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Abstract A fully discrete and fully explicit low-regularity integrator is con-
structed for the one-dimensional periodic cubic nonlinear Schrodinger equa-
tion. The method can be implemented by using fast Fourier transform with
O(NIn N) operations at every time level, and is proved to have an L?-norm
error bound of O(74/In(1/7)+N~1) for H! initial data, without requiring any
CFL condition, where 7 and N denote the temporal stepsize and the degree
of freedoms in the spatial discretisation, respectively.
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1 Introduction

This article concerns the numerical solution of the cubic nonlinear Schrodinger
(NLS) equation

i0u(t, ©) + Oggu(t,x) = Mu(t,z)[*u(t,z) for x € T and t € (0,T],

u(0,z) = u’(z) for x € T,
(1.1)
on the one-dimensional torus T = (—m,7) with a nonsmooth initial value
u® € HY(T), where A = —1 and 1 are referred to as the focusing and defocusing

cases, respectively. It is known that problem (1.1) is globally well-posed in
H*(T) for s > 0; see [2].
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The construction of numerical methods for the NLS equation and related
dispersive equations with nonsmooth initial data has attracted much atten-
tion recently since the pioneering work of Ostermann & Schratz [17], who
introduced a low-regularity exponential-type integrator that could have first-
order convergence in H7(T?) for initial data u® € H " (T?) and v > %,
where d denotes the dimension of space. Before their work, the traditional
regularity assumption for the NLS equation for a time-stepping method to

have first-order convergence in HY(T?) is u® € HY+2(T9) for v > 0 (losing two

derivatives). This includes the Strang splitting methods [0, 14], the Lie splitting
method [10], and classical exponential integrators [3] (also see the discussion
in [17, p. 733]). The finite difference methods [19,21] generally require more

regularity of the initial data (one temporal derivative on the solution gener-
ally requires the initial data to have two spatial derivatives to satisfy certain
compatibility conditions).

The idea of Ostermann & Schratz [17] is to use twisted variable to reduce
the consistency error in an exponential-type integrator, and to use harmonic
analysis techniques to approximate the exponential integral. More recently,
Wu & Yao [22] applied different harmonic analysis techniques to construct a
time-stepping method for the one-dimensional NLS equation with first-order
convergence in H(T) for initial data u’ € HY(T) and v > 2 (without los-
ing any derivative). Ostermann, Rousset & Schratz furthermore weakened the
regularity assumption of initial data to u® € H'(T) in [15] and u® € H*(T)
with s € (0,1] in [L6] by using estimates in the discrete Bourgain spaces.
For u® € H(T) these methods were proved to have L2-norm error bounds
of O(8) and O(7%7), respectively, for the one-dimensional NLS equation.
A general framework of low-regularity integrators for nonlinear parabolic, dis-
persive and hyperbolic equations was introduced in [7], where the condition
for the numerical solution of the NLS equation to have first-order convergence
in L2(T) is u® € Hi(T).

Besides the NLS equation, the techniques of twisted variable and harmonic
analysis techniques were also used in the construction of low-regularity inte-
grators for other dispersive equations; see [9, 18,20, 23,24] and the references
therein.

As far as we know, the analysis of all the low-regularity integrators for
the NLS equation are limited to semidiscretisation in time (the error from
spatial discretisation is unknown for nonsmooth initial data), and the regular-
ity condition for the time-stepping method to have first-order convergence is
u® € HY(T) for v > % We are only aware of a fully discrete Lawson-type ex-
ponential integrator for the Korteweg—de Vries equation [18], with first-order
convergence in L2(T) in both time and space under a CFL condition 7 = O(h)
for solutions in C([0,T7]; H*(T)).

The objective of this article is to construct a fully discrete and fully explicit
lower-regularity integrator that has first-order convergence (up to a logarith-
mic factor) in both time and space for H! initial data. The temporal low-
regularity integrator is constructed using twisted variables and with different
harmonic analysis techniques in approximating the low- and high-frequency



parts of the functions in the exponential integral. The spatial discretisation
is integrated in the temporal low-regularity integrator by repeatedly using
frequency truncation and Fast Fourier transform (FFT) techniques in every
nonlinear operation (i.e., computing the product of two functions). By using a
(4N + 1)-point FFT for every product of two (2N + 1)-term Fourier series in
the numerical scheme and then truncating the obtained (4N +1)-term product
series to (2N + 1)-term again, we avoid generating trigonometric interpolation
errors from using FFT. As a result, the spatial discretisation error of our
method is purely due to frequency truncation and therefore can be analysed
together with the temporal discretisation error in the frequency domain by
using harmonic analysis techniques.

The rest of this article is organised as follows. The fully discrete low-
regularity integrator and the main theorem on the convergence rates of the
method are presented in section 2. Some technical tools of harmonic analysis
are presented in section 3, which are used in section 4 in the construction of
the numerical method and analysis of the consistency error. The error bound
of proposed fully discrete low-regularity integrator is proved in section 5 by
utilizing the consistency error bounds obtained in section 4 and the stability of
the method, as well as the H'-regularity of fully discrete numerical solution.
The latter is proved to be bounded uniformly with respect to the temporal
stepsize and the number of Fourier terms in the spatial discretisation. Numer-
ical results are presented in section 6 to support the theoretical analysis in
this article.

2 The numerical method and main theoretical result
It is known that the solution of the NLS equation satisfies the following two
conservation laws (see e.g., [4]):

1. Mass conservation:
i/ lu(t, 2)[2 da = i/ W) 2de for >0 (2.1)
27T T ’ 271' T ) '

2. Momentum conservation:

1

- _ 1 05 -0
o Tu(t,x)axu(t,ac) dx = 271_/Tu Ozu dx  for t > 0. (2.2)

These two conserved quantities will be approximated based on the initial data
and utilized in the construction of the numerical method.

We denote by Ily and Il the zero-mode and nonzero-mode operators,
respectively, defined by

Hof:%/]‘f(x)dx and IT.(f) = Z et fi.. (2.3)

kEZ,k#0



Then the conserved mass and momentum are denoted by

M = oo [ @) do = 1),
1 (2.4)

P=—
2 T

wd,ul do = I, (uo(?w@).

For any positive integer N, we denote by Ioy the (4N + 1)-point trigono-
metric interpolation operator, which can be obtained through the discrete
Fourier transform (see [5,25])

2N 2N
1

Lyfx)= > e*fi with fi= NI > e f(e,)  (25)
k=—2N n=—2N
where 5
™
.Tn—m for n——2N,,2N

If the Fourier coefficient fk of the function f satisfies that fk =0 for |k| > 2N,
then Ion f = f and therefore fi, = fi in the formula (2.5). In this case, both

f(x,) = 22% ek fi m=—2N,--- 2N, (2.6)
k=—2N
and
R 1 2N, ,
Ju= MZZN'W (wn) k=—2N,--- 2N, (2.7)

can be computed with cost O(N1In N) by using the fast Fourier transform
(FFT); see [5].

