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Abstract

We consider a class of “filtered” schemes for first order time dependent Hamilton-Jacobi
equations and prove a general convergence result for this class of schemes. A typical filtered
scheme is obtained mixing a high-order scheme and a monotone scheme according to a filter
function F which decides where the scheme has to switch from one scheme to the other. A
crucial role for this switch is played by a parameter ε = ε(∆t,∆x) > 0 which goes to 0 as the
time and space steps (∆t,∆x) are going to 0 and does not depend on the time tn, for each
iteration n. The tuning of this parameter in the code is rather delicate and has an influence on
the global accuracy of the filtered scheme. Here we introduce an adaptive and automatic choice
of ε = εn(∆t,∆x) at every iteration modifying the classical set up. The adaptivity is controlled
by a smoothness indicator which selects the regions where we modify the regularity threshold
εn. A convergence result and some error estimates for the new adaptive filtered scheme are
proved, this analysis relies on the properties of the scheme and of the smoothness indicators.
Finally, we present some numerical tests to compare the adaptive filtered scheme with other
methods.

Keywords: High-order Filtered schemes, Hamilton-Jacobi equations, Convergence, Smooth-
ness indicators

1 Introduction

Here we propose and analyze a new adaptive filter scheme and prove its convergence to the
viscosity solution of the scalar evolutionary Hamilton-Jacobi equation{

vt +H(vx) = 0, (t, x) ∈ [0, T ]× R,
v(0, x) = v0(x), x ∈ R, (1)

where Hamiltonian H and the initial data v0 are Lipschitz continuous functions. A precise result of
existence and uniqueness in the framework of weak viscosity solutions can be found in [4] and the
precise setting of assumptions will be given in Sect. 2.
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The accurate numerical solution of Hamilton-Jacobi (HJ) equations is a challenging topic of growing
importance in many fields of application, e.g. control theory, KAM theory, image processing and
material science. Due to the lack of regularity of viscosity solutions, this issue is delicate and
the construction of high-order methods can be rather complicated and the proof of convergence is
challenging. It is well known that simple monotone schemes are at most first order accurate as
shown in [9] so monotonicity should be abandoned to get high-order convergence. Our goal is to
present a rather simple way to construct convergent schemes to the viscosity solution v of (1) with
the property to be of high-order in the region of regularity.
In recent years a general approach to the construction of high-order methods using filters has been
proposed by Lions and Souganidis in [21] and further developed by Oberman and Salvador [22].
It is also interesting to mention that filtered schemes were also used for second order problems
by Froese and Oberman [15] for the Monge-Ampere equation and, more recently, by Bokanowski,
Picarelli and Reisinger [7] who studied second order time dependent HJB equations. Let us remind
that a typical feature of a filtered scheme SF is that at the node xj the scheme is combination of a
high-order scheme SA and a monotone scheme SM according to a filter function F . The scheme is
written as

un+1
j ≡ SF (un)j := SM (un)j + ε∆tF

(
SA(un)j − SM (un)j

ε∆t

)
, j ∈ Z, (2)

where un+1
j := u(tn+1, xj) is the numerical approximation at time tn+1 and node xj , ε = ε(∆t,∆x) >

0 is a fixed parameter going to 0 as (∆t,∆x) is going to 0 and does not depend on n. Filtered schemes
are high-order accurate where the solution is smooth, monotone otherwise, and this feature is crucial
to prove a convergence result as in [6]. Note that the choice of the parameter ε is delicate because it
plays a crucial role in the switching so its tuning is rather important (see [6] for a detailed discussion
of this point). Then it seems natural to adapt its choice to the regularity of the solution in the cell
via a smoothness indicator. Here we improve the filtered scheme (2) introducing an adaptive and
automatic choice of the parameter ε = εn at every iteration. To this end, we introduce a smoothness
indicator to select the regions where we have to update the regularity threshold εn, this indicator is
chosen according to the analysis proposed in [19] although other proposals with similar properties
can be applied.

To set this paper into perspective let us remind that the construction of high order methods for
hyperbolic equations has been a very active research area started by the seminal paper [18]. Several
techniques have been proposed to improve the accuracy leading to essentially non oscillatory schemes
ENO and weighted ENO (so called WENO) for conservation laws as in [17, 2, 16, 1], for a survey on
these high-order techniques we refer to [24, 25]. More recently a centered and more efficient version
(called CWENO) has been proposed in [10]. We should also mention that high-order methods
have been proposed for Hamilton-Jacobi either extending the ENO approach as in [19, 20, 8] or by
semi-lagrangian techniques as extensively discussed in [12]. For a recent survey on the numerical
approximation of Hamilton-Jacobi equations we refer the interested reader to [11].

The paper is organized as follows:
In Sect. 2 we construct the new adaptive filtered scheme and present in detail all its building
blocks, the main assumptions are given there. Sect. 3 is focused on the analysis of the smoothness
indicators in one dimension. In Sect. 4 we state and prove the main convergence result (that was
announced in [13]), some technical lemmas are proved in Appendix A at the end of this paper.
Finally in Sect. 5 we present several tests to show the effectiveness of the adaptive scheme with
respect to the basic filtered scheme and to other state-of-the-art methods. Sect. 6 contains the
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conclusions with final comments.

2 A new Adaptive Filtered scheme

Consider the first order evolutionary Hamilton-Jacobi equation (1) where the hamiltonianH and
the initial data v0 are Lipschitz continuous functions. It is well known that with these assumptions
we have the existence and uniqueness of the viscosity solution. Notice that to keep the ideas clear we
are considering the most simple scalar case with the hamiltonian depending only on the derivative
of the solution, with more general situations following directly.

Our aim is to present a rather simple way to construct convergent schemes to the viscosity
solution v of (1) with the property to be of high-order whenever some regularity is detected. Starting
from the ideas of [6] on filtered schemes, we proceed in this study introducing a procedure to compute
the regularity threshold ε in an automatic way, in order to exploit the local regularity of the solution.

Let us begin defining a uniform grid in space xj = j∆x, j ∈ Z, and in time tn = t0 + n∆t,
n ∈ [0, N ] ∩ N, with (N − 1)∆t < T ≤ N∆t. Then, we compute the numerical approximation
unj = u(tn, xj) with the simple formula

un+1
j = SAF (un)j := SM (un)j + φnj ε

n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
, (3)

where un+1
j := u(tn+1, xj), SM and SA are respectively the monotone and the high-order scheme,

F is the filter function needed to switch between the two schemes, εn is the switching parameter at
time tn and φnj is the smoothness indicator function at the node xj and time tn. More details on
the components of the schemes will be given in the following sections.

Notice that if εn ≡ ε∆x, with ε > 0 and φnj ≡ 1, we get the Basic Filtered Scheme (2).

2.1 Assumptions on the schemes

In this section we present the basic components of our scheme, which are a monotone finite
difference scheme SM and a high-order, possibly unstable, scheme SA. Let us begin by giving the
assumptions on the monotone scheme.

Assumptions on SM .

(M1) The scheme can be written in differenced form

un+1
j ≡ SM (unj ) := unj −∆t hM (D−unj , D

+unj )

for a function hM (p−, p+), with D±unj := ±unj±1−unj
∆x ;

(M2) hM is a Lipschitz continuous function;

(M3) (Consistency) ∀v, hM (v, v) = H(v);

(M4) (Monotonicity) for any functions u, v u ≤ v ⇒ SM (u) ≤ SM (v).

3



Under assumption (M2), the consistency property (M3) is equivalent to say that for all functions
v ∈ C2([0, T ]× R), there exists a constant CM ≥ 0 independent on ∆ = (∆t,∆x) such that

EM (v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SM (v(t, ·))(x)

∆t

∣∣∣∣ ≤ CM (∆t||vtt||∞+∆x||vxx||∞) , (4)

where EM is the consistency error. The last relation clearly shows the bound on the accuracy of the
monotone schemes, which are at most first order accurate even for regular solutions.

Remark 2.1. As pointed out in [6], under the Lipschitz assumption (M2) the monotonicity property
(M4) can be restated in terms of some quantities that can be easily computed. In fact, it is enough
to require, for a.e. (p−, p+) ∈ R2,

∂hM

∂p−
(p−, p+) ≥ 0,

∂hM

∂p+
(p−, p+) ≤ 0, (5)

and the CFL condition
∆t

∆x

(
∂hM

∂p−
(p−, p+)− ∂hM

∂p+
(p−, p+)

)
≤ 1. (6)

We call the CFL number, dependent on the hamiltonian of the considered problem, the constant
ratio λ := ∆t

∆x such that (6) is satisfied. Notice that working with explicit finite difference schemes
this number can always be computed.
An important consequence of property (M4) is the nonexpansivity in L∞ of the mapping SM (see
[9], page 8), that is, for any functions u, v,

||SM (u)− SM (v)||∞≤ ||u− v||∞. (7)

Example 2.2. We give some examples of monotone schemes in differenced form which satisfy
(M1)-(M4). Other examples may be found in the pioneering work [9] or in [24].

• For the eikonal equation,
vt + |vx|= 0,

we can use the simple numerical hamiltonian

hM (p−, p+) := max{p−,−p+}. (8)

• For general equations, instead, we recall the Central Upwind scheme of [20]

hM (p−, p+) :=
1

a+ − a−
[
a−H(p+)− a+H(p−)− a+a−(p+ − p−)

]
, (9)

with a+ = max{Hp(p
−), Hp(p

+), 0} and a− = min{Hp(p
−), Hp(p

+), 0}, using the usual nota-
tion Hp for the derivative of H with respect to vx.

• Another numerical hamiltonian we could use is the Lax-Friedrichs hamiltonian

hM (p−, p+) := H

(
p− + p−

2

)
− θ

2
(p+ − p−) (10)

where θ > 0 is a constant. The scheme is monotone under the restrictions maxp|Hp(p)|< θ
and θλ ≤ 1.

4



Next, we define the requirements on the high-order scheme.

Assumptions on SA.

(A1) The scheme can be written in differenced form

un+1
j = SA(un)j := unj −∆thA(Dk,−uj , . . . , D

−unj , D
+unj , . . . , D

k,+unj ),

for some function hA(p−, p+) (in short), with Dk,±unj := ±unj±k−u
n
j

k∆x ;

(A2) hA is a Lipschitz continuous function.

