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Abstract. As a consequence of Bloch’s theorem, the numerical computation of the fermionic

ground state density matrices and energies of periodic Schrödinger operators involves integrals
over the Brillouin zone. These integrals are difficult to compute numerically in metals due to

discontinuities in the integrand. We perform an error analysis of several widely-used quad-

rature rules and smearing methods for Brillouin zone integration. We precisely identify the
assumptions implicit in these methods and rigorously prove error bounds. Numerical results for

two-dimensional periodic systems are also provided. Our results shed light on the properties

of these numerical schemes, and provide guidance as to the appropriate choice of numerical
parameters.

1. Introduction

The computation of the electronic properties of a d-dimensional perfect crystal in a mean-field
setting (e.g. Kohn-Sham density functional theory) formally requires to solve a periodic problem
with infinitely many electrons. In practice, a truncation to a finite supercell composed of Ld

crystal unit cells with periodic boundary conditions is necessary for the actual computation, and
L is increased until an acceptable accuracy is achieved. Bloch’s theorem allows for a tremendous
reduction of computational costs by an explicit block-diagonalization of the Hamiltonian operator,
transforming an electronic problem for LdN one-body wave functions, where N is the number of
electron pairs per unit cell, to Ld electronic problems for N one-body wave functions. In the
infinite-L limit, the theorem states that properties of the perfect crystal can be obtained as an
integral over the Brillouin zone (a d-dimensional torus) of properties of a parametrized system of
N electron pairs. The truncation to a supercell of Ld unit cells can then be seen as a numerical
quadrature of this integral. This leads to the famous Monkhorst-Pack numerical scheme [20].

Mathematically, the natural question is that of the speed of convergence of a given electronic
property as L→∞. There appears a distinction between insulators, characterized by a band gap,
and metals, with no band gap. In a sense that will be made precise later, electrons are localized in
insulators, but delocalized in metals. Accordingly, the convergence of electronic properties is much
faster for insulators than for metals. This translates to quantities of interest being very smooth
across the Brillouin zone in insulators, so that the quadrature is very efficient: see for instance
[11], which proves the exponential convergence with L of a number of properties of interest for
insulators in the reduced Hartree-Fock model. In this paper, we aim to extend these results
to the case of metals, under natural genericity assumptions on the band structure at the Fermi
level (see Assumptions 1 and 2 in Section 3.1). To reduce the technical content of the paper,
we limit ourselves to the case of independent electrons modeled by a single-particle Hamiltonian
H = − 1

2∆ + V on L2(Rd), where V is a given (non self-consistent) periodic potential.

For metals, because of the absence of a band gap, quantities of interest are discontinuous when
the electronic bands εnk cross the Fermi level εF , and specific quadrature rules have to be used
to locate this singular set (the Fermi surface) and recover an acceptable convergence speed. In
the simple case when the Fermi level intersects a single isolated band B 3 k 7→ f(k) := εn0,k ∈ R
(which can be the case for a metal with 2n0 + 1 electrons per unit cell), the problem of computing
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the ground-state energy boils down to evaluating

E := E(εF)

where the function R 3 ε 7→ E(ε) ∈ R is defined by

(1.1) E(ε) =

ˆ
B
f(k)1(f(k) 6 ε) dk

and the Fermi level εF by the constraint

(1.2)
1

|B|

ˆ
B
1(f(k) 6 εF) dk =

1

2
.

The Fermi surface then is the level set {k ∈ B | f(k) = εF} of the function f , and the Fermi
level is chosen such that the volume of the set Ω := {k ∈ B | f(k) < εF} is half the one of the
Brillouin zone. Similar quadrature problems are encountered in the level set method introduced by
Osher and Sethian [23]. However, the Brillouin zone integration problem encountered in electronic
structure calculation has some specificities. First, for one of the most important quantities of
interest, namely the ground-state energy, the function to be integrated on Ω is precisely the level
set function f (see (1.1)), which requires a specific analysis. Second, the shape of the Fermi
surface can be very complicated for real materials, and the required accuracy is much higher than
in standard applications of the level set methods, where linear approximations of the boundary of
Ω from a fixed uniform grid are usually sufficient [22, 26]. Additional technical difficulties appear
when the Fermi level intersects several bands, and when the quantity of interest is not the ground-
state energy, but some observable involving the Bloch eigenfunctions of H and non only the Bloch
eigenvalues εnk, such as e.g. the ground-state density.

The most famous Brillouin zone integration method is the linear tetrahedron method and its
improved version by Blöchl [2] (the Blöchl scheme is not covered by the results in this paper,
and we plan to investigate it in a forthcoming paper). Other numerical quadratures have been
proposed [21, 24] (see also [12] for an adaptive numerical scheme). In this paper, we study these
quadrature rules, and prove that an interpolation of quantities of interest to order p coupled to
a reconstruction of the Fermi surface with a method of order q leads, in general, to a total error
of order L−(min(p+1,q+1)): this is the content of Theorem 4.5. On the other hand, the error made
on the ground state energy is, to leading order, proportional to the error made on the number of
electrons, which is kept fixed by varying the Fermi level: therefore, the energy is less sensitive to
the location of the Fermi surface, and the leading order contribution to the error vanishes, leaving
a total error of order L−(min(p+1,2q+2)).

Another way to improve the convergence, and the most widely used method to compute prop-
erties of metals, is the smearing method [18]. This amounts to regularizing the discontinuities of
the occupation numbers, restoring smoothness across the Brillouin zone. The smearing parameter
σ > 0, which has the dimension of an energy, should be chosen small enough so that it does not
change the properties of interest too much, but large enough so that the quadrature is efficient. In
numerical codes, this choice is left to the users, who must use their expertise to select an appro-
priate value for the parameter σ. This is a complex task, and rules of thumb provide suboptimal
choices of σ.

We show in this paper that, up to sub-exponential factors, the total error for a given smearing
parameter σ and supercell of size L is bounded by C(σp+1 + e−ησL) for some C ∈ R+ and η > 0,
where p > 0 is the order of the smearing method used (Theorem 5.11). This leads to the conclusion
that σ should in practice be varied at the same time as L to balance the two sources of error. We
also investigate the precise convergence with respect to L at σ > 0 fixed, and find the surprising
result that, while the convergence is exponential when the Fermi-Dirac smearing is used, it is

super-exponential (bounded by Ce−ηL
4/3

) when Gaussian-based smearing methods are used, due
to the different complex-analytic properties of these functions. Such a phenomenon has already
been observed in [27], in the context of the locality of the density matrix of metals with Gaussian
smearing.
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The structure of the paper is as follows. We introduce our notation and recall the basic prop-
erties of the periodic Schrödinger operator H = − 1

2∆ + V in Section 2. We carefully study the
band structure of this operator in the vicinity of the Fermi level in Section 3. We analyze in-
terpolation methods in Section 4 and smearing methods in Section 5. Technical results on the
complex-analytic properties of the integrand in smearing methods are proved in Appendix A. Two-
dimensional numerical results illustrating our theoretical results are presented in Section 6. Some
tests are also given where our assumptions on the band structure are violated (in the presence of
a van Hove singularity or an eigenvalue crossing at the Fermi level).

2. Notation and model

In this section, we set our notation, and define the different quantities of interest.

Let d ∈ {1, 2, 3} denote the dimension of the crystal, and R ⊂ Rd the crystalline lattice. We
denote by R∗ the dual (or reciprocal) lattice, by Γ the fundamental unit cell of R, and we let B be
either the first Brillouin zone, or the fundamental unit cell of R∗. Our results being independent
of this choice, we will call B “the Brillouin zone” for simplicity. The periodicities in R and R∗
equip the sets Γ and B with the topology of a d-dimensional torus.

Throughout this paper, Ck(E,F ) denotes the usual class of k times continuously differentiable
functions from E to F , and Lp(Rd) (resp. Hs(Rd)) denotes the usual Lebesgue (resp. Sobolev)
space on Rd, while Lpper (resp. Hs

per) denote spaces of R-periodic complex-valued functions on

the torus Γ. In particular, the space L2
per is a Hilbert space when endowed with its natural inner

product

∀f, g ∈ L2
per, 〈f, g〉 :=

ˆ
Γ

f(r)g(r)dr.

We use the notation B := B(L2
per) to denote the space of bounded operators on L2

per, and

Sp := Sp(L
2
per) to denote the Schatten class of compact operators on L2

per with finite norms

‖A‖Sp :=
(

TrL2
per
|A|p

)1/p

. In particular, S1 is the space of trace-class operators on L2
per, while

S2 is the space of Hilbert-Schmidt operators on L2
per. We finally introduce, for s > 0, the space

S1,s :=
{
γ ∈ S1 | γ∗ = γ, (1−∆)s/2γ(1−∆)s/2 ∈ S1

}
,

which we endow with the norm

‖γ‖S1,s
:= ‖(1−∆)s/2γ(1−∆)s/2‖S1

.

Let O be an operator acting on L2(Rd) which commutes with R-translations. Thanks to the
Bloch-Floquet transform Z [25, Chapter XIII], we have the decomposition

Z∗OZ =

 ⊕
B
Okdk,

where we denote by
ffl
B := 1

|B|
´
B, and each of the operators Ok, the Bloch fibers of O, acts on

L2
per. If O is locally trace-class, its trace per unit cell is then given by

Tr (O) :=

 
B

TrL2
per

(Ok) dk.

We consider the one-body electronic Hamiltonian

H := −1

2
∆ + V acting on L2(Rd),

where V ∈ L∞per(Rd) is a real-valued R-periodic potential. This hypothesis could be relaxed and
a more general class of potentials could be considered; this choice simplifies some technical proofs
in the Appendix by ensuring that V is bounded as an operator on L2

per. It is well-known that H

is a bounded from below self-adjoint operator on L2(Rd) with domain H2(Rd), whose spectrum is
purely absolutely continuous (see e.g. [25, Theorem XIII.100]). Since the operator H commutes
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with R-translations, we can consider its Bloch-Floquet transform. For k ∈ B, the fiber Hk is given
by

(2.1) Hk =
1

2
(−i∇+ k)

2
+ V = −1

2
∆− ik · ∇+

k2

2
+ V,

which is a self-adjoint operator on L2
per with domain H2

per. It is bounded from below, and with
compact resolvent. We denote by ε1k 6 ε2k 6 · · · its eigenvalues ranked in increasing order,

counting multiplicities, and by (unk)n∈N∗ ∈
(
H2

per

)N∗
a corresponding L2

per-orthonormal basis of
eigenvectors, so that

Hkunk = εnkunk, 〈unk, umk〉 = δnm.

Seeing Hk as a bounded perturbation of the operator 1
2 (−i∇+ k)

2
, standard min-max arguments

show that there exist C1, C1 ∈ R, C2, C2 > 0 such that

C1 + C2n
2/d 6 εnk 6 C1 + C2n

2/d.(2.2)

Let us now introduce several physical observables. A fundamental quantity in our study is the
one-body density matrix at level ε ∈ R, which is the bounded non-negative self-adjoint operator
acting on L2(Rd) and defined by

γ(ε) := 1(H 6 ε).

Its Bloch-Floquet decomposition is simply

γk(ε) := 1(Hk 6 ε) =
∑
n∈N∗

1(εnk 6 ε)|unk〉〈unk|.

The integrated density of states is the function N from R to R+ defined by

(2.3) ∀ε ∈ R, N (ε) := Tr (γ(ε)) =
∑
n∈N∗

 
B
1(εnk 6 ε)dk.

The function N is a non-decreasing continuous function, with N (−∞) = 0 and N (+∞) = +∞. In
particular, if N denotes the number of electron pairs per unit cell, then N−1({N}) is a non-empty
interval, of the form [ε−, ε+]. If ε− < ε+, the system is an insulator. In this case, supercell methods
are very efficient to compute numerically the properties of the crystals (see for instance [20, 11]).
In this article, we focus on the metallic case ε− = ε+. In this case, the Fermi level of the system
is the unique number εF := ε− = ε+.

We then introduce the integrated density of energy E : R→ R defined by

(2.4) E(ε) := Tr (Hγ(ε)) =
∑
n∈N∗

 
B
εnk1(εnk 6 ε)dk,

and the (zero-temperature) ground state energy (per unit cell) E := E(εF ). Finally, the electronic
density up to level ε is defined as the density of the locally trace-class R-periodic operator γ(ε),
that is the real-valued function ρε ∈ L1

per characterized by

∀v ∈ L∞per,

ˆ
Γ

ρε(r)v(r)dr = Tr (vγ(ε)) =
∑
n∈N∗

 
B
〈unk|v|unk〉1(εnk 6 ε)dk.

We therefore have

(2.5) ∀r ∈ Γ, ρε(r) :=
∑
n∈N∗

 
B
|unk|2(r)1(εnk 6 ε)dk.

The (zero-temperature) ground state electronic density then is ρ := ρεF .

Remark 2.1 (Observables). In this article, we focus on the numerical calculation of the integrated
density of states N , the Fermi level εF , the ground state energy per unit cell E and the ground
state electronic density ρ of the system. It is possible to extend our results to a broader class
of observables, but precising the complete set of assumptions needed to formulate our results is
cumbersome and we will not proceed further in this direction.
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Remark 2.2 (Discretization errors). The goal of this paper is to study various numerical schemes
to compute Brillouin zone integrals of the form above. In particular, we assume that the eigenvalues
εnk and eigenvectors unk are perfectly known on some mesh of the Brillouin zone B, and we study
the numerical errors coming from the discretization of the Brillouin zone in (2.3), (2.4) and (2.5).
We do not study the effects of numerical errors in the computation of the εnk and unk themselves.
We also do not study more complicated nonlinear models such as the periodic Kohn-Sham model.

