
Stable ALS Approximation in the TT-Format for

Rank-Adaptive Tensor Completion

Lars Grasedyck∗ Sebastian Krämer∗

Abstract

Low rank tensor completion is a highly ill-posed inverse problem, particularly
when the data model is not accurate, and some sort of regularization is required in
order to solve it. In this article we focus on the calibration of the data model. For
alternating optimization, we observe that existing rank adaption methods do not
enable a continuous transition between manifolds of different ranks. We denote this
characteristic as instability (under truncation). As a consequence of this property,
arbitrarily small changes in the iterate can have arbitrarily large influence on the
further reconstruction. We therefore introduce a singular value based regularization
to the standard alternating least squares (ALS), which is motivated by averaging in
microsteps. We prove its stability and derive a natural semi-implicit rank adaption
strategy. We further prove that the standard ALS microsteps for completion prob-
lems are only stable on manifolds of fixed ranks, and only around points that have
what we define as internal tensor restricted isometry property, iTRIP. In conclusion,
numerical experiments are provided that show improvements of the reconstruction
quality up to orders of magnitude in the new Stable ALS Approximation (SALSA)
compared to standard ALS and the well known Riemannian optimization RTTC.

Keywords. tensor completion, MPS, tensor train, TT, hierarchical Tucker, HT,
alternating optimization, ALS, high-dimensional, low rank, SVD, ill-posedness, sta-
bility

AMS subject classifications. 15A18, 15A69, 65F22, 90C06, 90C31

1 Introduction

Low rank tensor completion is a highly ill-posed inverse problem. In order for any recovery
to succeed, regularity assumptions are required. This is either achieved by adding certain
penalty terms, or by using an explicit reduction of degrees of freedom, which in the
context of high-dimensional tensors can be obtained by using low rank representations,
cf. [15, 17, 19]. The main goal of this work is to derive a rank adaptive method for
tensor completion and moreover to discuss the benefits of such as well as the reasons why
heuristics tend to be insufficient. Since the concept of stability in the sense of Definition
1.1 has not yet been considered in literature, the initial part is dedicated to the simpler
matrix case (Sections 2 and 3) in order to provide an easier access. The subsequent

∗IGPM, RWTH Aachen University, Templergraben 55, 52056 Aachen
lgr.rwth-aachen.de, kraemer@igpm.rwth-aachen.de
Both authors gratefully acknowledge support by the DFG priority programme 1648 under grant
GR3179/3-1.

1

ar
X

iv
:1

70
1.

08
04

5v
2

 [
m

at
h.

N
A

]
 9

 A
pr

 2
01

9

analysis will focus on the importance of these concepts to least squares tensor completion
where the calibration of model complexity is more challenging.

1.1 Introduction to Stability for Ill-posed Inverse Problems through the
Example of Matrix Completion

In the setting of low rank matrix completion, the target of recovery is a matrix M ∈ Rn×m
which is only observable at points

M |P = {Mp}p∈P ∈ RP ∼= R|P | for P ⊂ I := {1, . . . , n} × {1, . . . ,m},

where P is a given, fixed sampling set, which we hence can not enlarge. One very strict
regularity assumption is given by rank(M) = r for some sufficiently small r ∈ N, which
leads to the minimization problem

minimize ‖A−M‖P
subject to A ∈ Rn×m, rank(A) ≤ r,

where ‖B‖2P :=
∑
i∈P B

2
i for matrices B. A favorable data model for this task is the low

rank representation, i.e. a function

τr : (X,Y) 7→ A = XY ∈ Rn×m for (X,Y) ∈ Dr := Rn×r × Rr×m.

Since every matrix has a unique rank, we can partition the target space Rn×m into the
disjoint subsets

Tr := {A | rank(A) = r}, r = 0, . . . ,min(n,m).

With image(τr) =
⋃
r̃≤r Tr̃ in mind, the optimization is performed on the representation

or data space Dr. In an alternating least squares (ALS) method for example, one then
applies two optimization methods M(1), M(2),

M(1)
r (X,Y) := (argmin

X̃

‖X̃Y −M‖P , Y), (1.1)

M(2)
r (X,Y) := (X, argmin

Ỹ

‖XỸ −M‖P), (1.2)

which in this context are called microsteps. Note that the argmin is not necessarily
unique, and we choose the element minimizing the Frobenius norm ‖XY ‖F . Formally,

for each value of the matrix rank r, every single M(1)
r , M(2)

r is a different function.

For most realistic applications, it is more reasonable to relax the regularity assump-
tion to M being nearly rank r, which means that after r entries, the singular values of
M become sufficiently smaller. Ultimately, if no assumptions are made, the appropriate
model complexity is a matter of the quality and magnitude of P with respect to M . Yet
in the general case, the missing structure of given data hardly allows to obtain knowledge
about this relation. Therefor, since overestimating the model complexity (i.e. the rank)
ultimately leads to flawed results, a cautious learning process is required to adapt such,
as rank increasing strategies already suggest. Due to the difficult nature of the problem,
we do not expect to be able to find the global minimizer, but instead focus on single
aspects that are likely to improve the approximation quality.

Each adaption of the rank during the optimization will cause the algorithm to change

2

between data spaces Dr. Intuitively, considering that the generated spaces Tr have pair-
wise distance 0 within Rn×m, one would want that a change of rank does not have large
impact, given the problematic nature of overfitting. This, however, is not true for both
M(1),M(2), while arbitrarily small perturbations of the iterate A = τr(X,Y) may change
its rank. For ill-posed inverse problems, we hence propose the following concept:

Definition 1.1 (Stability). Let M be a method that maps any rank r to a function Mr :
Dr → Dr (the optimization method for fixed rank). We define the following properties:

• M is called representation independent, if τr(Mr(G)) = τr(Mr(G̃)) for all r and

G, G̃ ∈ Dr with τr(G) = τr(G̃). We then define τ−1
r to map to one possible repre-

sentation (we want to circumvent the use of equivalence classes).

• M is called fixed-rank stable, if it is representation independent and for any fixed
rank r, the map τr ◦Mr ◦ τ−1

r : Tr → RI is continuous.

• M is called stable, if it is representation independent and the function

fM : RI → RI , fM(A) := τr(A) ◦Mr(A) ◦ τ−1
r(A)(A), (1.3)

where r(A) is the rank of A, is continuous.

A ∈ RI r
rank

∈ Dr

d
at
a
m
o
d
el

G

G̃

τr

Mr

MMr(G)

Mr(G̃)

data space :

τr

whole space : fM(A)
fM

�

Figure 1: The diagram depicting Definition 1.1. Magenta part: depending on the rank of A, the method
M provides a specific mapping Mr to be applied to equivalent representations G, G̃ ∈ Dr. Teal part:
representation independent states that fM is well-defined since both lower paths from A along the data
space result in the same output within the whole space. Stability requires that this function, the upper
path, is continuous.

This definition of stability is not restricted to matrix completion. Data spaces, the
rank (possibly generalized to any model complexity) and the method can be replaced by
any appropriate type, in particular tensor completion in hierarchical tensor formats (cf.
Section 4). The only assumption should usually be a nestedness of spaces, i.e. Tr ⊂ Tr̃
whenever r � r̃ (entry-wise inequality).
Properly calibrating the rank r for unstable methods in the context of ill-posed inverse
problems may lead to complications. Most of the operators applied to representations
are stable, e.g. truncations based on matrix singular values. The situation however
changes if we apply the partial optimization (or micro-) stepM(1) orM(2) on a low rank
representation:

3

Example 1.2 (Instability of alternating least squares matrix completion steps). Let a ∈
R \ {0, 1} be a possibly very small parameter. We consider the target matrix M and an
ε-dependent initial approximation A = A(ε)

M :=

? 1.1 0.9
1 1 1.1

1.1 1 1

 , A(ε) :=

1 1 1
1 1 1
1 1 1

+ ε

0.5 + a 0.5 + a −a
1 + a 1 + a −1− a
1− a 1− a −1 + a

 ,

where the entry M1,1 (the question mark above) is not known or given. The matrix M is
of rank 3 and A(ε) is of rank r = 1 for ε = 0 and of rank r = 2 otherwise. We seek a best
approximation of (at most) rank 2 in the least squares sense for the known entries of M .
In a single ALS step, as defined by (1.2), we replace Y (ε) of the low rank representation
A(ε) = X(ε)Y (ε) by the local minimizer, where in this case

A(0) =

1
1
1

(1 1 1

)
, A(ε) =

1 0.5 + a
1 1 + a
1 1− a

(

1 1 1
ε ε −ε

)
if ε > 0.

This optimization yields a new matrix, B(ε) = fM(2)(A(ε)) = τr ◦ M(2)
r ◦ τ−1

r (A(ε))
(independently of the chosen representation), given by

B(0) =

1.05 ∗ ∗
1.05 ∗ ∗
1.05 ∗ ∗

 , B(ε) =

1 + 1
40a ∗ ∗

1.0 ∗ ∗
1.1 ∗ ∗

 if ε > 0. (∗ is some value)

Now let a be fixed and let ε tend to zero so that the initial guess A(ε) → A(0). How-
ever, B(ε) 9 B(0), thus violating the stability. Furthermore, the rank two approximation
B(ε), given an arbitrary, fixed ε > 0, diverges as a → 0, in particular it is not conver-
gent although the initial guess A(ε) converges to a rank two matrix as a → 0. Thus,
the microstep is not even stable for fixed rank. We want to stress that the initial guess
is bounded for all ε, a ∈ (0, 1), but the difference between B(0) and B(ε) is unbounded
for a → 0 (cf. Definition 5.10). The unboundedness can be remedied by adding a regu-
larization term in the least squares functional, e.g. +‖XY ‖, but the ALS step remains
unstable.

This example likewise demonstrates that ALS for tensor completion is not stable and
thus, as discussed before, problematic when adapting the rank (cf. Section 4). We will
further show that this is not a marginal phenomenon, but occurs systematically during
any rank change (cf. Example 2.1).

1.2 Relation to Other Matrix and Tensor Methods

Whenever a tensor is point-wise available, algorithms such as the TT-SVD [33] can just
establish the exact rank based on its very definition or a reliable rank estimate as well as
representation can be obtained through cross-approximation methods, a setting in which
the subset of used entries can be chosen freely [4, 32].
If only indirectly given, adapting the rank of the sought low rank tensor can still be
straight-forward, e.g. when the rank has to be limited only due to computational com-
plexity, while in principle the exact solution is desired [2, 5]. Here, an optimal regula-
tion of thresholding parameters becomes most important. This mainly includes classical
problems that have been transferred to large scales. These may for example be solved

4

with iterative methods [1, 3, 29], which naturally increase the rank and rely on subse-
quent reductions, or also by rank preservative optimization, such as alternating opti-
mization [9, 11,21,37], possibly combined with a separate rank adaption.
Provided that the tensor restricted isometry property holds, the task may be interpreted
as distance minimization with respect to a norm that is sufficiently similar to the Frobe-
nius norm and analyzed based on compressed sensing [35]. Black box tensor completion
for a fixed sampling set, however, requires a certain solution to a positive-semi definite
linear system. Hence neither an exact solution is reasonable nor does any norm equiva-
lence hold. Thus, the available data is easily misinterpreted, the more so if the rank is
overestimated, and truncation based algorithms, including DMRG [21,24], are misled.
Nuclear norm minimization, being closely related to compressed sensing as well, has a
very strong theoretical background [7, 8, 16, 36] for the matrix case. These approaches
rely on a direct adaption of the target function, that is convex relaxation. Yet it appears
that they are outperformed in practice by alternating least squares approaches [23] and
the simplifications required for an adaption to tensors [12, 28, 38] do not seem to allow
for an appropriate generalization [31]. Also the approaches which themselves retreat to
alternating least squares [20] treat the iterations as necessity for the minimization of an
objective function with regularization term. The penalty term is, as usual, based on the
singular values of the output of a microstep (a posteriori), as it is also the case for the
work [40] on tensor completion through Riemannian optimization. Although their term
may appear similar to the term we derive (cf. Theorem 3.5), the stability property, on
the contrary, requires that the penalty term depends on the current singular values before
the microstep (a priori), which is an essential difference: we explicitly allow and exploit
small singular values instead of penalizing such. In that sense, we treat each update and
adaption as part of a learning progress, where the magnitudes of singular values indicate
in some respects an uncertainty of approximation. To the best of our knowledge, this
point of view has not yet been considered in literature and hence a concept of stability
as we define it has not been investigated.
For fixed or uniform rank, there have been least squares based proposals in hierarchical
tensor formats [26,39] as well. The essential adaption of the rank however, including sim-
ilar matrix approaches, is rarely considered, all the less in numerical tests, and remains
an open problem in this setting. A mentionable approach so far is the rank increasing
strategy [14,44] and its regularization properties are a first starting point for this article.

The rest of the article is organized as follows: In Section 2, we further investigate
instability and exemplarily analyze approaches towards it in the matrix case. Based on
this insight, we motivate a variational residual function, derive its minimizer and present
a stable algorithm for matrix completion in Section 3. In Section 4, we begin to general-
ize former results to high dimensional tensors, yet essentially work in three dimensions.
In the main Section 5, we then derive its minimizer and prove stability (Theorem 5.14)
for the thereby obtained regularized microsteps, further analyzing these in Section 6.
Subsequently, in Section 7, these results are transferred back to arbitrarily dimensional
tensors. Section 8 finishes with the necessary details for the algorithm, including its rank
adaption as it is naturally given through stable alternating least squares. Comprehen-
sive numerical tests (exclusively for unknown ranks) are provided in Section 9. Detailed
tables with the numerical values shown in figures can be found in the appendix.

5

2 Instability and Approaches to Resolve the Problem

The following example shows that instability can be observed systematically during rank
changes in ALS, or more general, in any such range based optimization. In that sense,
the implied complications for ill-posed, inverse problems may frequently occur:

Example 2.1 (ALS for ill-posed, inverse problems is unstable). Consider the microstep
M(2) as in (1.2). Let U ∈ Rn×r, V ∈ Rm×r be orthogonal, such that UΣV T is a truncated
SVD of a rank r matrix A = τr(U,ΣV

T) ∈ Rn×m. We now let σr → 0, σr > 0, such that
in the limit A∗ := A|σr=0 has rank r− 1. The update is independent of this last singular
value though:

fM(2)(A) = τr(M(2)
r (U,ΣV T)) = U argmin

Y
‖UY −M‖P = lim

ε↘0
fM(2)(A|σr=ε) (2.1)

However, if σr = 0, then A|σr=0 has rank r − 1 and a truncated SVD UcΣcV
T
c . Hence,

the update

fM(2)(A|σr=0) = τr−1(M(2)
r−1(Uc,ΣcV

T
c)) = Uc argmin

Y
‖UcY −M‖P

is in general different from the limit (2.1), given that the range of U is different from Uc.
The same holds for an analogous update M(1) of X = UΣ. Note that these updates are
indeed representation independent.

The microsteps of ALS in the tensor case behave in the same way. The only difference
is that there are two tuples of singular values σ(µ−1) and σ(µ) adjacent to a core Gµ (cf.
Lemma 5.2). There may be many ways to stabilize the microsteps. However, we aim
for an as little distorting as practical way to do this. A quite successful approach for
completion has been the rank increasing strategy, e.g. [44]. Therein, the model complexity
is slowly increased, step by step attempting a more distinct approximation. Thereby, local
minima that correspond to overfitting are avoided.
A similar kind of effect can be achieved by assuming an uncertainty on the current
iterate, or, equivalently, averaging the tensor update function. That way, the level of
regularization can be adapted continuously and is less dependent on the discrete rank
but the more meaningful, real-valued singular values. We will first view this in a minimal
fashion for the matrix case and the method M(2) defined by (1.2) (for the remainder of
this section calledM for simplicity). With this approach, we can motivate an algorithm
that is stable under truncation and allows to straightforwardly adapt ranks. While other
methods in fact keep distance from the border of one manifold of a fixed rank, we aim to
optimize, in a certain sense, continuously between manifolds of different ranks.
Assuming local integrability of fM (as defined in (1.3)), we obtain that the variational
function

f∗M(A) :=
1

|VA,ω|

∫

VA,ω
fM(H) dH (2.2)

VA,ω := {H ∈ image(τr̃) | ‖H −A‖F ≤ ω}

is continuous within image(τr̃), where ‖ · ‖F is the Frobenius norm and r̃ may be consid-
ered an upper bound to the rank (cf. Figure 2). However, this function does not preserve
low rank structure, apart from appearing to be to complicated to evaluate, and therefore
we cannot find a method M∗ for which f∗M = fM∗ . Still, all simplifications which we
will make remain subject to this motivation.

6

B1

B2

B3

C

fM(Bi)

fM(C)

A

fM(A)

image(τr)

image(τr̃)

VA,ω

I C
B1

B2

B3

f ∗M(B1)

f ∗M(B2)

f ∗M(B3)

f ∗M(C)

A

f ∗M(A)

image(τr)

image(τr̃)

Figure 2: The schematic display of the unstable function fM (left) and the variational, stable f∗M
(right). In both pictures, the image of τr is depicted as black curve contained in the image of τr̃ shown
as blue area (with magenta boundary). A is a rank r element, while C and each Bi has rank r̃. Left:
Regardless of their distance to A, the tensors B1, B2 and B3 (and any other point of the dotted line
except the lower rank element A) are mapped to the same point fM(Bi). Likewise, C is, although as
close to A as B1, mapped to a completely different point. The teal circle exemplarily shows one possible
range of averaging at the point A. Right: If an element (such as B1 and C) is close to A, then this also
holds for their function values. However, f∗M(A) is not rank r anymore (in fact, the image of f∗M is
generally not even rank r̃).

2.1 Investigations into the Connection between Averaging and Stability

Although the following examples are heavily narrowed down, we observe which kind of
simplifications we may apply in order to obtain a feasible, but still stable method (cf.
Section 3). First, we consider a scenario in which we limit the perturbation that the
left singular vectors U receive due to the variation of A to only one component as it is
approximately the case if σ1 � σ2 ≈ ω.

