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Abstract

We study Tikhonov regularization for possibly nonlinear inverse problems with
weighted ¢£!-penalization. The forward operator, mapping from a sequence space to
an arbitrary Banach space, typically an L2-space, is assumed to satisfy a two-sided
Lipschitz condition with respect to a weighted £2-norm and the norm of the image
space. We show that in this setting approximation rates of arbitrarily high Holder-type
order in the regularization parameter can be achieved, and we characterize maximal
subspaces of sequences on which these rates are attained. On these subspaces the
method also converges with optimal rates in terms of the noise level with the discrep-
ancy principle as parameter choice rule. Our analysis includes the case that the penalty
term is not finite at the exact solution ("oversmoothing’). As a standard example we
discuss wavelet regularization in Besov spaces B .1- In this setting we demonstrate in
numerical simulations for a parameter identification problem in a differential equa-
tion that our theoretical results correctly predict improved rates of convergence for
piecewise smooth unknown coefficients.

Mathematics Subject Classification Primary 65J15 - 65J20 - 65N20 - 65N21;
Secondary 97N50

1 Introduction
In this paper we analyze numerical solutions of ill-posed operator equations
F(x) =g

with a (possibly nonlinear) forward operator F' mapping sequences x = (X;)jecx
indexed by a countable set A to a Banach space Y. We assume that only indirect, noisy
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observations g° € Y of the unknown solution x” € R4 are available satisfying a

deterministic error bound ||g°* — F (x")|ly < 6.
For a fixed sequence of positive weights (r ;) je4 and a regularization parameter
a > 0 we consider Tikhonov regularization of the form

A . 1
%o € argmin | ~[|g°® — F(0)|3 4+« E 1% @
xeD 2
jeA

where D C R“ denotes the domain of F. Usually, x7 is a sequence of coefficients
with respect to some Riesz basis. One of the reasons why such schemes have become
popular is that the penalty term o ) ; jealj r:|x;| promotes spaIsHy of the estimators
Xo in the sense that only a finite number of coefficients of X, are non-zero. The
latter holds true if (rj)jea decays not too fast relative to the ill-posedness of F' (see
Proposition 3 below). In contrast to [29] and related works, we do not require that
(rj) jea is uniformly bounded away from zero. In particular, this allows us to consider
Besov B?, |-norm penalties given by wavelet coefficients. For an overview on the use
of this method for a variety linear and nonlinear inverse problems in different fields
of applications we refer to the survey paper [26] and to the special issue [27].

Main contributions: The focus of this paper is on error bounds, i.e. rates of
convergence of £, to xT in some norm as the noise level § tends to 0. Although most
results of this paper are formulated for general operators on weighted £!-spaces, we
are mostly interested in the case that x; are wavelet coefficients, and

F=GoS (2)

is the composition of a corresponding wavelet synthesis operator S and an operator G
defined on a function space. We will assume that G is finitely smoothing in the sense
that it satisfies a two-sided Lipschitz condition with respect to function spaces the
smoothness index of which differs by a constant a > 0 (see Assumption 2 below and
Assumption 3 for a corresponding condition on F'). The class of operators satisfying
this condition includes in particular the Radon transform and nonlinear parameter iden-
tification problems for partial differential equations with distributed measurements. In
this setting Besov Bj |-norms can be written in the form of the penalty term in (1). In
a previous paper [24] we have already addressed sparsity promoting penalties in the
form of Besov B0 -norms with p € [1, 2]. For p > 1 only group sparsity in the levels
is enforced, but not sparsity of the wavelet coefficients within each level. As a main
result of this paper we demonstrate that the analysis in [24] as well as other works
to be discussed below do not capture the full potential of estimators (1), i.e. the most
commonly used case p = 1: Even though the error bounds in [24] are optimal in a
minimax sense, more precisely in a worst case scenario in B;, -balls, we will derive
faster rates of convergence for an important class of functions, which includes piece-
wise smooth functions. The crucial point is that such functions also belong to Besov
spaces with larger smoothness index s, but smaller integrability index p < 1. These
results confirm the intuition that estimators of the form (1), which enforce sparsity
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Maximal spaces for approximation rates in £'-regularization 343

also within each wavelet level, should perform well for signals which allow accuratele
approximations by sparse wavelet expansions.

Furthermore, we prove a converse result, i.e. we characterize the maximal sets on
which the estimators (1) achieve a given approximation rate. These maximal sets turn
out to be weak weighted £’-sequences spaces or real interpolation spaces of Besov
spaces, respectively.

Finally, we also treat the oversmoothing case that »_ jeal; |x;| = 00, i.e. that the
penalty term enforces the estimators £ to be smoother than the exact solution x . For
wavelet B} .1 Besov norm penalties, this case may be rather unlikely for » = 0, except
maybe for delta peaks. However, in case of the Radon transform, our theory requires
us to choose r > %, and more generally, mildly ill-posed problems in higher spatial
dimensions require larger values of r (see Eq. (7a) below for details). Then it becomes
much more likely that the penalty term fails to be finite at the exact solution, and it is
desirable to derive error bounds also for this situation. So far, however, this case has
only rarely been considered in variational regularization theory.

Previous works on the convergence analysis of (1): In the seminal paper [11]
Daubechies, Defrise & De Mol established the regularizing property of estimators of
the form (1) and suggested the so-called iterative thresholding algorithm to compute
them. Concerning error bounds, the most favorable case is that the true solution xTis
sparse. In this case the convergence rate is linear in the noise level §, and sparsity of
xT is not only sufficient but (under mild additional assumptions) even necessary for a
linear convergence rate [21]. However, usually it is more realistic to assume that x*
is only approximately sparse in the sense that it can be well approximated by sparse
vectors. More general rates of convergence for linear operators F were derived in [4]
based on variational source conditions. The rates were characterized in terms of the
growth of the norms of the preimages of the unit vectors under F* (or relaxations)
and the decay of x'. Relaxations of the first condition were studied in [15-17]. For
error bounds in the Bregman divergence with respect to the £!-norm we refer to [5].
In the context of statistical regression by wavelet shrinkage maximal sets of signals
for which a certain rate of convergence is achieved have been studied in detail (see
[9D.

In the oversmoothing case one difficulty is that neither variational source condi-
tions nor source conditions based on the range of the adjoint operator are applicable.
Whereas oversmoothing in Hilbert scales has been analyzed in numerous papers (see,
e.g., [22,23,30]), the literature on oversmoothing for more general variational regular-
ization is sparse. The special case of diagonal operators in £!-regularization has been
discussed in [20]. In a very recent work, Chen et al. [7] have studied oversmoothing
for finitely smoothing operators in scales of Banach spaces generated by sectorial
operators.

Plan of the remainder of this paper: In the following section we introduce our
setting and assumptions and discuss two examples for which these assumptions are
satisfied in the wavelet-Besov space setting (2). Sections 3-5 deal with a general
sequence space setting. In Sect. 3 we introduce a scale of weak sequence spaces
which can be characterized by the approximation properties of some hard thresholding
operator. These weak sequence spaces turn out to be the maximal sets of solutions on
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which the method (1) attains certain Holder-type approximation rates. This is shown
for the non-oversmoothing case in Sect. 4 and for the oversmoothing case in Sect. 5.
In Sect. 6 we interpret our results in the previous sections in the Besov space setting,
before we discuss numerical simulations confirming the predicted convergence rates
in Sect. 7.

2 Setting, assumptions, and examples

In the following we describe our setting in detail including assumptions which are
used in many of the following results. None of these assumptions is to be understood
as a standing assumption, but each assumption is referenced whenever it is needed.

