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ON THE MONOTONICITY AND DISCRETE MAXIMUM

PRINCIPLE OF THE FINITE DIFFERENCE IMPLEMENTATION OF

C0-Q2 FINITE ELEMENT METHOD

HAO LI∗ AND XIANGXIONG ZHANG †

Abstract. We show that the fourth order accurate finite difference implementation of continuous
finite element method with tensor product of quadratic polynomial basis is monotone thus satisfies
the discrete maximum principle for solving a scalar variable coefficient equation −∇· (a∇u)+cu = f

under a suitable mesh constraint.
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1. Introduction.

1.1. Monotonicity and discrete maximum principle. Consider a Poisson
equation with variable coefficients and Dirichlet boundary conditions on a two dimen-
sional rectangular domain Ω = (0, 1)× (0, 1):

Lu ≡ −∇ · (a∇u) + cu = 0 on Ω,

u = g on ∂Ω,
(1.1)

where a(x, y), c(x, y) ∈ C0(Ω̄) with 0 < amin ≤ a(x, y) ≤ amax and c(x, y) ≥ 0. For a
smooth function u ∈ C2(Ω) ∩ C(Ω̄), maximum principle holds [12]: Lu ≤ 0 in Ω =⇒
maxΩ̄ u ≤ max {0,max∂Ω u} , and in particular,

(1.2) Lu = 0 in Ω =⇒ |u(x, y)| ≤ max
∂Ω

|u|, ∀(x, y) ∈ Ω.

For various purposes, it is desired to have numerical schemes to satisfy (1.2) in the
discrete sense. A linear approximation to L can be represented as a matrix Lh. The
matrix Lh is called monotone if its inverse has nonnegative entries, i.e., L−1

h ≥ 0. All
matrix inequalities in this paper are entrywise inequalities. One sufficient condition
for the discrete maximum principle is the monotonicity of the scheme, which was also
used to prove convergence of numerical schemes, e.g., [4, 10, 1, 13].

In this paper, we will discuss the monotonicity and discrete maximum principle of
the simplest finite difference implementation of the continuous finite element method
with Q2 basis (i.e., tensor product of quadratic polynomial) for (1.1), which is a fourth
order accurate scheme [20].

1.2. Second accurate schemes and M-matrices. The second order centered
difference u′′ ≈ ui−1−2ui+ui+1

∆x2 for solving −u′′(x) = f(x), u(0) = u(1) = 0 results in
a tridiagonal (−1, 2,−1) matrix, which is an M-matrix. Nonsingular M-matrices are
inverse-positive matrices and it is the most convenient tool for constructing inverse-
positive matrices. There are many equivalent definitions or characterizations of M-
matrices, see [24]. One convenient characterization of nonsingular M-matrices are
nonsingular matrices with nonpositive off-diagonal entries and positive diagonal en-
tries, and all row sums are non-negative with at least one row sum is positive.
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The continuous finite element method with piecewise linear basis forms an M-
matrix for the variable coefficient problem (1.1) on triangular meshes under reasonable
mesh constraints [33]. The M-matrix structure in linear finite element method also
holds for a nonlinear elliptic equation [15]. For solving −∆u = f on regular triangular
meshes, linear finite element method reduces to the 5-point discrete Laplacian. Linear
finite element method or the 5-point discrete Laplacian is the most popular method
in the literature for constructing schemes satisfying a discrete maximum principle and
bound-preserving properties.

Almost all high order accurate schemes result in positive off-diagonal entries in Lh

for solving −∆u = f thus Lh is no longer an M-matrix. The only known exceptions
are the fourth order accurate 9-point discrete Laplacian and the fourth order accurate
compact finite difference scheme.

1.3. Existing high order accurate monotone methods for two-dimensional

Laplacian. There are at least three kinds of high order accurate schemes which have
been proven to satisfy L−1

h ≥ 0 for the Laplacian operator Lu = −∆u:
1. Both the fourth order accurate 9-point discrete Laplacian scheme [4, 6] and

the fourth order accurate compact finite difference scheme [18, 19] for −∆u =
f can be written as Su = W f with S being an M-matrix and W ≥ 0, thus
L−1
h = S−1M ≥ 0.

2. In [5, 7], Bramble and Hubbard constructed a fourth order accurate finite
difference discrete Laplacian operator for which Lh is not an M-matrix but
monotonicity L−1

h ≥ 0 is ensured through an M-matrix factorization Lh =
M1M2, i.e., Lh is a product of two M-matrices.

3. Finite element method with quadratic polynomial (P2 FEM) basis on a regu-
lar triangular mesh can be implemented as a finite difference scheme defined
at vertices and edge centers of triangles [31]. The error estimate of P2 FEM
is third order in L2-norm. The stiffness matrix is not an M-matrix but its
monotonicity was proven in [22].

For discrete maximum principle to hold in P2 FEM on a generic triangular mesh,
it was proven in [14] that it is necessary and sufficient to require a very strong mesh
constraint, which essentially gives either regular triangulation or equilateral triangu-
lation. Thus discrete maximum principle holds in P2 FEM on a regular triangulation
or an equilateral triangulation. For finite element method with cubic and higher or-
der polynomials on regular triangular meshes, it was shown that discrete maximum
principle fails in [28].

1.4. Other known results regarding discrete maximum principle. For
one-dimensional Laplacian, discrete maximum principle was proven for arbitrarily
high order finite element method using discrete Green’s function in [30]. The discrete
Green’s function was also used to analyze P1 FEM in two dimensions [11]. Discon-
tinuous coefficients were considered and a nonlinear scheme was constructed in [21].
Piecewise constant coefficient in one dimension was considered in [29]. A numerical
study for high order FEM with very accurate Gauss quadrature in two dimensions
showed that DMP was violated on non-uniform unstructured meshes for variable co-
efficients in [23]. A more general operator ∇(a∇u) with matrix coefficients a was
considered for linear FEM in [16]. See [17] for an anisotropic computational example.

1.5. Existing inverse-positive approaches when Lh is not an M-matrix.

In this paper, we will focus on the finite difference implementation of continuous finite
element method with Q2 basis (Q2 FEM), which will be reviewed in Section 2. The
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matrix Lh in such a scheme is not an M-matrix due to its off-diagonal positive entries.
There are at least three methods to study whether L−1

h ≥ 0 holds when M-matrix
structure is lost:

1. An M-matrix factorization of the form Lh = M1M2 was shown in [7] and [2].
In Appendix A, we will demonstrate an M-matrix factorization for the finite
difference implementation of Q2 FEM solving −∆u = f .

2. Perturbation of M-matrices by positive offdiagonal entries without losing
monotonicity was discussed in [3].

3. In [22], Lorenz proposed a sufficient condition for ensuring Lh = M1M2.
Lorenz’s condition will be reviewed in Section 3.3.

The main result of this paper is to prove that L−1
h ≥ 0 and a discrete maximum prin-

ciple holds under some mesh constraint in the fourth order accurate finite difference
implementation of Q2 FEM solving (1.1) by verifying the Lorenz’s condition.

1.6. Extensions to discrete maximum principle for parabolic equations.

Classical solutions to the parabolic equation ut = ∇ · (a∇u) satisfy a maximum
principle [12]. With suitable boundary conditions and initial value u(x, y, 0) such as
periodic or homogeneous Dirichlet boundary conditions and min

Ω
u(x, y, 0) = 0, the

solution to the initial value problem satisfies the following maximum principle:

(1.3) min
(x,y)

u(x, y, 0) ≤ u(x, y, t) ≤ max
(x,y)

u(x, y, 0).

Now consider solving ut = ∇ · (a∇u) with backward Euler time discretization,
then Un+1 satisfies an elliptic equation of the form (1.1):

(1.4) −∇ · (a∇Un+1) +
1

∆t
Un+1 =

1

∆t
Un.

If Sh denotes spatial discretization for −∇ · (a∇u), then the numerical scheme can

be written as Un+1 = (I + ∆tSh)
−1Un. Let 1 =

[

1 1 · · · 1
]T

, then for suitable
boundary conditions usually we have Sh1 = 0 since Sh approximates a differential
operator. So we have (I + ∆tSh)1 = 1 thus (I + ∆tSh)

−11 = 1. If we further
have the monotonicity (I + ∆tSh)

−1 ≥ 0, then each row of the (I + ∆tSh)
−1 has

nonnegative entries and sums to one, thus the discrete maximum principle holds
minj U

n
j ≤ Un+1

j ≤ maxj U
n
j , which is a desired and useful property in many applica-

tions. For instance, second order centered difference or P1 finite element method has
been used to construct schemes satisfying the discrete maximum principle in solving
phase field equations [27, 26, 32]. In the rest of the paper, we will only focus on
discussing the equation (1.1), even though all discussions can be extended to solving
the parabolic equation with backward Euler time discretization.

1.7. Contributions and organization of the paper. To the best of our
knowledge, this is the first time that a high order accurate scheme under suitable
mesh constraints is proven to be monotone in the sense L−1

h ≥ 0 for solving a variable
coefficient a(x) in (1.1) in two dimensions. For simplicity, we only discuss an uniform
mesh in this paper, even though the main results can be extended to non-uniform
meshes. However, an additional mesh constraint is expected for discrete maximum
principle to hold. See such a mesh constraint of non-uniform meshes for Q1 FEM in
[8] and P2 FEM for one-dimensional problem in [30].

This paper is organized as follows. In Section 2, we describe the fourth order
accurate finite difference implementation of C0-Q2 finite element method. In Section
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3, we review the sufficient conditions to ensure monotonicity and discrete maximum
principle. In Section 4, we prove that the fourth order accurate finite difference imple-
mentation of C0-Q2 finite element method is monotone under some mesh constraints.
Numerical tests are given in Section 5. Concluding remarks are given in Section 6.

