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Abstract A fully discrete and fully explicit low-regularity integrator is con-
structed for the one-dimensional periodic cubic nonlinear Schrödinger equa-
tion. The method can be implemented by using fast Fourier transform with
O(N lnN) operations at every time level, and is proved to have an L2-norm
error bound of O(τ

√
ln(1/τ)+N−1) for H1 initial data, without requiring any

CFL condition, where τ and N denote the temporal stepsize and the degree
of freedoms in the spatial discretisation, respectively.

Keywords Nonlinear Schrödinger equation, numerical solution, first-order
convergence, low regularity, fast Fourier transform

1 Introduction

This article concerns the numerical solution of the cubic nonlinear Schrödinger
(NLS) equation{

i∂tu(t, x) + ∂xxu(t, x) = λ|u(t, x)|2u(t, x) for x ∈ T and t ∈ (0, T ],

u(0, x) = u0(x) for x ∈ T,
(1.1)

on the one-dimensional torus T = (−π, π) with a nonsmooth initial value
u0 ∈ H1(T), where λ = −1 and 1 are referred to as the focusing and defocusing
cases, respectively. It is known that problem (1.1) is globally well-posed in
Hs(T) for s ≥ 0; see [2].
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The construction of numerical methods for the NLS equation and related
dispersive equations with nonsmooth initial data has attracted much atten-
tion recently since the pioneering work of Ostermann & Schratz [17], who
introduced a low-regularity exponential-type integrator that could have first-
order convergence in Hγ(Td) for initial data u0 ∈ Hγ+1(Td) and γ > d

2 ,
where d denotes the dimension of space. Before their work, the traditional
regularity assumption for the NLS equation for a time-stepping method to
have first-order convergence in Hγ(Td) is u0 ∈ Hγ+2(Td) for γ ≥ 0 (losing two
derivatives). This includes the Strang splitting methods [6,14], the Lie splitting
method [10], and classical exponential integrators [8] (also see the discussion
in [17, p. 733]). The finite difference methods [19, 21] generally require more
regularity of the initial data (one temporal derivative on the solution gener-
ally requires the initial data to have two spatial derivatives to satisfy certain
compatibility conditions).

The idea of Ostermann & Schratz [17] is to use twisted variable to reduce
the consistency error in an exponential-type integrator, and to use harmonic
analysis techniques to approximate the exponential integral. More recently,
Wu & Yao [22] applied different harmonic analysis techniques to construct a
time-stepping method for the one-dimensional NLS equation with first-order
convergence in Hγ(T) for initial data u0 ∈ Hγ(T) and γ > 3

2 (without los-
ing any derivative). Ostermann, Rousset & Schratz furthermore weakened the
regularity assumption of initial data to u0 ∈ H1(T) in [15] and u0 ∈ Hs(T)
with s ∈ (0, 1] in [16] by using estimates in the discrete Bourgain spaces.
For u0 ∈ H1(T) these methods were proved to have L2-norm error bounds

of O(τ
5
6 ) and O(τ

7
8−ε), respectively, for the one-dimensional NLS equation.

A general framework of low-regularity integrators for nonlinear parabolic, dis-
persive and hyperbolic equations was introduced in [7], where the condition
for the numerical solution of the NLS equation to have first-order convergence
in L2(T) is u0 ∈ H 5

4 (T).
Besides the NLS equation, the techniques of twisted variable and harmonic

analysis techniques were also used in the construction of low-regularity inte-
grators for other dispersive equations; see [9, 18, 20, 23, 24] and the references
therein.

As far as we know, the analysis of all the low-regularity integrators for
the NLS equation are limited to semidiscretisation in time (the error from
spatial discretisation is unknown for nonsmooth initial data), and the regular-
ity condition for the time-stepping method to have first-order convergence is
u0 ∈ Hγ(T) for γ ≥ 5

4 . We are only aware of a fully discrete Lawson-type ex-
ponential integrator for the Korteweg–de Vries equation [18], with first-order
convergence in L2(T) in both time and space under a CFL condition τ = O(h)
for solutions in C([0, T ];H3(T)).

