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Abstract

This work focuses on the study of partial differential equation (PDE) based basis function for Dis-
continuous Galerkin methods to solve numerically wave-related boundary value problems with variable
coefficients. To tackle problems with constant coefficients, wave-based methods have been widely studied
in the literature: they rely on the concept of Trefftz functions, i.e. local solutions to the governing PDE,
using oscillating basis functions rather than polynomial functions to represent the numerical solution.
Generalized Plane Waves (GPWs) are an alternative developed to tackle problems with variable coeffi-
cients, in which case Trefftz functions are not available. In a similar way, they incorporate information
on the PDE, however they are only approximate Trefftz functions since they don’t solve the governing
PDE exactly, but only an approximated PDE. Considering a new set of PDEs beyond the Helmholtz
equation, we propose to set a roadmap for the construction and study of local interpolation properties
of GPWs. Identifying carefully the various steps of the process, we provide an algorithm to summarize
the construction of these functions, and establish necessary conditions to obtain high order interpolation
properties of the corresponding basis.

1 Introduction

Trefftz methods are Galerkin type of methods that rely on function spaces of local solutions to the governing
partial differential equations (PDEs). They were initially introduced in [34] 26], and the original idea was
to use trial functions which satisfy the governing PDE to derive error bounds. They have been widely
used in the engineering community [18] since the 60’s, for instance for Laplace’s equation [29], to the
biharmonic equation [32] and to elasticity [21]. Later the general idea of taking advantage of analytical
knowledge about the problem to build a good approximation space was used to develop numerical methods:
in the presence of corner and interface singularities [9, B3], boundary layers, rough coefficients, elastic
interactions [28, I 27, 2], wave propagation [I, [§]. In the context of boundary value problems (BVPs)
for time-harmonic wave propagation, several methods have been proposed following the idea of functions
that solves the governing PDE, [22], relying on incorporating oscillating functions in the function spaces
to derive and discretize a weak formulation. Wave-based numerical methods have received attention from
several research groups around the world, from the theoretical [22] and computational [12] point of view,
and the pollution effect of plane wave Discontinuous Galerkin (DG) methods was studied in [I0]. Such
methods have also been implemented in industry codesﬂ for acoustic applications. The use of Plane Wave
(PW) basis functions has been the most popular choice, while an attempt to use Bessel functions was
reported in [24]. In [23], the authors present an interesting comparison of performance between high order
polynomial and wave-based methods. More recently, application to space-time problems have been studied
in [31] 3, 20, 30, [19).

In this context, numerical methods rely on discretizing a weak formulation via a set of exact solutions
of the governing PDE. When no exact solutions to the governing PDE are available, there is no natural
choice of basis functions to discretize the weak formulation. This is in particular the case for variable coeffi-
cient problems. In order to take advantage of Trefftz-type methods for problems with variable coefficients,
Generalized Plane Waves (GPWs) were introduced in [I5], as basis functions that are local approximate
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solutions - rather than exact solutions - to the governing PDE. GPWs were designed adding higher order
terms in the phase of classical PWs, choosing these higher order terms to ensure the desired approximation
of the governing PDE. In [I3], the construction and interpolation properties of GPWs were studied for the
Helmholtz equation

— Au+ B(z,y))u =0, (1)

with a particular interest for the case of a sign-changing coefficient 3, including propagating solutions (5 < 0),
evanescent solutions (5 > 0), smooth transition between them (5 = 0) called cut-offs in the field of plasma
waves. The interpolation properties of a set V spanned by resulting basis functions, namely ||(I — Py)ul|
where Py is the orthogonal projector on V while u is the solution to the original problem, play a crucial role
in the error estimation of the corresponding numerical method [4]. For this same equation the error analysis
of a modified Trefftz method discretized with GPWs was presented in [16]. In [I7], Generalized Plane Waves
(GPWs) were used for the numerical simulation of mode conversion modeled by the following equation:

_ - 1
(07 + (d + d)0,0y + |d|*0;) F + (d — d)xd, F — (1 + m + z(z + y)> F=0. (2)

In the present work, we answer questions related to extending the work on GPW developed in [13] - the
construction of GPWs on the one hand, and their interpolation properties on the other hand - from the
Helmholtz operator —A + £ to a wide range of partial differential operators. A construction process valid
for some operators of order two or higher is presented, while a proof of interpolation properties is limited to
some operators of order two. We propose a road map to identify crucial steps in our work:

1. Construction of GPWs ¢ such that Ly = 0

Choose an ansatz for ¢ (Section [2)).

Identify the corresponding Ng,s degrees of freedom and N.g, constraints (Subsection .
Choose the number of degrees of freedom adequately Ngof > Negn (Subsection .

Study the structure of the resulting system and identify Ny, ¢ — Negn additional constraints (Sub-

sections and .

(e) Compute the remaining N4y, degrees of freedom at minimal computational cost (Subsection [2.4)).

(a)
(b)
()
(d)

2. Interpolation properties

(a) Study the properties of the remaining N4, degrees of freedom with respect to the Ngor — Negn
additional constraints

(b) Identify a simple reference case depending only on the Ngof — Negr, additional constraints (Section
3)-

(c¢) Study the interpolation properties of this reference case (Subsection 4.1).

(d) Relate the general case to the reference case (Subsections and [3.2]).

(e) Prove the interpolation properties of the GPWs from those of the reference case (Subsection 4.2)).

We will consider linear partial differential operators with variable coefficients, defined as follows.

Definition 1. A linear partial differential operator of order M > 2, in two dimensions, with a given set of
complex-valued coefficients o = {ag —, (k,£) € N2,0 < k < € < M} will be denoted hereafter as

M /L
LM,a = Z Z Ok 0—k (x’ y) a];ag_k
(=0 k=0



Our goal is to build a basis of functions well suited to approximate locally any solution u to a given
homogeneous variable-coefficient partial differential equation

: 2
Lar,au =0 on a domain 2 C R7,

where by locally we mean piecewise on a mesh T, of 2. Such interpolation properties are a building block for
the convergence proof of Galerkin methods. For a constant coefficient operator, it is natural to use the same
basis on each element K € Tj,. However, with variable coefficients, it cannot be optimal to expect a single
basis to have good approximation properties on the whole domain © C R?. For instance, for the Helmholtz
equation with a sign-changing coefficient, it can not be optimal to look for a single basis that would give a
good approximation of solutions both in the propagating region and in the evanescent region. Therefore it
is natural to think of local bases defined on each K € Tj: with GPWs we focus on local properties around
a given point (zg,10) € R? rather than on a given domain Q. A simple idea would then be freezing the
coefficients of the operator, that is to say studying, instead of £/, the constant coefficient operator £ 4
with constant coefficients & = {1 (z0,%0),0 < k+1 < M}. However, as observed in [I3] 14], this leads to
low order approximation properties, while we are interested in high order approximation properties. This
is why new functions are needed to handle variable coefficients. This work will focus on two aspects: the
construction and the interpolation properties of GPWs.

We follow the GPW design proposed in [I3] [I5]. Retaining the oscillating feature while aiming for higher
order approximation, GPW were designed with Higher Order Terms (HOT') in the phase function of a plane
wave. These higher order terms are to be defined to ensure that a GPW function ¢ is an approximate
solution to the PDE:

{ ¢(z,y) = expir(cos Oz + sin Oy) — { o(z,y) = exp(ir(cosbz + sinfy) + HOT) (3)

[—A—KJ2] gb:O LM,OAO%O

In Section the construction of a GPW o(z,y) = e’ (#:9) will be described in detail, then a precise definition
of GPW will be provided under the following hypothesis:

Hypothesis 1. Consider a given point (zg,y0) € R?, a given approzimation parameter ¢ € N, ¢ > 1, a
given M € N, M > 2, and a partial differential operator L1 defined by a given set of compler-valued
coefficients o = {oy 1,0 < k +1 < M}, defined in a neighborhood of (xo,v0), satisfying

o ay is C17L at (w0, y0) for all (k,1) such that 0 <k+1< M,
o ano(zo,y0) # 0.
This construction is equivalent to the construction of the bi-variate polynomial
P(zy)= > Xjlz—=0)'(y— o),
0<i+j<dP

and is performed by choosing the degree dP, and providing an explicit formula for the set of complex
coefficients {Aij}{(i j)en2,0<itj<ap}, in order for ¢ to satisfy Lyap(z,y) = O ([[(%,y) — (o, y0)[|?). An
algorithm to construct a GPW is provided. In Section [3| properties of the \;js are studied, while the
interpolation properties of the corresponding set of basis functions are studied for the case M = 2 in Section
under the following hypothesis:

Hypothesis 2. Under Hypothesz’s we consider only operators Ly such that M is even and the terms of
order M satisfy

M

M
Y arar k(@0 y0) XYM = (X3P 4+ XY + Y72
k=0



or some complex numbers (y1,Y2,Y3) such that there exists (1, o) € C=, pqpo , a non-singular matrix
pl b V1,72, h that th sts (1, (1 C?, pp 0 ingul tri.

A € C**2 satisfying T = A'DA where T’ = ( noon2/ 2) and D = (’” /f) , and therefore
2

72/2 73 0
M M
> k@0, y0) XYM F = (11 (A X + A1) + pa(Ann X + AgY)?) .
k=0
For instance, these matrices are I' = D = Id for Ly := —A — k?(2,y) or Lp := ALy, and [ = D =

c(zo,yo)Id for Lo = —V-(c(z,y)V)—k2(z,y). Note that if I is real, this is simply saying that its eigenvalues
are non-zero. Finally, corresponding numerical results are then provided, for various operators £ o of order
M = 2 in Section [l

Our previous work was limited to the Helmholtz equation for propagating and evanescent regions,
transition between the two, absorbing regions, as well as caustics. The interpolation properties presented
here cover more general second order equations, in particular equations that can be written as

V- (AVu) +d - Vu + k*mu = 0, (4)

with variable coefficients A matrix-valued, real and symmetric with non-zero eigenvalues, d vector-valued
and m scalar-valued. It includes for instance

e Helmholtz equation with absorption corresponding to A = I with ®(m) > 0 and I(m) # 0 ;

e the mild-slop equation [7] modeling the amplitude of the free-surface water waves corresponding to
m = c¢pcy being the product of ¢, the phase speed of the waves and ¢, the group speed of the waves
with A = mld ;

e if i is the permeability and e the permittivity, then the transverse-magnetic mode of Maxwell’s equa-
tions for A = %I and m = €, while the transverse-electric mode of Maxwell’s equations for A = %I
and m = p.

Throughout this article, we will denote by N the set of non-negative integers, by N* the set of positive
integers, by RT = [0;+00) the set of non-negative real numbers, and by C|[z1, 22] the space of complex
polynomials with respect to the two variables z; and zo. As the first part of this work is dedicated to finding
the coefficients A;;, we will reserve the word unknown to refer to the \; js. The length of the multi-index
(i,7) € N? of an unknown \;;, |(i,5)| = + j, will play a crucial role in what follows.

2 Construction of a GPW

The task of constructing a GPW is attached to a homogeneous PDE, it is not global on R? but it is local as
it is expressed in terms of a Taylor expansion. It consists in finding a polynomial P € C[z,y] such that the
corresponding GPW, namely ¢ := e, is locally an approximate solution to the PDE.

Consider M = 2, 5 = {B0,0,B801 = Bi10 = b1q = 0,802 = —1, 520 = —1}, and the corresponding the
operator Ly g = —97 — 92 + fBo,0(x). Then for any polynomial P € Clz, y]:

Lo gel @) = (—92P — (0,P)? — 02P — (8,P) + Boo(z,y)) eF'™¥),
so the construction of an exact solution to the PDE would be equivalent to the following problem:
Find P € C[z,y] such that 92P(x,y) + (0, P)*(z,y) + 85P(:n,y) + (8yP)2(x, y) = Boo(x,y). (5)
Consider then the following examples.

o If By o(z,y) is constant, then it is straightforward to find a polynomial of degree one satisfying Problem
; Bo,0 being negative this would correspond to a classical plane wave.
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e If By,0(x,y) = z, then there is no solution to (F]), since the total degree of 2P + (9, P)* +8§P+ (0,P)?
is always even.

e If By o(z,y) is not a polynomial function, it is also straightforward to see that no polynomial P can

satisfy Problem .

From these trivial examples we see that in general there is no such function, ¢(z,y) = e’ (@) P being a
complex polynomial, solution to a variable coefficient partial differential equation exactly. It could seem that
the restriction for P to be a polynomial is very strong. However since we are interested in approximation and
smooth coefficients, rather than looking for a more general phase function we restrict the identity Lo = 0
on (2 into an approximation on a neighborhood of (xg,y9) € R? in the following sense. We replace the too
restrictive cancellation of £ M@eP (#.9) by the cancellation of the lowest terms of its Taylor expansion around
(z0,y0). So this section is dedicated to the construction of a polynomial P € C|z,y|, under Hypothesis
to ensure that the following local approximation property

Larae’ @Y = O(||(z — 20,y — w0)||9) (6)

is satisfied. The parameter ¢ will denote throughout this work the order of approximation of the equation
to which the GPW is designed. In summary, the construction is performed:

e for a partial differential operator £,/ of order M defined by a set of smooth coefficients a,
e at a point (zg,y0) € R,

e at order g € N*,

e to ensure that £y ,e”@Y) = O(|(z — x0,y — y0)|9).

