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Abstract We define a conforming B-spline discretisation of the de Rham complex on multipatch
geometries. We introduce and analyse the properties of interpolation operators onto these spaces
which commute w.r.t. the surface differential operators. Using these results as a basis, we derive new
convergence results of optimal order w.r.t. the respective energy spaces and provide approximation
properties of the spline discretisations of trace spaces for application in the theory of isogeometric
boundary element methods. Our analysis allows for a straight forward generalisation to finite
element methods.
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2 1 INTRODUCTION

1 Introduction

Since its introduction by Hughes et al. in [33], the technique of isogeometric analysis has sparked
interest in various communities, see e.g. [6,21]. Modern design tools often represent the geometries
via NURBS mappings [43], which, in the framework of isogeometric analysis, are utilised as
mappings from reference elements onto an exact representation of the geometry. This enables the
user to perform simulations without the introduction of geometric errors. As discrete function
spaces, spaces underlying the parametrisation of the geometry are used; such that forces obtained
as the results of numerical simulations can be applied to the geometry in the form of deformations.
This, in theory, unites the design and simulation processes, since the geometry format for simulation
and design coincide, thus, eliminating the need for frequent remeshing and preprocessing of the
computational domain. However, in many applications, the geometries are merely given via a
boundary representation, i.e., as two-dimensional surfaces in a three-dimensional ambient space.
Thus, for many numerical applications that want to utilise the high orders of convergence and
spectral properties of isogeometric analysis, a volumetric parametrisation of the computational
domain has to be constructed by hand.

For some problems, this issue can be overcome by the use of boundary element methods. Indeed,
many applications of isogeometric boundary element methods have been introduced in recent years
[2,24,25,36,47,48]. These go beyond the scope of academic examples and show that isogeometric
boundary methods are ready for industrial application. This can be attributed to the application
of so-called fast methods [25,34,28], which counteract the dense matrices arising from boundary
element formulations. The analysis of classical boundary element methods is well understood,
see [37,45] for the scalar cases, and [11,12,13,14] for the case of electromagnetic problems, and
properties of different choices of discretisation are detailed by [50,53], going back to the works of
[7,8,18,38,39,40] and many more. Moreover, the utilisation of parametric mappings in the context
of boundary element methods is not new. For different choices of basis functions, much of the theory
has already been investigated, cf. [29,30]. However, this kind of analysis has not yet been done for
B-splines as ansatz functions and for a full discretisation of the de Rham diagram, as needed for
problems requiring divergence conforming discretisations. With isogeometric boundary element
methods in mind, one cannot simply rely on the established analysis of variational isogeometric
methods [3]. Despite the fact, that first multipatch estimates have been investigated in [17], the
spline complex [16], i.e. a conforming B-spline discretisation of the de Rham complex, has not
been analysed for the multipatch setting. Moreover, error analysis in the trace space, i.e., the spaces
on the boundary of a domain on which boundary element methods operate, cannot be trivially
deduced by an error analysis of finite element methods, since the norms induced on the boundary
are nonlocal norms, defined through dualities [37].

In this paper, we want to establish approximation estimates of optimal order for the trace
spaces H1/2(Γ ), HHH−1/2

× (divΓ ,Γ ) and H−1/2(Γ ), where Γ = ∂Ω . These spaces and some required
definitions will be introduced in Section 2. We will use spline-techniques as in [16], going back to
[46], to first define a multipatch spline complex (Section 2.2). Then, in Section 3, investigate its
approximation properties w.r.t. standard norms on multipatch boundaries.
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In Section 4, we will follow the lines of established boundary element literature, e.g. [10,14,45,
49], and show that isogeometric approximation on trace spaces share the approximation properties
of classical alternatives [50,53]. Finally, in Section 5, we will collect the results.

2 Trace Spaces for Boundary Element Methods

We will introduce necessary definitions, and discuss notation. For an in-depth introduction, we refer
to the books by Adams [1] and McLean [37]. Let Ω ⊆ R3 be some Lipschitz domain and let D f
denote the weak derivative of some function f . As in [14] or [23], we will follow convention and
set H0(Ω) = L2(Ω).

For any integer m≥ 1, we define Hm(Ω) = { f ∈ L2(Ω) : D f ∈ Hm−1(Ω)} equipped with the
norm recursively defined by

‖ f‖H0(Ω) := ‖ f‖L2(Ω), ‖ f‖2
Hm(Ω) := ‖ f‖2

Hm−1(Ω)+ ∑
|ααα|=m

‖Dααα f‖2
L2(Ω),

where ααα is a multiindex with |ααα| = ∑1≤i≤3 αi = m and Dααα f =
(
∂

α1
x1 , . . . ,∂

α3
x3

)
. For the special

case H1(Ω) we find ‖ f‖2
H1(Ω) = ‖ f‖2

L2(Ω)+ ‖gradgradgrad f‖2
LLL2(Ω). By |·|Hm(Ω) we will denote the m-th

semi-norm, i.e., the term with ‖·‖2
Hm(Ω) = ‖·‖

2
Hm−1(Ω)+ |·|

2
Hm(Ω).

Now let s = m+ ε , where m ∈ N and ε ∈ (0,1). We define the fractional Sobolev space Hs(Ω)
as the functions of L2(Ω) for which the norm

‖ f‖2
Hs(Ω) := ‖ f‖2

Hm(Ω)+ ∑
|α|=m

∫
Ω

∫
Ω

|Dα f (xxx)−Dα f (yyy)|2

|xxx−yyy|2ε+3 dx dy

is finite. We equip Hs(Ω) with the corresponding norm.
Vectorial Sobolev spaces can be defined largely analogously and will be denoted by bold letters,

for example HHHs(Ω).
For any first-order differential operator d, we set

Hs(d,Ω) := { f ∈ Hs(Ω) : d f ∈ Hs(Ω)},

equipped with the corresponding graph norm. Of specific interest are spaces of types

HHHs(div,Ω) := { fff ∈HHHs(Ω) : div( fff ) ∈ Hs(Ω)},
HHHs(curlcurlcurl,Ω) := { fff ∈HHHs(Ω) : curlcurlcurl( fff ) ∈HHHs(Ω)},

and spaces of similar structure w.r.t. the surface differential operators gradgradgradΓ , divΓ , curlcurlcurlΓ and curlΓ ,
cf. [14,42].
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•

(a) Original vector

•

(b) Image of γγγ0

•

(c) Image of γγγ t

•

(d) Image of γnnn

Fig. 1: Visualisation of the trace operators.

2.1 Trace Space Setting

We are interested in function spaces on compact boundaries of Lipschitz domains Γ = ∂Ω . As
commonly done, we can now define the corresponding spaces on manifolds Γ via charts and
partitions of unity, cf. [37].

Definition 1 (Trace Operators, [14,45]) Let u : Ω → C and uuu : Ω → C3. Following the notation
of [14], we define the trace operators for smooth u and uuu as

γ0(u)(xxx0) := lim
xxx→xxx0

u(xxx), γγγ0(uuu)(xxx0) := lim
xxx→xxx0

uuu(xxx)−nnnxxx0(uuu(xxx) ·nnnxxx0),

γγγ t(uuu)(xxx0) := lim
xxx→xxx0

uuu(xxx)×nnnxxx0 , γnnn(uuu)(xxx0) := lim
xxx→xxx0

uuu(xxx) ·nnnxxx0 ,

for xxx0 ∈ Γ and xxx ∈Ω , where nnnxxx0 denotes the outward normal vector of Ω at xxx0 ∈ Γ .

By density arguments, one extends these operators to a weak setting, see [37]. One can visualise
the trace operators acting on vector fields as in Figure 1.

Assuming compactness of Γ , we define for all s > 0 the space H−s(Γ ) as the dual space of
Hs(Γ ). We define the trace space HHHs

×(Γ ) := γγγ t(HHHs+1/2(Ω)), for 0 < s < 1. The space HHH−s
× (Γ )

denotes the corresponding dual space w.r.t. the duality pairing 〈·×nnn, ·〉L2(Γ ). Note that HHHs
×(Γ )

might not coincide with HHHs(Γ ) understood in a componentwise sense, since this identity holds only
for smooth geometries, i.e., C∞-manifolds, see [13]. Defining HHH−1/2

× (divΓ ,Γ ) := γγγ t(HHH0(curlcurlcurl,Ω))

together with its rotated counterpart HHH−1/2
× (curlΓ ,Γ ) := γγγ0(HHH0(curl,Ω)), we recall the following

mapping properties of the trace operators, as presented in [37, Thm. 3.37] and [14, Thm. 1, Thm. 3].
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H1(Ω) HHH0(curlcurlcurl,Ω) HHH0(div,Ω)

HHH−1/2(curlΓ ,Γ )

H1/2(Γ ) H−1/2(Γ )

HHH−1/2
× (divΓ ,Γ )

γ0

gradgradgrad curlcurlcurl

γγγ0
γγγt

γnnn

curlΓ

·×nnn

curlcurlcurlΓ

gradgradgradΓ

divΓ

Fig. 2: Two dimensional de Rham complex on the boundary, induced by application of the trace
operators to the three-dimensional complex in the domain.

Theorem 1 (Mapping Properties of the Trace Operators) For the trace operators, the following
properties hold.

1. The trace operator γ0 : Hs(Ω)→ Hs−1/2(Γ ) is linear, continuous and surjective, with a contin-
uous right inverse for 0 < s < 3/2.

2. The operator γγγ0 : HHH0(curlcurlcurl,Ω)→HHH−1/2
× (curlΓ ,Γ ) is linear, continuous, surjective, and pos-

sesses a continuous right inverse.
3. The operator γγγ t : HHH0(curlcurlcurl,Ω)→HHH−1/2

× (divΓ ,Γ ) is linear, continuous, surjective, and possesses
a continuous right inverse.

4. The operator γnnn : HHH0(div,Ω)→ H−1/2(Γ ) is linear, continuous and surjective.

Moreover, for 0 ≤ s < 1, there exists a continuous extension of the tangential trace mapping
γγγ t : HHHs(curlcurlcurl,Ω)→HHHs−1/2

× (divΓ ,Γ ).

In the following, we consider a de Rham complex as in Figure 2, where the trace operators map
the three-dimensional spaces onto the boundary. By definition of the involved trace operators and
surface differential operators, the diagram commutes.

Remark 1 Note that the diagram in Figure 2 is an immensely powerful tool, showcasing the relation
between the three-dimensional and two-dimension de Rham complex, and the relation of the trace
spaces utilised in boundary element methods with their counterparts in the finite element context. It
can even be used to define the notions introduced previously: Given the trace operators γ0, γγγ0 and γnnn
as well as the three-dimensional de Rham sequence, we can define the trace operator γγγ t by rotation
around the normal and the trace spaces via the surjectivity assertions of Theorem 1. Moreover, one
can define the surface differential operators as the operators making the diagram commute.

As a first step towards an analysis w.r.t. spaces of fractional regularity, we review a classical
interpolation argument.
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Lemma 1 (Interpolation Lemma) Let 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 be integers and let Γ be a
compact manifold, smooth enough for the space Hmax(s2,t2)(Γ ) to be defined. For σ ∈ [0,1], if
T : Hs j(Γ )→ Ht j(Γ ) is a bounded linear operator for both j = 1,2, with

‖Tu‖Ht j (Γ ) ≤C j‖u‖Hs j (Γ ), j ∈ {1,2},

for two constants C1 and C2, then we find

‖Tu‖H(1−σ)·t1+σ ·t2 (Γ )
≤C1−σ

1 Cσ
2 ‖u‖H(1−σ)·s1+σ ·s2 (Γ )

.