Lemma 2.2 (Variational low rank matrix approximation). Let M be defined by (1.2)
and P = I (full sampling). Let further A = UΣV T ∈ Rn×m be of rank two, given by its
SVD components U = (u1 | u2), Σ = diag(σ1, σ2) and V as well as M ∈ Rm×m arbitrary
and 0 < ω <

√
2σ2. Then

f̂M(A) :=
1

|Vω|

∫

Vω

fM
(
(u1 | u2 + ∆u2)ΣV T

)
d∆u2

= u1u
T
1 M︸ ︷︷ ︸

optimization

+ (1− αω)2u2u
T
2 M︸ ︷︷ ︸

regularization

+
2αω − α2

ω

m− 2
(Im − u1u

T
1 − u2u

T
2)M

︸ ︷︷ ︸
replenishment

(2.3)

Vω :=
{

∆u2 | ‖(u1 | u2 + ∆u2)ΣV T −A‖F = ω, (u1 | u2 + ∆u2) has orthonormal columns
}

for αω = ω2

2σ2
2

, such that αω → 1 if ω →
√

2σ2. Alternatively, considering complete

uncertainty concerning the second singular vector, we obtain

1

|Vω|

∫

Vω

fM
(
(u1 | ∆u2)ΣV T

)
d∆u2 = u1u

T
1 M +

1

m− 1
(Im − u1u

T
1)M,

where here Vω := {∆u2 | (u1 | ∆u2) has orthonormal columns}.

Proof. We parameterize Vω. First, ω = ‖(u1 | u2 + ∆u2)ΣV T − A‖F = ‖∆u2‖F σ2

and hence ‖∆u2‖F = ω
σ2

. By orthogonality conditions, we obtain ∆u2 = −αωu2 + ∆u⊥2
with ∆u⊥2 ⊥ range(U) for a fixed αω = ω2

2σ2
2
. Hence, Vω is an (m − 3)-sphere of radius

7

βω =
√

ω2

σ2
2
− α2

ω, that is βωS
m−2. The update for each instance of ∆u⊥2 is given by

fM((u1 | u2 + ∆u2)ΣV T) = (u1 | u2 + ∆u2)(u1 | u2 + ∆u2)TM.

We integrate this over Vω and obtain

∫

Vω

fM =

∫

Vω

u1u
T
1 M +

∫

Vω

(1− αω)2u2u
T
2 M +

∫

Vω

∆u⊥2 ∆u⊥2
T
M

since all integrals of summands which contain ∆u⊥2 exactly once vanish due to symmetry.
We can simplify the last summand with Lemma 3.4 to

∫

Vω

∆u⊥2 ∆u⊥2
T
M =

∫

βωSm−2

(Hx)(Hx)TM dx = HHT 2αω − α2
ω

m− 2
|Vω|M

for a linear, orthonormal map H that maps x ∈ βωSm−2 to ∆u⊥2 , that is, embeds it into
Rm. One can then conclude that HHT = Im−u1u

T
1 −u2u

T
2 , since the rank of H is m−2

and range(H) ⊥ range(U). The division by |Vω| then finishes the first part. The second
part is analogous.

We can observe that, in this case, choosing ω close to σ2, or in that sense a small σ2,
will filter out influence of u2. This is indeed in agreement to the update which the rank
1 best-approximation to A would yield1. More importantly, the result f̂M(A) in (2.3) is
not low rank, yet close to the rank 2 approximation U(uT1 M | (1− αω)2uT2 M), in which
the first component U has remained the same. While the variational model as in (2.2)
remains the basic idea, it is too complicated to be used for the derivation of a stable
method M∗. We instead consider a slightly modified approach (which will be used in
the following Sections 3 and 5).

Lemma 2.3 (Low rank matrix approximation using a variational residual function). In
the situation of Lemma 2.2, we have

argmin
Ṽ

1

|Vω|

∫

Vω

‖(u1 | u2 + ∆u2)Ṽ −M‖2F d∆u2 = (uT1 M | (1− αω)uT2 M) (2.4)

Proof. Let Ṽ be the corresponding minimizer. With the same derivation as in Lemma
2.2, we obtain

|Vω|Ṽ =

∫

Vω

(u1 | u2 + ∆u2)TM d∆u2

=

(
uT1 M |Vω| | uT2 M |Vω|+

∫

Vω

−αωuT2 M + ∆u⊥2 Md∆u2

)

= |Vω|
(
uT1 M | (1− αω)uT2 M

)
.

Comparing this to the rank 2 approximation of the previous result (2.3), we observe
that solely (1 − αω)2 has been replaced by 1 − αω. For our purpose, these terms are
sufficiently similar for small αω ≥ 0.

1Note that we fixed ‖∆u2‖F = ω for simplicity as well as that for ω >
√

2σ, Example 2.2 does not
make sense. Allowing perturbations up to a magnitude ω will prohibit that the influence of u2 vanishes
completely, hence u2 is never actually truncated.

8

Remark 2.4 (Replenishment and lower limit). The so called replenishment term in
(2.3) points at an important aspect which we analyze in Section 6. We later bypass
related problems through an additional manipulation of singular values, the intensity of
which is proportional to the current residual.

We here refer to a Matlab implementation of a (superficially random) Monte Carlo
approach to the unsimplified variational microstep f∗M as in (2.2) for matrix completion,
which is linked on the personal webpage of the author Sebastian Krämer2. Likewise, an
implementation of the final algorithm SALSA (Algorithms 2 and 4), which is developed
from the idea in Lemma 2.3, can be found for the matrix case as well as for the tensor
case.

3 Stable Alternating Least Squares Microsteps for Matrix Com-
pletion

In this section, we adapt the target function of each microstep M in order to obtain a
stable method M∗. When performing ALS, instead of just one specific iteration point
A ∈ Tr, the results in Section 2.1 suggest to instead consider a set Vω(A) of variations,
or uncertainty, ∆A along the manifold Tr of rank r matrices:

Vω(A) := {∆A | A+ ∆A ∈ Tr, ‖∆A‖F ≤ ω}, r = rank(A)

The initial idea is slightly similar to gradient sampling (e.g. [6]), but is then pursued
differently. Let A = τr(X,Y) and (∆X,∆Y) such that A+∆A = τr(X+ω∆X,Y +ω∆Y).
Then

‖∆A‖2F = ‖(X + ω∆X)(Y + ω∆Y)−XY ‖2F
= ‖ω(∆XY +X∆Y)‖2F +

(
O(ω2)

)2
(3.1)

The term ‖∆XY +X∆Y ‖2F can be approximated, assuming the angles between the three
summands are small, by ‖∆XY ‖2F + ‖X∆Y ‖2F . This and Lemma 2.3 then motivate the
following definition.

Definition 3.1 (Variational residual function). Let ω ≥ 0, M the target matrix, P the
sampling set and A = XY the current iterate. We define the variational residual function
C := CM,P,X,Y : Dr → R by

C(X̃, Ỹ) :=

∫

Vω(X,Y)

‖(X̃ + ∆X)(Ỹ + ∆Y)−M‖2P d∆X d∆Y, (3.2)

Vω(X,Y) := {(∆X,∆Y) | ‖∆XY ‖2F + ‖X∆Y ‖2F ≤ ω2}.

3.1 Minimizer of the Variational Residual Function for Matrices

We define our modified methods as

(M(1))∗(X, Y) := (argmin
X̃

C(X̃, Y), Y) (3.3)

(M(2))∗(X, Y) := (X, argmin
Ỹ

C(X, Ỹ)) (3.4)

with C = CM,P,X,Y as in (3.2). It should further be noted that Vω does not depend

on the unknown X̃, Ỹ , respectively, but on the current iterate. We will later see that

2by the time the paper is written, the address is www.igpm.rwth-aachen.de/team/kraemer

9

the minimizers are unique, but for formality we again use the minimization of Frobenius
norm of the iterate as secondary criterion.

Lemma 3.2. The two methods (M(1))∗ (3.3) and (M(1))∗ (3.4) are representation in-
dependent.

Proof. We later prove this for the generalized tensor case (cf. Lemma 5.4).

Here, and throughout the remainder of the paper, we use the following, convenient
notations, since we often have to reshape, restrict or project objects.

Definition 3.3 (Restrictions). For any object A ∈ RI and index set S ⊂ I, we use
A|S ∈ RS as restriction. For a matrix M , let M:,i be its i-th column and Mi,: be its i-th
row. Furthermore, whenever we apply a restriction to an object or reshape it, we also use
the same notation to correspondingly modify index sets (cf. Theorem 3.5).

Lemma 3.4 (Integral over all variations). Let n,m ∈ N, ω ≥ 0 and H ∈ Rn×n be a
matrix as well as

V (n,m)
ω := {X ∈ Rn×m | ‖X‖F = ω}.

Then

∫

V
(n,m)
ω

XTHX dX =
ω2|V (n,m)

ω |
nm

trace(H)Im, |V (n,m)
ω | :=

∫

V
(n,m)
ω

1.

Proof. Let Y be the result of the above integral. Then

Yij = trace(Yij) =

∫

V
(n,m)
ω

trace(XT
:,iHX:,j) dX = trace(H

∫

V
(n,m)
ω

X:,jX
T
:,i) dX.

Due to symmetry, for some α ∈ R, we have

∫

V
(n,m)
ω

vec(X)vec(X)T dX = αInm,

∫

V
(n,m)
ω

vec(X)Tvec(X) dX = ω2|V (n,m)
ω |.

Since the second term is the trace of the first one, it follows that α = ω2|V (n,m)
ω |/(nm).

We can hence simplify

Yij =

{
ω2|V (n,m)

ω |/(nm) trace(H) if i = j,

0 otherwise ,

which is the to be proven statement.

We now derive the minimizer of the variational residual function for matrices (3.2).
One can use an SVD of the current iterate A = UΣV T for simplification. In this case,
Vω as in Definition 3.1 takes the easier forms

Vω(U Σ, V T) = {(∆X,∆Y) | ‖∆XV T ‖2F + ‖UΣ∆Y ‖2F ≤ ω2}
= {(∆X,∆Y) | ‖∆X‖2F + ‖Σ∆Y ‖2F ≤ ω2},

Vω(U, Σ V T) = {(∆X,∆Y) | ‖∆XΣ‖2F + ‖∆Y ‖2F ≤ ω2}.

Theorem 3.5 (Minimizer of the ALS variational residual function for matrices). Let
A ∈ Rn×m be the current iterate with r = rank(A) and let UΣV T be a truncated SVD,

10

U ∈ Rn×r, Σ ∈ Rr×r, V T ∈ Rr×m, of A. Let further C be the variational residual
function as in (3.2). The minimizer X+ of X̃ 7→ CM,P,UΣ,V T (X̃, V T) is given by

X+
i,: = argmin

X̃i,:

‖X̃i,:V
T −Mi,:‖2Pi,:︸ ︷︷ ︸

standard ALS

+
|Pi,:|
m

ω2 ζ2 ‖X̃i,:Σ
−1‖2F

︸ ︷︷ ︸
regularization

,

where Pi,: := {p(k)
2 | p(k)

1 = i, k = 1, . . . , |P |} is the corresponding part of the index set

P . The minimizer Y + of Ỹ 7→ CM,P,U,ΣV T (U, Ỹ) is given by

Y +
:,j = argmin

Ỹ:,j

‖U Ỹ:,j −M:,j‖2P:,j︸ ︷︷ ︸
standard ALS

+
|P:,j |
n

ω2 ζ1 ‖Σ−1 Ỹ:,j‖2F
︸ ︷︷ ︸

regularization

,

where P:,j := {p(k)
1 | p(k)

2 = j, k = 1, . . . , |P |}. The constants ζ1 and ζ2 only depend on
the proportions of the representation and sampling set (cf. Remark 3.6).

The factors
|Pi,:|
m and

|P:,j |
n normalize the penalty terms to the particular magnitudes

of the corresponding shares of the sampling set P and hence the standard ALS part. The
factors ζ1, ζ2 ∈ (0, 1) are in turn independent of i, j, respectively. The ratio of both terms
equals the ratio of the mode sizes n,m. The reason for the latter scaling will become
apparent in the tensor case (see comments to Theorem 5.6).

Proof. We search for Y + := argminỸ CM,P,U,ΣV T (U, Ỹ) (the counterpart for X+ is
analogous). Substituting

(∆X,∆Y)→ (∆XΣ−1,∆Y)

we can (up to a constant Jacobi determinant) restate C as

CM,P,U,ΣV T (U, Ỹ) ∝
∫

Vω
‖(U + ∆XΣ−1)(Ỹ + ∆Y)−M‖2P d∆X d∆Y,

Vω = {(∆X,∆Y) | ‖∆X‖2 + ‖∆Y ‖2 ≤ ω2}. (3.5)

Each of the independent columns in the minimizer is restated as

Y +
:,j = argmin

Ỹ:,j

∫

Vω
‖(U + ∆XΣ−1)(Ỹ:,j + ∆Ỹ:,j)−M:,j‖2P:,j

d∆X d∆Y. (3.6)

Let j be arbitrary but fixed from now on. For any vector x, it is ‖x‖vec(P:,j) =

‖H(j)x‖F = xTH(j)x for a diagonal, square matrix H(j) ∈ Rn×n with
H(j)(s),(s) = δs∈P:,j

(hence H(j)2 = H(j)). Using the normal equation, we obtain

Y +
:,j = W−1b, where

W =

∫

Vω
(U + ∆XΣ−1)T H(j) (U + ∆XΣ−1) d∆X d∆Y

and

b =

∫

Vω
(U + ∆XΣ−1)T H(j) (M:,j −∆Ỹ:,j) d∆X d∆Y.

11

In both W and b, any perturbation that appears only one-sided in the expanded product
vanishes due to symmetry of Vω. Thus b = |Vω| UTP:,j ,:

MP:,j ,j and

W =

∫

Vω
UT H(j) U d∆X d∆Y

+

∫

Vω
(∆XΣ−1)T H(j) (∆XΣ−1) d∆X d∆Y

Now, let ` = #X = nr, k = #Y = rm. Since V is a version of the (` + k)-sphere, we
can use the following integration formula: For any n,m, k ∈ N let f : Rn+m → Rk be a
sufficiently smooth function and Sv−1

ω be the v-sphere of radius ω. Then

∫

Sn+m−1
ω

f(xn, xm) dx =

∫ π/2

0

ω

∫

Sn−1
ω sin(u)

∫

Sm−1
ω cos(u)

f(xn, xm) dxm dxn du.

For a function f we then obtain
∫

V
f d∆X d∆Y =

∫ ω

λ=0

∫

S`+k−1
λ

f d∆X d∆Y dλ

=

∫ ω

λ=0

λ

∫ π/2

g=0

∫

Sk−1
λ sin(g)

∫

S`−1
λ cos(g)

f d∆X d∆Y dg dλ

When f is independent of ∆Y , this simplifies to

=

∫ ω

λ=0

λ

∫ π/2

g=0

|Sk−1
λ sin(g)|

∫

S`−1
λ cos(g)

f d∆X dg dλ

We further use the identity

∫ π/2

0

cos(x)p sin(x)q dx =
Γ((p+ 1)/2) Γ((q + 1)/2)

2Γ((p+ q + 2)/2)
=: ν(p, q)

We apply these and Lemma 3.4 for different f0 = UT H(j) U (δ = 0) and f1 =
(∆XΣ−1)T H(j) (∆XΣ−1) (δ = 1). For the summands W (0) + W (1) = W this then
yields

W (δ) =

∫ ω

λ=0

λ

∫ π/2

g=0

2πk/2(λ sin(g))k−1

Γ(k/2)
(λ2 cos(g))δ

2π`/2(λ cos(g))`−1

Γ(`/2)
CH(δ)

= c
ωk+`+2δ

k + `+ 2δ
ν(`− 1 + 2δ, k − 1)CH(δ)

for c = 4π(k+`)/2

Γ(`/2)Γ(k/2) . The constant matrices CH are given by

CH(0) = C̃H(0) = UTP:,j ,: P:,j ,:

|P:,j |−1nrCH(1) = C̃H(1) = Σ−2

Furthermore, it is |Vω| = cω
`+k

`+k ν(` − 1, k − 1). Factoring out this base volume in W =

|Vω|W̃ by using properties of the Γ function, one derives:

W̃ (0) = C̃H(0), W̃ (1) =
|P:,j |
n

ω2ζ1C̃H(1), ζ1 =
`

r(k + `+ 2)

Restating the result again as a least squares problem finishes the proof.

12

Remark 3.6 (Specification of constants). Let #X := nr, #Y := rm be the sizes of the
components in the matrix decomposition. The constants in Theorem 3.5 are given by

ζ2 =
#Y

r(#X + #Y + 2)
, ζ1 =

#X

r(#X + #Y + 2)
.

However, when changing the rank, this would impose a slight offset in continuity of both
fM(1)∗ and fM(2)∗ . This problem is simply resolved by substituting ω by ω̃ properly for
each value r, such that we can set and normalize

ω2ζ2 = ω̃2 m

n+m
, ω2ζ1 = ω̃2 n

n+m
.

We will still just write ω although we replace ζ1 and ζ2 by the adapted values.

Manipulating ω does not change the representation independency of the two methods
(M(1))∗ and (M(2))∗, since for fixed r, the value ω > 0 just remains an arbitrary constant
(cf. Lemma 5.4). We arrive at the main result for the matrix case:

Theorem 3.7 (Stability of the variational matrix methods). The methods (M(1))∗ (3.3)
and (M(2))∗ (3.4) are stable.

Proof. Follows as special case from the proof of the tensor version, Theorem 5.14.

Despite the technicalities involved in the proof, the simplicity of the idea becomes ap-
parent by setting P = I (being analogous to the argumentation in section 2.1). For a
certain constant c ∈ R, in the setting of Theorem 3.5, we then have

fM(2)∗(UΣV T) = U · (I + cΣ−2)−1

︸ ︷︷ ︸
regularization

· UT M︸ ︷︷ ︸
standard ALS

(3.7)

= ((1 + cσ−2
1)−1 · U:,1U

T
:,1M, . . . , (1 + cσ−2

r)−1 · U:,rU
T
:,rM).

If now σr → 0, then also (1 + cσ−2
r)−1 → 0 and we obtain the same result as if we would

have truncated the representation (X,Y) = (U,ΣV T) to rank r− 1 beforehand. We also
denote these additional factors as filter, as they filter out influence corresponding to low
singular values. Note that obtaining small singular values is not penalized, but using
components corresponding to small ones is.

Algorithm 1 performs one stable ALS approximation (SALSA) sweep, that is it applies
the two stable methods from Theorem 3.7. Before each update, any current singular value
σi < σmin is replaced by σmin, which in turn is set as fraction fmin � 1 of the current
residual (Algorithm 2). Although the influence of this manipulation on the subsequent
step is thereby marginal, it is necessary since otherwise σi may irreversibly converge to
zero (cf. Remark 2.4, for more details, see Section 6).