Let Sy be the subspace of functions f € L2(T) such that fi, = 0 for |k| >
N. If w,v € Sy and their Fourier coefficients Wy, and 0, k = —2N,--+ 2N,
are stored in the computer (with g = 0, = 0 for N < |k| < 2N), then the
values w(zy) and v(z,), n = —2N, ..., 2N, can be computed exactly by using

L

(2.6) and FFT. Since (wv), = 0 for |k| > 2N, it follows that wv = Ioy(wv).
If we denote by Fj[v] the kth Fourier coefficient of the function v, then

2N
1 —ikx, _
Filwv] = NI nzg_QNe w(xn)v(ry), k=-—2N,...,2N,

which can also be computed exactly by using FFT. Therefore, if we denote by
Iy : L*(T) — L*(T) the projection operator defined by

fu for |[k| <N,

Fulllnf] =
eln]] {o for [k| > N,



then the cost of computing the Fourier coefficients of ITy(wv) € Sy from the
Fourier coefficients of w,v € Sy is O(N Iln N).

For any positive integer L, let t, = n7, n = 0,1,..., L, be a partition of
the time interval [0, T'] with stepsize 7 = T'/L. The fully discrete low-regularity
integrator for the NLS equation (1.1) to be constructed in this paper is: For
given u} € Sy compute u’TZJJF\,l € Sy by

uN =l y) for n=0,1...,L—1,

2.8
with ug,N = HNIQNUO c SN, ( )

where

w(f) — IT(C2APNOT 2AMN+02) § 4 (1 — e 2ATMx 7 £
— iATHO [HN(|f|2)f] + )\a‘;lHN I:(eiTaif) . am_lnN(|eiTa§f|2):|

B )\ewBi@;lﬂN [f -0, " IN(| )]
A

-3 [6;2]7]\; ((e—waif) eiTaﬁﬂN(fQ)) _ 61‘78331—2]7]\[ (fHN(fz))]

_ %eiragax—lﬂjv |:8$f( e—i‘r@gHN [(eiTaiaz—lf)Z] _ HN [(az—lf)Q])}
- i)\TeiTaiaglﬂN (0.f 1IN (£?))

2T f €00 TN (9, f f) — iAT(ITo )2 ™5 M 4o f (2.9)
for f € Sy and and
My = Ho(|u) x[?) and Py = I (u) yO,ul y) (2.10)

are the approximate mass and momentum, respectively. By using (2.5) with
FFT, the initial value u? = IInIonu® can be obtained with cost O(N In ).
Then, at every time level, the method only requires computing several func-
tions in the following forms:

. -1 2 . 2
o oiT(-2My—2PNO; +6%)]”, et7% f and 9, 'f for some function f € Sy,

e IINn(fg) for some given functions f,g € Sy,

where

—2M T 7 -
o . L o fo for k=0,
Flerm(-2My—2Pyo w02 )T (—2My—2Py (i) —2) }

el N A fk: for k 7é 0.

. 02 . 12 A 0 fOr k = 0,
Frle™% f] =T fi and 0;'f = .
(ik)~'fx for k #0.

Hence, the computational cost is O(N In N) at every time level.
The main theoretical result of this paper is the following theorem.



Theorem 1 If u® € HY(T) then there exist positive constants 19, No and C
such that for 7 < 19 and N > Ny the numerical solution given by (2.8)—(2.9)
has the following error bound:

max ||u(tn,) —u} yllr2 < C(ry/In(1/7) + N7, (2.11)

1<n<L
where the constants 79, No and C depend only on T and ||u®||g1.

The rest of this paper is devoted to the construction of the method (2.8)—
(2.9) and the proof of Theorem 1.

Remark 1 The analysis in this article can be easily extended to proving higher-
order convergence of the spatial discretisation method when the initial data
is smoother. Namely, for u® € H*(T) with s > 1, the error bound of of the
proposed method should become

max [ultn, ) = uZyllze < C(r +N7%), (2.12)

The proof of this result (with smoother initial data) is easier than the proof
of Theorem 1 and therefore omitted. The convergence results in (2.11) and
(2.12) are illustrated by the numerical experiments in section 6 for s = 1 and
s = 2, respectively.

3 Notation and technical tools
In this section we introduce the basic notation and technical lemmas to be
used in analysing the error of the numerical method to be constructed.

3.1 Notation

The inner product and norm on L?(T) are denoted by

(1) = [ el dn and | fle = VTP, respectively.
The norm on the Sobolev space H*(T), s € R, is denoted by
2 N
[l e =27 D1+ K| fil.
keZ

For a function f : [0,T] x T — C we denote by || f| rr(o,r;m+) its space-time
Sobolev norm, defined by

</0T (MOl Sdt> " for pe[l,00),

ess sup ||f ()| m- for p = oo.
t€[0,T]

”f”LP(O,T;HS) =



The Fourier coefficients of a function f on T are denoted by Fj[f] or simply
fx, defined by

o 1 .
fe=— / e ke f(x)dx for k€ Z.
21 T

The Fourier inversion formula is given by
fla) =Y e* fi.
keZ

The Fourier coefficients are known to have the following properties:

2

1fl|72 =2m Z i (Plancherel identity);
keZ
Frlfgl = Z fkfklgkl (Convolution).
k1€Z

For any function o : Z — C such that |o(k)| < Cy(1 + |k|)™ for some
constants C, and m > 0, we denote by o(i~19,) : H*(T) — H*~™(T) the
operator defined by
o(i ™10, f = Za(k‘)fkeim.
keZ

For abbreviation, we denote
(k) =(1+k)2 and J*=(i"'8,)",
which imply that

171G = 17 11l7x and Tofy = (h)* fi

Moreover, we denote by 9, % : H*(T) — H*t1(T), s € R, the operator such
that .

(ik) ™' fx,  when k # 0,
0, when k£ = 0.

We denote by A < B or B 2 A the statement A < C'B for some constant
C > 0. The value of C' may depend on T and ||u°|| 1, and may be different at
different occurrences, but is always independent of 7, N and n. The notation
A ~ B means that A < B < A.

We denote by O(Y) any quantity X such that X < Y. For any function
o: 2™ — C and w € HY(T) we denote by T,(o;w) the class of functions
f € L?(T) such that

fks Z |0(kvk17"' ,km)HUA}kJ”"UAka
kit-+km=Fk

Frloy ' f] = { (3.1)

VfeTn(ow). (3.2)

If F= f:f f(t)dt for some function f(t) € Ty, (o;v(t)), then we simply denote

Fe /tz T (o3 0(t))dt. (3.3)

t1



3.2 Two technical lemmas

We will use the following version of the Kato—Ponce inequalities, which was
originally proved in [12] and subsequently improved to cover the endpoint case

in [3,13].
Lemma 1 (The Kato—Ponce inequalities)
(i) If s> % and f,g € H*(T) then
1fgllas S 11 fllellgl -
(ii) If s > 0,51 > &, f € H*™(T) and g € H*(T), then

Ifgllae S 11 fTaserllglle-

In addition to Lemma 1 we also need the following results, which are con-
sequences of the Kato—Ponce inequalities.