Proof. This follows by the combination of [4, Theorem 4.1.2] and [4, Definition 2.4.1]. ut

2.2 The Spline Complex in the Trace Space Setting

We briefly review the basic notions of isogeometric methods and refer to [21,33] for an introduction
to isogeometric analysis and to [43,46] for more details on NURBS and spline theory.

Definition 2 (B-Spline Basis [3, Sec. 2]) Let K be either R or C and p,k be integers with 0≤ p< k.
We define a p-open knot vector Ξ as a set of knots ξi of the form

Ξ =
{

ξ0 = · · ·= ξp︸ ︷︷ ︸
=0

< ξp+1 ≤ ·· · ≤ ξk−1 < ξk = · · ·= ξk+p︸ ︷︷ ︸
=1

}
∈ [0,1]k+p+1.

We will assume the multiplicity of interior knots to be at most p. We can then define the basis
functions {bp

i }0≤i<k on [0,1] for p = 0 as

b0
i (x) =

{
1, if ξi ≤ x < ξi+1,

0, otherwise,

and for p > 0 via the recursive relationship

bp
i (x) =

x−ξi

ξi+p−ξi
bp−1

i (x)+
ξi+p+1− x

ξi+p+1−ξi+1
bp−1

i+1 (x),

for all 0≤ i < k−1. Given the basis as above, the space Sp(Ξ) is given as span({bp
i }0≤i<k). The

integer k hereby denotes the dimension of the spline space.

Definition 3 ([3, Ass. 2.1]) For a p-open knot vector Ξ , let hi := ξi+1−ξi. We define the mesh size
h to be the maximal distance h := maxp≤i<k hi between neighbouring knots. We call a knot vector
locally quasi-uniform when for all non-empty elements, neighbouring [ξi1 ,ξi1+1] and [ξi2 ,ξi2+1]
there exists a constant θ ≥ 1 such that the ratio hi1 ·h

−1
i2

satisfies θ−1 ≤ hi1 ·h
−1
i2
≤ θ .
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Let ` = 2,3, and let the knot vectors Ξ1, . . . ,Ξ` be given. B-spline functions on the domain
[0,1]` are constructed through simple tensor product relationships for pi1,...i` ∈K via

f (x1, . . . ,x`) := ∑
0≤i1<k1

. . . ∑
0≤i`<k`

pi1,...,i` ·b
p1
i1
(x1) · · ·bp`

i`
(x`), (1)

which allows tensor product B-spline spaces, denoted by Sp1,...,p`(Ξ1, . . . ,Ξ`) to be defined. We
will refer to non-empty intervals of the form [ξi,ξi+1], 0≤ i < k, and in the tensor product sense,
non-empty sets of the form [ξi1 ,ξi1+1]×·· ·× [ξi` ,ξi`+1] as elements w.r.t. the knot vectors.

Definition 4 (Support Extension, [17, Sec. 2.A]) Let Sp(Ξ) be a k dimensional spline space on
[0,1], and let Q be an element of the knot vector Ξ . We define the support extension Q̃ of Q by

Q̃ :=
{⋃

0≤i<k supp(bp
i ) : bp

i (x) 6= 0 for x ∈ Q
}
.

The same concept is generalised by tensor product construction to spline spaces on [0,1]`.

Assumption 5 (Quasi-Uniformity of Knot Vectors) All knot vectors will be assumed to be p-
open and locally quasi-uniform, such that the usual spline theory is applicable [3,43,46].

Throughout this paper, we will reserve the letter h for the maximal distance between two given
knots and p for the minimal polynomial degree. Moreover, we let h̃ denote the maximal size of a
support extension. For inequalities we will use the notation

M . T,

if M ≤C ·T holds for some constant C > 0 independent of h. If both M . T and T . M hold, we
will write M ' T .

Definition 6 (Patch) We define a patch Γ to be the image of [0,1]2 under an invertible diffeomor-
phism FFF : [0,1]2→ Γ ⊆ R3. Let Ω be a Lipschitz domain. We define a multipatch geometry to be
a compact, orientable two-dimensional manifold Γ = ∂Ω invoked via

⋃
0≤ j<N Γj by a family of

patches {Γj}0≤ j<N , N ∈ N, given by a family of diffeomorphisms

{FFF j : [0,1]2 ↪→ Γj}0≤ j<N ,

called parametrisation. We require the images of (0,1)2 of all FFF j to be disjoint and that for any
patch interface D of the form D = ∂Γj0 ∩∂Γj1 6= /0, we find that the parametrisations FFF j0 and FFF j1
coincide.

Note that this definition excludes non-watertight geometries and geometries with T-junctions,
since mappings at interfaces must coincide, cf. Figure 3.

In the spirit of isogeometric analysis, these mappings will usually be given by NURBS mappings,
i.e., by

FFF j(x,y) := ∑
0≤ j1<k1

∑
0≤ j2<k2

ccc j1, j2bp1
j1
(x)bp2

j2
(y)w j1, j2

∑
k1−1
i1=0 ∑

k2−1
i2=0 bp1

i1
(x)bp2

i2
(y)wi1,i2

,
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Fig. 3: Mappings on interfaces must coincide.

for control points ccc j1, j2 ∈R3 and weights wi1,i2 > 0. In accordance with the isogeometric framework,
degrees and knot vectors of the discrete spaces to be mapped from the reference domain are usually
chosen in accordance with the parametrisation [33]. However, the description of the geometry is, in
principle, independent of the analysis that will follow. From now on we reserve the letter N for the
number of patches and the letter j to refer to a generic patch.

As NURBS with interior knot repetition are not arbitrarily smooth, one would usually resort to
the utilisation of bent Sobolev spaces [3]. However, to avoid technical details, we introduce the
following assumption.

Assumption 7 (Smoothness of Geometry Mappings) We assume any multipatch geometry to be
given by an invertible, non-singular parametrisation {FFF j}0≤ j<N with FFF j ∈C∞([0,1]2).

We remark that Assumption 7 implies that each patch Γj has Lipschitz boundary. We also stress
that, limited by the smoothness of {FFF j}0≤ j<N , all results are still provable for non-smooth but
invertible NURBS parametrisation, although this would require an analysis via bent Sobolev spaces
as in [3]. Assumption 7 is merely for convenience. Moreover, it is possible to obtain parametric
mappings satisfying Assumption 7 either through extraction of rational Bézier patches, which
can be obtained as subpatches of a given NURBS parametrisation or, more generally, through an
algorithmic approach as in [31].

Definition 8 (Spaces of Patchwise Regularity) Let Γ =
⋃

0≤ j<N Γj be a multipatch geometry. We
define the norm

‖ f‖2
Hs

pw(Γ ) := ∑
0≤ j<N

∥∥ f |Γj

∥∥2
Hs(Γj)

for all f ∈ L2(Γ ) for which the right-hand side is well defined, and define the corresponding space
equipped with this norm as

Hs
pw(Γ ) := { f ∈ L2(Γ ) : ‖ f‖Hs

pw(Γ ) < ∞}.

In complete analogy, we extend the definition to vector-valued Sobolev spaces (and spaces with
graph norms), as usual, denoted by bold letters HHHs

pw(Γ ).
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curlcurlcurl−→ div−→

S0
ppp,ΞΞΞ ([0,1]

2)

SSS1
ppp,ΞΞΞ ([0,1]

2)

S2
ppp,ΞΞΞ ([0,1]

2)

Fig. 4: Visualisation of the single patch spline complex for ppp = (2,2). The blue functions are the
univariate B-splines related to each coordinate direction, whose tensor-product gives the bases of
the spline spaces in Definition 9. The two-dimensional curlcurlcurl operator maps the smooth space to a
vector valued space where the regularity in each vector component is lowered w.r.t. one spatial
component. Analogously, the divergence operator maps to the space of globally lowered regularity.

Definition 9 (Single Patch Spline Complex [15]) Let ppp = (p1, p2) be a pair of positive integers
and Ξ1,Ξ2 be p-open knot vectors on [0,1]. Let Ξ ′1 and Ξ ′2 denote their truncation, i.e., the knot
vector without its first and last knot. We define the spline complex on [0,1]2 as the spaces

S0
ppp,ΞΞΞ ([0,1]

2) := Sp1,p2(Ξ1,Ξ2),

SSS1
ppp,ΞΞΞ ([0,1]

2) := Sp1,p2−1(Ξ1,Ξ
′
2)×Sp1−1,p2(Ξ

′
1,Ξ2),

S2
ppp,ΞΞΞ ([0,1]

2) := Sp1−1,p2−1(Ξ
′
1,Ξ

′
2).

In the reference domain, the spline complex can be visualised as in Figure 4. Assume Γ to be a
single patch domain given via a geometry mapping FFF in accordance with Assumption 7. To define
the spaces in the physical domain, we resort to an application of the pull-backs, which, as a study
of [41] reveals, are given by

ι0(FFF)( f0)(xxx) :=
(

f0 ◦FFF
)
(xxx), xxx ∈ [0,1]2,

ι1(FFF)( fff 1)(xxx) :=
(
κ(xxx) · (dFFF)−1( fff 1 ◦FFF)

)
(xxx), xxx ∈ [0,1]2,

ι2(FFF)( f2)(xxx) :=
(
κ(xxx) · ( f2 ◦FFF)

)
(xxx), xxx ∈ [0,1]2,

where the term κ for xxx ∈ [0,1]2 is given by the so-called surface measure

κ(xxx) := ‖∂x1FFF(xxx)×∂x2FFF(xxx)‖. (2)

Note that if one were to compute the pullbacks ιi(FFF) for i = 0,1,2 as above, at first glance one
were to encounter a dimensionality problem, since the inverse dFFF−1 of the Jacobian dFFF arising
from FFF is of size 2×3, and thus not readily invertible. The study of e.g. [7,22,34] makes it clear
that, due to Assumption 7, required inverse mappings for the case of embedding a two-dimensional
manifold into three-dimensional ambient space exist. They need to be understood as mappings
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from [0,1]2 onto the tangential space of Γ . It is merely a smooth one to one mapping between a
two-dimensional space into another, and invertibility must be understood in this sense. However,
for implementation this matters little, since both ansatz- and test functions will be defined on [0,1]2.
Therefore one merely needs to compute the corresponding push-forwards, readily available through
the equalities

(ι0(FFF))−1( f0) =
(

f0 ◦FFF−1)(xxx), xxx ∈ Γ ,

(ι1(FFF))−1( fff 1) =
(
κ(xxx)−1 · (dFFF) fff 1 ◦FFF−1)(xxx), xxx ∈ Γ ,

(ι2(FFF))−1( f2) =
(
κ(xxx)−1 · f2 ◦FFF−1)(xxx), xxx ∈ Γ ,

due to Assumption 7. The inverse of FFF needs not be computed, since pull-backs and push-forwards
cancel out by construction.