3.2 Rank Adaption

The key aspect of stability is that it rendered explicit rank adaption near unnecessary,
since the optimization relies on the magnitude of singular values, as (3.7) suggests. Start-
ing from an initial representation and a large value ω proportional to the norm of the
iterate A, the parameter ω is decreased after each iteration. The singular values are
decided into two types:

13

Algorithm 1 Stable Matrix Completion

Require: limit σmin, parameter ω, initial guess A = XY ∈ Rn×m such that X contains
the left singular vectors of A, and data points M |P

1: compute the SVD UΣV T := Y and update σi := max(σi, σmin), i = 1, . . . , r
2: set X := XUΣ and Y := V T

3: for i = 1, . . . , n update

Xi,: := argmin
X̃i,:

‖X̃i,:Y −Mi,:‖2Pi,: +
|Pi,:|
m

ω2m

n+m
‖X̃i,:Σ

−1‖2F (3.8)

4: compute the SVD UΣV T := X and update σi := max(σi, σmin), i = 1, . . . , r
5: set X := U and Y := ΣV TY
6: for j = 1, . . . ,m update

Y:,j := argmin
Ỹ:,j

‖XỸ:,j −M:,j‖2P:,j
+
|P:,j |
n

ω2n

n+m
‖Σ−1Ỹ:,j‖2F (3.9)

Definition 3.8 (Stabilized rank and minor singular values). A singular value σi is called
stabilized, if it is larger than a certain fixed fraction of ω (meaning any corresponding
terms have an increased influence, cf. (3.7)). Otherwise, it is called minor (as a removal
of such does not notably change the next steps). The stabilized rank only counts the
number of stabilized singular values.

The actual rank is only modified as to make sure that there is always a fixed, small
amount of minor singular values, i.e.

|{i | 0 < σi < fminor · ω}| !
= kminor, (3.10)

for constants fminor < 1 and kminor ∈ N. This states the basic concept of implicit rank
adaption and we will provide a more detailed discussion in the later section 8 for the
elaborate tensor case. For performance evaluation, a validation set may be used:

Definition 3.9 (Validation set). For a given P , the sampling or training set, we define
P2 ⊂ P as validation set. This set may be chosen randomly or specifically distributed.
The actual set used for the optimization is replaced by P ← P \ P2 (keeping the same
symbol).

The stopping criteria in Algorithm 2 may depend on the behavior of P2, or may
simply be based on a rank bound, e.g. r ≤ |P |/(n + m). The latter criterion, however,
only suffices in the matrix case.

Remark 3.10 (On convergence estimates). Due to the specific dependency of the reg-
ularization on the current singular values of the iterate, it may be impossible to restate
the problem as minimization of a modified, global cost function. Furthermore, the iterate
does not remain on a fixed manifold of low rank. Given that also rank deficient points
may be included in the optimization due to the stability, theoretical convergence results
so far remain subject to future work.

14

Algorithm 2 SALSA Algorithm

Require: P ⊂ I, M |P
1: initialize X,Y s.t. τr(X,Y) ≡ ‖M |P ‖1/|P | for r ≡ 1 and ω = 1/2 · ‖τr(X,Y)‖F
2: split off a small validation set P2 ⊂ P for performance evaluation
3: for iter = 1, 2, . . . do
4: proceed SALSA sweep∗ (Algorithm 1)

5: ∗: and renew lower limit σmin := fmin · |I||P |‖τr(X,Y)−M‖P
6: ∗: and decrease ω
7: adapt rank according to (3.10) (start this when the first few iteration have passed)

8: if a stopping criterion applies then
9: terminate algorithm

10: return iterate for which ‖τr(X,Y)−M‖P2 was lowest
11: end if
12: end for

4 Generalization to High-Dimensional Tensors

For the rest of this article we consider the problem of (approximately) reconstructing a
tensor M ∈ RI from a given data set M |P = {Mp}p∈P , where now

P ⊂ I :=
d×

µ=1

Iµ, Iµ := {1, . . . , nµ}, µ = 1, . . . , d. (4.1)

We further generalize the representation map and data space τr : Dr → Dr as well
as the rank r together with the spaces Tr to the tensor train (TT-)format (Definition
4.2, [33, 34], also called Matrix Product States (MPS) [41, 46] or interpreted as a special
case of the Hierarchical Tucker format [13, 18]). Stability for tensor methods is thereby
defined through Definition 1.1 as well. For the underlying tensor M it is now assumed
that its TT-singular values (cf. Definition 4.1) decline sufficiently fast in order to yield
an approximation Mε ∈ Tr.
Definition 4.1 (TT-singular values and TT-rank). Analogously to the TT-ranks, we
define the TT-singular values σ = (σ(1), . . . , σ(d−1)) of a tensor A as the unique singular
values of the corresponding matricizations A({1,...,µ}) ∈ R(I1×···×Iµ)×(Iµ+1×···×Id) with
entries

A({1,...,µ})((i1, . . . , iµ), (iµ+1, . . . , id)) := A(i)

of A, such that σ(µ) contains the ordered singular values of A({1,...,µ}), µ = 1, . . . , d− 1.
The TT-rank rµ is the number of nonzero TT-singular values in σ(µ). We also call σ(µ)

the µ-th singular values.

Definition 4.2 (TT-format). A tensor A ∈ RI is in the set Tr, often also denoted TT(r),
r ∈ Nd−1, if for µ = 1, . . . , d and iµ ∈ Iµ there exist Gµ(iµ) ∈ Rrµ−1×rµ (r0 = rd = 1)
such that

A = τr(G), A(i1, . . . , id) := G1(i1) · · ·Gd(id), i ∈ I.
The representation of A in this form is shortly called the TT format. The single Gµ, as
well as similarly structured objects, are called cores (or sometimes nodes).

The TT-SVD [33] provides that if r is the TT-rank of A, then it follows A ∈ Tr. So G
is also called low-rank representation of A. The function τr will appear in different forms,

15

each denoting the mapping from a type of representation of rank r to the represented
object.

Definition 4.3 (Unfoldings). For a core H (possibly a product of smaller cores in the TT
representation) with H(i) ∈ Rk1×k2 , i = 1, . . . , n, we denote the left unfolding L(H) ∈
Rk1·n×k2 , in which the matrices contained in the core are stacked below each other, and
right unfolding R(H) ∈ Rk1×k2·n, in which they are stacked side by side, by

(L(H))(`,j),q := (H(j))`,q , (R(H))`,(q,j) := (H(j))`,q ,

for 1 ≤ j ≤ n, 1 ≤ ` ≤ k1 and 1 ≤ q ≤ k2.

Our goal is to determine the ranks adaptively. We will demonstrate why this can be
even more troublesome than in the matrix case in the following.
For many tensors that stem from practical applications one observes exponentially de-
caying singular values, yet the rate of decay may strongly vary for the d − 1 different
matricizations. Theoretically, there is no non-trivial limitation to the shape of the TT-
singular values as described in following lemma.

Lemma 4.4 (Feasibility of TT-singular values [25]). Let σ = (σ(1), . . . , σ(d−1)) be a
(d− 1)-tuple of weakly decreasing rµ-tuples, µ = 1, . . . , d− 1, for which ‖σ(i)‖2 = ‖σ(j)‖2
for all i, j = 1, . . . , d−1. Then there exist mode sizes n1, . . . , nd ∈ N and a tensor A ∈ RI
such that this tensor has TT-singular values σ.

The following exemplary tensor emphasizes the problems heuristics encounter in the
rank adaption of a tensor with inconvenient singular values.

Example 4.5 (Rank adaption test tensor). For k ∈ N, let Q ∈ Rn1×...×n4 be an orthog-
onally decomposable 4-dimensional Tensor with TT-rank (k, k, k) and uniform singular
values σ(1) = σ(2) = σ(3) = (α, α, . . .) as well as B ∈ Rn5×n6 be a rank 2k matrix with
exponentially decaying singular values σ(5) ∝ (β−1, β−2, . . .) for some α, β > 0. Then the
separable tensor M ∈ Rn1×...×n6 defined by M(i) = Q(i1, . . . , i4) · B(i5, i6) has singular
values σ and rank r(M) = (k, k, k, 1, 2k).

By its definition, M is separable into a 4- and a 2-dimensional tensor (Q, B). Knowing
this would of course drastically simplify the problem. We now consider the performance
of two very basic rank adaption ideas.

1. Greedy, single rank increase: We test for maximal improvement by increase of
one of the ranks rµ (µ = 1, . . . , d − 1) of the iterate starting from r ≡ 1. Solely
increasing either of r2, r3 or r4 will give close to no improvement. As further shown
in [11], the approximation of orthogonally decomposable tensors with lower rank
can be problematic. In numerical tests (cf. Section 9.8), we can observe that r5 is
often increased to a maximum first. Thereby, extremely small singular values are
involved that lie far beneath the current approximation error, although the rank is
not actually overestimated.

2. Uniform rank increase and coarsening : We increase every rank rµ (µ = 1, . . . , d−1)
starting from r ≡ 1 and decrease ranks when the corresponding singular values are
below a threshold. The problem with this strategy is quite plain, namely that for

the target tensor M , it holds r
(M)
5 = 1. If this rank is overestimated, the observed

sampling points will be misinterpreted (overfitting) and it does not matter how
small corresponding singular values become (see Lemma 2.1).

These indicated difficulties gain more importance with high dimension, but for one mi-
crostep at a time, can be resolved by regarding only three components of a tensor. We
describe this in the following Section 4.1.

16

The tensor from Example 4.5 can also be constructed explicitly. We define a repre-
sentation G for A = τr(G) via left and right unfoldings by

L(G1) := Q1,

G2(i2) = G3(i3) := Ik, 1 ≤ i2 ≤ n2, 1 ≤ i3 ≤ n3,

R(G4) := QT4 , L(G5) := Q5, R(G6) := Σ5Q
T
6 ,

for (column-) orthogonal matrices Q1 ∈ Rn1×r1 , Q4 ∈ Rn4r4×r3 , Q5 ∈ Rr4n5×r5 Q6 ∈
Rn6×r5 and (σ5)i ∝ β−i, β > 1. This tensor has exactly the properties postulated in the
example.

4.1 Notations and Reduction to Three Dimensions

For necessary simplicity, we reduce the d dimensional setting to a three dimensional one:

Definition 4.6 (Interface matrices). Let µ ∈ {1, . . . , d}. For a representation G, we
define the left interface matrix G<µ ∈ Rn1...nµ−1×rµ−1 (cf. Definitions 4.2) via

G<µ(i1,...,iµ−1),: := G1(i1) . . . Gµ−1(iµ−1),

as well as the right interface matrix G>µ ∈ Rrµ×nµ+1...nd via

G>µ:,(i1,...,iµ−1) := G1(iµ+1) . . . Gd(id).

We further define the core A(µ) ∈ (Rn1...nµ−1×nµ+1...nd)
Iµ as core unfolding with respect

to mode µ of a tensor A by

A(µ)(iµ)(i1,...,iµ−1),(iµ+1,...,id) = A(i). (4.2)

For any representation it hence holds (τr(G))(µ)(j) = G<µ Gµ(j) G>µ, j = 1, . . . , nµ.
Multiplication of a core H with a matrix B yields again cores, HB and BH, given by

(HB)(j) := H(j)B and (BH)(j) := BH(j),

respectively, for all possible j. The previous notations then allow us to compactly write

(τr(G))(µ) = G<µ Gµ G
>µ. (4.3)

This relation is displayed in Figure 3.

The interface matrices equal left and right unfoldings, respectively:

G<µ = L(G1,...,µ−1), G1,...,µ−1((i1, . . . , iµ−1)) := G1(i1) . . . Gµ−1(iµ−1), (4.4)

G>µ = R(Gµ+1,...,d), Gµ+1,...,d((iµ+1, . . . , id)) := G1(iµ+1) . . . Gd(id).

In terms of Definition 3.3, for P = {p(i) | i = 1, . . . , |P |} and the operation (·)(µ) (4.2),
which is used to combine components s = 1, . . . , µ− 1 as well as s = µ+ 1, . . . , d, let

P(µ) = {((p(i)
1 , . . . , p

(i)
µ−1), p(i)

µ , (p
(i)
µ+1, . . . , p

(i)
d)) | i = 1, . . . , |P |}.

Thereby, A|P contains the same entries as (A(µ))|P(µ)
. For the selection of one slice,

(·)(µ)(j), we denote

P(µ)(j) = {((p(i)
1 , . . . , p

(i)
µ−1), (p

(i)
µ+1, . . . , p

(i)
d)) | p(i)

µ = j, i = 1, . . . , |P |}. (4.5)

17

=

=(τr(G))(2)

n1

n2

n3n4

n1

r1

G<2 G2

r1

r2

n2

G>2

r2

n3n4

Figure 3: The decomposition of a core unfolding with respect to 2 of a four dimensional tensor into the
left and right interface matrices as well as the intermediate core.

Likewise, the vectorization of an index set S ⊂ Rn×m is defined by vec(S) = {s1 +n(s2−
1) ∈ R | s ∈ R2}.

Without loss of generality we can restrict our consideration to three dimensional
tensors that correspond to the left and right interface matrices as well as the respective
intermediate cores (cf. Definition 4.3):

Remark 4.7 (Reduction to three dimensions). When µ ∈ {1, . . . , d} is fixed, we will only
use the short notations
• (L, N, R) = (G<µ, Gµ, G

>µ)

• (nL, nN , nR) = (n1 · . . . · nµ−1, nµ, nµ+1 · . . . · nd)
• (γ, θ) = (σ(µ−1), σ(µ)) and (Γ, Θ) = (Σ(µ−1), Σ(µ)) = (diag(σ(µ−1)), diag(σ(µ)))

• (rγ , rθ) = (rµ−1, rµ)

• B = M(µ) and S = P(µ)

Hence, the important variables are L (left part), R (right part), N (new part), B
(right hand side) and S (sampling). The microstepsM(1), . . . ,M(d) of ALS for the tensor
train format only change the respective Gµ and are given by

M(µ)
r (G) := (G1, . . . , Gµ−1, G

+
µ , Gµ+1, . . . , Gd)

G+
µ := argmin

Gµ

‖τr(G)−M‖P = argmin
Ñ

‖L · Ñ ·R−B‖S (4.6)

or equivalently G+
µ (j) = argminÑ(j) ‖L · Ñ(j) · R − B(j)‖S(j) — an equation in which

only matrices are involved. We only need to consider three-dimensional tensors A ∈
RnL×nN×nR , with TT-rank (rγ , rθ) and TT-singular values (γ, θ). For simplicity, we
redefine τr for this case via A = τr(L,N, R).

5 Stable Alternating Least Squares Microsteps for Tensor Com-
pletion

With the derivation in Section 4.1, we have seen that it is sufficient to only consider ALS
for order 3 tensors.

Definition 5.1 (Variational residual function (cf. Definition 3.1)). Let ω ≥ 0, s1, s2 > 0
and B,S, L,N, R as in Definition 4.7. We define the variational residual function C :=

18

CB,S,L,N,R for Vω := Vω(L,N, R) by

C(Ñ) :=

∫

Vω(L,N,R)

‖(L+ s1∆L)(Ñ+ ∆N)(R+ s2∆R)−B‖2S d∆Ld∆Nd∆R, (5.1)

Vω := {(∆L,∆N,∆R) | ‖∆LNR‖2F + ‖L∆NR‖2F + ‖LN∆R‖2F ≤ ω2},

where s1, s2 are scalings that only depend on the proportions of the representation, to be
specified by Lemma 7.1.

As in the matrix case, ∆N does not influence the minimizer, so we omit it from now
on. It should further be noted that Vω does not depend on the unknown Ñ. The scalings
s1, s2 will become relevant in Section 7 in order to achieve a similar effect as in Remark
3.6.

5.1 Standard Representation of a TT-Tensor

A representation G = (L,N, R) can be changed without changing the generated tensor
A = τr(G) [22,37], more specifically

τr(G) = τr(G̃) ⇔ G̃ = (L̃, Ñ, R̃) = (LT−1
1 , T1NT−1

2 , T2R) (5.2)

for two regular matrices T1 ∈ Rrγ×rγ , T2 ∈ Rrθ×rθ . One can define an extended stan-
dard representation that explicitly contains the unique TT-singular values (γ, θ) which is
essentially unique (in terms of uniqueness of the truncated matrix SVD3). For the con-
struction, a slightly modified TT-SVD [33] is used4. An analogous decomposition also
appeared earlier in [42] and is, within the quantum computing community, sometimes
referred to as canonical MPS form (not to be confused with canonical polyadic decom-
position). This normalization is needed to obtain the same simplification as in Theorem
3.5.

Lemma 5.2 (Standard representation). Let A ∈ RnL×nN×nR be a tensor.
There exists an essentially unique (extended) representation

G = (L,Γ,N ,Θ,R) (5.3)

for which A = τr(L, ΓNΘ, R) as well as L Γ R(NΘR) and L(LΓN) Θ R are (truncated)
SVDs of A({1}) and A({1,2}), respectively. This in turn implies that L and L(ΓN) are
column orthogonal, as well as R and R(NΘ) are row orthogonal.

Proof. 1. Uniqueness: Let there be two such representations G̃ and G. Since the left-
singular vectors of A({1}) are essentially unique, we conclude L̃ = LW1 for an orthogonal
matrix W1 that commutes with Γ. Via an SVD of A({1,2}) it follows that R̃ = WT

2 R for

an orthogonal matrix W2 that commutes with Θ. Furthermore L(LΓW1Ñ) = L(L̃ΓÑ) =
L(LΓN)W2. The map x 7→ L(LΓx) is linear and, in this case, of full rank. This implies

Ñ = WT
1 NW2.

2. Existence (constructive): Let A = τr(L̃, Ñ, R̃) where R(Ñ) and R̃ are column orthog-

onal (this can always be achieved using (5.2)). An SVD of L̃ yields L̃ = L Γ V T1 , since

L Γ R(V T1 ÑR̃) is a truncated SVD of A({1}). A subsequent SVD of L(ΓV T1 Ñ) yields

3Both UΣV T and ŨΣṼ T are truncated SVDs of A if and only if there exists an orthogonal matrix
W that commutes with Σ and for which Ũ = UW and Ṽ = VW . For any subset of pairwise distinct
nonzero singular values, the corresponding submatrix of W needs to be diagonal with entries in {−1, 1}.