It is however interesting to note that the discretization of the eigenvalue problem Hkunk =
εnkunk in a k-consistent manner is not trivial: since Hk is not equal but unitarily equivalent to
Hk+K for K ∈ R∗, a fixed Galerkin space will yield eigenvalues εnk that are not R∗-periodic.
Conversely, popular choices such as a k-dependent Galerkin space Vk consisting of all the plane
waves eiK·r such that 1

2 |k + K|2 6 Ecut will yield eigenvalues that are periodic, but not continuous
as a function of k. It is possible to restore continuity by using a smooth cutoff; we plan to explore
this possibility from a numerical analysis viewpoint in a forthcoming paper.

3. Properties of the band structure at the Fermi level

We first partition the Brillouin zone B into several sets, whose definitions are gathered here
for the sake of clarity. For a given energy level ε ∈ R, we introduce, for n ∈ N (and with the
convention that ε0k = −∞), the sets

Bn(ε) := {k ∈ B, εnk < ε < εn+1,k} n-th component of the Brillouin zone,

Sn(ε) := {k ∈ B, εnk = ε} n-th sheet of the level set,

S(ε) :=
⋃
n∈N
Sn(ε) = {k ∈ B, ∃n ∈ N, εnk = ε} level set.

The set S(εF ) is called the Fermi surface. For all ε ∈ R, it holds that

(3.1) B = S(ε) ∪

(⋃
n∈N
Bn(ε)

)
.

From (2.2), the unions in the above definition of S(ε) and in (3.1) are finite. The sets S1(ε), S2(ε), · · ·
are pairwise disjoint outside of band crossings where εnk = εn+1,k = ε for some n. The boundary
of Bn(ε) is ∂Bn(ε) = Sn(ε)∪Sn+1(ε). A typical example of the sets Bn(ε) and Sn(ε) is represented
in Figure 1.

S4

S3

S3

S3 S3

B4

B3

B2

B2

B2

B2

Figure 1. Partitioning of the Brillouin zone into the sets Bn(ε) and Sn(ε), for a
given value of ε.

As we shall see in Lemma 3.2, various spectral quantities are smooth in Bn(ε) and on Sn(ε). It
will be useful in our analysis to extend this smoothness to the following neighborhoods of these
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ε

k

εF
δ

εnk

εn+1,k

S̃n(εF , δ)

S̃n+1(εF , δ)

B̃n−1(εF , δ)

B̃n(εF , δ)

B̃n+1(εF , δ)

Figure 2. A schematic view of the sets B̃n and S̃n.

sets (see Figure 2): for δ > 0, we set

B̃n(ε, δ) :=
⋃

ε′∈(ε−δ,ε+δ)

Bn(ε′) = {k ∈ B, ∃ε′ ∈ (ε− δ, ε+ δ), εnk < ε′ < εn+1,k} ,

S̃n(ε, δ) :=
⋃

ε′∈(ε−δ,ε+δ)

Sn(ε′) = {k ∈ B, εnk ∈ (ε− δ, ε+ δ)} .

Here and thereafter, smooth means infinitely differentiable.

3.1. Assumptions on the Fermi level. Recall that we are studying metallic systems, so that
the Fermi level εF is uniquely defined. In particular, the Fermi surface S(εF ) is non empty. We
make the following two assumptions to ensure a good mathematical structure of the Fermi surface:

Assumption 1 (no band crossings at εF ): ∀n 6= m, Sn(εF ) ∩ Sm(εF ) = ∅;
Assumption 2 (no van Hove singularities at εF ): ∀n ∈ N∗, ∀k ∈ Sn(εF ), ∇kεnk 6= 0.

From Assumption 2, we see that, for all n ∈ N∗, the map εn : k 7→ εnk is a submersion near the
Fermi surface, so that Sn(εF ) = ε−1

n (εF ) is either empty or a smooth compact co-dimension 1
submanifold of the torus B. From Assumption 1, S(εF ) is itself a smooth compact manifold, as
the finite disjoint union of the Sn(εF ).

Remark 3.1 (Genericity of hypotheses). It is an interesting question to know whether such as-
sumptions hold generically, i.e. for almost every potential V . For a generic smooth family Hk

of self-adjoint operators on L2
per with compact resolvents, eigenvalue crossings happen on a set of

codimension 3 [29], and band degeneracies on isolated points. Band crossings or degeneracies
thus do not appear in general at the Fermi level in the physical cases d 6 3, and we would nat-
urally expect that both these assumptions are generically true. There are however two important
caveats: first, many natural conjectures on the genericity of properties of the band structure still
remain open in general (see [14] for an overview), and second, symmetries may force crossings
or degeneracies. For instance, Assumption 1 is violated in the case of the free electron gas, or in
graphene [9], due to the high symmetries of these systems. We will treat the case of the graphene
in future work. In the sequel, the quality of Assumption 1 and Assumption 2 are measured by
quantities δ0 > 0 and C∇ > 0 respectively (see Lemma 3.2 below). For instance, for systems with
Fermi level close to van-Hove singularity, C∇ will be small.

Let us define by

M := min{n ∈ N∗, Sn(εF ) 6= ∅} and M := max{n ∈ N∗, Sn(εF ) 6= ∅}.

The existence of M and M comes from (2.2), and it naturally holds that M 6M .
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In the next lemma, we collect a number of properties of the Fermi surface and of spectral

quantities on the sets B̃n(εF , δ) and S̃n(εF , δ). In order to state these results, we introduce the
density matrices

(3.2) γnk :=

n∑
m=1

|umk〉〈umk| acting on L2
per,

which are well-defined operators whenever εnk < εn+1,k, and the associated densities

(3.3) ρnk =

n∑
m=1

|umk|2 ∈ L1
per.

We recall that a smooth map F : Rd → E where E is a Banach space is real-analytic if it is locally
equal to its Taylor series.

Lemma 3.2. Under Assumption 1 and 2, there exists δ0 > 0 and C∇ > 0 such that

(i) For any n ∈ N∗ and for all 0 < δ 6 δ0, S̃n(εF , δ) 6= ∅ if and only if M 6 n 6M ;

(ii) for all M 6 m < n 6M, S̃m(εF , δ0) ∩ S̃n(εF , δ0) = ∅ ;

(iii) for all M 6 n 6M and all k ∈ S̃n(εF , δ0), |∇kεnk| > C∇ ;
(iv) for all M 6 n 6 M and all ε ∈ (εF − δ0, εF + δ0), Sn(ε) is a non-empty smooth compact

manifold of co-dimension 1, with non-zero Haussdorf measure |Sn(ε)|Hauss > 0. The same
properties hold for S(ε);

(v) assume in addition that V ∈ Hs
per for some s > 0. Then, for all M 6 n 6M ,

• the map k 7→ γnk is real-analytic from B̃n(εF , δ0) to S1,s+2;

• the map k 7→ ρnk is real-analytic from B̃n(εF , δ0) to Hs+2
per ;

• the map k 7→ εnk is real-analytic from S̃n(εF , δ0) to R.

Proof. Assertions (i) and (ii) come from Assumption 1 and the continuity of the maps k 7→ εnk.
We now prove (v). Using (v) and Assumption (ii) we will deduce (iii), which implies (iv).

Let M 6 n 6M and δ0 > 0 small enough so that (i) and (ii) hold true.

The map k 7→ εnk is continuous on B̃n(εF , δ0) and for all k ∈ B̃n(εF , δ0), we have εn+1,k−εnk >
0. Therefore, there exists 0 < δ1 < δ0 and g > 0 such that

∀k ∈ B̃n(εF , δ1), εn+1,k − εnk > g.

We first prove the analyticity of k 7→ γnk on B̃n(εF , δ1). Let k0 ∈ B̃n(εF , δ1). We then set
ε := εnk0

+ g/2, and consider the positively oriented loop (we denote by Σ := minσ(H))

C := [Σ− 1− i, ε− i] ∪ [ε− i, ε+ i] ∪ [ε+ i,Σ− 1 + i] ∪ [Σ− 1 + i,Σ− 1− i].

R
Σ

ε1k · · · εnk εn+1,k

C

ε

Figure 3. The contour C .

From the definition of C , we see that there exists 0 < δ2 < δ1 such that

∀k ∈ B s.t. |k− k0| 6 δ2, ∀λ ∈ C , |λ−Hk| > g/4.

In particular, we see that Cauchy’s residual formula

(3.4) γnk =
1

2πi

˛
C

dλ

λ−Hk
,
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holds for k in a neighborhood of k0. In addition,

Hk = Hk0 + (k− k0) · (−i∇+ k0) +
|k− k0|2

2
,

so that, for k− k0 small enough,

(λ−Hk)−1 = (λ−Hk0
)−1

(
1−

[(
(k− k0) · (−i∇+ k0) +

|k− k0|2

2

)
(λ−Hk0

)−1

])−1

.

For all 0 6 s′ 6 s, the linear operator (λ−Hk0
)−1 is continuous from Hs′

per to Hs′+2
per by classical

elliptic regularity results, and the operator in brackets is bounded on Hs′ . Therefore we obtain,
by expanding in Neumann series, that the map k 7→ γnk is real-analytic from a neighborhood of
k0 to B(Hs′

per, H
s′+2
per ). Using the fact that γnk = γ2

nk and a bootstrap argument, this implies that

the map k 7→ γnk is real-analytic from a neighborhood of k0 to B(L2
per, H

s+2
per ).

Let (v1k0 , · · · , vnk0) be an L2
per-orthonormal basis of Ran(γnk0), ṽjk = γnkvjk0 and

vik =

n∑
j=1

ṽjk[S
−1/2
k ]ji,

where Sk is the overlap matrix defined by [Sk]ji = 〈ṽjk, ṽik〉, so that (v1k, . . . , vnk) is an L2
per-

orthonormal basis of Ran γnk. Of course, it holds that ṽjk0
= vjk0

and Sk0
= Idn. It is easily

checked that the map k 7→ (v1k, · · · , vnk) ∈ (Hs+2
per )n is well-defined and real-analytic in a neigh-

borhood of k0. In particular, we have, in a neighborhood of k0, that

(1−∆)(s+2)/2γnk(1−∆)(s+2)/2 =

n∑
j=1

|wjk〉〈wjk|,

where the maps k 7→ wjk := (1 −∆)(s+2)/2vjk ∈ L2
per are real-analytic in a neighborhood of k0.

It follows that the map k 7→ γnk is analytic from a neighborhood of k0 to S1,s+2, hence from

B̃n(εF , δ1) to S1,s+2.

On the other hand, whenever s + 2 > d
2 (which is the case whenever s > 0 and d 6 3), it

holds that Hs+2
per is an algebra. As a result, from the analyticity of the map k 7→ (v1k, · · · , vnk) ∈

(Hs+2
per )n, we deduce the analyticity of the maps k 7→ ρnk :=

∑n
i=1 |uik|

2
=
∑n
i=1 |vik|

2 ∈ Hs+2
per .

To prove the analyticity of k 7→ εnk on S̃n(εF , δ1), we notice that S̃n(εF , δ1) = B̃n−1(εF , δ1) ∩
B̃n(εF , δ1). As a result, both k 7→ γn−1,k and k 7→ γnk are analytic from S̃n(εF , δ1) to S1,s+2.

Therefore, on S̃n(εF , δ1), it holds that

εnk = TrL2
per

[Hk(γnk − γn−1,k)]

= TrL2
per

[
(1−∆)−1/2Hk(1−∆)−1/2(1−∆)1/2(γnk − γn−1,k)(1−∆)1/2

]
.

Since the maps S̃n(εF , δ1) 3 k 7→ (1 − ∆)−1/2Hk(1 − ∆)−1/2 ∈ B and S̃n(εF , δ1) 3 k 7→ (1 −
∆)1/2(γnk − γn−1,k)(1−∆)1/2 ∈ S1 are real-analytic, this proves the real-analyticity of the map

k 7→ εnk on S̃n(εF , δ1). �

3.2. Density of states. We are now concerned with the properties of the density of states D(ε),
defined as the derivative of the integrated density of states N (ε) defined in (2.3). Since N is a
non-decreasing continuous function which is increasing on σ(H) and constant outside σ(H), D is
a positive measure on R whose support is exactly σ(H). Our goal in this section is to establish
that, under Assumptions 1 and 2, both N and D are smooth around εF .

We recall some tools of differential geometry. In the sequel, if S is a (smooth) hypersurface
of B, we denote by dσS the Haussdorf measure on S. We write dσ instead of dσS if there is no
risk of confusion. We first recall the co-area formula, which allows the integration of a function
g : B → R along the level sets of another function E : B → R.
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Lemma 3.3 (co-area formula [8]). Let E : B → R be a Lipschitz function and g ∈ L1(B), then

ˆ
B
g(k)|∇E(k)|dk =

ˆ
R

(ˆ
E−1{ε}

g(k)dσ(k)

)
dε.

Setting f = g|∇E|, we deduce that for all f : B → R such that k 7→ f(k)
|∇E(k)| ∈ L

1(B), then

(3.5)

ˆ
B
f(k)dk =

ˆ
R

(ˆ
E−1{ε}

f(k)

|∇E(k)|
dσ(k)

)
dε.

This allows us to differentiate functions defined as integrals on the sets Sn(ε) and Bn(ε) with
respect to the energy level ε.

Lemma 3.4. Let f ∈ Cp(B,R). Under Assumptions 1 and 2 and with the notation of Lemma 3.2,
the maps Fn : (εF − δ0, εF + δ0)→ R, M 6 n 6M , defined by

∀ε ∈ (εF − δ0, εF + δ0), Fn(ε) :=

ˆ
Sn(ε)

f(k)dσ(k),

are of class Cp, and we have

(3.6) ∀ε ∈ (εF − δ0, εF + δ0), F ′n(ε) =

ˆ
Sn(ε)

div
(

f(k) ∇εnk

|∇εnk|

)
|∇εnk|

dσ(k).

