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Abstract
Identities that relate projections of Raviart–Thomas finite element vector fields to
discrete gradients of Crouzeix–Raviart finite element functions are derived under gen-
eral conditions. Various implications such as discrete convex duality results and a
characterization of the image of the projection of the Crouzeix–Ravaiart space onto
elementwise constant functions are deduced.

Mathematics Subject Classification 65N12 · 65N30

1 Introduction

Recent developments in the numerical analysis of total variation regularized and related
nonsmooth minimization problems show that nonconforming and discontinuous finite
elementmethods lead to optimal convergence rates under suitable regularity conditions
[3,4,10]. This is in contrast to standard conforming methods which often perform
suboptimally [6]. A key ingredient in the derivation of quasi-optimal error estimates
are discrete convex duality results which exploit relations between Crouzeix–Raviart
and Raviart–Thomas finite element spaces introduced in [11] and [13]. In particular,
assume that� ⊂ R

d is a boundedLipschitz domainwith a partitioning of the boundary
into subsets �N , �D ⊂ ∂�, and let Th be a regular triangulation of �. For a function
vh ∈ S1,cr

D (Th) and a vector field yh ∈ RT 0
N (Th)we then have the integration-by-parts

formula
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∫
�

∇hvh · yh dx = −
∫

�

vh div yh dx .

Important aspects here are that despite the possible discontinuity of vh and yh no terms
occur that are related to interelement sides and that the vector field yh and the function
vh can be replaced by their elementwise averages on the left- and right-hand side,
respectively. In combination with Fenchel’s inequality this implies a weak discrete
duality relation.

The validity of a strong discrete duality principle has been established in [4,10]
under certain differentiability or more generally approximability properties of mini-
mization problems using the orthogonality relation

(
�hRT 0

N (Th)
)⊥ = ∇h

(
ker�h |S1,cr

D (Th)
)
, (1)

within the space of piecewise constant vector fields L0(Th)d equipped with the L2

inner product andwith∇h and�h denoting the elementwise application of the gradient
and orthogonal projection onto L0(Th)d , respectively, ker denotes the kernel of an
operator. The identity implies that if a vector field wh ∈ L0(Th)d satisfies

∫
�

wh · ∇hvh dx = 0

for all vh ∈ S1,cr
D (Th) with �hvh = 0 then there exists a vector field zh ∈ RT 0

N (Th)
such that

wh = �hzh .

Note that this is a stronger implication then the well known result that if wh is orthog-
onal to discrete gradients of all Crouzeix–Raviart functions then it belongs to the
Raviart–Thomas finite element space. Although strong duality is not required in the
error analysis, it reveals a compatibility property of discretizations and indicates opti-
mality of estimates. Moreover, it is related to postprocessing procedures that provide
the solution of computationally expensive discretized dual problems via simple post-
processing procedures of numerical solutions of less expensive primal problems, cf.
[1,4,9,12].

The proof of (1) given in [10]makes use of a discrete Poincaré lemmawhich is valid
if the Dirichlet boundary �D ⊂ ∂� is empty or if d = 2 and �D is connected. In this
note we show that (1) can be established for general boundary partitions by avoiding
the use of the discrete Poincaré lemma. The new proof is based on the surjectivity
property of the discrete divergence operator

div : RT 0
N (Th) → L0(Th).

This is a fundamental property for the use of the Raviart–Thomasmethod for discretiz-
ing saddle-point problems, cf. [5,13]. It is an elementary consequence of a projection

123



Orthogonality relations of Crouzeix–Raviart... 129

property of a quasi-interpolation operator IRT : Hs(�;Rd) → RT 0
N (Th) and the

surjectivity of the divergence operator onto the space L2(�).
Our arguments also provide a dual version of the orthogonality relation (1) which

states that

div
(
ker�h |RT 0

N (Th)
) = (

�hS1,cr
D (Th)

)⊥
. (2)

Unless �D = ∂�we have that the left-hand side is trivial and hence the identity yields
that

�hS1,cr
D (Th) = L0(Th),

i.e., that the projection of Crouzeix–Raviart functions onto elementwise constant func-
tions is a surjection. If �D = ∂� then depending on the triangulation both equality
or strict inclusion occur. This observation reveals that the discretizations of total-
variation regularized problems devised in [4,10] can be seen as discretizations using
elementwise constant functions with suitable nonconforming discretizations of the
total variation functional.