4Although called TT-SVD, unlike the matrix SVD, decompositions constructed by the algorithm do
not explicitly contain the singular values.

19

ΓV T1 Ñ = N̂ Θ V T2 , since L(LN̂) Θ (V T2 R̃) is a truncated SVD of A({1,2}). We can finish

the proof defining N := Γ−1N̂ and R = V T2 R̃. Note that, by construction, L(ΓN) is
column-orthogonal.
3. Implied orthogonality: Using the essential uniqueness, it follows that L(ΓN) must
indeed be column-orthogonal. By analogously constructing the extended representation
from right to left we would obtain that R(NΘ) is row-orthogonal. By uniqueness it
follows again that this is always the case.

Remark 5.3 (Conventional form of standard representation). Throughout the rest of the
article, the standard representation will mostly appear in form of a specific, conventional
representation

(L, N, R) = (L, ΓNΘ, R), (5.4)

hence with interface matrices L and R given by corresponding singular vectors.

5.2 Minimizer of the Variational Residual Function

We define (from now on) our method as

M∗(L, N, R) = (L, argmin
Ñ

C(Ñ), R) (5.5)

with C = CB,S,L,N,R as in (5.1). Although Theorem 5.6, or more specifically the regularity
of Y (j) given by (5.7), later provide the uniqueness of the minimizer, we up to that

point formally use the minimization of ‖τr(L, Ñ, R)‖F as secondary and representation
independent criterion. The special cases µ ∈ {1, d} can be derived from the general case
(Remark 7.2) and comply with the matrix case.

Lemma 5.4 (Representation independent). The method M∗ is representation indepen-
dent.

Proof. Let N+ := argminÑ C, C = CB,S,L,N,R(Ñ) and N̂+ := argminÑ Ĉ,

Ĉ = CB,S,L̂,N̂,R̂(Ñ) for representations τr(L,N, R) = τr(L̂, N̂, R̂) as well as V̂ω = Vω(L̂, N̂, R̂)

and Vω = Vω(L,N, R). According to (5.2), there exist two matrices T1, T2 such that

(LT1, T
−1
1 NT2, T

−1
2 R) = (L̂, N̂, R̂).

Hence

Ĉ(Ñ) =

∫

V̂ω

∥∥∥(L+ s1∆L̂T−1
1)T1ÑT−1

2 (R+ s2T2∆R̂)−B
∥∥∥

2

S
d∆L̂d∆N̂ d∆R̂,

with V̂ω =
{

(∆L̂,∆N̂,∆R̂) | ‖∆L̂T−1
1 NR‖2F + ‖LT−1

1 ∆N̂T2R‖2F + ‖LNT2∆R̂‖2F ≤ ω2
}

The substitution (∆L̂,∆N̂,∆R̂)
ι→ (∆LT1, T

−1
1 ∆NT2, T

−1
2 ∆R) introduces a constant

Jacobi Determinant |det(Jι)| = 1. We obtain

Ĉ(Ñ) :=

∫

Vω

∥∥∥(L+ s1∆L) (T1ÑT−1
2)(R+ s2∆R)−B

∥∥∥
2

S
d∆Ld∆N d∆R

= C(T1ÑT−1
2)

Hence N̂+ = T−1
1 N+T2. This is the same relation given for N and N̂ and therefore

τr(L,N+, R) = τr(L̂, N̂+, R̂) (which is a set equality if the minimizer is not assumed to
be unique).

20

Corollary 5.5 (Integral over Kronecker product). Let ω1 > 0.
Further, let H ∈ R(nXnY)×(nXnY) as well as Y ∈ RnY ×nY be matrices and

V (nX ,mX)
ω1

= {X ∈ RnX×mX | ‖X‖F = ω1}.
Then

∫

V
(nX,mX)
ω1

(X ⊗ Y)TH(X ⊗ Y) dX =
ω2

1 |V (nX ,mX)
ω1 |
nXmX

ImX ⊗ Y TH∗Y

for H∗ = tr1(H) ∈ RnY ×nY .5 For an analog V
(nY ,mY)
ω2 , ω2 > 0, we further have

∫∫

V
(nX,mX)
ω1

,V
(nY ,mY)
ω2

(X ⊗ Y)TH(X ⊗ Y) dX dY =
ω2

1ω
2
2 |V (nX ,mX)

ω1 ||V (nY ,mY)
ω2 |

nXmXnYmY
tr(H)ImXmY .

Proof. Using the splitting H =
∑
i,j hi,j ⊗ eie

T
j , hi,j ∈ RnX×nX , Lemma 3.4 can be

applied to each summand, separately for X and Y .

We now derive the minimizer of the variational residual function (5.1). Due to Lemma
5.4, we can use the standard representation in form of Remark 5.3 for simplification. In
this case, Vω takes the convenient form

Vω(L, Γ N Θ, R) = {(∆L,∆N,∆R) | ‖∆LΓ‖2F + ‖∆N‖2F + ‖Θ∆R‖2F ≤ ω2}. (5.6)

Theorem 5.6 (Minimizer of the ALS variational residual function). Let (L, Γ, N , Θ, R)
be the standard representation (5.3) for a tensor A. The minimizer N+ of the residual
function CB,S,L,ΓNΘ,R as in (5.1) is given by

N+(j) = argmin
Ñ(j)

‖ L Ñ(j) R−B(j) ‖2S(j)︸ ︷︷ ︸
standard ALS

+ Ω(j),︸ ︷︷ ︸
(regularization)

j = 1, . . . , nN

Ω(j) =

n−1
L ζ1 ω2‖ Γ−1 Ñ(j) R:,S(j)2 ‖2F

+ n−1
R ζ2 ω2‖ LS(j)1,: Ñ(j) Θ−1 ‖2F

+ |S(j)|(nRnL)−1ζ(1,2) ω4‖ Γ−1 Ñ(j) Θ−1 ‖2F
(5.7)

with S(j)u = (x
(1)
u , x

(2)
u , . . .), u = 1, 2, for S(j) = {x(1), x(2), . . . , x(|S(j)|)} ⊂ N2. The

constants ζ only depend on the proportions of the representation and sampling set (cf.
Remark 5.7) as well as the constant scalings s1, s2.

The regularization term is more straightforward than it might appear. The computa-
tional complexity for the calculation of the minimizer is of the same order (with near
same constant) as for standard ALS, for which the matrices LS(j)1,: ∈ R|S(j)|×rγ and

R:,S(j)2 ∈ Rrθ×|S(j)| are required anyhow (for further explanation, see (7.2),(7.3)). The

scalings n−1
L , n−1

R go in hand with these to adjust the regularization terms to the magni-
tudes of the corresponding shares of the sampling set and disappear for the approximation
of a fully available tensor (Corollary 5.8). The constants ζ are weighted according to the
proportions of the left and right interface matrices. For example, for µ = 1 (the posi-
tion of the core being updated), we have ζ1 = 0 and accordingly for µ = 2, ζ1 � ζ2.
In practice, instead of evaluating the minimizer exactly, a few steps (that is for very
coarse tolerance) of a suitably computed, preconditioned cg are performed as described
in Section 5.3. This can be achieved without changing results.

5tr1 is the partial trace, i.e. (H∗)i,j = tr(hi,j), H =
∑
i,j hi,j ⊗ eieTj , hi,j ∈ RnX×nX

21

Proof. We omit the scalings s1, s2 for simplicity since they only have to be carried along
the lines. We search for N+ := argminÑ CB,S,L,ΓNΘ,N (Ñ). Substituting

(∆L,∆N,∆R)→ (∆LΓ−1,∆N ,Θ−1∆R)

we can (up to a constant factor) restate C as

CB,S,R,ΓNΘ,L(Ñ) ∝
∫

Vω
‖(L+ ∆LΓ−1)Ñ(R+ Θ−1∆R)−B‖2S d∆L d∆N d∆R,

Vω = {(∆L,∆N ,∆R) | ‖∆L‖2 + ‖∆N‖2 + ‖∆R‖2 ≤ ω2}. (5.8)

Each of the independent matrices of the minimizing core is restated as

N+(j) = argmin
Ñ(j)

∫

Vω
‖((R+ Θ−1∆R)T ⊗K (L+ ∆LΓ−1)) vec(Ñ(j)) (5.9)

− vec(B(j))‖2vec(S(j)) d∆L d∆N d∆R, (5.10)

where ⊗K is the matrix Kronecker product. Let j be arbitrary but fixed from now
on. For any x, it is ‖x‖vec(S(j)) = ‖H(j)x‖F = xTH(j)x for a diagonal, square matrix

H(j) ∈ R|I|/nN×|I|/nN with H(j)(s),(s) = δs∈S(j) (hence H(j)2 = H(j)). Using the
normal equation, we obtain N+(j) = Y −1b, where

Y =

∫

Vω
(R+ Θ−1∆R)⊗K (L+ ∆LΓ−1)T

H(j) (R+ Θ−1∆R)T ⊗K (L+ ∆LΓ−1) d∆L d∆N d∆R

and

b =

(∫

Vω
(R+ Θ−1∆R)⊗K (L+ ∆LΓ−1)T

)

H(j) vec(B(j)) d∆L d∆N d∆R.

In both Y and b, any perturbation that appears only one-sided vanishes due to sym-

metry of Vω. Hence b = |Vω| (RT ⊗K L)vec(S(j)),:
T

vec(B(j))vec(S(j)) and for dδ :=
d∆L d∆N d∆R

Y =

∫

Vω
(RT ⊗K L)T H(j) (RT ⊗K L) dδ

+

∫

Vω
(RT ⊗K ∆LΓ−1)T H(j) (RT ⊗K ∆LΓ−1) dδ

+

∫

Vω
(∆RTΘ−1 ⊗K L)T H(j) (∆RTΘ−1 ⊗K L) dδ

+

∫

Vω
(∆RTΘ−1 ⊗K ∆LΓ−1)T H(j) (∆RTΘ−1 ⊗K ∆LΓ−1) dδ

Now, let ` = #R, n = #N , k = #L. Since V is a version of the (` + n + k)-sphere, we
can use the following integration formula: Let f : Rn+m → Rk be a sufficiently smooth
function and Sv−1

ω be the v-sphere of radius ω. Then

∫

Sn+m−1
ω

f(xn, xm) dx =

∫ π/2

0

ω

∫

Sn−1
ω sin(u)

∫

Sm−1
ω cos(u)

f(xn, xm) dxm dxn du.

22

We use it twice and thereby split the integral. For a function f we then obtain

∫

V
f dδ =

∫ ω

λ=0

∫

Sn+`+k−1
λ

f dδ dλ =

∫ ω

λ=0

λ

∫ π/2

g=0

∫

Sn−1
λ sin(g)

∫

S`+k−1
λ cos(g)

f dδ dg dλ =

∫ ω

λ=0

λ

∫ π/2

g=0

∫

Sn−1
λ sin(g)

λ cos(g)

∫ π/2

u=0

∫

S`−1
λ cos(g) sin(u)

∫

Sk−1
λ cos(g) cos(u)

f d∆L d∆R dud∆N dg dλ

If f is independent of ∆N , this then simplifies to

=

∫ ω

λ=0

λ2

∫ π/2

g=0

|Sn−1
λ sin(g)| cos(g)

∫ π/2

u=0

∫

S`−1
λ cos(g) sin(u)

∫

Sk−1
λ cos(g) cos(u)

f d∆L d∆Rdudg dλ

We further use the identity (where the function Γ(·) is not to be confused with the given
diagonal matrix Γ)

∫ π/2

0

cos(x)p sin(x)q dx =
Γ((p+ 1)/2) Γ((q + 1)/2)

2Γ((p+ q + 2)/2)
=: ν(p, q)

We apply these and Corollary 5.5 for different f = (X ⊗K Y)TH(j)(X ⊗K Y). For
δ1, δ2 ∈ {0, 1} we set X as RT (δ1 = 0) or ∆RTΘ−1 (δ1 = 1) and analogously Y as L
(δ2 = 0) or ∆LΓ−1 (δ2 = 1). For the summands Y (0, 0) +Y (1, 0) +Y (0, 1) +Y (1, 1) = Y
this then yields

Y (δ1, δ2) =

∫ ω

λ=0

λ2

∫ π/2

g=0

cos(g)
2πn/2(λ sin(g))n−1

Γ(n/2)
∫ π/2

u=0

2π`/2(λ cos(g) sin(u))`−1

Γ(`/2)

(
λ2 cos(g)2 sin(u)2

)δ1

2πk/2(λ cos(g) cos(u))k−1

Γ(k/2)

(
λ2 cos(g)2 cos(u)2

)δ2
dudg dλ · CH(δ1, δ2)

= c ·
∫ ω

λ=0

λn+`+k−1+2δ1+2δ2 dλ

·
∫ π/2

g=0

cos(g)`+k−1+2δ1+2δ2 sin(g)n−1 dg

·
∫ π/2

u=0

cos(u)k−1+2δ2 sin(u)`−1+2δ1 du · CH(δ1, δ2)

= c
ωn+`+k+2δ1+2δ2

n+ `+ k + 2δ1 + 2δ2
ν(`+ k − 1 + 2δ1 + 2δ2, n− 1) ν(k − 1 + 2δ2, `− 1 + 2δ1) CH(δ1, δ2)

for c = 8π(n+k+`)/2

Γ(n/2)Γ(`/2)Γ(k/2) . The constant matrices CH are given by

CH(0, 0) = C̃H(0, 0) = K(0, 0)T K(0, 0), K(0, 0) = (RT ⊗K L)vec(S(j)),:

nLrγCH(1, 0) = C̃H(1, 0) = K(1, 0)T K(1, 0), K(1, 0) = R:,S(j)2
T ⊗K Γ−1

nRrθCH(0, 1) = C̃H(0, 1) = K(0, 1)T K(0, 1), K(0, 1) = Θ−1 ⊗K LS(j)1,:

|S(j)|−1nLnRrγrθCH(1, 1) = C̃H(1, 1) = K(1, 1)T K(1, 1), K(1, 1) = Θ−1 ⊗K Γ−1

23

Furthermore, it is |Vω| = cω
n+`+k

n+`+k ν(` + k − 1, n − 1) ν(k − 1, ` − 1). Factoring out this

base volume in Y = |Vω|Ỹ by using properties of the Γ function, one derives:

Ỹ (0, 0) = C̃H(0, 0), Ỹ (1, 0) = n−1
L ζ1ω

2C̃H(1, 0),

Ỹ (0, 1) = n−1
R ζ2ω

2C̃H(0, 1), Ỹ (1, 1) = |S(j)|n−1
L n−1

R ζ(1,2)ω
4C̃H(1, 1),

where the constants s1 and s2 have been added again. Restating the result again as a
least squares problem finishes the proof.

Remark 5.7 (Specification of constants). Let #R := size(R), #N := size(N), #L :=
size(L) be the sizes of the tensor components. The constants in Theorem 5.6 are given
by

ζ1 = s2
1

#L
rγ(#L + #N + #R + 2)

,

ζ2 = s2
2

#R
rθ(#L + #N + #R + 2)

,

ζ(1,2) = s2
1s

2
2

#R#L
rγrθ(#L + #N + #R + 2)(#L + #N + #R + 4)

.

5.3 Evaluation with Coarse Conjugate Gradient

For each slice j, the solution to the least squares problem in Theorem 5.6 is described
through the normal equation

Z(j)TZ(j) vec(N+(j)) = Z(j)T
(
B(j)|vec(S(j)) 0

)
(5.11)

with

Z(j) :=

(
(RT ⊗ L)|vec(S(j)),:

Y (j)

)
, Y (j) :=

√
n−1
L ζ1 R:,S(j)2

T ⊗ ωΓ−1

√
n−1
R ζ2 ωΘ−1 ⊗ LS(j)1,:√

|S(j)|n−1
R n−1

L ζ(1,2) ωΘ−1 ⊗ ωΓ−1.

 .

In practice, since within each microstep we do not benefit from an exact solution of
this transitory system, it is much more economic to perform a preconditioned conjugate
gradient method and terminate when a coarse, relative tolerance (e.g. tol = 10−2)
is reached. This tolerance is empirically chosen such that the number of required cg
steps is minimized, however under the condition that the approximation quality does not
notably change in either direction — such that neither loss of accuracy nor additional
regularization can be observed (cf. Section 8). With the following consideration, we can
construct a preconditioner (cf. (3.7)).

Corollary 5.8 (Filter properties). For full sampling, P = I, the update is given by the
so called filter (a diagonal matrix)

F := (I ⊗ I + ζ1 · I ⊗ ω2Γ−2 + ζ2 · ω2Θ−2 ⊗ I + ζ(1,2) · ω2Θ−2 ⊗ ω2Γ−2)−1,

vec(N+(j)) = F vec(LT B(j) RT). (5.12)

Proof. From P = I, it follows that R:,S(j)2 is an nL-order copy of R and LS(j)1,: is
an nR-order copy of L (cf. (5.7)). Hence the regularization terms are the same for all

24

j = 1, . . . , nN . The minimizer N+(j) is given by

(Z(j)TZ(j))−1Z(j)T

vec(B(j))
0
...

 for Z(j) =

RT ⊗ L√
n−1
L ζ1 RT ⊗ ωΓ−1

...√
n−1
R ζ2 ωΘ−1 ⊗ L

...√
ζ(1,2) ωΘ−1 ⊗ ωΓ−1

nL-times

nR-times

.

The factors
√
n−1
L and

√
n−1
R vanish in Z(j)TZ(j) due to the multiple rows involving the

orthogonal matrices R and L. Furthermore, (Z(j)TZ(j))−1 is diagonal.

Remark 5.9 (Application of cg algorithm and order of computational complexity).
The matrix F serves as excellent preconditioner in the sense that n−1

L n−1
R |S(j)|F−1 ≈

Z(j)TZ(j), which holds as equality for P = I (as in the previous Corollary 5.8). This re-
lation can as well be quantified through upper bounds on the condition number of Z(j)F1/2

as in Lemma 5.15 by which we expect (and observe in practice) very few iterations (and
at most rγrθ) to be sufficient to reach a given coarse tolerance (for standard ALS, this
is however not necessarily the case, cf. Lemma 5.11). Each single cg step then has com-
plexity O(rγrθ|P |), while the full least squares problem has complexity O(r2

γr
2
θ |P |) (per

slice).