Lemma 2
(i) If s> % and f,g € H*(T) then
1T F e S N F e gl ere-
(ii) If f,g € H*(T) then
1T f )l < min {|[fllczllgllere, llglee |l }-

Proof (i) The desired inequality is equivalent to ||J*~X(Jf 9)|l2 < || fllae
By the duality between L?(T) and itself, it suffices to prove

(T f9),h) S I flmllgllasllhllzz - Vh € L2(T),

which is equivalent to

SOST e) Feaabe S Il gl 1B 2.

k kitko=k

gllms-

Since the term corresponding to k = 0 satisfies

Z <k1>fk1§k2i70 = Z<k1>%fk1 <—k1>%§—k1ilo

k1+ko=0 k1
1 1, -
SNk 2 fr )k ezllez | (1) 2 Gk, )k ezlliz ol
S llgll s IRl

1
S A lligllz=llhllz2 - when s > 7,

we only need to prove the following result:

S0 B Rl fe ot SN lae

k#0 k1 +ko=k

glls[|h]| 2



To this end, we decompose the left-hand side of the inequality above into two
parts, i.e.,

ST R al fay ot

k#0 k1+ko=k
SO D KT R f gkl + D Y R Rl fra Gk -
k#0 k1+ko=k k#0 k1+ko=k
|k1|<10[k| [k1|>10]k|

(3.4)

The first term on the right-hand side of (3.4) can be estimated by using
Plancherel’s identity and Lemma 1 as follows:

Yoo > KTk ak el S35 D kL ke [

k#0 ki1+ka=k k#0 ki+ka=k
[k [<10[ | [k [<10[|
S(I°(f9), )
Shfall g llkllze < gl IRl e,

where f, § and h are functions with Fourier coefficients |fi|, x| and |hg|,
respectively. Since

e ~ W lzzes NIglls ~ llgllzze and[[Allz2 ~ [|R] 2,

it follows that

Yoo > KT R e Gk ] S I lee gl e 1] e
k#0 k1+ko=k
|k1]<10]k|

In the second term on the right-hand side of (3.4), we have |k1| ~ |ko| > |K|.
For s > § we have

(B~ her | = [RI7 K2 | < (B[ |2 ~ K] oo | oo

and therefore

Yoo > KT Rl gkl S D IR kRl G Vo

k#0 k1+ko=k k#0 ki1+ko=k
|k1]>10]K| |k1]|>10|k|
SO Fl T F TGk |
k0
< S F 7S~ —s|7
Smax [T T3] Y k||l

k0
ST F T2 gl e 1R ozrez i ||k Dognezl o
ST Fll2z 175G 2 Il 2
SWA s Nlgll s (1P| L2
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This completes the proof of (i).
(ii) Similarly as (i), it suffices to prove

Yo > KT Rl fe dro b S minlLfllez g L e gl ) 1] e

k#0 k1+ko=k

for h € L2(T). In view of the proof of (i), we can assume f, > 0, g5 > 0 and
hy > 0 without loss of generality (otherwise we can replace f, g and h by f,
g and h, respectively, in the estimates below). Then

S0 BT el f o e

k#0 k1+ka=k
_ 2o 2 _ Ao 3 3.5
<SS Wl Y S E g O
k#0 ki+ko=k k#0 k1+ko=k
[k1|<10|k| |k1|>10]k|

The first term on the right-hand side of (3.5) can be estimated by using
Plancherel’s identity and Lemma 1:

DD D L TS S S Y )

k#0 k1+ko=k k#0 k1+ko=k
|k1|<10|k| [k1|<10]k|
<> Flfglhu
k0
SIFe[faDozrezlliz || (hi)oxrezlliz
S\ Fall 2Nl e

S min([| fllz2 lgllzee, [[flze< llgllz2) 1A 22
Smin((|fllz2 gl £l lgllz2) 1A zo-

In the second term on the right-hand side of (3.5) we have |k1| ~ |k2| > k. On
the one hand, we have

S0 R Rl e dra b S0 IR T Kol ik G P

k;éO k‘l-‘rkz:k‘ k;;é() kf2

(ks[> 10k
R 2 % 2 2 % 17
S(sp Y lcsal) (S lla?) X 161

k2 k2

k£0
NFFZ HQHHl LAFZE

On the other hand, we have

SN kT R deahe D0 kT B fr -k, P

k;éO k=k1+k2 k7£0 k1
[k1[>10]k|

1 1

5(Z|k1|2|fk1|2) (sngmk._le) S [k
k1

k1 k#0
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SHAN e lglzz Rl e

This completes the proof of (ii).

4 Construction of the method through analysing consistency error

In this section we construct the numerical method based on twisted vari-
ables and Duhamel’s formula through analysing the consistency errors in ap-
proximating the exponential integrals using harmonic analysis techniques. For
readers’ convenience, we present the derivation of the numerical method in
subsection 4.1 and defer the technical estimates to subsection 4.2.

4.1 Construction of the numerical method

As mentioned in the introduction section and the beginning of section 2, the
NLS equation (1.1) has a unique solution u € C([0,T]; H*(T)) satisfying the
Duhamel’s formula:

Wtni1) = % u(t,) —iA / eitntr=(n )02 10yt 4 8)Pult, + s)ds, (4.1)
0

as well as the mass and momentum conservations (2.1)-(2.2). The norm ||ul|c(jo,7);7#1 (1))
is bounded by a constant depending on [|u®||z1; see [2].
Let v(t) := e~ u(t) be the twisted variable. Then v € C([0,T]; H(T))
satisfies [|v||c(o,r;m1 () = llulleqo,r;mr(ry) and the following conservation
laws simiarly as u, i.e.,

1. Mass conservation:
1/|(t )2 d 1/|(t )Pdx =M for t >0 (4.2)
— [ |v(t,z)|"de = — [ |u(t,z)|"dx = or . .
2 T ’ 2 T ’
2. Momentum conservation:
1 1
— / v(t,x)0,0(t, ) de = — / u(t, x)0u(t,x)dx = P for ¢ > 0.
2 T 21 T
(4.3)
Applying the operator e~ +19; to the identity (4.1), we obtain
W(tnst) = vltn) — i/\/ o iltnts)02 [|ei(tn+s)82v(tn +8)2 ei(tn“)azv(tn +5)] ds.
0
(4.4)
The Fourier coefficients of both sides of (4.4) should be equal, i.e.,
O (tng1) = Op(tn) — iX / S by (4 8)ik, (tn + 8)0k, (tn + 5) ds,
0

k1+ko+ks=Fk
(4.5)
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with a phase function
¢ = ok, ki, ko, ks) = k* + ki — k3 — k3.
Replacing 7 and s in (4.5) by s and o, respectively, we have
O (tn + s) (4.6)
= Og(tn) — X /S Z e It Gy (tn + 8) 0k, (tn + 0)igy (tn + 0) do.
O kithotks=k

In view of (4.6) and the definition of 7,,(M;v) in (3.2), we have

v(t, + ) / T5(1;v(t, + 0))do (4.7)

As a result, (4.5) can be written as
=0ktn) =N D> Ok (tn) Oy (tn) Dk, () / ettt ds 4 Ry 4,

oy +ka+hks =k 0
with
.
Rik = —iA Z ei(tnts)¢ (’Uk (tn + )0k, (tn + 8)0ks (tn + 9)
O kytkoths=k

(b (1) (m)) s

6/ / T5(L;0(t, + 0))dods,
0o Jo

where the last inclusion is based on the definition in (3.3). If R; denotes the
function with Fourier coefficients R , then the relation above implies that
(according to Lemma 3 (i) of the next subsection)

HR1HH1 S T2||U||i§°Hll,- (4.9)

This term will be dropped in our numerical scheme.