(A3) (High-order consistency) Fix k ≥ 2 order of the scheme, then for all l = 1, . . . , k and for all
functions v ∈ C l+1, there exists a constant CA,l ≥ 0 such that

EA(v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SA(v(t, ·))(x)

∆t

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
.

It is interesting to notice that we are not making any assumption on the stability of the high-order
scheme, that is because filtered schemes are able to stabilize a possibly unstable scheme.

Before giving some examples of high-order schemes satisfying (A1)-(A3), let us state an inter-
esting property of the solution v of (1) in case of enough regularity. Notice that we are considering
the simplest case of H dependent only on the derivative of v.

Lemma 2.1. Let v be the solution of (1). Then, if v ∈ Cr
(
Ω(t,x)

)
, r ≥ 2, where Ω(t,x) is a

neighborhood of a point (t, x) ∈ Ω := [0, T ]× R, it holds

∂kv(t, x)

∂tk
= (−1)k

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
(11)

= (−1)k
∂k−2

∂xk−2

(
Hk−1
p (vx(t, x))

∂

∂x
H(vx(t, x))

)
,

for k = 2, . . . , r.

Proof. Let us proceed by induction on 2 ≤ k ≤ r, omitting the dependence on (t, x) to simplify the
notation. For k = 2, we have

vtt =
∂

∂t
(−H(vx)) = −Hp(vx)vxt = −Hp(vx)

∂

∂x
(−H(vx)) = H2

p (vx)vxx,

and the statement holds in this case. Suppose now that (11) holds for 2 < k < r − 1, then we can
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compute

∂k+1v

∂tk+1
=

∂

∂t

(
∂kv

∂tk

)
=

∂

∂t

(
(−1)k

∂k−2

∂xk−2

(
Hk
p (vx))vxx

))
by inductive hypothesis

= (−1)k
∂k−2

∂xk−2

(
∂

∂t

(
Hk
p (vx))vxx

))
= (−1)k

∂k−2

∂xk−2

(
∂

∂p

(
Hk
p (vx)

)
vxtvxx +Hk

p (vx)vxxt

)
= (−1)k

∂k−2

∂xk−2

(
∂

∂x
(Hk

p (vx))vxt +Hk
p (vx)

∂

∂x
(vxt)

)
= (−1)k

∂k−1

∂xk−1

(
Hk
p (vx)vtx

)
= (−1)k+1 ∂

k−1

∂xk−1

(
Hk+1
p (vx)vxx

)
,

as we wanted.

Let us now consider the value of the solution at v(t+∆t, x), with ∆t > 0 and its Taylor expansion
of order r ≥ 2 around the point (t, x). Using Lemma 2.1, we can rewrite

v(t+ ∆t, x) = v(t, x) + ∆tvt(t, x) +

r∑
k=2

∆tk

k!

∂kv(t, x)

∂tk
+O(∆tr+1)

= v(t, x)−∆tH(vx(t, x))+
r∑

k=2

(−∆t)k

k!

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
+O(∆tr+1), (12)

which for r = 2 simply reads

v(t+ ∆t, x) = v(t, x)−∆tH(vx(t, x)) +
∆t2

2
H2
p (vx(t, x))vxx(t, x) +O(∆t3). (13)

Remark 2.3. Using this last relation we could show that, assuming (A1)-(A2), the consistency
property is equivalent to require that for l = 2, . . . , k, and for all v ∈ C l+1,

EA(v)(t, x) :=

∣∣∣∣hA(D−v,D+v)−H(vx) +
∆t

2
H2
p (vx)vxx

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
. (14)

Now, let us give some examples of high-order schemes satisfying (A1)-(A3) with l = 2.

Example 2.4. As a first example let us consider the class of schemes obtained combining a high-
order in space numerical hamiltonian hA∗ and the second order Runge-Kutta SSP (or Heun scheme).
To explain the simple procedure, let us consider the semidiscrete problem

ut = hA∗ (D−u(t, x), D+u(t, x))),
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where hA∗ , is a high-order in space numerical hamiltonian of second order,

hA∗ (D−vnj , D
+vnj ) = H(vx(tn, xj)) +O(∆x2), (15)

such as the simple second order central approximation

hA∗ (D−unj , D
+unj ) = H

(
D−unj +D+unj

2

)
, (16)

then to obtain the same accuracy in time we discretize using the second order SSP Runge-Kutta
scheme, {

u∗j = unj −∆thA∗ (D−unj , D
+unj )

un+1
j = 1

2u
n
j + 1

2u
∗
j − ∆t

2 h
A
∗ (D−u∗j , D

+u∗j ).
(17)

The scheme can be written in differenced form in the sense of (A1)-(14) defining

hA(D−unj , D
+unj ) =

1

2

[
hA∗ (D−unj , D

+unj ) + hA∗ (D−u∗j , D
+u∗j )

]
. (18)

Notice that through this procedure the stencil of the scheme (16) becomes doubled for hA. Notice
also that this procedure can be easily extended to the case of hamiltonian dependent on the space
variable x.

Example 2.5. Then we propose a couple of numerical hamiltonians hA obtained discretizing directly
the formula (13) or, equivalently, obtained from the same Lax-Wendroff schemes for conservation
laws by the substitution unj =

vnj+1−vnj
∆x . The first is the original Lax-Wendroff scheme

hA(D−unj , D
+unj ) = 1

2

{
H
(
D+unj

)
+H

(
D−unj

)
+

−∆t
∆xHp

(
D−unj +D+unj

2

)[
H
(
D+unj

)
−H

(
D−unj

)]}
,

(19)

and the second is its variation proposed by Richtmyer,

hA(D−unj , D
+unj ) = H

(
D−unj +D+unj

2
− ∆t

2∆x

[
H
(
D+unj

)
−H

(
D−unj

)])
. (20)

Example 2.6. Following the approach of the Lax-Wendroff schemes and making use of the expansion
(12), we can easily write higher order schemes, in both space and time, using very compact stencils.
The idea is simply to discretize directly the above expansion using finite difference approximations
of the right order. For example, if we want to write a fourth order Lax-Wendroff scheme using only
five points, one of the possibilities is to define

H1 = H
(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)
,

H2 = H2
p

(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)(
−uj−2+16uj−1−30uj+16uj+1−uj+2

12∆x2

)
,

H3 = 1
2∆x

[
H3
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
−H3

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,

H4 = 1
∆x2

[
H4
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
− 2H4

p

(
uj+1−uj−1

2∆x

)(
uj+1−2uj+uj−1

∆x2

)
+H4

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,
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and then compute

hA(D−unj , D
+unj ) = H1 −

∆t

2

[
H2 −

∆t

3

(
H3 −

∆t

4
H4

)]
. (21)

It is straightforward to verify that, if the solution v is regular enough, using Taylor expansion we
have

• H1 = H(vx) +O(∆x4),

• H2 = H2
p (vx)vxx +O(∆x4),

• H3 = ∂
∂x

(
H3
p (vx)vxx

)
+O(∆x2),

• H4 = ∂2

∂x2

(
H4
p (vx)vxx

)
+O(∆x2),

and that the resulting scheme satisfies (A1)-(A3) with l = 4. Notice that to obtain fourth order it
would have been enough to have approximations of one order lower for H2 and H4, but thanks to the
symmetry of the discretizations we can get higher orders without increasing the number of points in
the stencil.

2.2 Filter function

In order to couple the schemes and their properties, we need to define a function F , called filter
function F, such that

(F1) F (x) ≈ x for |x|≤ 1,

(F2) F (x) = 0 for |x|> 1,

which implies that

• If |SA − SM |≤ ∆tεn and φnj = 1⇒ SAF ≈ SA

• If |SA − SM |> ∆tεn or φnj = 0⇒ SAF = SM .

It is clear that, with just these two requirements, several filter functions can be considered, which
differ for regularity properties. Four examples are reported in Fig. 1. The first filter, F1, which we
use in our numerical tests, has been defined in [6] as

F1(x) =

{
x if |x|≤ 1
0 otherwise, (22)

which is clearly discontinuous at x = −1, 1.
As a second possibility, we propose the family of regular filter functions given by the formula

F (x) = x exp
(
−c(|x|−a)b

)
,

for appropriate choices of the parameters a, b and c. In Fig. 1, the filter F2 belongs to that family
with a = 0.25, b = 20, c = 4. Functions of that kind are very regular (F ∈ C∞) and developing
with Taylor we can see that they satisfy the properties (F1)-(F2).

8



Figure 1: Possible choices for the filter function F .

Another example of filter functions satisfying (F1)-(F2), continuous but not necessarily derivable,
is the following family of functions

F (x) =

{
x exp

(
− a
b−|x|

)
if |x|≤ b

0 otherwise,
(23)

varying the parameters a and b. In Fig. 1 we show F3(x) with a = 0.001 and b = 1.05, for which
the function approach better the value 1 at x = −1, 1.
Finally, we recall also the filter defined in [15] as

F4(x) =


x |x|≤ 1
0 |x|≥ 2
−x+ 2 1 ≤ x ≤ 2
−x− 2 −2 ≤ x ≤ −1,

(24)

which satisfies (F1)-(F2) with a rather wide transition phase.
After extensive computations, we noticed that the results obtained with our adaptive filtered

(AF) scheme are not sensitive with respect to changes in regularity of the filter function, even
with very large transition phases. That is probably because, as we will see in the next section, the
parameter εn is designed to obtain the property (F1) whenever possible, then in regions of regularity
of the solution the argument of F lies most probably in [−1, 1], where all the filter functions are
practically the same. Some major differences, instead, can be seen in the results obtained with the
basic filtered scheme, for which the threshold ε is fixed at the beginning, as it is highlighted in the
introduction of [6].

2.3 Tuning of the parameter εn

The last step is to show how to compute the switching parameter εn, which is the real core of
the adaptivity of our scheme. Then, if we want the scheme (3) to switch to the high-order scheme
when some regularity is detected, we have to choose εn such that∣∣∣∣SA(vn)j − SM (vn)j

εn∆t

∣∣∣∣ =

∣∣∣∣hA(·)− hM (·)
εn

∣∣∣∣ ≤ 1, for (∆t,∆x)→ 0, (25)

9



in the region of regularity at time tn, that is

Rn =
{
xj : φnj = 1

}
. (26)

For the moment, to simplify the presentation we assume the existence of a function φ such that

φnj =

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity, (27)

where Ij = (xj−1, xj+1), referring to the next section for some examples of practical computation
of the function φ.