5.4 Stability and Restricted Isometry Properties

Before we derive the central theoretical statement of this paper, Theorem 5.14, some
preparation is necessary. The tensor restricted isometry property (e.g. [35]) does not
hold for any non trivial sampling set P I. We however only need to work with a
modified version as follows, in which left and right interface matrices are fixed. Apart
from that, the shape is exactly the same.

Definition 5.10 (Internal tensor restricted isometry property (iTRIP)). We say a rank
r tensor A = τr(L,N, R) has the internal tensor restricted isometry property for the
sampling set S = P(µ), if there exist 0 ≤ c < 1 and ρ > 0 with

(1− c)‖Ã‖2F ≤ ρ‖Ã‖2S ≤ (1 + c)‖Ã‖2F

for all Ã ∈ A(L,R) := {τr(L, Ñ, R) | Ñ arbitrary }.
Given a tensor A, if the iTRIP does not hold, then we can not expect the next update

to have good completion properties, since changes on the sampling subset are unrelated
to changes on the whole space. As indicated in Example 1.2, if c → 1, then the next
iterate can be arbitrarily bad. Note that the constants only depend on the tensor A,
and not on its representation, and that this property is easy to check. In particular (as
proven by Lemma 5.15 for ω = 0), the iTRIP with constant c is equivalent to

κ2(diag((RT ⊗ L)|vec(S(1)),:, . . . , (RT ⊗ L)|vec(S(nN)),:))
2 ≤ 1 + c

1− c ,

where (L, N,R) corresponds to the standard representation as in (5.4). Hence, the prop-
erty holds as long as that matrix has full rank (where κ2 is the condition number
regarding the spectral norm ‖ · ‖2) or equivalently N 7→ (LNR)S is injective. Note that,

25

by a slice wise consideration, the condition number of a single (RT ⊗L)|vec(S(j)),: can be
improved since different magnitudes of sampling for each slice can be compensated (after
all, the slices are solved independently).

Lemma 5.11 (Likelihood of the iTRIP). Let Tr be the subset of 3 dimensional tensors
with rank r = (rγ , rθ). Let P be a (random) sampling that fulfills |S(j)| ≥ rγrθ for
all j = 1, . . . , nN . Then, for (only) almost every representation (L,N,R) ∈ RnL×rγ ×
Rrγ×nN×rθ×Rrθ×nR (with respect to the Lebesgue measure), the tensor A = τr(L,N,R) ∈
Tr has the iTRIP. If for one j, |S(j)| < rγrθ, then no A ∈ Tr has the iTRIP.

Proof. A tensor A = τr(L,N, R) has the iTRIP (for some valid constants) if and only if
the linear map N 7→ (LNR)S is injective, or equivalently, (RT ⊗L)vec(S(j)),: has full rank
for each j. Due to the provided slice density of P , each matrix (RT ⊗ L)vec(S(j)),: is of
size |S(j)| × rγrθ. Hence generically, it is of full rank. If |S(j)| < rγrθ, then the matrix
cannot have full rank.

Tensors themselves that do not have the iTRIP, assuming sufficient sampling, pose
just a marginal phenomenon for high dimension d. A quite simple construction however
shows that the iTRIP does not behave well under perturbation:

Lemma 5.12 (iTRIP under perturbation). Let B ∈ RnL×nN×nR with singular values
(γ(B), θ(B)). Assume further that for one j it holds |S(j)1| < nL. Then for every

σ∗ > 0, there exists a tensor A with rank (rγ , rθ) and ‖A − B‖2F ≤
∑∞
i=rγ

(γ
(B)
i)2 +

2
∑∞
i=rθ+1(θ

(B)
i)2 + (σ∗)2 such that A does not have the iTRIP (and γ

(A)
rγ = σ∗). If B

already has rank (rγ , rθ), then ‖A−B‖2F ≤ (γ
(B)
rγ)2 + (σ∗)2 suffices.

Proof. Truncation of B yields a tensor Ã with rank (∗, rθ) and ‖Ã − B‖2F ≤ δ :=∑∞
i=rθ+1(θ

(B)
i)2. The tensor Ã hence has perturbed singular values such that ‖γ(Ã) −

γ(B)‖2 ≤ δ (Mirsky’s Theorem [30]). Let (L̃,Γ(Ã), Ñ ,Θ(Ã), R̃) be the standard represen-

tation of Ã. Without loss of generality, we may assume that j = 1 and that only points
in the first k := |S(1)| rows of B(1) are contained in the sampling S(1). Let now

L̃:,{1,...,rγ} =:

(
X x̃
Y ỹ

)
, L :=

(
X x
Y y

)
, X ∈ Rk×rγ−1,

If X is already singular, then we may choose A = Ã. Otherwise, then we may choose x =
αXv, y = αŷ for α = ‖(Xv; ŷ)‖−1

2 and v = −(XTX)−1Y T ŷ, for an arbitrary vector ŷ 6= 0.

In all three cases, L is orthogonal and for A := τr(L,diag(γ
(Ã)
1 , . . . , γ

(Ã)
rγ−1, σ

∗)ÑΘ(Ã), R̃)

it holds ‖A−B‖F ≤ ‖A−Ã‖F +‖Ã−B‖F ≤
∑∞
i=rγ

(σ
(Ã)
γ)2

i +(σ∗)2 +δ ≤∑∞i=rγ (σ
(B)
γ)2

i +

δ + (σ∗)2 + δ. Yet (RT ⊗ L)|vec(S(1)),: is a singular matrix, since L{1,...,k},: is already
singular.

The statement analogously holds true for rθ and can easily be transferred to matrix
completion as well. Tensors that do not have the iTRIP are hence densely scattered

depending on γ
(B)
rγ , as are, more importantly, surroundings in which the constant c is

close to 1 and overfitting becomes more likely (cf. Example 1.2). In case of the
regularized update, the additional term Y (j) (5.7) does not allow the condition number
to change that easily (cf. Lemma 5.16).

Lemma 5.13 (Partial matrix inverse by divergent parts). We partition {1, . . . , n} =

ωj ∪ ωcj (ωcj = {1, . . . , n} \ ωj), j = 1, 2 and define Ω := ω1 × ω2, Ω̃ := ωc1 × ωc2. Let

26

{A(k)}k, {J (k)}k ⊂ Rn×n be series of symmetric matrices, supp(J (k)) ⊂ Ω.
If limk→∞A(k)|Ω̃ = A|Ω̃, A|Ω̃ s.p.d, and σmin(J (k)|Ω) → ∞, then V := limk→∞(A(k) +

J (k))−1 exists and we have V |Ω̃ = (A|Ω̃)−1 and V |Ω̃c = 0 (Ω̃c = {1, . . . , n}2 \ Ω̃).

Proof. First, w.l.o.g., let Ω = {m + 1, . . . , n}2. Otherwise we can apply permutations.
Further, let V (k) := A(k) + J (k). We partition our (symmetric) matrices M for M1,1 ∈
Rm×m block-wise as

M =

(
M1,1 M1,2

MT
1,2 M2,2

)
.

Note that J
(k)
1,1 , J

(k)
1,2 ≡ 0. Since A

(k)
1,1 = V

(k)
1,1 and A1,1 = A|Ω̃ is s.p.d, A

(k)
1,1 is invertible

for all k > K for some K and hence limk→∞(V
(k)
1,1)−1 = A−1

1,1. Further, σmin(B
(k)
2,2) >

σmin(J
(k)
2,2) − σmax(A

(k)
2,2) → ∞ and hence ‖(V (k)

2,2)−1‖ → 0. Therefore, for k > K̃

and H(k) := V
(k)
1,1 − V

(k)
1,2 (V

(k)
2,2)−1(V

(k)
1,2)T , it is σmin(H(k)) > σmin(A1,1)/2. By block-

wise inversion of V (k), it then follows ((V (k))−1)1,1 = (H(k))−1 → (A
(k)
1,1)−1. Similarly,

((V (k))−1)|Ω → 0.

One last step remains, since we cannot allow ζ to depend on the rank r. For now,
we redefine the method M∗ to directly yield the result in Theorem 5.6 for arbitrary
constants ζ, i.e.

M∗ζ(L, N, R) := (L, N+, R). (5.13)

We explain in Section 7 and Lemma 7.1 how the scalings s1, s2 as well as ω are used to
obtain one specific M∗ζ from M∗, for which ζ is indeed independent of r.

Theorem 5.14 (Stability of the method M∗ζ). Let B be the target tensor, S (I the
sampling set, arbitrary but fixed, and M∗ζ as in (5.13).
• The regularized methodM∗ζ (ω > 0) as defined by (5.13) (for ζ1, ζ2 ≥ 0 and ζ(1,2) >

0 that do not depend on r) is stable at all points A∗ (and hence also fixed-rank
stable).

• The unregularized method (ω = 0) (4.6) provides stability only for fixed rank (cf.
Example 2.1), and only at those points A∗ that have the iTRIP (cf. Def. 5.10).

Proof. Let A∗ be a fixed tensor with TT-ranks r∗.
1. Fixed-rank stability: We first show that M∗ is stable for fixed rank. Let Ai be
a sequence with rank(Ai) = r∗ and Ai → A∗. Let G∗ = (L∗,Γ∗,N ∗,Θ∗,R∗) be the
standard representation of A∗ as well as Gi correspond to Ai. We partition the indices
for γ∗ and θ∗ by k and ` according to equality of entries, such that γ∗1 = . . . = γ∗k1 >
γ∗k1+1 = . . . = γ∗k2 > . . . > γ∗kK−1+1 = . . . = γ∗kK > 0 and likewise for `1, . . . , `L.

Since Ai → A∗, their singular values also converge (e.g. [45]). We can hence conclude
from [10, 43] that there exist sequences of block diagonal, orthogonal matrices Wi and
Mi with block sizes k1, k2−k1, . . . , kK −kK−1 and `1, `2− `1, . . . , `L− `L−1, respectively,
such that

‖LiWi − L∗‖F → 0 and ‖MiRi −R∗‖F → 0, (5.14)

since the standard representation includes left and right singular vectors. We have to
show that the tensors Hi = τr(Li,Ni,Ri) = τr(M∗(Li,ΓiNiΘi,Ri)) converge to the

27

analogously defined H∗. For fixed j, we define for each single Gi the matrix Yi = Y (j)
(cf. Theorem 5.6, Remark 5.11) and zi := (RTi ⊗ Li) such that

Ni(j) = argmin
Ñ(j)

∥∥∥∥
(

(zi)vec(S(j)),:

Yi

)
vec(Ñ(j))−

(
vec(B(j))|vec(S(j))

0

)∥∥∥∥ , (5.15)

vec(Hi(j)) = zi vec(Ni(j)).

We define the shifted matrices

zM,W
i := (Mi Ri)T ⊗ (Li Wi)

YM,W
i :=

√
n−1
L ζ1 (Mi R:,S(j)2)T ⊗ (Γ−1

i Wi)√
n−1
R ζ2 (Θ−1

i MT
i)⊗ (LS(j)1,: Wi)√

|S(j)|n−1
R n−1

L ζ(1,2) (Θ−1
i MT

i)⊗ (Γ−1
i Wi)

Due to (5.14), it holds (zM,W
i)vec(S(j)),: → z∗vec(S(j)),:. Inserting I = (MT

i ⊗Wi)(M
T
i ⊗

Wi)
T into (5.15), we obtain

vec(Hi(j)) = zM,W
i

(
(zM,W
i)Tvec(S(j)),: (zM,W

i)vec(S(j)),: + YM,W
i

T
YM,W
i

)−1

· (zM,W
i)Tvec(S(j)),: vec(B(j))|vec(S(j)).

Since WT
i Γ∗Wi = Γ∗ for all i, it follows WT

i ΓiWi → Γ∗. Likewise MT
i ΘiMi → Θ∗ and

thereby also YM,W
i

T
YM,W
i → Y ∗T Y ∗. We treat the cases ω = 0 and ω > 0 separately:

(i) ω = 0: In this case, YM,W
i = 0 = Y ∗. If the iTRIP holds for A∗, then

σmin(z∗vec(S(j)),:) > 0 and therefore

(
(zM,W
i)Tvec(S(j)),: (zM,W

i)vec(S(j)),:

)−1

→
(

(z∗)Tvec(S(j)),: (z∗)vec(S(j)),:

)−1

.

This directly yields convergence of (Hi(j))→ (H∗(j)) since all involved factors converge.
(ii) ω > 0: Here, we use that σmin(Y ∗) > 0 and σmin(z∗vec(S(j)),:) ≥ 0. We then obtain
convergence since

(
(zM,W
i)Tvec(S(j)),: (zM,W

i)vec(S(j)),: + YM,W
i

T
YM,W
i

)−1

→
(

(z∗)Tvec(S(j)),: (z∗)vec(S(j)),: + Y ∗T Y ∗
)−1

.

This proves fixed-rank stability.
2. Stability: Let now Ai have arbitrary ranks. Without loss of generality by consider-
ation of a finite amount of infinite subsequences, we can assume that rank(Ai) ≡ r for
all i. Then, since TT (r∗) is a manifold, it follows γ ≥ γ∗ and θ ≥ θ∗. We can therefore
have singular values (γi)kK+1, . . . , (γi)kK+1

→ 0 as well as (θi)`L+1, . . . , (θi)`L+1
→ 0. We

expand the matrices Wi and Mi by identities of appropriate sizes to account for the van-
ishing singular values: Wi ← diag(Wi, IkK+1−kK), Mi ← diag(Mi, I`L+1−`L). In regard

of Proposition 5.13, let Ω be the smallest cross product set, such that (YM,W
i

T
YM,W
i)|Ω̃

converges (which is the set that corresponds to vanishing singular values). Then, due to

28

the definition of YM,W
i , σmin((YM,W

i

T
YM,W
i)|Ω)→∞. We can conclude that

((
(zM,W
i)Tvec(S(j)),: (zM,W

i)vec(S(j)),: + YM,W
i

T
YM,W
i

)−1
)∣∣∣∣

Ω̃

→
(

(z∗)Tvec(S(j)),: (z∗)vec(S(j)),: + Y ∗T Y ∗
)−1

.

and
((

(zM,W
i)Tvec(S(j)),: (zM,W

i)vec(S(j)),: + YM,W
i

T
YM,W
i

)−1
)∣∣∣∣

Ω̃c
→ 0.

Because of this restriction, we in turn again get convergence to the limit (Hi(j)) →
(H∗(j)), since all parts that correspond to vanishing singular values, also vanish within
the update. This finishes the proof.

Definition 5.15 (Stabilized internal tensor restricted isometry property (siTRIP)). We
say a rank r tensor A = τr(L,N, R) has the stable internal tensor restricted isometry

property for the sampling set S, if there exist 0 ≤ c < 1 and ρ > 0 such that for all Ñ
holds

(1− c)
∫

Vω(L,N,R)

‖Ã∆‖2F d∆ ≤ ρ
∫

Vω(L,N,R)

‖Ã∆‖2S d∆ ≤ (1 + c)

∫

Vω(L,N,R)

‖Ã∆‖2F d∆

(5.16)

where Ã∆ := τr(L+ ∆L, Ñ+ ∆N, R+ ∆R)|2F and d∆ = d∆Ld∆N d∆R.

The constants are independent of the specific representation (cf. Lemma 5.4).

Lemma 5.16. Let Z(j) =

(
(RT ⊗ L)|vec(S(j)),:

Y (j)

)
as in (5.11). The siTRIP with constant

c for A ∈ RI is equivalent to

∃ c > 0 : κ2(diag(Z(1)F1/2, . . . , Z(nN)F1/2)2 ≤ 1 + c

1− c ,

where A = τr(L,N,R) is its standard representation and F is as in Lemma 5.8.

Proof. Let Z = diag(Z(1), . . . , Z(nN)) and vec(Ñ)T = (vec(N(1))T , . . . , vec(N(nN))T).

We abbreviate the siTRIP (5.16) as (1− c)β ≤ ρξ ≤ (1 + c)β (β = β(Ñ), ξ = ξ(Ñ)). Let

a := maxx 6=0
‖Zx‖2

‖(I⊗F−1/2)x‖2 and b := minx 6=0
‖Zx‖2

‖(I⊗F−1/2)x‖2 . Since the perturbation ∆N is

independent of Ñ , this term can be neglected in consideration of that ‖Ñ‖ is not bounded.

With P = I it holds β =
∑nN
j=1 vec(Ñ(j))TF−1vec(Ñ(j)) = ‖(I ⊗ F−1/2)vec(Ñ)‖2F (cf.

proof of Theorem 5.6). For the actual sampling P , we have ξ = ‖Zvec(Ñ)‖22. Thereby
a = maxÑ|β=1 ξ and b = minÑ|β=1 ξ. Now, given the siTRIP, it follows

cond(Z(I ⊗F1/2))2 =
a

b
≤ ρ−1(1 + c)

ρ−1(1− c) =
1 + c

1− c .

For the opposite implication, define ρ = 1−c
b . Then

ρξ ≤ a1− c
b

β ≤ (1 + c)β and ρξ ≥ b1− c
b

β = (1− c)β.

29

The siTRIP holds for every tensor (possibly with c close to 1). For ω → 0, the con-
stant c converges to the one of the iTRIP and for ω →∞, c→ 0. As well as for Definition
5.10, a slice wise consideration yields a better condition number for just Z(j)F1/2. Note
that this value not only bounds the number of steps required for the cg method, but
appears to be important for the reconstruction quality obtained through one microstep.
However, a further investigation into the siTRIP, how exactly it behaves under pertur-
bation and if it requires modifications, is a matter of future research.

As for the matrix case, we have to limit the singular values from below by a decreasing
value proportional to the current residual, cf. Section 6. This leads to a slight complica-
tion, which is resolved through the following, simple corollary to Theorem 5.6.

Corollary 5.17. Let A and Ã be tensors with standard representations (L,Γ,N ,Θ,R)

and (L,Γ, Ñ ,Θ,R), respectively. Then both yield the same update N+.