Remark 2 A study of [42, Chap. 5] makes clear that these mappings are still conforming for
Γj ⊆ R3, i.e., that the diagram

H1
(
(0,1)2

)
HHH
(

div,(0,1)2
)

L2
(
(0,1)2

)

H1(Γj) HHH(divΓ ,Γj) L2(Γj)

ι0(FFF j)
−1

curlcurlcurl div

ι1(FFF j)
−1 ι2(FFF j)

−1

curlcurlcurlΓ divΓ

commutes. Because of this, we can identify the divergence on the reference domain with the
divergence on the physical domain, up to a bounded factor induced by the corresponding pull-back,
due to Assumption 7. We will, later on, utilise this explicitly to apply estimates of the kind

‖divΓ f‖L2(Γj)
' ‖div( f ◦FFF)‖L2([0,1]2),

see also [39,41] for a further review of these concepts.

Now we can define corresponding discretisations on the physical domain Γj by

S0
ppp,ΞΞΞ (Γj) :=

{
f : ι0(FFF j)( f ) ∈ S0

ppp,ΞΞΞ ([0,1]
2)
}
,

SSS1
ppp,ΞΞΞ (Γj) :=

{
fff : ι1(FFF j)( fff ) ∈ SSS1

ppp,ΞΞΞ ([0,1]
2)
}
,

S2
ppp,ΞΞΞ (Γj) :=

{
f : ι2(FFF j)( f ) ∈ S2

ppp,ΞΞΞ ([0,1]
2)
}
.

(3)

Proceeding as in [3] the spline complex for spaces on the boundary is defined as follows.

Definition 10 (Multipatch Spline Complex on Trace Spaces) Let Γ =
⋃

0≤ j<N Γj be a multi-
patch boundary satisfying Assumption 7. Moreover, let ΞΞΞ := (ΞΞΞ j)0≤ j<N be pairs of knot vectors in
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accordance with Assumption 5 and ppp = (ppp j)0≤ j<N pairs of integers, corresponding to polynomial
degrees. Then we define the spline complex on the boundary Γ via

S0
ppp,ΞΞΞ (Γ ) :=

{
f ∈ H1/2(Γ ) : f |Γj ∈ S0

ppp j ,ΞΞΞ j
(ΓΓΓ j) for all 0≤ j < N

}
,

SSS1
ppp,ΞΞΞ (Γ ) :=

{
fff ∈HHH−1/2

× (divΓ ,Γ ) : fff |Γj ∈ SSS
1
ppp j ,ΞΞΞ j

(ΓΓΓ j) for all 0≤ j < N
}
,

S2
ppp,ΞΞΞ (Γ ) :=

{
f ∈ H−1/2(Γ ) : f |Γj ∈ S2

ppp j ,ΞΞΞ j
(ΓΓΓ j) for all 0≤ j < N

}
.

We assume ppp and ΞΞΞ to be such that they coincide on every patch-interface.

Remark 3 Note that a different definition of the considered spline spaces could be achieved by
application of the trace operators to the volumetric parametrisation, provided their existence, see
Theorem 1. However, the construction above seems more suitable for the analysis of approximation
properties.

3 Approximation Properties of Conforming Spline Spaces

We will now investigate approximation properties of the spaces defined in the previous section.
This will be done through the introduction of quasi-interpolation operators, projections, which are
defined in terms of a dual basis.

For one-dimensional spline spaces Schumaker [46, Sec. 4.2] introduced quasi-interpolants,
defined in via some dual functionals

λi,p : L2([ξi,ξi+p+1])→K,

such that

Πp,Ξ : f 7→ ∑
0≤i<k

λi,p( f )bp
i . (4)

Note that, by definition of the λi,p they merely require f to be square integrable. Moreover, the
operators depend on the specific knot vectors, which we do not reference for notational purposes.

As shown in [3], a tensor product construction utilising the above projection yields interpolants
Π 0

ppp,ΞΞΞ , ΠΠΠ 1
ppp,ΞΞΞ , Π 2

ppp,ΞΞΞ mapping onto the spaces S0
ppp,ΞΞΞ ([0,1]

2), SSS1
ppp,ΞΞΞ ([0,1]

2), and S2
ppp,ΞΞΞ ([0,1]

2), as ex-
plained in [3, p. 169ff], where error estimations and L2-stability for B-spline approximations have
been also been provided. A crucial property of the construction is as follows.

Lemma 2 (Commuting Interpolation Operators, [3, Prop. 5.8]) The diagram

H1
(
(0,1)2

)
HHH
(

div,(0,1)2
)

L2
(
(0,1)2

)
S0

ppp,ΞΞΞ ([0,1]
2) SSS1

ppp,ΞΞΞ ([0,1]
2) S2

ppp,ΞΞΞ ([0,1]
2)

curlcurlcurl

Π0
ppp,ΞΞΞ

div

ΠΠΠ1
ppp,ΞΞΞ Π2

ppp,ΞΞΞ

curlcurlcurl div

commutes.
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Remark 4 For the two-dimensional setting [3] introduces two spaces SSS1
ppp,ΞΞΞ and SSS1∗

ppp,ΞΞΞ , which corre-
spond to curl conforming and divergence conforming spaces, respectively. Since we are interested
mostly in spaces of the div-type and the spaces differ only by a rotation, we will not mention
the two different types of spline spaces. However, it should be noted that our spaces of type SSS1

ppp,ΞΞΞ

correspond to those of type SSS1∗
ppp,ΞΞΞ in the cited literature.

By application of the pull-backs used to define the spline spaces one can immediately generalise
the projectors and all results to the case of functions on the physical domains. Corollary 5.12 of [3]
reveals that for the case of a single patch Γj the following holds.

Corollary 1 (Single Patch Approximation Estimate, [3, Cor. 5.12]) Let Γj be a single patch
domain and let Assumptions 5 and 7 hold. Then we find that∥∥∥u−Π

0
ppp,ΞΞΞ u

∥∥∥
Hr(Γj)

. hs−r‖u‖Hs(Γj)
, 0≤ r ≤ s≤ p+1,∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥
HHHr(Γj)

. hs−r‖uuu‖HHHs(Γj)
, 0≤ r ≤ s≤ p,∥∥u−Π

2
ppp,ΞΞΞ u

∥∥
Hr(Γj)

. hs−r‖u‖Hs(Γj)
, 0≤ r ≤ s≤ p.

Indeed, the construction of ΠΠΠ 1
ppp,ΞΞΞ makes it possible to estimate∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥
HHHr(divΓ ,Γj)

. hs−r‖uuu‖HHHs(divΓ ,Γj)
, 0≤ r ≤ s≤ p,

since, by properties of the pull-backs, the operators also commute w.r.t. the surface differential
operators one finds that∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥2
HHHr(divΓ ,Γj)

=
∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥2
HHHr(Γj)

+
∥∥divΓ (uuu)−divΓ (ΠΠΠ

1
ppp,ΞΞΞuuu)

∥∥2
Hr(Γj)

=
∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥2
HHHr(Γj)

+
∥∥divΓ (uuu)−Π

2
ppp,ΞΞΞ divΓ (uuu)

∥∥2
Hr(Γj)

,

allowing to apply the estimates of the previous corollary.
For the remainder of this section, we will generalise these notions for the multipatch case.

3.1 Multipatch Quasi-interpolation Operators

We now want to generalise the above to the multipatch setting. For this, we need to construct inter-
polation operators capable of preserving continuity across patch boundaries. For one-dimensional
spline spaces Sp(Ξ) and f ∈C∞([0,1]), [3, Sec. 2.1.5] defines

Π̃p,Ξ : f 7→ ∑
0≤i<k

λ̃i,p( f )bp
i ,
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where for 0 < i < k−1 we set λ̃i,p( f ) = λi,p( f ), but additionally, require

λ̃0,p( f ) = f (0) as well as λ̃k−1,p( f ) = f (1).

This will yield versions of the projection operators which respect boundary conditions.
Analogously to the construction in [15], we can now construct quasi-interpolation operators for

the multipatch case that commute w.r.t. derivation. Investigation of the one-dimensional diagram

H1(0,1) L2(0,1)

Sp(Ξ) Sp−1(Ξ ′)

Π̃p,Ξ

∂x

Π̃∂
p,Ξ

∂x

(5)

makes clear that a suitable choice of Π̃ ∂
p,Ξ is given by

Π̃
∂
p,Ξ : f 7→ ∂η

[
Π̃p,Ξ

∫
η

0
f (x) dx

]
. (6)

By diagram chase and application of the fundamental theorem of calculus one can see that (6)
renders Diagram (5) commutative.

Proposition 1 (Spline Preserving Property) The operator Π̃ ∂
p,Ξ : L2(0,1)→ Sp−1(Ξ ′) preserves

B-splines within Sp−1(Ξ ′).

Proof. By [17, Sec. 2] we know that the assertion holds for Π̃p,Ξ . Fixing a spline b′ ∈ Sp−1(Ξ ′),
we know that there exists a b ∈ Sp(Ξ) with ∂xb = b′, since ∂x : Sp(Ξ)→ Sp−1(Ξ ′) is surjective.
Now, since b ∈ H1(0,1), the assertion follows by diagram chase. ut

An immediate consequence of this proposition is the fact, that the operator Π̃ ∂
p,Ξ is a projection.

Defining quasi-interpolation operators via

Π̃
0
ppp,ΞΞΞ := Π̃p1,Ξ1 ⊗ Π̃p2,Ξ2 ,

Π̃ΠΠ
1
ppp,ΞΞΞ := (Π̃p1,Ξ1 ⊗ Π̃

∂
p2,Ξ2

)× (Π̃ ∂
p1,Ξ1
⊗ Π̃p2,Ξ2),

Π̃
2
ppp,ΞΞΞ := Π̃

∂
p1,Ξ1
⊗ Π̃

∂
p2,Ξ2

,

(7)

where ⊗ denotes the tensor-product and × denotes the Cartesian product, we can now define global
projections on the physical domain via application of the pull-backs.

Definition 11 (Global Interpolation Operators) Let ΞΞΞ and ppp denote N-tuples of pairs of knot
vectors and polynomial degrees, respectively. Let Γ =

⋃
0≤ j<N Γj be a multipatch boundary induced

by a family of diffeomorphisms {FFF j}0≤ j<N as in Definition 6. For a family of patchwise linear
operators {L j}0≤ j<N we denote by {L̃ j}0≤ j<N their extensions by 0 onto Γ and write⊕

0≤ j<N

L j := ∑
0≤ j<N

L̃ j.
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Now, the global B-spline projections are defined as

Π̃
0
Γ

:=
⊕

0≤ j<N

(
(ι0(FFF j))

−1 ◦ Π̃
0
ppp j ,ΞΞΞ j

◦ ι0(FFF j)
)
,

Π̃ΠΠ
1
Γ

:=
⊕

0≤ j<N

(
(ι1(FFF j))

−1 ◦Π̃ΠΠ
1
ppp j ,ΞΞΞ j

◦ ι1(FFF j)
)
,

Π̃
2
Γ

:=
⊕

0≤ j<N

(
(ι2(FFF j))

−1 ◦ Π̃
2
ppp j ,ΞΞΞ j

◦ ι2(FFF j)
)
,

i.e., by patchwise application of the projections of (7) with their corresponding pull-backs and
push-forwards.

Note that, since the pullbacks are commuting with the differential operators in the reference domain
and surface differential operators, an analogue of Lemma 2 holds also for the global interpolants
[41].

For the global interpolation operators to be well defined, we require a certain amount of
regularity. This can be formalised as follows.