Assuming v sufficiently regular and proceeding by Taylor expansions as in [6], we have for the
monotone scheme

hM (D−vnj , D
+vnj ) = H(vnx(xj)) +

∆x

2
vnxx(xj)

(
∂p+h

M
j − ∂p−hMj

)
+O(∆x2),

where we used the relation

D±vnj = vnx(xj))±
∆x

2
vnxx(xj) +O(∆x2),

whereas for the high-order scheme, by the consistency property,

hA(D−vnj , D
+vnj ) = H(vnx(xj))−

∆t

2
H2
p (vnx)vxx +O(∆t2) +O(∆x2).

Whence, from (25) we obtain

εn ≥
∣∣∣∣∆x2 vnxx

(
∂p+h

M
j − ∂p−hMj + λH2

p (vnx)
)

+O(∆t2) +O(∆x2)

∣∣∣∣ . (28)

Finally, we use a numerical approximation of the lower bound on the right hand side of the previous
inequality to obtain the following formula for εn,

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H

(
Dunj − λ

[
H(D+unj )−H(D−unj )

])
+
[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣ , (29)

with K > 1
2 , λ := ∆t

∆x and Dunj :=
unj+1−unj−1

2∆x . Notice that if we assume enough regularity on the
solution v, then (29) gives a second order approximation of the right hand side of (28) multiplied
by 2K.

3 Smoothness indicator function

In the previous section we assumed the existence of a smoothness indicator function φ, in the
sense that

φnj = φ(ωnj ) :=

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity, (30)

10



where Ij = (xj−1, xj+1) and ωnj is the smoothness indicator at the node xj depending on the values
of the approximate solution un. The aim of this section is precisely to show a simple construction
of a function satisfying (27) which makes use of smoothness indicators widely known in literature.
Moreover, in the process we review the theory of the smoothness indicators of [19], defined for the
construction of the WENO schemes for (1),

βk = βk(u
n)j :=

r∑
l=2

∫ xj

xj−1

∆x2l−3
(
P

(l)
k (x)

)2
dx, (31)

for k = 0, . . . , r− 1, where Pk is the Lagrange polynomial of degree r interpolating the values of un

on the stencil Sj+k = {xj+k−r, . . . , xj+k}.
Then, before proceeding with the construction of φ, let us state a fundamental result on the

behavior of the indicators (31).

Proposition 3.1. Assume f ∈ Cr+1 (Ω \ {xs}), with Ω a neighborhood of xs, and f ′(x−s ) 6= f ′(x+
s ).

Moreover, just for simplicity, let f ′′(x) 6= 0, ∀x ∈ Ω \ xs. Then, for k = 0, . . . , r − 1 and j ∈ Z, the
followings are true:

i) If xs ∈ Ω \
◦
Sj+k ⇒ βk(f) = O(∆x2),

ii) If xs ∈
◦
Sj+k ⇒ βk(f) = O(1),

where
◦
Sj+k= (xj−r+k, xj+k).

We skip the proof, which is rather technical, but the interested reader can find it in Appendix
A.

Remark 3.2. Notice that we could avoid the restrictions on f ′′ at points of regularity by adding a
small quantity σ∆x := σ∆x2, for some constant σ > 0, to the indicators βk and consider instead

β̃k := βk + σ∆x. (32)

This is necessary in order to avoid a reduction of accuracy at points such that f ′′ = 0, as it has been
thoroughly discussed in [3] in the case of discontinuous functions. We will use this assumption in
our numerical tests, choosing σ = 1.

Our aim is to identify the points (or the intervals) in which a function f presents a singularity
in the first derivative using only its nodal values fj , j ∈ Z. Let us focus the attention on a point
xj of the grid and consider the simplest case of r = 2, which is enough for our purpose. Let us
consider separately the intervals (xj−1, xj ] and [xj , xj+1) defining

β−k := ∆x

∫ xj

xj−1

(P ′′k (x))2dx =

(
fj+k − 2fj+k−1 + fj+k−2

∆x

)2

, (33)

for k = 0, 1, where P0, P1 are the polynomials interpolating the function, respectively, on the stencils
{xj−2, xj−1, xj} and {xj−1, xj , xj+1}, and symmetrically

β+
k := ∆x

∫ xj+1

xj

(P ′′k (x))2dx =

(
fj+k+1 − 2fj+k + fj+k−1

∆x

)2

, (34)
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for k = 0, 1, where now P0, P1 are the interpolating polynomials on the stencils {xj−1, xj , xj+1}
and {xj , xj+1, xj+2}. From the definition it is clear that (β+)j = (β−)j+1 so we have to compute
the quantities just once (note that these quantities are always nonnegative). Then, we define as in
[19]

α±k =
1

(β±k + σ∆x)2
, (35)

with σ∆x := σ∆x2 the parameter we introduced in Remark 3.2, and focus on the information given
by the interpolating polynomial on {xj−1, xj , xj+1} defining

ω+ =
α+

0

α+
0 + α+

1

and ω− =
α−1

α−0 + α−1
,

to inspect the regularity, respectively, on [xj , xj+1) and for (xj−1, xj ].
By Prop. 3.1 and Remark 3.2 we know that β̃k = O(∆x2) if there is no singularity in the stencil,

and β̃k = O(1) otherwise, so in presence of a singularity we can only fall in one of the following
cases:

• If xj−2 < xs ≤ xj−1, then β̃−0 = O(1), β̃−1 = β̃+
0 = O(∆x2), β̃+

1 = O(∆x2),

• If xj−1 < xs < xj , then β̃−0 = O(1), β̃−1 = β̃+
0 = O(1), β̃+

1 = O(∆x2),

• If xs = xj , then β̃−0 = O(∆x2), β̃−1 = β̃+
0 = O(1), β̃+

1 = O(∆x2),

• If xj < xs < xj+1, then β̃−0 = O(∆x2), β̃−1 = β̃+
0 = O(1), β̃+

1 = O(1),

• If xj+1 ≤ xs < xj+2, then β̃−0 = O(∆x2), β̃−1 = β̃+
0 = O(∆x2), β̃+

1 = O(1),

with xs point of singularity. Now, we can compute

α±1 − α
±
0

α±0
=

(β±0 + σ∆x)2 − (β±1 + σ∆x)2

(β±1 + σ∆x)2

=

(
β±0 − β

±
1

β±1 + σ∆x

)(
β±0 + β±1 + 2σ∆x

β±1 + σ∆x

)
, (36)

which, noticing that, if the function is smooth in both stencils of β±0 and β±1 , we have

β±0 − β
±
1

β±1 + σ∆x
= −2∆x

f ′′j f
′′′
j

(f ′′)2 + σ
+O(∆x2) = O(∆x) (37)

β±0 + β±1 + 2σ∆x

β±1 + σ∆x
= 2 +O(∆x) = O(1),

leads to
α±1 = α±0 (1 +O(∆x)). (38)

Whence we can deduce that if the solution is regular enough in both stencils

ω± =
1

2
+O(∆x). (39)
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On the other hand, if there is a singularity in at least one of the stencils, by Prop. 3.1 and the
definition (35) we have that

α±k =

{
O(1) if f is not smooth in

◦
Sj+k

O(∆x−4) if f is smooth in
◦
Sj+k,

(40)

then it is easy to verify that the behavior of our ω± falls in the following cases:

• If xj−2 < xs ≤ xj−1, then ω− = 1 +O(∆x4), ω+ = 1/2 +O(∆x)

• If xj−1 < xs < xj , then ω− = O(1), ω+ = O(∆x4)

• If xs = xj , then ω− = O(∆x4), ω+ = O(∆x4)

• If xj < xs < xj+1, then ω− = O(∆x4), ω+ = O(1)

• If xj+1 ≤ xs < xj+2, then ω− = 1/2 +O(∆x), ω+ = 1 +O(∆x4),

where with ω± = O(1) we mean a number dependent on the jump of the derivative. Now, defining
ωj := min{ω−, ω+} we can rewrite

ωj =

{
O(∆x4) if xj−1 < xs < xj+1
1
2 +O(∆x) otherwise. (41)

Finally, what is left is to define the function φ such that φ = 1 if ω is close to 1
2 and φ = 0, otherwise.

Notice that in the latter are included both cases in which the function has a singularity in the first
derivative (ω = O(∆x4)) and when the second derivative is discontinuous (ω = O(1)). The simplest
choice is to take

φ(ω) = χ{ω≥M}, (42)

with M < 1
2 , a number possibly dependent on ∆x.

Remark 3.3. Notice that to construct the function φ using the indicators (31) with r = 2 we need
only five points to inspect the regularity in Ij.

Next, we show that if we make a particular choice for M we are able to prove the following
result, which can be seen as an “inverse” of Prop. 3.1 for numerical solutions and, if we use the
previous simple construction for ωj , gives a useful tool for the analysis of the next section.

Before proceeding, let us remind that we are working with structured grids, then if we consider
a one-parameter family of grid values {fj(∆x)}j∈J(∆x), as ∆x goes to 0, the indexed family of sets
of indices J(∆x) is expanding, in the sense that if ∆x2 < ∆x1, then J(∆x1) ⊂ J(∆x2), where
J(∆x) ⊆ Z, for all ∆x > 0. Moreover, we define Is(∆x) as the set of indices j such that φj = 0
and assume, for simplicity, |Is(∆x)|< Is, where Is is a positive constant.