Proof. Using suitable cut-off functions, it is sufficient to prove the result for f compactly supported

in S̃n(εF , δ0). The outgoing normal unit vector of Sn(ε) at k (oriented so that its interior is
{k ∈ B, εnk < ε}) is νk := ∇εnk/|∇εnk|. Using the divergence theorem, we get

Fn(ε) =

ˆ
Sn(ε)

f(k)dσ(k) =

ˆ
Sn(ε)

f(k)
∇εnk
|∇εnk|

· νkdσ(k) =

ˆ
{k∈B, εnk<ε}

div

(
f(k)

∇εnk

|∇εnk|

)
dk.

We now use the co-area formula (3.5) with f̃(k) := 1(εnk 6 ε) div
(

f(k) ∇εnk

|∇εnk|

)
and E(k) = εnk,

so that

Fn(ε) =

ˆ ε

−∞

ˆ
Sn(ε′)

div
(

f(k) ∇εnk

|∇εnk|

)
|∇εnk|

dσ(k)

 dε′.

Differentiating this expression leads to (3.6), and iterating p times leads to the result. �

Formally, using the co-area formula on the integrated density of states N (ε) would yield

N (ε) =
1

|B|
∑
n∈N∗

ˆ ε

−∞

(ˆ
Sn(ε′)

1

|∇εnk|
dσ(k)

)
dε′,

but the integrand may not be well-defined for all ε′ < ε. This argument is however valid close to
the Fermi surface, and we therefore have the following result.

Lemma 3.5. Under Assumptions 1 and 2 and with the notation of Lemma 3.2, the integrated
density of states N is smooth on (εF − δ0, εF + δ0). Moreover, we have

∀ε ∈ (εF − δ0, εF + δ0), D(ε) := N ′(ε) =
1

|B|

M∑
n=M

ˆ
Sn(ε)

1

|∇εnk|
dσ(k) > 0.

Proof. Applying the co-area formula with f(k) = 1(εnk 6 εF ), we have

N (ε) :=

M∑
n=M

 
B
1(εnk 6 ε)dk = N (εF − δ0) +

1

|B|

M∑
n=M

ˆ ε

εF−δ0
dε′

ˆ
Sn(ε′)

1

|∇εnk|
dσ(k),
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from which we get

(3.7) D(ε) := N ′(ε) =
1

|B|

M∑
n=M

ˆ
Sn(ε)

1

|∇εnk|
dσ(k).

By Lemmas 3.2 and 3.4, this function is smooth and positive. �

The function D appearing in (3.7) is called the density of states. This lemma justifies our
Assumptions 1 and 2 as natural assumptions to ensure a smooth density of states at the Fermi
level. The presence of crossings at the Fermi level may indeed yield singularities of the density of
states, as is well-known for instance in graphene. Similarly, a zero of the band gradient (leading
to so-called “flat bands”) produces van Hove singularities in the density of states.

Following the same steps as in Lemma 3.5, we obtain that the integrated density of energy
defined in (2.4) is also smooth on (εF − δ0, εF + δ0), and that its derivative (the density of energy)
satisfies

(3.8) ∀ε ∈ (εF − δ0, εF + δ0), E′(ε) = εD(ε).

We also record here the following technical lemma on the volume of the sets S̃n(ε, δ), which
will be used in our analysis. It is an easy consequence of the co-area formula.

Lemma 3.6. Under Assumptions 1 and 2 and with the notation of Lemma 3.2, there exists
C ∈ R+ such that, for all ε ∈ (εF − δ0, εF + δ0) and all 0 6 δ < δ0 such that (ε − δ, ε + δ) ⊂
(εF − δ0, εF + δ0), it holds that |S̃n(ε, δ)| 6 Cδ for all M 6 n 6M .

Proof. We apply the co-area formula (3.5) with f(k) := 1(ε − δ 6 εnk 6 ε + δ) and E(k) = εnk,
and get that

|S̃n(ε, δ)| =
ˆ ε+δ

ε−δ

(ˆ
Sn(ε′)

1

|∇εnk|
dσ(k)

)
dε′.

From Lemma 3.2, the map ε′ 7→
´
Sn(ε′)

|∇εnk|−1dσ(k) is continuous and bounded on (εF−δ0, εF +

δ0). The proof follows. �

4. Interpolation methods

In this section, we investigate methods based on the local interpolation of the functions k 7→ εnk.
We consider families of linear interpolation operators ΠL : C0(B,R)→ C0(B,R) indexed by L ∈ N∗,
which strongly converge to the identity operator when L goes to infinity, i.e.

∀f ∈ C0(B,R), ΠLf −→
L→∞

f in C0(B,R).

We say that
(
ΠL
)
L∈N∗ is of order (p+ 1) ∈ N if, for all η > 0, there exists CηΠ ∈ R+ such that, for

all p′ ∈ N, all open sets Ω ⊂ B, and all f ∈ Cp′+1(Ωη,R), where Ωη := {k ∈ B, d(k,Ω) 6 η} is the
η-neighborhood of Ω, it holds that

(4.1) sup
k∈Ω
|f(k)−ΠLf(k)| 6

CηΠ
Lmin(p,p′)+1

sup
k∈Ωη

|f (p′+1)(k)|.

One of the most used interpolation operator is the linear tetrahedron method (and its improved
version [2] -see also [13]- that will be studied in a future work). In this case, we choose a sequence
of uniform tetrahedral meshes (T L)L∈N, and we define ΠLf as the piecewise linear function (linear
on each tetrahedron T ∈ T L) interpolating f at the vertices of T L. In three dimensions, a linear
tetrahedron method constructed from a regular L × L × L mesh of the torus B is of order 2.
Similarly, the quadratic method described in [19, 3] and the cubic tetrahedron method described
in [30] are of order 3 and 4 respectively. We chose this convention so that p denotes the degree of
the polynomial in a usual polynomial interpolation (of order p+ 1).
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Remark 4.1 (Local interpolation). The approximation property above is local, in the sense that
the quality of the approximation at a point depends only on the smoothness of the function near this
point. This is necessary to interpolate efficiently the functions εnk, which are not smooth across
the whole Brillouin zone. By contrast, a Fourier interpolation on the whole Brillouin zone would
not satisfy this condition: discontinuities in the interpolated function produce Gibbs oscillations,
which slow down the convergence of the Fourier series even far from the point of discontinuity.

4.1. Error on the Integrated density of states and on the Fermi level. Recall that the
integrated density of states N (ε) is defined in (2.3). In practice, we cannot compute N (ε), but
only an approximation of it. We therefore introduce

(4.2) ∀ε ∈ R, NL,q(ε) :=
∑
n∈N∗

 
B
1(εL,qnk 6 ε)dk with εL,qnk := ΠL,q [εnk] ,

where
(
ΠL,q

)
L∈N∗ is a family of interpolation operators of order q + 1. In practice, the integral

in (4.2) is performed analytically (hence at low computational cost). Because of the smoothness
of εnk near Sn(εF ), we are able to control the error on this function.

Lemma 4.2 (Error on the integrated density of states). Under Assumptions 1 and 2, there exist
C ∈ R+ and δ > 0 such that

∀L ∈ N∗, max
ε∈[εF−δ,εF+δ]

∣∣N (ε)−NL,q(ε)
∣∣ 6 C

Lq+1

Proof. Let δL,qB be the maximum error between εnk and εL,qnk on the whole Brillouin zone, i.e.

δL,qB := max
n6M

max
k∈B
|εL,qnk − εnk|.

From the fact that k 7→ εnk is Lipschitz and (4.1) in the case p′ = 0, we deduce that limL→∞ δL,qB =

0. For L large enough, δL,qB < δ0/2, where δ0 was defined in Lemma 3.2. Let ε ∈ [εF − δ0/2, εF +
δ0/2]. We have

(4.3) N (ε)−NL,q(ε) =
∑
n∈N∗

 
B

(1(εnk 6 ε)− 1(εL,qnk 6 ε))dk.

The integrand in (4.3) can only be nonzero in the discrepancy regions where εnk 6 ε < εL,qnk or

εL,qnk 6 ε < εnk. In these regions, it holds that |εnk − ε| 6 |εnk − εL,qnk |, so that they are included

in S̃n(ε, δL,qB ). We can therefore rewrite (4.3) as

(4.4) N (ε)−NL,q(ε) =
1

|B|
∑
n∈N∗

ˆ
S̃n(ε,δL,qB )

(1(εnk 6 ε)− 1(εL,qnk 6 ε))dk.

From Lemma 3.6, we easily deduce that |N (ε)−NL,q(ε)| 6 CδL,qB . This is however a very crude

approximation, since δL,qB only decays as L−1 (and not as L−(q+1) as wanted). This comes from
the fact that εnk is Lipschitz but not C1 on B. However, according to Lemma 3.2, εnk is analytic

on S̃n(ε, δL,qB ). Hence, by setting

δL,qS := max
n6M

max
k∈S̃n(εF ,δ0)

|εL,qnk − εnk|,

we first deduce from (4.1) that δL,qS = O(L−(q+1)), then that the integrand in (4.4) is non-zero

only on S̃n(ε, δL,qS ), which again from Lemma 3.6 is of Lebesgue measure O(L−(q+1)). �

For all L ∈ N, the function NL,q is continuous and non-decreasing from NL,q(−∞) = 0 to
NL,q(+∞) = +∞. However, it is not necessarily increasing, and the non-empty set (NL,q)−1({N})
may contain more than one point. Our results however will be independent of the choice of the

approximated Fermi level εL,qF ∈ (NL,q)−1({N}). We state the next lemma in a very general
setting.
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Lemma 4.3 (Error on the Fermi level). Under Assumptions 1 and 2, there is δ1 > 0 such that,

for all 0 < δ 6 δ1 and all continuous function Ñδ : R→ R satisfying

(4.5) max
ε∈[εF−δ,εF+δ]

∣∣∣N (ε)− Ñδ(ε)
∣∣∣ 6 D(εF )

2
δ,

the equation Ñδ(ε) = N has at least one solution ε̃F in the range [εF − δ, εF + δ], and any such
solution satisfies

(4.6) |εF − ε̃F | 6
2

D(εF )
max

ε∈[εF−δ,εF+δ]

∣∣∣N (ε)− Ñδ(ε)
∣∣∣ (6 δ) .

Together with Lemma 4.2, we deduce that there exists C ∈ R+ such that

∀L ∈ N∗,
∣∣∣εF − εL,qF ∣∣∣ 6 C

Lq+1
.

Remark 4.4 (Failure of hypotheses). Lemma 4.3 fails when D(εF ) = 0, i.e. when the density of
states is zero at the Fermi level (i.e. in semimetals such as graphene). In that case, the bound
depends on the local behavior of D around εF .

Proof of Lemma 4.3. Thanks to Lemma 3.5, there exists δ1 > 0 such that infε∈[εF−δ1,εF+δ1]D(ε) >
D(εF )/2. In particular, for all ε ∈ (εF − δ1, εF + δ1) and 0 6 δ < δ1 such that [ε − δ, ε + δ] ⊂
[εF − δ1, εF + δ1], we have

(4.7) N (ε+ δ) = N (ε) +

ˆ ε+δ

ε

D(ε)dε > N (ε) +
D(εF )

2
δ,

and similarly, N (ε − δ) 6 N (ε) − D(εF )

2
δ. Let now Ñδ : R → R be a continuous function

satisfying (4.5). Then, it holds that

Ñδ(εF − δ) 6 N 6 Ñδ(εF + δ).

Hence, by continuity of Ñδ, the equation Ñδ(ε) = N has at least one solution in [εF − δ, εF + δ].

Let ε̃F be such a solution. We denote by κN ,Ñδ := maxε∈[εF−δ,εF+δ]

∣∣∣N (ε)− Ñδ(ε)
∣∣∣. Since

κN ,Ñδ 6
D(εF )

2 δ, we can again use (4.7) and get

N = N (εF ) = Ñδ(ε̃F ) 6 N (ε̃F ) + κN ,Ñδ 6 N
(
ε̃F +

2

D(εF )
κN ,Ñδ

)
,

and, similarly, N = N (εF ) > N
(
ε̃F −

2

D(εF )
κN ,Ñδ

)
. From the fact that N is non-decreasing,

and the inequality

N
(
ε̃F −

2

D(εF )
κN ,Ñδ

)
6 N (εF ) 6 N

(
ε̃F +

2

D(εF )
κN ,Ñδ

)
,

we obtain (4.6). �

4.2. Error on the ground state energy and density. We now focus on the calculations of
the ground state energy (2.4) and density (2.5). Let ΠL,p and ΠL,q be interpolation operators of
order (p+ 1) and (q + 1) respectively. For the total energy, we introduce

εL,pnk := ΠL,p (εnk) and εL,qnk := ΠL,q (εnk) .

Using two different interpolation operators allows us to identify the error coming from the inexact
approximation of εnk everywhere in the Brillouin zone (bulk error) and the one coming from
the inexact calculation of the Fermi energy (surface error). We assume that the Fermi level

is approximated by εL,qF as in the previous section, using the same interpolation operator ΠL,q.
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Altogether, we compare the ground state energy E = E(εF ) defined in (2.4) with the approximate
ground state energy

(4.8) EL,p,q :=
∑
n∈N∗

 
B
εL,pnk 1(εL,qnk 6 ε

L,q
F )dk,

and the ground state electronic density ρ = ρεF , where ρε is defined in (2.5), with the approximate
ground state density

ρL,p,q(r) :=
∑
n∈N∗

 
B

ΠL,p
(
|unk(r)|2

)
1(εL,qnk 6 ε

L,q
F )dk.

The main theorem of this section is the following.