Lemma 3 (Regularity Required for the Commuting Diagram Property) The interpolation
operators Π̃ 0

Γ
, Π̃ΠΠ

1
Γ and Π̃ 2

Γ
are well defined for functions in H1+ε(Γ ), HHHε(divΓ ,Γ ) and Hε(Γ ),

respectively, for any ε > 0. Moreover, the diagram

H1+ε(Γ ) HHHε(divΓ ,Γ ) Hε(Γ )

S0
ppp,ΞΞΞ (Γ ) SSS1

ppp,ΞΞΞ (Γ ) S2
ppp,ΞΞΞ (Γ )

curlcurlcurlΓ

Π̃0
Γ

divΓ

Π̃ΠΠ
1
Γ

Π̃2
Γ

curlcurlcurlΓ divΓ

commutes.

Proof. By Sobolev Imbedding Theorems, see [23, Sec. 8], we know that any function in H1+ε(Γ )
admits a continuous representative. Thus, by definition of Π̃ 0

Γ
, it is well defined for functions in

H1+ε(Γ ). Its definition via integration makes the operators Π̃ ∂
p,Ξ well defined for functions in

Hε(Γ ), which immediately yields the assertion about Π̃ 2
Γ
. It remains to show that HHHε(divΓ ,Γ )

is within the domain of Π̃ΠΠ
1
Γ . Considering each interface separately, by applying Gauss’ theorem

in the union of the two adjacent patches, one can see that the normal component of any function
in HHHε(divΓ ,Γ ) is continuous across patch boundaries. By tensor product construction of Π̃ 1Π̃ 1

Π̃ 1
Γ

on each patch w.r.t. the reference domain, the continuous component can be identified with the
domain of the operators of type Π̃p,Ξ . Thus, the interpolation is well defined. With regard to the
interior and the tangential component along patch interfaces, by definition of the dual functionals
λ̃i via integration, and integration within the definition of Π̃ ∂

p,Ξ , regularity of HHHε(Γ ) suffices for the
operation to be well defined. The commuting property follows analogously to [3, Prop. 5.8]. ut

The constructions of (7) and Definition 11 can easily be generalised to three dimensions, see
Appendix A.
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3.2 Convergence Properties of Multipatch Quasi-Interpolation Operators

We will now provide approximation estimates for the introduced interpolation operators. Note that,
by construction, it is clear that the boundary interpolating projections commute w.r.t. the differential
operators. It is however not clear whether the construction in (6) and (7) impacts the convergence
behaviour w.r.t. h-refinement.

To utilise the commuting property to show convergence in the energy spaces, we need an
analogue of Corollary 1 for the multipatch operators.

The classical proofs rely heavily on the L2-stability of the projectors. Unfortunately, due to
the interpolation at 0 and 1, the multipatch variants lose this property. Thus, we need to establish
another suitable stability condition.

Proposition 2 (Stability of Π̃p,Ξ ) Let Assumption 5 hold. Assume f to be continuous in a neigh-
bourhood around 0 and 1 and let I = (ξ j,ξ j+1). Let Ĩ denote the support extension of I. Then it
holds that ∥∥Π̃p,Ξ ( f )

∥∥
L2(I) . ‖ f‖L2(Ĩ)+h| f |H1(Ĩ), (8)∣∣Π̃p,Ξ ( f )
∣∣
H1(I) . ‖ f‖H1(Ĩ). (9)

Moreover, we find ∥∥∥Π̃
∂
p,Ξ ( f )

∥∥∥
L2(I)

. ‖ f‖L2(Ĩ).

Proof. The first two inequalities have been discussed by [17, Prop. 2.3]. Investigating the third
assertion, we set g(x) =

∫ x
0 f (t) d t.

The proof concludes by a nontrivial application of the Poincaré inequality as follows.
For this, we set C =− 1

|Ĩ|
∫

Ĩ g dx, where
∣∣Ĩ∣∣ denotes the Lebesgue measure of Ĩ, and observe that

∥∥∥Π̃
∂
p,Ξ ( f )

∥∥∥
L2(I)

=

∥∥∥∥∂xΠ̃p,Ξ

∫ x

0
f (t) d t

∥∥∥∥
L2(I)

=

∥∥∥∥∂xΠ̃p,Ξ

(∫ x

0
f (t) d t +C

)∥∥∥∥
L2(I)

=

∣∣∣∣Π̃p,Ξ

(∫ x

0
f (t) d t +C

)∣∣∣∣
H1(I)

. (‖g+C‖2
L2(Ĩ)+ |g+C|2H1(Ĩ))

1/2, (10)

where the inequality follows from (9). Now, since by definition of C we find that 1
|Ĩ|
∫

Ĩ g dx =−C,

we can apply the Poincaré inequality, see e.g. [51], which yields

‖g+C‖L2(Ĩ) . |g|H1(Ĩ) = ‖ f‖L2(Ĩ),
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for the first term of (10). For the second term, we find

|g+C|2H1(Ĩ) =
∫

Ĩ
|∂x(g(x)+C)|2 dx = |g|2H1(Ĩ) = ‖ f‖2

L2(Ĩ)

and the assertion follows. ut

Utilising the stability condition, we now can provide an error estimate in one dimension.

Proposition 3 (Approximation Properties of Π̃p,Ξ ) Let the assumptions of Proposition 2 hold.
For integers 1≤ s≤ p+1 one finds∥∥ f − Π̃p,Ξ f

∥∥
L2(I) . hs‖ f‖Hs(Ĩ), for all f ∈ Hs(0,1),

and for integers 0≤ s≤ p one finds∥∥∥ f − Π̃
∂
p,Ξ f

∥∥∥
L2(I)

. hs‖ f‖Hs(Ĩ), for all f ∈ Hs(0,1).

Proof. We investigate merely the case of Π̃p,Ξ . Due to the stability of Π̃ ∂
p,Ξ as discussed in

Proposition 2, we can prove the other case by similar means.
For the first inequality, as in [3, Prop. 4.2], it is enough to consider classical polynomial

estimates together with Proposition 2 to achieve∥∥ f − Π̃p,Ξ f
∥∥

L2(I) ≤ ‖ f −q‖L2(I)+
∥∥Π̃p,Ξ (q− f )

∥∥
L2(I)

. ‖ f −q‖L2(I)+‖q− f‖L2(Ĩ)+h|q− f |H1(Ĩ)

. hs‖ f‖Hs(Ĩ),

which holds for a sensible choice of q, i.e., the L2-orthogonal approximation w.r.t. the polynomials
of degree no higher than p. ut

We state the main result of this section.

Theorem 2 (Approximation via Commuting Multipatch Quasi-Interpolants) Let Assumptions
5 and 7 be satisfied and let s be integer-valued. Let f0 ∈Hs

pw(Γ ), 2≤ s, as well as fff 1 ∈HHHs
pw(Γ ), 1≤

s, and f2 ∈ Hs
pw(Γ ), 0≤ s. Moreover, let each function be within the domain of the interpolation

operator applied below, cf. Lemma 3. We find that∥∥ f0− Π̃
0
Γ f0
∥∥

L2(Γ )
. hs‖ f0‖Hs

pw(Γ ), 2≤ s≤ p+1,∥∥ f0− Π̃
0
Γ f0
∥∥

H1(Γ )
. hs−1‖ f0‖Hs

pw(Γ ), 2≤ s≤ p+1,∥∥∥ fff 1−Π̃ΠΠ
1
Γ fff 1

∥∥∥
LLL2(Γ )

. hs‖ fff 1‖HHHs
pw(Γ ), 1≤ s≤ p,∥∥ f2− Π̃

2
Γ f2
∥∥

L2(Γ )
. hs‖ f2‖Hs

pw(Γ ), 0≤ s≤ p.

We moreover find that∥∥∥ fff 1−Π̃ΠΠ
1
Γ fff 1

∥∥∥
HHH0(divΓ ,Γ )

. hs‖ fff 1‖HHHs
pw(divΓ ,Γ ), 1≤ s≤ p. (11)
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Proof. Due to the properties of the pull-backs and the locality of the norms involved, it suffices
to provide a patchwise argument in the reference domain. Note that the regularity of the spline
approximation is always sufficient for the involved norms to be defined since it is enforced by the
interpolation property of the Π̃ at the patch interfaces.

[17, Prop. 4.2] directly provides∥∥ f − Π̃ppp,ΞΞΞ f
∥∥

Hr
(
(0,1)2

) . hs−r‖ f‖
Hs
(
(0,1)2

), (12)

for r = 0,1, from which the Π̃ 0
Γ

case follows immediately.
We will now provide a proof for the Π̃ 2

Γ
case by investigating Π̃ ∂

ppp,ΞΞΞ = Π̃ ∂
p,Ξ1
⊗ Π̃ ∂

p,Ξ2
, which

will be done largely analogous to the proofs within the cited literature. The third assertion follows
from a combination of the arguments in each vector component.

Let f ∈ Hs
(
(0,1)2

)
for some 1 ≤ s ≤ p. Note that this implies ‖ f‖Hs

x (0,1)
∈ L2

y(0,1) and
‖ f‖Hs

y (0,1)
∈ L2

x(0,1), where by the x- and y-indexed norms we denote the usual norm taken w.r.t.

the corresponding tensor product direction. Let I1× I2 = Q ⊂ (0,1)2 be an element. One can
estimate via triangle inequality that∥∥∥ f − Π̃

∂

ppp,ΞΞΞ f
∥∥∥

L2(Q)
=
∥∥∥ f − (Π̃ ∂

p,Ξ1
⊗ Π̃

∂
p,Ξ2

)( f )
∥∥∥

L2(Q)

≤
∥∥∥ f − (Π̃ ∂

p,Ξ1
⊗ Id)( f )

∥∥∥
L2(Q)

+
∥∥∥(Π̃ ∂

p,Ξ1
⊗ Id)( f )− (Π̃ ∂

p,Ξ1
⊗ Π̃

∂
p,Ξ2

)( f )
∥∥∥

L2(Q)
. (13)

By Proposition 3 we immediately can estimate the first term of (13) via∥∥∥ f − (Π̃ ∂
p,Ξ1
⊗ Id)( f )

∥∥∥2

L2(Q)
=
∫

I2

∥∥∥ f − Π̃
∂
p,Ξ1

f
∥∥∥2

L2(I1)
dy

. h2s
∫

I2
‖ f‖2

Hs(Ĩ1)
dy

. h2s‖ f‖2
Hs(Q̃). (14)

Now, we can estimate the second term of (13) by utilisation of the stability property from Proposition
2 and application of Proposition 3, which yields∥∥∥(Π̃ ∂

p,Ξ1
⊗ Id)( f )− (Π̃ ∂

p,Ξ1
⊗ Π̃

∂
p,Ξ2

)( f )
∥∥∥2

L2(Q)
.
∫

I1

∥∥∥ f − Π̃
∂
p,Ξ2

f
∥∥∥2

L2(Ĩ2)
dx

. h2s‖ f‖2
Hs(Q̃). (15)

Now the assertion follows. Again, we stress that the missing assertion for an interpolator of type
Π̃ ⊗ Π̃ ∂ follows analogously, even though it is not L2-stable due to the impact of the seminorm
term in (8). One needs merely replace either (14) or (15) with the corresponding argument from
[17, Prop. 4.2].
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For an investigation of (11), it suffices to utilise Lemma 3 together with the above to see that,
for 1≤ s≤ p, one finds∥∥∥ fff 1−Π̃ΠΠ

1
ppp,ΞΞΞ fff 1

∥∥∥
HHH0(div,(0,1)2)

≤
∥∥∥ fff 1−Π̃ΠΠ

1
ppp,ΞΞΞ fff 1

∥∥∥
LLL2((0,1)2)

+
∥∥∥div( fff 1−Π̃ΠΠ

1
ppp,ΞΞΞ fff 1)

∥∥∥
L2((0,1)2)

=
∥∥∥ fff 1−Π̃ΠΠ

1
ppp,ΞΞΞ fff 1

∥∥∥
LLL2((0,1)2)

+
∥∥∥div fff 1−div(Π̃ΠΠ 1

ppp,ΞΞΞ fff 1)
∥∥∥

L2((0,1)2)

=
∥∥∥ fff 1−Π̃ΠΠ

1
ppp,ΞΞΞ fff 1

∥∥∥
LLL2((0,1)2)

+
∥∥∥div fff 1−Π̃ΠΠ

2
ppp,ΞΞΞ div( fff 1)

∥∥∥
L2((0,1)2)

. hs‖ fff 1‖HHHs(div,(0,1)2),

from which the result follows by properties of the geometry mapping. ut

These results are immediately applicable to two-dimensional finite element methods with a
straight forward generalisation to three dimensions, see Appendix A.