Hence, if we want to modify the singular values γ and θ, we may do so without
knowledge about an appropriate core Ñ (for example in the sense of some unknown
best approximation). In the least squares problem in Theorem 5.6, we therefor simply
set γi := max(γi, σmin), i = 1, . . . , rµ−1 and θi := max(θi, σmin), i = 1, . . . , rµ (and can
thereby also ignore that the combination of the new γ and θ might not be feasible, cf. [25]

6 Behavior of the SALSA Filter

A deeper understanding of the regularization utilized by SALSA and the reason for the
lower bound σmin is provided by the filter as indicated by (3.7) for the matrix case and
as defined by Corollary 5.8 for tensors. Throughout this section, we assume that the
sampling is such that for the minimizer in Theorem 5.6 it (approximately) holds

vec(N+(j)) = F vec((LT B(j) RT)), (6.1)

which is true at last for P = I (cf. Corollary 5.8). Since ζ1ζ2 = ζ(1,2) (see the later
equation (7.1)), we can rewrite

N+ = Dω2ζ1(Γ) (LT B RT) Dω2ζ2(Θ)

Dc(Σ) := (I + cΣ−2)−1.

We are interested in the fixpoints of this update, i.e. we postulate N+ = Γ N Θ. Then,
since R(N Θ) is row-orthogonal (cf. Lemma 5.2), it holds

Dω2ζ1(Γ) Z = Γ, (6.2)

Z = R((LT B RT) Dω2ζ2(Θ)) R(N Θ)T ,

where Z =: diag(σ(Z)) is necessarily a diagonal matrix (certainly, an analogous argument
holds for Θ as well). Because (6.2) can only hold if dσ(Z),ζ1(γi) = γi for all i, the focus

of our analysis lies on the fixpoints of the function dσ(Z),c : σ 7→ (1 + cσ−2)−1σ(Z). For

each pair (σ(Z), c), the only attractive fixpoint (if existent) is given by fstab = 1
2σ

(Z) +
1
2

√
(σ(Z))2 − 4c and the repelling one by frep = 1

2σ
(Z) − 1

2

√
(σ(Z))2 − 4c. At the point

where fstab = frep, it holds σ =
√
c = 1

2σ
(Z). The minimal value which the term

(1 + cσ−2)−1 can hence take in any attractive fixpoint, is F = 1/2. This behavior is
shown in Figure 4. A stabilized singular value corresponds to some attractive fixpoint
of dσ(Z),c (cf. Definition 3.8), and it necessarily holds (Dω2ζ1(Γ))i,i > 0.5 ⇔ γi > ω

√
ζ1.

30

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

σ(Z)

σ

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

F = 1
2

σ(Z)

σ

Figure 4: Left: Plotted are the fixpoints (continuous for attractive, dashed for repelling ones, in teal)
of dσ(Z),c for one fixed c with respect to σ(Z). Within the hatched area, singular values rise until they

reach the upper boundary. A lower limit to the singular values is indicated as dotted, magenta line.
Right: Different values of c are considered. The turning point σ = c = 1

2
σ(Z) corresponds to a filter

value of 1/2.

This explains why the lower limit σmin is necessary. As displayed in Figure 4 (left), for
any fixed σ(Z), a singular value σ must be above a certain threshold (that corresponds to
the repelling fixpoint) to be increased by the microstep. It therefore must not converge
to zero.

7 Results Transferred Back to a d-Dimensional Tensor

In this Section, we transfer the previous results for S = P(µ) and B = M(µ) to the

d-dimensional setting. In Remark 5.7, we have #R = size(R) = rθ
∏d
i=s+1 ni, #N =

size(N) = rγnsrθ, #L = size(L) = rγ
∏s−1
i=1 ni. By combining modes (cf. Definition

4.7), the sizes of the left as well as right side have been distorted, considering that the
degrees of freedom of L = G<s and R = G>s are given by a sum, not a product, of the
degrees of freedom of the single modes (ignoring minor gauge conditions). We choose one
of the few remaining options through which the method becomes stable. We artificially
set

#R ← rµ

d∑

i=µ+1

ni, #L ← rµ−1

µ−1∑

i=1

ni

using appropriate scalings s1 = s
(µ)
1 , s2 = s

(µ)
2 (differently for each mode µ). Otherwise,

we will not obtain a stable microstep. Furthermore, the near common parts of the
denominators, #R + #N + #R + 2(+2), can be incorporated into ω2, so we omit them
in the following sense:

Lemma 7.1 (Rescaled target function). The previously discussed rescaling is achieved
by choosing

(s
(µ)
1)2 = E

∑µ−1
s=1 ns(∏µ−1

s=1 ns

)∑d
s=1 ns

, (s
(µ)
2)2 = E

∑d
s=µ+1 ns(∏d

s=µ+1 ns

)∑d
s=1 ns

,

E = rµ

d∏

s=µ+1

ns + rµ−1nµrµ + rµ−1

µ−1∏

s=1

ns

31

Thereby,

ζ
(µ)
1 =

∑µ−1
s=1 ns∑d
s=1 ns

, ζ
(µ)
2 =

∑d
s=µ+1 ns∑d
s=1 ns

, ζ
(µ)
(1,2) = ζ

(µ)
1 ζ

(µ)
2 (1 +O(E−1)). (7.1)

Proof. First, ζ
(µ)
1 = s2

1

∏µ−1
s=1 ns
E =

∑µ−1
s=1 ns∑d
s=1 ns

, with an analog result for ζ
(µ)
2 . For the mixed

term, we have ζ
(µ)
(1,2) = ζ

(µ)
1 ζ

(µ)
2

E
E+2 = ζ

(µ)
1 ζ

(µ)
2 (1− 2

E+2).

The value E−1 is in general far below machine accuracy, such that we (from now
on) ignore the factor (1 + O(E−1)). There might be a more suitable realization of this
result and it should be remarked that the exact scalings are not important for the validity
of Theorem 5.14. In this context, for fixed µ, the matrices LS(j)1,·· ∈ R|P(µ)(j)|×rγ and

R:,S(j)2 ∈ Rrθ×|P(µ)(j)| (cf. (4.5)), are given by

(
LS(j)1,··

)
`,·· = G1(p

(i`)
1) · . . . · Gµ−1(p

(i`)
µ−1) = G1,...,µ−1((p

(i`)
1 , . . . , p

(i`)
µ−1)), (7.2)

(
R:,S(j)2

)
:,`

= Gµ+1(p
(i`)
µ+1) · . . . · Gd(p(i`)

d) = Gµ+1,...,d((p
(i`)
µ+1, . . . , p

(i`)
d)), (7.3)

for p(i`) ∈ P(µ)(j), ` = 1, . . . , |P(µ)(j)| and a representation G for which L = G<s and
R = G>s (cf. (4.4)).

Remark 7.2 (Case µ = 1, d). For µ = 1, d in Theorem 5.6, the same formula can be used

by formally setting G<1 = L = 1, G>d = R = 1 and ζ
(1)
1 = 0, ζ

(d)
2 = 0, ζ

(1)
(1,2), ζ

(d)
(1,2) = 0,

respectively. These comply with the result in the matrix case (cf. Remark 3.6).

Since all microstepsM∗ are stable, we call this regularized ALS method stable - hence
the name SALSA (Stable ALS Approximation). We summarize in Algorithm 3 one full
left sweep µ = 1 → d of SALSA for fixed rank r. Note that in practice, the complexity
is reduced to the minimal necessary order in the optimal case (cf. Remark 5.9). The
simpler matrix case (d = 2) is carried out in Algorithm 1.

8 Semi Implicit and Non Uniform Rank Adaption

The rank adaption for tensor completion is carried out analogously to the matrix case,
Section 3.2. The exact choices of the following parameters are not important, such that
we only indicate them roughly. The specific values which we used in all numerical tests
are provided in Section 9.4. The number of minor singular values (cf. Definition 3.8) for
each matricization is kept constant, such that

|{i | 0 < σ
(µ)
i < fminor · ω}| !

= kminor, (8.1)

for each µ = 1, . . . , d− 1 for certain constants fminor < 1 and kminor ∈ N, subject to the
theoretical bound rµ ≤ min(nµrµ−1, nµ+1rµ+1). Furthermore, a common, upper limit
rµ ≤ rlim is applied, which is chosen large enough, but likewise in order to avoid un-
necessary computation time. The factor fminor is related to the filter in Corollary 5.8
and the analysis in Section 6, but has ultimately been chosen empirically. Whenever

necessary, then the rank rµ is decreased through a simple truncation σ
(µ)
rµ ← 0, while

it is increased using a minor singular value 0 < σ
(µ)
rµ+1 � σmin. In the latter case, the

required, corresponding singular vectors can for example be chosen randomly.

32

Algorithm 3 SALSA Sweep

we here identify Σ̃ = diag(σ̃)

Require: limit σmin, parameter ω, initial guess A = τr(G) for which R(G2), . . . ,R(Gd)
are row-orthogonal and data points M |P

1: for µ = 1, . . . , d do
2: if µ 6= 1 then

3: compute the SVD U Σ̃V T := L(Gµ−1) and set σ
(µ−1)
i := max(σ̃i, σmin), i =

1, . . . , rµ−1

4: set Gµ−1 via L(Gµ−1) = U and Gµ := Σ̃V TGµ
5: end if
6: if µ 6= d then

7: compute the SVD U Σ̃V T := L(Gµ) and set σ
(µ)
i := max(σ̃i, σmin), i = 1, . . . , rµ

8: update Gµ+1 := V TGµ+1 and Gµ via L(Gµ) = U Σ̃
9: end if

10: for j = 1, . . . , nµ do
11: update Gµ(j) := N(j) by solving the least squares problem in Theorem 5.6 for

L = G<s, R = G>s, γ = σ(µ−1), θ = σ(µ) (cf. Remark 7.2) using coarse cg (cf.
Remark 5.9)

12: end for
13: end for

As in the matrix case, the lower limit σmin is a fraction fσmin
� 1 of the residual

on the sampling set (cf. Algorithm 4). The parameter ω > 0 is reduced by a fac-
tor fω in each iteration, slowly reducing the magnitude of regularization. The factor

1 < fω ∈ (f
(min)
ω , f

(max)
ω), in turn, is increased or decreased after each iteration through

a simple heuristic, in such a way that

max
X∈P,P2

‖A(iter) −M‖X
‖A(iter−1) −M‖X

!
= 1 + εprogr, εprogr > 0, (8.2)

or rather, that it stays close to this fixed value. The tensor A(iter) = τr(iter)(G
(iter))

is the iterate at iteration number iter. This adaption ensures that fω is not too large
as to impair the approximation quality, but neither so small that the required runtime
becomes unreasonable.

The algorithm will terminate if one of the following stopping criteria is fulfilled:

• stagnation: ω � σmin and fω = f
(max)
ω

• convergence: ω → 0 or ‖A(iter) −M‖P /‖M‖P → 0

• early stop: ‖A(iter) −M‖P2
� mini<iter ‖A(i) −M‖P2

We have neglected minor implementation details and practical tweaks in this subsection
to focus on the essence of the above criteria, such that we refer to the Matlab code for
remaining parts.

8.1 The SALSA Algorithm

SALSA (Stable ALS Approximation) for tensors is summarized in Algorithm 4. For the
(recommended) choices of tuning parameters also used in the numerical tests, see Sub-
section 9.4. The Matlab implementation as well as a video showing the rank adaption
by means of plotting the singular values during a runtime can be found on the personal

33

webpage of the author Sebastian Krämer, along with all sources that were used to create
the presented results.6 The notion of stability we address in this paper does however
not mean a low sensibility to roundoff errors accumulated over multiple iterations. We
encountered that even different processor architectures or rearrangement of brackets with
regard to associativity in products can change the intermediate approximations. As in
almost all cases the algorithm does not find the global minimum, this also holds for the
final output, both in case of ALS and SALSA. For once, this is not an actual drawback,
since even exact arithmetic would not consistently cause the algorithm to find better local
minima, but it should be kept in mind when reconstructing results. The order of com-
putational complexity does not exceed O(dr2|P |) using coarse cg, where r = maxµ rµ.
Note that the computational complexity per sweep can actually be lower, since not all
ranks are kept equal, but some are lower than others.

Algorithm 4 SALSA Algorithm

Require: P ⊂ I, M |P
1: initialize G s.t. τr(G) ≡ ‖M |P ‖1/|P | for r ≡ 1 and ω = 1/2‖τr(G)‖F
2: split off a small control set P2 ⊂ P (Definition 3.9)
3: for iter = 1, 2, . . . do
4: proceed SALSA sweep∗ (Algorithm 3)

5: ∗: and renew lower limit σmin := fmin · |I||P |‖τr(G)−M‖P
6: ∗: adapt fω according to progress (cf. (8.2))
7: ∗: adapt and decrease ω by factor of fω
8: adapt rank according to (8.1) (start this when the first few iteration have passed)
9: if a stopping criterion applies (Section 8) then

10: terminate algorithm
11: return iterate for which ‖τr(G)−M‖P2 was lowest
12: end if
13: end for

9 Numerical Experiments

We consider the following three algorithms:
• ALS (modified Algorithm 3 for ω ≡ 0)

• SALSA (Algorithm 4, the algorithm proposed in this work)

• RTTC (Riemannian cg for tensor train completion [40])
We explain how ranks are adapted for ALS in Section 9.1, shortly present the idea behind
RTTC in Section 9.2, give details for data acquisition and measurements in Section 9.3
as well as tuning parameters in Section 9.4. We analyze the results in the latter Section
9.9. For each test, we give a (too large) upper bound rlim for the maximal rank of the
iterates, in order to rule out excessive computation times (although this bound is seldomly
reached). We would like to emphasize that, in contrast to rank adaption itself, the one
dimensional problem of choosing such a bound is easily controlled for example based on
the validation set. For simplicity, we use a common mode size n = n1 = . . . = nd.

6by the time the paper is written, the address is www.igpm.rwth-aachen.de/team/kraemer

34

9.1 Rank Adaption for Standard ALS

Since ALS itself is not rank adaptive, the (so far) most promising approach, that is greedy
rank adaption, is chosen. When the progress stagnates, the algorithm searches for the

highest (new) singular value σ
(µ)
+ which any of the rank increases may yield. These values

are estimated as follows. Let µ be fixed and G be a representation for which G<µ−1 is
column-orthogonal and G>µ is row-orthogonal. Further, let

T := (G<µ−1)T ((M − τr(G))|P)(µ−1,µ) (G>µ)T ,

αiµ−1,iµ = argmin
α̃iµ−1,iµ

‖G<µ−1 (Gµ−1(iµ−1) ·Gµ(iµ)

+ α̃iµ−1,iµT (iµ−1, iµ)) G>µ −M(µ−1,µ)‖P(µ−1,µ)(iµ−1,iµ).

We define the core H(·, ·), H(iµ−1, iµ) = αiµ−1,iµT (iµ−1, iµ) ∈ Rrµ−2×rµ and stack its

entries to form the matrix H ∈ Rrµ−2nµ−1×rµnµ . This yields the candidate σ
(µ)
+ := ‖H‖2,

the largest singular value of H. This approach is very similar to the two-fold microsteps
as defined in [21] and the rank adaption in AMEn [9], which are both based on DMRG. It
however prevents overfitting, since it is equivalent to performing only one, preconditioned
CG step (similarly to a Landweber iteration). Furthermore, our experiments suggest

that it is more reliable. The corresponding rank µ = argminµ̃ σ
(µ̃)
+ is increased by 1,

using a rank 1 approximation of H. Since ALS works differently than SALSA, only
some stopping criteria can be overtaken, while additional ones are introduced in order to
prevent premature termination but also to avoid unnecessary runtime. No rank decreases
are proceeded since this involves tremendous difficulties, of which the most important one
is the sheer incapability to decide when and which rank actually to decrease.

9.2 The RTTC Algorithm

The article [40], in which RTTC is derived and explained in detail, focuses exclusively
on tensor completion using the tensor train format as well (but it can likewise be as-
sumed that it is generalizable to other problems). Instead of alternating optimization,
RTTC provides a nonlinear conjugate gradient scheme based on Riemannian optimiza-
tion, which has comparable computational complexity per sweep. Naturally, the problem
of rank adaption also poses a challenge in that setting. Therefore, a heuristic rank adap-
tion is introduced (Algorithm 3 in [40]) which successively tests if a single rank increase
yields a tolerable change of the residual on the validation set (based on a parameter
ρ ≥ 0). If so, it continues normally with the next test; otherwise, the algorithm priorly
resets to the iterate with previous rank.

We observed however that for example the choice ρ 6= 0 worked better given the as-
signments in Section 9.6, but choices other than ρ = 0 caused the algorithm to not
recover a single instance in case of the rank adaption test tensor in Section 9.8. We
therefore used three different choices ρ ∈ {0, 0.2, 1} (1 is the default in [40]) and granted
RTTC, as opposed to SALSA, the advantage to choose the best result (based on the test
set) for each of the following problem classes.

Some minor modification to RTTC were necessary in order to provide fair tests. The
allowed number of iterations per rank increase test was increased, since 10 turned out
to be too few. In exchange, the relative improvement parameter was raised to 10−3, as
lower values did not yield improvements. Since RTTC does not have an actual stopping

35

criterion, we stopped whenever the normalized validation residual increased and at the
same time was 1000 times higher than the normalized sampling residual, or whenever
the current validation residual was much higher than any previously obtained one (as
described in Section 8). When terminating, each time the iterate with lowest validation
residual was chosen (as described in Algorithm 4). These adaptations were done carefully
in order to obtain only improvements in the quality of approximation. We did further
not compare the required number of iterations of RTTC, and the algorithm was granted
as much time as necessary.

9.3 Data Acquisition and Measurements

Sampling: In order to obtain a sufficient sampling for each slice of M , we generate the
set P in a quasi-random way as follows: For each direction µ = 1, . . . , d and each index
iµ ∈ Iµ we pick csf · r2

P indices i1, . . . , iµ−1, iµ+1, . . . , id at random (uniformly). This
gives in total |P | = csf · dnr2

P samples (excluding duplicate samples). The rank rP is
artificial, such that csf can be interpreted as sampling factor since the number of degrees
of freedom of a TT-tensor of common rank r is slightly less than dnr2.
Testing: As a test set C, we use a set of the same cardinality as P that is generated in
the same way. Of course, neither this set nor the values M |C are known by the algorithm.
The residuals are then measured with respect to the chosen iterate which had the lowest
validation residual (cf. Algorithm 4).
Order of optimization: Instead of the sweep we gave before (µ = 1, . . . , d) for simplicity,
we alternate between two sweeps (µ = 1, . . . , h, µ = d, . . . , h, h = bd/2c) to enhance
symmetry.
Averaging: With 〈·〉ar we denote the arithmetic mean and by 〈·〉geo the geometric mean
which we use for logarithmic scales.