Even though the construction of a GPW will involve a non-linear system we propose to take advantage
of the structure of this system to construct a solution via an explicit formula. In this way, even though a
GPW ¢ := e is a PDE-based function, the polynomial P can be constructed in practice from this formula,
and therefore the function can be constructed without solving numerically any non-linear - or even linear -
system. This remark is of great interest with respect to the use of such functions in a Discontinuous Galerkin
method to solve numerically boundary value problems.

In order to illustrate the general formulas that will appear in this section, we will use the specific case
£o~ where v = {70,0,71,0,7%,1,72,0 = —1,71,1,7%,2}, for which we can write explicitly many formulas is a
compact form. In order to simplify certain expressions that will follow we propose the following definition.

Definition 2. Assume (i,4) € N? and (x0,y0) € R?. We define the linear partial differential operator D7)
by

L 5ig

(i.9) . i+j
D1 fed '_)z‘!j!“"y'

A precise definition of GPW will be provided at the end of this section.

2.1 From the Taylor expansion to a non-linear system

We are seeking a polynomial P(z,y) = Z ij(x — z0)'(y — yo)? satisfying the Taylor expansion @
0<i+j<dP

Defining such a polynomial is equivalent to defining the set {)\;;; (4,7) € N2,0 < i+ j < dP}, and therefore

we will refer to the \;;s as the unknowns throughout this construction process. The goal of this subsection

is to identify the set of equations to be satisfied by these unknowns to ensure that P satisfies the Taylor

expansion @, and in particular to choose the degree of P so as to guarantee the presence of linear terms in

each equation of the system.



According to the Faa di Bruno formula, the action of the partial differential operator £, on a function
o(z,y) = e’@Y) is given by

LM,aeP(x’y) —eP (@) (Oéo,o(l“, Y)

M ¢
—i—ZZozkgkxy ]{?'E k‘ Z
=1 <u<

k=0

£y )

<ts=1ps((k

where the linear order < on N2 is defined by

Loy + pe <vi+; or
v jl/ e N2 27 _< V<:> ’

and where ps((i,7), 1) is equal to
(kl, T 7ks; (il,jl)v ) (isajs)) : kl > 070 = (ilvjl) <= (i8>j8)7
M k=Y ki =1,y ki = j}.
=1 =1 =1
For the operator £, the Faa di Bruno formula becomes
Lo el =eP ( — 02P + 71,1020, P + 70,20, P — (0:P)* + 71,10, PO, P + 702(9, P)*

+71,00: P + 70,10, P + ’Yo,o) .
In order to single out the terms depending on P in the right hand side, this leads to the following
definition.

Definition 3. Consider a given M € N, M > 2, a given set of complex-valued functions o = {a;,0 <

kE+1 < M}, and the corresponding partial differential operator Lyr. We define the partial differential
operator LJ\A/[a associated to Lyr o as

M L s
=> > K=k ager Y Z > 1;[ %( Zm’jm)(‘))km,

(=1 k=0 1<pu<l s=1 py((kL—k),u) m

or equivalently, since the exponential of a bounded quantity is bounded away from zero:

L ef
Aa:feeMHMe%—ao,o.

For the operator £, this gives
L5 P = —02P + 71,10:0,P + 70,200P — (0. P)* + 71,10: POy P + 70.2(0y P)? + 71,00 P + 70,19 P.

Since, for any polynomial P, the function e’ is locally bounded, and since £ Male P | = (Lﬁ o€ Py 0) P
then for a polynomial P to satisfy the approximation property @ it is sufficient to satisfy

LiraP(,y) = —ago(z,y) + O(|(z — 20,y — y0)|%). (7)



Therefore, the problem to be solved is now:

Find P € Clz,y], s.t. V(I,J) e N2, 0< I+ J < g, @UJ)LfLaP(xO,yO) = DI g o (20, o). (8)

In order to define a polynomial P(z,y) = Z Nij (T —20)"(y —yo)?, the degree dP of the polynomial
0<i+j<dP
determines the number of unknowns: there are Ng,y = %2(6”%2) unknowns to be defined, namely
the {)\i,j}{(i’j)eNpSi_‘_jgdp. In order to design a polynomial P satisfying Equation , the parameter ¢
determines the number of equations to be solved: there are Ny, = % terms to be canceled from the
Taylor expansion. The first step toward the construction of a GPW is to define the value of dP for a given
value of q.

At this point it is clear that if dP < g—1, then the resulting system is over-determined. Our choice for the
polynomial degree dP relies on a careful examination of the linear terms in Lﬁ . We can already notice
that, under Hypothesis|l}, in Lﬁ o P there is at least one non-zero linear term, namely aaz,0(zo, Y0)OM P, and
there is at least one non-zero non-linear term, namely apro(2o, y0)(9,P)*. This non-linear term corresponds
to the following parameters from the Faa di Bruno formula: = M, s =1, (ki, (il,jl)) = (M, (1,0)). The
linear terms can only correspond to s = 1, u = 1 and py((k, ¢ — k),1) = {( (k,¢ — k))}, see Definition
We can then split Lﬁ’a into its linear and non-linear parts.

Definition 4. Consider a given M € N, M > 2, a given set of complez-valued functions o = {cy;,0 <
k+1 < M}, and the corresponding partial differential operator L. The linear part of the partial differential
operator LMa is defined by L]Lma =LMa — ao,oagag, or equivalently

M
=3 ) o0kl

(=1 k=0

and its non-linear part L%ﬂ = LJ?/[,& — L%/[,a can equivalently be defined by

ZZk'€ B)lager Z > H - ,( Zmajm)(-)ym.

(=1 k=0 2<pu<l s=1 py((kb—k),p) m=1

For the operator £, this gives respectively

{ EéﬁP = —02P + 71100, P + 70,23513 +71,00: P + 70,10, P,
L5 P = —(0:P)? + 110, PO, P + 70,2(9, P)*.

Consider the (I, J) coefficients of the Taylor expansion of L%/I’QP for (I,J)eN?and 0< T+ J < g

M

£
D(LJ) [LLM,(X ] x07y0 Z@UJ |:Oék7g,k8a’:a5_kp] (eTanO),
{=1 k=0

so that in order to isolate the derivatives of highest order, i.e. of order M + I + J, we can write
DY) [L&QP] (%0,y0)
M

1 —
= Fivil Z ag,M—k(%o, yo)aé?-‘rlaéw k+JP(

a1
+ZZZ Z'j'D(I W=Dy, g (o, yo)OE DN P, yo) )
) J

7
+ ZZ 2'519 (1,7~ ])Oékﬁ k(ﬂT?o,yo)@kJrZaZ F+I P (20, yo).
=1 k=073=0 j=0

anyO)

:??‘

s ?



J axis j axis
g—1+n g—1+
q—1 q—1
X
[ axis 1 axis
qg—1 qg—1

Figure 1: Representation of the indices involved in the nonlinear system , for ¢ = 6 and n = 4. Each
cross in the (I, J) plane corresponds to the equation (I, .J) in System (Left panel), while each cross in
the (4, j) plane corresponds to the unknown \;; (Right panel).

Back to Problem , the (I, J) terms @ a priori depend on the unknowns {); j, (4,7) € N?,0 <i+j < dP}.
Since

)\i,j ifi+j <dP,

0 otherwise,

V(i, ) € N2, DI P(zg,y0) = {

then under Hypothesis [I| any (I,J) term in System has at least one non-zero linear term, as long as

I+ J < dP— M, namely (M;!rl)!a M,0(Z0,Y0)Ani41,7, while it does not necessarily have any linear term as
soon as I + J > dP — M. Avoiding equations with no linear terms is natural, and it will be crucial for the
construction process described hereafter.

Choosing the polynomial degree to be dP = M + ¢ — 1 therefore guarantees the existence of at least one
linear term in every equation of System . Therefore, from now on the polynomial P will be of degree
dP = M + q — 1 and the new problem to be solved is

Find {\;, (i,j) € N},0 <i+j < M + ¢ — 1} such that
M+q—1 M+q—1—i

P(‘T’y) = Z Z )‘1,](1‘ - xO)Z(y - yO)j € (C[‘/L‘a y]a satisfies (10)
=0 7=0

V(I,J) e N0 < T+ J < q,DUDLey [ P(xo,y0) = =D ag oo, y0).

_ (M+q¢)(M+g+1)
= 2

As a consequence the number of unknowns is N, ¢ , and the system is under-determined :

Naof — Negn = Mq + w See Figure|l| for an illustration of the equation and unknown count.

Note that this system is always non-linear. Indeed, under Hypothesis |1}, the (0,0) equation of the system
always includes the non-zero non-linear term s o(o, yo)(A1,0)*, corresponding to the following parameters
from the Faa di Bruno formula: p = M, s =1, (k1, (i1,41)) = (M, (1,0)).

The key to the construction procedure proposed next is a meticulous gathering of unknowns \; ; with
respect the length of their multi-index ¢ + j. As we will now see, this will lead to splitting the system into
a hierarchy of simple linear sub-systems.

2.2 From a non-linear system to linear sub-systems

The different unknowns appearing in each equation of System can now be studied. A careful inspection
of the linear and non-linear terms will reveal the underlying structure of the system, and will lead to identify
a hierarchy of simple linear subsystems.



The inspection of the linear terms is very straightforward thanks to Equation @[) The description of
the unknowns in the linear terms is summarized here.

Lemma 1. Consider a point (xo,%0) € R?, a given q € N*, a given M € N, M > 2, a given set of complex-
valued functions o = {ay; € €1 at (wo,90),0 < k+1 < M}, and the corresponding partial differential
operator Lrq. In each equation (I,J) of System , the linear terms can be split as follows:

e a set of unknowns with length of the multi-index equal to M + I + J, corresponding to £ = M and

(i.5) = (I,J),
e a set of unknowns with length of the multi-index at most equal to M + 1+ J — 1.

Under Hypothesis|1], both sets are never empty.

Proof. In terms of unknowns {); , (i,7) € N>,0 < i+ j < M + ¢ — 1}, Equation @D reads :

P (11)
M-1 ¢
+ 0D ()= E) vk -k (0, Y0) Myt
1 k=0
vJ >0, DO [\ P] (20, y0)
M
—Zk' M —k+ I ar—k(20, Yo) Ne M —k+-d
k=0
M J-1
(M — k:+] - 12
+ZZI<:' )! D07 J)Oék,Mflc(anyO))‘k,Mfk+3 (2
k=0 3—0
M-1 ¢ J ~
(6 —k+j5)! _;
+ Z ZZI@';')D@J Dok o 1(20, Y0) M g5
=1 k=0 3—0 )
vI >0, DU [ P] (0,10
1 M
I—Z (k+ DM — k)lag v (%0, Yo) Aet1,0—k
k=0
M I-1 ~
k+ 13
+ZZ( = L (M — kNI 0 5 k(205 Y0) Moy nr—k 1)
pr
M-1 ¢ I =
k+1)! ;,
" =1 kzoz( il ) (€ = KD 0 o1 (20, Y0) My o i
=1 k=0 =0



Y(I,J),1J # 0, DU (L5, (P] (0,10

M
1
= 71 (k+ DY M —k + J)'agar—r(T0, Yo) Aot 1,0~ k4J
k=0
M I-1J-1 (k;—{—z)'(M—k-i—j)' s - 14
' " (I—i,0—] N -
+ Z Z - 5 Dl J)ak,Mfk(m&yO)/\k-i-i,M—k-i-j 1)
k=03=0 j=0 '
N EE S E+)N =k D)
: )y (1=i,0-]
+2. 2D il 7! Df D ek (@0,Y0) My -5
(=1 k=0 j—0 j—0 : ‘

The result is immediate for I = J = 0 from . The following comments are valid for the right hand sides
of ,~, and : the third term only contains unknowns with a length of the multi-index equal to
b+i+j<M—1+41+ J, while the second term only contains unknowns with a length of the multi-index
equal to M +i+j < M +1+J—2; as to the first term, it only contains unknowns with a length of the
multi-index equal to M + I + J. This proves the claim. O

We then focus on the inspection of the non-linear terms. Each non-linear term in Lf/[ o P reads from the
definition of Lﬁ, o

i [] (@iraimP)* with 3 ky > 1 (15)
m=1 m=1

and yields a sum of non-linear terms with respect to the unknowns {)\ij}{(i7j),0§i+j§ M+q—1}, implicitly given
by the following formula:

DI Vo [ (a;maimp)km (0, o)
m=1
iy - . (16)
- ZZD(I_i"]_j)ozk,z-k(%,yo)D(i’j) H (a;magmp)km (0, 0)-
i=0 j=0 m=1

Therefore coming from the term , only a restricted number of unknowns contribute to the (I, J) equation
of Problem .

In order to identify the unknowns contributing to , here are two simple yet important reminders are
provided in Appendix [C]

It is now straightforward to describe the unknowns ); ; appearing in the non-linear terms of the equation

(I,J) of System (10), unwinding formula (L6)).

Lemma 2. Consider a point (xo,%0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set of complea-
valued functions o = {ag; € CT71 at (0,10),0 < k+1 < M}, and the corresponding partial differential
operator Lrq. In each equation (I,J) of System , the unknowns X; j appearing in the non-linear terms
have a length of the multi-index i +j < M + 1+ J.