2.1 Motivating example: regularization by wavelet Besov norms

In this subsection, which may be skipped in first reading, we provide more details on
the motivating example (2): Suppose the operator F' is the composition of a forward
operator G mapping functions on a domain 2 to elements of the Hilbert space Y and a
wavelet synthesis operator S. We assume that §2 is either a bounded Lipschitz domain
in R9 or the d-dimensional torus (R/Z)d , and that we have a system (¢; ) (j x)ea of
real-valued wavelet functions on £2. Here the index set A := {(j, k): j € No, k € A}
is composed of a family of finite sets (A ;) jen, corresponding to levels j € No, and the
growths of the cardinality of these sets is described by the inequalities 27¢ < | A il =<
C 4279 for some constant C4 > 1 and all j € Np.
For p, q € (0, 00) and s € R we introduce sequence spaces

b= {xe RA: [lxls,p,q < 00} with
q
! 3)
i +i_i
0 g = 3 29D [
J€No keA;

with the usual replacements for p = oo or ¢ = oo. It is easy to see that bfp’ g are
Banach spaces if p, g > 1. Otherwise, if p € (0, 1) or ¢ € (0, 1), they are quasi-
Banach spaces, i.e. they satisfy all properties of a Banach space except for the triangle
inequality, which only holds true in the weaker form |lx + yl, , < C(lxl,,, +
Iylly,,) with some C > 1. We need the following assumption on the relation of the
Besov sequence spaces to a family of Besov function spaces ny’ 4 (82) via the wavelet

synthesis operator (Sx)(r) := Z(j’k)eA XjkPji(r).

Assumption 1 Let spax > 0. Suppose that (¢;x)(j.x)ea is a family of real-valued
functions on §2 such that the synthesis operator

S: b;’q — B;’q(Q) given by x — Z XjkPjk
(j.keA
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Maximal spaces for approximation rates in £'-regularization 345

is a norm isomorphism for all s € (—smax, Smax) and p,g € (0, co] satisfying
s € (0p — Smax, Smax) With 0, = max [d (% — 1) ,O}.

Note that p > 1 implies o, = 0, and therefore S is a quasi-norm isomorphism for
|s| < Smax 1n this case.

We refer to the monograph [32] for the definition of Besov spaces B}‘,, q (£2), different
types of Besov spaces on domains with boundaries, and the verification of Assumption
1.

As main assumption on the forward operator G in function space we suppose that
it is finitely smoothing in the following sense:

Assumption2 Leta > 0, Dg C Bz_g (£2) be non-empty and closed, Y a Banach
space and G: Dg — Y a map. Assume that there exists a constant L > 1 with

1
Z”fl - leleféz <IIG(f1) — G(f)lly < Llfi — lelgig forall f1, f2 € Dg.

Recall that B2 5 (£2) coincides with the Sobolev space H ™% (§2) with equivalent norms.
The first of these inequalities is violated for infinitely smoothing forward operators
such as for the backward heat equation or for electrical impedance tomography.

In the setting of Assumptions 1 and 2 and for some fixed r > 0 we study the
following estimators

. 1
fu = S%y with %, € argmin [-n obs G(Sx)||Y+oe||x||r11] 4)
XES_I(D(;)

We recall two examples of forward operators satisfying Assumption 2 from [24] where
further examples are discussed.

Example 1 (Radon transform) Let 2 C RY, d > 2 be a bounded domain and
Y = L?*(5?7! x R) with the unit sphere S~! := {x € R? : |x|» = 1}. The
Radon transform, which occurs in computed tomography (CT) and positron emission
tomography (PET), among others, is defined by

(Rf)(0,1) := / f)dx, 60es ek

{x:x-0=g}

It satisfies Assumption 2 with a = %

Example 2 (Identification of a reaction coefficient) Let 2 C R, d € {1,2,3} be
a bounded Lipschitz domain, and let f : £2 — [0,00) and g : 92 — (0, 0c0) be
smooth functions. For ¢ € L°(£2) satisfying ¢ > 0 we define the forward operator
G (c) := u by the solution of the elliptic boundary value problem

—Au+cu=f inf2,

5
u=g on ds2. ©)

Then Assumption 2 with @ = 2 holds true in some L?-neighborhood of a reference
solution ¢y € L*°(£2), ¢g > 0. (Note that for coefficients ¢ with arbitrary negative
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values uniqueness in the boundary value problem (5) may fail and every L>-ball
contains functions with negative values on a set of positive measure, well-posedness
of (5) can still be established for all ¢ in a sufficiently small L2-ball centered at c(.
This can be achieved by Banach’s fixed point theorem applied to u = ug + (=A +
co) " Nu(co—c)) where ug := G(co) and (—A+cp) ™ 1f solves (S) withc = ¢, f = f
and g = 0, using the fact that (—A 4 c) ™' maps boundedly from L'(£2) ¢ H™2(£2)
to L2(2) ford < 3.)

2.2 General sequence spaces setting

Let p € (0,00), and let w = (w j) jea be a sequence of positive reals indexed by
some countable set A. We consider weighted sequence spaces 65 defined by

1

e = {x e R": |Ix|l,, <oo} with |x|,, = Za)p|x]|P . (6)
jeA

Note that the Besov sequence spaces bj, , defined in (3) are of this form if p =q < 00,

more precisely ), , = ¢4, ~with equal norm for (o, ,)(j.0 = QI +e—5 ) Moreover,
the penalty term 1n is g1ven by a ||-|l,,1 with the sequence of welghts r=(r;) Je A

Therefore, we obtain the penalty terms «||-||5,1,1 in (4) for the choice r ; Tk = =2/ (r -2
We formulate a two-sided Lipschitz cond1t10n for forward operators F on general

sequence spaces and argue that it follows from Assumptions 1 and 2 in the Besov

space setting.

Assumption 3a = (a )jea 1s a sequence of positive real numbers with

a]r/ — 0.! Moreover, DF C Ez is closed with Dg N Zl # ) and there exists a

constant L > 0 with

% Hx(l) —x® H ,SIFGED) = Fa®)ly < L me —x@
a,

a,2
for allx(]),x(z) € Dp.
Suppose Assumptions 1 and 2 hold true, and let
5" r < a < Smax, (7a)
r=0, (7b)
S™H(Dg) N} | # 0. (7¢)

With a4 =2"andr;, = 2/7=9) we have €z = by5 and €] = bf ;. Then
aj, kr k — 0. As S: bz_z — B, (.Q) is a norm isomorphim Dr := &~ (Dg) is
closed and F:= GoS: Dp — Y satisfies the two-sided Lipschitz condition above.

! This notion means that for every ¢ > 0 all but finitely many j € A satisfy a i g]fl <e.
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Maximal spaces for approximation rates in £'-regularization 347

In some of the results we also need the following assumption on the domain D of
the map F.

Assumption 4 Dr is closed under coordinate shrinkage. Thatis x € Dr and z € 63
with |z;| < |x;] and sgnz; € {0, sgnx;} forall j € Aimplies z € DF.
Obviously, Assumption 4 is satisfied if D is a closed ball {x € 23 xllg,p < p}in
some Eg space centered at the origin.

Concerning the closedness condition in Assumption 3, note that such balls are
always closed in €2 as the following argument shows: Let x¥) — x as k — oo
in Eé and [x® ”w; < p for all k. Then x® converges pointwise to x, and hence

Y jer @ lxj 1P = limg o Zjergjﬂxj")w < pP for all finite subsets I" C A. This
shows ||x||@p < p.

In the case that D is a ball centered at some reference solution xo # 0, we
may replace the operator F' by the operator x — F(x + xo). This is equivalent to
using the penalty term o ||x — xol|, ; in (1) with the original operator F, i.e. Tikhonov
regularization with initial guess xo. Without such a shift, Assumption 4 is violated.

2.3 Existence and uniqueness of minimizers

We briefly address the question of existence and uniqueness of minimizers in (1).
Existence follows by a standard argument of the direct method of the calculus of
variations as often used in Tikhonov regularization, see, e.g., [31, Thm. 3.22]).

Proposition 3 Suppose Assumption 3 holds true. Then for every g° € Y and o > 0
there exists a solution to the minimization problem in (1). If D = Ez and F is linear,
then the minimizer is unique.