In the following, we approximate the second term on the right-hand side of
(4.8) by expressions that can be evaluated efficiently with FFT. To this end,
we consider the three cases k = 0, |k| > N and 0 # |k| < N, separately.

CASE 1: k = 0. In this case, (4.8) reduces to

.

. . 2_ 1212

Do (tnr1) = Do(tn) — iX Z e, (b)) Dy (£) k3(tn)/ ei(tnts) (ki —k3—k3) o
k1+ko+k3=0 0

=do(tn) —iAT > @R Gt Yoy (tn) Oy (t)
ki1+ko+k3=0
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+ 731,0 + 732,0
_ ﬁO(tn) _ Z’)\THO(|eitnaiv(tn)|2eitnaiv(tn)) + 7%1’0 + 7%2’0

—7}0( )—Z)\TH() [HN }elt” l’Ut )| )eitnaiv(tn)]

+Rao+ Rao + R2,07 (4.10)
with
Rk
Y T tta)in ) [ (I 048 g
k1+ka+ks=k 0
R

= —ixr[(1 = In) (|20 (t,) |*) |22 u(t,) € T2 u(t,) To(1sn; v(tn)),
where

0 for |k| <N,

4.11
1 for |k| > N. (4.11)

(Asn)k = Ligsn = {

Since ky + ko + k3 = 0, it follows that there holds k% — k3 — k3 = 2koks and
therefore

[ (et D) s = r20(kat),
0

As a result, the function Ry (with Fourier coefficients ﬁg,k) satisfies that
Ra € 72T3(k2ks; v(t,)) in view of the definition in (3.2). According to Lemma
3 (i)—(ii) of the next subsection, Re and R satisfy the following estimates:

R0l S 720l s (4.12)
il S IR3le
< Tl P vt | 1o 11 — ) (™2 (k) || 2
STN™ 1||U||L<;°H;- (4.13)

The two terms 7@2,0 and 7@30 will be dropped in our numerical scheme.
CASE 2: |k| > N. Let R3 be the function with Fourier coefficients

7%,3% = —Ljp>N 04 Z Vkey (tn) Oy (t ) Oy () / e/t t9)% g,
k1 +kz+ha =k 0

Then

Rs €7Ts (Asn;v(tn))-
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Lemma 3 (i) of the next subsection implies that
[Rsll e STN 0l Focpn for s €[0,1]. (4.14)

This term will be dropped in the numerical scheme.
CASE 3: 0 # |k| < N. By using the identity

(k1 + ko) + (k1 + k3) — k1
k

and symmetry between ko and ks, we can decompose the second term on the
right-hand side of (4.8) into two parts, i.e.,

1=

Ok (tn+1)

N . ~ ~ N T kit ko i(tn+s)p
= Ok(tn) — 200 D Ok, (tn)bny (tn) Dk, () et ds

k1+ka+ks=k 0
(4.15a)
R Tky o,
+iA Z Uk, (tn)ﬁlw (tn)ﬁks (tn) / Zlez(tn—i-s)qb ds (415b)
k1+ko+ks=k 0
+ Rk (4.15¢)

We furthermore truncate (4.15a) to the frequency domain |ky + k3| < N,
ie.,

(4.152) =iy (t,)
. Tkt ks i A
— 27,)\ Z </ %e (t"+ )¢ d5> Vi, (tn)vkz (tn)vks (tn)

k1+ko+kz=k 0
|k1+ks|<N
SR (1.16)
with
Tk + ke .
NS < / kit k2 e, 400 ds) B (£ )y () (1)
0 k
R ki+ko+ks=k
Rak = Ve s> for 0 # |k| < N,
0 otherwise.

The corresponding function R4 with Fourier coefficients 7A24,k satisfies that

k1 + ko

Ri€TTs ( 10¢|k§N1k1+k3>N§U(tn)) :

By Lemma 3 (iii) in the next subsection and symmetry between ks and ks,
and we have

HR4HH5 < TN_1+S||’UH?£;>OH; for s €0,1]. (4.17)
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Since k1 +ko+ks = k, it is straightforward to verify that ¢ = 2(k1+ko)(k1+k3).
As a result, if k1 + k3 # 0 then

TRt e 1 it -
w90 gs = i1 _ gitnd), 4.18
/0 k¢ "7 ikl + k) (c ") (4.18)
If k1 4+ k3 = 0 then ¢ = 0 and k = ko, and therefore
T k14 ke k
/ ot _I: 2 oiltnt9)¢ gg = T(?l + 1). (4.19)
0
Substituting the two relations (4.18)—(4.19) into (4.16), we obtain
. 1 ; ; A . .
(415&) = U}C(tn) — )\ Z W(eitn+l¢ — elt”d)) ’Ukl (tn)vk2 (tn)ka (tn)
kithothg=k L8
. kl ~ ~ ~ a
— 2iAT Z (Z + 1) Uty (b)) 0k (b)) Oty (E1) + R -
k1+k3=0

Then we apply the mass and momentum conservations in (4.2)—(4.3), which
imply that

k .

“2ixr Y (?1 + 1) B, (En ) Ot ) By (tn) = — 2INTP (i)~ 0p(tn) — 20T M (L)
k1+k3=0

Therefore,

(4.15a) =0k (t,) — A Z m (eitn+1¢ - eitn¢) By (tn ) Oy () Oy ()

k1+ko+ks=k
07#|k1+ks|<N

— 2NTP (ik) " op (tn) — 20ATM D1 (tn) + R g

—2ATP (ik) "' —2iAT M
—— 2AT (ik) IAT Uk(tn)

1 ithi1d _ gitn®) 5 b b
A D gy O ) B (1), (1) (1)

k1+ko+ks=k
0|1 +ha| <N
+ Rak + R g (4.20)
where
(1 — 20T P(ik) ™! = 20ATM — e 2ATPER T 20T M Yy, (g
RE . = for 0 # |k] <N,

0 otherwise.