Theorem 4.5. Assume V ∈ Hs
per for some s > 0. Under Assumptions 1 and 2, there exists

C ∈ R+ such that, for all L ∈ N,∥∥ρ− ρL,p,q∥∥
Hs+2

per
6 C

(
1

Lp+1
+

1

Lq+1

)
,

∣∣E − EL,p,q∣∣ 6 C ( 1

Lp+1
+

1

L2q+2

)
.

Proof. We start with the density. Let W ∈ H−(s+2)
per and introduce

Wnk :=
〈
W, |unk|2

〉
H
−(s+2)
per ,Hs+2

per
and WL,p

nk := ΠL,p (Wnk) ,

so that the error is
∥∥ρ− ρL,p,q∥∥

Hs+2
per

= sup
W∈H−(s+2)

per ,‖W‖
H
−(s+2)
per

=1

eL,p,q(W ), where we set

eL,p,q(W ) :=
〈
W,ρ− ρL,p,q

〉
H
−(s+2)
per ,Hs+2

per
=
∑
n∈N∗

 
B

(
Wnk1(εnk 6 εF )−WL,p

nk 1(εL,qnk 6 ε
L,q
F )

)
dk.

We decompose the error into two contributions: the bulk error and the surface error. We write

eL,p,q(W ) = eL,pbulk(W ) + eL,p,qsurf (W ) with

(4.9) eLbulk(W ) :=
∑
n6M

 
B

(
Wnk −WL,p

nk

)
1(εnk 6 εF )dk

and

(4.10) eL,p,qsurf (W ) :=
∑
n6M

 
B
WL,p
nk

[
1(εnk 6 εF )− 1(εL,qnk 6 ε

L,q
F )

]
dk.

The bulk error (4.9) is spread over the whole Brillouin zone, while the surface error (4.10) is
localized near the Fermi surface S. In order to control these two terms, we use Lemma 3.2 which

shows that k 7→
∑n
m=1Wmk = 〈W,ρnk〉H−(s+2)

per ,Hs+2
per

is smooth on k 7→ B̃n(εF , δ0), while the map

k 7→ εnk is smooth on S̃n(εF , δ0).
Bulk error. We have

eL,pbulk(W ) =
1

|B|
∑
n6M

ˆ
Bn(εF )

n∑
m=1

(Wmk −WL,p
mk )dk

=
1

|B|
∑
n6M

ˆ
Bn(εF )

(
〈W,ρnk〉H−(s+2)

per ,Hs+2
per
−ΠL,p

[
〈W,ρnk〉H−(s+2)

per ,Hs+2
per

])
dk.

Let us introduce the maps

Fn,W :

{ B → R
k 7→ 〈W,ρnk〉H−(s+2)

per ,Hs+2
per

.
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According to Lemma 3.2, the maps Fn,W are analytic on B̃n(εF , δ0/2), and it holds that

∀n 6M, ∀k ∈ B̃n(εF , δ0/2),
∣∣∣F (p+1)
n,W

∣∣∣ 6 ‖W‖H−(s+2)
per

sup
k∈B̃n(εF ,δ0/2)

∥∥∥∂(p+1)
k ρnk

∥∥∥
Hs+2

per

.

Together with (4.1), we deduce that there exists C ∈ R+ such that∣∣∣eL,pbulk(W )
∣∣∣ 6 C

Lp+1
‖W‖

H
−(s+2)
per

.

Surface error. For the integrand in (4.10) to be non-zero, it must hold that

εnk 6 εF and εL,qnk > εL,qF or εnk > εF and εL,qnk 6 ε
L,q
F .

In the former case for instance, we have

0 6 εF − εnk =
(
εF − εL,qF

)
+
(
εL,qF − εL,qnk

)
+
(
εL,qnk − εF

)
.

The middle term being negative, we deduce that |εF − εnk| 6
∣∣εF − εLF ∣∣+ ∣∣εLnk − εnk∣∣. The other

case is similar. In particular, as in the proof of Lemma 4.3, for L large enough, we can first

restrict the integral in (4.10) to S̃n(εF , δ0/2), then to some S̃n(εF , CL
−(q+1)). Finally, since the

maps k 7→ Wnk = 〈W,ρn+1,k − ρnk〉H−(s+2)
per ,Hs+2

per
are smooth on S̃n(εF , δ0), we deduce that there

exists Cq ∈ R+ such that ∣∣∣eL,p,qsurf (W )
∣∣∣ 6 Cq

L(q+1)
‖W‖

H
−(s+2)
per

,

and the result follows.

Remark 4.6. As we see from the proof, the surface error behaves as L−q−1, while the bulk error
behaves as L−p−1. For the case of insulators (no Fermi surface), the surface error vanishes, and
the bulk error can be exponentially small with good choice of interpolants. However, for metallic
systems, we believe that our estimates are optimal, hence much larger due to Gibbs oscillations.
This is illustrated in our numerical simulations in Section 6.

Case of the energy. We now focus on the energy. We follow the same lines as above, and
decompose the error into a bulk error and a surface error. The bulk error is bounded as above.
We focus on the surface error, which reads

eL,p,qsurf :=
∑
n6M

 
B
εL,pnk

[
1(εnk 6 εF )− 1(εL,qnk 6 ε

L,q
F )

]
dk

=
∑
n6M

 
B

(εL,pnk − εF )
[
1(εnk 6 εF )− 1(εL,qnk 6 ε

L,q
F )

]
dk + εF (N (εF )−NL,q(εL,qF ))︸ ︷︷ ︸

=0

.

Again, the integrand of eL,p,qsurf is supported on sets of the form S̃n(εF , CL
−(q+1)). On these sets,

it holds that ∣∣∣εL,pnk − εF ∣∣∣ 6 |εL,pnk − εnk|+ |εnk − εF | = O(L−(p+1) + L−(q+1)).

We easily deduce that∣∣∣eL,p,qsurf

∣∣∣ 6 1

|B|
∑
n6M

ˆ
S̃n(εF ,CL−(q+1))

C
(
L−(p+1) + L−(q+1)

)
dk 6 C

(
1

Lp+q+2
+

1

L2q+2

)
,

and the proof follows. �

Remark 4.7 (Order gain on the energy). The interest of choosing two different interpolation

operators ΠL,p and ΠL,q for the calculation of EL,p,q is now clear: the integration zone 1(εL,qnk 6
εL,qF ) can be approximated with a lower order term (i.e. q = dp−1

2 e) with no loss of order. For
instance, when using a cubic method (p = 3), it is enough to evaluate the integral of cubic functions
on tetrahedra (q = 1), and not on complicated intersections of cubic surfaces (q = 3).

This is surprising at first: since the computation of the approximate energy EL,p,q involves the

approximate Fermi level εL,qF , how can the energy be more accurate than the Fermi level? The
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answer, as shown above, is that, to leading order, the variations of the energy caused by an error
in the determination of the Fermi surface is proportional to εF times the error on the number of
the particles. Since this number is kept fixed to N for all L, this leading order error vanishes. This
means that, even if the exact Fermi level is known, it is still numerically advantageous to keep it

determined implicity through the equation NL,q(εL,qF ) = N .

5. Smearing methods

We now focus on smearing methods. Let A denote either the integrated density of states N ,
the ground state density ρ or the ground state energy E. We want to approximate A by AL, where
AL is obtained by replacing the integral in (2.3)-(2.4)-(2.5) by a corresponding Riemann sum on
a regular grid with Ld points. However, since the step function f(x) := 1(x 6 0) appearing in the
integrand is discontinuous, we expect the convergence to be slow. The idea of smearing methods
is to replace this step function by a smeared function fσ that is smooth: we define

Aσ(ε) =

 
B

∑
n∈N∗

Ankf
σ(εnk − ε)dk,(5.1)

where fσ is a smooth approximation to f , as we will discuss below. This approximate quantity
Aσ can then be efficiently computed by a Riemann sum. We introduce, for L ∈ N∗, the uniform
grid

BL := B ∩ L−1R∗,
where we see here B as a torus, so that there are Ld points in BL. We then define

Aσ,L(ε) :=
1

Ld

∑
k∈BL

∑
n∈N∗

Ankf
σ(εnk − ε).(5.2)

We define εσF and εσ,LF to be the (a priori non-unique) solutions of the equations

N σ(εσF ) = N, N σ,L(εσ,LF ) = N,(5.3)

and we finally set

Aσ := Aσ(εσF ), Aσ,L := Aσ,L(εσ,LF ).(5.4)

The quantities Aσ,L are the ones that we can compute numerically. Our goal is to compute the
error between Aσ,L and A. We first estimate the error between Aσ and A in Section 5.2. Then,
we provide in Section 5.3 error estimates for the discretization error Aσ,L −Aσ. The combination
of the two provides the total error estimates for smearing methods.

5.1. Smearing functions. In this section, we explain how smearing functions are constructed.

Definition 5.1 (Smearing mollifier). We say a function δ1 : R → R is a smearing mollifier if it
satisfies the two following properties:

(P1) δ1 ∈ S(R), where S(R) denotes the Schwartz space of fast decaying functions;
(P2)

´
R δ

1 = 1.

We say that a smearing mollifier is of order at least p ∈ N ifˆ
R
P (x)δ1(x)dx = P (0) for all polynomials P with deg(P ) 6 p.

that is M0(δ1) = 1 and Mn(δ1) = 0 for 1 6 n 6 p, where the Mn(φ) is the n-th momentum of the
function φ ∈ S(R):

∀n ∈ N, Mn(φ) =

ˆ
R
xnφ(x) dx.

The order of a smearing method is the largest p such that the above property holds. We say that
f1 : R→ R is a smearing function if there exists a smearing mollifier δ1 such that

f1(x) =

ˆ x

−∞
δ1(y) dy.
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For any smearing mollifier δ1, we set δσ(x) := σ−1δ1(σ−1x) and

(5.5) fσ(x) = 1−
ˆ x

−∞
δσ(y)dy, so that fσ(x) = f1(σ−1x).

Note that δσ = −(fσ)′, and that we have in a distributional sense δσ → δ and fσ → f as σ → 0.

The true step function f is non-increasing (which implies that the set of possible Fermi levels
N−1({N}) is an interval), and has values equal to either 0 or 1. In particular, fnk = f(εnk − εF )
is interpreted as the occupation number of the Bloch modes with energy εnk. By contrast, this
interpretation is not valid for a smearing method of order p > 2, since smearing functions of order
p > 2 necessarily have values outside the range [0, 1] (otherwise,

´
(f1 − f)x would be positive).

Let us mention some possible choices encountered in the literature and used in practice:

• the Fermi-Dirac smearing [7, 10, 17]:

(5.6) f1
FD(x) :=

1

1 + ex
, δ1

FD(x) :=
1

2 + ex + e−x
.

This method is of order 1 and f1
FD is decreasing from 1 to 0;

• the Gaussian smearing [6]:

(5.6′) f1
G(x) :=

1

2
(1− erf(x)) , δ1

G(x) :=
1√
π

e−x
2

.

This method is of order 1 and f1
G is decreasing from 1 to 0;

• the Methfessel-Paxton smearing [18]: this method is defined by the sequence of functions
(f1

MP,N)N∈N given by

(5.6′′) f1
MP,N (x) := f1

G(x) +

N∑
n=1

AnH2n−1(x)e−x
2

, δ1
MP,N (x) :=

N∑
n=0

AnH2n(x)e−x
2

.

Here, the functions (Hn)n∈N are the Hermite polynomials (defined asH0(x) = 1, Hn+1(x) =

2xHn(x) −H ′n(x)), and the coefficients An :=
(−1)n

n!4n
√
π

are chosen such that the method

is of order 2N + 1. For N > 1, f1
MP,N is not monotone, and has negative occupation

numbers;
• the Marzari-Vanderbilt cold smearing [16]:

(5.6′′′) f1
cs(x) := f1

G(x) +
1

4
√
π

(−aH2(x) +H1(x))e−x
2

,

corresponding to

δ1
cs(x) =

1√
π

(
ax3 − x2 − 3

2
ax+

3

2

)
e−x

2

,

where a is a free parameter, usually chosen so that f1
cs is always non-negative (avoiding

negative occupation numbers). This method, like the N = 1 case of the Methfessel-Paxton
scheme above, is of order 3.

Remark 5.2 (Temperature). The Fermi-Dirac distribution is used to model electronic systems at a
finite temperature. In this case σ = kBT , where kB is the Boltzmann constant. The other smearing
functions do not have such a physical interpretation and are only chosen for their mathematical
properties.

The Fermi-Dirac function is meromorphic, but has poles at the imaginary energies (2Z + 1)iπ
(called Matsubara frequencies in the context of field theory). By contrast, the other smearing
functions introduced above (called Gaussian-type in the following) are entire. This will have an
impact on our estimates.
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Figure 4. Some smearing functions. Approximation to the Dirac function f1

(left), and occupation numbers δ1 (right).

5.2. Error between exact and smeared quantities. In the remaining of this section, we fix
a smearing mollifier δ1 of order p, and we are interested in the behavior of Aσ −A as σ goes to 0.

Consider a quantity of interest of the form

(5.7) A(ε) =
∑
n∈N∗

 
B
Ank1(εnk 6 ε) dk.

Then, formally (we will justify this computation case by case for various A later)∑
n∈N∗

 
B
Ankf

1

(
εnk − ε
σ

)
dk =

∑
n∈N∗

 
B
Ank

(ˆ ∞
εnk−ε
σ

δ1(x) dx

)
dk

=
1

σ

∑
n∈N∗

 
B
Ank

(ˆ ∞
εnk

δ1

(
ε′ − ε
σ

)
dε′
)

dk

=
1

σ

ˆ
R

(∑
n∈N∗

 
B
Ank1(εnk 6 ε) dk

)
δ1

(
ε′ − ε
σ

)
dε′

=
1

σ

ˆ
R
A(ε)δ1

(
ε′ − ε
σ

)
dε′ = (A ∗ δσ)(ε).(5.8)

In other words, the effect of smearing is to smooth the function A(ε) by a convolution with δσ.
In order to understand the properties of the smearing method, we therefore have to study the
asymptotic behavior of integrals of the form (5.8) for σ → 0.