2. Finite difference implementation of C0-Q2 finite element method.

Consider solving the following elliptic equation on Ω = (0, 1) × (0, 1) with Dirichlet
boundary conditions:

Lu ≡ −∇ · (a∇u) + cu = f on Ω,

u = g on ∂Ω.
(2.1)

Assume there is a function ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g. The
variational form of (1.1) is to find ũ = u− ḡ ∈ H1

0 (Ω) satisfying

(2.2) A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω),

where A(u, v) =
∫∫

Ω
a∇u · ∇vdxdy +

∫∫

Ω
cuvdxdy, (f, v) =

∫∫

Ω
fvdxdy.

(a) The quadrature points and a FEM
mesh

(b) The corresponding finite differ-
ence grid

Fig. 1. An illustration of Q2 element and the 3× 3 Gauss-Lobatto quadrature.

Let h be the mesh size of the rectangular mesh and V h
0 ⊆ H1

0 (Ω) be the continuous
finite element space consisting of piecewise Q2 polynomials (i.e., tensor product of
piecewise quadratic polynomials), then the most convenient implementation of C0-
Q2 finite element method is to use 3 × 3 Gauss-Lobatto quadrature rule for all the
integrals, see Figure 1. Such a numerical scheme can be defined as: find uh ∈ V h

0

satisfying

(2.3) Ah(uh, vh) = 〈f, vh〉h −Ah(gI , vh), ∀vh ∈ V h
0 ,

where Ah(uh, vh) and 〈f, vh〉h denote using tensor product of 3-point Gauss Lobatto
quadrature for integrals A(uh, vh) and (f, vh) respectively, and gI is the piecewise Q2

Lagrangian interpolation polynomial at the 3× 3 quadrature points shown in Figure
1 of the following function:

g(x, y) =

{

0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.

Then ūh = uh + gI is the numerical solution for the problem (2.1). We emphasize
that (2.3) is not a straightforward approximation to (2.2) since ḡ is never used. It was
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proven in [20] that the scheme (2.3) is fourth order accurate if coefficients and exact
solutions are smooth. Notice that ūh satisfies:

(2.4) Ah(ūh, vh) = 〈f, vh〉h, ∀vh ∈ V h
0 .

See [20] for the detailed finite difference implementation and proof of fourth order
accuracy for the scheme (2.3).

2.1. One-dimensional case. Now consider the one-dimensional Dirichlet bound-
ary value problem:

−(au′)′ + cu =f on (0, 1),

u(0) = σ0, u(1) = σ1.

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n+ 1, h = 1
n+1 . Assume n is odd

and let M = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . ,M − 1 as a finite

element mesh for P 2 basis. Define

V h = {v ∈ C0([0, 1]) : v ∈ P 2(Ik), k = 0, . . . ,M − 1}.

Let {φi}n+1
i=0 ⊂ V h be a basis for V h so that φi(xj) = δij , i, j = 0, 1, . . . , n + 1. Let

ui = uh(xi), u0 = σ0 and un+1 = σ1, then uh, ūh ∈ V h can be represented as

uh(x) =
n
∑

i=1

uiφi(x), ūh(x) =
n+1
∑

i=0

uiφi(x).

Let fj = f(xj), then (2.4) becomes

〈au′
h, φ

′
i〉h + 〈cuh, φi〉h = 〈f, φi〉h, i = 1, . . . , n;u0 = σ0, un+1 = σ1,

which are

n+1
∑

j=0

uj

(

〈aφ′
j , φ

′
i〉h + 〈cφj , φi〉h

)

=

n+1
∑

j=0

fj〈φj , φi〉h, i = 1, . . . , n;u0 = σ0, un+1 = σ1.

The matrix form is Sū = M f̄ where

ū =
[

u0 u1 u2 · · · un un+1

]T
, f̄ =

[

σ0 f1 f2 · · · fn σ1

]T
.

The scheme can be written as Lh(ū) = f̄ . The linear operator Lh has the matrix
representation Lh = M−1S.

For the Laplacian Lu = −u′′, we have

Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1,

(2.5a)

Lh(ū)i =
−ui−1 + 2ui − ui+1

h2
= fi, if i is odd, i.e., xi is a cell center,

(2.5b)

Lh(ū)i =
ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi, if i is even, i.e., xi is a cell end.

(2.5c)
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For the variable coefficient operator Lu = −(au′)′ + cu, we have

(2.6a) Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1,

and if xi is a cell center, we have
(2.6b)

Lh(ū)i =
−(3ai−1 + ai+1)ui−1 + 4(ai−1 + ai+1)ui − (ai−1 + 3ai+1)ui+1

4h2
+ ciui = fi;

and if xi is a cell end, then

Lh(ū)i =
(3ai−2 − 4ai−1 + 3ai)ui−2 − (4ai−2 + 12ai)ui−1 + (ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2)ui

8h2

+
−(12ai + 4ai+2)ui+1 + (3ai+2 − 4ai+1 + 3ai)ui+2

8h2
+ ciui = fi.(2.6c)

2.2. Two-dimensional case. Consider a uniform grid (xi, yj) for a rectangular
domain [0, 1]× [0, 1] where xi = ih, i = 0, 1, . . . , n+1 and yj = jh, j = 0, 1, . . . , n+1,
h = 1

n+1 , where n must be odd. Let uij denote the numerical solution at (xi, yj).
Let u denote an abstract vector consisting of uij for i, j = 1, 2, · · · , n. Let ū denote
an abstract vector consisting of uij for i, j = 0, 1, 2, · · · , n, n + 1. Let f̄ denote an
abstract vector consisting of fij for i, j = 1, 2, · · · , n and the boundary condition g at
the boundary grid points.

The scheme (2.4) for solving (2.1) can still be written as Lh(ū) = f̄ .

2.2.1. Two-dimensional Laplacian. For the Laplacian Lu = −∆u, Lh(ū) can
be expressed as the following. If (xi, yj) ∈ ∂Ω, then

Lh(ū)i,j = ui,j = gi,j.

If (xi, yj) is an interior grid point and a cell center , Lh(ū)i,j is equal to

(2.7a)
−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui+1,j

h2
= fi,j .

For interior grid points, there are three types: cell center, edge center and knots. See
Figure 2. If (xi, yj) is an interior grid point and an edge center for an edge parallel
to x-axis, Lh(ū)i,j is equal to

(2.7b)
−ui−1,j + 2ui,j − ui+1,j

h2
+

ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j.

If (xi, yj) is an interior grid point and an edge center for an edge parallel to y-axis,
Lh(ū)i,j is similarly defined as above. If (xi, yj) is an interior grid point and a knot
(xi, yj), Lh(ū)i,j is equal to
(2.7c)
ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2
+
ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j .

If ignoring the denominator h2, then the stencil of the operator Lh at interior
grid points can be represented as:

cell center
−1

−1 4 −1
−1

knots

1
4
−2

1
4 −2 7 −2 1

4
−2
1
4
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Fig. 2. Three types of interior grid points: red cell center, blue knots and black edge centers

for a finite element cell.

edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4

−1

edge center (edge parallel to x-axis)

1
4
−2

−1 11
2 −1
−2
1
4

2.3. Two-dimensional variable coefficient case. For Lu = −∇· (a∇u)+ cu,
Lh(ū) will have exactly the same stencil size as the Laplacian case. At boundary
points (xi, yj) ∈ ∂Ω, Lh(ū) = f̄ becomes

(2.8a) Lh(ū)i,j = ui,j = gi,j.

If (xi, yj) is an interior grid point and a cell center, Lh(ū)i,j is equal to

−(3ai−1,j + ai+1,j)ui−1,j + 4(ai−1,j + ai+1,j)ui,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
(2.8b)

+
−(3ai,j−1 + ai,j+1)ui,j−1 + 4(ai,j−1 + ai,j+1)ui,j − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
+ cijuij .

If (xi, yj) is an interior grid point and a knot, Lh(ū)i,j is equal to

(3ai−2,j − 4ai−1,j + 3ai,j)ui−2,j − (4ai−2,j + 12ai,j)ui−1,j + (ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j)ui,j

8h2

(2.8c)

+
−(12ai,j + 4ai+2,j)ui+1,j + (3ai+2,j − 4ai+1,j + 3ai,j)ui+2,j

8h2

+
(3ai,j−2 − 4ai,j−1 + 3ai,j)ui,j−2 − (4ai,j−2 + 12ai,j)ui,j−1 + (ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2)ui,j

8h2

+
−(12ai,j + 4ai,j+2)ui,j+1 + (3ai,j+2 − 4ai,j+1 + 3ai,j)ui,j+2

8h2
+ cijuij .

If (xi, yj) is an interior grid point and an edge center for an edge parallel to y-axis,
Lh(ū)i,j is equal to

(3ai−2,j − 4ai−1,j + 3ai,j)ui−2,j − (4ai−2,j + 12ai,j)ui−1,j + (ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j)ui,j

8h2

+
−(12ai,j + 4ai+2,j)ui+1,j + (3ai+2,j − 4ai+1,j + 3ai,j)ui+2,j

8h2
(2.8d)

+
−(3ai,j−1 + ai,j+1)ui,j−1 + 4(ai,j−1 + ai,j+1)ui,j − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
+ cijuij .
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If (xi, yj) is an interior grid point and an edge center for an edge parallel to x-axis,
Lh(ū)i,j is equal to

(3ai,j−2 − 4ai,j−1 + 3ai,j)ui,j−2 − (4ai,j−2 + 12ai,j)ui,j−1 + (ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2)ui,j

8h2

+
−(12ai,j + 4ai,j+2)ui,j+1 + (3ai,j+2 − 4ai,j+1 + 3ai,j)ui,j+2

8h2
(2.8e)

+
−(3ai−1,j + ai+1,j)ui−1,j + 4(ai−1,j + ai+1,j)ui,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
+ cijuij .