The most important consequence of (2) is the strong duality relation for the discrete
primal problem defined by minimizing the functional

Ih(uh) =
∫

�

φ(∇huh) + ψh(x,�huh) dx

in the space S1,cr
D (Th) and the discrete dual problem consisting in maximizing the

functional

Dh(zh) = −
∫

�

φ∗(�hzh) + ψ∗
h (x, div zh) dx

in the space RT 0
N (Th). The functions φ and ψh are suitable convex functions with

convex conjugates φ∗ and ψ∗
h , we refer the reader to [4] for details.

This article is organized as follows. In Sect. 2 we define the required finite element
spaces along with certain projection operators. Our main results are contained in
Sect. 3, where we prove the identities (1) and (2) and deduce various corollaries. In
the Appendix A we provide a proof of the discrete Poincaré lemma that leads to an
alternative proof of the main result under certain restrictions.

2 Preliminaries

2.1 Triangulations

Throughout what follows we let (Th)h>0 be a sequence of regular triangulations of the
bounded polyhedral Lipschitz domain � ⊂ R

d , cf. [7,8]. We let Pk(T ) denote the set
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of polynomials of maximal total degree k on T ∈ Th and define the set of elementwise
polynomial functions or vector fields

Lk(Th)� = {wh ∈ L∞(�;R�) : wh |T ∈ Pk(T ) for all T ∈ Th}.

The parameter h > 0 refers to the maximal mesh-size of the triangulation Th . The
set of sides of elements is denoted by Sh . We let xS and xT denote the midpoints
(barycenters) of sides and elements, respectively. The L2 projection onto piecewise
constant functions or vector fields is denoted by

�h : L1(�;R�) → L0(Th)�.

For vh ∈ L1(Th)� we have �hvh |T = vh(xT ) for all T ∈ Th . We repeatedly use that
�h is self-adjoint, i.e.,

(�hv,w) = (v,�hw)

for all v,w ∈ L1(�;R�) with the L2 inner product (·, ·).

2.2 Crouzeix–Raviart finite elements

A particular instance of a larger class of nonconforming finite element spaces intro-
duced in [11] is the Crouzeix–Raviart finite element space which consists of piecewise
affine functions that are continuous at the midpoints of sides of elements, i.e.,

S1,cr (Th) = {vh ∈ L1(Th) : vh continuous in xSfor all S ∈ Sh}.

The elementwise application of the gradient operator to a function vh ∈ S1,cr (Th)
defines an elementwise constant vector field ∇hvh via

∇hvh |T = ∇(vh |T )

for all T ∈ Th . For v ∈ W 1,1(�)we have∇hv = ∇v. Functions vanishing atmidpoints
of boundary sides on �D are contained in

S1,cr
D (Th) = {vh ∈ S1,cr (Th) : vh(xS) = 0 for allS ∈ ShwithS ⊂ �D}.

A basis of the space S1,cr (Th) is given by the functions ϕS ∈ S1,cr (Th), S ∈ Sh ,
satisfying the Kronecker property

ϕS(xS′) = δS,S′

for all S, S′ ∈ Sh ; a basis for the subspace S1,cr
D (Th) is obtained by eliminating

those functions ϕS that correspond to sides S ⊂ �D . The function ϕS vanishes on

123



Orthogonality relations of Crouzeix–Raviart... 131

elements that do not contain the side S and is continuous with value 1 along S. A
quasi-interpolation operator is for v ∈ W 1,1(�) defined via

Icrv =
∑
S∈Sh

vSϕS, vS = |S|−1
∫
S
v ds,

We have that Icr preserves averages of gradients, i.e.,

∇hIcrv = �h∇v,

which follows from an integration by parts, cf. [2,5].