To make this precise, we introduce the mollification operator. Let us denote by S ′(R) the set
of tempered distributions on R. For g ∈ S ′(R) and φ ∈ S(R), we define (in the sequel, g ∼ A, and
φ ∼ δ1 is a mollifier)

(5.9) ∀ε ∈ R, ∀σ ∈ R∗, Mg,φ(ε, σ) :=

〈
g,

1

σ
φ

(
· − ε
σ

)〉
S′,S

and Mg,φ(ε, 0) := g(ε)M0(φ).

Note that we extended M to σ negative. Due to the change of variables in (5.8), this does not
correspond to taking a negative smearing parameter in the original definition (5.1) of Aσ. The
main idea of this section is that if g is smooth, then we can write that

Mg,φ(ε, σ) =
1

σ

ˆ
R
g(ε)φ

(
ε′ − ε
σ

)
dε′ =

ˆ
R
g(ε+ σx)φ(x) dx.
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In particular, if φ is a smearing mollifier of order p, then by Taylor-expanding g around ε, this
quantity is also g(ε)+O(σp+1). We make this statement rigorous in the next Lemma, whose proof
is postponed until the end of the section.

Lemma 5.3. Let g ∈ S ′(R) be such that g|(εF−δ0,εF+δ0) is a function of class Ck, and let φ ∈ S(R).

Then, the function Mg,φ(ε, σ) is of class Ck on (εF − δ0, εF + δ0) × R, and we have, for all
(m,n) ∈ N× N such that m+ n 6 k,

∂m+nMg,φ

∂εm∂σn
(ε, σ) =


1

σn+1

〈
g, φm,n

(
· − ε
σ

)〉
S′,S

if σ 6= 0,

g(m+n)(ε)Mn(φ) if σ = 0,

where φm,n ∈ S(R) is defined by

∀t ∈ R, φm,n(t) := (−1)m+n dm+n

dtm+n
(tnφ(t)) .

5.2.1. Error on the integrated density of states and on the Fermi level. By choosing Ank = 1 in
(5.7) and using the decay at infinity of δ1 to justify the exchange of integrals in (5.8), we have

N σ(ε) = Ñ (ε, σ), where we set for clarity Ñ :=MN ,δ1 .

Lemma 5.4. For any smearing mollifier δ1 of order p > 1, the function Ñ is smooth on (εF −
δ0, εF + δ0)× R, and satisfies

∂Ñ
∂ε

(ε, 0) = D(ε) > 0, ∀1 6 n 6 p, ∂
nÑ
∂nσ

(ε, 0) = 0,
∂p+1Ñ
∂p+1σ

(ε, 0) = D(p)(ε)Mp+1(δ1).

In particular, there exists C ∈ R+ such that

(5.10) max
ε∈(εF−δ0,εF+δ0)

|N (ε)−N σ(ε)| 6 Cσp+1.

Proof. Applying Lemma 5.3 with g = N , which is smooth on (εF − δ0, εF + δ0), and φ = δ1, we

obtain that Ñ is smooth on (εF − δ0, εF + δ0) × R. The proof is then a consequence of the fact
that M0(δ1) = 1 and Mn(δ1) = 0 for 1 6 n 6 p, together with the fact that N ′(ε) = D(ε) by
definition (see (3.7)). �

From (5.3), εσF is solution to Ñ (εσF , σ) = N . From the previous proposition together with the
implicit function theorem we directly get the following result.

Lemma 5.5. For any smearing mollifier δ1 of order p > 1, there exists σ1, δ1 > 0, such that for

|σ| < σ1, the equation Ñ (·, σ) = N has a unique solution εσF in (εF − δ1, εF + δ1). In addition,
the function (−σ1, σ1) 3 σ 7→ εσF ∈ R is smooth, and it holds that

εσ=0
F = εF , ∀1 6 n 6 p, dnεσF

dσn

∣∣∣∣
σ=0

= 0,
dp+1εσF
dσp+1

∣∣∣∣
σ=0

= −D
(p)(εF )

D(εF )
Mp+1(δ1).

In particular, it holds that

εσF = εF +
1

(p+ 1)!

(
−D

(p)(εF )

D(εF )
Mp+1(δ1)

)
σp+1 +O(σp+2).

5.2.2. Error on the ground-state energy. By choosing Ank = εnk in (5.8), we have that Eσ(ε) =

Ẽ(ε, σ), where we set for clarity Ẽ := ME,δ1 . Numerically, the true ground state energy E is

approximated by Eσ := Ẽ(εσF , σ).

Lemma 5.6. For any smearing mollifier δ1 of order p > 1, there exists σ1 > 0 such that the

function σ 7→ Ẽ is well-defined and smooth on (−σ1, σ1)× R, and satisfies

∂Ẽ

∂ε
(ε, 0) = εD(ε), ∀1 6 n 6 p, ∂

nẼ

∂σn
(ε, 0) = 0,

∂p+1Ẽ

∂σp+1
(ε, 0) =

(
εD(p)(ε) + pD(p−1)(ε)

)
Mp+1(δ1)
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In particular, it holds that

Eσ=0 = E0, ∀1 6 n 6 p, dnEσ

dσn

∣∣∣∣
σ=0

= 0,
dp+1Eσ

dσp+1

∣∣∣∣
σ=0

= pD(p−1)(εF )Mp+1(δ1).

Finally, we have

(5.11) Eσ = E +
1

(p+ 1)!

(
pD(p−1)(εF )Mp+1(δ1)

)
σp+1 +O(σp+2).

Proof. The first part is a consequence of Lemma 5.3 applied to g = E(·) (which is smooth on
(εF − δ0, εF + δ0)) and φ = δ1, together with (3.8). The second part comes from Lemma 5.5, and
the chain rule. �

Extrapolation of the energy. Following Marzari [15], we can introduce the entropy defined
as

(5.12) Sσ =
∑
n∈N∗

 
B
s

(
εnk − εσF

σ

)
dk,

where s : R → R is the unique function of S(R) such that s′(t) = tδ1(t). Following the same

computation as in (5.8) with f1 = s, we see that Sσ = S̃(εσF , σ), where we set S̃ := MN ,−tδ1 .
Note also that Mn(tδ1) = Mn+1(δ1) for all 0 6 n 6 p − 1. As in the proof of Lemma 5.6, we

deduce that if δ1 is of order p > 1, then S̃ is smooth on (−σ1, σ1)× R, with

∀1 6 n 6 p− 1,
∂nS̃

∂εn
(ε, 0) = 0,

∂nS̃

∂σn
(ε, 0) = 0,

∂pS̃

∂σp
(ε, 0) = −D(p−1)Mp+1(δ1).

Together with Lemma 5.5, and the chain rule, this lead to

∀1 6 n 6 p− 1,
dnSσ

dσn

∣∣∣∣
σ=0

= 0,
dpSσ

dσp

∣∣∣∣
σ=0

= −D(p−1)(εF )Mp+1(δ1).

Thus,

(5.13) Sσ =
1

p!

(
−D(p−1)(εF )Mp+1(δ1)

)
σp +O(σp+1).

From (5.11) and (5.13), we finally obtain that

Eσ − σ p

p+ 1
Sσ = E +O(σp+2)

As pointed out in [15], the right-hand side provides an approximation of E which is consistent of
order p+ 2, and therefore outperforms the estimator Eσ in the asymptotic regime when σ goes to
zero. This is numerically useful, as, from the definition of Sσ in (5.12), Sσ can be easily computed
numerically.

5.2.3. Error on the ground-state density.

Lemma 5.7. Consider a smearing mollifier δ1 of order p > 1. Under Assumptions 1 and 2 and
with the notation of Lemma 3.2, there exists σ1 > 0 and C ∈ R+ such that

(5.14) ∀σ ∈ (−σ1, σ1), ‖ρ− ρσ‖Hs+2
per
6 Cσp+1.

Proof. Let W ∈ H−(s+2)
per , and set Wnk :=

〈
W, |unk|2

〉
H
−(s+2)
per ,Hs+2

per
. We also set

AW (ε) :=
∑
n∈N∗

 
B
Wnk1(εnk 6 ε)dk and AσW (ε) :=

∑
n∈N∗

 
B
Wnkf

σ (εnk − ε) dk.

In this proof, C denotes a positive constant independent of W , n, k and σ, for σ small enough,
but whose value can vary from line to line. Since Hs+2

per is an algebra for s > 0 and d 6 3, we have
that

|Wnk| =
∣∣∣〈W, |unk|2〉H−(s+2)

per ,Hs+2
per

∣∣∣ 6 C‖W‖H−(s+2)
per

‖unk‖2Hs+2
per

.
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Besides, using the equality Hkunk = εnkunk, (2.2), the continuity of the pointwise product Hs+2
per ×

Hs
per to Hs

per, and a bootstrap argument, we see that

∀n > 1, ∀k ∈ B, ‖unk‖Hs+2
per
6 C

(
1 + εs+2

nk

)
6 Cn

2
d (s+2).(5.15)

Therefore, we have

|Wnk| 6 C‖W‖H−(s+2)
per

n
4
d (s+2).

This estimate shows that AW is a tempered distribution (as a continuous function of polynomial
growth), and that the computation in (5.8) is justified. In particular, we have

AσW (ε) =MAW ,δ1(ε, σ).

From similar considerations as in Lemma 3.5, AW is smooth on [εF − δ0, εF + δ0], and

A′W (ε) =
1

|B|
∑
n6M

ˆ
Sn(ε)

Wnk

|∇εnk|
dσ(k).

It follows that

| 〈W,ρ− ρσ〉
H
−(s+2)
per ,Hs+2

per
| =|AW (εF )−AσW (εσF )| 6 |AW (εF )−AW (εσF )|+ |AW (εσF )−AσW (εσF )|

6

(
max

ε∈[εF−δ0,εF+δ0]
|A′W (ε)|

)
|εF − εσF |+ |AW (εσF )−AσW (εσF )|

6
(
C‖W‖

H
−(s+2)
per

)
σp+1,

where we have used Lemma 5.3 and Lemma 5.5. The result follows. �

5.2.4. Proof of Lemma 5.3. We finally prove Lemma 5.3. Let g ∈ S ′(R), ε ∈ R and σ ∈ R∗. We
define the shifted and scaled tempered distribution g(ε+ σ·) by duality:

∀φ ∈ S(R), 〈g(ε+ σ·), φ〉S′,S := 〈g,Aε,σφ〉S′,S ,

where Aε,σ is the linear map on S(R) defined by

∀φ ∈ S(R), ∀ε′ ∈ R, (Aε,σφ)(ε′) :=
1

|σ|
φ

(
ε′ − ε
σ

)
.

This is consistent with the usual shift and scale operation for functions. If g is a tempered
distribution that is continuous at ε, we define g(ε+ 0·) to be the constant tempered distribution
with value g(ε).

It is easy to check that the family (Aε,σ)(ε,σ)∈R×R∗ forms a group of continuous linear operators
on S(R) satisfying for all (ε, σ) and (ε′, σ′) in R× R∗,

Aε,σAε′,σ′ = Aε+σε′,σσ′ .

In addition, we have the following properties on the derivatives of Aε,σ: for all φ ∈ S(R),

Aε′,σ′φ −→
(ε′,σ′)→(ε,σ)

Aε,σφ,

Aε′,σ −Aε,σ
ε′ − ε

φ −→
ε′→ε
−σ−1Aε,σφ

′,

Aε,σ′ −Aε,σ
σ′ − σ

φ −→
ε′→ε
−σ−1Aε,σLφ,

the convergences holding in S(R), where L is the continuous operator on S(R) defined by

∀φ ∈ S(R), ∀t ∈ R, (Lφ)(t) =
d

dt
(tφ(t)) = tφ′(t) + φ(t).

It immediately follows that Mg,φ is of class C1 on (εF − δ0, εF + δ0)× R∗ and that

∀(ε, σ) ∈ R× R∗,
∂Mg,φ

∂ε
(ε, σ) = −σ−1〈g,Aε,σφ′〉S′,S ,

∂Mg,φ

∂σ
(ε, σ) = −σ−1〈g,Aε,σLφ〉S′,S .
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Let us prove that Mg,φ is also C1 at σ = 0. Let ε ∈ (εF − δ0, εF + δ0), and let χ ∈ C∞c (R) be
a cut-off function supported in a compact interval K ⊂ (εF − δ0, εF + δ0) and equal to 1 in a
neighborhood V of ε. For φ ∈ S(R), ε′ ∈ V and σ ∈ R∗, we have

〈g,Aε′,σφ〉S′,S = 〈χg,Aε′,σφ〉S′,S + 〈(1− χ)g,Aε′,σφ〉S′,S
= 〈Aε′,σφ, χg〉C0(K)′,C0(K) + 〈g, (1− χ)Aε′,σφ〉S′,S −→

(ε′,σ)→(ε,0)
g(ε)M0(φ),

since when (ε′, σ) → (ε, 0), Aε′,σφ → M0(φ)δε in the space C0(K)′ of bounded Borel measures
on K, while (1 − χ)Aε′,σφ goes to zero in S(R). This proves that Mg,φ is continuous on (εF −
δ0, εF ,+δ0)× R.