3. Sufficient conditions for monotonicity and discrete maximum prin-

ciple.

3.1. Discrete maximum principle. Assume there are N grid points in the
domain Ω and N∂ grid points on ∂Ω. Define

u =
(

u1 u2 · · · uN

)T
, u∂ =

(

u∂
1 u∂

2 · · · u∂
N∂

)T
,

ũ =
(

u1 u2 · · · uN u∂
1 u∂

2 · · · u∂
N∂

)T
.

A finite difference scheme can be written as

Lh(ũ)i =

N
∑

j=1

bijuj +

N∂

∑

j=1

b∂iju
∂
j =fi, 1 ≤ i ≤ N,

u∂
i =gi, 1 ≤ i ≤ N∂ .

The matrix form is

L̃hũ = f̃ , L̃h =

(

Lh B∂

0 I

)

, ũ =

(

u

u∂

)

, f̃ =

(

f

g

)

.

The discrete maximum principle is

(3.1) Lh(ũ)i ≤ 0, 1 ≤ i ≤ N =⇒ max
i

ui ≤ max{0,max
i

u∂
i }

which implies
Lh(ũ)i = 0, 1 ≤ i ≤ N =⇒ |ui| ≤ max

i
|u∂

i |.

The following result was proven in [9]:

Theorem 3.1. A finite difference operator Lh satisfies the discrete maximum
principle (3.1) if L̃−1

h ≥ 0 and all row sums of L̃h are non-negative.

Let ū and f̄ be the same vectors as defined in Section 2. For the same finite
difference scheme, the matrix form can also be written as

L̄hū = f̄ .

Notice that there exist two permutation matrices P1 and P2 such that ū = P1ũ and
f̄ = P2f̃ . Since the matrix vector form of the same scheme is also L̃hũ = f̃ , we obtain
P−1
2 L̄hP1 = L̃h. Notice that a permutation matrix P is inverse-positive and the signs

of row sums will not be altered after multiplying P to L̃h. Thus we have

Theorem 3.2. If L̄h is inverse-positive and row sums of L̄h are non-negative,
then Lh satisfies the discrete maximum principle (3.1).



DISCRETE MAXIMUM PRINCIPLE OF C0-Q2 FEM 9

Notice that L̃−1
h =

(

L−1
h −L−1

h B∂

0 I

)

, thus we have

Theorem 3.3. If L̄−1
h ≥ 0, then L̃−1

h ≥ 0 thus L−1
h ≥ 0.

Let 1 denote a vector of suitable size with 1 as entries, then for all schemes in
Section 2, Lh(1) ≥ 0, which implies the row sums of L̄h are non-negative. Thus from
now on, we only need to discuss the monotonicity of the matrix L̄h.

3.2. Characterizations of nonsingular M-matrices. M-matrices belong to
the set of Z-matrices which are matrices with nonpositive off-diagonal entries. Non-
singular M-matrices are always inverse-positive. See [24] for the definition and various
characterization of nonsingular M-matrices. The following is a convenient sufficient
condition to characterize nonsingular M-matrices:

Theorem 3.4. For a real square matrix A with positive diagonal entries and non-
positive off-diagonal entries, A is a nonsingular M-matrix if and only if all the row
sums of A are non-negative and at least one row sum is positive.

Proof. By condition C10 in [24], A is a nonsingular M-matrix if and only if A+aI
is nonsingular for any a ≥ 0. Since all the row sums of A are non-negative and
at least one row sum is positive, the matrix A is irreducibly diagonally dominant
thus nonsingular, and A+ aI is strictly diagonally dominant thus nonsingular for any
a > 0.

Definition 1. Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A of
size n× n connects N1 with N2 if

(3.2) ∀i0 ∈ N1, ∃ir ∈ N2, ∃i1, . . . , ir−1 ∈ N s.t. aik−1ik 6= 0, k = 1, · · · , r.

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then
(3.2) simply means that there exists a directed path from any vertex in N1 to at least
one vertex in N2. In particular, if N1 = ∅, then any matrix A connects N1 with N2.

Given a square matrix A and a column vector x, we define

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.

By condition L36 in [24], we have the following characterization of nonsingular
M-matrices:

Theorem 3.5. For a real square matrix A with non-positive off-diagonal entries,
if there is a vector x > 0 with Ax ≥ 0 s.t. A connects N 0(Ax) with N+(Ax), then A
is a nonsingular M-matrix thus A−1 ≥ 0.

3.3. Lorenz’s sufficient condition for monotonicity. All results in this sub-
section were first shown in [22]. For completeness, we include detailed proof.

Given a matrix A = [aij ] ∈ Rn×n, define its diagonal, positive and negative
off-diagonal parts as n× n matrices Ad, Aa, A

+
a , A

−
a :

(Ad)ij =

{

aii, if i = j

0, if i 6= j
, Aa = A−Ad,

(A+
a )ij =

{

aij , if aij > 0, i 6= j

0, otherwise.
, A−

a = Aa −A+
a .
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Lemma 3.6. If A is monotone, then for any two matrices B ≥ C, A−1B ≥ A−1C.

Proof. For any two column vectors b ≥ c, we have

b− c ≥ 0 ⇒ A−1(b− c) ≥ 0 ⇒ A−1b ≥ Ac.

By considering b and c as column vectors of B and C, we get A−1B ≥ A−1C.

Lemma 3.7. If A is an M-matrix, then Ad ≥ A and A−1 ≥ A−1
d .

Proof. Ad ≥ A is trivial. A is monotone, thus

Ad ≥ A ⇒ A−1Ad ≥ A−1A = I.

And A−1
d ≥ 0 implies

A−1Ad ≥ I ⇒ A−1AdA
−1
d ≥ IA−1

d ⇒ A−1 ≥ A−1
d .

Theorem 3.8. If Aa ≤ 0 and there exists a nonzero vector e ∈ Rn such that
e ≥ 0 and Ae ≥ 0. Moreover, A connects N 0(Ae) with N+(Ae). Then the following
hold:

• e > 0.
• aii > 0, ∀i ∈ N .
• A is a M-matrix and A−1 ≥ 0.

Proof. Assume there is one index i such that ei = 0, then

0 ≤ (Ae)i =
∑

j 6=i

aijej ≤ 0 ⇒ (Ae)i = 0 ⇒
∑

j 6=i

aijej = 0 ⇒ aijej = 0, ∀j.

Thus if aij < 0, then ej = 0, which implies (Ae)j = 0 by the same argument as
above. Therefore, A has no off-diagonal nonzero entry akl such that k ∈ N 0(Ae)
and l ∈ N+(Ae). In other words, if A represents the graph adjacency matrix for
a directed graph of vertices indexed by 1, 2, · · · , n, then any edge starting from a
vertex i ∈ N 0(Ae) points to vertices in N 0(Ae), thus there is no directed path from
i ∈ N 0(Ae) to any vertex in N+(Ae), which contradicts to the assumption that A
connects N 0(Ae) with N+(Ae). With e > 0, the rest is proven by following Theorem
3.5.

Corollary 3.9. If A is a nonsingular M-matrix, f ∈ Rn is a nonzero vector
with f ≥ 0 and A connects N 0(f) with N+(f), then A−1f > 0.

Proof. By using e = A−1f ≥ 0 in Theorem 3.8, we get A−1f > 0.

Theorem 3.10. If A ≤ M1M2 · · ·MkL where M1, · · · ,Mk are nonsingular M-
matrices and La ≤ 0, and there exists a nonzero vector e ≥ 0 such that one of the
matrices M1, · · · ,Mk, L connects N 0(Ae) with N+(Ae). Then A is a product of k+1
nonsingular M-matrices thus A−1 ≥ 0.

Proof. Let M = M1M2 · · ·Mk, then M is monotone. By Lemma 3.6, we get

(3.3) M−1A ≤ L,

thus

(3.4) (M−1A)a ≤ 0.
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For each Mi, i = 1, . . . , k, by Lemma 3.7, we have

(3.5) (Mi)
−1 ≥ ((Mi)d)

−1 ⇒ M−1 ≥ (Mk)
−1
d · · · (M1)

−1
d ,

which implies

(3.6) M−1Ae ≥ cAe,

for some positive number c.
If L connects N 0(Ae) with N+(Ae), then M−1A also connects N 0(Ae) with

N+(Ae) because (3.3) implies that (M−1A)ij 6= 0 whenever Lij 6= 0 for any i 6= j.
By (3.6), N+(Ae) ⊂ N+(M−1Ae) and N 0(M−1Ae) ⊂ N 0(Ae), thus M−1A also
connects N 0(M−1Ae) with N+(M−1Ae). With (3.4), by Theorem 3.8, M−1A is a
nonsingular M-matrix thus A is a product of k + 1 M-matrices which implies A is
monotone.

If Mi connects N 0(Ae) with N+(Ae) for some 1 ≤ i ≤ k. Let M ′ = M1 . . .Mi−1.
Similar to (3.5) and (3.6), we get

(3.7) (M ′)−1Ae ≥ c2Ae, c2 > 0,

which implies that Mi connects N 0((M ′)−1Ae) with N+((M ′)−1Ae). By Corollary
3.9, we know M−1

i (M ′)−1Ae > 0, thus M−1Ae > 0. With (3.4), by Theorem 3.8
M−1A is a M-matrix thus A is a product of k + 1 M-matrices which implies A is
monotone.

Theorem 3.11. If A−
a has a decomposition: A−

a = Az + As = (azij) + (asij) with
As ≤ 0 and Az ≤ 0, such that

Ad +Az is a nonsingular M-matrix,(3.8a)

A+
a ≤ AzA−1

d As or equivalently ∀aij > 0 with i 6= j, aij ≤
n
∑

k=1

azika
−1
kk a

s
kj ,(3.8b)

∃e ∈ Rn \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).