Proof Let (x™),cy be a minimizing sequence of the Tikhonov functional. Then
Hx(”) Hr | is bounded. The compactness of the embedding Z} C 65 (see Proposi-
tion 31 in the “Appendix”’) implies the existence of a subsequence (w.l.0.g. again the
full sequence) converging in |||, » to some x € EZ. Then x € D as Dp is closed.
The second inequality in Assumption 3 implies

lim g — Fx™)[13 = 1g° — F()II3.
n—oo

Moreover, for any finite subset I C A we have

> rjljl =tim Y x| < liminf Hx<">
jer jer

9
r,1

and hence |x|,; < liminf, ”x(”) ”r - This shows that x minimizes the
Tikhonov functional. -
In the linear case the uniqueness follows from strict convexity. O

Note that Proposition 3 also yields the existence of minimizers in (4) under Assump-
tions 1 and 2 and Egs. (7).
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348 P. Miller, T. Hohage

IfF=A: 62 — Y is linear and satisfies Assumption 3, the usual argument (see,
e.g., [29, Lem. 2.1]) shows sparsity of the minimizers as follows: By the first order
optimality condition there exists & € 9 [|||, | ()2,1) such that & belongs to the range of

the adjoint A*, thatis & € 62 _, and hence a |§]| — 0. Since a;r; ~1 5 0, we have

a; < r; for all but finitely many j. Hence, We obtain |§;| < r;, forcing x; = 0 for all
but finitely many ;.

Note that for this argument to work; it is enough to require that g ; g;l is bounded
from above. Also the existence of minimizers can be shown under this weaker assump-
tion using the weak*-topology on Z} (see [14, Prop. 2.2]).

3 Weak sequence spaces

In this section we introduce spaces of sequences whose bounded sets will provide
the source sets for the convergence analysis in the next chapters. We define a specific
thresholding map and analyze its approximation properties.

Letus first introduce a scale of spaces, part of which interpolates between the spaces
Z} and E,% involved in our setting. For ¢ € (0, 2] we define weights

2 2 2
(@)= (@~ 2. (®)
Note that w; = r and @, = a. The next proposition captures interpolation inequalities
we will need later.

Proposition 4 (Interpolation inequality) Ler u, v,t € (0,2] and 6 € (0, 1) with % =
% + %. Then

1-6 0
lxllg,.r < ”x”QuM ||x||%v forall x € Ezu N E;v'

Proof We use Holder’s inequality with the conjugate exponents (114_9)1 and g

[(E=D)] ot

2 22 u 2 22
Il = (@23 1) (a3 2 l)

jeA
(1-6)t ot
<
< xS ey,

O

Remark 5 In the setting of Proposition 4 real interpolation theory yields the stronger
statement Zt o, (Z L )9 + with equivalent quasi-norms (see, e.g., [19, Theorem
2]). The stated 1nterp01at10n inequality is a consequence.

For ¢t € (0, 2) we define a weak version of the space Zt@;'

Definition 6 (Source sets) Let t € (0, 2). We define

= {x e R4: x|y, < o0}
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with
1
7
- 2.2
il := Supa ZQJ Kj]l{gjzlja<|x/'\}
o= jeA
Remark 7 The functions || - ||, are quasi-norms. The quasi-Banach spaces k;, are

weighted Lorentz spaces. They appear as real interpolation spaces between weighted
L? spaces. To be more precise [19, Theorem 2] yields k; = (€% , €7 )9, 0o With equiv-
alence of quasi-norms for u, v, t and 6 as in Proposition 4. B

Remark 8 Remarks 5 and 7 predict an embedding
ol = (08 05 Yo C (€4 €5 V.00 = Ki.

Indeed the Markov-type inequality

t -2.2 2t—2 2—t t t

. ! _ < X . F —

o' Y a; Eilatr sy = 2245 8 il =1xlly, .
jeA jeA

proves || - llg, < II'll, .-

Fora; = r; =1 we obtain the weak {,-spaces k; = {; o that appear in nonlinear
approximation theory (see e.g. [8,10]).

We finish this section by defining a specific nonlinear thresholding procedure
depending on r and a whose approximation theory is characterized by the spaces
k. This characterization is the core for the proofs in the following chapters. The state-
ment is [10, Theorem 7.1] for weighted sequence space. For sake of completeness we
present an elementary proof based on a partition trick that is perceivable in the proof
of [10, Theorem 4.2].

Let @ > 0. We consider the map
xj it a;ra < |xj|

T,: R > R4 by Ty(x)) = 7= .
0 else

Note that

2 -2.2 2 2
oY a7y gy < 1Tl < X155
jeA
;213 is bounded away from zero. Hence, in this case

we see that the set of j € A with c_z]fzgja < |x;| is finite, i.e. Ty (x) has only finitely

many nonvanishing coefficients whenever x € Zg.

Ifa;r /71 is bounded above, then a
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Lemma9 (Approximation rates for T,,) Let0 <t < p <2andx € R4, Thenx € k;
I—J
if and only if y (x) :=supy-gc 7 [lx — T (x)|ly p <00
More precisely we show bounds

t
1 - 1
() <27 =1)"7 lxllf and x|l < 20— )Ty ()"

Proof We use a partitioning to estimate

P _ 2p=2 2-p,_p
I = Ta @), p = D a3 "ry "I 02, o
jeA

2p 2 2 )4 P
- ZZ |x1| ]1 _2r 2= kDo <|xj|<a;r ;2 a}
k= O]GA

<ap22 kaa

2£./2—(k+1>a<‘xj|}

]EA
—t t Ht t—prk
<o xl},2 Z(z )
k=0

= P2 (277 — 1) |x]lf -

A similar estimation yields the second inequality

gﬁfzf.%ﬂ{gjzz,-a<|xj|} ZZ“ il
je

2 Zka<|x,|<a 2k e}
k= OJGA

—p kp 2p— 2 2 P
<o 22 24T I a2, kg
JjeA

)
=qa P ZZ*kP ||x — Toi+14(x) ”Z

k=0

<alymr2rTy @
k=0
=a ly()P2r (2" - 1)71 .

O
Corollary 10 Assume ajr is bounded from above. Let 0 <t < p < 2. Then k,
P . More precisely, there is a constant M > 0 depending on t, p and SUPjcp
such that ||-ll, p < M1l - lg,-

]
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Proof Let x € k;. The assumption implies the existence of a constant ¢ > 0 with
c=aj foralljeA Let @ > 0. Then

Cz]l 2rja<ixgll = <> a;’r;] T2y sty = < lxllje”

jeA jeA

Inserting o := 2||x|lx, ¢ 7 implies g;zgl/& > |x;| forall j € A. Hence, Tz(x) = 0.

1
With C =2 (277" — 1)" 7 Lemma 9 yields

= p=t  t=p
Ixllg,.p = ¥ = Ty, p < Clxligoe 7 =27 Cc x|
O

Remark 11 (Connection to best N-term approximation) For better understanding of
the source sets we sketch another characterization of k;. For z € R4 we set S(x) :=
ZjeA a;: r ]l {z; 0} Note that for aj=r;=1we simply have S(x) = #supp(x).
Then for N > 0 one defines the best approximation error by

on(x) :==inf {|lx — zll,2 : S(2) < N}.

Using arguments similar to those in the proof of Lemma 22 one can show that for
t € (0,2) we have x € k; if and only if the error scales like oy (x) = O(N%*%).

4 Convergence rates via variational source conditions

We prove rates of convergence for the regularization scheme (1) based on variational
source conditions. The latter are nessecary and often sufficient conditions for rates of
convergence for Tikhonov regularization and other regularization methods [13,25,31].
For ¢!-norms these conditions are typically of the form

B fo —xHr . Hx'H =l = v (||F(x) — F(x*)u%{) forall x € D N ¢!
) ) ©)

with B € [0, 1] and v : [0,00) — [0, 00) a concave, stricly increasing function
with 1/ (0) = 0. The common starting point of verifications of (9) in the references
[4,15,16,24], which have already been discussed in the introduction, is a splitting of
the left hand side in (9) into two summands according to a partition of the index set
into low level and high level indices. The key difference to our verification in [24] is
that this partition will be chosen adaptively to xT below. This possibility is already
mentioned, but not further exploited in [18, Remark 2.4] and [15, Chapter 5].
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352 P. Miller, T. Hohage

4.1 Variational source conditions

We start with a Bernstein-type inequality.