2.3 Raviart–Thomas finite elements

The Raviart–Thomas finite element space of [13] is defined as

RT 0(Th) = {yh ∈H(div;�) : yh |T (x) = aT + bT (x − xT ),

aT ∈ R
d , bT ∈ R for all T ∈ Th},

where H(div;�) is the set of L2 vector fields whose distributional divergence belongs
to L2(�). Vector fields inRT 0(Th) have continuous constant normal components on
element sides. The subset of vector fields with vanishing normal component on the
Neumann boundary �N is defined as

RT 0
N (Th) = {yh ∈ RT 0(Th) : yh · n = 0 on �N },

where n is the outer unit normal on ∂�. A basis of the space RT 0(Th) is given by
vector fields ψS associated with sides S ∈ Sh ; the subspace RT 0

N (Th) is the span of
functions ψS with S 
⊂ �N . Each vector field ψS is supported on adjacent elements
T± ∈ Th with

ψS(x) = ± |S|
d|T±| (zS,T± − x) (3)

for x ∈ T± with opposite vertex zS,T± to S ⊂ ∂T±. We have the Kronecker property

ψS|S′ · nS′ = δS,S′

for all sides S′ with unit normal vector nS′ , if S′ = S we assume that nS points from
T− into T+. A quasi-interpolation operator is for vector fields z ∈ W 1,1(�;Rd) given
by

IRT z =
∑
S∈Sh

zSψS, zS = |S|−1
∫
S
z · nS ds.
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For the operator IRT we have the projection property

div IRT z = �h div z,

which is a consequence of an integration by parts, cf. [2,5]. This identity implies that
the divergence operator defines a surjection fromRT 0

N (Th) intoL0(Th), provided that
constants are eliminated from L0(Th) if �D = ∅.

2.4 Integration by parts

Anelementwise integrationbyparts implies that forvh ∈ S1,cr (Th) and yh ∈ RT 0(Th)
we have the integration-by-parts formula

∫
�

∇hvh · yh dx +
∫

�

vh div yh dx =
∫

∂�

vh yh · n ds. (4)

Here we used that yh has continuous constant normal components on inner element
sides and that jumps of vh have vanishing integral mean. If an elementwise constant
vector field wh ∈ L0(Th)d satisfies

∫
�

wh · ∇hvh dx = 0

for all vh ∈ S1,cr
D (Th) then by choosing vh = ϕS for S ∈ Sh \ �D one finds that its

normal components are continuous on inner element sides and vanish on the �N , so
that wh ∈ RT 0

N (Th). We thus have the decomposition

L0(Th)d = ker(div |RT 0
N (Th)) ⊕ ∇hS1,cr

D (Th),

where we used that ker(div |RT 0
N (Th)) = L0(Th)d ∩ RT 0

N (Th).

3 Orthogonality relations

The following identities and in particular their proofs and corollaries are the main
contributions of this article.

Theorem 3.1 (Orthogonality relations)Within the sets of elementwise constant vector
fields and functions L0(Th)� equipped with the L2 inner product we have

(
�hRT 0

N (Th)
)⊥ = ∇h

(
ker�h |S1,cr

D (Th)
)
,

div
(
ker�h |RT 0

N (Th)
) = (

�hS1,cr
D (Th)

)⊥
.
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Proof (i) The integration-by-parts formula (4) implies

(∇hvh,�h yh) = −(vh, div yh) = −(�hvh, div yh) = 0

if �hvh = 0 and hence �hRT 0
N (Th) ⊂ [∇h

(
ker�h |S1,cr

D (Th)
)]⊥. To prove the con-

verse inclusion let yh ∈ L0(Th)d be orthogonal to ∇h
(
ker�h |S1,cr

D (Th)
)
. We show that

there exists ỹh ∈ RT 0
N (Th)with�h ỹh = yh . For this, let Zh = (

ker�h |S1,cr
D (Th)

)⊥ ⊂
S1,cr
D (Th) and rh ∈ Zh be the uniquely defined function with

(�hrh,�hvh) = (yh,∇hvh)

for all vh ∈ Zh . The identity holds for all vh ∈ S1,cr
D (Th) since yh is orthogonal to

discrete gradients of functions vh ∈ S1,cr
D (Th) with �hvh = 0. In particular, �hrh

is orthogonal to constant functions if �D = ∅. We choose zh ∈ RT 0
N (Th) with

− div zh = �hrh and verify that

(yh − zh,∇hvh) = (�hrh,�hvh) + (div zh, vh) = 0

for all vh ∈ S1,cr
D (Th). We next define ỹh |T = yh |T + d−1(x − xT ) div zh |T for all

T ∈ Th and note that

(ỹh − zh,∇hvh) = (yh − zh,∇hvh) = 0

for all vh ∈ S1,cr
D (Th). Since ỹh − zh is elementwise constant, it follows that ỹh − zh ∈

RT 0
N (Th) and in particular ỹh ∈ RT 0

N (Th). By definition of ỹh we have �h ỹh = yh
which proves the first asserted identity.
(ii) For the second statement we first note that if �h yh = 0 for yh ∈ RT 0

N (Th) then

(�hvh, div yh) = (vh, div yh) = −(∇hvh,�h yh) = 0

for all vh ∈ S1,cr
D (Th) and hence div yh ∈ (

�hS1,cr
D (Th)

)⊥. It remains to show that

(
�hS1,cr

D (Th)
)⊥ ⊂ div

(
ker�h |RT 0

N (Th)
)
.