< . ; krn
Proof. Each term 9.0 [H;Zl (6;”1 o P) ] in Lﬁ’ o is a polynomial, and its constant coefficient contains

) ; km
coefficients of the polynomial []7 _; (B}g" o P) with a length of the multi-index length of the multi-index

at most equal to 74 j, that is to say coefficients of the polynomials Qim %mP with a length of the multi-index
length of the multi-index at most equal to ¢ + j for every (im, jm) from the Faa di Bruno’s formula, so
coefficients \; ; of the polynomial P with a length of the multi-index at most equal to i+ +im + jm. Since
the indices are such that 1 < I, j < J, and iy, + jm < ¢ < M, the unknowns Ai,j appearing in each term

10



~ = . - km
0Ly, [anl (8};”875’”]3) ] (z0,y0) have a length of the multi-index at most equal to M + I + J — 1. It is
therefore true for any linear combination such as . O

From the two previous Lemmas, we see that, in each equation (I,.J) of System , unknowns with a
length of the multi-index equal to M + I + J appear only in linear terms, namely in

i;%+]ﬂ@4—k+Jﬂ

Ti 7 e, M=k (0, Y0) Mot T, M —k+-7

k=0

whereas all the remaining unknowns have a length of the multi-index at most equal to M + 1+ J — 1. It
is consequently natural to subdivide the set of unknowns with respect to the length of their multi-index
M + £, for £ between 0 and ¢ — 1 in order to take advantage of this linear structure.

2.3 Hierarchy of triangular linear systems

Our goal is now to construct a solution to the non-linear system , and our understanding of its linear
part will lead to an explicit construction of such a solution without any need for any approximation.

The crucial point of our construction process is to take advantage of the underlying layer structure with
respect to the length of the multi-index: it is only natural now to gather into subsystems all equations
(I,£—1) for I between 0 and £, while gathering similarly all unknowns with length of the multi-index equal
to M + £. In the subsystem of layer £, we know that the unknowns with a length of the multi-index equal
to M + I + J only appear in linear terms, and we rewrite each equation (I, .J) as

“k+ D' (M —k+£—1)
Z( ! ( )

1! (£—1) Uk, M—1(205 YO) At LM et £-1

k=0

N (k+ D! (M —k+£—1)!
= —DUag o (20, y0) — D(I’J)Lﬁ\%ap(xmyo) + E ( L ) e, M~k (%05 Y0) Nkt I, M~k ST
2 (€ 1)

For the sake of clarity, the resulting right-hand side terms can defined as follows.

Definition 5. Consider a point (zo,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay; € €11 at (z0,v0),0 < k+1 < M}, and the corresponding partial
differential operator Lyro. We define the quantity Ny j from Equation (I,J) from as

M-1 ¢
Noo == > Y ()N (€ = E)lo e (0, Yo) Mo~k
(=1 k=0 (17)
— L37.oP (20, 50) — a0,0(w0, Yo);
M J-1
M k—l—j _
vJ >0, N()J = ZZ ]C—f—’b ) 'D(O’J j)ak,M—k(ajOvyO))‘k’M_k_Fj
k=0 j=0 ‘]
M-1 ¢ J
+ Y > (k) (Gl ) DO Doy ok (20, Y0) Mg
(=1 k=0 j—o

1
= DO [, P] (x0,0) ~ DOPargofao, o)

11



= (k) (I-i0)
VI>0, Njg:= Z 5 (M =)Dy, 025 (20, Y0) Ay nr—k
e 7!
: 1-i,0 .
i Z Z - (0 — ENDI=00 0y (o, Yo) Nesio—k
{=1 k=0 ;=0
— DO [ P] (x0,y0) — DL o(20, yo);
v(I,J), IJ#0, N1y
M S (kD) (M =k,
' " (I—i,J—j . .
==2>.> Hh D! D vk v1—k (20, Y0) Msg 11—kt
k=0 7=0 j=0 E
R A ) 1N (2 ) | B -

! " (I—i,J—]

_ Z Z Z = il Doy o (o, Y0) Mt —kj
£=1 k=0 3=0 j=0 -
—piJ) [Lf\v/[,aP] (zo,Y0) — o )010,0(500790)-
[EX] For the operator £; . the non-linear terms in Ny, N1 and Ny are respectively
£ P(x0,50) = —AL0 + 71,1 (w0, 40) Ar,0M0,1 + Y0,2(0, %0) NG 1

Oy [Qé\fwP] (xo, yo) = —2)\270A170 + ")/171<1'0, y()) (2)\270/\0,1 + >\1,0)‘1,1) + 2'70,2(‘7307 Z/O))\LIAO,I

+0271,1 (20, Y0) A1,0M0,1 + 82v0,2(0, Y0) MG 1,
3y L5 P)(xo,50) = —2A11M0 +71.1(70,50) (M1 A0t + 2A1,002,0) + 290,2(20, Y0) Ao,2X0,1

+0y71,1(20, Y0)A1,0X0,1 + Fyy0.2(20, Y0) A ;.-

We now consider the following subsystems for given £ between 0 and ¢ — 1:
Find {\;, (i,j) € N* i+ j = M + £} such that
WM —k+ J)! (21)

M
I
vy ent 1+ =23 &
k=0

T e, M—k(Z0, Y0) Akt 1, M—k+7 = N1,J-

The layer structure follows from our understanding of the non-linearity of the original system:

Corollary 1. Consider a point (zo,yo) € R%, a given ¢ € N*, a given M € N, M > 2, a given set of complez-
valued functions o = {ay; € C11 at (z0,v0),0 < k+1 < M}, and the corresponding partial differential
operator Lyrqo. For any (I,J) € N? such that I + J < q, the quantity Ny,; only depends on unknowns \; ;
with length of the multi-index at most equal to M + 1+ J — 1.

Proof. The result is straightforward from Lemmas [T] and O

Assuming that all unknowns J);; with length of the multi-index at most equal to M + 1 4 J — 1 are
known, then is a well-defined linear under-determined system with

e £ linear equations, namely the (I,.J) = (I, £ — I) equations from System for I between 0 and £;
e M + £+ 1 unknowns, namely the \;; for i +j = M + £.

Therefore, if all unknowns \; ; with length of the multi-index at most equal to M + I + J — 1 are known,
we expect to be able to compute a solution to the subsystem £ ; this is the layer structure of our original
problem . Figure [2| highlights the link between the layers of unknowns and equations of the initial
nonlinear system on the one hand, and the layers unknowns and equations of the linear subsystems on the
other hand.

12



J axis j axis
qg—1+n g—1+n

\ [ axis

% 1 axis
q—1 qg—1

Figure 2: Representation of the indices of equations and unknowns from the initial nonlinear system
divided up into linear subsystems . For ¢ = 6 and M = 4, each shape of marker corresponds to one
value of £: the indices (I, J) satisfying I + J = £ correspond to the subsystem’s equations (Left panel),
while the indices (7, j) satisfying i + j = £ + M correspond to the subsystem’s unknowns (Right panel).

At this stage, we have identified a hierarchy of under-determined linear subsystems, for increasing values
of £ from 0 to ¢ — 1, and we are now going to propose one procedure to build a solution to each subsystem.
There is no unique way to do so, however if either az(2o,y0) # 0 or ag ar(zo, yo) # 0 it provides a natural
way to proceed. Indeed, the unknowns involved in an equation (I,J) = (I,£ —I) are {\; pye—i31 € N, T <
i < I+ M} ; and the coefficient of the unknown Aryaze—; is proportional to aaro(xo, yo), which is non-zero
under Hypothesis Figure [3| provides two examples, in the (4,7) plane, of the indices of one equation’s
unknowns: for each equation, the coefficient of the term corresponding to the rightmost marker is non-zero.
By adding M constraints corresponding to fixing the values of A\; pr4¢—; for 0 <4 < M, that is the unknowns
corresponding in the (i, 7) plane to first M markers on the left at level M + £, we therefore guarantee that
for increasing values of I from 0 to £ we can compute successively A7y e—1.

We can easily recast this in terms of matrices. At each level £, numbering the equations with increasing
values of I and the unknowns with increasing values of ¢ highlights the band-limited structure of each
subsystem, while the entries of the Mth super diagonal are all proportional to aaso(zo, o), and therefore
non-zero under Hypothesis The matrix of the square linear system at level £ is then constructed from
the first M lines of the identity, corresponding to the additional M constraints, placed on top of the matrix
of the subsystem.

Definition 6. Consider a point (xg,v9) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay; € €71 at (zo,v0),0 < k+1 < M}, and the corresponding partial

differential operator L. For a given level £ € N with £ < q, we define the matrixz of the square system of
level £, TE ¢ (C(M+2+1)X(M+2+1), as

Tt 41 :1(, " | Vkst. 0<k<M-—1,

. IT+K)I(M-k+£-1)!
T%+M+1J+k+l = I'(S _ I)‘ ak,M—k(anyO)a V(k‘,[) st. 0<k<M, 0<I<ZEg,
Tf,k' =0, otherwise,

13



j axis j axis

g—1+n g—1+mn

J+ni—

n
qg—1 | q—1
[ | J+n |
Ji1] n n
|
1 axis J m T. 1 axis
1 I+n T I+n

Figure 3: Representation of the indices of unknowns involved in two equations (I, J) of the subsystem .
For ¢ = 6, for M = 4, and £ = 4, each filled blue square marker corresponds in the (,7) plane to an
unknown J;;, involved in the (I, J) = (1,3) equation (Left panel), or in the (I,J) = (4,0) equation (Right
panel).

or equivalently

1 0,8 _ (k+)(M—k+£—i)!
with { I

— e i) )
I 4y - - T Ay Ay = ag m—k(To, Yo)-

Hg’sAg H%}[L‘AM_

Assuming that all unknowns );; with length of the multi-index at most equal to M + I 4 J — 1 are
known, then, as expected, a solution to the linear under-determined system can be computed as follows.

Proposition 1. Consider a point (x9,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complex-valued functions o = {ay,; € @11 at (wg,10),0 < k+1 < M}, and the corresponding partial

differential operator Lyro. For a given level £ € N with £ < q, under Hypothesis the matriz T €
CMALHDX(M+L+D) s pon-singular.

We now assume that the unknowns {X; j, (i,7) € N?,i+j < M + £} are known, so that the terms Ny g1
for I from 0 to £ can be computed. Consider any vector B* € CMTE+1 satisfying

BY/i14r = Nrer, VI st. 0 < T < L.
Then independently of the first M components of B, solving the linear system
TEX® =B* (22)
by forward substitution provides a solution to for
Nimre—i =X, Vi €N such that 0 <i < M + £.

Proof. The matrix T* is lower triangular, therefore its determinant is

e £
drts = [ (LM D)) = (H ”/V”) (@t w) ™"
1=0 : ' =0 '
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which can not be zero under Hypothesis[I] The second part of the claim derives directly from the definition
of T* and B*® and the fact that the system is lower triangular, and can be illustrated as follows:

1 0,84+ M *
- 1 - Av—1e+1| | *
4, - 95 Ay Mg No g
£.8 £,L
i Iy~ Ao w7 AM | L Aetmo [ Nepo |
4 ~~ ~"
TS Xe B

O

To summarize, we have defined for increasing values of £ a hierarchy of linear systems, each of which
has the following characteristics:

e its unknowns are {\; p+g—i; Vi € N such that 0 <i < M + £};
e its matrix T € CM+E+Dx(M+L+1) jg o gquare, non-singular, and triangular ;

e its right-hand side depends both on {\;;; V(i,j) € N? such that 0 < i +j < M + £} and on M
additional parameters.

At each level £, assuming that the unknowns of inferior levels are known and provided M given values for
Ai,v+g—i for 0 <@ < M, Proposition (1| provides an explicit formula to compute A; pr4¢—; for M <7 < M+ £.

2.4 Algorithm

The non-linear system ({10} . had d.f = w unknowns and Neq.n = q+1) equations, whereas
each linear triangular system introduced in the previous subsection has NI dof = =M —|— £+ 1 unknowns and
NT = M + £ + 1 equations for each level £ such that 0 < € < ¢ — 1. Therefore the hierarchy of triangular

eqn
systems has a total of Ngf =(M+1)g+ Q(qz_ ) unknowns and Nezln Neq.n +Mqg= Mqg+ @ equations,
(q+1)

including the £ equations of the initial non-linear system (|1 .

The remaining N . NdTO ;= M(]gﬂ) unknowns, which are unknowns of none of the triangular systems

but appear only on the right hand side of these systems, are the {)\; ;, (¢,7) € N2 0 <i+j < M}. These are

the unknowns with length of the multi-index at most equal to M — 1, and the corresponding indices (i, j)
are the only ones that are not marked on the right panel of Figure|2| It is therefore natural to add M
constraints corresponding to fixing the values of the remaining unknowns {\;j, (i,7) € N2,0 < i+ j <
M?}. The final system we consider consists of these w constraints, guaranteeing that the unknowns
{N\ij,(i,7) € N2,0 < i+ j < M} are known, together with the hierarchy of triangular systems for

(M+q)(M+g+1)
2

increasing values of £ from 0 to ¢ — 1; it has N, g)f = unknowns, namely the unknowns of the

original system , and NI = w equations, namely the equations of the original system split

eqn

into linear subsytems together with a total of w + gM additional constraints. A counting summary is
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presented here:

Number of unknowns Number of equations
Original non-linear system N _ (M+q)(M+q+1) N _ alg+D)
(10) dof 2 eqn 2
Subsystem at level £ e ¢
Triangular system at level £ T T
B NE, =M+g+1 NI =M+g+1

Hierarchy of triangular systems

NCI[I (M—|— 1)q_|_ Q(qz_l) NH — Mg+ q(g+1)

for £ from 0 to ¢ — 1 of = eqn 2
Final system NP — MEQM4qr1) | NP (M4g)(Metgrl)
(initial constraints + triangular systems) dof 2 eqn 2

Thanks to the M(M#-H) constraints, for increasing values of £ from 0 to ¢ — 1, the hypothesis of Proposition
is satisfied, the right hand side B® can be evaluated and the triangular system can be solved. So the
unknowns {\; p1e—i; Vi € N such that 0 < ¢ < M + £} can be computed by induction on £, constructing
a solution to the initial non-linear system by induction on £.