If in addition, g is of class C1 on (εF − δ0, εF + δ0), then for σ 6= 0,

Mg,φ(ε, σ)−Mg,φ(ε, 0)

σ
=
〈χg,Aε,σφ〉S′,S −M0(φ)(χg)(ε)

σ
+
〈(1− χ)g,Aε,σφ〉S′,S

σ

= 〈σ−1(Aε,σφ−M0(φ)δε), χg〉(C1(K))′,C1(K) + 〈g, (1− χ)σ−1Aε,σφ〉S′,S
−→
σ→0

(χg)′(ε)M1(φ) = g′(ε)M1(φ),

since σ−1(Aε,σφ −M0(φ)δε) converges to M1(φ)δ′ε in C1(K)′ , while (1 − χ)σ−1Aε,σφ converges
to 0 in S(R). Hence, for ε ∈ (εF − δ0, εF + δ0), we have

∂Mg,φ

∂ε
(ε, 0) = g′(ε)M0(φ),

∂Mg,φ

∂σ
(ε, 0) = g′(ε)M1(φ).

Observing that M0(φ′) = 0 and M0(Lφ) = 0, so that M1(φ′) = −M0(φ), and that, M1(Lφ) =
−M1(φ) with an integration by part, and reasoning as above, we obtain that for ε′ ∈ V and σ ∈ R∗,

∂Mg,φ

∂ε
(ε, σ) = −σ−1〈g,Aε,σφ′〉S′,S −→

σ→0
−g′(ε)M1(φ′) = g′(ε)M0(φ),

∂Mg,φ

∂σ
(ε, σ) = −σ−1〈g,Aε,σLφ〉S′,S −→

σ→0
−g′(ε)M1(Lφ) = g′(ε)M1(φ).

It follows thatMg,ε is of class C1 in (εF − δ0, εF + δ0)×R. Similar arguments allow one to show
that Mg,ε is of class Ck in (εF − δ0, εF + δ0)× R whenever g is of class Ck in (εF − δ0, εF + δ0).
The proof follows by a straightforward induction.

5.3. Error between smeared quantities and corresponding Riemann sums. We now in-
vestigate the convergence of Aσ,L to Aσ, for σ fixed. As we already mentioned, the advantage of
using smearing functions is that the quantities Aσ are defined as the integral of smooth periodic
functions. It is therefore natural to approximate numerically the integral by a regular Riemann
sum, for which we can expect exponential convergence, depending on the analytic properties of
the integrand (see for instance [28] for a review). For Y > 0, we introduce the (closed) complex
strip

SY := Rd + i[−Y, Y ]d =
{
z ∈ Cd, |Im(z)|∞ 6 Y

}
.

We recall the following classical result, which is proved as in [11, Lemma 5.1].

Lemma 5.8. There exists C ∈ R+ and η > 0 such that, for all Y > 0 and all F : Cd → C that is
analytic on SY and R∗-periodic on Rd, we have

∀L ∈ N∗,

∣∣∣∣∣
 
B
F (k)dk− 1

Ld

∑
k∈BL

F (k)

∣∣∣∣∣ 6 C
(

max
z∈SY

|F (z)|
)

e−ηY L

Y d
.

We see that, for a fixed value of σ, the greater the region of analyticity of the integrand, the
faster the convergence as L → ∞. We distinguish here the different smearing functions: the
Fermi-Dirac function fσFD has poles at (2Z + 1)πσi and displays exponential convergence, while
the Gaussian-type smearing functions are entire, leading to super-exponential convergence. We
collect in Lemmas A.1-A.2 estimates on the analytic behavior of the integrands of interest, from
which the results in this section proceed.
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We would like to emphasize at this point that, if the value of σ is not fixed but depends on L,
obtaining rates of convergence becomes a more subtle and intricate task. We address this issue in
more details in Remark 5.12.

5.3.1. Error for the integrated density of states.

Lemma 5.9 (Convergence of the integrated density of states). It holds that
• If f1 is any of the smearing functions (5.6-5.6′′′), there exists C ∈ R+ and η > 0 such that for
all 0 < σ 6 σ0 and all L ∈ N∗,

(5.16) max
ε∈[εF−δ0,εF+δ0]

∣∣N σ,L(ε)−N σ(ε)
∣∣ 6 Cσ−(d+1)e−ησL.

• If f1 is a Gaussian-type smearing function (5.6’-5.6′′′), then there exists C ′ ∈ R+ and η′ > 0
such that, for all 0 < σ 6 σ0 and all L ∈ N∗, such that σ2L > 4, it holds that

(5.17) max
ε∈[εF−δ0,εF+δ0]

∣∣N σ,L(ε)−N σ(ε)
∣∣ 6 C ′σ− 5d

3 L−
d
3 e−η

′σ2/3L4/3

.

Proof. We want to compare N σ,L(ε) with N σ(ε). This is exactly the framework of Lemma 5.8,
with integrand

FNε,σ(k) :=
∑
n∈N∗

fσ(εnk − ε) = TrL2
per

[fσ (Hk − ε)] .

In Appendix A, we study the analytic property of such functions. From Lemma A.1, there exists
C ∈ R+ and Y > 0 such that, for all ε ∈ [εF − δ0, εF + δ0] and all 0 < σ 6 σ0, the map FNε,σ
admits an analytic continuation on SσY , and it holds that

sup
z∈SσY

∣∣FNε,σ(z)
∣∣ 6 Cσ−1.

Together with Lemma 5.8, we deduce that there exists C,C ′ ∈ R+ and η′ > 0 such that∣∣N σ,L(ε)−N σ(ε)
∣∣ 6 Cσ−1(σY )−de−ησY L 6 C ′σ−(d+1)e−η

′σL.

This proves the first part (5.16). For the second part, we use Lemma A.2, and get in a similar
way that if f1 is a Gaussian-type smearing function, then there exists C ∈ R+ and η > 0 such
that for all Y > 1, all ε ∈ [εF − δ0, εF + δ0] and all 0 < σ 6 σ0,∣∣N σ,L(ε)−N σ(ε)

∣∣ 6 C(σY )−de
η

(
Y 4

σ2 −Y L
)
.

Taking Y = Y (σ, L) =
(

1
4σ

2L
)1/3

leads to the result. The condition σ2L > 4 comes from the fact
that we need Y > 1 for this result to be valid. �

5.3.2. Error for the Fermi level, the total energy, and the density. We now turn to the Fermi
energy, the total energy, and the density. As above, N σ,L is a continuous function that satisfies

N σ,L(−∞) = 0 and N σ,L(+∞) = +∞, hence there exists εσ,LF ∈ R so that N σ,L(εσ,LF ) = N . As

N σ,L is not necessarily increasing, εσ,LF may be non unique. However, since N σ,L is continuous,
close to N σ (in the sense of the lemma above), and N σ(εσF ) = N with ∂εN σ(εσF ) > 0, it follows

from the intermediary value theorem that there exists an εσ,LF close to εσF so that N σ,L(εσ,LF ) = N .

It is this εσ,LF that we assume to be chosen for the rest of this paper.

Lemma 5.10 (Convergence of the Fermi energy, the total energy, and the density). It holds that
• If f1 is any of the smearing functions in (5.6-5.6′′′), there exists C ∈ R+ and η > 0 such that
for all 0 < σ 6 σ0 and all L ∈ N∗,

(5.18)
∣∣∣εσF − εσ,LF ∣∣∣+

∣∣Eσ − Eσ,L∣∣+
∥∥ρσ − ρσ,L∥∥

Hs+2
per
6 Cσ−(d+1)e−ησL.

• If f1 is a Gaussian-type smearing function (5.6’-5.6′′′), there exists C ∈ R+ and η > 0 such
that, for all 0 < σ 6 σ0 and all L ∈ N∗ with σ2L > 4, it holds that

(5.19)
∣∣∣εσF − εσ,LF ∣∣∣+

∣∣Eσ − Eσ,L∣∣+
∥∥ρσ − ρσ,L∥∥

Hs+2
per
6 Cσ−

5d
3 L−

d
3 e−ησ

2/3L4/3

.
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Proof. The Fermi level is estimated as outlined above. For the energy (the proof is similar for the
density), we have∣∣Eσ − Eσ,L∣∣ 6 ∣∣∣Eσ(εσF )− Eσ(εσ,LF )

∣∣∣+
∣∣∣Eσ(εσ,LF )− Eσ,L(εσ,LF )

∣∣∣ .(5.20)

The second term of (5.20) is exactly in the scope of Lemma 5.8 when we consider the function

FEσ (k) :=
∑
n∈N∗

εnkf
σ(εnk − εσ,L) = TrL2

per

[
Hkf

σ
(
Hk − εσ,L

)]
.

Following the lines of Lemma 5.9 together with Lemmas A.1-A.2, we see that the first term is
exponentially (resp. superexponentially) small. The first term of (5.20) can be evaluated by
noticing that ∣∣∣Eσ(εσF )− Eσ(εσ,LF )

∣∣∣ 6 ( max
ε∈[εF−δ0/2,εF+δ0/2]

|∂εEσ|
) ∣∣∣εσF − εσ,LF ∣∣∣ .

The proof follows. �

5.4. Total error. We finally combine Lemma 5.5, Lemma 5.6, Lemma 5.7 and Lemma 5.10 to
obtain our final result.

Theorem 5.11. Consider a smearing method of order p > 1. Under Assumption 1 and 2, there
exist C ∈ R+ and η > 0 such that, for all 0 < σ 6 σ0 and all L ∈ N∗, it holds that

|εσ,LF − εF |+ |Eσ,L − E|+ ‖ρσ,L − ρ‖Hs+2
per
6 C(σp+1 + σ−(d+1)e−ησL).(5.21)

Remark 5.12 (Choosing σ adaptively). In practice, only the parameter L is relevant when con-
sidering CPU time. The numerical parameter σ can be chosen freely with no extra numerical cost,
and can be optimized with respect to L. For instance, the choice σ ∝ L−1 has been recommended
for practical calculations in [1], based on a heuristic argument. According to our previous theorem,
this is not enough: the right-hand side of (5.21) does not tend to zero when L→∞ and σ = C/L.
Still, choosing the slightly different scaling σ ∝ log(L)L−1 leads to a decay of the error proportional
to L−(p+1), up to log factors. Our results therefore broadly support those of [1].

Remark 5.13 (Superexponential convergence). The choice σ ∝ log(L)/L gives σ2L ∝ log(L)2/L,
which goes to 0 as L → infty. In particular, the condition σ2L > 4 is not satisfied for large L.
The super-exponential scaling result is therefore irrelevant for numerical purposes when we want
to compute zero-temperature quantities.

6. Numerical results

The aim of this section is to present some numerical results on toy test cases to illustrate the
convergence properties of the methods analyzed in the previous sections. We also present some
examples where Assumption 1 or Assumption 2 are not valid. In these cases, we numerically
observe a degraded convergence rate.

In Section 4, some results about interpolation methods are presented for different interpolation
orders. In Section 6.2, numerical tests are performed using some of the smearing methods described
in Section 5.

6.1. Interpolation methods. We consider two-dimensional toy test cases, with B = (−1/2, 1/2)2.
For a given L ∈ N∗, we consider a uniform L×L discretization grid of B as described in Section 4,
and use B-splines of order 1 and 2 as interpolation operators. In all computations in this section
the numerical quadratures are performed up to an error of 10−6, and so we display error curves
only above that threshold.
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Case 1. Let us first consider a two-dimensional example where Assumptions 1 and 2 are satisfied
(case 1 in the following). We consider one analytical band:

(6.1) ∀k := (k1, k2) ∈ B, ε1k = 3 cos(2πk1) cos(2πk2) + sin(4πk1) cos(4πk2)

represented on Figure 5. The number of electrons per unit cell is chosen to be equal to N =
0.85 so that the exact Fermi level is approximately εF ≈ 1.7275. We plot the error on the

energy
∣∣E − EL,p,q∣∣ and the Fermi level

∣∣∣εF − εL,qF ∣∣∣ as a function of L on Figure 6, for different

interpolation schemes (we recall that p is the order used to interpolate the integrand, and q the
order used to interpolate εnk for the purposes of determining the integration region and Fermi
level).
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Figure 5. Isolines of the band structure (6.1) used in cases 1 and 2 (Fermi level
≈ 1.7275 and 0 respectively).
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Figure 6. Case 1: errors made on the energy (left) and the Fermi level (right).
The two dashed lines are proportional to L−2 and L−3 respectively. The p = 1,
q = 1 and p = 1, q = 2 curves are almost identical in the left plot.

We see that the energy for the methods with p = 1 converge converges as 1/L2, irrespective of
q, and that the Fermi level converges as 1/L2 for q = 1, as expected from our estimates. For the
higher-order methods, the convergence is more erratic, and it is difficult to determine the order
precisely. However, it can be seen that the p = 2, q = 2 method only marginally improves the
error on the energy compared to the p = 2, q = 1 method, as expected from our estimates.



NUMERICAL QUADRATURE IN THE BRILLOUIN ZONE FOR PERIODIC SCHRÖDINGER OPERATORS 25

Cases 2 and 3. We now consider two other two-dimensional examples where either Assumption 1
or Assumption 2 is violated.

In the test violating Assumption 2 (case 2 in the following), only one band is considered, with
the same analytic expression (6.1) as in case 1. However, the number of electrons is now chosen to
be equal to N = 0.5 so that the exact Fermi level is equal to εF = 0. There are saddle points of the
function ε1k at level εF = 0, as can be seen in Figure 5. This produces a van Hove singularity in
the density of states at the Fermi level, violating Assumption 1. Note however that the singularity
for a saddle point is relatively mild in 2D: D(ε) diverges logarithmically near εF .

The test case violating Assumption 1 (case 3 in the following) is the standard tight-binding
model of graphene [5], where band crossings occur on the Fermi surface.

We denote for all k = (k1, k2) ∈ B

c1(k) =
k1 + k2

3
, c2(k) =

k1 − 2k2

3
, c3(k) =

−2k1 + k2

3
.

For all k ∈ B, we then define the 2× 2 Hermitian matrix H(k) as follows

H(k) :=

(
0

∑3
j=1 e−2πicj(k)∑3

j=1 e2πicj(k) 0

)
.