From this expression we see that the function R} with Fourier coefficients 7@1 &
satisfies that

R € T2Ti(1;0(ty)). (4.21)



16

Note that for k1 + ko + k3 = k the following equalities hold:

(b(k‘, ki, ko, k‘3) = 2kk1 + 2koks, (4.22&)
2kky = k? + k% — (ko + k3)?, (4.22b)
2koks = (kig + ]{13)2 — k‘% — ]{ig (4.220)

By using these relations, we have
ei(tn+5)¢ :eitn¢62iskk1 e2isk}2k3

:eitn¢[e2iskk1 + (e2isk2k3 _ 1) 4 (eZiskkl _ 1)(62isk2k3 _ 1)]7

and therefore (4.15b) can be decomposed into the following three terms:

(4.15b) =ix > ( / %e“"%%k’fl ds)ﬁkl(tn)ﬁk2(tn)ﬁk3(tn)
0

ki+ko+ks=k
ko +ks| <N
(4.23-1)
Tk X N
MDY ( et e ds)%(tn)ﬁkz(tn)ﬁkxtn)
kitkatky=k >0
|ka+Es|<N
(4.23-2)
+ R g + R s (4.23-3)
where
ﬁs,k
Tk . X ) R
=ix Y. ( el (M) (eiekebs 1) ds)%<tn>@k2<tn>ok3<tn>,
ki+ko+ks=k" 70
|ka+Es|<N
(4.24)
7S * . Tk 7 s & ~ ~
Rip=iA > ( / fe@ﬁ >¢ds)vkl(tn)%(tn)%(tn), (4.25)
ki+katha=k 70
|ko+ks|>N

for 0 # |k| < N, and 7€5,k = ﬁ;k =0 for k =0 and |k| > N. Lemma 4 of the
next subsection implies that

IRs|l . S 720l s for s € (3,1), (4.262)
IRs > < 7*VInT o] f e s (4.26D)

Obviously,
R; S ’7'7-3 (O’; U(tn)) with some |O'(k‘, kl, kz, k3)| S |k‘_1‘k1|10;£|k|§N]-|k2+k3|>N~
By Lemma 3 (iii) and symmetry, and we have that for any s € [0, 1],

TN ol (4.27)

R3] 5
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Note that
A 212 2 ~ N o
(4.23-1) = Z @eztnaﬁ(ezr(k +k3 —(ka+ks)?) _ 1) 0, () Oy () Dy (£,
ki+kat+ks=k
[k tks| <N
(4.28)
Tk . R
(4.232) =ix ) ( / e (it 1) ds>@k1 (tn )0k (£ ) O (1)
ky+katks=k 70
k27#0,k37#0
[k2t+ks| <N
k , . R N .
=X D (TR )b () Dk (£ Oy (£)
k1+ko+ks=k 2n3
k27#0,k37#0
[ka+ks3|<N
. k1 4 ¢ . .
S YD et (ta) ks (ta) s (1)
ki+ko+ks=k
k27#0,k3#0
|ka+k3| <N
k1 i ir 3)2—k2—k2 A A A
—\ Z metnzzv(e ((kz+ks) k3 k3) _1)%1(,5”)%2(15”)%3(75")
ky1+ko+kz=k 203
k27#0,k3 70
|ko+ks|<N
. ki it s . .
—ANT Y e g (t) Ok, () Oy ()
k1+ko+kz=k
[k2+ks|<N
+ 2T Z ertTLQS ﬂlﬂ (tn)vkz (tn)Uo (tn)
k1+ko=k
el SN
— iATe " Gy ()00 (tn ) D0 (). (4.29)

Substituting (4.28)—(4.29) into (4.23), and then substituting (4.20) and
(4.23) into (4.15), we obtain

Ok (tn—l-l)
— o 2iATP (ik) "' —2ixTM B (tn)

1 ; ; -
+A Z T (eZt"Hd) - elt"d)) Uk, () Oty (80 Ok (£
A ey S ik(iky + iks)
0#|k1+k3|<N
1 . . 2 2 2 A ~ ~
— )\ Z Weltﬂﬁb(e“-(k +k7 (k2+k3) ) _ 1) ,Ukl (tn)ka (tn)vke, (tn)
ki+ko+kz=k
[ka+ks|<N
1k . ) 2 ;2 g2 ~
- A Z %elt"gﬁ(e”((h—i_h) —ha=hks) 1) Uk, (tn)'ﬁkz (tn)@ks (tn)
k1+k2+k3:k2(zk) (ik2) (iks)
k27#0,ks 70

|ko+ks|<N
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. kl‘ ~ ~ ~
D DR (S CA LY
ki+ko+ks=k
|k2+k3| <N

) k1 - . .
H2AT Y e By (Hn) B () B0 ()
k1+ko=k
[k2| <N

— AT B (£ )10 (tn) Do (tn)
+ Rk + Rag + ﬁZk + Rk + ﬁ;k for k #0 and [k| < N. (4.30)

Then substituting (4.10) and (4.30) into the expression v(tn41) = >z Ok (tns1)e™™™
yields

U(tns1) =" (v(t,); M, P) + Ry + Rao + Rs o + Rs + Ry + R + R + RS,
(4.31)

where
P"(f; M, P)
(o 2ATPO S2TM (1 _ o= 2ATM 7
— iz, [HN(|ez‘tna§f|2)eit,,L8§ /]
n )\e*“"“ai@;lﬂzv [(eitn+1ﬁi f) - 3;1HN(|eitn+185f|2)}
e %9 Ty {(ez‘tnai f) - 3;1HN(|eitn8§f|2)}

_ g {eit"“aiaxQUN ((efitnﬂaif) e T (eitnaﬁ f)Z)

et =27 (e—itnaﬁ Flin (eitnag f)2>}
e N (G R N

_ eﬂ'tnag 8;1HN ((efitnai C%ﬂ N (eitnag 3zlf)2>}
— idpe—itnd2 ax_lﬂN (e—itnaﬁ 0, FIlx (eitnag f)2)
+ 2007 Ty (f)e 0, (o7 %R, [ etk )
— iAT(Io f)* T go (77002 f). (4.32)

The numerical scheme can be defined by dropping the defect terms R; and
R} in (4.31) and replacing the numbers M and P by their approximations My
and Py defined in (2.10), respectively. Namely, for given v, € Sy compute
Unt1 € SNy by

" = @"(v"; My, Py), n=0,1...,L —1; with v°=u’. (4.33)
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Then, replacing v and v™*+! by e~#n% " and e~ #1924 in (4.33), we obtain
the numerical scheme (2.8)—(2.9).

4.2 Technical lemmas for analysing the consistency errors

In this subsection, we present two technical lemmas, which are used in esti-
mating the defect terms R; and R} in the previous subsection.

Lemma 3 For any given v € HY(T) and s € [0, 1], the following results hold.
(i) Let m > 1,N € Z*. Then, for any f € T(1;v) and any g € Tru(1sn;v),
£l S N0l
loll 7. < N el

~

(ii) For any f € T3(kaks;v) there holds
(o f] S vllz-
(iti) Let N € ZT, N > 10 and f € T3(o;v). If
lo(k, k1, ko, ks)| < |k:|_1\kj| Lot|k|<N Ligy+ko|>n, for some j € {1,2,3},

then
s S N2 Jof| 3

Proof Without loss of generality, we can assume that o;,7 = 1,---,m are
positive for any ¢ € [0,7]. Otherwise we replace Uy, by [0g,| as we did in the
proof of Lemma 2.