Ifwh ∈ L0(Th) is orthogonal to�hS1,cr
D (Th)we choose zh ∈ RT 0

N (Th)with div zh =
wh and note that

(�hzh,∇hvh) = (zh,∇hvh) = −(wh, vh) = −(wh,�hvh) = 0

for all vh ∈ S1,cr
D (Th). This implies that �hzh ∈ RT 0

N (Th) and hence also yh =
zh − �hzh ∈ RT 0

N (Th). Since �h yh = 0 and div yh = wh we deduce the second
identity. ��
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134 S. Bartels, Z. Wang

An implication is a surjectivity property of the mapping �h : S1,cr
D (Th) → L0(Th)

if �D 
= ∂�.

Corollary 3.2 (Surjectivity) If �D 
= ∂� then we have

�hS1,cr
D (Th) = L0(Th).

Otherwise, the subspace �hS1,cr
D (Th) ⊂ L0(Th) has codimension at most one.

Proof (i) From Theorem 3.1 we deduce that the asserted identity holds if and only if
div ker�h |RT 0

N (Th) = {0}. Since

ker�h |RT 0
N (Th) = {yh ∈ RT 0

N (Th) : yh |T = bT (x − xT ) f.a. T ∈ Th},

the latter condition is equivalent to ker�h |RT 0
N (Th) = {0}. Let T ∈ Th such that a

side S0 ⊂ ∂T belongs to �N , i.e., we have yh |T (x) = ∑d
j=0 α j (x − zS j ), where zS j

is the vertex of T opposite to the side S j ⊂ ∂T , and with α0 = 0. If yh(xT ) = 0
then it follows that α j = 0 for j = 1, . . . , d since the vectors xT − zS j are linearly
independent. Starting from this element we may successively consider neighboring
elements to deduce that yh |T = 0 for all T ∈ Th .
(ii) If �D = ∂� we may argue as in (i) by removing one side S ∈ Sh ∩ �D from
�D , define �D

′ = �D \ S, and using the larger space S1,cr
D′ (Th). We then have

�hS1,cr
D (Th) ⊂ �hS1,cr

D′ (Th) = L0(Th). The difference is trivial if and only if �hϕS

belongs to �hS1,cr
D′ (Th). ��

The following examples show that both equality or strict inequality can occur if
�D = ∂�.

Examples 3.3 (i) Let L ∈ {1, 2}, Th = {T1, . . . , TL}, � = T1 ∪ · · · ∪ TL , �D = ∂�.
Then �hS1,cr

D (Th) � R
L−1 while L0(Th) � R

L .
(ii) Let Th = {T1, T2, T3} be a triangulation consisting of the subtriangles obtained by
connecting the vertices of amacro triangle T with itsmidpoint xT . Let� = T1∪T2∪T3
and �D = ∂�. We then have �hS1,cr

D (Th) = L0(Th).
The second implication concerns discrete versions of convex duality relations. We

let

φ∗(s) = sup
r∈R�

s · r − φ(r)

be the convex conjugate of a given convex function φ ∈ C(Rd).

Corollary 3.4 (Convex conjugation) Let uh ∈ �hS1,cr
D (Th) and φ ∈ C(Rd) be convex.

We then have

inf
{ ∫

�

φ(∇huh) dx : uh ∈ S1,cr
D (Th), �huh = uh

}

≥ sup
{

−
∫

�

φ∗(�hzh) dx − (uh, div zh) : zh ∈ RT 0
N (Th)

}
.
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If φ ∈ C1(Rd) and the infimum is finite then equality holds.