Lemma 12 (Bernstein inequality) Let t € (0, 2), xt ek and o > 0. We consider
N L2 il
Ay :={j e A: a;°rjo < |xj|}

and the coordinate projection Py: RY — R4 onto A, given by (Pyx)j = xj if
J € Ay and (Pyx)j := 0 else. Then

L i
-z 2
IPaxlly < X2 xllao forall x €.

Proof Using the Cauchy—Schwarz inequality we obtain

-1
| Paxlly = <c_z,- g,]l{ajzrjw_;l}) (a;s1)

JjeA
1 1
2 2
-2.2 21,12
= | a0 ey | | 2@l
jeA ' ' jeA
Lot
< I I2 e lxllas -

]

The following lemma characterizes variational source conditions (9) for the embedding
operator Zi — Eg (ifa jgjfl — 0) and power-type functions ¥ withf = land 8 =0
in terms of the weak sequence spaces k; in Definition 6:

Lemma 13 (Variational source condition for embedding operator) Assume x7 € E}
and t € (0, 1). The following statements are equivalent: N

i) x¥ e k.
(i) There exist a constant K > 0 such that

2-2t
2—t

(10)

A A S e
> r, -

r

a2

forall x € ¢}.
(i) There exist a constant K > 0 such that
2-2t
2—t

e, v < =
r,l a2

forall x & €} with |x;| < |x]| forall j € A.
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Maximal spaces for approximation rates in £'-regularization 353

More precisely, (i) implies (ii) with K = (2 + 42" — 1)_1)||x']'||,? and (iii) yields
the bound ||xT||kt < K$.

Proof First we assume (i). For « > 0 we consider P, as defined in Lemma 12.
Letx € DN K}. By splitting all three norm term in the left hand side of (10) by
Ill,.1 = I Pa-ll,.1 + (I = Py)-ll,.; and using the triangle equality for the (I — Py)
terms and the reverse triangle ine;quality for the P, terms (see [4, Lemma 5.1]) we
obtain

[+F -«

] = =2

2 ”(1 — Pa)xTHLI _an

We use Lemma 12 to handle the first summand

XT—X

t
i H N2 ,—5
X X < |lx a 2 .
o ) pl Il ”kz a2

Note that Pox™ = T, (x™). Hence, Lemma 9 yields

H(I - Pa)x*H = Hx* - Ta(x*)H = 2" = 7T e
r, r,

Inserting the last two inequalities into (11) and choosing

t

2
— |t Hﬁ ]
a=|Ix —X X
H I

we get (ii).
Obviously (ii) implies (iii) as ||x — x| , > 0.
It remains to show that (iii) implies (i). Let @ > 0. We define

) if i <a;?rje
. T -2 e F -2
X = . — . . > . .
j x4 ajzrjoz 1f)c4r a; sza
x]—i—a rio 1ij <—a;r;o

Then |x;| < |xj.| forall j € A. Hence, x € E}. We estimate

]
aZaJ r;l ey T Hx ,

jeA

— lellg < K ot —x
a,2

=K Za(_ ra)]l el

jeA

2-2t

= 2=r
= Ka Za] —] {a rot<|x 1}
JjeA
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Rearranging terms in this inequality yields

—2.2 2—t —t
el <
ZQ./ Klﬂ{gjzzja<lx;l} = K" e
JEA
+ 2—t
Hence, [|x"||y, < K 7. O

Theorem 14 (Variational source condition) Suppose Assumption 3 holds true and let
te€(0,1), 0> 0and x"eD. If |x|lx, < o then the variational source condition

2-2t

mt HXTH =l < Cuell PG = Flly

HxT —x

forallx € Dp N ¢} (12)

holds true with Cyse = (2 + 421" — )"\ )L o725
oy 2=t
If in addition Assumption 4 holds true, then (12) implies || x ||k, < L¥ Cyée .

Proof Corollary 10 implies x € Dﬂﬁé . The first claim follows from the first inequality
in Assumption 3 together with Lemma 13. The second inequality in Assumption 3

together with Assumption 4 imply statement (iii) in Lemma 13 with K = L% Cyse.
Therefore, Lemma 13 yields the second claim. O

4.2 Rates of convergence

In this section we formulate and discuss bounds on the reconstruction error which
follow from the variational source condition (12) by general variational regularization
theory (see, e.g., [24, Prop. 4.2, Thm. 4.3] or [15, Prop.13., Prop.14.]).

Theorem 15 (Convergence rates) Suppose Assumption 3 holds true. Lett € (0, 1), 0 >
Oandx™ € Dy with||x" |y, < 0.Lets > 0and g°® € Y satisfy |g° — F (x) |y < .

1. (error splitting) Every minimizer Xo of (1) satisfies

T_-an

Hx 1 <C, (52017] + Qtozlfl) and (13)
r,

<c, (8+Q%a%). (14)
a,2

ot
for all @« > O with a constant C, depending only on t and L.
2. (rates with a-priori choice of a) If § > 0 and « is chosen such that

t 2

2 _t_
1072871 <o < ™28 for(0 < c1 < ¢,

then every minimizer Xq of (1) satisfies

< Cpo?7672 and (15)
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< C,s. (16)

with a constant C,, depending only on c1, ¢, t and L.
3. (rates with discrepancy principle) Let 1 < 11 < 13. If X is a minimizer of (1)
with 118 < || F (&) — g°*ly < 128, then

22

HxT ~%a| = Cs07T8TT and (17)
r,
fo ~%| =ca. (18)

&,

Here Cyq > 0 denotes a constant depending only on 12, t and L.
We discuss our results in the following series of remarks:

Remark 16 The proof of Theorem 15 makes no use of the second inequality in Assump-
tion 3.

Remark 17 (Error bounds in intermediate norms) Invoking the interpolation inequal-
ities given in Proposition 4 allows to combine the bounds in the norms |-[|, ; and
lIllq,> to bounds in ”'”QWP for p € (¢, 1]. In the setting of Theorem 15(2.) or (3.) we
obtain

)

p—

P (19)

2-t §

ASH[S}

T A

S~

<Co

|

with C = Cp, or C = C, respectively.

Remark 18 (Limit t — 1) Let us consider the limiting case t = 1 by assuming only
xt e Zé N Dp. Then it is well known, that the parameter choice o ~ 82 as well the

discrepancy principle as in Theorem 15.3. lead to bounds ||xJr — X ||r’1 <C H)cJf ||r’1

and |F(xT) — F(g?a) ly < C$. As above, Assumption 3 allows to transfer to a bound
Hx"' — Xy ”a , < C4. Interpolating as in the last remark yields

Remark 19 (Limit t — 0) Note that in the limit # — 0 the convergence rates get arbi-
trarily close to the linear convergence rate (J(8), i.e., in contrast to standard quadratic
Tikhonov regularization in Hilbert spaces no saturation effect occurs. This is also the
reason why we always obtain optimal rates with the discrepancy principle even for
smooth solutions x 7.

As already mentioned in the introduction, the formal limiting rate for r — 0, i.e.
a linear convergence rate in 8 occurs if and only if x' is sparse as shown by different
methods in [21].
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We finish this subsection by showing that the convergence rates (15), (17), and (19)
are optimal in a minimax sense.