(i) By the definition of 7,,(c;v) in (3.2), f € T, (1;v) implies that

Bl D oy, ~ Fl™).
kvt ki =k

By Plancherel’s identity and Lemma 1 (i), we obtain that
Il S o™ [ < llollzn-

For g € T(1sn;v), we use the inequality ||g||zs < N7175||g|l g together

~

with the inequality above, which implies that ||g|| g1 < [|v||%:. This yields the
desired inequality for g, i.e.,

lglles S N7l

(ii) For any f € T3(k2ks;v) we have that

i1 S S b 0) ol 6) s 0
k1+ko+ks=0

S Y OFl(IVIe®)?]

k?1+k)£:O
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2
S/TU(IVIU) dr S [[vll = IVIvlZe < loll-

(iii) We only consider the case when j = 1, since the other cases can be
treated in the same way. Since the Fourier coefficients of J° f satisfies

FelP A=) Fe S ) Togpgen (k)™ () Dy (8)0k, (£) 01, (1)

ki+ko+ks=k
|k1+Ek2|>N

SN N (k)T e+ Ka) (R ) B, (£) 0, () By (1)
k1+ko+kz=k
|k1+k2|>N

SN FJ[T vl (vdv))],
it follows from Lemma 2 (ii) that
17 fll2 SN odvllpe vl € N7 ollz [ Joll 2ol € N 752wl
This proves the desired results in Lemma 3.
Lemma 4 Ifv e L>(0,T; H(T)) then
IR ,- < TQW””H%OQ(O,T;HU' (4.34)

Moreover, for any s € (%, 1),

[R50 S 741 o200 (4.35)

Proof For ky+ko+ks = k and |ka| > |k3| we claim that the following inequality
holds:

k . )
T (@ 1) (PR 1) <o lk| 0 R [k lks| Vs € [0,7], Vo€ (0,11,
(4.36)

In order to prove (4.36), we consider the following two cases: |k| > |k3| and
k| < [ks].
CASE 1: |k| > |k3|. In this case, we use the following inequalities:

|62iskk1 _ 1| <2 and |62isk2k3 — ]_| < 2T|k2||k3|,

it follows that

k . . _ o o
(€M — 1) (2iehes 1) < dr || 7 [k [ [Rs| S K| R [Rel [

CASE 2: |k| < |ks|. In this case k1 + k2 + k3 = k and |ko| > |k3| imply
k1| < |k2| + [Ks| + [k < |kel-
We use the following inequalities:

e?hR 1] < 27]k||k1| and |e*sReFs —1] < 2.
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Then we obtain
k1

g (e%skkl B 1)(e2isk2k3 _ 1)‘ < 47k ]2

Since k1| < |ko|, it follows that

ks \
0 S el S Ballal (121)
This proves (4.36). R
By using the symmetry between ko and ks in the expression of |Rs | in
(4.24) and applying (4.36) with o = 1 in the case |k| > |k3| and o = 0 in the
case |k| < |ks|, we obtain for any k # 0,

Rs x| S7° > ||~k [ | [K [0k, (En)|[0h, (E0)||Oks (£0))|
ki+ko+ks=k
[k2|> ks, |k|>|ks|
+ 7 > e |0k (8) [0k (8] |0k ()] (4.37)
ki+ko+ks=k

[k2| > ks, |k|<|ks|

Without loss of generality, we may assume that Oy, (t,), 9k, (tn) and g, (t,)
are nonnegative. Otherwise we replace them by their absolute values as we did
in the proof of Lemma 2.

By the duality between L?(T) and itself, it is sufficient to prove the follow-
ing result to obtain (4.34):

[(Rs, /)] S 72V In(r=D[ollgeo o g | fllze ¥ f € L(T). (4.38)

From the definition below (4.25) we see that R59 = 0. As a result, we have
[(Rs, ) §Z|7€5,k| il S Z R | | ficl + Z Rkl |fl- (4.39)

k#0 k| >7—1 0#|k|<r =1
From the expression of R5j in (4.24) we see that for [k| > 7! there holds
Roil <72 D [kl (n) ks (bn) Dy (£n).
ki1+ko+ks=k

Hence, by the Cauchy—Schwartz inequality and Plancherel’s identity, we have

> IRsxl fel

k[>T

STy D Rl () o (£0) ks (£) il

k ki+ka+ks=k

:T2 Z Z |k — ko — k3‘r§k—k2—k3 (tn)r&/@ (tn)r&kg (tn) |fk|

ko,ks k

ST kezliz | (e, (60) ks ezlliz | (Ona (60) szl 11 (Ony () sz llin
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ST ez llvll 3 (4.40)
where the last inequality uses the following result:

10k, (tn))kaezllee S 1((h2) ™ raezlliz | () Ory (E) ) kaezlliz S [0l

The second term in (4.39) can be estimated by using (4.37), i.e.,

Z Rkl | fl (4.41)
0| k| <71
sy > [~ [ ezl K| fl Oy (6n)Dr (60 Dk (£0)

0#lk|<T=1  kit+katks=k
[k2| > k3|, |k|>ks|

2 Y ST Tkallkall el (t) ks (t0) iy (60)

0#|k|<7t=1  kitkatks=k
|k2| > ks, k| <|ks|

ST D D KT Ul O () Ik = Ry — ROy~ (8 ROy (£0)

0F#|k| <71 k3| <|k| k1

+72 T T S Tl By () — Fy = Eslk—k, s () 0k (£0)

0F#| k<71 [ks|>|k| K1

ST (Radn, () s ezlliz | (o (b0 Diaezllie D RITH Sl D [kalong ()

0#|k|<7~1 |kal <|&]
+ 72| (Badwy (b)) ks ezlle | (Batry (bnDkoezlle Y 1l Y Ok (tn)
0AkIST=T [kal>|k]
_1,. 7 ~
SEwEE D T2 | felll(kste, (tn))ksezllie
0#|k|<7~1
+ o) E Y el (s) ™) ikasnlli [ ((ka)bis (b)) ks >k ll22
0 |k|<r 1
_1. 4, ~
SEE)F D T2 | felll(kste, (tn))ksezllie
0#|k|<7~1

1

SNt 3 UKL 2 )osging <= lliz | () g Dz
St o)l VIn(T =) £ e (4.42)

Substituting (4.40)—(4.42) into (4.39) yields (4.38), which implies the desired
result in (4.34).
It remains to prove (4.35). To this end, we use the following inequalities:

e — 1) <2 and (e — 1] S 5kl ks,

which imply that

k ; ; 1
(€M 1) (XoReks 1)) s K| R 2R 2 Vs € [0,7].
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By substituting this into the expression of 7%57 k in (4.24), and using Plancherel’s
identity, we obtain

R3]l 7. 5 72

VI (1900 (IV130)°) |

Lz

Then using the Sobolev inequality, we get that for any s € (%, 1),

[R5l <72

2
L3-32s

2

St [I91o]| . 11912 0]]] 2, S 7R Ilvlin.

VI (IV]20)°|

This completes the proof of Lemma 4.

5 Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In subsection 5.1, we present
an error estimate for the numerical solution in H*(T) with s € (1,1), and then
use this result to prove the boundedness of the numerical solution in H*(T)
uniformly with respect to 7 and N. In subsection 5.2, we utilize the H'-

boundedness of the numerical solution to prove the desired error estimate in
L3(T).