It can be checked that, while H is not periodic, for all K ∈ R∗, H(k+K) is unitarily equivalent to
H(k), so that the eigenvalues of H(k) are periodic on B. In this test case, the number of electrons
per unit cell is chosen to be equal to N = 1 so that the exact Fermi level is εF = 0. The two
bands ε1k and ε2k touch at the Fermi level at two non-equivalent points of the Brillouin zone (the
Dirac points K and K′), violating Assumption 2.

In Figure 7 we plot the errors between the exact and approximate energies
∣∣E − EL,p,q∣∣ as a

function of L using the same interpolation schemes as described above.
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Figure 7. Errors made on the energy for interpolation methods on cases 2 (left)
and 3 (right). The two dashed lines are proportional to L−2 and L−3 respectively.
On the right plot, the results are independent of q.

The different errors for case 2 seem to decay at a rate similar to that in case 1. We attribute this
to the relatively mild singularity of this case. Case 3 however displays a very different behavior,
the results depending on the position of the Dirac points K and K′ on the grid and therefore
displaying an oscillating pattern.

6.2. Smearing methods. The aim of this section is to present numerical results for some smear-
ing methods presented and analyzed in Section 5, for the three two-dimensional test cases pre-
sented in Section 4. We consider here the Gaussian (denoted by GA, of order 1) and the first
Methfessel-Paxton method (denoted by MP, of order 3) smearing schemes.
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Let us begin with the first test case, namely the one-band model (6.1) for which Assumptions 1
and 2 are satisfied. The errors on the energy and on the Fermi level are plotted on Figure 8 as a
function of L and for different values of σ.
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Figure 8. Error on the energy
∣∣E − Eσ,L∣∣ (left) and Fermi level

∣∣∣εF − εσ,LF ∣∣∣
(right) for case 1 as a function of L for different smearing schemes and different
values of σ.

From this we obtain the following conclusions:

• The error as L→∞ decreases as σ decreases. As σ is reduced by a factor of 2, the error
|Eσ,∞ − E| is reduced by a factor of about 4 (for GA) and by a factor of about 8 (for
MP1), suggesting that the asymptotic regime is not yet reached for the MP1 method (we
would expect a factor 16 since the MP1 method is of order 3).

• As σ is reduced, so is the speed of convergence of Eσ,L to Eσ,∞. The number of points L
required to achieve convergence of Eσ,L to Eσ,∞ scales approximately linearly as 1/σ, as
expected from the e−ησL term in Theorem 5.11.

• On this toy example and in the parameter regimes considered here, the method that gives
the lowest error for a given L seems to be that with lowest smearing and highest order,
giving the impression that smearing is not advantageous. This is of course not the case in
more realistic examples with lower values of L, where there is a non-zero optimal smearing.

We also present numerical results obtained on the two degenerate cases presented in Section 4
where Assumption 1 or Assumption 2 are violated. Errors

∣∣Eσ,L − E∣∣ are plotted as a function of
L for cases 1 and 2 in Figure 9. In contrast to before, we see that the Methfessel-Paxton scheme
is not able to achieve a higher order than the Gaussian smearing. This is because of the lack of
regularity of the density of states at the Fermi level in these two cases.

7. Conclusion

We have presented an a priori error analysis of quadrature rules and smearing methods for
k-point integration in the Brillouin zone. Our conclusions justify several non-obvious schemes,
and give rigorous bounds allowing one to choose the smearing parameter optimally.

Our analysis is concerned with linear periodic Schrödinger operators; as such, a number of
extensions are necessary to covers the framework of density functional theory, which is the main
motivation underlying this work. The nonlinearity of the Kohn-Sham equations is expected to
give rise to difficulties, which can probably be addressed using the tools developed in [4]. Another
source of error not considered here is the space (or plane-wave) discretization used in numerical
simulations of periodic Schrödinger operators. This has a strong impact on our estimates, which
rely on the fact that the map Rd 3 k 7→ (i + Hk)−1 ∈ B(L2

per) is smooth and pseudo-periodic.
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Figure 9. Error on the energy
∣∣E − Eσ,L∣∣ for cases 2 (left) and 3 (right) as a

function of L for different smearing schemes and different values of σ.

This cannot be ensured at the discrete level for a standard Galerkin discretization, see Remark
2.2. We plan to explore all these issues in a forthcoming paper.

In this work, we only considered simple ground state properties. Several quantities of interest
do not fit into this framework, such as response functions, which involve integrals over Fermi
surfaces, derivatives with respect to k of occupied Bloch states, or unoccupied Bloch states. The
error estimates in this case are expected to be substantially different, in accordance to the common
observation that these quantities converge slowly in practice as functions of L.

To establish our results, we have relied on Assumptions 1 and 2, which mathematically define
what is a “simple” metal (at least for the properties we have considered). For such metals, the
asymptotic behavior is universal, and the scaling laws only depend on the interpolation or smearing
used. It would be interesting to explore what happens in the case of a semimetal, or when a van
Hove singularity is present at (or close to) the Fermi surface.

Appendix A. Analytic properties of the integrand

The goal of this appendix is to study the analytic properties of the functions FNε,σ, FEε,σ and

F ρ,Wε,σ defined respectively by

FNε,σ(k) := TrL2
per

[fσ (Hk − ε)] ,

FEε,σ(k) := TrL2
per

[Hkf
σ (Hk − ε)] ,

F ρ,Wε,σ (k) := TrL2
per

[Wfσ (Hk − ε)] .

We prove the following two results. The first one studies the analytic properties of these
functions near the real line.

Lemma A.1 (Analyticity near the real line). Let f1 be any of the smearing functions (5.6)-(5.6 ′′′).
Then, there exist C ∈ R+ and Y > 0 such that, for all ε ∈ [εF − δ0, εF + δ0] and all 0 < σ 6 σ0,
the maps FXε,σ admits an analytic continuation on SσY , and it holds that

sup
z∈SσY

∣∣FNε,σ(z)
∣∣+ sup

z∈SσY

∣∣FEε,σ(z)
∣∣+ sup

z∈SσY , ‖W‖
H
−(s+2)
per =1

∣∣F ρ,Wε,σ (z)
∣∣ 6 Cσ−1.

Our second result studies the analytic properties on the entire complex plane.

Lemma A.2 (Analyticity on C). Let f1 be one of the Gaussian-type smearing functions (5.6’)-
(5.6 ′′′). Then, the maps FXε,σ are entire, and there exists C ∈ R+ and η > 0 such that, for all
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Y > 1, all ε ∈ [εF − δ0, εF + δ0] and all 0 < σ 6 σ0,

sup
z∈SσY

∣∣FNε,σ(z)
∣∣+ sup

z∈SσY

∣∣FEε,σ(z)
∣∣+ sup

z∈SσY , ‖W‖
H
−(s+2)
per

=1

∣∣F ρ,Wε,σ (z)
∣∣ 6 Ceη

Y 4

σ2 .

Let us first highlight the idea of the proofs of these lemmas. First, we will obtain bounds that
only depend on ‖Vper‖L∞ , so that we can absorb ε ∈ (εF − δ0, εF + δ0) in Vper. Without loss of
generality, we take ε = 0 and drop the subscript ε. In addition, to shorten the presentation, we
only do the proof for the energy. In the following, Fσ denotes FEε=0,σ.

We wish to study the analytic properties of the function

Fσ(k) = TrL2
per

[
Hkf

1 (Hk/σ)
]
,

where f1 is one of the smearing functions (5.6)-(5.6′′′). Formally, Hk admits an analytic continu-
ation to the whole complex plane: when z = k + iy ∈ Cd, we set

Hz = −1

2
∆z + Vper,

where

−∆z = (−i∇+ z)2 = (−i∇+ k)2 + 2iy · (−i∇+ k)− |y|2.(A.1)

The operator Hz is not self-adjoint (it is not even a normal operator), so it is difficult to compute
the analytical extension Fσ(z) of Fσ(k). We will use a representation in terms of contour integrals.
Formally, it holds that

TrL2
per

[
Hzf

1 (Hz/σ)
]

= TrL2
per

[
1

2πi

˛
C

λf1(λ/σ)

(
1

λ−Hz

)
dλ

]
=

1

2πi

˛
C

λf1(λ/σ)TrL2
per

[
1

λ−Hz

]
dλ

for some (infinite) contour C enclosing the spectrum of Hz. Unfortunately, we cannot commute
the trace and the integral in the last line whenever the dimension d is greater than 1. The reason
is that the operator (λ−Hz)−1 is not trace-class when d > 2 (see (2.2)). Instead, we consider the
contour integral1

(A.2) Gσ(z) =
1

2πi

ˆ
C

[
λf1(λ/σ)(λ+ Σ)2

]
TrL2

per

(
1

(Hz + Σ)2

1

λ−Hz

)
dλ,

where Σ ∈ R is a well-chosen shift, and prove that Gσ is an analytic continuation of Fσ.

We prove Lemma A.1 and Lemma A.2 in the following two sections. In both cases we prove
that there exists appropriate contours such that Gσ = Fσ using a perturbation argument. When
z = k + iy ∈ C3 with |y| small, we see Hz as a perturbation of Hk, while when y is large, we see
it as a perturbation of the free operator − 1

2∆z.

A.1. Proof of Lemma A.1. We introduce C the parabolic contour in the complex plane defined
by

C :=

{
λ ∈ C, |Im λ|2 = σ2

(
1 +

Re λ

Σ

)}
, where we set Σ := ‖V ‖L∞ + 1.(A.3)

It is the (unique) parabola that passes through the points −Σ and ±iσ. In particular, it does not
encounter the poles of the Fermi-Dirac function at (2Z + 1)πσi. Let us prove that C encloses the
spectrum of Hk+iy for y small enough (see Figure 10).

1In the case of the density, we can take for instance

GWσ (z) :=
1

2πi

ˆ
C

[
f1(λ/σ)(λ+ Σ)2

]
TrL2

per

(
1

(Hz + Σ)(s+4)/2
W

1

(Hz + Σ)(s+4)/2

1

λ−Hz

)
dλ,

with the integrand trace-class from (5.15).
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Figure 10. Spectrum of the operator Hz for z = k+ iy, and the contour C that
encloses it, while avoiding the poles of the Fermi-Dirac function at (2Z + 1)σi.

Lemma A.3. There exist C ∈ R+ and Y > 0 such that, for all 0 < σ 6 σ0, all z = k + iy ∈ SσY ,
and all λ ∈ C , we have the following estimates:

‖(Hz − λ)−1‖B 6 Cσ−1,(A.4)

‖(Hz + Σ)−1‖S2 6 C,(A.5)

TrL2
per

(
1

(Hz + Σ)2

1

λ−Hz

)
6 Cσ−1,(A.6)

∂zTrL2
per

(
1

(Hz + Σ)2

1

λ−Hz

)
6 Cσ−1.(A.7)

Proof. From (A.1), it holds that

Hz =
1

2
(−i∇+ k)2 + iy · (−i∇+ k)− 1

2
|y|2 + Vper =

(
Hk − 1

2 |y|
2
)

+ iy · (−i∇+ k).

For Y 6 1, the spectrum of the self-adjoint operator Hk − 1
2 |y|

2 is contained in [−Σ + 1
2 ,+∞),

which is disjoint from C . In particular, for λ ∈ C , we have

(A.8) (λ−Hz) =
(
λ− (Hk − 1

2 |y|
2)
) (

1 + iy ·
(
λ− (Hk − 1

2 |y|
2)
)−1

(i∇+ k)
)
.

Let us evaluate the norm of the normal operator
(
λ− (Hk − 1

2 |y|
2)
)−1

. From (A.3), we have∥∥∥(λ− (Hk − 1
2 |y|

2)
)−1
∥∥∥
B

= dist
(
λ,Spec(Hk − 1

2 |y|
2)
)−1
6
[
(Imλ)2 + (−Σ + 1

2 − Reλ)2
+

]−1/2

=
[
σ2(1 + Reλ

Σ ) + (−Σ + 1
2 − Reλ)2

+

]−1/2
6 Cσ−1,

where x+ := max(x, 0) and where C ∈ R+ is a constant that depends only on Σ and σ0. The last
inequality is obtained by optimizing over all Reλ > −Σ.

From the fact that Hk is a bounded perturbation of 1
2 (−i∇+k)2, and using similar calculations,

we easily get that there exists C ∈ R+ that depends only on Σ and σ0 such that

‖iy · (λ− (Hk − 1
2 |y|

2))−1 · (−i∇+ k)‖B 6 Cσ−1|y|.(A.9)

As a consequence, for Y 6 1/(2C) and |y| 6 σY , the operator on the right parenthesis of (A.8)
is invertible, and its inverse is bounded in norm by 2. Inverting (A.8) leads to (A.4).

Inequality (A.5) is proved in a similar way (notice that the operator (Σ − (Hk − 1
2 |y|

2))−1 is
Hilbert-Schmidt by (2.2)). Inequality (A.6) is a consequence of (A.4) and (A.5), together with the
operator inequality

∣∣Tr(B2A)
∣∣ 6 ‖B‖2S2

‖A‖B.

We finally prove (A.7). For all µ in the resolvent set of Hz, we have

∂z

(
1

Hz − µ

)
= −

(
1

Hz − µ

)
∂zHz

(
1

Hz − µ

)
= − 1

Hz − µ
(−i∇+ z)

1

Hz − µ
.

We then use similar arguments and the fact that the operator (−i∇+z) (Hz − λ)
−1

is bounded. �
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We can now prove the analyticity of Gσ defined in (A.2).

Lemma A.4. There exist C ∈ R+ and Y > 0 such that, for all 0 < σ 6 σ0, the function Gσ is
analytic on SσY , and

sup
z∈SσY

|Gσ(z)| 6 Cσ−1.