Proposition 20 (Optimality) Suppose that Assumption 3 holds true. Assume further-
more that there are cy > 0, g € (0, 1) such that for every n € (0, co) thereis j € A
satisfying qn < Q.iﬁ;l <n.Letp € (0,2],t € (0, p)and p > 0. Suppose D contains
all x € k; with ||x||x, < o. Consider an arbitrary reconstruction method described by
a mapping R : Y — E} approximating the inverse of F. Then the worst case error
under the a-priori information || x| k = o is bounded below by

s ([ (s) =], o[
@p.P k

<o, IF(xT) — gy < a}

2-p 2
P

2—1 §

t

i

> co =0

P—

2-t 2p—2t 2
forall § < %LQCO’ withc = q o QL Y, 2,

Proof 1Tt is a well-known fact that the left hand side in (20) is bounded from below by
%SZ (28, o) with the modulus of continuity

208, 0) :=

Sup{Hxa) @ H : Hxa)

’ e

<o r () - r ()], 3]
ks Y

(see [12, Rem. 3.12], [34, Lemma 2.8]). By Assumption 3 we have

s
@, P ke ’

20, p) z sup{llxllw,.p : Xl < o, Ixlla2 < 2078}

By assumption there exists jo € A such that

t t
—lg —1\2 —1 —1g —1)\27
q(2L so ) =ari §<2L so ) .

2-2t -2
. o -
Choosing xj, = ga o T

" andx; = 0if j # jo we obtain ||x|x, = ¢ and xlla2 <
2L~1§ and estimate

Jo

2p=2t 2p—2t 2 p—t 2—

r
“x”Qp,p =0 (‘—ljoﬂ;,l) pt > qT(ZL_l)sztQE PR

p

2=

hSH[S}
<

O
-1
, J
g’ forg € (0, 1) or ifgjgjf] ~ j~* for k > 0, but violated ifgjL;] ~ exp(—j?).

~

Note that for A = N the additional assumption in Proposition 20 is satisfied if a i

@ Springer



Maximal spaces for approximation rates in £'-regularization 357

4.3 Converse result

As a main result, we now prove that the condition xT € k; is necessary and sufficient
for the Holder type approximation rate O (e ~"):

Theorem 21 (Converse result for exact data) Suppose Assumption 3 and 4 hold true.
Let x' € Dp N ZL t € (0,1), and (xq)a=0 the minimizers of (1) for exact data

g°% = F(x"). Then the following statements are equivalent:
(i) x" € k.
(i) There exists a constant Co > 0 such that H)cJf — Xq ”r 1 = Czozl_’for all @ > 0.

(iii) There exists a constant C3 > 0 such that |F(x") — F(xo)|y < C30l% for all
o > 0.

More precisely, we can choose Cp = c||xT||§C[, C3 = 4/2C, and bound

2
lxf llx, < cC3 with a constant ¢ > 0 that depends on L and t only.

Proof (i) = (ii): By Theorem 15(1.) for § = 0.
(il) = (iii): As x4 is a minimizer of (1) we have

1 N _
SIFGH = Faol} < a (Hx | - ||xa||,,1) safrt x| =2t

Multiplying by 2 and taking square roots on both sides yields (iii).
(iii)) = (i): The strategy is to prove that || F (xT) — F(xg) |ly is an upper bound on
||xT — T, (x") Ha , up to a constant and a linear change of « and then proceed using

Lemma 9.
As an intermediate step we first consider
e N 2
%o € argmin | = Hx —ZH ). 1)
g? -

zel)
The minimizer can be calculated in each coordinate separately by

o N N
(ze); = argmin ( 5ajle] — 2 + e 2
Z

1
: il 2 2
= argmin X —z|"+aa.7r;|z .

Hence,

v 2 .
X;—a;ra if x

T -2
;> a;r o

o~

)i, . 2
(a)j =X +a;rjo ifx; <—a;"r;a

i < —a72r.
0 1f|xj|_ a;’r;a
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Comparing z,, with T, (x) yields IxT =T, (xT)j| < |x; —(z¢)j| forall j € A. Hence,
we have H)CT - Ta(x%)”@2 < H)CT — Za HQ’Z.
It remains to find a bound on HJCJf — g Ha , in terms of IF(xT) = F(xo)lly.
Leta > 0, 8 := 2L%q and z, given by (21). Then
1

s *

2 1 2
a2 + o ”Z(x“Ll =< 5 Hx — XB HQ,Z +a ”Xﬂ ”Ll :

Using Assumption 3 and subtracting « ||z« ||,-,1 yield

1 L A
[ =z = S0FPGH = Fapl +a (fxsl,, — lzellr) . @2

a,

Due to Assumption 4 we have z4 € Df. As xg is a minimizer of (1) we obtain

1 1 '
Blxsl,. = SIFGD = Fapl + 8 s, 1 = SIFGD = FIF + B lzal,i

Using the other inequality in Assumption 3 and subtracting 8 ||z« |, and dividing by
B we end up with

2 2

la H '
[ — x f—
4 L

- L2y
”xﬂ“Ll lzall 1 < 28 X Za

a2 a2’

We insert the last inequality into (22), subtract J—‘ ”x? — Zg ”i ,» multiply by 4 and take

the square root and get ||)cJr — Za ||a , < V2L|F(x) — F(xp)l|ly. Together with the
first step, the hypothesis (iii) and the definition of 8 we achieve

i i _ N o
= TaD| = IF) = Flp)lly = 2L7) 2 Caa 2

2
Finally, Lemma 9 yields x € k; with [|xT[}, < cC4 with a constant ¢ that depends
only ont and L. O

5 Convergence analysis for x* ¢ e;

We turn to the oversmoothed setting where the unknown solution x7 does not admit a
finite penalty value. An important ingredient of most variational convergence proofs of
Tikhonov regularization is a comparison of the Tikhonov functional at the minimizer
and at the exact solution. In the oversmoothing case such a comparison is obviously
not useful. As a substitute, one may use a family of approximations of x at which the
penalty functional is finite. See also [22,23] where this idea is used and the approxima-
tions are called auxiliary elements. Here we will use Ty (x™) for this purpose. We first
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show that the spaces k; can not only be characterized in terms of the approximation
errors ||(I — Tﬂt)(')”Q,,m as in Lemma 9, but also in terms of || Ty, ;:

Lemma 22 (Bounds on || Ty- |1 .) Lett € (1,2) and x € RA. Then x € k; if and only

ifn(x) = sup,_ga' Ty ()]l 1 < oo
More precisely, we can bound

1
n(x) <21 =27 x|l and ||x|lk, < n(x)7.

Proof As in the proof of Lemma 9 we use a partitioning. Assuming x € k; we obtain

1Tl = 311102, o

jeA
- er |x/|]1{a_2r 2ka<\x1|<a 2k}
k= OJEA
k+1
<O[ZZ Za J {a r-2kot<\xj|}
/eA
t 11—t k+1~—kt
< xllf, o Zz 2
k=0

=201 =2"")"x|f e

Vice versa we estimate
2.2 -1 .
D4 2y gy SO DGy
jeA jeA '
-1 —t
=a [ Te@)l,1 < nx)a™".

1
Hence, |lx|lx, = n(x)7. =

The following lemma provides a bound on the minimal value of the
Tikhonov functional. From this we deduce bounds on the distance between Ty (x7)
and the minimizers of (1) in |||, > and in [|-]|, ; .

Lemma 23 (Preparatory bounds) Lett € (1,2), § > 0and o > 0. Suppose 3 and 4
hold true. Assume x¥ € D with ||xT|, < o0 and g° € Y with || g — F(x")||ly < 8.
Then there exist constants Cy, C, and C, depending only on t and L such that

1 . . -
Engobs — FEIF + a2 ||Ll <82+ Co'a?, 23)

2 22 2
| < 8L+ Cag'o™™" and 24)
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for all @ > 0 and X, minimizers of (1).

T, — 2, H =8+ Cola! (25)

r,

Proof Due to Assumption 4 we have T, (x") € D. Therefore, we may insert Ty ")
into (1) to start with

1 R R 1
18 = FG)IF + o |Ra, | < =

. o1 = 518 = FAOLGMI +a|

T,(x) HL] . (26)

Lemma 22 provides the bound « || Ty, (x7)||, | < C10'a®™ for the second summand
on the right hand side with a constant C déf)ending only on .