5.1 Boundedness of the numerical solution in H!(T)

Lemma 5 Let v’ € HY(T), and let uy n, n=0,1,..., L, be the numerical
solution given by (2.8)—(2.9). Then there exist positive constants s and N
such that for T € (0,74] and N > Nj the following error bound holds:

1 —
Orgnnang ||u(tna ) - u:'l,NHHS 58 T2 + N tte Vs e (%7 1)a (51)

where T, and Ny depend only on ||[u’|| g1, T and s.
Proof Let v™ = e~ itn?: ul . Then v+ = @™ (v™; My, Py) as shown in (4.33).
By using this identity we have
V(tpgr) — 0"t
=0(tpt1) — P (v(tn); M, P) + " (v(tn); M, P) — " (v™; My, Pn)
= L+ P"(v(t,); M, P) — " (v"; My, Pn), (5.2)

where
L = v(tns1) = D" (v(tn); M, P) = R1+Ro0+Rj 0+ Rs0+Ra+R;+Rs+R3,
which is shown in (4.31). From (4.9), (4.12), (4.14), (4.17), (4.26) and (4.27)

we see that

<7 4N wseo,1). (5.3)

(L PR
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Note that the functional ¢"(f; M, P) defined in (4.32) can be rewritten into
the following form:

&"(f; M, P)
= f + (e—Qi)\TPa;l—Qi)\TM — 14+ 22/\7'P8;1 + 22/\7’M)f + (1 _ e—2i)\TM)HOf

— ATl [HNOe“"aﬁf’Q)e”"ai f]

. ik Tkit ke i s PN
— 2\ Z ek( /%e(tvﬁ M’ds) Fios Fro Fra

0#|k|<N ky+ho+hs=k 0
|ka+ks|<N
Tk N
) . 1 . PO
+ A Z elkx Z </ ?elt"(ﬁemsmﬁ ds) fklszfks
0#£|k|<N k1+kotks=k 70
|kot+ks| <N
Tk ~
) . 1 _ P
+ 3\ Z etk® g </ ke”"'d’(emsbkd—l)ds) S oo Jres -
0#£|k|<N k1+ko+ks=k ~70
[ko+k3|<N

(5.4)

For example, the third line of (5.4) comes from (4.20), which can be rewritten
back into (4.16). This is how we obtain the third line in the expression above.
The other terms are obtained similarly.

From (5.4) we furthermore derive that

P"(v(tn); M, P) — @™ (v"; My, Pn)
= 0(ty) — V" 4 B} + BY + Y + B} + D, (5.5)
where
B} = (e 2ATPOSI=2ATM 1 4 9ixr PO + 2iAT M )u(t,,)
+ (1 — e 2 M) [Tou(t,,)
— (e72ATPNOT=2ATMN 1 4 9iA7 Py + 2iAT My )"

_ (1 _ e_2i>\TMN)H0’Un7

@’; - _ i)\THO(|e””agv(tn)|2e“"a§v(tn) _ |eitnaivn|2eitnaﬁvn),

. Tk ko .
e 2D I ( / 172 QGz(ms)Ms)

0#£|k|<N ki+kot+hs=k> 70
|k2+k3|<N

! (’Ekl (t7t)'0k2 (tn)@ks (tn) - @Zl @Zg 1}23)7
n . ikx T kl itn @ 2iskky
0 =i\ E e E 7 nPe ds
0#[k|SN  kithothky=k>"0
[k2+k3|<N

(O () Oy (£ ) Oy () — TR, 05, B, )
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@g, —i\ Z eikx Z (/0 %eitnqﬁ(e%skzk:g . 1) ds)

0#|k|<N ki+ka+ks=k
|[ko+k3| <N
= U (S 1)

: ('f)kl (tn)ﬁkz (tn)ﬁkg (tn) - T}kl Uky vka) :

Note that P, M, Py and My defined in (2.4) and (2.10) are all bounded
numbers, with bounds depending on |[u®||z:. In particular,

1
M bl =[5 [0 = a2y

1 _ .
< —/ [(uo —ul )0 4+ ul y(ud — “21\1)] dx
27T T ) » ’
S’ =l yllee (el + a2 llz2)
SN (5.6)
and
1 _
|P — Py| = |=— [ (u00,ud —u® 0,10 y)dx
2w T ’ ’
1 _ - @
S5z [(UO —ud ;)00 + 4 N O, (u0 — uf N)] dx
27T T s » 5
1 _ .
=|— [(uo —ul )0’ — 9pul N (u0 — ul N)] dz
27-‘— T ) 5 i

S I = wllza (1020 22 + 1050wl 22)

SNl (5.7)

From the expression of 7 we see that its Fourier coefficients can be written
as

Fi[@7] = F(M, P; k)i (tn) — F(My, Py; k),
with
F(M, Py k) := e 2ATPE o= 207M _ g 4 9iA7 PE=11, 4 + 2iATM
(1 — e 2AMy],

By using Taylor’s expansion and mean value theorem, it is straightforward to
verify that

|F(M, P;k) — F(My, Py; k)| S 7(|]P — Py| + |[M — My)).
As a result, we have

1Y ([ zre SI((R) Fi[@T])kezlliz
ST(P = Py|+ M = My )||((k)* 0k () rezliz
+ 1K) (0 (tn) — Ox))rezlliz
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ST(P = Pyl + M = My |)[v(ta)llms + 7llo(tn) — 0" | a
STN Tl oo 0,750y + TllV(ER) = 0" 11, (5-8)

where the last inequality follows from (5.6)—(5.7).
Since @} is a constant, it is straightforward to show that (similarly as (5.6))

n n ity 2 ity 2 n
(@3] ST ([0 = vlta) |z (e = o(tn) [ Zoe + [l 0™ |20
STl = vta)ll g2 (Jv(ta)lF- + 0" ||7+)  (this holds for s > 3)
STl = vtz ([ (ta) e + o™ = v(ta)l1Fe)- (5.9)

Similarly, @% can be decomposed into several functions of the following
form:

n , ik Tkitke i P
QY = —2i Z e'* Z (/ %e(t” )¢d3>f1,k1f2,k2f3,k37

0#£k|SN  kitkathks=k 70
|ka+k3|<N

where fj,k denotes the kth Fourier coefficient of the functions f;, and one of
the three functions f;,j =1,2,3, is

v™ —v(t,) or its conjugate;

the other two of the three functions f;,j = 1,2,3, are either v™ or v(¢,) or
their conjugates. We assume that f;, k € Z are nonnegative; otherwise we

consider functions with Fourier coefficients | fjk| as we did in the proof of
Lemma 2 (ii). Then

’(@)k‘ ST Z Mfl,klflsz&kg = FulrJ (1 (f2f3))]-

k1+ko+ks=k |k|

As a result, by Plancherel’s identity and Lemma 2 (i), we have

(@5 1 ST~ (f3 T (f1f2))llme
STl fsllas fifell e (this requires s > 1)
ST sl full e 1] foll me
STl = o(ta) = (0™ 13 + o)1)
Sl = vta) = (0" = v(ta) | e + o)1 Fe)- (5.10)

&} and P can be estimated similarly, i.e.,

L5 e + 195 e STllo™ = v(ta) e (10" = vt 1Fre + () lIF7)-

Hence, combining with the estimates of @7, j =1,...,5, we have

|87 (v(tn); M, P) — @"(0"; M, Py )|+
< (1+C7)|v" = v(ta)llas + CTllv" = v(ta)|3gs + CTN Y,
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which holds for any given s € (4,1). Substituting this and (5.3) into (5.2)
yields that

lv(tns1) — v”+1||Hs SC(T% + TN_“'S) + (1 +C)|lv"™ — v(tn)| me
+ C7ljv™ — v(t) |13

By using the discrete Gronwall’s inequality with induction assumption on
[[o™ — v(t,) || s < 1, we obtain (for sufficiently small 7)

max [[v(t,) — U”HHS <724 NS,

0<n<L
This proves the desired result in Lemma 5.