Corollary 2 (Approximation Results for Finite Element Methods) Let Ω be a two dimensional
domain, satisfying Assumption 7. Let f0 ∈ H1(Ω), fff 1 ∈ HHH0(div,Ω) and f2 ∈ L2(Ω). Then, its
holds that

inf
fh∈S0

ppp,ΞΞΞ (Ω)
‖ f0− fh‖H1(Ω) . hs−1‖ f0‖Hs

pw(Ω), 1≤ s≤ p+1,

inf
fff h∈SSS1

ppp,ΞΞΞ (Ω)
‖ fff 1− fff h‖HHH0(div,Ω) . hs‖ fff 1‖HHHs

pw(div,Ω j)
, 0≤ s≤ p,

inf
fh∈S2

ppp,ΞΞΞ (Ω)
‖ f2− fh‖L2(Ω) . hs‖ f2‖Hs

pw(Ω), 0≤ s≤ p.

Proof. Due to the stability of the respective orthogonal projection P1 : H1(Ω) → S0
ppp,ΞΞΞ (Ω),

Pdiv : HHH0(div,Ω)→SSS1
ppp,ΞΞΞ (Ω) and P0 : L2(Ω)→ S2

ppp,ΞΞΞ (Ω), we immediately have the result for the
minimal values of s. Repeating the same steps as in the proof of Theorem 2, we find the result for
larger values of s and smooth choices of f0, fff 1 and f2. The assertion now follows by interpolation
arguments as in Lemma 1 and density of smooth functions in (subspaces of) L2(Ω). ut

Again, a generalisation of this result to the sequence

H1(Ω) HHH0(curlcurlcurl,Ω) HHH0(div,Ω) L2(Ω)
gradgradgrad curlcurlcurl div

on three-dimensional volumetric domains Ω is straight forward, cf. Appendix A. This includes in
particular also the approximation property of HHH0(curlcurlcurl,Ω), which, for two-dimensional domains,
coincides with the HHH0(div,Ω)-case, up to rotation, see [3, Sec. 5.5].

Remark 5 We emphasise that the interpolation operators constructed in this section are merely a
theoretical tool for which there are alternatives, cf. [26] or the sources cited therein. We utilise
the Schumaker quasi-interpolation operators [46], since they are often used within the spline
community and they suffice to show quasi-optimality w.r.t. h. In most implementations, it suffices
to implement the orthogonal projection or evaluate a suitable bilinear form via quadrature rules
rather than interpolation operators.
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4 Approximation Properties in Trace Spaces

Now, we will consider approximation properties of the spaces S0
ppp,ΞΞΞ (Γ ), SSS1

ppp,ΞΞΞ (Γ ) and S2
ppp,ΞΞΞ (Γ )

w.r.t. the fractional Sobolev spaces H1/2(Γ ), HHH−1/2
× (divΓ ,Γ ) and H−1/2(Γ ).

This will be done by investigation of the orthogonal projection. Due to its optimality, we know
that it must achieve the same convergence rates w.r.t. h-refinement as those of Theorem 2. Moreover,
properties of the orthogonal projection are of interest for an application in the context of partial
differential equations, since inf-sup conditions yield quasi-optimal behaviour for the approximate
solution w.r.t. the orthogonal approximation of the involved energy space [52].

We will start by utilisation of interpolation as in Lemma 1 and optimality of the orthogonal
projection of the respective energy space to get convergence results for positive fractional spaces.
This yields the following corollary.

Corollary 3 (Approximating H1/2(Γ ) with S0
ppp,ΞΞΞ (Γ )) Let Assumptions 5 and 7 be satisfied. Let

f ∈ Hs
pw(Γ )∩H1/2(Γ ) for integers 2≤ s≤ p+1, and let P1/2 f denote its H1/2(Γ )-orthogonal

projection onto S0
ppp,ΞΞΞ (Γ ). It holds that

∥∥ f −P1/2 f
∥∥

H1/2(Γ )
. hs−1/2‖ f‖Hs

pw(Γ ).

Proof. By Theorem 2 we know for integers s with 2≤ s≤ p+1 that

∥∥ f − Π̃
0
Γ ( f )

∥∥
Hr(Γ )

. hs−r‖ f‖Hs
pw(Γ ),

for both r ∈ {0,1}. Now, application of Lemma 1 yields

∥∥ f − Π̃
0
Γ ( f )

∥∥
H1/2(Γ )

. hs−1/2‖ f‖Hs
pw(Γ ).

By optimality of the H1/2(Γ )-orthogonal projection P1/2, we obtain the result. ut

Interpolation does not yield estimates in norms with negative index. Thus, to show the ap-
proximation properties of S2

ppp,ΞΞΞ (Γ ) in H−1/2(Γ ), we resort to an application of the Aubin-Nitsche
Lemma [1].

Corollary 4 (Approximating H−1/2(Γ ) with S2
ppp,ΞΞΞ (Γ )) Let Assumptions 5 and 7 be satisfied. Let

f ∈ H−1/2(Γ )∩Hs
pw(Γ ) for some s≥ 0. Let P−1/2 denote the H−1/2(Γ )-orthogonal projection

of f onto S2
ppp,ΞΞΞ (Γ ). Then it holds that

∥∥ f −P−1/2 f
∥∥

H−1/2(Γ )
. hs+1/2‖ f‖Hs

pw(Γ ), 0≤ s≤ p. (16)
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Proof. Assume, for now, that f ∈ L2(Γ )∩Hs
pw(Γ ), and let P0 denote the L2-orthogonal approxi-

mation onto S2
ppp,ΞΞΞ (Γ ). Since H−1/2(Γ ) is the dual space to H1/2(Γ ) we can estimate

‖ f −P0 f‖H−1/2(Γ ) := sup
06=v∈H1/2(Γ )

∣∣∣〈 f −P0 f ,v〉L2(Γ )

∣∣∣
‖v‖H1/2(Γ )

= sup
06=v∈H1/2(Γ )

∣∣∣〈 f −P0 f ,v−P0v〉L2(Γ )

∣∣∣
‖v‖H1/2(Γ )

. ‖ f −P0 f‖L2(Γ ) sup
06=v∈H1/2(Γ )

‖v−P0v‖L2(Γ )

‖v‖H1/2(Γ )

.

(17)

By Theorem 2, we now arrive at ‖ f −P0 f‖H−1/2(Γ ) ≤ h1/2+s‖ f‖Hs
pw(Γ ) for 0≤ s≤ p. Replacing

P0 by P−1/2 now yields the assertion, analogously to the proof of Corollary 3, using interpolation,
optimality of P−1/2 w.r.t. the H−1/2(Γ )-error and density of regular functions in H−1/2(Γ ). ut

Remark 6 This result does not necessarily rely on Theorem 2. Since H−1/2(Γ ) allows for discon-
tinuities, it can be reproduced by application of the patchwise estimates of Corollary 1. This has
been done in [24].

Remark 7 Note that by putting global norms on the right hand side, analogues of Corollaries 3
and 4 can be shown for minimal regularities, i.e., 1/2 ≤ s in the case of the H1/2(Γ )-error and
−1/2 ≤ s in the sense of the H−1/2(Γ )-error by almost analogous means, cf. [45, Thm. 4.2.17].
However, these results rely on the smoothness of the geometry for the norm on the right hand side
to be well defined. We aim for our results to be immediately applicable to the multipatch setting of
isogeometric analysis, where we want to require smoothness of the geometry only patchwise.

Now, what is missing to understand the approximation properties of the spaces S0
ppp,ΞΞΞ (Γ ),

SSS1
ppp,ΞΞΞ (Γ ), and S2

ppp,ΞΞΞ (Γ ) in the trace space setting w.r.t. the diagram in Figure 2, is an analysis of the

approximation properties of SSS1
ppp,ΞΞΞ (Γ ) in the space HHH−1/2

× (divΓ ,Γ ).
For this purpose, we want to employ an argument similar to the one of Corollary 4. However,

as will be discussed in a moment, this cannot be done with such ease as before in Corollary 4.
We choose to follow the lines of [10], from whose argumentation we deviate only to adapt to the
B-spline setting. The proof is lengthy and technical, thus we only state the result, with the full proof
discussed in Section 4.1.

Theorem 3 (Approximating HHH−1/2
× (divΓ ,Γ ) with SSS1

ppp,ΞΞΞ (Γ )) Let Assumptions 5 and 7 be sat-

isfied and let fff ∈ HHHs
pw(divΓ ,Γ ) ∩HHH−1/2

× (divΓ ,Γ ) for some s ≥ −1/2. Let P× f denote the

HHH−1/2
× (divΓ ,Γ )-orthogonal projection of fff onto SSS1

ppp,ΞΞΞ (Γ ). Then one finds

‖ fff −P× f‖
HHH−1/2
× (divΓ ,Γ )

. h1/2+s‖ fff‖HHHs
×(divΓ ,Γ ),
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for all −1/2≤ s≤ 0. Moreover, for 0≤ s≤ p, it holds that

‖ fff −P× f‖
HHH−1/2
× (divΓ ,Γ )

. h1/2+s‖ fff‖HHHs
pw(divΓ ,Γ ).

Remark 8 Note that Corollary 4 and Theorem 3 include the classical results from boundary element
theory, even though a first glance suggests otherwise. This is due to the fact, that p refers not to
the degree of S2

ppp,ΞΞΞ (Γ ) and SSS1
ppp,ΞΞΞ (Γ ) respectively, but rather to the degree at the beginning of the

sequence S0
ppp,ΞΞΞ (Γ )→ SSS1

ppp,ΞΞΞ (Γ )→ S2
ppp,ΞΞΞ (Γ ). In terms of basis functions, the space S2

ppp,ΞΞΞ (Γ ) contains
splines of degree p−1, thus shifting the notation by 1.

4.1 Proof of Theorem 3

Within this section, we provide a detailed proof of Theorem 3, by means of a patch by patch duality
argument, similar to the one utilised to achive the estimate in H−1/2(Γ ). However, one problem
with a naïve patchwise argument is due to the fact, that HHH−1/2

× (divΓ ,Γ ) incorporates a (weak)
continuity across the patch normals w.r.t. ∂Γj, see [14]. Thus an orthogonal approximation required
for an Aubin-Nitsche type argument cannot easily be localised to a single patch.