The following algorithm requires the value of MJ@]M parameters, to fix initially the set of unknowns
{N\ij, (i,7) € N?,0 <i+j < M} and then at each level £ the set of unknowns {\; pre—i, i € N,0 <i < M}.
Under Hypothesis (I} the algorithm presents a sequence of steps to construct explicitly a solution to Problem
and requires no approximation process.

Algorithm 1 Constructing a solution to Problem

1. Fix {\ij, (4,5) e NL0<i+j < M} > MO ynknowns

2: for £ from 0 to ¢ — 1 do > ¢ times

3: Fix {Nivye—ii € N0 <i < M} > M unknowns

4 for I from 0 to £ do e > £4 1 times

5: AI4M,e—1 = TE; <B§+M+1 - Z T§+M+1,I+k+1)\l+k,M+£Ik> > 1 unknown
T+M+1,1+M+1 k=0

From the definitions of T* and B® we immediately see that the step 5 boils down to

! M-l (M — Y
Aaet = M)!O{J;mo(xoa ™) (NI’H . kzo - k)‘%ﬁ —kf; oo yO)AI+k’M+2_I_k>
(23)
If the set of unknowns {); j, (4,7) € N2,0 <i+j < M +q — 1} is computed from Algorithm |I| then the
polynomial P(x,y) := Z Aij(x — 20)"(y — yo)’ is a solution to Problem (10), and therefore the

0<i+j<q+M—1
function ¢(x) := exp P(x) satisfies (). This is true independently of the values fixed in lines [1][1] and [1][3] of
the algorithm.

Remark 1. It is interesting to motice that the algorithm applies to a wide range of partial differential
operators, including type changing operators such as Keldysh operators, Lx = 92 + y2m+18§+ lower order
terms, or Tricomi operators, Lt = 0> +a:2m+18§+ lower order terms, that change from elliptic to hyperbolic
type along a smooth parabolic curve.

To conclude this section, we provide a formal definition of a GPW associated to an partial differential
operator at a given point.
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Definition 7. Consider a point (zo,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ag; € CI71 at (z0,1),0 < k+1 < M}, and the corresponding partial
differential operator L. A Generalized Plane Wave (GPW) associated to the differential operator Ly o
at the point (xo,y0) is a function @ satisfying

Laras(e,y) = O(ll(x = zo,y = yo) [|).

Under Hypothesis[l], a Generalized Plane Wave (GPW) can be constructed as function p(z,y) = exp P(z,y),
where the coefficients of the polynomial P are computed by Algorithm[1], independently of the values fized in
the algorithm.

The crucial feature of the construction process is the exact solution provided in the algorithm: in
practice, a solution to the initial non-linear rectangular system is computed without numerical resolution of
any system, with an explicit formula.

The choice of the fixed values in Algorithm [I| will be discussed in the next paragraph. Even though these
values does not affect the construction process, and the fact that the corresponding ¢(x,y) = exp P(x,y) is
a GPW, it will be key to prove the interpolation properties of the corresponding set of GPWs.

Remark 2. Under the hypothesis ao (2o, yo) # 0 it would be natural to fix the values of {X\;;,0 < j <
M—-1,0<1i<q+M—1-j} instead of those of {X;;,;0 <i < M—-1,0<j<qg+M-1-1i}, and
an algorithm very similar to Algorithm |1, exchanging the roles of i and j would construct the polynomial
coefficients of a GPW.

3 Normalization

We will refer to normalization as the choice of imposed values in Algorithm [1} The discussion presented in
this section will be summarized in Definition [§

Within the construction process presented in the previous section, only the design of the function ¢
as the exponential of a polynomial is related to wave propagation, while Algorithm [I] works for partial
differential operators not necessarily related to wave propagation. In particular, the property Ls o9 (z,y) =
O (||(z,y) — (x0,y0)||?) of GPWs is independent of the choice of (A1, Ao,1). However, the normalization
process described here carries on the idea of adding higher order terms to the phase function of a plane
wave, see , as was proposed in [13].

We will now restrict our attention to a smaller set of partial differential operators that include several
interesting operators related to wave propagation, thanks to an additional hypothesis on the highest order
derivatives in £ o, namely Hypothesis . Under this hypothesis we will be able to study the interpolation
properties of associated GPWs in a unified framework. As we will see in this section, choosing only two non-
zero fixed values in Algorithm|I]is sufficient to generate a set of linearly independent GPWs. It is then natural
to study how the rest of the \;;s depend on those two values, and the related consequences of Hypothesis
These rely on Hypothesis [2| extending the fact that for classical PWs (i cos)? + (irsin0)? = —x? is
independent of 6.

3.1 For every GPWs

% + Mg, and the set of coefficients to be

In Algorithm (1} the number of prescribed coefficients is
prescribed is the set {\; ;,0<i< M —-1,0<j<qg+ M —1—i}.

For the sake of simplicity, it is natural to choose most of these values to be zero. Since the unknown Ag o
never appears in the non-linear system, there is nothing more natural than setting it to zero: this ensures
that any GPW ¢ will satisfy ¢(zg,y0) = 1. Concerning the subset of Mg unknowns corresponding to step

in Algorithm [I], setting these values to zero simply reduces the amount of computation involved in step
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M-1
in the algorithm: indeed for I = 0 then Z T§+M+1J+k+1/\1+k7M+g_1_k = 0, while for 0 < I < M then

k=0
M-1 M—1
L _ £
E T M1 Tk 1 A TR, M 2Tk = E TF M1 Ttk 1 Mk M+ S~k
k=0 k=M-¢

As for the unknowns A; o and Ag 1, they will be non-zero to mimic the classical plane wave case, and
their precise choice will be discussed in the next subsection. For the remaining unknowns to be fixed, that
is to say the set {);;,2 < i+ j < M — 1}, their values are set to zero, here again in order to reduce the
amount of computation in computing the right hand side entries B’ZQW 4147 and in applying

For the operator £ - the non-linear terms in N1 g and Ny respectively become with this normalization

O [€5 Pl(w0,90) =  —2X2,0A1,0 + 71.1(%0, ¥0)2A2,000,1 + 0211 (w0, Y0)A0M0.1 + 0xy0,2(w0, Y0)AG 1,

Ay P)(x0,0) = 71,1(z0, ¥0)2A1,0A2,0 + By 71,1 (20, Y0) A1,0M0,1-

Since all but two of the unknowns to be fixed in Algorithm [I] are set to zero, it is now natural to express
the ); j unknowns computed from in the algorithm as functions of the two non-zero prescribed unknowns,
)\1’0 and /\071.

Lemma 3. Consider a point (xq,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set of complex-
valued functions o = {ay; € CI1 at (z0,v0),0 < k+1 < M}, and the corresponding partial differential
operator Lr. Under Hypothesis|l| consider a solution to Problem constructed thanks to Algorithm
with all the prescribed values \; ; such that i < M and i+ j # 1 set to zero. Each \ipnr; can be expressed
as an element of C[A1 0, Ao 1]

Proof. The fact that ;1 ys,; can be expressed as a polynomial in two variables with respect to A1 o and Ag 1
is a direct consequence from the explicit formula in step in Algorithm [1 combining with setting ); ; such
that i < M and i + j # 1 to zero. O

Since unknowns are expressed as elements of C[A; 9, Ao,1], we will now study the degree of various terms
from Algorithm I} as polynomials with respect to A1 and Mg 1. To do so, we will start by inspecting the
product terms appearing in Faa di Bruno’s formula.

Lemma 4. Consider a point (xo,%0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set of complex-
valued functions o = {ay; € C11 at (z0,v0),0 < k+1 < M}, and the corresponding partial differential
operator Lrqo. Consider a given polynomial P € Clz,y|. The non-linear terms L]\NLQP, expressed as linear

o km
combinations of products of derivatives of P, namely []} _; (8;"185”]3) , contain products of up to M

derivatives of P, namely 6§'Cm6§mP, counting repetitions. The only products that have exactly M terms are
(0:P)k(0, PYM=k for 0 < k < M, whereas all the other products have less than M terms.

Proof. Since the operator [4%7 o, is defined via Faa di Bruno’s formula, we will proceed by careful examination
of the summation and product indices in the latter.

The number of terms in the product term is s, with possible repetitions counted thanks to the k,,s, and
the total number of terms counting repetitions is p = > _; km,. Since in Lf\\g’a the indices are such that

. . km
1 < pu <l < M, there cannot be more than M terms counting repetitions in any of the an:l (8;;“6{,’” P) .

For s = 1, in the set py((k,¢ — k), ), (i1,71) € N? are such that i; + j; > 1 and k1 € N is such that
k1(i1 + j1) = £. Since £ < M, such a term appears in Faa di Bruno’s formula as a product of ;= M terms
if and only if ¢ = M, k; = M, and therefore iy + j; = 1. There are then only two possibilities: either
(i1,71) = (1,0) corresponding to the term (9, P)M, or (i1,j1) = (0,1) corresponding to the term (9,P)*.

For s = 2, in the set po((k,¢ — k), ), (i1,71,42,52) € N* are such that iy + j1 > 1, is + jo > 1,

(i1,41) < (i2,72), and (ky, k2) € N? is such that p = k1 + ko and k1 (i1 + j1) + ka(i2 + j2) = £. Since £ < M
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and ¢ = kq(i1 + j1) + k2(i2 + j2) > k1 + ko = p, such a term appears in Faa di Bruno’s formula as a product
of 4 = M terms if and only if £ = M and ki + ko = M. There are then two possible cases: either i9 4 jo > 1,
then M = ky (i1 + j1) + ko(i2 + j2) > k1 + ko = M, so there is no such term in the sum, or is + jo = 1, then
necessarily (i1,71) = (0,1) and (i2, j2) = (1,0), corresponding to the terms (9, P)* (9, P)M~* for any k from
0 to M.

For s > 3, in the set ps((k‘,f — k), ), for all m € N such that 1 < m < s, (im, jm) € N? and k,, € N are
such that im + jm > 1, Yoo km(im + Jm) =4, =Y 0 1 km and (i1, j1) < (i2, j2) < (i3, J3). Because of
this last condition, it is clear that i3+j3 > 1. Since 0 < M and £ =37 km(im + Jm) = Doy km = 1,
such a term appears in Faa di Bruno’s formula as a product of u = M terms if and only if £ = M and
S 1 km =M. But then M =357 | km(im + jm) > > r,_1 km = M, so there is no such term in the sum.

m=1

The claim is proved. ]

Lemma 5. Consider a point (x9,vy0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set of
complez-valued functions o = {ag; € CI71 at (x0,40),0 < k+1 < M}, and the corresponding partial
differential operator Lyrq. Consider a given polynomial P € Clz,y]. The quantity 8£08@]0LAN/[O¢P s a

S km
linear combination of terms 89{08@]0 <an1 <(")¥”8§,’"P) ), where the indices come from Faa di Bruno’s

) . km
formula. Each of these agoajo (an:l (8@8{,’”P> > can be expressed as a linear combination of products
[T, (90 8§m P)°m where the indices satisfy S | cm(am +bm) < I+ Jo + M.

S km
Proof. Thanks to the product rule, the derivative 9% 8@]0 (an:l (ai,m o P) > can be expressed as a linear
o km
combination of several terms [[} _; 8£m8y‘]m [(8;7”6{/”P) } , where S0 I, =Ty and 3¢ | J = Jo.

o N\k
We can prove by induction on k that 91 8‘] [(8;%13) ] can be expressed, for all (i, , I, J) € N*, as a linear
combination of products H (8“’”8me)‘3’” where the indices satisfy Zm 1Cm(am +bp) < IT+J+k(i+7):
1. it is evidently true for k = 1;

2. suppose that it is true for kg > 1, then for any (4,4, 1,.J) € N* the product rule applied to a;agp X
. k
(a;ag/P) * yields

I J
oLo) [ (@ioyP)™ ! =33 (f) (j) ooy T PaLo; | (0i0)P)"™ |

where by hypothesis each 8255‘{; [<OZ

: 0
m@f,P) ]can be expressed as a linear combination of products

HM (aamﬁme)Cm with Z% L Cm(@m+by) <i+j4ko(i+7), so that each term in the double sum can
be expressed as a linear combination of products HMH(@“’” 8bm P)°m where apry1 = i+1—1, bary1 =
j+J—7and CM+1 = 1, which yields ), ~ 1 cm(am—i—bm) = Z%:l Cm(am +bi) —&—(i—i—]—%—l—j—{—J—j)
and therefore Em 1 Cm(am +bp) < ko(i+j)+ (i+ 1+ j+J). This concludes the proof by induction.