Proof. From the previous Lemma A.3, we already see that Gσ is analytic. Let us prove the bound.
It holds that

|Gσ(z)| 6 Cσ−1

ˆ
C

|f1(σ−1λ)λ(λ+ Σ)2||dλ|.

To evaluate the last integral, we parametrize the contour C with λ(t) := Σ(t2− 1) + iσt for t ∈ R,
so that

(A.10) |λ| =
(
Σ2(t2 − 1)2 + σ2t2

)1/2
6 C(t2 + 1) and |dλ| =

√
4t2Σ2 + σ2dt 6 C(|t|+ 1)dt,

for some C ∈ R+ that depends only on Σ and σ0. We obtain

|Gσ(z)| 6 Cσ−1

(ˆ
R

∣∣f1
(
σ−1Σ(t2 − 1) + it

)∣∣ (1 + |t|7)dt

)
.

Let us prove that the last integral is uniformly bounded for 0 < σ 6 σ0. We prove this result
in full details for the Fermi-Dirac smearing f1(x) = (1 + ex)−1, the other cases being similar. We
split the integral in the regions |t| 6 π/2 and |t| > π/2. For |t| 6 π/2, it holds that cos t > 0, so
that ∣∣f1

(
σ−1Σ(t2 − 1) + it

)∣∣ =
∣∣∣1 + eσ

−1Σ(t2−1)eit
∣∣∣−1

6
∣∣∣Re

(
1 + eσ

−1Σ(t2−1)eit
)∣∣∣−1

=
∣∣∣1 + eσ

−1Σ(t2−1) cos t
∣∣∣−1

6 1.

We deduce that the integral over |t| 6 π/2 is uniformly bounded for 0 < σ 6 σ0. For t > π/2 > 1,
it holds that (t2 − 1) > 0, so that∣∣∣1 + eσ

−1Σ(t2−1)eit
∣∣∣−1

6
∣∣∣eσ−1Σ(t2−1) − 1

∣∣∣−1

6
∣∣∣eσ−1

0 Σ(t2−1) − 1
∣∣∣−1

,

where the right-hand side no longer depends on 0 < σ 6 σ0. Finally, we check that the integralˆ
|t|>π

2

∣∣∣eσ−1
0 Σ(t2−1) − 1

∣∣∣−1

(1 + |t|7)dt

is absolutely convergent, and independent of 0 < σ 6 σ0. This ends the proof of Lemma A.4.
�

We now prove, as claimed, that Gσ is an analytic extension of Fσ.

Lemma A.5. For all 0 < σ 6 σ0 and all k ∈ Rd, it holds that Gσ(k) = Fσ(k).

Proof. We first approximate Hk by a finite-rank operator, then apply the Cauchy residual formula,
and pass to the limit. Recall that Hk is a self-adjoint operator with spectral decomposition (2.1).
For Q ∈ N∗, we introduce the truncated operator

HQ
k :=

Q∑
n=1

εnk|unk〉〈unk|.

We have

|Gσ(k)− Fσ(k)| 6
∣∣∣Gσ(k)− TrL2

per

(
HQ

k f
σ(HQ

k )
)∣∣∣(A.11)

+
∣∣∣TrL2

per

(
HQ

k f
σ(HQ

k )
)
− TrL2

per
(Hkf

σ(Hk))
∣∣∣ .(A.12)

We first focus on (A.12). Using the asymptotic (2.2) and the decay properties of fσ, it holds that

(A.13) TrL2
per

(Hkf
σ(Hk))− TrL2

per

(
HQ

k f
σ(HQ

k )
)

=
∑
n>Q

εnkf
σ(εnk) −−−−→

Q→∞
0.
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We now focus on the right-hand side of (A.11). For M > εQk + 1 we denote by CM the positively
oriented closed contour defined by

CM := {λ ∈ C , Reλ 6M}
⋃[

M + iσ

(
1 +

M

Σ

)
,M − iσ

(
1 +

M

Σ

)]
.

The contour CM is obtained by truncating the parabola C to the region Reλ 6M and closing the

contour by a segment. For all M > εQk + 1, this contour encloses the spectrum of HQ
k , so that,

from the Cauchy residual formula,

TrL2
per

(
HQ

k f
σ(HQ

k )
)

=
1

2πi

˛
CM

[
fσ(λ)λ(λ+ Σ)2

]
TrL2

per

(
1

(HQ
k + Σ)2

1

λ−HQ
k

)
dλ.

As M → ∞, and using the same arguments as in the proofs of Lemmas A.3 and A.4, we see
that the right-hand side converges to the integral over the full contour C . Moreover, we have the
point-wise convergence

∀λ ∈ C , lim
Q→∞

TrL2
per

(
1

(HQ
k + Σ)2

1

λ−HQ
k

)
= lim
Q→∞

Q∑
n=1

1

(εnk + Σ)2(λ− εnk)

=

∞∑
n=1

1

(εnk + Σ)2(λ− εnk)
= TrL2

per

(
1

(Hk + Σ)2

1

λ−Hk

)
.

We conclude from the dominated convergence theorem that TrL2
per

(
HQ

k f
σ(HQ

k )
)

converges to

Gσ(k) as Q→∞. The proof of Lemma A.5 follows. �

Combining Lemma A.5 together with Lemma A.4 ends the proof of Lemma A.1.

A.2. Proof of Lemma A.2. We now focus on Gaussian-type smearing functions. The idea of
the proof is similar to previously. We need however to re-define Gσ for large |y| (i. e. choose an
appropriate contour). In the sequel, we fix Y > 1 and provide estimates uniform in z ∈ SY .

Looking at the operator − 1
2∆z in Fourier basis, we see that its spectrum is

σ
(
− 1

2∆z

)
:=
{

1
2 (K + z)2

}
K∈R∗

{
1

2
(|K + k|2 − |y|2) + iy · (K + k)

}
K∈R∗

,

hence is contained in the parabolic set (Imλ)2 6 Y 2(2Reλ + Y 2). In the sequel, we take an
parabolic integration contour that encloses this region. More specifically, for α > 1 and Y > 1,
we introduce the dilated contour

Cα,Y :=
{
λ ∈ C, Imλ2 = α2Y 2(2Reλ+ α2Y 2)

}
.

As α increases, the distance between Cα,Y and σ(− 1
2∆z) goes to +∞. Since the operator − 1

2∆z

is normal, this implies that there exists αc > 1 such that

∀Y > 1, ∀z ∈ SY , ∀λ ∈ Cαc,Y ,
∥∥(λ+ 1

2∆z)−1
∥∥

B
6 (2‖V ‖L∞)

−1
.

The contour C := Cαc,Y is our integration contour for z ∈ SY (see Figure 11).
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R

iR

Spec(H)

Spec(− 1
2∆z)

Spec(Hz)

C
iα2
cY

2

iY 2

−Σ = −α
2
cY

2

2

−Y
2

2

Figure 11. The spectra of the operator − 1
2∆z and Hz, and the contour C that

encloses them.

For λ ∈ C , it holds that (compare with (A.8))

(λ−Hz) =
(
λ+ 1

2∆z − V
)

=
(
λ+ 1

2∆z

) (
1− (λ+ 1

2∆z)−1V
)
.

As in Lemma A.3 we deduce the following inequalities. We do not repeat the proof, as it is similar.

We denote by Σ :=
α2
cY

2

2 for the sake of clarity.

Lemma A.6. There exists C ∈ R+ such that, for all Y > 1, all z ∈ SY , and all λ ∈ C , it holds
that

‖(Hz − λ)−1‖B 6 C, ‖(Hz + Σ)−1‖S2 6 C,

TrL2
per

(
1

(Hz + Σ)2

1

λ−Hz

)
6 C, and ∂zTrL2

per

(
1

(Hz + Σ)2

1

λ−Hz

)
6 C.

We now define, for 0 < σ 6 σ0 and Y > 1, the function defined on SY by

(A.14) Gσ,Y (z) :=
1

2πi

ˆ
C

[
λf1(λ/σ)(λ+ Σ)2

]
TrL2

per

(
1

(Hz + Σ)2

1

λ−Hz

)
dλ.

Before stating a bound on Gσ,Y , we need the following technical lemma on the growth of f1:

Lemma A.7 (Growth of f1 in the complex plane). When f1 is one of the Gaussian-type smearing
functions (5.6′′-5.6′′′), then f1 is entire, and there exists C ∈ R+ and q > 0 such that

(A.15) ∀x, y ∈ R,
∣∣f1(x+ iy)

∣∣ 6

C(1 + (x2 + y2)q)

(
ey

2−x2
)

if x > 0,

C(1 + (x2 + y2)q)
(

1 + ey
2−x2

)
if x < 0.

Proof. We first handle the case when f1 is the Gaussian smearing function (in which case we can
choose q = 0). We have

f1(x) =
1

2
(1− erf (x)) =

1√
π

ˆ ∞
x

e−t
2

dt.

First recall that for x ∈ R, we have 0 < f1(x) < 1. Moreover, for x > 1, it holds that

0 6 f1(x) 6
1√
π

ˆ ∞
x

te−t
2

dt =
1

2
√
π

e−x
2

.

This already proves (A.15) for y = 0. Then, we notice that an analytic continuation of f1 is given
by

f1(x+ iy) =
1√
π

(ˆ ∞
x

e−t
2

dt+ i

ˆ y

0

e−(x+it)2dt

)
= f1(x) + i

e−x
2

√
π

ˆ y

0

e−2ixtet
2

dt.

Lemma A.7 then follows from the inequalities∣∣f1(x+ iy)
∣∣ 6 ∣∣f1(x)

∣∣+
e−x

2

√
π

ˆ
[0,y]

et
2

dt,
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together with the fact thatˆ
[0,y]

et
2

dt =

ˆ
[0,1]

et
2

dt+

ˆ
[1,y]

et
2

dt 6
ˆ

[0,1]

et
2

dt+

ˆ
[1,y]

tet
2

dt 6 Cey
2

.

The case of the Methfessel-Paxton and cold smearing schemes follows immediately by noting that

they differ from the Gaussian smearing function by terms of the form xne−x
2

, and the fact that∣∣∣zne−z
2
∣∣∣ = (x2 + y2)n/2ey

2−x2

.

�

We are now in position to prove estimates on Gσ,Y defined on (A.14).

Lemma A.8. There exists C ∈ R+ and η > 0 such that, for all 0 < σ 6 σ0 and all Y > 1, the
function Gσ,Y is analytic on SY , and

sup
z∈SY

|Gσ,Y (z)| 6 Ceη
Y 4

σ2 .

Proof. For the sake of clarity, we do the proof when f1 is the Gaussian smearing function (i. e.
q = 0). From Lemma A.6, it holds that

|Gσ,Y (z)| 6 C
ˆ

C

|λf1(λ/σ)(λ+ Σ)2||dλ|.

We parametrize the contour C with λ(t) :=
α2
cY

2

2 ((t2 − 1) + i2t), so that (compare with (A.10))

|λ| 6 CY 2(t2 + 1) and |dλ| 6 CY 2(|t|+ 1)dt.

Then,

|Gσ,Y (z)| 6 CY 8

ˆ
R

∣∣∣f1
(
α2
cY

2

2σ

(
t2 − 1 + i2t

))∣∣∣ (1 + |t|7)dt.

We split this integral in regions where |t| > 1, and |t| 6 1. When |t| 6 1, it holds that Reλ(t) 6 0.
Together with the second inequality of Lemma A.7 and the inequalities

∀ − 1 6 t 6 1, (1 + |t|7) 6 2, and 4t2 − (t2 − 1)2 6 4,

we getˆ
[−1,1]

∣∣∣f1
(
α2
cY

2

2σ

(
t2 − 1 + i2t

))∣∣∣ (1 + |t|7)dt 6 2C

ˆ
[−1,1]

[
1 + exp

(
α4
cY

4

4σ2 (4t2 − (t2 − 1)2)
)]

dt

6 4C

[
1 + e

α4
cY

4

σ2

]
6 8Ce

α4
cY

4

σ2 .

For |t| > 1, we use the first inequality of Lemma A.7, and obtainˆ
[−1,1]c

∣∣∣f1
(
α2
cY

2

2σ

(
t2 − 1 + i2t

))∣∣∣ (1 + |t|7)dt 6 2C

ˆ ∞
1

exp
(
α4
cY

4

4σ2 (4t2 − (t2 − 1)2)
)

(1 + |t|7)dt.

When t > 1, we have the inequalities

(1 + |t|7) 6 2|t|7 while 6t2 6
1

2
(t4 + 62) so that 4t2 − (t2 − 1)2 6 − t

4

2 + 17.

As a result,ˆ ∞
1

exp
(
α4
cY

4

4σ2 (4t2 − (t2 − 1)2)
)

(1 + |t|7)dt 6 2 exp
(

17α4
cY

4

4σ2

) ˆ ∞
0

exp
(
−α4

cY
4

8σ2 t4
)
t7dt.

We finally perform the change of variable u = αcY
81/4
√
σ
t and get

ˆ ∞
0

exp
(
−α4

cY
4

8σ2 t4
)
t7dt =

(
81/4
√
σ

αcY

)8 ˆ ∞
0

e−u
4

u7du,

where the right-hand side is uniformly bounded for 0 < σ 6 σ0 and Y > 1. Combining all the
inequalities concludes the proof of Lemma A.8 �
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Lemma A.2 is a consequence of the Lemma A.8 and the following one, whose proof is similar
to the one of Lemma A.5

Lemma A.9. For all 0 < σ 6 σ0, all Y > 1, and all k ∈ Rd, it holds that Gσ,Y (k) = Fσ(k).
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[29] J. von Neumann and E. P. Wigner. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen, pages

294–297. Springer Berlin Heidelberg, 1993.

[30] D. Zaharioudakis. Quadratic and cubic tetrahedron methods for Brillouin zone integration. Comp. Phys.
Comm., 167(2):85–89, 2005.
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