(3.8c)

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.

Proof. By (3.8b), we have

(3.9) A = Ad +Az +As +A+
a ≤ (Ad +Az)(I +A−1

d As).

By (3.8c), either Ad+Az or I+A−1
d As connects N 0(Ae) with N+(Ae). By applying

Theorem 3.10 for the case k = 1, M1 = Ad+Az and L = I+A−1
d As, we get A−1 ≥ 0.

4. The main result. For a general matrix, conditions (3.8) in Theorem 3.11
can be difficult to verify. We will first derive a simplified version of Theorem 3.11
then verify it for the schemes in Section 2.

4.1. A simplified sufficient condition for monotonicity. We will take ad-
vantage of the directed graph described by the 5-point discrete Laplacian, i.e., the
second order centered difference scheme, which has similar off-diagonal negative entry
patterns as the schemes in Section 2.

For the one-dimensional problem−u′′ = f, x ∈ (0, 1) with u(0) = u(1), the scheme
can be written as u0 = σ0, un+1 = σ1,

−ui−1+2ui−ui+1

h2 = fi, i = 1, · · · , n. The matrix
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(a) Grid points. (b) The directed graph.

Fig. 3. An illustration of the directed graph described by off-diagonal entries of the matrix in

(4.1): the domain [0, 1] is discretized by a uniform 5-point grid; the black points are interior grid

points and the blue ones are the boundary grid points. There is a directed path from any interior

grid point to at least one of the boundary points.

(a) Grid points. (b) The directed graph.

Fig. 4. An illustration of the directed graph described by off-diagonal entries in the 5-point

discrete Laplacian matrix: the domain [0, 1]× [0, 1] is discretized by a uniform 5× 5 grid; the black

points are interior grid points and the blue ones are the boundary grid points. There is a directed

path from any interior grid point to at least one of the boundary grid points.

vector form is Kū = f̄ where

(4.1) K =
1

h2









h2

−1 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

h2









,

which described the directed graph illustrated in Figure 3. Let 1 denote a vector of

suitable size with each entry as 1, then (K1)i =

{

0 i = 1, · · · , n
1 i = 0, n+ 1

. By Figure 3, it is

easy to see that K connects N 0(K1) with N+(K1).
Next we consider the second order accurate 5-point discrete Laplacian scheme

for solving −∆u = f on Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary
conditions:

ui,j = 0, (xi, yj) ∈ ∂Ω;
−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui+1,j

h2
= fij , (xi, yj) ∈ Ω.

See Figure 4 for the directed graph described by its matrix representation. Let K be
the matrix representation of the 5-point discrete Laplacian scheme, then

(K1)i,j =

{

1, if (xi, yj) ∈ ∂Ω,

0, if (xi, yj) ∈ Ω.

By Figure 4, it is easy to see that K connects N 0(K1) with N+(K1).
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Let A := L̄h denote the matrix representation of any scheme in Section 2. Then

(A1)i,j =

{

1, if (xi, yj) ∈ ∂Ω,

cij ≥ 0, if (xi, yj) ∈ Ω.

Therefore, N+(K1) ⊂ N+(A1) implies N 0(A1) ⊂ N 0(K1), thus K also connects
N 0(A1) with N+(A1). Notice that indices of nonzero off-diagonal entries in K is
a subset of indices of nonzero entries in A−

a , thus A−
a also connects N 0(A1) with

N+(A1). So the vector e can be set as 1 in (3.8c). If assuming c(x, y) > 0, then
A1 > 0 thus the condition (3.8c) is trivially satisfied.

By Theorem 3.4, for any decomposition of off-diagonal negative entries A−
a =

Az +As, Ad+Az is an M-matrix if (Ad+Az)1 6= 0 and (Ad+Az)1 ≥ 0. So Theorem
3.11 for the schemes (2.6) and (2.8) can be simplified as

Theorem 4.1. Let A denote the matrix representation of the schemes solving
−∇ · (a∇)u + cu = f in Section 2. Assume A−

a has a decomposition A−
a = Az + As

with As ≤ 0 and Az ≤ 0. Then A−1 ≥ 0 if the following are satisfied:
1. (Ad +Az)1 6= 0 and (Ad +Az)1 ≥ 0;
2. A+

a ≤ AzA−1
d As;

3. For c(x, y) ≥ 0, either Az or As has the same sparsity pattern as A−
a . If

c(x, y) > 0, then this condition can be removed.

4.2. One-dimensional Laplacian case. As a demonstration of how to apply
Theorem 4.1, we first consider the scheme (2.5). Let A be the matrix representation
of the linear operator Lh in the scheme (2.5). Let Ad and A±

a be linear operators
corresponding to the matrices Ad and A±

a respectively.
Consider the following decomposition of A−

a = Az +As with Az = As = 1
2A−

a :

Az(ū)0 = As(ū)0 = 0, Az(ū)n+1 = As(ū)n+1 = 0,

Az(ū)i = As(ū)i =
−ui−1 − ui+1

2h2
, if xi is a cell center,

Az(ū)i = As(ū)i =
−8ui−1 − 8ui+1

8h2
, if xi is an interior cell end.

The operator Ad and A+
a are given as:

Ad(ū)0 = u0, Ad(ū)n+1 = un+1,

Ad(ū)i =
2ui

h2
, if xi is a cell center,

Ad(ū)i =
14ui

4h2
, if xi is an interior cell end.

A+
a (ū)0 = 0, A+

a (ū)n+1 = 0,

A+
a (ū)i = 0, if xi is a cell center,

A+
a (ū)i =

ui−2 + ui+2

4h2
, if xi is an interior cell end.

Obviously, Az and As both have have the same sparsity pattern as A−
a . It is straight-

forward to verify [Ad +Az ](1) is a non-negative nonzero vector. So we only need to
verify A+

a ≤ AzA−1
d As to apply Theorem 4.1. Since AzA−1

d As ≥ 0, we only need to
compare nonzero coefficients in A+

a (ū)i and Az
(

A−1
d [As(ū)]

)

i
.
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When xi is an interior cell end, xi±1 are cell centers, and we have

As(ū)i−1 =
−ui−2 − ui

2h2
, A−1

d [As(ū)]i−1 =
h2As(ū)i−2

2
,

Az(A−1
d [As(ū)])i =

−A−1
d [−As(ū)]i−1 −A−1

d [As(ū)]i+1

h2
=

ui−2 + 2ui + ui+2

4h2
.

We can verify A+
a ≤ AzA−1

d As by comparing only the coefficients of ui±2 in A+
a (ū)i

and Az
(

A−1
d [As(ū)]

)

i
because AzA−1

d As ≥ 0. By Theorem 4.1, we get A−1 ≥ 0.

4.3. One-dimensional variable coefficient case. As we have seen in the pre-
vious discussion, all the operators are either zero or identity at the boundary points
thus do not affect the discussion verifying the condition (3.8b). For the sake of sim-
plicity, we only consider the interior grid points for the linear operators. With the
positive and negative parts for a number f defined as:

f+ =
|f |+ f

2
, f− =

|f | − f

2
,

the linear operators Ad, A±
a are

Ad(ū)i =

(

ai−1 + ai+1

h2
+ ci

)

ui, if xi is a cell center,

Ad(ū)i =

(

ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2

8h2
+ ci

)

ui, if xi is an interior cell end.

A+
a (ū)i = 0, if xi is a cell center,

A+
a (ū)i =

(3ai−2 − 4ai−1 + 3ai)
+ui−2 + (3ai+2 − 4ai+1 + 3ai)

+ui+2

8h2
, if xi is an interior cell end.

If xi is a cell center A−
a (ū)i =

−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

If xi is an interior cell end A−
a (ū)i =

−(3ai−2 − 4ai−1 + 3ai)
−ui−2 − (4ai−2 + 12ai)ui−1 − (12ai + 4ai+2)ui+1 − (3ai − 4ai+1 + 3ai+2)

−ui+2

8h2
.

We can easily verify that (Ad +Az)1 ≥ 0 for the following Az :

if xi is a cell center Az(ū)i = ǫ
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

if xi is an interior cell end Az(ū)i =

−(3ai−2 − 4ai−1 + 3ai)
−ui−2 − [4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai)

+]ui−1

8h2

+
−[12ai + 4ai+2 − (3ai − 4ai+1 + 3ai+2)

+]ui+1 − (3ai − 4ai+1 + 3ai+2)
−ui+2

8h2
,

where ǫ > 0 is a small number. Moreover, Az has the same sparsity pattern as A−
a

for any ǫ > 0. For ǫ < 1 we can verify that As = A−
a −Az ≤ 0:

If xi is a cell center As(ū)i = (1− ǫ)
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

If xi is an interior cell end As(ū)i =
−(3ai−2 − 4ai−1 + 3ai)

+ui−1 − (3ai − 4ai+1 + 3ai+2)
+ui+1

8h2
.
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Now we only need to compare nonzero coefficients in A+
a (ū)i and Az

(

A−1
d [As(ū)]

)

i

for xi being an interior cell end. When xi is an interior cell end, xi±1 are cell centers,
and we have

As(ū)i−1 = (1 − ǫ)
−(3ai−2 + ai)ui−2 − (ai−2 + 3ai)ui

4h2
,

As(ū)i−2 =
−(3ai−4 − 4ai−3 + 3ai−2)

+ui−3 − (3ai−2 − 4ai−1 + 3ai)
+ui−1

8h2

A−1
d [As(ū)]i−1 =

h2

(ai−2 + ai + h2ci−1)
As(ū)i−1 = (1−ǫ)

−(3ai−2 + ai)ui−2 − (ai−2 + 3ai)ui

4(ai−2 + ai + h2ci−1)
.