Finally the derivative 8108‘]0 <H <81m8j’" ) ) can be expressed as a linear combination of several

terms [[) _, Hmzl(agmagmp)%, with M ci(am + bi) < I 4 o + (i + jm) in other words it
can be expressed as a linear combination of several terms H (8“”81’” P)m | with Z Ziem(am +bp) <

>t I A T+ ki (i + Gim) = To+Jo+ >0 1 km(im=+jm). For any 9209, (Hm1 (a;mag,mp> > coming
from 8108"0@]& aP the summation indices from Faa di Bruno’s formula satisfy > | km(im + jm) = £, so

the products H (Gamﬁme)cm are such that Zm L Cm(am +bm) <Io+Jo+ M. O
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The two following results now turn to A; a7 ; computed in Algorithm E

Proposition 2. Consider a point (x9,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay,; € €1 at (w0,10),0 < k+1 < M}, and the corresponding partial
differential operator L1 . Under Hypothesis |1 consider a solution to Problem constructed thanks to
Algorithm |1 with all the fizved values X;; such that i < M and i + j # 1 set to zero. As an element of
C[A1,0, Ao.1], Ao is of degree equal to M.

Proof. The formula to compute Ayzo in Algorithm (1| comes from the (I, J) = (0, 0) equation in System ,
that is to say Lﬁap(:co,yg) = —apo(xo,Y0). It reads

1 M-1

A =—— (B — 7Y A

M0 = TO M+1 MA+1,k+1Me, M~k | >
M+1,M+1 k=0

and the sum is actually zero since the Ay ps—; unknowns are prescribed to zero for k < M. The definitions

of BY and L? then give

M-1 ¢

1
Ao = Mlanro(@o.50) <— ZZ; kzok‘!(f — k)l e— (20, Yo) Mtk — L2370 P(20,90) — ao,0($07y0)> :

Since the Aj,—; unknowns are prescribed to zero for all 1 < ¢ < M — 1 and all k, the double sum term
reduces to ag.1(xo, Yo)No,1 +a1,0(0,Y0)A1,0. The non-linear terms from L%’QP, namely anzl(ﬁim %mP)km,
are products of at most M terms, counting repetitions, according to Lemma So L%QP(:L‘O,yO) is a
linear combination of product terms reading []°,_;(\;,, j,.)*™ with at most M factors. Moreover, since P
is constructed thanks to Algorithm [I} from Corollary (1| we know that these A; , j,.s have a length of the
multi-index at most equal to M — 1, so they are either A\; o or Ao or prescribed to zero. This means that
in C[A1,0, Mo,1] each one of these \;,, j,, is at most of degree one. So in C[A1,0, Ao.1] each []°,_;(Ni,, j,.)*m is
a product of at most M factors each of them of degree at most one, the product is therefore of degree at
most M. As a result

1
~ Mlapo(wo, yo

AM0

: ) (—a0,1(z0, ¥0) Ao — a1,0(wo, Yo)A1,0 — L%@P(wo, yo) — @0,0(0,Y0))
as an element of C[\1, Ao 1] is of degree at most M.

Finally, the term (9, P)™ from LJ\NL o P identified in Lemma corresponds to a term apz,0(xo, yo)(A1,0)
in the expression of Ay, and this term is non-zero under Hypothesis|[I] As a conclusion Aj7 as an element
of C[A1,0, Ao,1] is of degree equal to M. O

M

Proposition 3. Consider a point (x,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay,; € €1 at (w0,0),0 < k+1 < M}, and the corresponding partial
differential operator Lyro. Under Hypothesis 1| consider a solution to Problem constructed thanks to
Algorithm |1 with all the fizved values X;; such that i < M and i + j # 1 set to zero. As an element of
Cl[A1,0, Mo,1], each Niyar; has a total degree at most equal to the length of its multi-index i + j + M.

Proof. The formula to compute Aryar¢—; in Algorithm [1f comes from the (I,J) = (I, £ — I) equation in
System , that is to say 8£8?§_1Lf/[7aP(aco, Yo) = —8£8’y‘_1a0,0(330,y0). It reads

M—1
1

Al+Me-1 = TS <B§+M+1 - Z T§+M+1,I+k+1>\I+k,M+2—1_k>

T+MA1,1+M+1 Py
M—1
I I+ R)(M—k+£— 1)
- o k. M—k(To, Yyo) A I I
(M + Dlanro(wo, o) \ " ,;0 e =1 Mk (20, YO) AT M 21—k

(24)
We will proceed by induction on £:
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1. the result has been proved to be true for £ = 0 in Proposition [2];

2. suppose the result is true for £ € N as well as for all £ € N such that £ < £, then all the linear terms
in Ny gq1-7 have a length of the multi-index at most equal to M + £ so by hypothesis their degree as
elements of C[A1 g, Ao,1] is at most equal to M + £, and thanks to Lemma [5| all the non-linear terms
in N7 gy1-7 can be expressed as a linear combination of products [T’ _;(Aa,, 5,, )™ where the indices
satisfy Efn:l cm(am + bm) < £+ 1+ M so by hypothesis their degree as elements of C[A1 o, Ao.1] is
at most equal to M + £ + 1 ; the last step is to prove that the A\ry prre+1-7—k are also of degree at

most equal to M + £ 4 1, and we will proceed by induction on I:

(a) for I = 0, all Apyppryer1—1—k for 0 < k < M — 1 satisfy the two conditions I + k < M and
IT+k+M+L+1—-1—k=M+L£+1+#1 so they are all prescribed to zero and their degree as
element of C[A;, Ao 1] is at most equal to M + £ + 1 that ;

(b) suppose that, for a given I € N, the A ; /0.y 7, for all I € N such that I < I are also of
degree at most equal to M + £+ 1 then it is clear from Equation that A\jy14am,e—1—1 is also
of degree at most equal to M + £ + 1.

This concludes the proof.

O]

As explained from an algebraic viewpoint in section 3.2 in [I3], the degree of A\;1as; as an element of
C[A1,0, Ao,1] will be affected by the choice of the last two prescribed values, namely Ao and A\ ;. Indeed
if Ao and Ao satisfy a polynomial identity Pj(A10,X01) = 0, then we can consider the quotient ring
ClA1,0, Aoal/ ().

Note that choosing to set {\; j,1 < i+ j < M — 1} to values different from zero may be useful to treat
operators that do not satisfy Hypothesis [2| but this is not our goal here.

3.2 For each GPW

In order to obtain a set of linearly independent GPWs, the values of \; g and Ag; will be chosen different
for each GPW. However the values of A1 o and Ao will satisfy a common property for every GPWs. Very
much as the coefficients of any plane wave of wavenumber & satisfy (A10)? + (Xo.1)? = —#2, independently
of the direction of propagation ¢ since A1 = 2xcos and A\g1 = 2k sin @, under Hypothesis [2| the coefficients
of each GPW will be chosen for the quantity

M

M NI 2
> arar-k(@o,50) (A10)* (Ao )M * = (()\(1)(1)> : (A;i)))

k=0

to be identical for every GPWs, as we will see in the following proposition and theorem.

This will be crucial to prove interpolation properties of the corresponding set of functions, which will re-
sult from the consequence of this common property on the degree of each A1 s ; as an element of C[A g, Ao,1]-
As the plane wave case suggests, we will see that A\; 17 ; can be expressed as a polynomial of lower degree
thanks to a judicious choice for A1 o and Ag 1.

We first need an intermediate result concerning the polynomial LJ\N/L o -

Lemma 6. Consider a point (xo,%0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set of complex-
valued functions o = {ay; € C11 at (z0,v0),0 < k+1 < M}, and the corresponding partial differential
operator L. Consider a given polynomial P € Clz,y]. For any £ € N and any I € N such that I < £+1,
the quantity 8£8§+1_I {L%’QP} can be expressed as a linear combination of products [}, 8;‘+It8§t+JtP,
with Y 0 L=1, >0 i =8+1—1, 31 iy =k, and Y}, j: = { — k. Moreover, for each product term,
there exists to € N, 1 < tg < p such that Iy, # 0 or Jy, # 0.
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Proof. The quantity L]\N4 P can be expressed, from Faa di Bruno’s formula, as a linear combination of

products []7 _, (O;WGZMP) km, With (imy, Jm1) 7 (bma» Jmse) for all my # ma, D0k = f1, >0y kmim =
k,and Y7 | kmjm = ¢—k. Therefore LJ\NL o can also be expressed, repeating terms, as a linear combination
of products []}; 8?87?P, with possibly (imy,dms) = (imas Jms) for my # ma, Y4 4 =k, and > 4, j; =
¢ — k. So the quantity 3£8y£+1*[ [L% QP} can be expressed, from Leibniz’s rule, as a linear combination of
products []i, 8;t+[t5‘§t+JtP, with Y0 ;=Tand >}, =2+1-1.

Consider such a given product term [}, 8;t+[tagt+JtP, and suppose that for all ¢ I; = J; = 0. Then
I=>F I;=0and £+1—1=>1,J, =0, which is impossible since £ +1 > 0. O

The two following results gather the consequences of this choice on A;yas ;s computed in Algorithm

Proposition 4. Consider a point (x9,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay; € €71 at (z0,v0),0 < k+1 < M}, and the corresponding partial
differential operator Lyr. Under Hypotheses |1 and @ consider a solution to Problem constructed
thanks to Algorithm with all the prescribed values \; j such that i < M and i+ j # 1 set to zero, and

AL() . —11y—-1/2 cos 6
()\0’1) =ikA™'D sin 0 (25)

for some 6 € R and k € C*. As an element of C[A10,Mo1], Ao can be expressed as a polynomial of degree
at most equal to M — 1, and its coefficients are independent of 6.

Note that once we impose this condition on Aj g, Ag1 any element of C[Aj g, Ag,1] can be expressed by
different polynomials, possibly with different degrees, simply because under Hypothesis [2| and we have

M

Zak,M—k(on?yo))\]f,oA(])\ﬂfk = (-x%) " .
k=0

See paragraph 3.2 in [13] for an algebraic view point on this comment.
Proof. Since

1
-~ Mlao(o, yo

AM,0 ] (—a0,1(z0,50)Mo,1 — a1,0(z0, Y0)A1,0 — L2 P (20, %0) — c0,0(z0,%0)) (26)

again the term to investigate is £,  P(z0,y0). Lemma M| identifies products of M terms in £} P, and
from the definition of L]\N/[’ ., they appear in the following linear combination

M M
3 @=P)* (8, P)M ™+ 3 k M—k
-t k‘(M - k)!Oth,k Kl (M — k‘)‘ = = Oék,Mfk<8mP) (6yP) .

Back to the expression of A\js 0, and thanks to Hypothesis [2, the only possible terms of degree M therefore
appear in the following linear combination:

M M M
_ A 2 . A 2
Zak,M—k($OayO)()\l,O)k()\O,l)M Fo= ((M,o Xo,1)T <)\[1)’(1)>) = <(1/€)2()\1,o Xo1)A'DA <)\[1)’(1)>)

kJZO ’
NN T
(.2 . cos M
= ( k*(cosf sin0) (sin9>> = (—k)

Finally thanks to , the only terms of degree M in can be expressed as a polynomial of degree at
most equal M — 1. O
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Proposition 5. Consider a point (x9,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ag; € CI71 at (z0,4),0 < k +1 < M}, and the corresponding partial
differential operator Lpr. Under Hypotheses |1 and @ consider a solution to Problem constructed
thanks to Algorithm with all the fized values \; j such that i < M and i+ j # 1 set to zero, and

)\170 . —1py—1/2 cos
()\0,1> = ind D sin 6

for some § € R and k € C*. As an element of C[A1,0, Ao,1], each N\ixn,j can be expressed as a polynomial of
degree at most equal to i + j + M — 1, and its coefficients are independent of 6.

Proof. From Algorithm (I the expression of Ar;as,e—r reads

M-1
1 .
AreMe—1 = TS <B¥+M+1 - Z T%+M+1,I+k+1/\1+k,M+£—I—k)
T+M+1,I+M+1 =0
M-1
n (I+ k(M —k+£—1)!
= o _ a B T 7 )\ e .
(M + D)'anro(xo, yo) Le=l kzzo e -1y ke, M—k (20, Y0) ATk, M4 21—k
(27)

We will proceed again by induction on £:
1. the result has been proved to be true for £ = 0 in Proposition [ ;

2. suppose the result is true for £ € N as well as for all £ € N such that £ < £, then we focus on
Nreq1-1, given by

M £ ~
~ M - k: + ' ~
Nog+1 = Z Z (k+ i)!w@(0’£+1_”)ak,M—k($oa Yo) Nk M-k

M-1 ¢ £41 ~
{—k+j)! -
+ Z Z (k)!gﬂ(g’f‘url ])ak,ffk(x()vyO))\k,g_k_i_j

1
— DO (L4 P] (0, 30) — DO Vag o (w0, 50) for I =0 ; and

Nret1-1
Mo (k+) (M —k+7)

R SPapS

k=0 7=0 j=0

| - -
"y(I—i,e 11— . .
35! D D vk (20, Y0) My i 0

(k) (0= K+ ) - -
- Z ZZ Z ) Eﬁ i) D(lfl’SJrl*I*J)&k,efk(xo?yo))\kﬁ,efkﬁ
— phe+1=0) [L%@P] (w0, y0) — 9(1’£+1_I)a0,0($0,y0) otherwise ;

all the linear terms in Ny ¢11_7, as elements of C[A1, Ao,1], by hypothesis have degree at most equal
to(I+M)+(£+1-1)—1= M+£, and thanks to Lemma [6| all the non-linear terms in Ny ¢4y can
be expressed as a linear combination of products []}; A4, », Where the indices satisfy Y i (a; + b;) <
£+ 1+ M ; in each such product, as element of C[A1 0, Ao,1], each g, 5, is either of degree a; + b, = 1 if
(at,bt) € {(0,1),(1,0)}, or of degree at most equal to a; +b; — 1 otherwise by hypothesis ; from Lemma
|§| there is at least one ¢ such that (as,,b,) ¢ {(0,1),(1,0)}, therefore each product [[}_; Ag,p,, s
element of C[A; o, Ao.1], can be expressed as a polynomial of degree at most (3 )" (ar + b)) —1 < £+ M
; so all terms in Ny gy1-1, as elements of C[A1 9, Ao,1], have degree at most equal to M + £ ; the last
step is to prove that the Ajjg amr+e4+1-7—% are also of degree at most equal to M + £, and we will
proceed by induction on I:
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(a) for I =0, all Apppapryeyr1—1—k for 0 < k < M — 1 satisfy the two conditions I + k < M and
I+k+M+L+1—-1—k=M+L£+1+#1 so they are all prescribed to zero and their degree as
element of C[\1 9, Ag,1] is at most equal to M + £ that ;

(b) suppose that, for a given I € N, the )‘I+k Masq1—i—p for all I 6 N such that I < I are also of
degree at most equal to M + £ then it is clear from Equation (27)) that Ary14a,e—7-1 is also of
degree at most equal to M + £.