Proof An integration by parts and Fenchel’s inequality show that

− (�huh, div zh) = (∇huh,�hzh) ≤ φ(∇huh) + φ∗(�hzh). (5)

This implies that the left-hand side is an upper bound for the right-hand side. If φ is
differentiable uh ∈ S1,cr

D (Th) is optimal in the infimum then we have the optimality
condition

∫
�

φ′(∇huh) · ∇hvh dx = 0

for all vh ∈ S1,cr
D (Th) with �hvh = 0. Theorem 3.1 yields that φ′(∇huh) = �hzh for

some zh ∈ RT 0
N (Th). This identity implies equality in (5) and hence

∫
�

φ(∇huh) dx = −
∫

�

φ∗(�hzh) dx − (uh, div zh)

so that the asserted equality follows. ��

Remark 3.5 For nondifferentiable functions φ, the strong duality relation can be estab-
lished if there exists a sequence of continuously differentiable functions φε such that
the corresponding discrete primal and dual problems Ih,ε and Dh,ε are �-convergent
to Ih and Dh as ε → 0, respectively. An example is the approximation of φ(s) = |s|
by functions φε(s) = min{|s| − ε/2, |s|2/(2ε)} for ε > 0.

With the conjugation formula we obtain a canonical definition of a discrete dual
variational problem.

Corollary 3.6 (Discrete duality) Assume that φ ∈ C(Rd) is convex andψh : �×R →
R ∪ {+∞} is elementwise constant in the first argument and convex with respect to
the second argument. For uh ∈ S1,cr

D (Th) and zh ∈ RT 0
N (Th) define

Ih(uh) =
∫

�

φ(∇huh) + ψh(x,�huh) dx,

Dh(zh) = −
∫

�

φ∗(�hzh) + ψ∗
h (x, div zh) dx .

We then have

inf
uh∈S1,cr

D (Th)
Ih(uh) ≥ sup

zh∈RT 0
N (Th)

Dh(zh).
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Proof Using the result of Corollary 3.4 and exchanging the order of the extrema we
find that

inf
uh

Ih(uh) ≥ inf
uh

sup
zh

−
∫

�

φ∗(�hzh) dx − (�huh, div zh) +
∫

�

ψh(x,�huh) dx

≥ sup
zh

−
∫

�

φ∗(�hzh) dx + inf
uh

−(�huh, div zh) +
∫

�

ψh(x,�huh) dx

= sup
zh

−
∫

�

φ∗(�hzh) dx − sup
uh

(�huh, div zh) −
∫

�

ψh(x,�huh) dx

≥ sup
zh

−
∫

�

φ∗(�hzh) dx −
∫

�

ψ∗
h (x,�huh) dx

= sup
zh

Dh(zh).

This proves the asserted inequality. ��
The fourth implication concerns the postprocessing of solutions of the primal prob-

lem to obtain a solution of the dual problem. This also implies a strong discrete duality
relation.

Corollary 3.7 (Strong discrete duality) In addition to the conditions of Corollary 3.6
assume that φ ∈ C1(Rd) and ψh : � × R

d → R is finite and differentiable with
respect to the second argument. If uh ∈ S1,cr

D (Th) is minimal for Ih then the vector
field

zh = φ′(∇huh) + ψ ′
h(x,�huh)d

−1(1 − �h) id

is maximal for Dh with Ih(uh) = Dh(zh).

Proof The optimal uh ∈ S1,cr
D (Th) solves the optimality condition

∫
�

φ′(∇huh) · ∇hvh + ψ ′
h(·,�huh)�hvh dx = 0 (6)

for all vh ∈ S1,cr
D (Th). By restricting to functions satisfying �hvh = 0 we deduce

with Theorem 3.1 that there exists zh ∈ RT 0
N (Th) with

�hzh = φ′(∇huh).

The optimality condition (6) implies that div zh = ψ ′
h(·,�huh). Hence, zh satisfies

the asserted identity. With the resulting Fenchel identities

∇huh · �hzh = φ(∇huh) + φ∗(�hzh),

�huh · div zh = ψh(·,�huh) + ψ∗
h (·, div zh),
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and by choosing vh = uh in (6) we find that

Ih(uh) = Dh(zh)

which in view of the weak duality relation infuh Ih(uh) ≥ supzh Dh(zh) implies that
zh is optimal. ��
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Appendix A: Explicit construction

For completeness we provide a derivation of (1) based on an explicit construction of
a discrete scalar potential. We say that �D is connnected if its relative interior has at
most one connectivity component.