It suffices to focus on the coefficient of ui−2 in Az(A−1
d [As(ū)])i and the discussion for

the coefficient of ui+2 is similar. Notice that A−1
d [As(ū)]i−2 will contribute nothing

to the coefficient of ui−2. So the coefficient of ui−2 in Az(A−1
d [As(ū)])i is

(1− ǫ)
(3ai−2 + ai)(4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai)

+)

32h2(ai−2 + ai + h2ci−1)
.

Thus to ensure A+
a ≤ AzA−

d A
s, it suffices to have the following holds for any interior

cell end xi:

(1−ǫ)
(3ai−2 + ai)(4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai)

+)

32h2(ai−2 + ai + h2ci−1)
≥ (3ai−2 − 4ai−1 + 3ai)

+

8h2
.

Equivalently, we need the following inequality holds for any cell center xi:
(4.2)

(1−ǫ)
(3ai−1 + ai+1)(4ai−1 + 12ai+1 − (3ai−1 − 4ai + 3ai+1)

+)

32h2(ai−1 + ai+1 + h2ci)
≥ (3ai−1 − 4ai + 3ai+1)

+

8h2
.

Notice that ǫ can be any fixed number in [0, 1) so that Ad + Az is an M-matrix
and As ≤ 0. And ǫ must be strictly positive so that Az has the same sparsity pattern
as A−

a . Thus if there is one fixed ǫ ∈ (0, 1) so that (4.2) holds for any cell center xi,
then by Theorem 4.1, A−1 ≥ 0. A sufficient condition for (4.2) to hold for any cell
center xi with some fixed ǫ ∈ (0, 1) is to have the following inequality for any cell
center xi:
(4.3)
(3ai−1 + ai+1)(4ai−1 + 12ai+1 − (3ai−1 − 4ai + 3ai+1)

+)

32h2(ai−1 + ai+1 + h2ci)
>

(3ai−1 − 4ai + 3ai+1)
+

8h2
.

If 3ai−1 − 4ai +3ai+1 ≤ 0, then (4.3) holds trivially. We only need to discuss the
case 3ai−1 − 4ai + 3ai+1 > 0, for which (4.3) becomes

(4.4) (3ai−1+ai+1)(ai−1+4ai+9ai+1) > 4(ai−1+ai+1+h2ci)(3ai−1−4ai+3ai+1).

So we have proven the first result for the variable coefficient case:

Theorem 4.2. For the scheme (2.6) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (4.4) holds for any
cell center xi.

The constraint (4.4) will be satisfied for small enough h. The proof of the following
two theorems are included in the Appendix B.
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Theorem 4.3. For the scheme (2.6) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0 on a uniform mesh, its matrix representation A = L̄h satisfies A−1 ≥ 0 if any
of the following constraints is satisfied for each finite element cell Ii = [xi−1, xi+1]:

• There exists some λ ∈ ( 3
13 , 1) such that

h2ci <
13(1− λ)min

Ii
a2(x)

6max
Ii

a(x)− 4min
Ii

a(x)
, h

max
x∈Ii

|a′(x)|
min
x∈Ii

a(x)
<

√
39λ− 3

6
.

• 2hmax
Ii

|a′(x)|+ h2ci

(

1− 2
3

min
Ii

a(x)

max
Ii

a(x)

)

< 5
3

min
Ii

a2(x)

max
Ii

a(x) .

• If c(x) ≡ 0, then we only need h
max
x∈Ii

|a′(x)|
min
x∈Ii

a(x) <
√
39−3
6 .

• If a(x) ≡ a > 0, then we only need h2ci < 5a.

Theorem 4.4. For the scheme (2.6) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the following mesh
constraint is achieved for all cell centers xi:

(4.5a) h2

(

3

2
ci + max

x∈(xi−1,xi+1)
a′′(x)

)

<
74

45
min{ai−1, ai, ai+1}.

If a(x) is a concave function, then (4.5a) can be replaced by

(4.5b) h2ci < 3min{ai−1, ai, ai+1}.

Remark 1. For solving heat equation with backward Euler time discretization
(1.4), the mesh constraints in Theorem 4.3 and Theorem 4.4 imply that a lower bound
for ∆t

h2 is a sufficient condition for ensuring monotonicity. Numerical tests suggest

that a lower bound on ∆t
h2 is also a necessary condition, see Section 5. A lower bound

constraint on the time step is common for high order accurate spatial discretizations
with backward Euler to satisfy monotonicity, e.g., [25].

4.4. Two-dimensional variable coefficient case. Next we apply Theorem 4.1
to the scheme (2.8). The splitting A−

a = Az +As is quite similar to one-dimensional
case due to its stencil pattern.

Let A := L̄h be the matrix representation of the linear operator Lh in the scheme
(2.8). We only consider interior grid points since Lh is identity operator on boundary
points which do not affect applying Theorem 4.1. We first have

Ad(ū)ij =

(

ai−1,j + ai+1,j + ai,j−1 + ai,j+1

h2
+ cij

)

uij , if xij is a cell center;

Ad(ū)ij =

(

(ai−2,j + 4ai−1,j + 18aij + 4ai+1,j + ai+2,j) + 8(ai,j−1 + ai,j+1)

8h2
+ cij

)

uij ,

if xij is an edge center for an edge parallel to y-axis;

Ad(ū)ij =

(

(ai,j−2 + 4ai,j−1 + 18aij + 4ai,j+1 + ai,j+2) + 8(ai−1,j + ai+1,j)

8h2
+ cij

)

uij ,

if xij is an edge center for an edge parallel to x-axis;

Ad(ū)ij =

(

(ai−2,j + 4ai−1,j + 18aij + 4ai+1,j + ai+2,j) + (ai,j−2 + 4ai,j−1 + 18aij + 4ai,j+1 + ai,j+2)

8h2
+ cij

)

uij ,

if xij is a knot.
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For the operator A+
a , it is given as

A+
a (ū)ij = 0, if xij is a cell center;

A+
a (ū)ij =

(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−2,j + (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+2,j

8h2

if xij is an edge center for an edge parallel to y-axis;

A+
a (ū)ij =

(3ai,j−2 − 4ai,j−1 + 3ai,j)
+ui,j−2 + (3ai,j+2 − 4ai,j+1 + 3ai,j)

+ui,j+2

8h2

if xij is an edge center for an edge parallel to x-axis;

A+
a (ū)ij =

(3ai−2,j − 4ai−1,j + 3ai,j)
+ui−2,j + (3ai+2,j − 4ai+1,j + 3ai,j)

+ui+2,j

8h2

+
(3ai,j−2 − 4ai,j−1 + 3ai,j)

+ui,j−2 + (3ai,j+2 − 4ai,j+1 + 3ai,j)
+ui,j+2

8h2

if xij is a knot.

Let ǫ ∈ (0, 1) be a fixed number. We consider the following Az ≤ 0 so that
(Ad +Az)1 ≥ 0:

if xij is a cell center Az(ū)ij = −ǫ
(3ai−1,j + ai+1,j)ui−1,j + (ai−1,j + 3ai+1,j)ui+1,j

4h2

−ǫ
(3ai,j−1 + ai,j+1)ui,j−1 + (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;

if xij is an edge center for an edge parallel to y-axis,Az(ū)ij =

−(3ai−2,j − 4ai−1,j + 3ai,j)
−ui−2,j − [4ai−2,j + 12ai,j − (3ai−2,j − 4ai−1,j + 3ai,j)

+]ui−1,j

8h2

+
−[12ai,j + 4ai+2,j − (3ai+2,j − 4ai+1,j + 3ai,j)

+]ui+1,j − (3ai+2,j − 4ai+1,j + 3ai,j)
−ui+2,j

8h2

+ ǫ
−(3ai,j−1 + ai,j+1)ui,j−1 − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;

if xij is an edge center for an edge parallel to x-axis,Az(ū)ij =

−(3ai,j−2 − 4ai,j−1 + 3ai,j)
−ui,j−2 − [4ai,j−2 + 12ai,j − (3ai,j−2 − 4ai,j−1 + 3ai,j)

+]ui,j−1

8h2

+
−[12ai,j + 4ai,j+2 − (3ai,j+2 − 4ai,j+1 + 3ai,j)

+]ui,j+1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)
−ui,j+2

8h2

+ ǫ
−(3ai−1,j + ai+1,j)ui−1,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
;

if xij is a knot, Az(ū)ij =

−(3ai−2,j − 4ai−1,j + 3ai,j)
−ui−2,j − [4ai−2,j + 12ai,j − (3ai−2,j − 4ai−1,j + 3ai,j)

+]ui−1,j

8h2
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+
−[12ai,j + 4ai+2,j − (3ai+2,j − 4ai+1,j + 3ai,j)

+]ui+1,j − (3ai+2,j − 4ai+1,j + 3ai,j)
−ui+2,j

8h2
;

+
−(3ai,j−2 − 4ai,j−1 + 3ai,j)

−ui,j−2 − [4ai,j−2 + 12ai,j − (3ai,j−2 − 4ai,j−1 + 3ai,j)
+]ui,j−1

8h2

+
−[12ai,j + 4ai,j+2 − (3ai,j+2 − 4ai,j+1 + 3ai,j)

+]ui,j+1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)
−ui,j+2

8h2
;

Then As = A−
a −Az is given as:

if xi is a cell center, As(ū)ij = −(1− ǫ)
(3ai−1,j + ai+1,j)ui−1,j + (ai−1,j + 3ai+1,j)ui+1,j

4h2

−(1− ǫ)
(3ai,j−1 + ai,j+1)ui,j−1 + (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;

if xij is an edge center for an edge parallel to y-axis,

As(ū)ij =
−(3ai−2,j − 4ai−1,j + 3ai,j)

+ui−1,j − (3ai+2,j − 4ai+1,j + 3ai,j)
+ui+1,j

8h2

+ (1− ǫ)
−(3ai,j−1 + ai,j+1)ui,j−1 − (ai,j−1 + 3ai,j+1)ui,j+1

4h2
;

if xij is an edge center for an edge parallel to x-axis,

As(ū)ij =
−(3ai,j−2 − 4ai,j−1 + 3ai,j)

+ui,j−1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)
+ui,j+1

8h2

+ (1− ǫ)
−(3ai−1,j + ai+1,j)ui−1,j − (ai−1,j + 3ai+1,j)ui+1,j

4h2
;

if xij is a knot, As(ū)ij =
−(3ai−2,j − 4ai−1,j + 3ai,j)

+ui−1,j − (3ai+2,j − 4ai+1,j + 3ai,j)
+ui+1,j

8h2

+
−(3ai,j−2 − 4ai,j−1 + 3ai,j)

+ui,j−1 − (3ai,j+2 − 4ai,j+1 + 3ai,j)
+ui,j+1

8h2
;

For the positive off-diagonal entries, A+
a (ū)ij is nonzero only for xij being an

edge center or a cell center. Thus to verify A+
a ≤ AzA−1

d As, it suffices to compare
Az
[

A−1
d (As(ū))

]

ij
with A+

a (ū)ij for xij being an edge center or a cell center.