Lemma 5 implies that ||v(¢,) — v™||gs < 1. Then, by using the triangle
inequality and boundedness of the exact solution in H', we have

[0 e S Nwtn) = 0" lae + lv(tn)l[as S 1.

This result can be furthermore improved to the H! norm, as shown in the
following lemma.

Lemma 6 Let u’ € HY(T), and let ul y, m=0,1,..., L, be the numerical
solution given by (2.8)~(2.9). Then there exists a constant 19 > 0 such that
for T € (0, 79] the following estimate holds:

n <
e [yl S 1 (5.11)

Proof Let v™ = e*“"‘?i u? ;. By using the expression of @™ in (5.4), we imme-
N
diately obtain that

19" (0" My, Pr) s < 0" e + Crllo" e+ CTllo" |z l0" 3, (5.12)

which holds for any fixed s € (

£,1). Since [[v"||gs < 1 is already proved in
Lemma 5, substituting this into (4.3

3) yields
[o" g < N[ [ + O llo" |1, (5.13)

which implies [max [lv™ | g2 < 1 after iteration in n. The desired result follows
n

from the relation [[v"| ;2 = Jlu? | -
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5.2 Error estimation in L?(T)
From (4.9), (4.12), (4.14), (4.17), (4.26) and (4.27) we conclude that
||L’”HL2 <O(r*Vlnrl+7N7h). (5.14)
By choosing s = 0 in (5.8) and choosing a fixed s € (3,1) in (5.9), we have
197 )22 + 195 22 STNT! + 70" = v(tn)] e
Instead of (5.10), we need to use the following estimate for @%:

195122 SITI = (5T (frfe)llee S 7min(| fsllm [l fufollzz, || fsll 2]l £ folla)-
which is a consequence of Lemma 2 (ii). Recall that one of the three functions
fi,7=1,2,3,is v™ — v(t,) or its conjugate, and the other two functions are
either v™ or v(t,) (or their conjugates). If f; is v™ — v(t,) or its conjugate,
then we choose L? norm on f;; otherwise we choose L2 norm on fs f5. In either
case we obtain

19512 Srllv”™ = vta) 2 (o) 7 + 0" 170) S Tllv™ = v(ta)llz.
The two terms ¢} and &F can be estimated similarly, i.e.,
9212 + 952 S Tllo™ = v(tn)] L2
Substituting the estimates of [|@7([12, j =1,...,5, into (5.5), we have
8™ (v(tn); M, P) — & (v"™; My, Px)|lz2 S TN 4 7]v™ — v(ty)] 12

Then, substituting this into (5.2) and using estimate (5.14), we obtain

[0(tns1) — 0" 2 < C(P2VInT=L 4 7N"Y) + (14 C7)|Jo™ — v(t,)]| 22
(5.15)

Tterating this inequality yields

max |lv(t,) —v"||z2 < ||v(to) — 0|2 + 7VInT 1 + N7' < 7viinr—1 4 N1

1<n<L

This completes the proof of Theorem 1 in view of the following identity:

[o(tn) = v"[lL2 = llultn) — u nllz2-
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6 Numerical experiments

In this section we present numerical experiments to support the theoretical
analysis presented in Theorem 1. We consider the NLS equation (1.1) with
A = —1 and initial value

1 - —a tkx
,UJO(:E):E Z |k| 0.51 ek’

0£kET

(6.1)

which satisfies that u® € H¥(T) and u° ¢ H*+0-01(T).

We solve the problem by the proposed method (2.8)-(2.9) for a = 2
and o = 1, respectively, and present the time discretisation errors |u, n,., —
Ureos Noog || 2 10 Tables 1-2 for several sufficiently large Nyer, with a reference
stepsize Tyt = 2713, From the numerical results we can see that the error from
spatial discretisation is negligibly small in observing the temporal convergence
rates, i.e., almost first-order convergent as 7 — 0. This is consistent with the

theoretical result proved in Theorem 1.

Table 1 Temporal discretisation error ||ur N, ; — Ur,;,Nyopllp2 at T =1
with & = 2 in (6.1) (for H? initial data).

Nref =28 Nref =29 Nref =210

=275 3.054E-05 3.054E-05 3.054E-05

=276 1.519E-05 1.519E-05 1.519E-05

27 7.539E-06 7.539E-06 7.539E-06
convergence rate O(r1-01) O(r1-01) O(r1-01)

Table 2 Temporal discretisation error ||ur n

ref

= Urpep Neee 2 2t T'=1
with @ = 1 in (6.1) (for H! initial data).

Niet = 28 Nyt = 29 Nyet = 210

T=275 8.971E-05 8.973E-05 8.975E-05

T=276 4.123E-05 4.126E-05 4.126E-05

r=2"7 2.004E-05 2.005E-05 2.006E-05
convergence rate O(r104) O(r1:04) O(r104)

We present the spatial discretisation errors ||tr, ;. N —Ur,op, Nyos || 22 fOr o0 = 2
and a = 1 in Tables 3—4 for several sufficiently small stepsize Tyef, with Ny =
1024. From the numerical results we can see that the error from temporal
discretisation is negligibly small in observing the spatial convergence rates,
i.e., ath-order convergence for H® initial data. This is consistent with the
result proved in Theorem 1 and the comments in Remark 1.
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Table 3 Spatial discretisation error ||ur . N — tUr; N, llp2 at T =1

with @ = 2 in (6.1) (for H? initial data).

Tref = 278 Tref = 279 Tref = 2710

N =16 2.514E-04 2.514E-04 2.514E-04

N =32 6.446E-05 6.446E-05 6.446E-05

N =64 1.626E-05 1.626E-05 1.626E-05
convergence rate O(N—1.99) O(N—1:99) O(N—1:99)

Table 4 Spatial discretisation error [[u,, . N — Ur, ¢, Nooellp2 at T =1

with @ = 1 in (6.1) (for H! initial data).

Tref = 278 Tref = 279 Tref = 210

N =16 5.856E-03 5.856E-03 5.856E-03

N =32 2.954E-03 2.954E-03 2.954E-03

N =64 1.477E-03 1.477E-03 1.477E-03
convergence rate O(N—1:00) O(N—1:00) O(N—1:00)

7 Conclusion

We have constructed a fast fully discrete low-regularity integrator for solving
the NLS equation with nonsmooth initial data in one dimension. The method
can be implemented by using FFT with O(N In N) operations at every time
level, and is proved to have an error bound of O(r+/In(1/7) + N~1) when
the initial data is in H'(T). For initial data in H*(T) with s > 1, the nu-
merical results show that the proposed method can have an error bound of
O(T+4 N~*). We expect that the techniques for constructing and analysing the
spatial discretisation method in combination with the temporal low-regularity
integrator may also be extended to other dispersive equations with nonsmooth
data.
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