the case α = 1 as shown in Figures 1 and 2 since the maximum value 1 is
reached from the beginning.

Figure 3 represents the difference between the density and the pressure at times t = 0.1, 0.2, 0.3
and 0.4, and indicates that the pressure is responsible for the advance of the tumor cells which is
deduced from the annulus shape of the difference.

Figure 1. Evolution of the density at times t = 0.1, 0.2, 0.3, 0.4 for α = 0.5 (top)
and 1 (bottom).

Figure 2. Evolution of the pressure at times t = 0.1, 0.2, 0.3, 0.4 for α = 0.5 (top)
and α = 1 (bottom).

5.2.2. Analysis of the effect of ν (active motion coefficient). Now we set Pmax = 1 and take different
values of ν = 0, 0.5 and 1. The evolution of the density nh,k is shown in Figure 4 where we see
that the velocity of propagation of the tumor cells increases with respect to ν as noted for times
t = 0.1, 0.2, 0.3 and 0.4. Moreover, no particular differences have been observed in the width of
the interface between the tumor and pre-tumor cells for the different values of ν.

5.2.3. Analysis of the effect of k. In this simulation we select k = 10 and 1000. The first thing we
have noted is that there is a dependence between k and τ which has been taken 0.5 · 10−5. As can
be seen in Figure 5, there are no particular differences for k = 10 and 1000 at times t = 0.1, 0.2,
0.3 and 0.4.
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Figure 3. Evolution of the difference between the density and pressure at times
t = 0.1, 0.2, 0.3, 0.4 for α = 0.5 (top) and α = 1 (bottom).

Figure 4. Comparison of the density at times t = 0.1, 0.2, 0.3, 0.4 for different ν = 0
(top), 0.5 (middle), 1 (bottom).

Figure 5. Comparison of the density at times t = 0.1, 0.2, 0.3, 0.4 for different
k = 10 (top) and 1000 (bottom).
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5.2.4. Analysis of the effect of Pmax. Let us take Pmax = 10 and 30. Figure 6 shows that the
dynamics is sensitive to the different values for the homeostatic pressure. We highlight that, for
Pmax = 30, the evolution of the interphase is faster than the one for Pmax = 10. Moreover, the
shape of the interphase seems different as depicted in Figure 6 for times t = 0.1, 0.2, 0.3 and 0.4.

Figure 6. Comparison of the density at times t = 0.1, 0.2, 0.3, 0.4 for different
Pmax = 10 (top) and 30 (bottom).
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