In the following we will estimate the first summand on the right hand side. Let
¢ > 0. By the second inequality in Assumption 3 and Lemma 9 we obtain

1 . ] . .
Eng"bs — F(TycNIF < 18° — FOOIZ + IIF () — F(T, ()11
<824 12 ”xT - Tm(x*)H2 X 27)

< 82 + C2Q1a271

with a constant C, depending on L and 7. Inserting into (26) yields (23) with C; :=
Ci+ Cy.

We use (27), the first inequality in Assumption 3 and neglect the penalty term in
(23) to estimate

2
LS L?||F(Ty(x") = FGo)I%

a,

Tu(x") — %4

<2121 — F(T,(x")I% 4+ 2L2[1 ¢ — FGo) 13
S 8L282 + CaQtaQ,—t
with C, 1= 4L2(Cy + C)).

Lemma 22 provides the bound | 7, (x") ||r | < C30' a!~" with C5 depending only
on . Neglecting the data fidelity term in (23) yields

with C, := C; + C3.

To(x) — %4

=]
1

TN Rl =%+ Cole! ™ @8)

r,

(]
The next result is a converse type result for image space bounds with exact data. In

particular, we see that Holder type image space error bounds are determined by Holder
type bounds on the whole Tikhonov functional at the minimizers and vice versa.
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Theorem 24 (Converse result for exact data) Suppose Assumption 3 and 4 hold true.
Lett € (1,2), x" € Dp and (x4)a~0 a choice of minimizers in (1) with g°* = F(x™).
The following statements are equivalent:

() x" € k.
(ii) There exists a constant C, > 0 such that %||F(x) — F(xa)ll%{ + o lxgll,1 <
Czotzft.
27
(iii) There exists a constant C3 such that | F (x) — F(xy)|ly < C3aTt.

More precisely, we can choose Co = C,||x4'||;q with C; from Lemma 23, C3 = /2C»
. 2
and bound ||x" ||, < c¢C3 with a constant c that depends only on t and L.

Proof (i) = (ii): Use (23) with § = 0.
(i1) = (iii): This implication follows immediately by neglecting the penalty term,
multiplying by 2 and taking the square root of the inequality in the hypothesis.
(ili)) = (i): The same argument as in the proof of the implication (iii) = (i) in
Theorem 21 applies.
O

The following theorem shows that we obtain order optimal convergence rates on k;
also in the case of oversmoothing (see Proposition 20).

Theorem 25 (Rates of convergence) Suppose Assumptions 3 and 4 hold true. Let
te(1,2), pe(t2land o > 0. Assume x* € Dp with ||xT||k, <o.

1. (bias bound) Let o > 0. For exact data g°® = F(x") every minimizer x4 of (1)
satisfies

Lop=t
< Cpora’s

[+ = %
w,.p

with a constant Cy, depending only on p,t and L.
2. (rate with a-priori choice of ) Let § > 0, g° € Y satisfy ||g°® — F(x")|ly <8
and 0 < ¢y < 2. If o is chosen such that

t 2 t 2
clgWSﬁ <a< ngﬂgﬂ’

then every minimizer X4 of (1) satisfies

12-p) 2p-1)
< CcQ p2-1) § P2-1)
@Dp P

)?a—xT’

with a constant C. depending only on cy, c2, p,t and L.

3. (rate with discrepancy principle) Let § > 0 and g°® € Y satisfy ||g° —
F(xT)||Y < dand 1 < 11 < 1. If Xy is a minimizer of (1) with 118 <
IF (Ea) = 8™y < 28, then
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12-p) 2(p—t)
< CdQ p2-1) § P2-1) |
@ps P

Xog — X

!

Here Cy > 0 denotes a constant depending only on t1, 12, p,t and L.

2p
Proof 1. By Proposition 4 we have ||- ||wp » =1 || II- || . With this we interpo-

late between (24) and (25) with § = 0 to obtaln

p=l 2=
with K} := C,” C,” .By Lemma 9 there is a constant K, depending only on p
and ¢ such that

L op=t
= Kigra »
®,,P

[+ - Ta(x*)HQJ = Kyora'7 . (29)

Hence

< H)cT —Ty(x

|

@,.p @,.p

o op=t
< (Ki+ Ky)ora 7 .

2. Inserting the parameter choice rule into (24) and (25) yields

As above, we interpolate these two inequalities to obtain

< (8L + Cuc3 ~y35 and

2(1 z)

= (€' + Crel )57

1Q=p) 2p-1)
< K307@0 50070,
WD

T)_feol

with K3 := (8L2+C 5 ) o (c1 +C, c ) 5 . We insert the parameter choice
l’;’ 12—p) 2p—2t

into (29) and get ||)cT — T, (x") || < Kyc,” 0@ 81’<2 0. Applying the trian-
p
gle 1nequa11ty as in part 1 yields the claim.

3. Lete = 45— ! Thene > 0. By Lemma 9 there exists a constant K4 depending only
on ¢ such that Hx — T (xT)”a , < Kso ﬁ2 " for all B > 0. We choose

Bi=(2e(l+e H L2k, o)
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Then

. 2
HxT - Tﬂ(XT)H ,<e(4e )Tl
a,

(30)

We make use of the elementary inequality (a + b)? < (1 +e)a*+ (1 4+ 1Hp?
which is proven by expanding the square and applying Young’s inequality on the
mixed term. Together with the second inequality in Assumption 3 we estimate

1
Eng‘)bs — F(Tg(xM)II

1 1 w12
= 5 +0le™ = FaHIF + 31 +eHL2 [xf - ph|
a2

1 2l oo
=< 5(1 +2¢)8° = Erla .
By inserting Tg (xT) into the Tikhonov functional we end up with

1 1 3 . N
S0 R, < 518 — FRIF +e ],

IA

2

IA

1 55 .
Fi e | Teh]
ZT] +o ﬂ(X)Ll

Hence, |

2-2t

HTﬂ(XT) — Ko = ZHTﬂ(}CT)H = KsoT 787
r,

r,

with a constant K5 that depends only on 7, ¢ and L.
Using (30) and the first inequality in Assumption 3 we estimate

[ 756:H) -

a2

< H T—T,s(x“)H n Hx* ~ %
a2

a,2

< |+ - T,soﬁ)H%2 +LIFGT) = F )y

1
S1e™ = FTpaId +a | 750H)

R ||r’1 < | Tpx") ||r - Together with Lemma 22 we obtain the bound

< ¢t = TeGD| |+ L1 = FGHIy + L1g™ = FGlly

< K¢é
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with K¢ = 8%(1 + g_l)’%L_1 + L + Lty. As above, interpolation yields

t2—p) 2p—2t
H Tp(x") — Zq < K707@0 § @0
Wpe P
2p=2  2-p
with K7 := K4 ” K" . Finally, Lemma 9 together with the choice of g implies

- . tQ2-p) 2p-2t
||x' — T (x')”@ﬂp < Kgor@§r@-n for a constant Kg that depends only on 7,

p, t and L and we conclude

< 5" = e

HXT — Xo + H T,g(xT) — Xa
oD

@,.p ‘Q W, P
t2—p) 2p—2t

< (Kg + K7)or@n§ra-—n,

6 Wavelet regularization with Besov spaces penalties

In the sequel we apply our results developed in the general sequence space setting to
obtain obtain convergence rates for wavelet regularization with a Besov r, 1, 1-norm
penalty.

Suppose Assumptions and 1 and 2 and Egs. (7) hold true. Then F := G o S satisfies
Assumption 3 on D := S~ (Dg) c Eg = bz_g as shown in Sect. 2.

Recall thata; ) = 277% and r(; ) = 2/~ %), Let s € [~a, 00). With
2a + 2r

ty = ———— 31
4 s+2a+r S

we obtain b} , = ZZH with equal norm for w, given by (8). For s € (0, o) we have
ty € (0, 1).

The following lemma defines and characterizes a function space K, as the coun-
terpart of k;, for s > 0. As spaces by, , and B), ,(§2) with p < 1 are involved let us
first argue that within the scale bfs 1 for s > 0O the extra condition oy, — Smax < § in

Assumption 1 is always satisfied if we assume a +r > %. TothisendletO < s < Spax.
Then

1 d(s —r)
U,S=d<g—l)=m<s—r§s<smax.