Proposition A.1 (Crouzeix–Raviart potential) Assume that �D = ∅ or d = 2 and
�D is connected. A vector field wh ∈ L0(Th)d satisfies wh = ∇hvh for a function
vh ∈ S1,cr

D (Th) if and only if

∫
�

wh · yh dx = 0

for all yh ∈ RT 0
N (Th) with div yh = 0.

Proof If wh = ∇hvh then the orthogonality relation follows from the integration-by-
parts formula (4). Conversely, if wh is orthogonal to vector fields yh ∈ RT 0

N (Th) with
vanishing divergence then we can construct a function vh by integrating wh along a
path connecting midpoints of sides, i.e., choosing a side S0 at which some value is
assigned to vh , e.g., vh(xS0) = 0. If �D 
= ∅ then we choose S0 ⊂ �D . The values at
other sides are obtained via

vh(xS) = vh(xS0) +
J∑

j=1

wh |Tj · (xS j − xS j−1),

where (Tj ) j=1,...,J is a chain of (unique) elements connecting S0 ⊂ T1 with S = SJ ⊂
TJ via the shared sides S1, . . . , SJ−1, i.e., Tj ∩ Tj+1 = S j for j = 1, . . . , J − 1. To
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see that this is well defined it suffices to show that for every closed path with SJ = S0
the sum equals zero. To verify this we define the Raviart–Thomas vector field

yh =
J∑

j=1

|S j |−1ψS j ,

where we assume that the plus sign in

ψS(x) = ± |S|
d|T±| (zS,T± − x)

occurs for ψS j on Tj+1 and the minus sign on Tj . For the element Tj we then have
that

∫
Tj

wh · yh dx = wh |Tj ·
∫
Tj

(|S j−1|−1ψS j−1 + |S j |−1ψS j

)
dx

= wh |Tj · |Tj |
(|S j−1|−1ψS j−1(xTj ) + |S j |−1ψS j (xTj )

)
= wh |Tj · d−1((zS j−1) − xTj ) − (zS j − xTj )

)
= wh |Tj · (xS j − xS j−1),

where we used that (zS,T − xT ) = d(xT − xS) for S ⊂ ∂T . Moreover, we have

div yh |Tj = div
(|S j−1|−1ψS j−1 + |S j |−1ψS j

) = 0.

This implies that div yh = 0 and hence by the assumed orthogonality

J∑
j=1

wh |Tj · (xS j − xS j−1) =
J∑

j=1

∫
Tj

wh · yh dx =
∫

�

wh · yh dx = 0

for every closed path of elements. Hence, the function vh is well defined with ∇hvh =
wh . If d = 2 and �D is connected then by letting ϕz ∈ C(�) be an elementwise affine
nodal basis function associated with an inner node z ∈ Nh ∩ �D , i.e., z = S1 ∩ S2
for S1, S2 ∈ Sh ∩ �D , and choosing yh = (∇ϕz)

⊥ ∈ RT 0
N (Th), where (a1, a2)⊥ =

(−a2, a1), it follows that

0 =
∫

�

∇hvh · (∇ϕz)
⊥ dx =

∫
S1∪S2

vh(∇ϕz)
⊥ · n ds

= ±(
vh(xS2) − vh(xS1)

)
,

i.e., that vh is constant on �D . Here we used that (∇ϕz)
⊥ ·n is the tangential derivative

on �D given by ±1/|S j | for j = 1, 2. ��
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To deduce (1) from the proposition we argue as in [10] and let wh ∈ L0(Th)d be
orthogonal to �hRT 0

N (Th) and hence also toRT 0
N (Th). Proposition A.1 implies that

wh = ∇hvh and it remains to show that vh has the same value at all element midpoints.
This follows from

0 =
∫

�

∇hvh · ψS dx = −
∫

�

vh divψS dx = |S|(vh(xT+) − vh(xT−)
)
.

Hence, wh ∈ ∇h
(
ker�h |S1,cr

D (Th)
)
. Note that a nontrivial vh only exists on triangula-

tions that can be partitioned by two colors, e.g., consisting of halved squares with the
same diagonal. Conversely, if vh ∈ S1,cr

D (Th) with �hvh = 0 then the integration-
by-parts formula (4) yields that ∇hvh is orthogonal to RT 0

N (Th) and in particular to
�hRT 0

N (Th).
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