This concludes the proof.
O

Finally, since we are interested in the local approximation properties of GPWs, it is natural to study
their Taylor expansion coefficients, and how they can be expressed as elements of C[A1, Ao.1]. In particular
we will find what is the link between the Taylor expansion coefficients of a GPW, 88 ¢ (0, yo) /(i!5!), and
that of the corresponding PW, (Ao 1)7(A1,0)%/(i!5!).

Proposition 6. Consider a point (x9,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay; € €71 at (zo,v0),0 < k+1 < M}, and the corresponding partial
differential operator Lyrq. Under Hypotheses |1 and @ consider a solution to Problem constructed
thanks to Algorz'thm with all the fized values \; ; such that 1 < M and i+ j # 1 set to zero, and

Ao\ _ . q—1py-1/2 (cost
(A()’l)_lHA D sinf )’

for some 8 € R and k € C*, and the corresponding p(x,y) = exp Z Nij(z — 20)'(y — yo)?. Then for
0<i+j5<qg+1
all (i,7) € N? such that i +j < q+ 1 the difference

Ry j = 0,00 (0, 90) — (Ao1)’ (Ar0)’ (28)
can be expressed as an element of C[A1 0, Ao,1| such that
e its total degree satisfies dR; j <i+j — 1,

e its coefficients only depend on i, j, and on the derivatives of the PDE coefficients o evaluated at (xq, yo)
but do not depend on 6.

Proof. Applying the chain rule introduced in Appendix to the GPW ¢ one gets for all (i,5) € N2,

i+j i+j

04000 (x0,90) = 41> > Y H ”’” ;

1=l =1 ps((i,5),1) I=

where ps((7,7), p) is the set of partitions of (¢, 7) with length pu:

{(kl, (it 1) iequs) ko € N0 < (i, 1) < - < (i o), Y k= s (i, i) = (i,j)} -
=1 =1

For each partition (k;, (i, ]l))le[[l s] of (z 7), the corresponding product term, considered as an element of

C[A1,0,Ao,1], has degree Deg H i)k Zleeg Aiyj,- Combining Proposition [5 and the fact that
=1 I=1
Aij = 0 for all (7,7) such that 1 < i+ j < M, we can conclude that this degree is at most equal to

Skt > kit Y k04 > k(+i—1). (29)

4=0,51=1 4=1,51=0 1<+ <M y+i =M
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The partition with two terms (i, j) = j(0,1) +i(1,0) corresponds to the term (A1)’ (A1,0)?, which is the
leading term in 8;85@ (20, y0). Indeed, any other partition will include at least one term such that 4;+j; > 1,
and the degree corresponding to this term within the product is either k; - 0 or k;(i; + j; — 1), and in both
case it is at most equal to k;(i; + j;) — 1. As a result, the degree of the product term in is necessarily

S
less than Z ki(it 4+ 1) = i+ j. So R;j, which is defined as the difference between 9295 (0, y0) and its
1=1
leading term (Xo,1)? (A1,0)?, is as expected of degree less than i + j.
Finally, the coefficients of R; ; share the same property as the coefficients of A;;s from Propositions . O

Remark 3. As mentioned in Remark@ under the hypothesis oo r(xo,y0) # 0, an algorithm very similar
to Algorithm (1| would construct the polynomial coefficients of a GPW, fizing the values of {\;;,0 < j <
M—-1,0<i<qg+ M —1-j}. The corresponding version of Proposition@ could then be proved essentially
by exchanging the roles of i and j in all the proofs.

3.3 Local set of GPWs

At this point for a given value of 8 € R we can construct a GPW as a function ¢ = exp P where the
polynomial P is a solution to Problem constructed thanks to Algorithm [1) with all the fixed values \; ;
such that ¢ < M and i + j # 1 set to zero, and

/\1’0 . —171y—1/2 cos 6
(Am)_lm b sinf )

This parameter 6 is then equivalent to the direction a classical plane wave, while || is equivalent to the wave
number of a classical plane wave, and 6 will now be used to construct a set of GPWs. Under Hypotheses
and [2| by choosing p different angles {6;,] € N*,1 < p} € RP, we can consider p solutions to Problem (|10)) to
construct p GPWs.

Definition 8. Consider a point (zo,y0) € R?, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ay; € €1 at (zo,v0),0 < k+1 < M}, and the corresponding partial
differential operator Ly . Let p € N* be the number of desired basis functions. Under Hypotheses and@,
consider the normalization \; ; such that i < M and i+ j # 1 set to zero, and

l
(ﬁm) — kA~1D1/2 <C9S 9’) , for {6, € [0,27),¥1 € N*,1 < p, Oy, # Oy, VI1 # la, k € C*}.
)\0’1 sin 6;

The set of corresponding GPWs contructed from Algorithm [1] will be denoted hereafter by

V9 pq = {1 :=exp P, ¥l € N*,1 < p}.

4 Interpolation properties

This section is restricted to operators of order M = 2.

We now have built tools to turn to the interpolation properties of GPWs. In particular, since the GPWs
are constructed locally, and will be defined separately on each mesh element, we focus on local interpolation
properties. Given a partial differential operator £, a point (xg,7o) € R? and an integer n € N, the question
is whether we can find a finite dimensional space Vj; C €, with the following property:

Vu satisfying Lu = 0,3u, € Vi s. t. V(z,y) € R?, Ju(z,y) — ua(wo, y0)| < Cll(z,y) — (zo,50) I, (30)

that is to say there exists an element of Vj, whose Taylor expansion at (xg, yp) matches the Taylor expansion
of u at (x0, yo) up to order n, for any solution u of the PDE Lu = 0. If {f;,i € N*,i < p} is a basis of V},, this

25



can be expressed in terms of linear algebra. Consider the vector space F and the matrix M € C "+ (n+2)/2xp
defined as follows:

F:= {F e CHD(+2)/2 3y gatisfying Lu = 0 s.t. F(k1+k2)(§1+k2+1)+k+2+1 = 8];18§2u(3307y0)/(k1!k2!)} ,

Moy rarersrain g 5 = 0510y fi(wo, yo) / (kr ka!). (31)

Then is equivalent to
VF eF,aX € C? s.t. MX =F,

and the choice of p, the number of basis functions, will be crucial to our study.

Our previous work on GPWs was focused on the Helmholtz equation, i.e. £ = —A+ §(x,y), and in that
case the classical PWs are exact solutions to the PDE if the coefficient is constant 3(z,y) = —k?. However,
even though the proof of the interpolation properties of GPWs relies strongly on that of classical PWs, it is
not required, in order to obtain the GPW result, for classical PW to be solutions of the constant coefficient
equation [13]. Indeed, what will be central to the proof that follows is the rank of the matrix M associated
to a set of reference functions - not necessarily classical PWs - that are not required to satisfy any PDE.
For the Helmholtz equation, the reference functions used in [13] were classical PWs if 3(z9,30) < 0 and real
exponentials if §(xg,yo) > 0, and the structure of the proof provides useful guidelines for what follows.

4.1 Comments on a standard reference case

Interpolation properties of classical plane waves were already presented for instance in [I3], and in [4], however
the link between desired order of approximation n and number p of basis functions was simply provided as
p = 2n+ 1. We present here a new perspective, focusing on properties of trigonometric functions, to justify
this choice. The corresponding set of trigonometric functions will constitute the reference case at the heart
of the GPWs interpolation properties.

Definition 9. Consider a given n € N* and a given p € N*. Considering for some v € R* a space

= Span{expik(cos O)(x — xg) +sin b (y —yo)),1 <1 < p,0, € [0,2m), 0, # 0, Vl1 # l2} of classical PWs,
we define the corresponding matrix for the plane wave functions spanning V¢, denoted M€, as well as
the reference matriz M, by

C (3 \k1+E k1 _: k
(M%) (CETCE Iy (ik)"1%52 cos 0) sin 0,2 / (k1 'ka!),

V(k1, ko) € N2 kg + ko < m, )
( ) (M,ff) Uy tko)(ky ko) g g g P COS 9;“ sin 0;“2/(k1!k2!).
2 b

If we denote by foo = diag(dkRC, k from 1 to n+ 1) the block diagonal matriz with blocks of increasing size
dB¢ = (ik)k1I, € CFk, it is evident that M§ = DECME, therefore trigonometric functions are closely
related to interpolation properties of PWs.

Consider the two sets of functions
Fp = {0 cos* 0sin FO/(kI(K —k)),0<k<K<n}, and §,={0 expikd,—n <k <n}.

The first one, JF,, is a set of (n + 1)(n + 2)/2 functions. The second one, G,, is a set of 2n + 1 linearly
independent functions: indeed, any null linear combination of these functions > -, . vk exp(ikf) would
define a function f(x) =Y .., k2" that would be uniformly null on the circle |z| = 1, implying that
the polynomial 2. f(x) has an infinite number of roots ; hence all its coefficients v, are null. Moreover since

i0 —ioNF /o —ig\ K-k k K-k
koo oo K—k_ (€ te e’ —e _ 1 k\ (K —k\ icir2r-K)e
cos(0)" sin(0) = < 5 ) < 5; > = SKE=E E g <l> < . )e ,

=0 L=0

;

with — K <2[4+2L-K <K =%, C Span G,,

k
exp +ikf = Z (i) (41)® cos(0)*~* sin(h)® = G, C Span F,,
s=0
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we then have that Span F,, = Span G,, and in particular the space spanned by F, is of dimension 2n + 1.
Consider any matrix A7 € C(+1(+2)/2xNp defined for some {0 h1<i<n, € (R)N”, with N, > 2n+ 1, by

AZ = fi(0;), where f; denotes the elements of F,, (independently of their numbering).

Its rank is at most 2n + 1. This is a simple consequence of the fact that the dimension of Span F, is
2n+1 < (n+1)(n+2)/2: indeed, this implies that there exists a matrix C € C((n+1)(n+2)/2=2n=1)x(n+1)(n+2)/2
of rank (n +1)(n+2)/2 — 2n — 1 such that

(n+1)(n+2)/2
VieN,1<i<(n+1)(n+2)/2-2n—1, Y  Cyf;=0,
Jj=1

and therefore CAT = O((nt1)(n+2)/2—2n—1)xN, ; as a result the N, columns of A7 belong to the kernel of C,
which is of dimension 2n + 1; so the rank of A¥ is at most 2n 4 1. In particular the matrix MZ introduced
in Definition |§| is such a matrix A%, and is therefore of rank at most 2n + 1.

We know that MS = DEFCME and DEC is non-singular, so rk(M$) = rk(ME). The rank of MY is at most
equal to 2n + 1 for any choice of angles {6; € R, 1 <[ < p}. It was previously proved in Lemma 2 from [13]
that for p = 2n + 1 and directions such that {6; € [0,27),1 <1 < p,l # Iz = 0}, # 0;,} the matrix M{ has
rank 2n + 1. A trivial corollary of this proof is that, for any choice of p distinct angles in [0, 27),

rk(ME) =2n+1 = rk(MF) < p > 2n + 1. (32)

In [13] we also proved that the space F for the constant coefficient Helmholtz operator is equal to the range
of Mg for the corresponding wave number x. As a direct consequence, a space Vi = Span{expix(cos;(x —
xo) +sinb;(y —yo)),1 <1 < p} for any choice of distinct angles in [0, 27) satisfies the interpolation property
for the Helmholtz equation if and only if p > 2n + 1.

4.2 Generalized Plane Wave case

a?p?q
property (30)), we will rely on Proposition |§| to study the rank of the matrix (31)) built from GPWs. As in
the Helmholtz case, the proof relates the GPW matrix to the reference matrix, but here via an intermediate

transition matrix.