Hence, 07, — smax < 0 <'s.

Lemma 26 (Maximal approximation spaces K; ) Let a,s > 0 and suppose that
Assumption 1 and Egs. (7a) and (7b) holds true. We define

Ki, = S(ky) with || fllk, = IS " xk,
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with tg given by (31). Let s < u < Spax. The space K, coincides with the real
interpolation space

_ a—+s
Ki = (B 5(2), By, 1, (@)oo 0= ——.

(32)

with equivalent quasi-norms, and the following inclusions hold true with continuous
embeddings:

B,‘;v,,x (£2) C Ky C B,‘;hoo(.Q). 33)
Hence,

K, € (1) Bl oo (£2).

1<t

Proof Fors < u < smax we have k;, = (bi ‘2’, bt"u ytu)g’oo with equivalent quasi-norms
(see Remark 7). By functor properties of real interpolation (see [3, Thm. 3.1.2]) this
translates to (32). As discussed above, we use a + r > % (see (7a)) to see that
u € (05, — Smax, §) such that S: bZ,,tu — Btli,tu (£2) is well defined an bijective. By
Remark 8 we have b} , C k;, with continuous embedding, implying the first inclusion
in (33). Moreover, we have 1, < 22aa++2rr < 2. Hence, the continuous embeddings
BZ;(.Q) C Bigo(.Q) C B; % (£2) (see [33, 3.2.4(1), 3.3.1(9)]). Together with (32)

and the interpolation result

B! +o(82) = (B (2), B! 1o(2))s.0

(see [33, 3.3.6 (9)]) we obtain the second inclusion in (33) using [33, 2.4.1 Rem. 4].
Finally, the last statement follows from 7, — ¢, for u \( s and again [33, 3.3.1(9)]. O

Theorem 27 (Convergence rates) Suppose Assumptions 2 and 1 hold true with %’—r <
a < Spmax andbi1 NS N (Dg) # 0. Let 0 < 5 < Spax withs #r, 0 > Oand || - || 1»
denote the usual norm on LP(82) for 1 < p := zfa':_zr’ . Assume fT € Dg with
||fT||K,S < 0. If s < r assume that Dy := S~Y(Dg) satisfies Assumption 4. Let

§ > 0and g° € Y satisfy ||g°* — F(f ||y < 8.

1. (rate with a-priori choice of ) Let 0 < ¢ < ¢2. If a is chosen such that

_a+r _s+2a+r _a+r _s+2a+r
c10 sta§ sta < <0 sta§ sta

then every fa given by (4) satisfies

Ay

a 5
< Cqo+adva.
Lr
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2. (rate with discrepancy principle) Let 1 < 11 < 1. Iffa is given by (4) with
18 < |F(%e) — ™Iy < 3,
then

Here C, and Cy are constants independent of 8, o and f7.

Proof If s > r (hence t; € (0, 1)) we refer to Remark 17. If s < r (hence ¢ € (1, 2))
to Theorem 25 for the bound

< CQ p 2—ig 8 P 2 [; CQ v+a H—tl (34)

It = Zallo,p.p = |5 =
Wp, P

for the a-priori choice o ~ o R 82is = =0 ~$a s .- as well as for the discrepancy
principle. With Assumption 1 and by the well known embedding Bgy p(82) C LP we
obtain

|- 7L,

<cllf = fallgy, < creallx™ = Zallo,p.p-

Together with (34) this proves the result. O

Remark 28 In view of Remark 18 we obtain the same results for the case s = r by
replacing K, by Bj | (£2).

Theorem 29 Letr = 0. Suppose Assumptions 2, 1 and 4 hold true with syqx > a > %.
Let fT € Dg N B?,l(Q): s > 0 and (fy)a>0 the minimizers of (4) for exact data

g°P = F(f"). The following statements are equivalent:
@ f7 e K.
(ii) There exists a constant C» > 0 such that || f* — fu ||B?1 < Czaﬁfor alla > 0.

(ii1) There exists a constant C3 > 0 such that ||F(fT) — F(fo)lly < C3ozs%lu for all
a > 0.

1
More precisely, we can choose Cy := c|| fT|| X = ¢C, and bound
2

||fT||Kt < cC3’? with a constant ¢ > 0 that depends only on L and t and operator
norms of S and S~ 1.

Proof Statement (i) is equivalent to x" =871 T € k, and statement (ii) is equivalent
~ s
to a bound |lx — xqllo,1,1 < Coa5+2a. Hence, Theorem 21 yields the result. O

Example 30 We consider functions f3U™P  fkink - 10 1] — R which are C™ every-
where with uniform bounds on all derivatives except at a finite number of points in
[0, 1], and fXink e €91([0, 1]). In other words, fIUmP  fkink are piecewise smooth,
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FIUmP hag a finite number of jumps, and £ has a finite number of kinks. Then for
p € (0,00),q € (0,00],and s € R with s > o, with 0}, as in Assumption 1 we have

e B ((0,1) & s <1, feB ((0,1) & s<1+1

if g < oo and

e By (1) & s =g fReBL (O0.D) & s <14

1
ik
To see this, we can use the classical definition of Besov spaces in terms of the
modulus of continuity ||Az1f||Lﬂ where (Apf)(x) = f(x + h) — f(x) and
A?Hf = Ah(A;’ff), see, e.g., [32, Eq. (1.23)]. Elementary computations show
that [| A" £1"™P|| » decays of the order h'/P as h \( 0if m > 1/p, and || A" FR0K] .,
decays as h'/Pt1if m > 2/p. Therefore, as 1, < 1 describing the regularity of fiump
or XK in the scale B; . ($2) C K, as in Theorems 27 and 29 allows for a larger
value of s and hence a faster convergence rate than describing the regularity of these
functions in the Besov spaces Bf_ oo a8 in [24]. In other words, the previous analy-
sis in [24] provided only suboptimal rates of convergence for this important class of
functions. This can also be observed in numerical simulations we provide below.

Note that the largest set on which a given rate of convergence is attained can be
achieved by setting » = 0 (i.e. no oversmoothing). This is in contrast to the Hilbert
space case where oversmoothing allows to raise the finite qualification of Tikhonov
regularization. On the other hand for larger r convergence can be guaranteed in a
stronger L”-norm.

7 Numerical results

For our numerical simulations we consider the problem in Example 2 in the form

—u"4+cu=f in(0,1),

u) =u(l) =1. (35)

The forward operator in the function space setting is G(c) := u for the fixed right
hand side f(-) = sin(4x-) + 2.

The true solution ¢ is given by a piecewise smooth function with either finitely
many jumps or kinks as discussed in Example 30.

To solve the boundary value problem (35) we used quadratic finite elements and
an equidistant grid containing 127 finite elements. The coefficient ¢ was sampled on
an equidistant grid with 1024 points. For the wavelet synthesis operator we used the
code PyWavelets [28] with Daubechies wavelet of order 7.
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2.25 —— true coefficient ¢t
-=—= reconstruction

2.00

175

1.50

1.25

Ll-emor

1.00
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X reconstruction error
—— new bound 0(547)

--- old bound 0(61?)

0.50 10-2

0.25

T T T T T T T T T

00 02 04 06 08 10 10-6 10-5 10-4
5

Fig. 1 Left: true coefficient ¢l with jumps in the boundary value problem (5) together with a typical
reconstruction at noise level § = 3.5 - 107, Right: Reconstruction error using b(l) | -Penalization, the rate

O(82/3) predicted by Theorem 27 (see Eq. (36)), and the rate O(8 173y predicted by the previous analysis
in [24]

The minimization problem in (4) was solved by the Gaul3-Newton-type method
Ch+1 = SXk+1,

1
Xk+1 € argmin I:EHF/[xk](x —x) + Flxp) —ul} +allx — x0||r,1,1:|
X

with a constant initial guess co = 1. In each Gauf3-Newton step these linearized
minimization problems were solved with the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) proposed and analyzed by Beck and Teboulle in [2]. We used the
inertial parameter as in [6, Sec. 4]. We did not impose a constraint on the size of
lx — xoll0,2,2, which is required by our theory if Assumption 3 does not hold true
globally. However, the size of the domain of validity of this assumption is difficult to
assess, and such a constraint is likely to be never active for a sufficiently good initial
guess.