Lemma 3.1. Let ω be computed using (33)-(34) and φ be defined by (42) with M(∆x) = 1
2 −C∆x,

for some constant C such that 0 < M(∆x) < 1
2 . Consider a one-parameter family of sequences

{fj(∆x)}j∈J(∆x) with compact support in the interval [−b, b], and a partition {Ri}i=0,...,|Is| of the
regularity set R = {j ∈ Z : φj = 1} =

⋃
iRi, and R = Z if Is = ∅. Then, if for all i = 0, . . . , |Is|,

there exists ji ∈ Ri, such that |D2fji(∆x)|<∞, we have that

|D2fj(∆x)|= |fj+1(∆x)− 2fj(∆x) + fj−1(∆x)|
∆x2

≤ B, ∀j ∈ R, (43)

for a constant B independent of ∆x.
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Proof. Since {fj} has compact support we have |Is|<∞ and it will be enough to prove the assertion
just for one i ∈ Is. More simply, in the regular case we have R = Z and we want to show that
the statement is true if the discrete derivative is bounded at some point, so if there exist an index
ĵ ∈ R and a positive constant δ (independent of ∆x) such that |D2fĵ(∆x)|≤ δ (note that for the
nodes outside the support of fj we can even set δ = 0). In the following, we simplify the notation
dropping the dependence of fj on ∆x. By definition of φ and ω, if φj = 1 then both ω± > M .
Moreover, (33)-(34) imply that the coefficients β± are always nonnegative as well as ω±.
Let us consider the case j < ĵ. Then, by definition,

ω+ =
(β+

1 + σ∆x)2

(β+
1 + σ∆x)2 + (β+

0 + σ∆x)2
> M,

which leads by simple computations to

β+
0 <

√
1−M
M

β+
1 +

(√
1−M
M

− 1

)
σ∆x,

then, dividing by ∆x2 and recalling that σ∆x = σ∆x2 , we get

|D2fj |2<
√

1−M
M

|D2fj+1|2+

(√
1−M
M

− 1

)
σ. (44)

Now let us iterate (44) on j till ĵ and define Lj ≡ ĵ − j, we have

|D2fj |2< . . . <

(
1−M
M

)Lj
2

|D2fĵ |
2+

(√
1−M
M

− 1

)
σ

Lj−1∑
k=0

(
1−M
M

) k
2

<

(
1−M
M

)Lj
2

δ2 +

(√
1−M
M

− 1

)
σ

Lj−1∑
k=0

(
1−M
M

) k
2

=

(
1−M
M

)Lj
2

δ2 +

(√
1−M
M

− 1

)
σ

1−
(

1−M
M

)Lj
2

1−
√

1−M
M

=

(
1−M
M

)Lj
2

(σ + δ2)− σ.

For j > ĵ, we can use the relation ω− > M and iterate back to ĵ redefining Lj ≡ j − ĵ, the
calculations are similar also for this case.
Since Lj∆x is bounded by b, we have Lj ≤ b

∆x , ∀j ∈ R. Recalling that M = 1
2 −C∆x, we can use

the previous bound on |D2fj |2 to proceed

|D2fj |2 ≤
(

1

M
− 1

) b
2∆x

(σ + δ2)− σ =

(
2

1− 2C∆x
− 1

) b
2∆x

(σ + δ2)− σ (45)

We get the final bound passing to the limit for ∆x going to 0 in (45), in conclusion we get

|D2fj |2≤ e3Cb(σ + δ2)− σ (46)

and the statement follows simply taking B :=
√
e3Cb(σ + δ2)− σ.
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Unfortunately, we noticed through numerical tests that the O(∆x) term in regular regions may
produce heavy oscillations around the optimal value ω = 1/2. To increase the accuracy, we can
use higher order smoothness indicator (r > 2), but we would need a bigger reconstruction stencil.
Otherwise, if we want to keep the compactness of the stencil, we can use the mappings defined in
[16],

g(ω) =
ω(ω + ω2 − 3ωω + ω2)

ω2 + ω(1− 2ω)
, ω ∈ (0, 1), (47)

which have the properties that g(0) = 0, g(1) = 1, g(ω) = ω, g′(ω) = 0 and g′′(ω) = 0. Then, we
define

ω∗± = g(ω±)

= g(ω) + g′(ω)(ω± − ω) +
g′′(ω)

2
(ω± − ω)2 +

g′′′(ω)

6
(ω± − ω)3 +O(∆x4)

= ω +
(ω± − ω)3

ω − ω3 +O(∆x4)

= ω +O(∆x3).

Notice that with respect to the definition in [16] we avoided the second weighting which seems
unnecessary in our case. More explicitly, the mapping we use is

g(ω) = 4ω

(
3

4
− 3

2
ω + ω2

)
. (48)

It is important to remind that, at the moment, Lemma 3.1 is valid only for indicators ω using
the standard construction for r = 2, without the possibility to introduce any modification, or
higher order indicators. Moreover, as it will be briefly discussed in Remark 4.4, it introduces some
limitations in the applicability even when using the standard indicators, testifying the necessity of
some improvements in the argument used. Notice that the previous lemma strongly relies on the
fact that ω is computed using (33)-(34) without introducing the mappings (48). In fact, if we were
to use (48), we could develop the algebra until the inequality

|D2fj |2≤
(

1

g−1(M)
− 1

) b
2∆x

(σ + δ2)− σ,

but, by definition, g−1 cannot be expanded in Taylor series around the point 1
2 , whence we could

not use the notable limit to conclude.
Therefore, we are forced to add a “technical” assumption in order to justify the proof of Prop.

4.1. More precisely, when using the alternative constructions for ω (using the mapping (48)), we
define the region of regularity R detected by the function φ̃ as the set

R =
{
j ∈ Z : φ̃(ωj) = 1

}
, with φ̃j =

{
1 if φ(ωj) = 1 and |Du2

j |< B,

0 otherwise,
(49)

for some constant B � 0. Notice that with this definition, which, we recall, is needed only for
theoretical reasons, it is not necessary to requireM(∆x)→ 0, then we can simply choose a constant
M > 0 small enough (e.g. M = 0.1), as we will do in the numerical tests of Sect. 5.
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4 Convergence result

We are now able to present our main result, but before doing so let us state a useful proposition
about the numerical solution and the parameter εn.

Proposition 4.1. Let un be the solution obtained by the scheme (3)-(29) and assume that v0 and
H are Lipschitz continuous functions. Assume also that Rn is defined by (26) or (49), with φ given
by (42), and that λ = ∆t/∆x is a constant such that (6) is satisfied. Then, εn is well defined and
un satisfies, for any i and j, the discrete Lipschitz estimate

|uni − unj |
∆x

≤ L (50)

for some constant L > 0, for 0 ≤ n ≤ T/∆t. Moreover, there exists a constant C > 0 such that

εn ≤ C∆x. (51)

Proof. Before proceeding with the proof let us notice that, if un satisfies (50) for a constant Ln > 0,
calling for brevity

D∗uj := Dunj − λ
[
H(D+unj )−H(D−unj )

]
,

we have that

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H (D∗uj) +

[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣
= max

xj∈Rn
K

∣∣∣∣∣∣
∆t

H
(
Dunj

)
−H (D∗uj)

Dunj −D∗uj

(H(D+unj )−H(D−unj )

D+unj −D−unj

)

+ ∆x

(
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

D+unj −D−unj

)

−∆x

(
hM (D+unj , D unj )− hM (D−unj , D unj )

D+unj −D−unj

)](
D+unj −D−unj

∆x

)∣∣∣∣∣ ,

whence we can conclude

εn ≤ K |(∆tLHLH2 + 2∆xLhM )B|
= KB (λLHLH2 + 2LhM ) ∆x, (52)

where LhM is the Lipschitz constant of hM , whereas LH and LH2 are the local Lipschitz constant of
H on [−Ln, Ln] and [−2Ln −∆tLHB, 2Ln + ∆tLHB], respectively. Notice that, if the smoothness
indicators are computed using the definitions (33)-(34), we have√

β+
0 (un)j

∆x
=
D+unj −D−unj

∆x
= D2unj .
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Then, in such case by Lemma 3.1, xj ∈ Rn ⇒ D2unj < B, for some constant B > 0 independent on
n. Otherwise, we can obtain the same estimate by the definition (49) of Rn.

Notice also that if the function H is globally Lipschitz continuous we have the same estimate
with LH2 = LH , where now LH is the global Lipschitz constant of H. Consequently, the last
statement would follow with C = KB(λL2

H + 2LhM ).
Let us now prove the main statement proceeding, as usual, by induction on n ≥ 0 and noticing

that it is sufficient to prove (50) for i and j such that i = j ± 1.
For n = 0, as we take u0

j = v0(xj) for j ∈ Z, we have that (50) is satisfied by the Lipschitz
continuity assumption on v0, with constant L0.

Now, assuming that (50) is satisfied for n − 1 > 0 so that εk for k = 0, . . . , n − 1 are bounded
by (52), we can compute

|uni − unj |
∆x

=
1

∆x

∣∣SM (un−1)i + φiε
n−1∆tF (·)i − SM (un−1)j − φjεn−1∆tF (·)j

∣∣
≤ 1

∆x

(
|SM (un−1)i − SM (un−1)j |+εn−1∆t|φiF (·)i − φjF (·)j |

)
≤
|un−1
i − un−1

j |
∆x

+
2∆t

∆x
εn−1

then, iterating back and using the same arguments,

|uni − unj |
∆x

≤
|un−1
i − un−1

j |
∆x

+ 2∆tC ≤ . . .

≤
|u1
i − u1

j |
∆x

+ 2(n− 1)∆tC ≤
|u0
i − u0

j |
∆x

+ 2n∆tC

≤ L0 + 2
T

∆t
∆tC = L,

where C is well defined by (52). Notice that we have used the nonexpansivity in L∞ of SM and the
fact that |F |≤ 1, |φ|≤ 1.

Therefore, it is clear that by construction our scheme is ε-monotone, in the sense of the following

Definition 4.2 (ε-monotonicity). A numerical scheme S is ε-monotone if for any functions u, v,

u ≤ v ⇒ S(u) ≤ S(v) + Cε∆t,

where C is constant and ε→ 0 as ∆ = (∆t,∆x)→ 0.

Thanks to that property, by applying the Barles-Souganidis result [5], the convergence follows di-
rectly. We conclude this section with the following theorem, which gives us the order of convergence
for the Adaptive Filtered Schemes.

Theorem 4.3. Let the assumptions on SM and SA be satisfied. Assume that v0 and H are Lipschitz
continuous functions, un+1

j is computed by (3)-(29), with K > 1/2 and λ = ∆t
∆x , a constant such

that (6) is satisfied. Assume also that Rn is defined by (26) or (49), with φ given by (42). Let us
denote by vnj := v(tn, xj) the values of the viscosity solution on the nodes of the grid. Then,
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i) the AF scheme (3) satisfies Crandall-Lions estimate [9]

||un − vn||∞≤ C1

√
∆x, ∀ n = 0, . . . , N,

for some constant C1 > 0 independent of ∆x.

ii) (First order convergence for regular solutions) Moreover, if v ∈ C2([0, T ]× R), then

||un − vn||∞≤ C2∆x, ∀ n = 0, . . . , N,

for some constant C2 > 0 independent of ∆x.

iii) (High-order local consistency) Let k ≥ 2 be the order of the scheme SA. If v ∈ C l+1 in some
neighborhood of a point (t, x) ∈ [0, T ]× R, then for 1 ≤ l ≤ k,

EAF (vn)j = EA(vn)j = O(∆xl) +O(∆tl)

for tn − t, xj − x, ∆t, ∆x sufficiently small.