9.4 Implementation Details and Tuning Parameters

All tests for ALS and SALSA were done using a (pure) Matlab implementation. This in-
cludes the toolbox multiprod [27], which allows a reasonably swift evaluation of products
between arrays of matrices, H(i)J(i), i = 1, . . . , k, and is much faster than a plain loop.
In contrast, some subfunctions of RTTC are based on .mex routines.
Instead of solving full problems in each microstep, both ALS and SALSA use coarse cg
(cf. Remark 5.9), for which the tolerance was empirically chosen low enough such that
it did not influence the quality of approximation . Note that the cg steps of RTTC are
not comparable, since they are performed on low rank manifolds and used to update all
cores at once.
We only list time performances in the appendix, which should be interpreted carefully,
while the iteration numbers may provide a clearer picture due to similar computational
complexities. All parameters have been chosen equally for all experiments (except ρ for
RTTC) with respect to best results, not speed, and could be relaxed for easier problems
(or in practice for first trials) to reduce timing considerably. Straightening the tolerances
for ALS or RTTC, hence allowing more iterations, did however not lead to notable im-
provements.
The parameter choices (cf. Section 8) for SALSA are given by εprogr = 5 · 10−3,

fminor = 0.5, kminor = 2, f
(min)
ω = 1 + 5 · 10−4, f

(max)
ω = 1.1, fσmin

= 0.1. The size
of the validation set is |P2|/(|P | + |P2|) = 1/20. These have in parts been chosen em-
pirically and are recommendable for other problems. We observed that any reasonably
close values work as well, the more so for larger sampling sets. The performance is in

36

0 0.5 1 1.5 2

·104

10−5

10−4

10−3

sampling size

re
la
ti
v
e
re
si
d
u
a
l

n = 12

0 0.5 1 1.5 2

·104

10−4

10−3

sampling size

n = 20

SALSA (d = 6)

SALSA (d = 15)

ALS (d = 6)

ALS (d = 15)

RTTC (d = 6)

RTTC (d = 15)

Figure 5: (d = 6, 15, rP = 6, rlim = 14, n = 12, 20, csf = 2, 4, 6) Plotted are, for the tensor D, for
varying dimension and mode size, the averaged relative residuals 〈‖A −M‖C/‖M‖C〉geo as functions
of the sampling size |P | as result of each 20 trials, for ALS (black), SALSA (blue, filled symbols) and
RTTC using ρ = 1 (green). The markers are exact; the intermediate lines are shape-preserving piecewise
cubic Hermite interpolations of such.

that sense not based on how close the parameters are to some unknown optimal choices.
We also refer to the implementation for all details.

9.5 Approximation of a Tensor with Near Uniform Singular Spectrum

At first, we consider the completion of the following tensor:

D(i1, . . . , id) :=

(
1 +

d−1∑

µ=1

iµ
iµ+1

)−1

, iµ = 1, . . . , n, µ = 1, . . . , d

This tensor is not low rank, but has well ordered modes and uniformly exponentially
decaying singular values. It can therefore very well be approximated with uniform ranks
(for a black box, rank adaptive algorithm however, this is not trivial to recognize) and
the low variance of results suggests that mostly a near best approximation is found.
Hence, standard ALS can barely be outperformed. The results are plotted in Figure 5
(see Appendix C for Table 1).

9.6 Approximation of Three Generic Tensors with non Uniform Singular
Spectrum

We want to demonstrate how different results can be through proper rank adaption,
considering the following three tensors, generated by generic functions:

f (1)(i1, . . . , i8) :=
i1
4

cos(i3 − i8) +
i2

2

i1 + i6 + i7
+ i5

3 sin(i6 + i3)

f (2)(i1, . . . , i7) :=

(
i4

i2 + i6
+ i1 + i3 − i5 − i7

)2

, iµ = 1, . . . , n, µ = 1, . . . , d

f (3)(i1, . . . , i11) :=

√
i2 + i3 +

1

10
(i4 + i5 + i7 + i8 + i9) +

1

20
(i1 − i6 − i10 + i11)2;

37

0.3 0.5 0.7 0.9 1.1

·104

10−6

10−5

10−4

10−3

10−2

sampling size

re
la
ti
v
e
re
si
d
u
a
l

f(1)

0.3 0.5 0.7 0.9 1.1

·104

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

sampling size

f(2)

0.4 0.7 1 1.3

·104

10−4

10−3

10−2

sampling size

f(3)

SALSA

ALS

RTTC

Figure 6: (d1 = 8, d2 = 7, d3 = 11, rP = 6, rlim = 10, n = 8, csf = 2, 4, 6) Plotted are, for the tensors
f (1) (left), f (2) (middle) and f (3) (right), the averaged relative residuals 〈‖A −M‖C/‖M‖C〉geo and
shadings proportional to the standard deviations as functions of the sampling size |P | as result of each
20 trials, for ALS (black), SALSA (blue, filled symbols) and RTTC using ρ = 0.2 (green). The markers
are exact; the intermediate lines are shape-preserving piecewise cubic Hermite interpolations of such.

In contrast to the tensor in Section 9.5, the modes are not (and hardly can be) ordered
in accordance with the TT format. A different ordering may of course yield other results,
but we cannot assume to find a better ordering if the approximation fails in the general
case. The results are plotted in Figure 6 (see Appendix C for Table 2).

9.7 Recovery of Random Tensors with Exact Low Rank

We next consider the recovery of quasi-random tensors with exact low ranks. Although
this in practice will never occur, it is a very neutral test7. The ranks are generated ran-
domly, but it is ensured that 〈r〉ar ≥ 2/3k and max(r) ≤ k for some bound k ∈ N.
Each of these is generated via a TT representation A = τr(G) where we assign to each
entry of each block G1, . . . , Gd a uniformly distributed random value in [−0.5, 0.5]. Sub-
sequently, the singular values Σ(1), . . . ,Σ(d−1) are forced to take uniformly distributed
random values in [0, 1] (up to scaling). This is achieved by successive replacements of the
current values in G.
As results, we plot the number of successful recoveries (‖A −M‖C/‖M‖C < 10−5) for
different mode sizes n (each single tuple uniform), dimensions d and maximal ranks k of
the target tensor (Figures 7, 8).

9.8 Recovery of the Rank Adaption Test Tensor

Last but not least, we consider the recovery of tensors as in Example 4.5, for which
Q1, Q4, Q5 and Q6 are generated quasi-randomly for each trial. For an explanation of
the results in Figure 9, we refer to Section 9.7.

7Note that in some papers, uniform distributions on [0, 1] are used such that all entries of the target
tensor are positive, causing each first singular value to be huge compared to all following ones. This
leads to a tremendous simplification of the completion problem. There seems to be no indication yet
that the sampling required for the completion of a random tensor is in general close to what is stated
for the matrix case [8].

38

10 3 0 0

17 7 2 0

16 15 6 2

20 19 8 10

20 19 19 11

20 20 19 17

10 3 0 0

17 7 2 0

16 15 6 2

20 19 8 10

20 19 19 11

20 20 19 17

(4) (0) (0) (0)

(12) (4) (0) (0)

(16) (11) (4) (0)

(17) (16) (13) (3)

(16) (16) (16) (14)

(18) (17) (16) (16)

(4) (0) (0) (0)

(12) (4) (0) (0)

(16) (11) (4) (0)

(17) (16) (13) (3)

(16) (16) (16) (14)

(18) (17) (16) (16)

8 12 16 20

2

4

8

16

32

64

mode size n

sa
m
p
li
n
g
fa
ct
o
r

d = 5, ALS(RTTC)

20 10 3 0

20 20 17 4

20 20 20 17

20 20 20 20

20 20 20 20

20 20 20 20

20 10 3 0

20 20 17 4

20 20 20 17

20 20 20 20

20 20 20 20

20 20 20 20

8 12 16 20

d = 5, SALSA

1 0 0 0

3 0 0 0

9 0 0 0

12 2 0 0

19 8 0 2

18 12 4 3

1 0 0 0

3 0 0 0

9 0 0 0

12 2 0 0

19 8 0 2

18 12 4 3

(0) (0) (0) (0)

(1) (0) (0) (0)

(6) (0) (0) (0)

(11) (3) (0) (0)

(14) (11) (0) (0)

(16) (12) (1) (0)

(0) (0) (0) (0)

(1) (0) (0) (0)

(6) (0) (0) (0)

(11) (3) (0) (0)

(14) (11) (0) (0)

(16) (12) (1) (0)

8 12 16 20

d = 6, ALS(RTTC)

8 0 0 0

18 1 0 0

20 10 0 0

20 19 7 2

20 20 19 10

20 20 20 20

8 0 0 0

18 1 0 0

20 10 0 0

20 19 7 2

20 20 19 10

20 20 20 20

8 12 16 20

d = 6, SALSA

0 0 0 0

0 0 0 0

3 0 0 0

2 0 0 0

8 0 0 0

14 1 0 0

0 0 0 0

0 0 0 0

3 0 0 0

2 0 0 0

8 0 0 0

14 1 0 0

(0) (0) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0)

(2) (0) (0) (0)

(6) (0) (0) (0)

(12) (1) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0)

(2) (0) (0) (0)

(6) (0) (0) (0)

(12) (1) (0) (0)

8 12 16 20

d = 7, ALS(RTTC)

0 0 0 0

0 0 0 0

11 0 0 0

19 0 0 0

20 10 1 0

20 18 4 0

0 0 0 0

0 0 0 0

11 0 0 0

19 0 0 0

20 10 1 0

20 18 4 0

8 12 16 20

d = 7, SALSA

0

5

10

15

20

Figure 7: (d = 5, 6, 7, rP = 6, rlim = 9, n = 8, 12, 16, 20, csf = 2, 4, 8, 16, 32, 64) Displayed as 20 shades
of blue (black (0) to white (all 20)) are the number of successful reconstructions for random tensors
with maximal rank k = 6 for ALS and SALSA. The bracketed green numbers are the results for RTTC
using ρ = 0.2 and are independent of the shading. We recommend use of the digital version for better
readability.

5 0 0

12 5 2

17 11 4

18 19 9

20 18 17

20 20 18

5 0 0

12 5 2

17 11 4

18 19 9

20 18 17

20 20 18

(0) (0) (0)

(5) (2) (0)

(15) (5) (1)

(16) (16) (7)

(16) (16) (16)

(16) (16) (16)

(0) (0) (0)

(5) (2) (0)

(15) (5) (1)

(16) (16) (7)

(16) (16) (16)

(16) (16) (16)

12 16 20

2

4

8

16

32

64

mode size n

sa
m
p
li
n
g
fa
ct
o
r

d = 5, ALS

20 12 4

20 20 12

20 20 20

20 20 20

20 20 20

20 20 20

20 12 4

20 20 12

20 20 20

20 20 20

20 20 20

20 20 20

12 16 20

d = 5, SALSA

0 0 0

1 0 0

1 0 0

7 1 0

16 3 1

17 11 2

0 0 0

1 0 0

1 0 0

7 1 0

16 3 1

17 11 2

(0) (0) (0)

(0) (0) (0)

(2) (0) (0)

(6) (0) (0)

(12) (4) (0)

(15) (13) (8)

(0) (0) (0)

(0) (0) (0)

(2) (0) (0)

(6) (0) (0)

(12) (4) (0)

(15) (13) (8)

12 16 20

d = 6, ALS

0 0 0

8 0 0

20 9 0

20 17 7

20 20 18

20 20 20

0 0 0

8 0 0

20 9 0

20 17 7

20 20 18

20 20 20

12 16 20

d = 6, SALSA

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 0 0

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(3) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(3) (0) (0)

12 16 20

d = 7, ALS

0 0 0

0 0 0

0 0 0

8 0 0

17 1 0

20 11 0

0 0 0

0 0 0

0 0 0

8 0 0

17 1 0

20 11 0

12 16 20

d = 7, SALSA

0

5

10

15

20

Figure 8: (d = 5, 6, 7, rP = 8, rlim = 11, n = 12, 16, 20, csf = 2, 4, 8, 16, 32, 64) Displayed as 20 shades
of blue (black (0) to white (all 20)) are the number of successful reconstructions for random tensors
with maximal rank k = 8 for ALS and SALSA. The bracketed green numbers are the results for RTTC
using ρ = 0.2 and are independent of the shading. We recommend use of the digital version for better
readability.

0 0

1 2

5 2

12 4

18 7

19 12

0 0

1 2

5 2

12 4

18 7

19 12

(0) (0)

(0) (0)

(0) (0)

(9) (0)

(14) (2)

(11) (4)

(0) (0)

(0) (0)

(0) (0)

(9) (0)

(14) (2)

(11) (4)

12 20

2

4

8

16

32

64

mode size n

sa
m
p
li
n
g
fa
ct
o
r

k = 2, ALS(RTTC)

2 0

10 2

18 3

20 14

20 20

20 20

2 0

10 2

18 3

20 14

20 20

20 20

12 20

k = 2, SALSA

3 0

3 0

12 1

19 5

20 9

20 18

3 0

3 0

12 1

19 5

20 9

20 18

(0) (0)

(1) (0)

(3) (0)

(7) (1)

(15) (3)

(15) (8)

(0) (0)

(1) (0)

(3) (0)

(7) (1)

(15) (3)

(15) (8)

12 20

k = 3, ALS(RTTC)

16 0

18 6

20 17

20 18

20 20

20 20

16 0

18 6

20 17

20 18

20 20

20 20

12 20

k = 3, SALSA

4 0

6 0

6 0

18 2

18 15

20 14

4 0

6 0

6 0

18 2

18 15

20 14

(1) (0)

(3) (0)

(3) (1)

(8) (0)

(8) (4)

(11) (6)

(1) (0)

(3) (0)

(3) (1)

(8) (0)

(8) (4)

(11) (6)

12 20

k = 4, ALS(RTTC)

18 8

20 14

20 20

20 20

20 20

20 20

18 8

20 14

20 20

20 20

20 20

20 20

12 20

k = 4, SALSA

0

5

10

15

20

Figure 9: (d = 6, rP = 2k, rlim = 2k + 3, n = 12, 20, csf = 2, 4, 8, 16, 32, 64) Displayed as 20 shades of
blue (black (0) to white (all 20)) are the number of successful reconstructions for the rank adaption test
tensor with rank (1, k, k, k, 1, 2k, 1) for ALS and SALSA. The bracketed green numbers are the results
for RTTC using ρ = 0 and are independent of the shading. We recommend use of the digital version
for better readability.

39

9.9 Analysis of Results

SALSA is superior in nearly all observed cases. For tensors which could as well be
approximated with uniform ranks, the differences are marginal as is to be expected.
The three generic functions show that the residuals can be multiple orders of magnitude
better, and although the functions were chosen quite randomly, we do of course not
want to over-interpret these specific results. Finally, for the more neutral test of random
tensor recovery, the required sampling seems to be overall 4 to 8 times lower. For the
rank adaption test tensor, the performance of SALSA becomes even better for larger rank
k (this is due to the larger total sampling), while greedy ALS runs into the predicted
trouble, as does RTTC. In general, RTTC performs slightly better than greedy ALS in
the approximation of tensors with exponentially declining singular values, while the latter
is slightly better in the random recovery tests. This difference is unlikely because of their
optimization techniques, which are known to achieve similar results, but rather due to
the different rank adaption heuristics. This insight is also based on closer inspections of
single tests, which suggest that the rank adaption of RTTC is inferior even to the one of
ALS in the majority of cases.

10 Conclusions

In this article, we have demonstrated that the most successful completion algorithms are
very sensitive to rank changes and that existing rank adaption methods suffer from this.
In order to correct this, as proven for SALSA, we suggested a regularization motivated by
averaged microsteps in order to uncouple the optimization of a discrete, technical rank.
While there is likely room for improvements and rigorous convergence bounds remain sub-
ject to future work, we take the noteworthy numerical results as indication that stability
(under truncation) is a worthwhile property. The computational complexity of SALSA
is further reduced to the minimal order through use of a coarse cg method. Although we
focused on tensor completion (with possibly small sampling sets), the derivations given
in this paper allow for a generalization to other semi-elliptic problems. Furthermore, it
may be possible to adapt the presented ideas to manifold based methods such as RTTC.