If xij is an edge center for an edge parallel to y-axis, then xi±1,j are cell cen-
ters. Since everything here has a symmetric structure, we only need to compare the
coefficients of ui−2,j in Az

[

A−1
d (As(ū))

]

ij
and A+

a (ū)ij , and the comparison for the
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coefficients of ui+2,j will be similar.

As(ū)i−1,j = −(1− ǫ)
(3ai−2,j + aij)ui−2,j + (ai−2,j + 3ai,j)ui,j

4h2

−(1− ǫ)
(3ai−1,j−1 + ai−1,j+1)ui−1,j−1 + (ai−1,j−1 + 3ai−1,j+1)ui−1,j+1

4h2
,

A−1
d [As(ū)]i−1,j = −(1− ǫ)

(3ai−2,j + aij)ui−2,j + (ai−2,j + 3aij)ui,j

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)

− (1− ǫ)
(3ai−1,j−1 + ai−1,j+1)ui−1,j−1 + (ai−1,j−1 + 3ai−1,j+1)ui−1,j+1

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
.

Since the coefficient of ui−2,j in A+
a (ū)ij is (3ai−2,j − 4ai−1,j + 3aij)

+/(8h2), we
only need to discuss the case 3ai−2,j − 4ai−1,j + 3aij > 0, for which the coefficient of
ui−2,j in Az

[

A−1
d (As(ū))

]

ij
becomes

ai−2,j + 4ai−1,j + 9aij
8h2

(1− ǫ)(3ai−2,j + aij)

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
.

To ensure the coefficient of ui−2,j in Az
[

A−1
d (As(ū))

]

ij
is no less than the coefficient

of ui−2,j in A+
a (ū)ij , we need

(1− ǫ)(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + aij)

32h2(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
≥ 3ai−2,j − 4ai−1,j + 3aij

8h2
.

Similar to the one-dimensional case, it suffices to require

(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + aij)

4(ai−2,j + aij + ai−1,j+1 + ai−1,j−1 + h2ci−1,j)
> 3ai−2,j − 4ai−1,j + 3aij .

Equivalently, we need the following inequality holds for any cell center xij :

(ai−1,j + 4ai,j + 9ai+1,j)(3ai−1,j + ai+1,j)

4(ai−1,j + ai+1,j + ai,j+1 + ai,j−1 + h2ci,j)
> 3ai−1,j − 4ai,j + 3ai+1,j .(4.6a)

Notice that (4.6a) was derived for comparing Az
[

A−1
d (As(ū))

]

ij
and A+

a (ū)ij for xij

being an edge center of an edge parallel to y-axis. If xij is an edge center of an edge
parallel to x-axis, then we can derive a similar constraint:

(ai,j−1 + 4ai,j + 9ai,j+1)(3ai,j−1 + ai,j+1)

4(ai,j−1 + ai,j+1 + ai+1,j + ai−1,j + h2ci,j)
> 3ai,j−1 − 4ai,j + 3ai,j+1.(4.6b)

If xij is a knot, then xi±1,j are edge centers for an edge parallel to x-axis. Since
everything here has a symmetric structure, we only need to compare the coefficients
of ui−2,j in Az

[

A−1
d (As(ū))

]

ij
and A+

a (ū)ij , and the comparison for the coefficients

of ui+2,j, ui,j−2 and ui,j+2 will be similar.

As(ū)i−1,j = (1 − ǫ)
−(3ai−2,j + ai,j)ui−2,j − (ai−2,j + 3ai,j)ui,j

4h2

+
−(3ai−1,j−2 − 4ai−1,j−1 + 3ai−1,j)

+ui−1,j−1 − (3ai−1,j+2 − 4ai−1,j+1 + 3ai−1,j)
+ui−1,j+1

8h2

A−1
d [As(ū)]i−1,j = (1− ǫ)

−(3ai−2,j + ai,j)ui−2,j − (ai−2,j + 3ai,j)ui,j

1
2 (ai−1,j−2 + 4ai−1,j−1 + 18ai−1,j + 4ai−1,j+1 + ai−1,j+2) + 4(ai−2,j + ai,j) + 4h2ci−1,j

+
−(3ai−1,j−2 − 4ai−1,j−1 + 3ai−1,j)

+ui−1,j−1 − (3ai−1,j+2 − 4ai−1,j+1 + 3ai−1,j)
+ui−1,j+1

(ai−1,j−2 + 4ai−1,j−1 + 18ai−1,j + 4ai−1,j+1 + ai−1,j+2) + 8(ai−2,j + ai,j) + 8h2ci−1,j
.
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For the same reason as above we still only consider the case where 3ai−2,j − 4ai−1,j +
3aij > 0. So the coefficient of ui−2,j in Az

[

A−1
d (As(ū))

]

ij
is

1

4h2

(1− ǫ)(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + ai,j)

(ai−1,j−2 + 4ai−1,j−1 + 18ai−1,j + 4ai−1,j+1 + ai−1,j+2) + 8(ai−2,j + ai,j) + 8ci−1,jh2
.

To ensure the coefficient of ui−2,j in Az
[

A−1
d (As(ū))

]

ij
is no less than the coefficient

of ui−2,j in A+
a (ū)ij , we only need

2(ai−2,j + 4ai−1,j + 9aij)(3ai−2,j + ai,j)

(ai−1,j−2 + 4ai−1,j−1 + 18ai−1,j + 4ai−1,j+1 + ai−1,j+2) + 8(ai−2,j + ai,j) + 8ci−1,jh2

> 3ai−2,j − 4ai−1,j + 3aij .

Equivalently, we need the following inequality holds for any edge center xij for
an edge parallel to x-axis:

2(ai−1,j + 4ai,j + 9ai+1,j)(3ai−1,j + ai+1,j)

(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2) + 8(ai−1,j + ai+1,j) + 8ci,jh2

> 3ai−1,j − 4ai,j + 3ai+1,j .(4.7a)

We also need the following inequality holds for any edge center xij for an edge parallel
to y-axis:

2(ai,j−1 + 4ai,j + 9ai,j+1)(3ai,j−1 + ai,j−1)

(ai−2,j + 4ai−1,j + 18ai,j + 4ai+1,j + ai+2,j) + 8(ai,j−1 + ai,j+1) + 8ci,jh2

> 3ai,j−1 − 4ai,j + 3ai,j+1.(4.7b)

We have similar result to the one-dimensional case as following:

Theorem 4.5. For the scheme (2.8) solving −∇ · (a∇u) + cu = f with a(x) > 0
and c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (4.6) holds for
any cell center xij , (4.7a) holds for xij being any edge center of an edge parallel to
x-axis and (4.7b) holds for xij being any edge center of an edge parallel to y-axis.

The constraints (4.6), (4.7a) and (4.7b) can be satisfied for small h.

Theorem 4.6. For the scheme (2.8) solving −∇(a(x)∇u)+cu = f with a(x) > 0
and c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the following mesh
constraint is achieved for all edge centers xij :

min
Jij

a(x)2 >
49

61
max
Jij

a(x)2 +
8

61

(

3max
Jij

a(x)− 2min
Jij

a(x)

)

h2cij ,

where Jij is the union of two finite element cells: if xij is an edge center of an edge
parallel to x-axis, then Jij = [xi−1, xi+1]× [yj−2, yj+2]; if xij is an edge center of an
edge parallel to y-axis, then Jij = [xi−2, xi+2]× [yj−1, yj+1].

Theorem 4.7. For the scheme (2.8) solving −∇ · (a∇u) + cu = f with a(x) > 0
and c(x) ≥ 0 on a uniform mesh, its matrix representation A = L̄h satisfies A−1 ≥ 0
if any of the following mesh constraints is satisfied for any edge center xij :

• There exists some λ ∈ (4961 , 1) such that

h2cij <

61(1− λ)min
Jij

a2(x)

8

(

3max
Jij

a(x)− 2min
Jij

a(x)

) , h

max
x∈Jij

|∇a(x)|

min
x∈Jij

a(x)
<

√
122λ− 7

√
2

28
.
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• 49
√
2

3 hmax
Jij

|∇a(x)|+ 2h2cij

(

1− 2
3

min
Jij

a(x)

max
Jij

a(x)

)

<
min
Jij

a2(x)

max
Jij

a(x) .

• If c(x) ≡ 0, then we only need h
max
x∈Jij

|∇a(x)|

min
x∈Jij

a(x) <
√
122−7

√
2

28 .

• If a(x) ≡ a > 0, then we only need h2cij <
3
2a.

Here the definition of Jij is the same as in Theorem 4.6.