Proof. i) Let us proceed as has been done in [6] defining wn+1
j = SM (wn)j , the solution computed

with the monotone scheme alone with w0
j = v0(xj). Then by definition,

un+1
j − wn+1

j = SM (un)j − SM (wn)j + φnj ε
n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
, (53)

whence, exploiting the nonexpansivity in L∞ of SM , the definition of εn and that |F |≤ 1,

max
j
|un+1
j − wn+1

j |≤ max
j
|unj − wnj |+εn∆t. (54)

Then, proceeding recursively on n ≤ N and recalling that by Prop. 4.1 there exists a constant
C > 0 such that εn ≤ C∆x := ε for each n,

max
j
|unj − wnj |≤

n−1∑
k=0

εk∆t ≤ nε∆t ≤ Tε. (55)

At this point, by the triangular inequality

max
j
|un+1
j − vn+1

j |≤ max
j
|un+1
j − wn+1

j |+ max
j
|wn+1
j − vn+1

j |, (56)

whence we have that

max
j
|un+1
j − vn+1

j |≤ max
j
|wnj − vnj |+εT ≤ (CCL + CT )

√
∆x, (57)

with CCL > 0 given by the Crandall-Lions estimate for SM .
ii) Let us recall that by (4), in the case of v ∈ C2 the consistency error for the monotone scheme
is such that EM (vn)j ≤ CM (∆t+ ∆x). Then we can compute

|un+1
j − vn+1

j | = |SM (un)j + φjε
n∆tF (·)− vn+1

j |

≤ |SM (un)j − SM (vn)j |+|SM (vn)j − vn+1
j |+εn∆t

≤ ||un − vn||∞+∆t (EM (vn) + εn) ,
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whence, by recursion on n ≤ N and recalling what we have done in the previous point,

||un − vn||∞≤ ||u0 − v0||∞+T

(
max

k=0,...,n−1
||EM (vk)||∞+ε

)
. (58)

To finish this proof what is left is to use the estimate on EM and Prop. 4.1 .

iii) In order to show that SAF (vn)j = SA(vn)j for ∆t e ∆x small enough it is sufficient to prove
that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1, for (∆t,∆x)→ 0, (59)

which follows directly from the computation we have done in Sect. 2.3 for the tuning of the
parameter εn. In fact, if we plug (29) inside the previous inequality, we can deduce that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1

2K
+O(∆x) +O(∆t),

which, using that K > 1/2 by assumption, leads to the thesis as (∆t,∆x) → 0. Notice that we
have used the property εn = O(∆x) and exploited the CFL condition.

Remark 4.4. Notice that the assumption M(∆x) = 1
2 − C∆x, for some constant C > 0 such that

M(∆x) > 0, needed to apply Lemma 3.1, may give some problems in the proof of third assertion of
the previous theorem. In fact, applying the standard definition (39) to the viscosity solution v at a
point xj and recalling the computations that led to (37), we get that

ω±j =
1

2
∓∆x

4v′′j v
′′′
j

(v′′j )2 + σ
+O(∆x2).

Consequently, in order to be sure that if v ∈ C3, then j ∈ R, we have to choose the constant C such
that

C ≥

∣∣∣∣∣ 4v′′j v
′′′
j

(v′′j )2 + σ

∣∣∣∣∣ ,
or require additional smoothness assumptions on v, for example v′′′j � v′′j . This in fact poses a
strong limitation on the applicability of Lemma 3.1, at least in the present formulation.

5 Numerical Tests

In this section we will present some one-dimensional examples designed to show the properties of
our scheme, stated by Theorem 4.3. Our goal is also to compare the performances of our Adaptive
Filtered Schemes SAF with those of the Filtered Scheme SF introduced in [6] and of the WENO
scheme of second/third order of [19]. Regarding the basic filtered scheme, we decided to avoid the
introduction of the limiter used in [6] in all the numerical tests here presented for a more direct
comparison. For all our numerical examples, we will use the function φ defined in (42), with βk
given by (33)-(34), the mapping (48), and M = 0.1, the parameter εn defined in (29), and we will
compute the errors and orders in L∞ and L1 norm. For each test, we will specify the monotone
and high-order schemes composing the filtered scheme. As already stated in Sect. 2.2, in all our
numerical simulations we will use the discontinuous filter function defined in (22). This choice is
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justified by comparison reasons, since in [6] this is the only filter function used and we suppose the
authors in [6] used it since it gives the best performances for their SF scheme. Since our scheme is
not sensitive to the choice of the filter function, we use the same as in [6] for best comparisons. At
the end of the section, we will also show briefly how to use these schemes in order to approximate
simple two dimensional problems. To be precise, in the following examples we will refer to the
standard CFL condition

λmax|Hp(p)|≤ 1, (60)

to define λ , which is alternative to (6) and more easily computed.
All the numerical tests have been implemented in language C++, with plots generated by using
MATLAB. The computer used for the simulations is a Notebook Asus F556U Intel Core i7-6500U
with speed of 2.59 GHz and 12 GB of RAM.

Example 1: Transport equation. In order to test the capability of our scheme to handle both
regular and singular regions, let us begin with a simple linear example and consider the problem{

vt(t, x) + vx(t, x) = 0 in (0, T )× Ω
v(0, x) = v0(x),

with periodic boundary conditions, in two different situations. At first, aiming to test the full
accuracy of the schemes, we consider the regular initial data (Case a),

v0(x) = sin(πx), x ∈ Ω (61)

with Ω = [−2, 2] and T = 0.9. Then, as a second test, we take the mixed initial datum (Case b),

v0(x) =


min{(1− x)2, (1 + x)2} if − 1 ≤ x ≤ 1,
sin2(π(x− 2)) if 2 ≤ x ≤ 3,
0 otherwise,

(62)

with Ω = [−1.5, 3.5] and T = 2. The latter problem models the transport of a function composed
by two peaks, the first with one point of singularity whereas the second is in C2. For these tests
we use the Central Upwind scheme (9) as monotone scheme and the simple Heun-Centered (HC)
scheme (16)-(17) as high-order scheme, with λ = 0.9 for Case a and λ = 0.4 for Case b. We also
compare the results obtained using SAF with the 4th order Lax-Wendroff scheme (21) as high-order
scheme. We recall that the latter high-order scheme has a very compact 5-points stencil, whereas
the WENO scheme of second/third order (coupled with the third order Runge Kutta scheme) has a
stencil of nine points.

In the first case (Case a) of this test, all the schemes are very accurate and achieve optimal order
in both norms, as shown in Tab. 1. In this case, both filtered schemes have the same numerical
results, except for a slight difference with the coarstest grid, and coincide with the simple HC high-
order scheme, as expected (we avoided to add another column in the table to report also the results
for the HC high-order scheme since they are the same). Moreover, we can see that our fourth order
scheme is much more accurate even than the WENO scheme, despite the smaller stencil required.
In Fig. 2 we reported only the AF-HC scheme and the WENO scheme, avoiding to show all the
schemes since no differences are visible for that case.

For the second case (Case b), looking at Fig. 3 we can observe that the adaptive tuning of εn is
able to contain the oscillations behind the peaks produced by the unstable HC scheme, which are
clearly visible instead in the case of SF with ε = 10∆x. We can also see that our scheme coupled
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Figure 2: (Example 1a.) Plots at time T = 0.9 with the AF-HC scheme on the left and WENO on the right
for ∆x = 0.05.

Table 1: (Example 1a.) Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 1.36e-02 1.70e-02 7.88e-03 8.02e-02
80 20 2.56e-03 2.41 2.56e-03 2.73 8.66e-06 9.83 2.62e-02 1.62
160 40 5.76e-04 2.15 5.76e-04 2.15 5.43e-07 4.00 4.50e-03 2.54
320 80 1.40e-04 2.04 1.40e-04 2.04 3.40e-08 4.00 1.95e-04 4.52

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 3.58e-02 3.29e-02 1.08e-02 2.07e-01
80 20 6.66e-03 2.43 6.66e-03 2.30 2.25e-05 8.90 4.14e-02 2.32
160 40 1.48e-03 2.17 1.48e-03 2.17 1.40e-06 4.01 5.09e-03 3.02
320 80 3.57e-04 2.05 3.57e-04 2.05 8.69e-08 4.01 3.08e-04 4.05

with the fourth order scheme produces again almost always the best results in terms of errors and
orders in both norms (see Tab. 2) and gives the best resolution of the peaks, preserving better the
kink of the singularity and the feet of the regular part, without introducing any oscillation. In Tab.
3 we reported the CPU times for this Case b, in which the evolution lasts longer. All the schemes
are very fast and complete the computations in less than 0.1 s for all the refinements. Note that
our two adaptive filtered schemes perform faster than the WENO scheme, even in the case of the
fourth-order scheme. On the other hand, as could be expected, the adaptive procedure increases
the cost of the filtering process three/four times depending on the refinement with respect to the
basic filtered scheme.

Example 2: Eikonal equation. As a first nonlinear problem let us consider the eikonal
equation {

vt(t, x) + |vx(t, x)|= 0 in (0, 0.3)× (−2, 2),
v0(x) = max{1− x2, 0}4, (63)

where v0 is a Lipschitz continuous initial datum with high regularity (Case a). Then, we repeat the
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Figure 3: (Example 1b.) Plots of the solution at time T = 2 with ∆x = 0.025. Top: simple filtered scheme
with HC on the left, adaptive on the right. Bottom: fourth order AF scheme on the left and WENO on the
right.

simulation with the “reversed” initial datum (Case b)

v0(x) = −max{1− x2, 0}4, (64)

which presents also a major problem in the origin because of the saddle point in the hamiltonian,
where two directions of propagation occur. Here the aim is mainly to compare the results obtained
by the unfiltered high-order schemes with their filtered versions, in order to show the stabilization
property of the filtering process. For the monotone scheme we use the numerical hamiltonian (8),
whereas to achieve high-order we use the Lax-Wendroff-Richtmyer (LWR) scheme (20). Moreover,
as in the previous example, we present also the results obtained with the AF scheme coupled with
the fourth order LW scheme. The CFL number is set to 0.375 for both simulations.