In order to prove that a GPW space Span V? (introduced in Deﬁnitionsatisﬁes the interpolation
(31

Definition 10. Consider a point (xo,y0) € R%, a given ¢ € N*, a given M € N, M > 2, a given set
of complez-valued functions o = {ag; € CI1 at (z0,0),0 < k+1 < M}, and the corresponding partial
differential operator Ly . For the corresponding set of GPWs, ng ={p :=expP,Vl € NIl < p, b €

[0,27),0;, # 0, Vl1 # la,k € C*}, we define the corresponding matriz , denoted M,,, as well as the
transition matriz MI7, by

(MZ7) (o k)b ha ) g4y g (ML0)M (A 1)F /(R k),
(Mn) o ) ) g 1= 95102 (o, o)/ (krlka!).

We first relate the transition matrix MI” to the reference matrix ME.

Lemma 7. Consider an open set 2 C R?, (x9,0) € 2, a given (M, n,p,q) € (N*)*, M > 2, and a given set
of complez-valued functions o = {ay, g, € €T H(Q),0 < ky + ka < M}, the corresponding partial differential

operator Ly and set of GPWs V&p,q. There exists a block diagonal non-singular matriz DET such that
MIT = DETME  independently of the number p of GPWs in ng.

Proof. As long as there are four complex numbers a, b, ¢, d such that

A a b cosf
VpeN,1<I<p, <)\é’?> = <c d> (sinHj)’
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then the diagonal blocks of DET = diag(d", K from 0 to n) of increasing size dif € CHEFDXE+) can be
built thanks to the following binomial formula

K—k k
AL VE—k(\L Yk K —k\ (k i B ki K k=] (00 0,V (gip @)K~
(ALo)™ " (Aoa)" = E E ; i) (cosB;)" ™ (sin ;)

i=0 j=0
since the coefficient of this linear combination of trigonometric functions are independent on . O
The following step is naturally to relate the GPW matrix M,, to the reference matrix MZ.

Proposition 7. Consider an open set  C R?, (zg,50) € Q, a given (M,n,p,q) € (N4 M > 2, ¢ >
n — 1, and a given set of complez-valued functions o = {ag, , € C™*Ma=1(Q) 0 < ky + kg < M}, the

corresponding partial differential operator Ly and set of GPWs A% There exists a lower triangular

a7p7q'
matriz LE, whose diagonal coefficients are equal all non-zero and whose other non-zero coefficients depend

only on derivatives of the PDE coefficients « evaluated at (xo,yo), such that
M, = L. ME

As a consequence rk(M,,) = rk(ME) independently of the number p of GPWs in VY g0 and both ILE|| and
|(LEY=Y|| are bounded by a constant depending only on the PDE coefficients a.

Remark 4. If n = 1, then the various matrices M belong to C**3, and we have M,, = MI" independently
of the value of q.

Proof. Let’s first relate M,, to M1". The polynomials R;; € C[X,Y] obtained in Proposition |§| have degree
dR;; <i+j— 1 and satisfy
V(Za]) € N27i +7<q+ 17VQDZ € Vg,p,q? 8;8;8@(1}0, yO) = (/\ll,O)Z()\ll,O)] + Rimj()\ll,()? >\ll70)‘ (33)
In order to apply this to all entries in the matrix M, it is sufficient for ¢ to satisfy n < ¢+ 1, which explains
the assumption on g. Therefore each entry (i,7) of the matrix M,, can be written as the sum of the (i, j)
entry of M1” and a linear combination of entries (k,5) of MI" for k < i. In other words, the existence of a
lower triangular matrix L, whose diagonal coefficients are 1 and whose other non-zero coefficients depend
only on the derivatives of the coefficients a evaluated at (xg, o), such that M,, = L1 - MI" is guaranteed
since the coefficients of R;; are independent of [ and any monomial in R; j(A1,0,A1,0) has a degree lower
than 7 + j.
As a consequence, the existence of L is guaranteed by Lemmalﬂsince LE .= LT .DET satisfies the desired
properties. [

Everything is now in place to state and finally prove the necessary and sufficient condition on the number
p of GPWs for the space ng to satisfy the interpolation property . We here turn to the specific case
of second order operators.

Theorem 1. Consider an open set Q C R?, (x9,90) € Q, M =2, a given (n,p,q) € (N*)3, n> M, q¢>n—1
and a given set of complex-valued functions a = {ou, g, € C"(2),0 < k1+ko < M}, the corresponding partial

differential operator Lr o and set of GPWs Vg%q. The space Vf = spaanjpﬁq satisfies the property

Yu € C"F2(Q) satisfying Loau = 0,Fu, € V§, 3 a constant C(Q,n) s. t.
V(l‘,y) € Q7 |U(CC, y) - Ua($07y0)| < C(Qan)H(‘T?y) - ('TOa ?/0)””“’

if and only if p > 2n + 1.

(34)
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Proof. Combining with Proposition 7} if ¢ > n — 1, we see immediately that rk(M,) = 2n + 1 if and
only if p > 2n + 1.
It is then sufficient to prove that the space

F, = {F e CHI(+2)/2 3y, ¢ @™(Q) satisfying Lo 40 =0

k1 ok
s.t. F(k1+k2)(12€1+k2+1) Thotl a:clayQU(anyO)/(klle!)} :
satisfies F,, C R(M,,), the range of M,,. To this end, we now define the space

8= {K e Cmlm212 35 ¢ €(Q) satisfying La.af(w,9) = O(|(w,9) — (v0,50) ")

s.t. K(k1+k2)(§1+k2+1)+k2+1 = 8];1852]0(1:0, yo)/(kl!kg!)} .

We can now see that

e R(M,,) C R independently of the value of p, since by construction of GPWs, as long as ¢ > n — 1, each
column of M,, belongs to RK;

e [F, C R, by definition of Fg;

e dim 8 = 2n+ 1, since - from the condition involving the Taylor expansion coefficients of L2 . f of order
up to n—2 at o, yo) set to zero - & € CHD"+2)/2 ig the kernel of a matrix A € C?(n—1/2x(n+1)(n+2)/2

with
V(i,j) € N* i+ j <n—LAGeen o (e o = 2,0(20,0) # 0 from Hypothesis [T}
o T it 1, Nititd) g = ¢
V(i,j) EN?i+j<n—1,ifi+j>i+jor ifi+j=i+7,7>]

A i oiaies - . =0
A (Hi+D) | oy q (GHI+2)GHI43) L54q =

so that A is of maximal rank while its kernel has dimension (n+1%(n+2 — n(n2—1) =2n+ 1.

Therefore, if p > 2n + 1, we obtain that R(M,,) = & and as a consequence F,, € R(M,,) as expected. This
concludes the proof. O

0

The necessary and sufficient condition on the number p of GPWs for the space V,, ,

interpolation property when M > 2 are still unknown.

to satisfy the

Remark 5. As in [13], the theorem holds for the Helmholtz equation with sign changing.

5 Numerical experiments

In [13], GPWs where constructed and studied for the Helmholtz equation with a variable and sign-
changing coefficient 5. The numerical experiments presented there were restricted to the Helmholtz equation
at one point (z,y0) € R?, but considered a propagative case i.e. B(wo,70) < 0, an evanescent case i.e.
B(zo,y0) > 0, a cut-off case i.e. B(zg,y0) = 0. They also considered a case not covered by the convergence
theorem, but important for future applications: considering GPWs centered at points (z,yo) at a distance
h from the cut-off.

Here, we are interested in illustrating the results presented in Theorem [I| Since the well known case of
classical PW for the constant-coefficient Helmholtz equation is included by the hypotheses of the theorem, we
cannot expect any improvement on the required number of basis functions p. However, we are interested in
exploring the impact of the order of approximation g on the convergence of , in particular for anisotropic
problems.
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5.1 Test cases

We propose here four different test cases. Each test case consists of a partial differential operator of second
order £, an exact solution u of the equation Lu = 0, as well as a computational domain Q C R?, such that
Hypotheses [1] and [2| hold at all (xg,yo) € 2. The characteristics of the partial differential operators that we
consider here are:

e polynomial coefficients «,

e non-polynomial coefficients «,

e anisotropy in the first order terms as @ (z,y) - V for a vector-valued function a;

e anisotropy in the second order terms as V - (A(x,y)V) for a matrix-valued function A.
We consider one partial differential operator is isotropic with polynomial coefficients:

LAd =—-A + Q(x + y)7
uad : (z,y) = Ai(z +y),
Oaq = (—2,2)2

We have £ 4u4g = 0 on R?, all the coefficients of £ 44 belong to €*°(R?) and the coefficients {a,{ig_ k=
0,1,2} satisfy

2
> g (wo, yo) XFY?F = X2+ V2 W(wo,p0) € R?,
k=0
so £ 44 satisfies Hypotheses [1| and [2 on R2. Note that the sign of the coefficient aOAfé(x, y) = 2(x +y) changes
in the computational domain along the curve x 4+ y = 0.
We consider a partial differential operator with non-polynomial coefficients of the terms of order 1 and
0, and anisotropy in the first order term:

Lje ::V.(x2v)+<cosy> V + (v? — 222 — siny),
¢ (2,y) = Ji(z) cosy,

E 1) % (0, 27).

We have LJCch = 0 on (0,00) x R, all the coefficients of £ ;. belong to C°(R* x R) and the coefficients
{akQ pik=0,1,2} satisfy

QJC.

2
Zai&_k(xo,yo)XkYQ*k =23(X?+Y?) V(zo,40) € R?,
k=0

so L. satisfies Hypotheses [T1] and 2] as long as x > 0.
We consider a partial differential operator with polynomial coefficients and anisotropy in the first and

second order terms:
L =V ’ V — C+(.’L’2+ 2—1)
JJ - 0 y2 y Yy 3

uyy (z,y) = Jo(x) 1 (y),
QJJ = (1,3) X (1,3)

We have Ljjuy; = 0 on (RT)2 all the coefficients of £;; belong to C°((R*)?) and the coefficients
{akQ wik=0,1,2} satisfy

2
Zozié_k(xo,yo)XkY%k =22 X2+ 2V Y(xo,y0) € R?,
k=0
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so L7 satisfies Hypotheses [I] and [2] as long as zy # 0.
Finally we consider a partial differential operator with non-polynomial coefficients and anisotropy in the
second order term:

Les =V - 1 . 0-Lcoszsiny V-0.1 cgsx( C.Osy) -V + (0.2sinzcosy — 1),
0.1coszxsiny —2 siny(—sin )

= 024 0.2cos xsiny 0,0y — 202 4 (0.2sinz cosy — 1),
Ues : (z,y) — cosxsiny,
ch = (_17 1)2.

We have £.sucs = 0 on R?, all the coefficients of £.s belong to €>°(R?) and the coefficients {ai‘f%k; k=0,1,2}
satisfy

2
> a0, y0) XY TF = (1 -
k=0

012 ) ) 0.1 2 )
5~ C0s” Zo sin yo> X“ -2 <Y — 5 Cos o siny0X> Y(xo,y0) € RZ,

so L., satisfies Hypotheses [1] and [2| on R2.
5.2 Implementation of the construction algorithm
For a linear second order operator
o0 = 2007 + a110:0y + 0 20; + 01,00, + 20,10y + o0
the associated operator 2‘24704 is defined by

SIQL{QP = ag,oaip + Oél,laxayp + Odo,gaip—i- a270(8xP)2 + oq,l@zP@yP + ao,g(é?yP)Q + Oél’oamp + Oé(],layp .

T Ts T

The implementation of Algorithm |I| simply requires, at each level £, the evaluation of {Nye 1,0 < I
£} to apply formula . At each level £ the coefficeints {u;j, (i,j) € N?,i +j < g+ 1} of Qg
Zogz’JrngJrS—l Xij(x —20)"(y — yo)’ are computed as

A

 fanyititi<g+1
Fiui == 0o otherwise,

and for 0 < I < £ the different contributions to N7 ¢_r can be described as follows:

e the linear contributions from first order terms 73

I £-1

>3 (D(I‘i”:‘]‘j)al,o(xo, v0) (i + Dpigr,j + DU ag 1 (2o, 30) (5 + 1)Mm‘+1)
i=0 j=0

e the non-linear contributions from the terms 75

I -1 i1 7N

=333 > (D (a0, go) it — 2+ D+ Dt —ivs 1 -gafin 1

i1=0 j1=0142=0 j2=0 . 4
+ D=2 0 3 (w0, o) (i1 — 2 + 1) (2 + 1) iy —ip+1,51—ja i jo-+1
+DI=E =0 0 o (w0, yo) (1 — 2 + 1) (J2 + 1)Mz‘1—z‘z,j1—j2+1mz,j2+1) :
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e the linear contributions from the second order terms T}
I -1
-> > <®<Iii’2717j)042,0(9007 Yo) (i 4 2)(i + 1)pisa,;
i=0 j=0
+DU=EE D 0y 1 (20, 90) (§ + 1) (i + Dptigr i1
+ DU =0 g 5 (20, 0) (5 + 2) (5 + 1)Mz‘,j+2) ;

e the contribution from the zeroth order term aygg

—DEED o (0, yo)-

Moreover, all experiments are conducted with the following choice of angles §; and x parameters to build

the GPW space V0, :
el::g+@, VIeN,1<<p,
K= +/—a0,0(T0,Y0)

5.3 Numerical results

The h-convergence results presented in Theorem |1f are stated as local properties at a given point. In order
to illustrate them, for each test case, we consider the following procedure.

e At each of 50 random points (xg,yo) in the computational domain 2

1. Construct the set of GPWs from Algorithm [I| with the normalization proposed in section

2. Compute u, the linear combination of GPWs studied in the theorem’s proof, matching its Taylor
expansion to that of the exact solution.

e Estimate as a function of A the maximum L error on a disk of radius h centered at the random point:

MaX (30, y0)en [t — Uall Loo ({(2,9)€R2,[(2,9)— (z0.90) [<h})-

We always consider a space V&p,q of p = 2n+ 1 GPWs. According to the theorem, we expect to observe

convergence of order n + 1 if the approximation parameter ¢ in the construction of the basis functions is
at least equal to n — 1. For each of the four test cases proposed, we present: on the one hand results for
n from 1 to 5 with ¢ = max(1,n — 1) (Left panel); on the other hand results for ¢ from 1 to 4 with n =4
(Right panel). Hence with the first choice of parameters the theorem predicts convergence of order n + 1,
while with the second choice the theorem does not cover these cases.