The proof of Theorem 4.6 is included in the Appendix B. The proof of Theorem 4.7
is very similar to the proof of Theorem 4.3 thus omitted. Since the two-dimensional
case is more complicated, it does not seem possible to derive a similar mesh constraint
involving second order derivatives of a(x, y) as in Theorem 4.4. For instance, by
Theorem 4.4, if a(x) > 0 is concave and c(x) ≡ 0, then the one-dimensional scheme
(2.6) satisfies L̄−1

h ≥ 0 without any mesh constraint. For the two-dimensional scheme
(2.8), even if assuming a(x, y) > 0 is concave and c(x, y) ≡ 0, constraints (4.6), (4.7a)
and (4.7b) are not all satisfied for any h.

5. Numerical test. In this section we show some numerical tests of scheme (2.8)
on an uniform rectangular mesh and verify the inverse non-negativity of Lh. See [20]
for numerical tests on the fourth order accuracy of this scheme. In order to minimize
round-off errors, we redefine (2.8a) to its equivalent expression Lh(ū)i,j = 1

h2ui,j =
1
h2 gi,j so that all nonzero entries in L̄h have similar magnitudes. By Theorem 3.3, we

have L−1
h ≥ 0 whenever L̄−1

h ≥ 0. Even though L−1
h ≥ 0 is not sufficient to ensure the

discrete maximum principle, in practice only L−1
h is used directly thus its positivity

is also important.
We first consider the following equation with purely Dirichlet conditions:

(5.1) −∇ · (a∇u) + cu = f on [0, 1]× [0, 2]

where c(x) ≡ 10 and a(x, y) = 1 + d cos(πx) cos(πy) with d = 0.5, 0.9, and 0.99. The
smallest entries in L−1

h and L̄−1
h are listed in Table 1, in which −10−18 should be

regarded as the numerical zero. As we can see, L−1
h ≥ 0 and L̄−1

h ≥ 0 are achieved
when h is small enough.

Table 1

Minimum of entries in L̄−1

h
and L−1

h
for Poisson equation (5.1) with smooth coefficients.

Finite Element Mesh
d = 0.5 d = 0.9 d = 0.99

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2× 4 -7.32E-18 7.48E-06 -3.90E-04 6.37E-06 -7.41E-04 6.14E-06

4× 8 -1.31E-18 1.23E-07 -4.02E-19 9.95E-08 -1.65E-04 9.44E-08

8× 16 -3.96E-19 1.91E-09 -4.91E-19 1.52E-09 -1.77E-05 1.44E-09

16× 32 -1.92E-19 2.98E-11 -7.60E-19 2.35E-11 -1.06E-18 2.22E-11

Next we consider (2.8) solving (5.1) with c(x, y) ≡ 0 and aij being random uni-
formly distributed random numbers in the interval (d, d+1). Notice that the larger d

is, the smaller
max
ij

{aij}
min
ij

{aij} is. When d = 10, we have
max
ij

{aij}
min
ij

{aij} <
√

61
49 , thus L

−1
h ≥ 0 and

L̄−1
h ≥ 0 are guaranteed by Theorem 4.6. In Table 2 we can see that the upper bound

on
max
ij

{aij}
min
ij

{aij} is indeed a necessary condition to have L̄−1
h ≥ 0, even though constraints
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in Theorem 4.6 may not be sharp since we still have the positivity when d = 1. We
have tested d = 0.3 many times and never observed negative entries in L̄−1

h and L−1
h .

Table 2

Minimum of all entries of L̄−1

h
and L−1

h
for a(x, y) being random coefficients

Finite Element Mesh
d = 0.1 d = 1 d = 10

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2× 4 -1.00E-03 6.60E-05 -8.15E-18 4.73E-05 -1.98E-16 6.74E-06

4× 8 -2.14E-04 3.22E-06 -3.46E-18 9.95E-07 -5.10E-17 1.35E-07

8× 16 -6.73E-05 2.88E-08 -5.24E-19 1.65E-08 -1.81E-17 2.21E-09

16× 32 -2.34E-05 3.61E-10 -9.01E-19 2.02E-10 -8.37E-18 3.56E-11

Last we consider solving the heat equation ut = ∆u on [0, 1] × [0, 2] with back-
ward Euler time discretization −∆un+1 + 1

∆t
un+1 = un

∆t
, corresponding to (5.1) with

a(x, y) ≡ 1 and c = 1
∆t

. By Theorem 4.7, ∆t
h2 > 2

3 , is a sufficient condition to ensure

L̄−1
h ≥ 0 and L−1

h ≥ 0. In Table 3, we can see that it is necessary to have a lower
bound constraint on ∆t

h2 but ∆t
h2 > 2

3 is not sharp at all. In Figure 5, we can see the

minimum of entries in L̄−1
h and L−1

h decreases for smaller ∆t
h2 . The lower bound to

ensure the inverse non-negativity of L̄−1
h and L−1

h seems to be near ∆t
h2 = 1

3.6 .

Table 3

Minimum of all entries of L̄−1

h
and L−1

h
for solving heat equation with backward Euler.

Finite Element Mesh
∆t = 3h2

2 ∆t = h2

2 ∆t = h2

4

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2× 4 0 7.95E-06 0 3.21E-07 -9.14E-05 -5.34E-07

4× 8 0 1.01E-09 0 1.93E-13 -2.28E-05 -1.00E-07

8× 16 0 7.74E-17 0 2.58E-25 -5.71E-06 -2.51E-08

16× 32 0 2.63E-30 0 2.73E-48 -1.43E-06 -6.27E-09

6. Concluding remarks. In this paper we have proven that the simplest fourth
order accurate finite difference implementation of C0-Q2 finite element method is
monotone thus satisfies a discrete maximum principle for solving a variable coeffi-
cient problem −∇ · (a(x, y)∇u) + c(x, y)u = f under some suitable mesh constraints.
The main results in this paper can be used to construct high order spatial discretiza-
tion preserving positivity or maximum principle for solving time-dependent diffusion
problems implicitly by backward Euler time discretization.

Appendix A. M-Matrix factorization for discrete Laplacian. The matrix
form of (2.5) can be written as 1

h2 L̄hū = f̄ . As an example, if there are seven interior
grid points in the mesh for (0, 1), then the matrix L̄h is given by

L̄h =















1
−1 2 −1
1
4

−2 7
2

−2 1
4

−1 2 −1
1
4

−2 7
2

−2 1
4

−1 2 −1
1
4

−2 7
2

−2 1
4

−1 2 −1
1














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(a) Minimum of entries in L̄−1

h
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dt/h 2
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-1

-0.5
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0.5

m
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im
um

×10-7

(b) Minimum of entries in L−1

h

Fig. 5. Minimum of all entries of L̄−1

h
and L−1

h
on 16 × 32 mesh with different time steps.

The matrix L̄h can be written as a product of two nonsingular M-matrices L̄h = M1M2

where

M1 =













1
1

− 1
4

1 − 1
4

1
− 1

4
1 − 1

4

1
− 1

4
1 − 1

4

1
1













,M2 =















1
−1 2 −1

− 3
2

3 − 3
2

−1 2 −1
− 3

2
3 − 3

2

−1 2 −1
− 3

2
3 − 3

2

−1 2 −1
1















.

Such a factorization is not unique and it does not seem to have further physical or
geometrical meanings.

For the scheme (2.7), we can find two linear operators A1 and A2 are with their
matrix representations A1 and A2 being nonsingular M-matrices, such that Lh(ū) =
A2(A1(ū)).

Definition of A1 is given as
• At boundary points:

vi,j = A1(ū)i,j = ui,j := gij .

• At interior knots:

vi,j = A1(ū)i,j = ui,j.

• At interior cell center:

vi,j = A1(ū)i,j = 2ui,j −
1

4
ui−1,j −

1

4
ui+1,j −

1

4
ui,j−1 −

1

4
ui,j+1.

• At interior edge center (an edge parallel to x-axis):

vi,j = A1(ū)i,j = −1

6
ui−1,j +

4

3
ui,j −

1

6
ui+1,j .
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• At interior edge center (an edge parallel to y-axis):

vi,j = A1(ū)i,j = −1

6
ui,j−1 +

4

3
ui,j −

1

6
ui,j+1.

Definition of A2 is given as:
• At boundary points:

A2(v̄)i,j = vi,j .

• At an interior knot:

A2(v̄)i,j = −3

2
vi−1,j + 3vi,j −

3

2
vi+1,j −

3

2
vi,j−1 + 3vi,j −

3

2
vi,j+1

• At an interior cell center:

A2(v̄)i,j = 2vi,j−
3

8
vi−1,j−

3

8
vi+1,j−

3

8
vi,j−1−

3

8
vi,j+1−

1

8
vi−1,j+1−

1

8
vi+1,j+1−

1

8
vi−1,j−1−

1

8
vi+1,j+1.

• At an interior edge center (an edge parallel to x-axis):

A2(v̄)i,j = − 7

16
vi−1,j +

15

4
vi,j −

7

16
vi+1,j − vi,j+1 − vi,j−1 −

3

16
vi−1,j−1 −

3

16
vi+1,j−1

− 3

16
vi−1,j+1 −

3

16
vi+1,j+1 −

1

32
vi−1,j+2 −

1

32
vi+1,j+2 −

1

32
vi−1,j−2 −

1

32
vi+1,j−2.

• At an interior edge center (an edge parallel to y-axis):

A2(v̄)i,j = − 7

16
vi,j−1 +

15

4
vi,j −

7

16
vi,j+1 − vi+1,j − vi−1,j −

3

16
vi−1,j−1 −

3

16
vi−1,j+1

− 3

16
vi+1,j−1 −

3

16
vi+1,j+1 −

1

32
vi+2,j−1 −

1

32
vi+2,j+1 −

1

32
vi−2,j−1 −

1

32
vi−2,j+1.