Let us first point out that, as Figs. 4 - 5 clearly show, the LWR scheme is unstable in the origin
in both situations, whereas the AF scheme (and the simple filtered scheme) is stable. Then, for the
first case, looking at Tab. 4 we can see that the filtered-LWR schemes give almost the same results,
are of high-order in both norms and get lower errors with respect to the WENO scheme in almost
all simulations. Moreover, we can recognize the typical improvements and drawbacks of the fourth
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Table 2: (Example 1b.) Errors and orders in L∞ and L1 norms.

F-HC (10∆x) AF-HC AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
50 50 3.46e-01 3.55e-01 3.31e-01 3.47e-01
100 100 1.41e-01 1.29 1.90e-01 0.90 1.72e-01 0.94 2.07e-01 0.75
200 200 9.69e-02 0.54 1.17e-01 0.70 9.72e-02 0.82 1.28e-01 0.70
400 400 7.29e-02 0.41 7.27e-02 0.69 5.47e-02 0.83 7.66e-02 0.74

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
50 50 4.34e-01 3.31e-01 2.68e-01 3.62e-01
100 100 1.41e-01 1.63 1.19e-01 1.47 9.27e-02 1.53 1.39e-01 1.39
200 200 4.24e-02 1.73 3.03e-02 1.98 1.30e-02 2.83 3.83e-02 1.86
400 400 1.38e-02 1.62 9.51e-03 1.67 3.07e-03 2.08 8.39e-03 2.19

Table 3: (Example 1b.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-
LW4ord

WENO 2/3

50 50 0.000 s 0.001 s 0.001 s 0.002 s
100 100 0.001 s 0.004 s 0.005 s 0.006 s
200 200 0.004 s 0.016 s 0.018 s 0.026 s
400 400 0.019 s 0.061 s 0.077 s 0.095 s

Figure 4: (Example 2a.) Initial datum (left) and plots of the solution at time T = 0.3 with the AF scheme
(center) and the LWR scheme (right) for ∆x = 0.025.

order LW scheme, which has a slightly wider stencil. In fact, as will be shown also in the following
examples, the scheme has bigger errors in the L∞ norm with respect to the second order AF scheme
whereas has way better errors and orders in the L1 norm, achieving almost optimal order, which
testifies the overall improvement.

For Case b, looking at Tab. 5 we can repeat almost the same considerations made for Case a,
but this time the improvements given by the adaptive filtering are more evident. The AF-LWR
scheme is again of high-order especially in the L1 norm, without the need to introduce any limiter
as has been done in [6], and the numerical results are always comparable to those obtained by the
WENO scheme of second/third order, whereas the AF-LW4ord scheme produces again bigger errors
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Table 4: (Example 2a.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.96e-02 1.89e-02 1.95e-02 6.81e-02
80 16 4.48e-03 2.13 3.56e-03 2.41 1.04e-02 0.90 3.42e-02 1.00
160 32 1.06e-03 2.08 8.53e-04 2.06 1.45e-03 2.85 1.62e-02 1.08
320 64 2.56e-04 2.05 2.20e-04 1.96 2.31e-04 2.65 7.52e-03 1.11

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 1.52e-02 1.63e-02 1.28e-02 2.05e-02
80 16 3.78e-03 2.01 3.61e-03 2.17 1.11e-03 3.53 4.68e-03 2.13
160 32 8.94e-04 2.08 8.80e-04 2.04 7.48e-05 3.89 9.55e-04 2.29
320 64 2.09e-04 2.09 2.08e-04 2.08 7.14e-06 3.39 1.40e-04 2.78

Figure 5: (Example 2b.) Plots at time T = 0.3 with the AF and WENO schemes with ∆x = 0.05 (left)
and LWR scheme with ∆x = 0.0125 (right).

Table 5: (Example 2b.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.91e-02 2.35e-02 2.42e-02 2.33e-02
80 16 9.24e-03 1.04 3.37e-03 2.80 7.51e-03 1.69 1.02e-02 1.19
160 32 5.77e-03 0.68 1.58e-03 1.09 2.14e-03 1.81 4.10e-03 1.32
320 64 3.46e-03 0.74 7.09e-04 1.16 6.92e-04 1.63 1.22e-03 1.75

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 2.38e-02 2.24e-02 2.28e-02 2.96e-02
80 16 8.48e-03 1.49 5.70e-03 1.98 2.05e-03 3.48 7.04e-03 2.07
160 32 3.41e-03 1.32 1.82e-03 1.65 3.20e-04 2.68 1.43e-03 2.30
320 64 1.52e-03 1.17 5.84e-04 1.64 6.38e-05 2.33 2.82e-04 2.34
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in L∞ with respect to the second-order AF-LWR scheme and better orders in the L1 norm.
Example 3: Burgers’ equation. Let us consider now the Burgers’ equation for HJ with a

regular initial datum {
vt(t, x) + 1

2(vx(t, x) + 1)2 = 0 in (0, T )× (0, 2),
v0(x) = − cos(πx),

(65)

which is a test case widely used in literature. In order to test the full accuracy of the schemes even
in the nonlinear case, we first run the simulation for T = 4

5π2 , when the solution is still regular, with
λ = 2

π2 ≈ 0.2 < max|Hp|−1 = 0.5. Then, we consider the final time T = 3
2π2 when a moving (to

the right) singularity appears, taking λ = 15
8π2 ≈ 0.19. For both simulations we use the the Central

Upwind monotone scheme and the LWR scheme for both the filtered schemes and compare the
results as before with the WENO scheme and the fourth order AF scheme. In Fig. 6 we report the
intial datum of the problem and the solution produced by the AF-LWR scheme at the two different
times in order to show the different behavior.

Figure 6: (Example 3.) From left to right: initial datum of problem (65) and plots of the solution with
AF-LWR at time T = 4/(5π2) and T = 3/(2π2) for ∆x = 0.025.

This example summarizes all the behaviors already seen in the previous cases. In fact, as
displayed by Tabs. 6-7, if the solution is still regular the fourth order AF scheme gives the best
results and achieves the optimal order in both norms, whereas when the singularity appears, it gets
bigger errors in L∞ norm but lower errors and better orders in the L1 norm with respect to the
second order filtered schemes. Here we have to notice that the WENO scheme has better errors
and orders in the second simulation with respect to all the filtered schemes. Moreover, we can
clearly see that the simple filtered scheme depends heavily on the choice of ε, in fact after extensive
computations we noticed that choosing for example ε = 5∆x we get worse results in both cases,
whereas if we increase the constant we get better results in the regular case and worse in the latter.
In the tables we presented the results for the choice that gives the best results in the singular case,
whereas it has clearly problems in the first situation. This is the main advantage of the adaptive
εn which is able to tune itself in the right way depending on the local (in time) regularity of the
solution.

In order to give a visual evidence of that latter property, in Fig. 7 we reported the regions
of activity of the schemes composing the two second order filtered schemes. There we can clearly
see that our procedure is able to better localize the presence of the singularity, whereas when the
solution is still regular the high-order scheme is always active. On the other hand, if we look at the
computational times in Tab. 8, we can see that the basic filtered scheme is of course the fastest
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Table 6: (Example 3.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.30e-02 9.61e-03 1.89e-03 1.04e-02
80 16 8.67e-03 0.59 2.77e-03 1.79 2.84e-04 2.73 2.12e-03 2.30
160 32 5.07e-03 0.77 7.24e-04 1.94 2.68e-05 3.41 1.82e-04 3.54
320 64 2.66e-03 0.93 1.83e-04 1.99 1.89e-06 3.83 2.05e-05 3.15

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 3.76e-03 3.13e-03 3.31e-04 3.67e-03
80 16 1.29e-03 1.54 8.20e-04 1.93 1.85e-05 4.16 6.57e-04 2.48
160 32 4.49e-04 1.52 2.04e-04 2.01 1.43e-06 3.70 5.43e-05 3.60
320 64 1.82e-04 1.30 5.09e-05 2.00 9.80e-08 3.86 2.98e-06 4.19

Table 7: (Example 3.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 16 4.88e-02 5.53e-02 5.86e-02 3.89e-02
80 32 2.47e-02 0.98 2.50e-02 1.15 2.62e-02 1.16 1.61e-02 1.27
160 64 9.81e-03 1.33 9.99e-03 1.32 1.03e-02 1.34 5.12e-03 1.65
320 128 2.57e-03 1.93 2.59e-03 1.95 2.67e-03 1.95 8.40e-04 2.61

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 16 5.17e-03 5.38e-03 3.18e-03 3.69e-03
80 32 1.26e-03 2.03 1.28e-03 2.08 6.73e-04 2.24 6.94e-04 2.41
160 64 2.86e-04 2.14 2.87e-04 2.15 1.31e-04 2.36 8.67e-05 3.00
320 128 5.68e-05 2.33 5.68e-05 2.34 1.70e-05 2.95 6.40e-06 3.76

Table 8: (Example 3.) T = 3/(2π2). CPU times in seconds.

Nx Nt F-LWR AF-LWR AF-
LW4ord

WENO 2/3

40 16 0.000 s 0.000 s 0.001 s 0.000 s
80 32 0.000 s 0.001 s 0.002 s 0.001 s
160 64 0.001 s 0.004 s 0.005 s 0.004 s
320 128 0.005 s 0.016 s 0.020 s 0.016 s

scheme, whereas the other three schemes have very similar CPU times, with the fourth order scheme
performing slightly slower.