References

[1] Bachmayr, M., Schneider, R.: Iterative methods based on soft thresholding of hierarchical tensors.
Foundations of Computational Mathematics pp. 1–47 (2016). DOI 10.1007/s10208-016-9314-z. URL
http://dx.doi.org/10.1007/s10208-016-9314-z

[2] Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the
solution of high-dimensional partial differential equations. Foundations of Computational Math-
ematics pp. 1–50 (2016). DOI 10.1007/s10208-016-9317-9. URL http://dx.doi.org/10.1007/

s10208-016-9317-9

[3] Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numerical
Linear Algebra with Applications 20(1), 27–43 (2013). DOI 10.1002/nla.1818. URL http://dx.

doi.org/10.1002/nla.1818

[4] Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker for-
mat. Linear Algebra and its Applications 438(2), 639 – 657 (2013). DOI http://dx.doi.org/10.1016/
j.laa.2011.08.010. URL http://www.sciencedirect.com/science/article/pii/S002437951100591X

[5] Beylkin G., M.M.: Numerical operator calculus in higher dimensions. PNAS 99(16), 10,246–10,251
(2002). DOI 10.1073/pnas.112329799

[6] Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth,
nonconvex optimization. SIAM Journal on Optimization 15(3), 751–779 (2005). DOI 10.1137/
030601296. URL https://doi.org/10.1137/030601296

40

http://dx.doi.org/10.1007/s10208-016-9314-z
http://dx.doi.org/10.1007/s10208-016-9317-9
http://dx.doi.org/10.1007/s10208-016-9317-9
http://dx.doi.org/10.1002/nla.1818
http://dx.doi.org/10.1002/nla.1818
http://www.sciencedirect.com/science/article/pii/S002437951100591X
https://doi.org/10.1137/030601296

[7] Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of
Computational Mathematics 9(6), 717 (2009). DOI 10.1007/s10208-009-9045-5. URL http:

//dx.doi.org/10.1007/s10208-009-9045-5

[8] Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE
Trans. Inf. Theor. 56(5), 2053–2080 (2010). DOI 10.1109/TIT.2010.2044061. URL http://dx.doi.

org/10.1109/TIT.2010.2044061

[9] Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher
dimensions. SIAM Journal on Scientific Computing 36(5), A2248–A2271 (2014). DOI 10.1137/
140953289. URL http://dx.doi.org/10.1137/140953289

[10] Dopico, F.M.: A note on sin θ theorems for singular subspace variations. BIT Numerical Mathemat-
ics 40(2), 395–403 (2000). DOI 10.1023/A:1022303426500. URL http://dx.doi.org/10.1023/A:

1022303426500

[11] Espig, M., Khachatryan, A.: Convergence of alternating least squares optimisation for rank-one
approximation to high order tensors. arXiv:1503.05431 (2015). URL https://arxiv.org/abs/

1503.05431

[12] Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex
optimization. Inverse Problems 27(2), 025,010 (2011). URL http://stacks.iop.org/0266-5611/

27/i=2/a=025010

[13] Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix
Analysis and Applications 31(4), 2029–2054 (2010). DOI 10.1137/090764189. URL http://dx.

doi.org/10.1137/090764189

[14] Grasedyck, L., Kluge, M., Krämer, S.: Variants of alternating least squares tensor completion
in the tensor train format. SIAM Journal on Scientific Computing 37(5), A2424–A2450 (2015).
DOI 10.1137/130942401. URL http://dx.doi.org/10.1137/130942401

[15] Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation
techniques. GAMM-Mitteilungen 36(1), 53–78 (2013). DOI 10.1002/gamm.201310004. URL http:

//dx.doi.org/10.1002/gamm.201310004

[16] Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on
Information Theory 57(3), 1548–1566 (2011). DOI 10.1109/TIT.2011.2104999

[17] Hackbusch, W.: Numerical tensor calculus. Acta Numerica 23, 651–742 (2014).
DOI 10.1017/S0962492914000087. URL https://www.cambridge.org/core/article/

numerical-tensor-calculus/67876F5C81E4D4F84CA334E204B6EADC

[18] Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. Journal of Fourier Analysis
and Applications 15(5), 706–722 (2009). DOI 10.1007/s00041-009-9094-9. URL http://dx.doi.

org/10.1007/s00041-009-9094-9

[19] Hackbusch, W., Schneider, R.: Tensor Spaces and Hierarchical Tensor Representations, pp. 237–
261. Springer International Publishing, Cham (2014). DOI 10.1007/978-3-319-08159-5 12. URL
http://dx.doi.org/10.1007/978-3-319-08159-5_12

[20] Hastie, T., Mazumder, R., Lee, J.D., Zadeh, R.: Matrix completion and low-rank svd via fast
alternating least squares. J. Mach. Learn. Res. 16(1), 3367–3402 (2015). URL http://dl.acm.org/

citation.cfm?id=2789272.2912106

[21] Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in
the tensor train format. SIAM Journal on Scientific Computing 34(2), A683–A713 (2012). DOI
10.1137/100818893. URL http://dx.doi.org/10.1137/100818893

[22] Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed tt-rank. Numerische
Mathematik 120(4), 701–731 (2012). DOI 10.1007/s00211-011-0419-7. URL http://dx.doi.org/

10.1007/s00211-011-0419-7

[23] Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization.
In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pp. 665–674. ACM, New York, NY, USA (2013). DOI 10.1145/2488608.2488693. URL http:

//doi.acm.org/10.1145/2488608.2488693

[24] Jeckelmann, E.: Dynamical density-matrix renormalization-group method. Phys. Rev. B 66, 045,114
(2002). DOI 10.1103/PhysRevB.66.045114. URL http://link.aps.org/doi/10.1103/PhysRevB.

66.045114

[25] Krämer, S.: The geometrical description of feasible singular values in the tensor train format.
arXiv:1701.08437 (2017). URL https://arxiv.org/abs/1701.08437

41

http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.1137/140953289
http://dx.doi.org/10.1023/A:1022303426500
http://dx.doi.org/10.1023/A:1022303426500
https://arxiv.org/abs/1503.05431
https://arxiv.org/abs/1503.05431
http://stacks.iop.org/0266-5611/27/i=2/a=025010
http://stacks.iop.org/0266-5611/27/i=2/a=025010
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1137/130942401
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1002/gamm.201310004
https://www.cambridge.org/core/article/numerical-tensor-calculus/67876F5C81E4D4F84CA334E204B6EADC
https://www.cambridge.org/core/article/numerical-tensor-calculus/67876F5C81E4D4F84CA334E204B6EADC
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/978-3-319-08159-5_12
http://dl.acm.org/citation.cfm?id=2789272.2912106
http://dl.acm.org/citation.cfm?id=2789272.2912106
http://dx.doi.org/10.1137/100818893
http://dx.doi.org/10.1007/s00211-011-0419-7
http://dx.doi.org/10.1007/s00211-011-0419-7
http://doi.acm.org/10.1145/2488608.2488693
http://doi.acm.org/10.1145/2488608.2488693
http://link.aps.org/doi/10.1103/PhysRevB.66.045114
http://link.aps.org/doi/10.1103/PhysRevB.66.045114
https://arxiv.org/abs/1701.08437

[26] Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by riemannian op-
timization. BIT Numerical Mathematics 54(2), 447–468 (2014). DOI 10.1007/s10543-013-0455-z.
URL http://dx.doi.org/10.1007/s10543-013-0455-z

[27] de Leva, P.: multiprod - multiple matrix multiplications, with array expansion
enabled (2010). URL https://www.mathworks.com/matlabcentral/fileexchange/

8773-multiple-matrix-multiplications-with-array-expansion-enabled

[28] Liu, Y., Shang, F.: An efficient matrix factorization method for tensor completion. IEEE Signal
Processing Letters 20(4), 307–310 (2013). DOI 10.1109/LSP.2013.2245416

[29] Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Linear
Algebra and its Applications 436(10), 3819 – 3838 (2012). DOI http://dx.doi.org/10.1016/j.laa.
2011.04.017. URL http://www.sciencedirect.com/science/article/pii/S0024379511003223

[30] MIRSKY, L.: Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal
of Mathematics 11(1), 50–59 (1960). DOI 10.1093/qmath/11.1.50. URL http://dx.doi.org/10.

1093/qmath/11.1.50

[31] Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: Lower bounds and improved relaxations
for tensor recovery. In: T. Jebara, E.P. Xing (eds.) Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 73–81. JMLR Workshop and Conference Proceedings (2014).
URL http://jmlr.org/proceedings/papers/v32/mu14.pdf

[32] Oseledets, I., Tyrtyshnikov, E.: Tt-cross approximation for multidimensional arrays. Linear Algebra
and its Applications 432(1), 70 – 88 (2010). DOI http://dx.doi.org/10.1016/j.laa.2009.07.024. URL
http://www.sciencedirect.com/science/article/pii/S0024379509003747

[33] Oseledets, I.V.: Tensor-train decomposition. SIAM Journal on Scientific Computing 33(5), 2295–
2317 (2011). DOI 10.1137/090752286. URL http://dx.doi.org/10.1137/090752286

[34] Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use svd in
many dimensions. SIAM Journal on Scientific Computing 31(5), 3744–3759 (2009). DOI 10.1137/
090748330. URL http://dx.doi.org/10.1137/090748330

[35] Rauhut, H., Schneider, R., Stojanac, Ž.: Tensor Completion in Hierarchical Tensor Representations,
pp. 419–450. Springer International Publishing, Cham (2015). DOI 10.1007/978-3-319-16042-9\ 14.
URL http://dx.doi.org/10.1007/978-3-319-16042-9_14

[36] Recht, B.: A simpler approach to matrix completion. Journal of Machine Learning Research 12,
3413–3430 (2011)

[37] Rohwedder, T., Uschmajew, A.: On local convergence of alternating schemes for optimization of
convex problems in the tensor train format. SIAM Journal on Numerical Analysis 51(2), 1134–1162
(2013). DOI 10.1137/110857520. URL http://dx.doi.org/10.1137/110857520

[38] Signoretto, M., TranDinh, Q., De Lathauwer, L., Suykens, J.A.K.: Learning with tensors: a frame-
work based on convex optimization and spectral regularization. Machine Learning 94(3), 303–351
(2014). DOI 10.1007/s10994-013-5366-3. URL http://dx.doi.org/10.1007/s10994-013-5366-3

[39] Silva, C.D., Herrmann, F.J.: Optimization on the hierarchical tucker manifold applications to
tensor completion. Linear Algebra and its Applications 481, 131 – 173 (2015). DOI http:
//dx.doi.org/10.1016/j.laa.2015.04.015. URL http://www.sciencedirect.com/science/article/

pii/S0024379515002530

[40] Steinlechner, M.: Riemannian optimization for high-dimensional tensor completion. SIAM Journal
on Scientific Computing 38(5), S461–S484 (2016). DOI 10.1137/15M1010506. URL https://doi.

org/10.1137/15M1010506

[41] Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev.
Lett. 91, 147,902 (2003). DOI 10.1103/PhysRevLett.91.147902. URL http://link.aps.org/doi/

10.1103/PhysRevLett.91.147902

[42] Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev.
Lett. 91, 147,902 (2003). DOI 10.1103/PhysRevLett.91.147902. URL https://link.aps.org/doi/

10.1103/PhysRevLett.91.147902

[43] Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. BIT Numerical
Mathematics 12(1), 99–111 (1972). DOI 10.1007/BF01932678. URL http://dx.doi.org/10.1007/

BF01932678

[44] Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a non-
linear successive over-relaxation algorithm. Mathematical Programming Computation 4(4), 333–361
(2012). DOI 10.1007/s12532-012-0044-1. URL http://dx.doi.org/10.1007/s12532-012-0044-1

42

http://dx.doi.org/10.1007/s10543-013-0455-z
https://www.mathworks.com/matlabcentral/fileexchange/8773-multiple-matrix-multiplications-with-array-expansion-enabled
https://www.mathworks.com/matlabcentral/fileexchange/8773-multiple-matrix-multiplications-with-array-expansion-enabled
http://www.sciencedirect.com/science/article/pii/S0024379511003223
http://dx.doi.org/10.1093/qmath/11.1.50
http://dx.doi.org/10.1093/qmath/11.1.50
http://jmlr.org/proceedings/papers/v32/mu14.pdf
http://www.sciencedirect.com/science/article/pii/S0024379509003747
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1007/978-3-319-16042-9_14
http://dx.doi.org/10.1137/110857520
http://dx.doi.org/10.1007/s10994-013-5366-3
http://www.sciencedirect.com/science/article/pii/S0024379515002530
http://www.sciencedirect.com/science/article/pii/S0024379515002530
https://doi.org/10.1137/15M1010506
https://doi.org/10.1137/15M1010506
http://link.aps.org/doi/10.1103/PhysRevLett.91.147902
http://link.aps.org/doi/10.1103/PhysRevLett.91.147902
https://link.aps.org/doi/10.1103/PhysRevLett.91.147902
https://link.aps.org/doi/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1007/BF01932678
http://dx.doi.org/10.1007/BF01932678
http://dx.doi.org/10.1007/s12532-012-0044-1

[45] Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichun-
gen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen 71(4),
441–479 (1912). DOI 10.1007/BF01456804. URL http://dx.doi.org/10.1007/BF01456804

[46] White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69,
2863–2866 (1992). DOI 10.1103/PhysRevLett.69.2863. URL http://link.aps.org/doi/10.1103/

PhysRevLett.69.2863

11 Appendix (Experimental Data)

Following are the precise values for Figures 5 and 6, for RC := ‖A −M‖C and RP :=
‖A−M‖P .

n = 12 ALS SALSA
d csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar

6
2 6.9e-04(2.1) 1.1e-04(2.9) 85(57) 467(151) 3.1e-04(1.1) 6.8e-06(3.7) 81(10) 412(33)
4 2.0e-04(1.9) 3.9e-05(3.8) 131(86) 527(154) 5.8e-05(1.5) 1.4e-06(2.0) 170(29) 546(58)
6 4.2e-05(1.8) 4.7e-06(2.8) 215(76) 624(108) 2.3e-05(1.4) 1.5e-06(1.4) 209(23) 581(41)

9
2 7.6e-04(2.1) 2.3e-04(4.4) 145(88) 606(198) 1.8e-04(1.1) 6.9e-06(2.8) 129(9) 455(23)
4 8.0e-05(1.1) 2.0e-05(1.1) 276(57) 804(81) 2.7e-05(1.2) 7.4e-07(2.0) 298(34) 644(40)
6 6.6e-05(1.2) 2.5e-05(1.2) 355(94) 834(105) 9.6e-06(1.2) 5.5e-07(1.5) 457(50) 732(48)

15
2 6.6e-04(1.5) 3.3e-04(2.1) 384(113) 951(159) 1.4e-04(1.4) 1.1e-05(1.8) 266(20) 498(31)
4 3.2e-05(1.1) 6.8e-06(1.1) 961(62) 1396(44) 3.0e-05(1.1) 4.3e-06(1.6) 540(35) 642(32)
6 2.7e-05(1.1) 8.3e-06(1.1) 1278(85) 1416(47) 5.5e-06(1.8) 2.9e-07(1.6) 1133(92) 827(48)

n = 20 ALS SALSA
d csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar

6
2 3.8e-03(1.1) 1.7e-03(1.1) 89(38) 378(93) 8.9e-04(1.3) 3.4e-05(2.9) 119(15) 375(34)
4 5.5e-04(1.2) 1.7e-04(1.2) 157(45) 468(74) 2.1e-04(1.3) 4.0e-06(1.5) 256(30) 506(36)
6 4.2e-04(1.2) 1.6e-04(1.4) 198(62) 483(80) 1.1e-04(1.4) 5.0e-06(1.3) 329(27) 536(32)

9
2 2.6e-03(1.0) 1.4e-03(1.1) 204(101) 536(141) 4.6e-04(1.1) 2.4e-05(2.2) 224(15) 452(26)
4 2.9e-04(1.1) 1.0e-04(1.1) 426(71) 758(73) 1.3e-04(1.3) 2.7e-06(1.5) 452(57) 583(38)
6 2.0e-04(1.1) 7.2e-05(1.4) 618(151) 818(103) 4.2e-05(1.1) 2.0e-06(1.3) 748(53) 692(23)

15
2 1.6e-03(1.0) 8.6e-04(1.0) 698(208) 960(166) 1.0e-03(1.9) 1.8e-04(6.0) 361(64) 417(46)
4 1.1e-04(1.1) 2.3e-05(1.2) 1766(123) 1402(53) 1.0e-04(1.1) 1.5e-05(1.5) 899(50) 608(27)
6 8.2e-05(1.0) 2.8e-05(1.1) 2299(139) 1392(45) 2.2e-05(1.2) 9.2e-07(1.4) 1873(188) 782(44)

Table 1: Results for Subsection 9.5 (with arithmetic and geometric variances in brackets) using a (pure)
Matlab implementation. For ALS, exact least squares solution are computed, whereas for SALSA, coarse
CG is used. Note that most iterations are performed while the rank is not at its maximum yet.

n = 12 ALS SALSA
d csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar

2 6.5e-03(3.2) 5.3e-03(3.4) 72(46) 423(139) 6.5e-05(1.8) 1.1e-06(5.8) 69(16) 359(66)
4 4.4e-03(1.2) 4.1e-03(1.3) 34(34) 258(114) 3.7e-06(1.8) 1.9e-08(5.5) 133(32) 497(87)
6 3.8e-03(1.2) 3.6e-03(1.2) 47(40) 288(122) 4.7e-07(2.3) 4.5e-09(4.0) 157(34) 520(88)

n = 12 ALS SALSA
d csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar

2 9.7e-02(5.2) 4.0e-02(6.5) 50(54) 322(167) 8.3e-04(1.5) 9.7e-06(3.1) 65(11) 345(37)
4 2.9e-03(38.7) 4.7e-04(151.0) 104(102) 482(260) 7.3e-06(7.0) 1.3e-07(6.7) 130(40) 506(117)
6 3.1e-06(1506.0) 1.2e-06(2386.6) 125(79) 576(271) 1.1e-08(1.4) 3.6e-09(1.0) 175(17) 579(48)

n = 12 ALS SALSA
d csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈iter〉ar

2 4.7e-02(1.1) 4.6e-02(1.1) 66(72) 291(166) 1.3e-03(5.7) 1.9e-04(14.1) 53(16) 185(55)
4 4.4e-02(1.3) 4.1e-02(1.5) 74(76) 288(166) 5.5e-05(1.3) 2.9e-06(2.4) 138(19) 328(34)
6 3.4e-02(4.4) 3.0e-02(6.4) 115(167) 319(256) 1.9e-05(1.4) 7.2e-07(2.5) 248(50) 408(56)

Table 2: Results for Subsection 9.6 (with arithmetic and geometric variances in brackets) using a (pure)
Matlab implementation. For ALS, exact least squares solution are computed, whereas for SALSA, coarse
CG is used. Note that most iterations are performed while the rank is not at its maximum yet.

43

http://dx.doi.org/10.1007/BF01456804
http://link.aps.org/doi/10.1103/PhysRevLett.69.2863
http://link.aps.org/doi/10.1103/PhysRevLett.69.2863

	1 Introduction
	1.1 Introduction to Stability for Ill-posed Inverse Problems through the Example of Matrix Completion
	1.2 Relation to Other Matrix and Tensor Methods

	2 Instability and Approaches to Resolve the Problem
	2.1 Investigations into the Connection between Averaging and Stability

	3 Stable Alternating Least Squares Microsteps for Matrix Completion
	3.1 Minimizer of the Variational Residual Function for Matrices
	3.2 Rank Adaption

	4 Generalization to High-Dimensional Tensors
	4.1 Notations and Reduction to Three Dimensions

	5 Stable Alternating Least Squares Microsteps for Tensor Completion
	5.1 Standard Representation of a TT-Tensor
	5.2 Minimizer of the Variational Residual Function
	5.3 Evaluation with Coarse Conjugate Gradient
	5.4 Stability and Restricted Isometry Properties

	6 Behavior of the SALSA Filter
	7 Results Transferred Back to a d-Dimensional Tensor
	8 Semi Implicit and Non Uniform Rank Adaption
	8.1 The SALSA Algorithm

	9 Numerical Experiments
	9.1 Rank Adaption for Standard ALS
	9.2 The RTTC Algorithm
	9.3 Data Acquisition and Measurements
	9.4 Implementation Details and Tuning Parameters
	9.5 Approximation of a Tensor with Near Uniform Singular Spectrum
	9.6 Approximation of Three Generic Tensors with non Uniform Singular Spectrum
	9.7 Recovery of Random Tensors with Exact Low Rank
	9.8 Recovery of the Rank Adaption Test Tensor
	9.9 Analysis of Results

	10 Conclusions
	11 Appendix (Experimental Data)