It is straightforward to verify that Lh(ū) = A2(v̄) where v̄ = A1(ū). Obviously,
matrices of A1 and A2 have positive diagonal entries and nonpositive off-diagonal
entries. Moreover, A1(1) ≥ 0 and A2(1) ≥ 0 thus A1 and A2 satisfy the row sum
conditions in Theorem 3.4. So A1 and A2 are both nonsingular M -matrices and the
matrix representation of Lh is A2A1. However, this kind of M-matrix factorization
cannot be extended to the variable coefficient case.

Appendix B. .

Proof of Theorem 4.3. If c(x) ≡ 0, then (4.4) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1.

A convenient sufficient condition is to require

52min{a2i−1, a
2
i , a

2
i+1} > 12max{a2i−1, a

2
i , a

2
i+1},

which is equivalent to

max{ai−1, ai, ai+1}
min{ai−1, ai, ai+1}

<

√

13

3
.
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Let a(x1) = max{ai−1, ai, ai+1} and a(x2) = min{ai−1, ai, ai+1}. Then the inequality
above is equivalent to

a(x1)− a(x2)

a(x2)
<

√
39− 3

3
.

By the Mean Value Theorem, there is some ξ ∈ (xi−1, xi+1) such that a(x1)−a(x2) =
a′(ξ)(x2 − x1). Since |x2 − x1| ≤ 2h, we have

|a(x1)− a(x2)| ≤ max
x∈(xi−1,xi+1)

|a′(x)| 2h.

Thus a sufficient condition is to require

h

max
x∈(xi−1,xi+1)

|a′(x)|

min
x∈(xi−1,xi+1)

a(x)
<

√
39− 3

6
.

For c(x) ≥ 0, (4.4) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1 + 4h2ci(3ai−1 − 4ai + 3ai+1),

for which a sufficient condition is

(B.1) 13min
Ii

a2(x) > 3max
Ii

a2(x) + h2ci(6max
Ii

a(x) − 4min
Ii

a(x)).

One sufficient condition for (B.1) is to have

∃λ ∈ (0, 1), h2ci(6max
Ii

a(x)−4min
Ii

a(x)) < 13(1−λ)min
Ii

a2(x), 3max
Ii

a2(x) < 13λmin
Ii

a2(x).

By similar discussions above, a sufficient condition for 3max
Ii

a2(x) < 13λmin
Ii

a2(x) is

to have λ > 3
13 and

h
max
x∈Ii

|a′(x)|
min
x∈Ii

a(x)
<

√
39λ− 3

6
.

The inequality (B.1) is also equivalent to

10min
Ii

a2(x) > 3(max
Ii

a2(x)−min
Ii

a2(x)) + h2ci(6max
Ii

a(x)− 4min
Ii

a(x)).

Let a2(x1) = max
Ii

a2(x) and a2(x2) = min
Ii

a2(x), then by the Mean Value Theorem

on the function a2(x), there is some ξ ∈ (xi−1, xi+1) such that

a2(x1)− a2(x1) = 2a(ξ)a′(ξ)(x1 − x2) ≤ 4hmax
Ii

a(x)max
Ii

|a′(x)|.

So it suffices to have

10min
Ii

a2(x) > 12hmax
Ii

a(x)max
Ii

|a′(x)|+ h2ci(6max
Ii

a(x)− 4min
Ii

a(x)),

which can be simplified to

2hmax
Ii

|a′(x)|+ h2ci(1−
2

3

min
Ii

a(x)

max
Ii

a(x)
) <

5

3

min
Ii

a2(x)

max
Ii

a(x)
.

If a(x) ≡ a > 0, it is straightforward to verify that (4.4) is equivalent to hci < 5a.
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Proof of Theorem 4.4. For a smooth coefficient a(x), by Taylor’s Theorem,

a(x+ h) = a(x) + ha′(x) +
1

2
h2a′′(ξ1), ξ1 ∈ [x, x+ h],

a(x− h) = a(x)− ha′(x) +
1

2
h2a′′(ξ2), ξ2 ∈ [x− h, x].

With the Intermediate Value Theorem for a′′(x), we get

a(x) =
1

2
[a(x+ h) + a(x− h)− h2a′′(ξ)], ξ ∈ (ξ2, ξ1) ⊂ [x− h, x+ h].

Thus we can rewrite ai as ai =
1
2 (ai−1 + ai+1 − dih

2) where

di :=
ai−1 + ai+1 − 2ai

h2
= a′′(ξ), for some ξ ∈ (xi−1, xi+1).

If c(x) ≡ 0, then (4.4) reduces to (28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1.
Introducing an arbitrary number λ ∈ (0, 2], it is equivalent to

4ai+1ai−1 + (4 − 2λ)ai(7ai−1 + 5ai+1) + 2λai(7ai−1 + 5ai+1) > 9a2i−1 + 3a2i+1,

(12λ+ 4)ai+1ai−1 + (4 − 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2i−1 + (5λ− 3)a2i+1

> λh2di(7ai−1 + 5ai+1),

(
4

λ
− 2)ai + ai−1

(5λ− 3)θ2 + (12λ+ 4)θ + (7λ− 9)

λ(5θ + 7)
> h2di, θ =

ai+1

ai−1
,

(

4

λ
− 2

)

ai +

( 41
5 θ − 9

λ(5θ + 7)
+ 1

)

ai−1 +

(

1− 3

5λ

)

ai+1 > h2di.

Notice that
41
5
θ−9

5θ+7 > − 9
7 . By taking 9

7 ≤ λ ≤ 2, it suffices to require

(B.2) (1− 9

7λ
)ai−1 + (

4

λ
− 2)ai + (1 − 3

5λ
)ai+1 > h2di,

as a sufficient condition of the above inequalities. If a(x) is a concave function, then it
satisfies a(xi) = a(xi−1+xi−1

2 ) ≥ 1
2a(xi−1)+

1
2a(xi+1), which implies ai−1+ai+1−2ai ≤

0, thus (B.2) holds trivially. Otherwise, (B.2) holds for λ = 9
7 if the following mesh

constraint is satisfied:

h2 max
x∈(xi−1,xi+1)

a′′(x) <
74

45
min{ai−1, ai, ai+1}.

If c(x) ≥ 0, for any λ ∈ (0, 2], (4.4) is equivalent to

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2i−1 + (5λ− 3)a2i+1

> λh2di(7ai−1 + 5ai+1) + 4h2ci(ai−1 + ai+1 + 2dih
2).(B.3)

If assuming dih
2 ≤ 74

45 min{ai−1, ai, ai+1}, then dih
2 ≤ λ1ai−1 + λ2ai+1 for any two

positive numbers λ1, λ2 satisfying λ1 + λ2 = 74
45 . In particular, for λ1 = 563

540 , we get
dih

2 ≤ 563
540ai−1 +

65
108ai+1, which implies

ai−1 + ai+1 + 2dih
2 ≤ 119

270
(7ai−1 + 5ai+1).
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By replacing ai−1 + ai+1 + 2dih
2 by the inequality above in (B.3), we get a sufficient

condition for (B.3) as following:

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2i−1 + (5λ− 3)a2i+1

> λh2di(7ai−1 + 5ai+1) + 4h2ci
119

270
(7ai−1 + 5ai+1).(B.4)

Similar to the derivation of (B.2), we can derive a sufficient condition of (B.4) as

h2

(

1.5ci + max
x∈(xi−1,xi+1)

a′′(x)

)

<
74

45
min{ai−1, ai, ai+1}.

If di ≤ 0, then a sufficient condition for (B.3) is

(12λ+ 4)ai+1ai−1 + (4− 2λ)ai(7ai−1 + 5ai+1) + (7λ− 9)a2i−1 + (5λ− 3)a2i+1

ai−1 + ai+1
> 4h2ci,

from which we can derive a sufficient condition as

4h2ci < (7λ− 9)ai−1 + (5− 5

2
λ)ai + (5λ− 3)ai+1,

for which a sufficient condition by setting λ = 2 is h2ci < 3min{ai−1, ai, ai+1}.

Proof of Theorem 4.6. Since (4.6a) and (4.7a) are equivalent to

4(7ai−1,j + 5ai+1,j)aij + 4ai−1,jai+1,j + 16aij(ai,j−1 + ai,j+1)

> 9a2i−1,j + 3a2i+1,j + 12(ai−1,j + ai+1,j)(ai,j−1 + ai,j+1) + 4(3ai−1,j − 4aij + 3ai+1,j)h
2cij

and

8ai−1,jai+1,j + 2aijai−1,j + 4aij(ai,j−2 + 4ai,j−1 + 18ai,j + 4ai,j+1 + ai,j+2) > 18a2i−1,j + 6a2i+1,j

+14aijai+1,j + 3(ai−1,j + ai+1,j)(ai,j−2 + 4ai,j−1 + 4ai,j+1 + ai,j+2) + 8(3ai−1,j − 4aij + 3ai+1,j)h
2cij .

A sufficient condition is to require

(B.5) 7min
Iij

a(x)2 > 5max
Iij

a(x)2 +
2

3
(3max

Iij
a(x)− 2min

Iij
a(x))h2cij

for all cell centers xij of cell Iij = [xi−1, xi+1] × [yi−1, yi+1], and the following mesh
constraints for all edge centers xij :

(B.6) 61min
Jij

a(x)2 > 49max
Jij

a(x)2 + 8(3max
Jij

a(x)− 2min
Jij

a(x))h2cij ,

where we Jij is the union of two cells: if xij is an edge center of an edge parallel to
x-axis, then Jij = Ii,j−1 ∪ Ii,j+1; if xij is an edge center of an edge parallel to y-axis,
then Jij = Ii−1,j ∪ Ii+1,j . Notice that (B.6) implies (B.5), thus it suffices to have
(B.6) only.
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