The objective of this article is to construct a fully discrete and fully explicit
lower-regularity integrator that has first-order convergence (up to a logarith-
mic factor) in both time and space for H1 initial data. The temporal low-
regularity integrator is constructed using twisted variables and with different
harmonic analysis techniques in approximating the low- and high-frequency
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parts of the functions in the exponential integral. The spatial discretisation
is integrated in the temporal low-regularity integrator by repeatedly using
frequency truncation and Fast Fourier transform (FFT) techniques in every
nonlinear operation (i.e., computing the product of two functions). By using a
(4N + 1)-point FFT for every product of two (2N + 1)-term Fourier series in
the numerical scheme and then truncating the obtained (4N+1)-term product
series to (2N +1)-term again, we avoid generating trigonometric interpolation
errors from using FFT. As a result, the spatial discretisation error of our
method is purely due to frequency truncation and therefore can be analysed
together with the temporal discretisation error in the frequency domain by
using harmonic analysis techniques.

The rest of this article is organised as follows. The fully discrete low-
regularity integrator and the main theorem on the convergence rates of the
method are presented in section 2. Some technical tools of harmonic analysis
are presented in section 3, which are used in section 4 in the construction of
the numerical method and analysis of the consistency error. The error bound
of proposed fully discrete low-regularity integrator is proved in section 5 by
utilizing the consistency error bounds obtained in section 4 and the stability of
the method, as well as the H1-regularity of fully discrete numerical solution.
The latter is proved to be bounded uniformly with respect to the temporal
stepsize and the number of Fourier terms in the spatial discretisation. Numer-
ical results are presented in section 6 to support the theoretical analysis in
this article.

2 The numerical method and main theoretical result

It is known that the solution of the NLS equation satisfies the following two
conservation laws (see e.g., [4]):

1. Mass conservation:

1

2π

∫
T
|u(t, x)|2 dx =

1

2π

∫
T
|u0(x)|2 dx for t > 0. (2.1)

2. Momentum conservation:

1

2π

∫
T
u(t, x)∂xū(t, x) dx =

1

2π

∫
T
u0 ∂xū

0 dx for t > 0. (2.2)

These two conserved quantities will be approximated based on the initial data
and utilized in the construction of the numerical method.

We denote by Π0 and Π 6=0 the zero-mode and nonzero-mode operators,
respectively, defined by

Π0f =
1

2π

∫
T
f(x) dx and Π 6=0(f) =

∑
k∈Z,k 6=0

eikxf̂k. (2.3)
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Then the conserved mass and momentum are denoted by

M =
1

2π

∫
T
|u0(x)|2 dx = Π0(|u0|2),

P =
1

2π

∫
T
u0∂xu0 dx = Π0

(
u0∂xu0

)
.

(2.4)

For any positive integer N , we denote by I2N the (4N + 1)-point trigono-
metric interpolation operator, which can be obtained through the discrete
Fourier transform (see [5, 25])

I2Nf(x) =

2N∑
k=−2N

eikxf̃k with f̃k =
1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) (2.5)

where

xn =
2πn

4N + 1
for n = −2N, · · · , 2N.

If the Fourier coefficient f̂k of the function f satisfies that f̂k = 0 for |k| > 2N ,

then I2Nf = f and therefore f̃k = f̂k in the formula (2.5). In this case, both

f(xn) =

2N∑
k=−2N

eikxn f̂k, n = −2N, · · · , 2N, (2.6)

and

f̂k =
1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) k = −2N, · · · , 2N, (2.7)

can be computed with cost O(N lnN) by using the fast Fourier transform
(FFT); see [5].

Let SN be the subspace of functions f ∈ L2(T) such that f̂k = 0 for |k| >
N . If w, v ∈ SN and their Fourier coefficients ŵk and v̂k, k = −2N, · · · , 2N ,
are stored in the computer (with ŵk = v̂k = 0 for N < |k| ≤ 2N), then the
values w(xn) and v(xn), n = −2N, . . . , 2N , can be computed exactly by using

(2.6) and FFT. Since (̂wv)k = 0 for |k| > 2N , it follows that wv = I2N (wv).
If we denote by Fk[v] the kth Fourier coefficient of the function v, then

Fk[wv] =
1

4N + 1

2N∑
n=−2N

e−ikxnw(xn)v(xn), k = −2N, . . . , 2N,

which can also be computed exactly by using FFT. Therefore, if we denote by
ΠN : L2(T)→ L2(T) the projection operator defined by

Fk[ΠNf ] =

{
f̂k for |k| ≤ N,
0 for |k| > N,
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then the cost of computing the Fourier coefficients of ΠN (wv) ∈ SN from the
Fourier coefficients of w, v ∈ SN is O(N lnN).