Example 4: Nonconvex Hamiltonian. In this example we consider a well known test case
for nonconvex Hamiltonians (see e.g. [19]), that is{

vt(t, x)− cos(vx(t, x) + 1) = 0 in (0, T )× (−1, 1)
v(0, x) = − cos(πx),
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Figure 7: (Example 3.) Regions of activity of SM (blue) and SA (yellow) for the F-LWR scheme (left) and
the AF-LWR scheme (right) with ∆x = 0.025.

with periodic boundary conditions and final time T = 3/(2π2), when two singularities appear in
the solution, as can be seen in Fig. 8. In order to define the monotone scheme for this test, we use

Figure 8: (Example 4.) Initial datum on the left and plots of the exact and the AF-HC solutions at time
T = 3/(2π2) for ∆x = 0.025 on the right.

the Lax-Friedrichs hamiltonian (10) with θ = 1 as in [6], whereas the CFL number is set to 0.31. A
reference solution is computed by using the AF-LW4ord scheme with 10240 points.
We reported the global errors in Tab. 9 and the errors far away from singular points (regularity
region) in Tab. 10. More precisely, for the second table we consider the set of grid points x such
that |x− xi|≥ 0.05, for i = 1, 2, where x1 = −0.895 and x2 = 0.245 are approximately the position
of the singularities.
Looking at Tab. 9 we can note that all the tested schemes suffer a sort of “saturating” effect in L∞

norm, showing some difficulties in dropping the error in the last refinement, especially in the case
of the WENO scheme. On the other hand, the high-order convergence rate in L1 norm testifies
the reliability of the schemes also in this situation. The best results in Tab. 9 are clearly given by
the WENO scheme, nevertheless, the AF-HC scheme performs better in terms of error and orders
in both norms with respect to its basic version with ε = 5∆x, whereas the fourth order scheme
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Table 9: (Example 4.) Global Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 3.41e-02 1.87e-02 2.07e-02 1.40e-02
80 20 1.69e-02 1.01 8.08e-03 1.21 8.75e-02 1.24 4.88e-03 1.51
160 40 9.12e-03 0.89 3.07e-03 1.40 3.35e-03 1.38 1.32e-03 1.88
320 80 7.35e-03 0.31 2.89e-03 0.09 3.16e-03 0.09 2.08e-03 −0.65

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 6.06e-03 3.06e-03 2.89e-03 2.93e-03
80 20 1.97e-03 1.62 8.10e-04 1.92 6.85e-04 2.08 5.37e-04 2.45
160 40 6.46e-04 1.61 2.07e-04 1.97 1.68e-04 2.02 6.82e-05 2.98
320 80 2.21e-04 1.55 6.82e-05 1.60 5.07e-05 1.73 2.58e-05 1.40

Table 10: (Example 4.) Local Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 5.52e-03 2.59e-03 4.04e-03 4.04e-03
80 20 1.58e-03 1.81 4.92e-04 2.40 1.37e-04 4.88 9.31e-04 2.12
160 40 2.97e-04 2.41 2.22e-04 1.15 1.46e-05 3.22 6.06e-05 3.94
320 80 8.02e-05 1.89 4.33e-05 2.36 1.32e-07 3.47 2.23e-06 4.77

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 2.09e-03 1.14e-03 6.23e-04 1.38e-03
80 20 4.47e-04 2.23 3.07e-04 1.91 2.08e-05 4.91 2.33e-04 2.57
160 40 9.08e-05 2.30 8.06e-05 1.93 1.16e-06 4.16 1.62e-05 3.84
320 80 2.13e-05 2.09 2.00e-05 2.01 5.13e-07 1.18 7.66e-07 4.40

presents the usual behavior in L∞ norm with respect to the second order AF-HC scheme, however
maintaining the same order of errors. If instead we look at the errors in regions of regularity reported
in Tab. 10, we can acknowledge that all the schemes achieve optimal order in both norms, with
best results now given by the AF-LW4ord scheme, also with respect to the WENO scheme.

As already seen in the previous Example 3, in Fig. 9 we can recognize the ability of the AF
scheme to better localize the regions of singularity with respect to the basic procedure which uses
the monotone scheme way more than necessary.

Example 5: Evolution in 2D by dimensional splitting. We conclude this section on
numerical simulations showing a convenient procedure to solve simple two-dimensional problems
by making use of the one-dimensional schemes defined in the previous sections. Let us consider a
classical problem similar to the Burgers’ equation, which is strictly connected to (65),{

vt + (vx + 1)2 + (vy + 1)2 = 0 in (0, T )× Ω,
v(0, x, y) = −0.5 (cos(πx) + cos(πy)) ,

(66)

with Ω = [0, 2]2 and periodic boundary conditions. As done for problem (65), we consider the final
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Figure 9: (Example 4.) Regions of activity of SM (blue) and SA (yellow) for the F-HC scheme (left) and
AF-HC scheme (right) with ∆x = 0.025.

time T = 4
5π2 , when the solution is still smooth, and then T = 3

2π2 , time at which an interesting set
of singularities develops. The exact solution is computed by the Hopf-Lax formula,

v(t, x, y) =

(
min
a∈A

1

2
cos(x− at) +

1

4
a2 − a+ min

b∈A

1

2
cos(y − bt) +

1

4
b2 − b

)
,

with A = [−5, 5].
In this situation, since the hamiltonian can be expressed as a sum of one-dimensional hamilto-

nian, depending on the evolution along the x and y direction, respectively, we can use a dimensional
splitting to solve the problem. More precisely, if we write H(vx, vy) = H1(vx) + H2(vy), we can
approximate the solution by solving sequentially the problems in one space dimension

vt +H1(vx) = 0 and vt +H2(vy) = 0,

keeping each time the other space variable constant. Since the hamiltonians trivially commute, we
can use the simple Lie-Trotter splitting

un+1 = S∆t
y

(
S∆t
x (un)

)
, (67)

where S∆t
x and S∆t

y are numerical schemes of time step ∆t for the problems in the x and y direction,
respectively, without introducing errors in the time evolution. For more details about dimensional
splitting techniques we refer the reader to [23] and the references therein.

We use the same schemes as in Example 3 and a slightly more restrictive CFL number with
respect to problem (65) in order to use coarser grids, which is set to λ = 4

5π2 ≈ 0.08 for the first
test, and λ = 3

4π2 ≈ 0.076 for the latter.
As we could expect, in this example we have analogous result with respect to Example 3, with

the AF scheme performing well in both situations and better than the F scheme in the regular
case (see Tabs. 11-12). Here again the simple filtered scheme has slightly better results after the
singularities develop, due to the action of the φ function in the regions of singularity, but the loss of
accuracy is in fact minimal. Moreover, our scheme performs as good as the WENO scheme when the
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Figure 10: (Example 5.) Top: Initial datum (left) and exact solution at T = 3/(2π2) (right). Bottom:
solution at T = 4/(5π2) (left) and T = 3/(2π2) (right) computed by the AF-LWR scheme with ∆x = 0.1 .

Table 11: (Example 5.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 10 7.45e-02 7.75e-02 9.35e-02 8.66e-02
40 20 3.38e-02 1.14 5.12e-02 0.60 3.44e-02 1.44 3.59e-02 1.27
80 40 1.49e-02 1.18 3.25e-02 0.66 5.98e-03 2.52 1.30e-02 1.47
160 80 6.42e-03 1.22 1.94e-02 0.75 1.78e-03 1.75 4.87e-03 1.41

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 10 3.67e-02 4.42e-02 4.15e-02 3.71e-02
40 20 9.53e-03 1.94 1.21e-02 1.87 8.97e-03 2.21 1.00e-02 1.89
80 40 2.28e-03 2.06 4.29e-03 1.49 1.83e-03 2.29 1.95e-03 2.36
160 80 6.51e-04 1.81 1.70e-03 1.33 5.23e-04 1.81 4.50e-04 2.11

solution is still regular, whereas the latter performs better in the second case. Concerning the CPU
times, looking at Tab. 13 we can see that, differently from the one-dimensional case, the WENO
scheme is faster than the AF scheme in the last two refinements, whereas the F-LWR scheme is
comparable to the simple LWR high-order scheme and both are three/four times faster than the
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Table 12: (Example 5.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 20 1.69e-01 9.49e-02 1.12e-01 8.68e-02
40 40 6.39e-02 1.40 3.67e-02 1.37 3.66e-02 1.61 2.27e-02 1.93
80 80 3.23e-02 0.98 1.41e-02 1.38 1.46e-02 1.33 9.08e-03 1.32
160 160 2.64e-02 0.29 3.73e-03 1.91 3.86e-03 1.92 2.22e-03 2.03

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 20 6.18e-02 4.62e-02 5.40e-02 3.60e-02
40 40 1.74e-02 1.83 8.19e-03 2.50 8.79e-03 2.62 4.68e-03 2.94
80 80 4.54e-03 1.94 1.88e-03 2.13 1.82e-03 2.27 6.92e-04 2.76
160 160 1.13e-03 2.00 3.73e-04 2.33 3.83e-04 2.25 7.62e-05 3.18

Table 13: (Example 5.) T = 3/(2π2). CPU times in seconds.

Nx Nt LWR F-LWR AF-
LWR

WENO 2/3

20 20 0.002 s 0.002 s 0.009 s 0.010 s
40 40 0.015 s 0.016 s 0.055 s 0.054 s
80 80 0.108 s 0.127 s 0.427 s 0.324 s
160 160 0.867 s 0.902 s 3.642 s 2.569 s

other two considered schemes.

6 Conclusions

We have presented a rather simple way to construct convergent schemes coupling a monotone
and a high-order scheme via a filter function. A typical feature of filtered schemes is their high-
order accuracy in the regions of regularity for the solution. In fact, the filter function can stabilize
an otherwise unstable (high-order) scheme, still preserving its accuracy. The main novelty here
is the adaptive and automatic choice of the parameter εn which improves the scheme in [6]. The
computation of the switching parameter εn, although more expensive, is still affordable in low
dimension. The adaptive scheme is able to reduce the oscillations which may appear choosing a
constant ε and, as shown by the numerical tests, gives always better results. Finally, we note that
the accuracy of adaptive filtered schemes is close to WENO schemes of the same order but filtered
schemes are easier to implement, give a rather flexible way to couple different schemes and, as we
proved, converge to the viscosity solution. A fully 2D scheme has been used in our recent paper [14],
in which new formulas for the 2D smoothness indicators are proposed, instead of applying a splitting
techniques, for the resolution of the image segmentation problem. Thanks to recent computations,
we are able to prove a result similar to Prop. 3.1 for our new 2D smoothness indicators. Thanks to
such a result, we believe that the convergence and high-order consistency could be proven also in
fully two-dimensional problems, but this is a future work.
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A APPENDIX: Technical results

For completeness and reader’s convenience we give the proofs of Prop. 3.1 and of the properties
of the undivided differences and the binomial coefficients involved. This analysis follows the ideas
in [1] where a similar analysis is developed for conservation laws.

of Proposition 3.1. Let us take r > 1 and without loss of generality, let xs = 0 (to simplify the
notation). Moreover, we will use the convention h := ∆x. Let us start by reminding that, using the
Newton form of the interpolating polynomial, for k = 0, . . . , r − 1 and j ∈ Z, we get

Pk(x) = f(xj−r+k) +

r∑
i=1

f [xj−r+k, . . . , xj−r+k+i]ωi−1(x), (68)

where ωi(x) = (x− xj−r+k) · · · (x− xj−r+k+i) and f [·] denotes the divided difference of f .
We proceed with the proof of i). In this case it is sufficient to observe that, since the function

f is regular in Ω \ {xs}, the properties of the interpolating polynomial directly give

P
(l)
k (x) = f (l)(x) +O(hr+1−l), for xj−1 ≤ x ≤ xj , k = 0, . . . , r − 1.