This problem can be overcome by defining a suitable projection manually, by applying the
orthogonal projection only on the part without outgoing flux and localising the approximation of
the outgoing fluxes to the patch boundaries. For this purpose, we define the space Ks

j as the kernel
of the local trace operator

γnnn, j( fff )(xxx0) := lim
Γj3x̃xx→xxx0

fff (x̃xx) ·nnnxxx0 , for all xxx0 ∈ ∂Γj,

on HHHs(divΓ ,Γj), where nnnxxx0 denotes the outer unit normal w.r.t. ∂Γj at xxx0 ∈ ∂Γj. The same way we
denote the kernel of γnnn, j on SSS1

ppp,ΞΞΞ (Γj) by KS
j . Note that γnnn : HHH0(div,(0,1)2)→ H−1/2(∂ (0,1)2) is

continuous [27, Thm. 2.5]. Due to Assumption 7 this immediately transfers to

γnnn, j : HHH0(divΓ ,Γj)→ H−1/2(∂Γj).

Here, H−1/2(∂Γj) has to be understood as a mapped counterpart to H−1/2(∂ (0,1)2), in complete
analogy to the definition for two-dimensional domains, cf. [37, p. 96ff]. This definition is, again,
valid due to Assumption 7.

Remark 9 (Local Shifting Property) We remark that γnnn, j enjoys a local shifting property, in the
sense that γnnn, j : HHHs(Γj)→ Hs−1/2(Γj,i) is continuous for s > 1/2, which implies continuity of
γnnn, j : HHHs(divΓ ,Γj)→ Hs−1/2(∂Γj,i). Here, ∂Γj,i denotes one of the four “sides” of ∂Γj. This can
be seen, since in the reference domain, and restricted to one side of ∂ (0,1)2 the identity γnnn( fff ) =
γ0(eee

ᵀ
i · fff ) holds, where eeei is either (1,0)ᵀ or (0,1)ᵀ, depending on the side. This allows us to locally

utilise the canonical continuity assertions of γ0, cf. [37, Thm. 3.37].

We now proceed by reviewing two technical results.
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Lemma 4 (Continuity Estimate, [10, Lem. 4.8]) Fix a patch Γj. Let ζ ∈ H−1/2(∂Γj) such
that 〈ζ ,1〉H−1/2(∂Γj)×H1/2(∂Γj)

= 0 holds. Let ξ ∈ HHH0(divΓ ,Γj) be the solution to the problem

〈ξ ,v〉HHH0(divΓ ,Γj)
= 0 for all v ∈ K0

j with γnnn, j(ξ ) = ζ onto ∂Γj. Then one finds ‖ξ‖HHHs+1/2(divΓ ,Γj)
≤

Cs‖ζ‖Hs(∂Γj)
for both s =−1 and s =−1/2.

Lemma 5 (Duality Relation, [10, Lem. 4.7]) Let (K−1/2
j )′ denote the dual of K−1/2

j w.r.t. HHH0(divΓ ,Γj).

There exists an isomorphism K1/2
j → (K−1/2

j )′.

In the following we will be interested in the spaces HHHs
pw(divΓ ,Γ ), which we equip with the

norm ∑0≤ j<N ‖ · ‖HHHs
pw(divΓ ,Γj) for s≥−1/2. Note that HHH−1/2

pw (divΓ ,Γ ) is continuously embeddable

in HHH−1/2
× (divΓ ,Γ ), cf. the first inequality of [10, Eq. (98)].

Definition 12 (Conforming Projection) For ggg∈HHH1
pw(Γ ) we define the projection π onto SSS1

ppp,ΞΞΞ (Γ )
as the solution to the problem

π jggg := (πggg)|Γj ,

〈π jggg−ggg|Γj ,bbb〉HHH0(divΓ ,Γj)
= 0, ∀bbb ∈ KS

j , ∀0≤ j < N, (18)

〈γnnn, j(π jggg)− γnnn, j(ggg),γnnn, j(bbb)〉L2(∂Γj)
= 0, ∀bbb ∈ NS

j , ∀0≤ j < N. (19)

Herein, we use the decomposition

SSS1
ppp,ΞΞΞ (Γj) = NS

j ⊕KS
j , (20)

where NS denotes the span of basis functions with non-vanishing normal trace γnnn, j. Note that this
induces a unique decomposition of every function in bbb ∈ SSS1

ppp,ΞΞΞ (Γ ), since it is clear that both NS
j and

KS
j can be identified with specific, disjoint sets of degrees of freedom, i.e., are discrete and closed

subspaces of SSS1
ppp,ΞΞΞ (Γ ).

The idea behind this projection is similar to projections in the context of mixed finite element
methods, which is equal to the face by face projection that preserves boundary data on interfaces, see
[5]. It chooses the part without outgoing flux as the optimal approximation w.r.t. the HHH0(divΓ ,Γj)-
norm, and the part incorporating outgoing fluxes as optimal w.r.t. the L2(∂Γj)-norm. Since the
outgoing flux is continuous across patch boundaries, (19) ensures the same for the discretisation.

Note that the projection is indeed well defined with respect to the composition (20) since each
of the lines (18) and (19) fixes a unique element of NS

j or KS
j , respectively.

Remark 10 (Locality of the L2(∂Γj)-Projection) We remark that, due to the structure of the spline
space and locality of the L2(∂Γj)-scalar product, the L2(∂Γj)-orthogonal projection in (19) is
equivalent to application of the projection to each side ∂Γj,i of ∂Γj separately.
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To argue that the projector π j has the expected approximation properties, we require a dis-
crete right-inverse of γnnn, j. Such constructions are readily available, often via approximation of
the continuous right inverse. This requires some boundary value preserving interpolation to be
HHH(div,Γ )-stable, which is not satisfied by Π̃ΠΠ

1
Γ . However, a similar result is satisfied. By application

of an inverse estimate for polynomials to (8) one observes that the one-dimensional interpolant
Π̃ is L2(0,1)-stable for piecewise polynomial inputs. The following construction builds on this
observation.

Proposition 4 (Discrete Right Inverse of the Normal Trace) There is a discrete right inverse

RRRh, j : γnnn, j(SSS1
ppp,ΞΞΞ (Γj))→ SSS1

ppp,ΞΞΞ (Γj)

to γnnn, j which is continuous in the sense of H−1/2(∂Γj)→HHH0(divΓ ,Γj).

Proof. The proof is simple yet technical. W.l.o.g. we conduct the argument in the reference
domain. First, we note that there exists a Raviart-Thomas space, that we denote by Qppp, consisting
of elements QQQp = Qp,p−1×Qp−1,p, cf. [20] on [0,1]2 such that SSS1

ppp,ΞΞΞ ([0,1]
2)⊆Qppp.

For Qppp, the existence of a continuous right inverse RRRQppp is known, cf. [44, Thm. 4.1.9] for
lowest-order Raviart-Thomas elements. The same construction can be applied straightforwardly
for high order elements, as it relies on the existence of stable quasi-interpolation operators [5,
Eq. (2.5.26)], and the increased regularity of the continuous (as opposite to discrete) right inverse,
see again [44, Thm. 4.1.9] for details. See also [20, Thm. 3.10], noting that in two dimensions the
curl conforming spaces correspond to a rotation of the divergence conforming ones.

As a second step, we set our lifting as RRRh, j = Π̃ΠΠ
1
ppp,ΞΞΞ ◦RRRQppp and show continuity. For this, we note

that the Π̃ operators commute with the surface differential operators, and that by Proposition 2 and
the tensor-product construction (7) the operator Π̃ 2

ppp,ΞΞΞ is L2-stable. For u ∈ γnnn(SSS1
ppp,ΞΞΞ (Γj))⊆ γnnn(Qppp)

we estimate

∥∥∥Π̃ΠΠ
1
ppp,ΞΞΞ (RRRQpppu)

∥∥∥2

HHH0(div,(0,1)2)

=
∥∥∥Π̃ΠΠ

1
ppp,ΞΞΞ (RRRQpppu)

∥∥∥2

LLL2((0,1)2)
+
∥∥∥div(Π̃ΠΠ 1

ppp,ΞΞΞ (RRRQpppu))
∥∥∥2

L2((0,1)2)

=
∥∥∥Π̃ΠΠ

1
ppp,ΞΞΞ (RRRQpppu)

∥∥∥2

LLL2((0,1)2)
+
∥∥Π̃

2
ppp,ΞΞΞ (div(RRRQpppu))

∥∥2
L2((0,1)2)

.
∥∥∥Π̃ΠΠ

1
ppp,ΞΞΞ (RRRQpppu)

∥∥∥2

LLL2((0,1)2)
+
∥∥div(RRRQpppu)

∥∥2
L2((0,1)2)

.

For the first term we estimate only one vector component, since the estimate for the second
vector component follows analogously. Let Rxu denote the first vector component of RRRQpppu. Making
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the tensor product structure explicit, we apply the assertions of Proposition 2 which yields∥∥∥(Π̃ ∂
p,Ξ ⊗ Π̃p,Ξ )Rxu

∥∥∥2

L2((0,1)2)
.
∥∥(Id⊗Π̃p,Ξ )Rxu

∥∥2
L2((0,1)2)

≤
∫ 1

0

∥∥(Π̃p,Ξ ◦Rx)(u(x, ·))
∥∥2

L2(0,1) dx

.
∫ 1

0

(
‖(Rxu)(x, ·)‖L2(0,1)+h|(Rxu)(x, ·)|H1(0,1)

)2
dx.

Note that, by choice of SSS1
ppp,ΞΞΞ ([0,1]

2)⊆Qppp the seminorm term is well-defined. Since Rxu(x, ·) is a
continuous piecewise polynomial for any x ∈ [0,1], we can apply inverse estimates [9, Lem. 4.5.3],
i.e., h|(Rxu)(x, ·)|H1(0,1) . ‖(Rxu)(x, ·)‖L2(0,1). This together with the above yields∥∥∥Π̃ΠΠ

1
ppp,ΞΞΞ (RRRQpppu)

∥∥∥
HHH0(div,(0,1)2)

.
∥∥RRRQpppu

∥∥
HHH0(div,(0,1)2)

.

As a third step, we invoke the continuity of RRRQppp and pull-back to the physical domain. The assertion
follows. ut

Lemma 6 (Convergence Property) For any 0 ≤ j < N and uuu ∈HHHs(divΓ ,Γj) the projection π j
defined in Definition 12 fulfills∥∥uuu−π juuu

∥∥
HHH0(divΓ ,Γj)

. hs‖uuu‖HHHs(divΓ ,Γj)
, 1≤s≤ p.

Proof. Let us define the subspace of discrete functions whose normal trace coincides with π juuu,
i.e., the space

WWW = {www ∈ SSS1
ppp,ΞΞΞ (Γj) : γnnn, j(www) = γnnn, j(π juuu)}= {www ∈ SSS1

ppp,ΞΞΞ (Γj) : www−π juuu ∈ KS
j }.