The results are presented in Figure [4] for the approximation of w4, Figure [5| for the approximation of
uje, Figure [6] for the approximation of wy;, and Figure [7] for the approximation of u.s. We observe on
Figures [4] and [7] the effect of the large condition number of the matrix M,,: even though the expected orders
of convergence are observed for large values of h, the error stagnates at a threshold for smaller values of h.
We also observe, on the left panels of Figures |§| and [7] that for all of our test cases the constant C'(2,n)
from in Theorem (1| does not seem to depend on n, even though the Theorem predicts that it does.

We summarize in the following table the orders of convergence observed, always using ng with p =
2n + 1. The bold entries correspond to cases covered by Theorem [1]i.e. n+ 1 for ¢ < n — 1, and the red
entries correspond to cases with order of convergence observed higher than the theorem predicts.

g\n|[1]2]3] 4 |5
1 (|2/3|3/3/4| 3
2 [|2]3(4]|>4|>4
3 12(3(4|>5] 5
4 [|2(3|4]|>5]| 6

We can see from this table that in all cases covered by the theorem, we observe a convergence rate equal or
slightly better than predicted. But it would seem that the hypotheses of the theorem are sharp.
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| | | |
100*_._71:1&(1:1 100’—o—n:4&q:1
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——n=3&qg=2 —e—n=4&q=3
10747—*—n=4&q:3 - 10747—*—n=4&q:4
——n=5&q=4ap s LM | o ||l order 3

max error on disks of radius h
max error on disks of radius h
1
1
1

------ order 2 order 5 K
1078 H--- order 6 A ] 1078 | K ]
10712 - . 10712 B ]
10_16 ] | | | 1 —16 | | | |
0% 10°¢ 10* 1072 10° 0% 10°% 10* 1072 10°
h h

Figure 4: GPW approximation of wsq by u, € Vg,p,q with p = 2n 4+ 1. We represent the L* error
max(;, y0)eQ [vad — UaHLoo({($7y)eR2,‘(m’y)_ zo.o)|<h})s for 50 random points (zo,y0) € Qaa. We compare
results for parameters satisfying Theorem [I| hypotheses i.e. ¢ = max(1,n — 1) (Left panel), and for varying

q with fixed n (Right panel).

| | | |
100*_._”:1&[]:1 100’—0—n:4&q:1
- n=2&q=1 M-n=4&q=2
——n=3&qg=2 —e—n=4&q=3
10_47—*—n:4&q:3 10_47—*—n:4&q:4
——n=5&q=4}p & MAgll | o || order 3

max error on disks of radius h

max error on disks of radius h
1
1
1

------ order 2 order 6 N
1078 H--- order 6 ; ] 1078 | ) ]
10_12 B / . 10—12 | |
1016 ‘ 1016 | \ | |
0% 106 107* 1072 109 0% 106 10* 1072 100
h h

Figure 5: GPW approximation of uj. by u, € V&p,q with p = 2n 4+ 1. We represent the L°° error
Max (5 40)eQ [Uie — Uall Loo ({(2,9)€R2,|(2,9)— (wo,y0)|<h})s for 50 random points (zo,y0) € j.. We compare
results for parameters satisfying Theorem (1| hypotheses i.e. ¢ = max(1,n — 1) (Left panel), and for varying

q with fixed n (Right panel).
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Figure 6: GPW approximation of uj; by u, € Vg,p,q with p = 2n 4+ 1. We represent the L* error
MaxX (o vo)eq |Ws7 — all oo ({(2,9)€R2, (@)~ (z0,50)|<h})> for B0 random points (zo,y0) € 2s5. We compare
results for parameters satisfying Theorem [I| hypotheses i.e. ¢ = max(1,n — 1) (Left panel), and for varying

q with fixed n (Right panel).

| | | |
'i 1007—0—n:1&q:1 ] ,qm 1007—0—n:4&q:1 |
% - n=2&q=1 2 % - n=4&qg=2 |
& —-n=3&qg=2 ' & —-n=4&q=3 !
— 14 L B — —4 | N
”5 10 ——n=4&q=3]. f - 10 ——n=4& q=4 '
0 ——n=5&q=4| ' w1 order 3 N
é ------ order 2 K 'é --- order 6 'l'
< 1078 ]--- order 6 ’ 1= 1078} d |
g 1 g 1
o l’ o
— —
c s
qu 10—127 ] B 10—127 ]
" "
< 9]
E 16 l l l l 8 16 l l l l
107 8 6 4 2 0 107 8 6 4 2 0
10~ 10~ 10~ 10~ 10 10~ 10~ 10~ 10~ 10
h h

Figure 7: GPW approximation of u.s by u, € Vg’p’q with p = 2n + 1. We represent the L™ error
MaxX (5 40)€Q [tes —Uall Loo ({(2,y)eR2, | (2,9)— (z0,50)|<h})» fOr 50 random points (w0, yo) € Qes. We compare results
for parameters satisfying Theorem [1| hypotheses i.e. ¢ = max(1,n — 1) (Left panel), and for varying g with

fixed n (Right panel).
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6 Conclusion

In this work we have considered local properties in the neighborhood of a point (g, 3) € R?, for an operator
L. To summarize, we followed the steps announced in the introduction:

1. construction of GPWs ¢ such that Ly q¢(z,y) = O (||(z,y) — (z0,v0)]|9)

(a) choose an ansatz for ¢(x,y) = exp Z Nij(z — 20) (y — yo)?

0<i+j<dP
(b) identify the corresponding Ny, = WH)QM degrees of freedom, and Negp, = Q(q; D constraints,

namely respectively

{Xij; (4,4) € N?,0 <i + j < dP},
{DUD Laap(xo,yo) = 05 (1, ) € N%,0 < T+ J < g}.

(c) for dP = g+ M — 1, the number of degrees of freedom is Ngof = (M+q)(2¢+1) > Negn and this
ensures that there are linear terms in all the constraints

(d) identify Ngor — Negn = Mq + %ﬂ additional constraints, namely
Fixing {\;;, (i,7) € N*,i+j <q+ M and i < M}

to obtain a global system that can be split into a hierarchy of linear triangular subsystems

e) compute the remaining N,,, degrees of freedom by forward substitution for each triangular sub-
p g Neq g Y g
system, therefore at minimal computational cost

2. interpolation properties

(a) thanks to the normalization, in particular {\; ; = 0, (4,5) € N%,i+j < M+q and i < M,i+j # 1},
study the properties of the remaining Neg, degrees of freedom, that is {);;, (¢,7) € N2 i+j<
M + g and i > M}, with respect to (A1,0,Ao,1)

(b) identify a simple reference case depending only on two parameters, that is basis functions ¢(x, y) =
exp A o(x — o) + Ao,1(y — yo) depending only on the choice of (A1, Xo,1), independently of ¢
being an exact solution to the constant coeflicient equation

(c) study the interpolation properties of this reference case with classical PW techniques
(d) relate the general case to the reference case thanks to

(e) prove the interpolation properties of the GPWs from those of the reference case

This construction process guarantees that the GPW function ¢ satisfies the approximate Trefftz property
Larap(z,y) = O(||(z,y) — (x0,y0)[|?) independently of the normalization, that is the values chosen for
{Xij, (i,7) € N?,i+ j < M}, while the proof of interpolation properties heavily rely on the normalization.

This work focuses on interpolation of solutions of a PDE, and is limited to local results, in the neigh-
borhood of a given point. In order to address the convergence of a numerical method for a boundary value
problem on a domain 2 with a GPW-discretized Trefftz method, on a mesh T} of 2, we will consider a
space Vj, of GPWs built element-wise, at the centroid (zo,y0) = (xx, yx) of each element K € Ty, to study
interpolation properties on 2. In particular, meshing the domain 2 to respect any discontinuity in the coef-
ficients, the interpolation error on , ||(I — Py, )||, will converge at the same order as the local interpolation
error on each element, and the crucial point will be to investigate the behavior of the constant C'(€2,n) from
Theorem [1] Related computational aspects of the construction of GPWs proposed in this work are currently
under study.
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A Chain rule in dimension 1 and 2

For the sake of completeness, this section is dedicated to describing the formula to derive a composition of
two functions, in dimensions one and two. A wide bibliography about this formula is to be found in [25]. Tt is
linked to the notion of partition of an integer or the one of a set. The 1D version is not actually used in this
work but is displayed here as a comparison with a 2D version, mainly concerning this notion of partition.

A.1 Faa Di Bruno Formula

Faa Di Bruno formula gives the mth derivative of a composite function with a single variable. It is named
after Francesco Faa Di Bruno, but was stated in earlier work of Louis F.A. Arbogast around 1800, see [6].
If f and g are functions with sufficient derivatives, then

m by,
dm b 1 g(k
d:):mf( = m! E FExbe)(g |:| bl ( ;

where the sum is over all different solutions in nonnegative integers (by) ke[l,m] Of > kb = m. These
solutions are actually the partitions of m.

A.2 Bivariate version

The multivariate formula has been widely studied, the version described here is the one from [5] applied to
dimension 2. A linear order on N? is defined by: V(u,v) € (NQ)Q, the relation p < v holds provided that

1. w1+ pe < vy + 19 or
2. u1+p2=v1 4+ 1o and puy < vy.
If f and g are functions with sufficient derivatives, then
o ) 51 ky
0L09 f(g(a,y)) = il3t > Ha(z,y)) o (Zm 0! if(g(rc,y))) ,
1<p<itj S=1 py (1)) =1 "1 \NH
where the partitions of (i, j) are defined by the following sets: Vu € [1,i+ j], Vs € [1,i + j], ps((4,5), p) is

equal to

{(kl,...,ks;(il,m,--- (s ds)) i > 0,0 < (i1, 1) <o+ < (is,s), D k= p, Y ki = i,y _ kg —j}.
=1 =1 =1

See [11] for a proof of the formula interpreted in terms of collapsing partitions.

B Faa di Bruno

The multivariate formula has been widely studied, the version described here is the one from [5] applied to
dimension 2. A linear order on N? is defined by: V(u,v) € (NQ)Q, the relation p < v holds provided that

1. g1+ pe < vy + 19 or

2. u1+p2=v1+rvo and puy < vy.
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If f and g are functions with sufficient derivatives, then

l-‘r] S 1 kl
) — 45 _ ou It
DL f(gla,y)) =dljt > fW > ol (u']z' 030 (g(x, ))) :
1§/LSZ+] s=1 ps((ld)vﬂ) =1
/ s km
kat—k P(zy) _ P(z, im Jm
o teed <pie—ny 0SS ST ] o ()
1<pu<t s=1 ps((kl—k),u) m=1

where the partitions of (4, j) are defined by the following sets: Vu € [1,i + j], Vs € [1,i + j], ps((i,7), p) is
equal to

{(kla”'ak;s; (ilvjl)u" : )(iS)jS)) : k’b > 070 < (i17j1) <= (isvjs)vzkl - ,Ufazk;lil - iuzkljl :j} .
=1 =1 =1

Note that s is the number of different terms appearing in the product, while p is the number of terms in the
product counting multiplicity, k;, is the multiplicity of the mth term in the product, while ps represents the
possible partitions of (i, j).

Note that since ky, > 0, the condition 7 _, kp, = p implies that g =" 1 ky >> 0 1=

C Polynomial formulas

Here are two important comments. The first one concerns the product of polynomials. Assume that
min(D1, Dy) > q. Then the product of two polynomials, respectively of degree D; and Ds, satisfies:

I S i1 Copi2002 | — e~ iod q
E E Piy,j1 TY E E Qiz,jo X "Y" | = E E E ,E :pi—i,j—jqi,j z'y’ + O(h?).
i1=0 j1=0 i2=0 jo=0 =0 j=0 \i=0 j=0

Since in particular the summation indices are such that 0 <7 <4, 0<i—i<i,0<j<j,and0< j—j < 7,
the only coefficients p; ; and ¢; ; appearing in the (o, Jy) coefficient of the product have a length of the
multi-index i + j < Iy + Jy. As a consequence, the only coefficients of several polynomials appearing in the
(Lo, Jo) coefficient of the product these several polynomials have a length of the multi-index i + j < Iy + Jp.
The second comment turns to the derivative of a polynomial:

D D—i . D—I—J D—I—J—i G4 DG+ ) .
DD pgaly’ | = ) il P LI Y
i=0 j=0 i=0 j=0 : J:

In particular the only coefficients p; ; appearing in the (lo, Jy) coefficient of the derivative has a length of
the multi-index ¢+ j =1+ J + Iy + Jo.
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