Moreover, expanding with Taylor, it holds

f (l)(x) = f (m)(xj)O(h)m−l + o(hm−l), (69)

where m = max{s + 1, l} and s = max{k : f (i)(xj) = 0, ∀i ≤ k} (s ≤ r). Then, integrating
(remembering that by hypothesis s = 0⇒ m = l), we get

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h2l−2

(
f (l)(xj)

)2
+ o(h2l−2),

as we wanted.
Let us continue with the proof of ii). In this case the proof is a little more complicated and it

is better to treat separately the following two cases:

(a) 0 is a point of the grid {xi}, i ∈ Z;

(b) 0 ∈ Ii = (xi−1, xi) for some i ∈ Z.

Case a. By hypothesis 0 ∈ Sj+k for at least one k = 0, . . . , r− 1, then, for each fixed k, there exists
an integer js ∈ {k − r + 1, . . . , k − 1} such that xj = −jsh (for js = k − r and js = k we fall in the
case treated previously). Substituting in (68),

Pk(x) = f((−js + k − r)h) +

r∑
i=1

f [(−js + k − r)h, . . . , (−js + k − r + i)h]ωi−1(x),

with ωi(x) = (x + (js − k + r)h) · · · (x + (js − k + r − i)h). Moreover, if we define the function
fh(y) := f(xj + hy) = f(h(y − js)), we can write

f [xj−r+k, . . . , xj−r+k+i] = f [xj + (k − r)h, . . . , xj + (k − r + i)h]

=
fh[k − r, . . . , k − r + i]

i!hi
,
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where fh[·] denotes the undivided difference of fh. Now, defining the polynomial

Qk(y) := Pk(xj + hy) = fh(k − r) +

r∑
i=1

fh[k − r, . . . , k − r + i]
qi−1(y)

i!
, (70)

where qi(y) = (y − (k − r)) · · · (y − (k − r − i)), fh(y) = f(xj + hy), we can rewrite

P
(l)
k (x) =

dl

dxl

(
Qk

(x
h

))
=

1

hl
Q

(l)
k (y), l = 1, . . . , r. (71)

Then, applying the change of variable y = (x− xj)/h in the integral in (31), we have

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h−2

∫ 0

−1

(
Q

(l)
k (y)

)2
dy, (72)

where

Q
(l)
k (y) =

r∑
i=l

fh[(k − r), . . . , (k − r + i)]
q

(l)
i−1(y)

i!
. (73)

At this point, it is useful to notice that (75) for l = 1 reads, for i = 1, . . . , r,

fh[k − r, . . . , (k − r + i)] =
i−1∑
j=0

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)].

In order to simplify the notation let us call is := js−k+r, that is to say the index is ∈ {1, . . . , r−1}
such that xj + (k − r + is)h = 0. Then, by hypothesis, we can write for all i > t := max{is, l − 1},

fh[k − r, . . . , (k − r + i)] =

is−1∑
j=0

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)]

+

i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)],

and, noticing that for h→ 0

fh[z + js, z + js + 1] = h
f((z + 1)h)− f(zh)

h
→
{
hf ′(0+) if z ≥ 0
hf ′(0−) otherwise

we can conclude that

fh[k − r, . . . , (k − r + i)] ≈ h

is−1∑
j=0

(
i− 1

j

)
(−1)i−j−1f ′(0−) +

i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1f ′(0+)


= h

[
f ′(0+)− f ′(0−)

] i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1

= h
[
f ′(0+)− f ′(0−)

]( i− 2

is − 1

)
(−1)i−is+1 6= 0,
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having exploited the relations
∑i

j=0

(
i
j

)
(−1)i−j = 0 and

∑n
j=0

(
i
j

)
(−1)i−j =

(
i−1
n

)
(−1)i−n, for 0 ≤

n < i by Lemma A.1. Furthermore for l ≤ i ≤ is, using the relation (76), we can conclude

fh[k − r, . . . , (k − r + i)] ≈ h
i−1∑
j=0

(
i− 1

j

)
(−1)i−j−1f ′(0−) = 0.

From what we have done so far we can deduce, recalling that t := max{is, l − 1},

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h−2

∫ 0

−1

(
r∑

i=t+1

fh[k − r, . . . , (k − r + i)]
q

(l)
i−1

i!

)2

≈ Crk
[
f ′(0+)− f ′(0−)

]2
,

where Crk =
∫ 0
−1

(∑r
i=t+1

(
i−2
is−1

)
(−1)i−is+1 q

(l)
i−1

i!

)2

, which is the thesis for Case a.

Case b. By hypothesis there exists an integer js ∈ {k− r+ 1, . . . , k} and a number 0 < as < 1 such
that xj = (−js + as)h. It is clear now that we can repeat the same constructions of the previous
case defining the function fas,h(y) := f(h(y− js +as)) and using it in place of fh; so, to obtain (72)
it will suffice to apply the change of variables y = x

h + js − as. Then, naming is = js − k + r, for
i ≥ t := max{is, l},

fas,h[k − r, . . . , (k − r + i)] =

is−2∑
j=0

(
i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)]

+

(
i− 1

is − 1

)
(−1)i−isfas,h[js − 1, js]

+
i−1∑
j=is

(
i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)], (74)

whence, noticing that

fas,h[js − 1, js] = f(ash)− f((as − 1)h)

= ash

(
f(ash)− f(0)

ash

)
+ (1− as)h

(
f(0)− f((as − 1)h)

(1− as)h

)
≈ ashf ′(0+) + (1− as)hf ′(0−)

= ash
[
f ′(0+)− f ′(0−)

]
+ hf ′(0−),

and that

fas,h[z + js − 1, z + js]→
{
hf ′(0+) if z ≥ 1
hf ′(0−) if z ≤ −1,

we can infer that if i = is (in this case in (74) on the right side of the equation we have only the
second term), then fas,h[k − r, . . . , (k − r + i)] ≈ ash [f ′(0+)− f ′(0−)] 6= 0, whereas if i > is,

fas,h[k − r, . . . , (k − r + i)] ≈ h
[
f ′(0+)− f ′(0−)

] [( i− 2

is − 1

)
(−1)i−is+1 + as

(
i− 1

is − 1

)
(−1)i−is

]
.

The last quantity, as it can be easily shown, it is null if and only if as = i−is
i−1 ; more precisely, for k

fixed there exists an integer i ≥ t such that fas,h[k− r, . . . , (k− r+ i)] ≈ Ch [f ′(0+)− f ′(0−)] with
C 6= 0, whence the thesis even in the last case.
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Lemma A.1. Let us assume i ≥ 1 and write f [·] for the undivided difference of a function f . Then,
it holds

f [0, . . . , i] =
i−l∑
j=0

(
i− l
j

)
(−1)i−l−jf [j, . . . , j + l], for l = 0, . . . , i. (75)

Moreover, we have that

n∑
j=0

(
i

j

)
(−1)i−j =

{ (
i−1
n

)
(−1)i−n for n < i

0 for n = i.
(76)

Proof. Let us start from the proof of (75) and let us proceed by induction on i.
Firstly, let us notice that for l = i the identity is trivially satisfied, whence the case i = 1 follows

directly. Then, for any l = 0, . . . , i− 1, suppose that the statement holds for i− 1 and for i > 0 let
us compute,

f [0, . . . , i] = f [1, . . . , i]− f [0, . . . , i− 1] by definition off [·]

=
i−l−1∑
j=0

(
i− l − 1

j

)
(−1)i−l−1−jf [j + 1, . . . , j + 1 + l]

−
i−l−1∑
j=0

(
i− l − 1

j

)
(−1)i−l−1−jf [j, . . . , j + l] by inductive hyp.

= f [i− l, . . . , i] + (−1)i−lf [0, . . . , l]

+
i−l−1∑
j=1

(
i− l − 1

j − 1

)
(−1)i−l−jf [j, . . . , j + l]

+
i−l−1∑
j=1

(
i− l − 1

j

)
(−1)i−l−jf [j, . . . , j + l]

= f [i− l, . . . , i] + (−1)i−lf [0, . . . , l]

+
i−l−1∑
j=1

(
i− l
j

)
(−1)i−l−jf [j, . . . , j + l]

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)

=
i−l∑
j=0

(
i− l
j

)
(−1)i−l−jf [j, . . . , j + l],

as we wanted.

Remark A.1. To simplify the notation we have stated the result for f [0, . . . , i] but the proof clearly
holds for f [k, . . . , k + i], ∀k. In the second identity of the previous chain we have assumed this fact
applying the inductive hypothesis on both terms.

Let us focus now on the second relation of the lemma (76) and proceed again by induction, but
this time on n : 0 ≤ n < i. For n = 0 we have (−1)i = (−1)i, then the identity holds. Suppose that
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(76) holds for n− 1 < i− 1 and compute

n∑
j=0

(
i

j

)
(−1)i−j =

n−1∑
j=0

(
i

j

)
(−1)i−j +

(
i

n

)
(−1)1−n

=

(
i− 1

n− 1

)
(−1)i+1−n +

(
i

n

)
(−1)i−n by inductive hyp.

=

(
i− 1

n− 1

)
(−1)i+1−n −

[(
i− 1

n

)
+

(
i− 1

n− 1

)]
(−1)i+1−n

=

(
i− 1

n

)
(−1)i−n.

For n = i instead, from what we have just seen we can easily compute

i∑
j=0

(
i

j

)
(−1)i−j =

i−1∑
j=0

(
i

j

)
(−1)i−j + (−1)i−i

=

(
i− 1

i− 1

)
(−1)i−i+1 + 1

= −1 + 1 = 0.
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