In complete analogy to the proof of the Céa Lemma, see [9, Eq. (2.8.1)], we know that∥∥uuu−π juuu
∥∥

HHH0(divΓ ,Γj)
. inf

www∈WWW
‖uuu−www‖HHH0(divΓ ,Γj)

. (21)

Let us define
www =ΠΠΠ

1
ppp,ΞΞΞuuu−RRRh, j

(
γnnn, j(ΠΠΠ

1
ppp,ΞΞΞuuu)− γnnn, j(π juuu)

)
,

where ΠΠΠ 1
ppp,ΞΞΞ is the single patch operator of Lemma 2 lifted to Γj. By definition, it is immediate to

see that γnnn, j(www) = γnnn, j(π juuu), and therefore one finds that www ∈WWW . The triangle inequality yields

‖uuu−www‖HHH0(divΓ ,Γj)
≤
∥∥uuu−ΠΠΠ

1
ppp,ΞΞΞuuu

∥∥
HHH0(divΓ ,Γj)

+
∥∥RRRh, j

(
γnnn, j(ΠΠΠ

1
ppp,ΞΞΞuuu)− γnnn, j(π juuu)

)∥∥
HHH0(divΓ ,Γj)

.

The first term on the right can be estimated by∥∥uuu−ΠΠΠ
1
ppp,ΞΞΞuuu

∥∥
HHH0(divΓ ,Γj)

. hs‖uuu‖HHHs(divΓ ,Γj)
,
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due to Corollary 1. The second term can be bounded from above by∥∥RRRh, j
(
γnnn, j(ΠΠΠ

1
ppp,ΞΞΞuuu)− γnnn, j(π juuu)

)∥∥
HHH0(divΓ ,Γj)

.
∥∥γnnn, j(ΠΠΠ

1
ppp,ΞΞΞuuu)− γnnn, j(π juuu)+ γnnn, j(uuu)− γnnn, j(uuu)

∥∥
HHH−1/2(∂Γj)

.
∥∥γnnn, j(ΠΠΠ

1
ppp,ΞΞΞuuu−uuu)

∥∥
HHH−1/2(∂Γj)

+
∥∥γnnn, j(uuu−π juuu)

∥∥
HHH−1/2(∂Γj)

.
∥∥ΠΠΠ

1
ppp,ΞΞΞuuu−uuu

∥∥
HHH0(divΓ ,Γj)

+
∥∥γnnn, j(uuu)− (P0 ◦ γnnn, j)(uuu)

∥∥
HHH−1/2(∂Γj)

.

Here, we use the continuity of the lifting RRRh, j, followed by a triangle inequality, and the continuity
of γnnn, j together with the identity P0 ◦ γnnn, j = γnnn, j ◦π j. The first term can be estimated by application
of Corollary 1 while the second term can be handled via duality arguments. One notes that

∥∥γnnn, j(uuu)− (P0 ◦ γnnn, j)(uuu)
∥∥

H−1/2(∂Γj)
= sup

06=v∈H1/2(∂Γj)

〈(Id−P0)(γnnn, juuu),v〉L2(∂Γj)

‖v‖H1/2(∂Γj)

≤ ∑
i=0,...,3

 sup
06=vi∈H1/2(∂Γj,i)

〈(Id−P0)(γnnn, juuu),vi〉L2(∂Γj,i)

‖vi‖H1/2(∂Γj,i)

 ,
where each ∂Γj,i for i = 0, . . .3 corresponds to one of the smooth sides of Γj. In light of Remark 10,
application of the arguments in the proof of Corollary 4 yields∥∥γnnn, j(uuu)− (P0 ◦ γnnn, j)(uuu)

∥∥
H−1/2(∂Γj)

. hs
∑

i=0,...,3

∥∥γnnn, j(uuu)
∥∥

Hs−1/2(∂Γj,i)
.

One can apply the shift property of the normal trace as observed in Remark 9 and obtains∥∥γnnn, j(uuu)− (P0 ◦ γnnn, j)(uuu)
∥∥

H−1/2(∂Γj)
. hs

∑
i=0,...,3

∥∥γnnn, j(uuu)
∥∥

Hs−1/2(∂Γj,i)
. hs‖uuu‖HHHs(divΓ ,Γj)

.

This finally yields

‖uuu−www‖HHH0(divΓ ,Γj)
. hs‖uuu‖HHHs(divΓ ,Γj)

,

which along with (21) concludes the proof. ut

To complete the proof of Theorem 3, we need to introduce one last definition.

Definition 13 (Interface Approximation) Given a function fff ∈HHH1(Γj), its interface approxima-
tion is given by ϕϕϕ =ϕϕϕ0 +ϕϕϕ1, where ϕϕϕ1 ∈ NS

j is given as the solution to the problem

〈γnnn, j(ϕϕϕ1),γnnn, j(bbb)〉L2(∂Γj)
= 〈γnnn, j( fff ),γnnn, j(bbb)〉L2(∂Γj)

, ∀bbb ∈ NSSS
j , (22)

and ϕϕϕ0 ∈ K0
j given by

〈ϕϕϕ0,vvv〉HHH0(divΓ ,Γj)
= 〈 fff −ϕϕϕ1,vvv〉HHH0(divΓ ,Γj)

, ∀vvv ∈ K0
j . (23)
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The interface approximation ϕϕϕ is chosen as the HHH0(divΓ ,Γj)-optimal approximation of fff such that
the outgoing fluxes ϕϕϕ1 consist of the L2(∂Γj)-optimal approximation in the discrete sense. Note
that, due to the construction of the spline space, the same is obtained if one were to apply this
projection to each side of ∂Γj separately. Since ϕϕϕ1 as above is well-defined and the problem in (23)
is well-posed, it is clear that ϕϕϕ is well defined. Using this notion, we can now provide the following
result.

Remark 11 We remark that we require regularity of fff in Definitions 12 and 13 only for (19) and
(22) to be well defined in the sense of L2-orthogonality. Both definitions are merely technical
tools to provide an estimate w.r.t. the HHH−1/2

× (divΓ ,Γ )-orthogonal projection, which, by density
arguments, does not depend on the extra regularity.

We now have the required tools to show the desired convergence property.

Proof. (Proof of Theorem 3)
Fix an index 0 ≤ j < N, and, for now, assume fff to be regular enough for Theorem 2 to be

applicable. Specifically, this means that fff is smooth enough for Definitions 12 and 13 to be well
defined.

The triangle inequality with the interface approximation ϕϕϕ of fff on Γj as intermediate element
yields ∥∥ fff |Γj −π j( fff |Γj)

∥∥
HHH−1/2(divΓ ,Γj)

≤
∥∥ fff |Γj −ϕϕϕ

∥∥
HHH−1/2(divΓ ,Γj)

+
∥∥ϕϕϕ−π j fff

∥∥
HHH−1/2(divΓ ,Γj)

.
(24)

Let P0 denote the L2(∂Γj) orthogonal projection onto γnnn, j(SSS1
ppp,ΞΞΞ (Γj)). For the first term, we apply

Lemma 4 with ζ = γnnn, j( fff )−P0(γnnn, j( fff )) and ξ = fff |Γj −ϕϕϕ. Note that the required assumptions are
satisfied: Galerkin orthogonality yields that 〈ζ ,1〉H−1/2(∂Γj)×H1/2(∂Γj)

= 0 due to 1 ∈ γnnn, j
(
SSS1

ppp,ΞΞΞ (Γj)
)

and ξ is the solution to the problem given in Lemma 4 due to definition of the interface approxima-
tion, see (23). This results in∥∥ fff |Γj −ϕϕϕ

∥∥
HHH−1/2(divΓ ,Γj)

.
∥∥γnnn, j( fff )−P0(γnnn, j( fff ))

∥∥
H−1(∂Γj)

,∥∥ fff |Γj −ϕϕϕ
∥∥

HHH0(divΓ ,Γj)
.
∥∥γnnn, j( fff )−P0(γnnn, j( fff ))

∥∥
H−1/2(∂Γj)

.
(25)

Then, application of duality arguments as (17), compare also [10, Eq. (103)], yield the estimate∥∥ fff |Γj −ϕϕϕ
∥∥

HHH−1/2(divΓ ,Γj)
.
∥∥γnnn, j( fff )−P0(γnnn, j( fff ))

∥∥
H−1(∂Γj)

. h1/2∥∥γnnn, j( fff )−P0(γnnn, j( fff ))
∥∥

H−1/2(∂Γj)

. h1/2∥∥ fff −π j fff
∥∥

HHH0(divΓ ,Γj)
. (26)

Here the last inequality is due to the continuity of the normal trace, and the fact that, by (19),
P0 ◦ γnnn, j = γnnn, j ◦π j. Lemma 6 yields∥∥ fff |Γj −ϕϕϕ

∥∥
HHH−1/2(divΓ ,Γj)

. hs+1/2‖ fff‖HHHs(divΓ ,Γj)
(27)
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for 1≤s≤ p.
To estimate the second term of (24) we note that by Definition 13 and (19) we know that

γnnn, j(ϕϕϕ) = γnnn, j(π jϕϕϕ) holds, and thus (ϕϕϕ−π jϕϕϕ) ∈ K0
j follows. For all bbb ∈ KS

j ⊂ K0
j we find, through

application of (18), (23) and (18) again, that

〈π jϕϕϕ,bbb〉HHH0(divΓ ,Γj)
= 〈ϕϕϕ0 +ϕϕϕ1,bbb〉HHH0(divΓ ,Γj)

= 〈 fff −ϕϕϕ1 +ϕϕϕ1,bbb〉HHH0(divΓ ,Γj)

= 〈π j fff ,bbb〉HHH0(divΓ ,Γj)
.

This, together with γnnn, j(ϕϕϕ− fff ) = 0 which we know since (19) and (22) coincide, implies

π jϕϕϕ = π j fff , (28)

which yields (ϕϕϕ−π j fff ) ∈ K0
j ⊂ K−1/2

j . Thus, it follows that

∥∥ϕϕϕ−π j fff
∥∥

HHH−1/2(divΓ ,Γj)
= sup

06=vvv∈(K−1/2
j )′

〈ϕϕϕ−π j fff ,vvv〉HHH0(divΓ ,Γj)

‖vvv‖
(K−1/2

j )′

holds. We stress that K0
j ⊆ K−1/2

j and that K−1/2
j is a closed subspace of HHH−1/2(divΓ ,Γj). Lemma

5 and the fact that on the kernel of γnnn, j the projector π j coincides with the HHH0(divΓ ,Γj)-orthogonal
projection onto SSS1

ΞΞΞ ,ppp(Γ ), cf. (18), allow us to apply the Aubin-Nitsche technique to the above. From
this follows

sup
06=vvv∈(K−1/2

j )′

〈ϕϕϕ−π j fff ,vvv〉HHH0(divΓ ,Γj)

‖vvv‖
(K−1/2

j )′
. sup

06=www∈K1/2
j

〈ϕϕϕ−π j fff ,www〉HHH0(divΓ ,Γj)

‖www‖HHH1/2(divΓ ,Γj)

= sup
06=www∈K1/2

j

〈ϕϕϕ−π j fff ,www−π jwww〉HHH0(divΓ ,Γj)

‖www‖HHH1/2(divΓ ,Γj)

≤
∥∥ϕϕϕ−π j fff

∥∥
HHH0(divΓ ,Γj)

sup
06=www∈K1/2

j

∥∥www−π jwww
∥∥

HHH0(divΓ ,Γj)

‖www‖HHH1/2(divΓ ,Γj)

.