The regularization parameter & was chosen by a sequential discrepancy principle
with 7y = land 70 = 2 ona grid o; = 2 Jag. To simulate worst case errors, we
computed for each noise level § reconstructions for several data errors u® — G(ch),
lu? — G 12 = 8, which were given by sin functions with different frequencies.

For the piecewise smooth coefficient ¢* with jumps shown on the left panel of
Fig. 1, Example 30 yields

T s 1 4
c € Bts,ts((ov 1)) - Kts S5 < t_ 85 < §

s
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2.25 _
—— true coefficient ¢t
2.00 -—~ reconstruction
101
1.75
1.50 5
E
@
1.25 =
1072
1.00
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0.75 —— new bound 0(6%7)
0.50 --- old bound 0(612)
v . v v v v 10-3 v v v
00 02 04 06 08 10 10-6 10-5 10-4

o

Fig. 2 Left: true coefficient ¢! with kinks in the boundary value problem (5) together with a typical
reconstruction at noise level § = 3.5 - 1075, Right: Reconstruction error using b(l) | -Penalization, the rate

0(54/7) predicted by Theorem 27 (see Eq. (37)), and the rate 0(8]/2) predicted by the previous analysis
in [24]

Here t; = ﬁ. Hence,Theorem 27 predicts the rate

HcT — Cu

2
= 0(8° foralle < —. (36)
L! 5

In contrast, the smoothness condition ¢ € B‘f’ 5o ((0, 1)) in our previous analysis in
[24], which was formulated in terms of Besov spaces with p = 1 is only satisfied
for smaller smoothness indices s < 1, and therefore, the convergence rate in [24] is
only of the order ||’c}, —cf || =0 (6 %) Our numerical results displayed in the right
panel of Fig. 1 show that this previous error bound is too pessimistic, and the observed
convergence rate matches the rate (36) predicted by our analysis.

Similarly, for the piecewise smooth coefficient ¢ with kinks shown in the left panel
of Fig. 2, Example 30 yields

S 1 8
ckeB;’ts((O,l))CK,S & s < 1+t_ & s<3
s
with t;, = ﬁ. Hence, Theorem 27 predicts the rate
~ § . 4
‘ca . HL1 = 0@ foralle <2 37)

which matches with the results of our numerical simulations shown on the right panel
of Fig. 2. In contrast, the previous error bound ||?a —cf ||L1 =0 <8%) in [24] based
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25 —— true coefficient ¢t X reconstruction error % X
-== reco. withr=2 2x10~!{ —— bound 0(6%19)
------ reco. withr=0
2.0
15 § 107
g
g
-~
10 6x 1072
0.5 4x1072
T T T T T T 3x 10_2 % T T T
00 02 04 06 08 10 10-6 10-5 10-4

Fig.3 Left: true coefficient cf with jumps in the boundary value problem (5) together with reconstructions
for r = 0 and r = 2 at noise level § = 3.5 - 107 for the same data. Right: Reconstruction error using
b%. | ~penalization (oversmoothing) and the rate (’)(83/ 10) predicted by Theorem 27 (see Eq. (38)). This case
is not covered by the theory in [24]

on the regularity condition ch e Blzy 5 ((0, 1)) turns out to be suboptimal for this
coefficient ¢’ even though it is minimax optimal in Bf’oo-balls.

Finally, for the same coefficient ¢’ with jumps as in Fig. 1, reconstructions with
r = 0 and r = 2 are compared in the left panel of Fig. 3. Visually, the reconstruction
quality is similar for both reconstructions. For » = 2 the penalization is oversmoothing,
and Example 30 yields

+ s 1 6
c eBts’tj((O,l))CK,S s S<t_ & s<7
S
with ¢, = %. Hence, Theorem 27 predicts the rate
o - cT‘ — 069 foralle < - (38)
¢ L3 10°

which once again matches with the results of our numerical simulations shown on the
right panel of Fig. 3. This case is not covered by the theory in [24].

8 Conclusions

We have derived a converse result for approximation rates of weighted £'-
regularization. Necessary and sufficient conditions for Holder-type approximation
rates are given by a scale of weak sequence spaces. We also showed that £' -penalization
achieves the minimax-optimal convergence rates on bounded subsets of these weak
sequence spaces, i.e. that no other method can uniformly perform better on these sets.
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However, converse results for noisy data, i.e. the question whether £!-penalization
achieves given convergence rates in terms of the noise level on even larger sets, remains
open. Although it seems likely that the answer will be negative, a rigorous proof would
probably require uniform lower bounds on the maximal effect of data noise.

A further interesting extension concerns redundant frames. Note that lacking injec-
tivity the composition of a forward operator in function spaces with a synthesis operator
of a redundant frame cannot meet the first inequality in Assumption 3. Therefore, the
mapping properties of the forward operator in function space will have to be described
in a different manner. (See [1, Sec. 6.2.] for a related discussion.)

We have also studied the important special case of penalization by wavelet Besov
norms of type By ;. In this case the maximal spaces leading to Holder-type approxi-
mation rates can be characterized as real interpolation spaces of Besov spaces, but to
the best of our knowledge they do not coincide with classical function spaces. They
are slightly larger than the Besov spaces B/, with some ¢ € (0, 1), which in turn are
considerably larger than the spaces Bf’oo used in previous results. Typical elements
of the difference set By , \ By ., are piecewise smooth functions with local singulari-
ties. Since such functions can be well approximated by functions with sparse wavelet
expansions, good performance of £!-wavelet penalization is intuitively expected. Our
results confirm and quantify this intuition.
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A Appendix

For a sequence (@;) jey of positive real numbers, we write @ ; — 0 if for every ¢ > 0
the set {j € A: w; > ¢} is finite.

Proposition 31 (Embeddings) Let1 < p < g < ocoands = (5j)jea I = (rj)jea
sequences of positive reals.
(i) There is a continuous embedding €F C ¢1 iﬁ‘sjg;l is bounded.

(ii) There is a compact embedding ¢f c ¢1 iﬁ‘sjg;l — 0.
Proof (i) If there is such a continuous embedding, then there exists a constant C > 0

such that

||-||S’q <C ||~||r,p . Inserting unit sequences e; := (§k)ke yields s,z}l <C.
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(ii)

For the other implication we assume that there exists a constant C > 0 such that
s,-;;l < Cforall j € A. Letx e ¢/ with [|x||, , = 1. Then s;|x;| < Cr;|x;| <
C |lxll,, , implies

Il g =Y sxj1? < (Clixl, )77 Y sFlxj1P
JjeA jeA
4 P
< COxlE Y Pl = ¢ xllf,
jeA

Taking the g-th root shows ||~||s,q <Clllrp-
Suppose s j[}l — 0 is false. Then there exists some ¢ and a sequence of indices

(Jk)ken such that s, rj_k1 > ¢ for all k € N. The sequence given by x; = i

e, is

1 . .
bounded in £7. But ||x¢ — xp, IIs,q > 24 ¢ for k # m shows that it does not contain
a convergent subsequence in £7.

To prove the other direction we assume s KJTI — 0. Then s;r; ! is bounded and

by part (i) there is a continuous embedding I: ¢/ — ¢1. We define A, = {j €
A:s j[}l > %}. As A, is finite the coordinate projection P, : ¢/ — ¢! given by
(Pux)j = xjif j € A, and (Pyx); = 0 else is compact. As ;77" < & for all
j € A\ A, part (i) yields

1 1
I = Po)xll g < ~ I = P)xllyp < = fxll,, forallx & .

Hence, ||I — Py, < % Therefore, I = lim,, P, is compact.
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