Note that π j is applicable, since (19) is well defined due to γnnn, jwww = 0 almost everywhere. Corollary
1 yields∥∥ϕϕϕ−π j fff

∥∥
HHH−1/2(divΓ ,Γj)

. h1/2∥∥ϕϕϕ−π j fff
∥∥

HHH0(divΓ ,Γj)
(29)

. h1/2∥∥ϕϕϕ− fff |Γj

∥∥
HHH0(divΓ ,Γj)

+h1/2∥∥ fff |Γj −π j fff
∥∥

HHH0(divΓ ,Γj)
. (30)

The second term can again be estimated by application of Lemma 6. For the first term, we apply
the second equation of (25), which we can estimate in complete analogy to (26), which yields∥∥ϕϕϕ−π j fff

∥∥
HHH−1/2(divΓ ,Γj)

. hs+1/2‖ fff‖HHHs(divΓ ,Γj)
. (31)
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Collecting (27) and (31) and estimating the terms of (24) yields the patchwise estimate∥∥ fff −π j fff
∥∥

HHH−1/2(divΓ ,Γj)
. hs+1/2‖ fff‖HHHs(divΓ ,Γj)

.

Since HHH−1/2
pw (divΓ ,Γ ) is continuously embeddable in HHH−1/2

× (divΓ ,Γ ) we arrive at the corresponding
global assertion

‖ fff −π fff‖
HHH−1/2
× (divΓ ,Γ )

. hs+1/2‖ fff‖HHHs
pw(divΓ ,Γ ), 1≤ s≤ p, (32)

by properties of π . Now stability of P× w.r.t. HHH−1/2
× (divΓ ,Γ ) and Céa’s Lemma yields the estimates

‖ fff −P× fff‖
HHH−1/2
× (divΓ ,Γ )

. ‖ fff‖
HHH−1/2
× (divΓ ,Γ )

, (33)

‖ fff −P× fff‖
HHH−1/2
× (divΓ ,Γ )

. h1/2‖ fff‖HHH0(divΓ ,Γ ), (34)

as well as

‖ fff −P× fff‖
HHH−1/2
× (divΓ ,Γ )

. h1/2‖ fff‖HHH0(divΓ ,Γ ), (35)

‖ fff −P× fff‖
HHH−1/2
× (divΓ ,Γ )

. hs+1/2‖ fff‖HHHs
pw(divΓ ,Γ ). (36)

By density of regular functions in HHH−1/2
× (divΓ ,Γ ) and continuity of the orthogonal projection, the

results carry over to non-smooth fff . Now we can use interpolation to generalise the result to all
−1/2≤ s≤ p. This can be done thanks to Appendix 2 of [10], which proves that HHH−1/2

× (divΓ ,Γ )
and HHH0(divΓ ,Γ ) induce an interpolation scale, i.e., can be handled similarly to Lemma 1. Specif-
ically, see [10, Thm. 4.12] where the notation translates to ours via X = HHH−1/2

× (divΓ ,Γ ) and
X s =HHHs

×(divΓ ,Γ ). ut

5 Conclusion

We have derived multipatch approximation results of the spline complex w.r.t. the norms required
by boundary- and finite element methods.

Let the functions f0, fff 1, f2 be regular enough for the norms on both left and right-hand side
of the following estimates to be well defined, see also Lemma 3. For multipatch boundaries Γ in
accordance with Assumptions 5 and 7, we proved

inf
fh∈S0

ppp,ΞΞΞ (Γ )
‖ f0− fh‖H1/2(Γ ) . hs−1/2‖ f0‖Hs

pw(Γ ) 2≤ s≤ p+1, (37)

inf
fff h∈SSS1

ppp,ΞΞΞ (Γ )
‖ fff 1− fff h‖HHH−1/2

× (divΓ ,Γ )
. hs+1/2‖ fff 1‖HHHs

×(divΓ ,Γ ) −1/2≤ s≤ 0, (38)

inf
fff h∈SSS1

ppp,ΞΞΞ (Γ )
‖ fff 1− fff h‖HHH−1/2

× (divΓ ,Γ )
. hs+1/2‖ fff 1‖HHHs

pw(divΓ ,Γ ) 0≤ s≤ p, (39)

inf
fh∈S2

ppp,ΞΞΞ (Γ )
‖ f2− fh‖H−1/2(Γ ) . hs+1/2‖ f2‖Hs

pw(Γ ) 0≤ s≤ p. (40)
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Here, (37) follows from Corollary 3, (38) and (39) follow from Theorem 3, (40) follows from
Corollary 4. Moreover, we can apply these results for finite element methods as well. By extension
of the tensor product structure in the construction of spline spaces and interpolation operators
by one dimension, see Appendix A, we find for multipatch domains Ω ⊆ Rd , with d = 2,3, the
estimates

inf
fh∈S0

ppp,ΞΞΞ (Ω)
‖ f3− fh‖H1(Ω) . hs−1‖ f3‖Hs

pw(Ω) d ≤ s≤ p+1,

inf
fff h∈SSS1

ppp,ΞΞΞ (Ω)
‖ fff 4− fff h‖HHH0(div,Ω) . hs‖ fff 4‖HHHs

pw(div,Ω j)
1≤ s≤ p,

inf
fh∈S2

ppp,ΞΞΞ (Ω)
‖ f5− fh‖L2(Ω) . hs‖ f5‖Hs

pw(Ω) 0≤ s≤ p,

for f3, fff 4 and f5 smooth enough for the norms to be defined, as explained in Corollary 2. Estimates
for three-dimensional spaces, including HHH(curlcurlcurl,Ω), follow analogously, cf. Corollary 5 in Appendix
A. We can drop the regularity requirements from Theorem 2, since they are only required by the
constructed quasi-interpolants, and not by the orthogonal projection w.r.t. the corresponding Sobolev
spaces, see Section 4.

Taking into account the three-dimensional generalisation of the construction in Section 3, see
Appendix A, we now have access to a discretisation of the diagram in Figure 2, given by

S0
p̃pp,Ξ̃̃Ξ̃Ξ

(Ω) SSS1
p̃pp,Ξ̃̃Ξ̃Ξ

(Ω) SSS2
p̃pp,Ξ̃̃Ξ̃Ξ

(Ω) S3
p̃pp,Ξ̃̃Ξ̃Ξ

(Ω)

S0
ppp,ΞΞΞ (Γ ) SSS1

ppp,ΞΞΞ (Γ ) S2
ppp,ΞΞΞ (Γ )

γ0

gradgradgrad curlcurlcurl

γγγt γnnn

div

curlcurlcurlΓ divΓ

(41)

for suitable choices of (lists of tuples of) polynomial degrees p̃pp,ppp and knot vectors Ξ̃ΞΞ ,ΞΞΞ , and under
the assumption that Ω is given as a multipatch domain. Note that a corresponding discretisation of
HHH−1/2(curlΓ ,Γ ) can be obtained in complete analogy to the construction of SSS1

ppp,ΞΞΞ (Γ ).
To this end, we know that for any problem formulated within the isogeometric framework that

enjoys a discrete inf-sup condition or a variant of Céa’s Lemma w.r.t. the norms above, we can
expect a convergence of optimal order w.r.t. h-refinement [52]. Note, however, that the orthogonal
projection will, in general, not have the commuting diagram property in the sense of Lemma 3.
This distinction is critical for existence and uniqueness proofs for problems requiring conforming
discretisations.
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Appendix A

All the presented estimates are applicable to achieve three-dimensional estimates as well, going
back to [3,15]. We will briefly go over the construction and state the result corresponding to
Theorem 2.
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For p > 0 we define the spline complex on [0,1]3 via

S0
ppp,ΞΞΞ ([0,1]

3) := Sp1,p2,p3(Ξ1,Ξ2,Ξ3),

SSS1
ppp,ΞΞΞ ([0,1]

3) := Sp1−1,p2,p3(Ξ
′
1,Ξ2,Ξ3)×

×Sp1,p2−1,p3(Ξ1,Ξ
′
2,Ξ3)×

×Sp1,p2,p3−1(Ξ1,Ξ2,Ξ
′
3),

SSS2
ppp,ΞΞΞ ([0,1]

3) := Sp1,p2−1,p3−1(Ξ1,Ξ
′
2,Ξ

′
3)×

×Sp1−1,p2,p3−1(Ξ
′
1,Ξ2,Ξ

′
3)×

×Sp1−1,p2−1,p3(Ξ
′
1,Ξ

′
2,Ξ3),

S3
ppp,ΞΞΞ ([0,1]

3) := Sp1−1,p2−1,p3−1(Ξ
′
1,Ξ

′
2,Ξ

′
3).

(42)

Let f0, fff 1, fff 2, f3 be sufficiently smooth. We can use the transformations

ι0(FFF)( f0) := f0 ◦FFF , ι1(FFF)( fff 1) := (dFFF)>( fff 1 ◦FFF),

ι2(FFF)( fff 2) := det(dFFF)(dFFF)−1( fff 2 ◦FFF), ι3(FFF)( f3) := det(dFFF)( f3 ◦FFF),
(43)

to define the corresponding spaces in the single patch physical domain as in (3), cf. [32]. Now, the
projections Π̃ 0

ppp,ΞΞΞ ,Ω , Π̃ΠΠ
1
ppp,ΞΞΞ ,Ω , Π̃ΠΠ

2
ppp,ΞΞΞ ,Ω , and Π̃ 3

ppp,ΞΞΞ ,Ω w.r.t. the reference domain for ΞΞΞ = [Ξ1,Ξ2,Ξ3]
defined in complete analogy to (7), commute with the differential operators gradgradgrad,curlcurlcurl and div.
By properties of the pullbacks, cf. [3, Sec. 5.1], this holds for the physical domain as well. The
three-dimensional global B-spline projections are then defined as

Π̃
0
Ω

:=
⊕

0≤ j<N

(
(ι0(FFF j))

−1 ◦ Π̃
0
ppp,ΞΞΞ ,Ω ◦ ι0(FFF j)

)
, Π̃ΠΠ

1
Ω

:=
⊕

0≤ j<N

(
(ι1(FFF j))

−1 ◦Π̃ΠΠ
1
ppp,ΞΞΞ ,Ω ◦ ι1(FFF j)

)
,

Π̃ΠΠ
2
Ω

:=
⊕

0≤ j<N

(
(ι2(FFF j))

−1 ◦Π̃ΠΠ
2
ppp,ΞΞΞ ,Ω ◦ ι2(FFF j)

)
, Π̃

3
Ω

:=
⊕

0≤ j<N

(
(ι3(FFF j)

−1 ◦ Π̃
3
ppp,ΞΞΞ ,Ω ◦ ι3(FFF j)

)
.

In complete analogy to the proof of Theorem 2, one can achieve the following result for the
three-dimensional multipatch spline complex.

Corollary 5 Let the volumetric analogue of Assumptions 5 and 7 be satisfied. Assume the functions
f1, fff 2, fff 3, f4 to be sufficiently smooth, i.e., such that the norms and interpolation operators below
are well defined. Then one finds, for integers s as below,∥∥ f1− Π̃

0
Ω f1
∥∥

Hr(Ω)
. hs−r‖ f1‖Hs

pw(Ω), 3≤ s≤ p+1,∥∥∥ fff 2−Π̃ΠΠ
1
Ω fff 2

∥∥∥
HHH(curl,Ω)

. hs‖ fff 2‖HHHs
pw(curl,Ω), 2 < s≤ p,∥∥∥ fff 3−Π̃ΠΠ

2
Ω fff 3

∥∥∥
HHH(div,Ω)

. hs‖ fff 3‖HHHs
pw(div,Ω), 1 < s≤ p,∥∥ f4− Π̃

3
Ω f4
∥∥

L2(Ω)
. hs‖ f4‖Hs

pw(Ω), 0≤ s≤ p,

for r = 0,1.
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