For any positive integer L, let tn = nτ , n = 0, 1, . . . , L, be a partition of
the time interval [0, T ] with stepsize τ = T/L. The fully discrete low-regularity
integrator for the NLS equation (1.1) to be constructed in this paper is: For
given unτ,N ∈ SN compute un+1

τ,N ∈ SN by

un+1
τ,N = Ψ(unτ,N ) for n = 0, 1 . . . , L− 1,

with u0τ,N = ΠNI2Nu
0 ∈ SN ,

(2.8)

where

Ψ(f) := eiτ(−2λPN∂
−1
x −2λMN+∂2

x)f + (1− e−2iλτMN )Π0f

− iλτΠ0

[
ΠN (|f |2)f

]
+ λ∂−1x ΠN

[
(eiτ∂

2
xf) · ∂−1x ΠN (|eiτ∂

2
xf |2)

]
− λeiτ∂

2
x∂−1x ΠN

[
f · ∂−1x ΠN (|f |2)

]
− λ

2

[
∂−2x ΠN

(
(e−iτ∂

2
x f̄ ) eiτ∂

2
xΠN (f2)

)
− eiτ∂

2
x∂−2x ΠN

(
f̄ ΠN (f2)

)]
− λ

2
eiτ∂

2
x∂−1x ΠN

[
∂xf̄

(
e−iτ∂

2
xΠN

[
(eiτ∂

2
x∂−1x f)2

]
−ΠN

[
(∂−1x f)2

])]
− iλτeiτ∂

2
x∂−1x ΠN

(
∂xf̄ ΠN (f2)

)
+ 2iλτΠ0f eiτ∂

2
x∂−1x ΠN

(
∂xf̄ f

)
− iλτ(Π0f)2eiτ∂

2
xΠ6=0f̄ (2.9)

for f ∈ SN and and

MN = Π0(|u0τ,N |2) and PN = Π0

(
u0τ,N∂xu

0
τ,N

)
(2.10)

are the approximate mass and momentum, respectively. By using (2.5) with
FFT, the initial value u0τ,N = ΠNI2Nu

0 can be obtained with cost O(N lnN).
Then, at every time level, the method only requires computing several func-
tions in the following forms:

• eiτ(−2MN−2PN∂
−1
x +∂2

x)f, e±iτ∂
2
xf and ∂−1x f for some function f ∈ SN ,

• ΠN (fg) for some given functions f, g ∈ SN ,

where

Fk[eiτ(−2MN−2PN∂
−1
x +∂2

x)f ] =

{
e−2MN iτ f̂0 for k = 0,

eiτ(−2MN−2PN (ik)−1−k2)f̂k for k 6= 0.

Fk[e±iτ∂
2
xf ] = e∓iτk

2

f̂k and ∂−1x f =

{
0 for k = 0,

(ik)−1f̂k for k 6= 0.

Hence, the computational cost is O(N lnN) at every time level.
The main theoretical result of this paper is the following theorem.



6

Theorem 1 If u0 ∈ H1(T) then there exist positive constants τ0, N0 and C
such that for τ ≤ τ0 and N ≥ N0 the numerical solution given by (2.8)–(2.9)
has the following error bound:

max
1≤n≤L

‖u(tn, ·)− unτ,N‖L2 ≤ C
(
τ
√

ln(1/τ) +N−1
)
, (2.11)

where the constants τ0, N0 and C depend only on T and ‖u0‖H1 .

The rest of this paper is devoted to the construction of the method (2.8)–
(2.9) and the proof of Theorem 1.

Remark 1 The analysis in this article can be easily extended to proving higher-
order convergence of the spatial discretisation method when the initial data
is smoother. Namely, for u0 ∈ Hs(T) with s > 1, the error bound of of the
proposed method should become

max
1≤n≤L

‖u(tn, ·)− unτ,N‖L2 ≤ C
(
τ +N−s

)
. (2.12)

The proof of this result (with smoother initial data) is easier than the proof
of Theorem 1 and therefore omitted. The convergence results in (2.11) and
(2.12) are illustrated by the numerical experiments in section 6 for s = 1 and
s = 2, respectively.

3 Notation and technical tools

In this section we introduce the basic notation and technical lemmas to be
used in analysing the error of the numerical method to be constructed.

3.1 Notation

The inner product and norm on L2(T) are denoted by

(f, g) =

∫
T
f(x)g(x) dx and ‖f‖L2 =

√
(f, f), respectively.

The norm on the Sobolev space Hs(T), s ∈ R, is denoted by∥∥f∥∥2
Hs = 2π

∑
k∈Z

(1 + k2)s|f̂k|2.

For a function f : [0, T ] × T → C we denote by ‖f‖Lp(0,T ;Hs) its space-time
Sobolev norm, defined by

‖f‖Lp(0,T ;Hs) =


(∫ T

0

‖f(t)‖pHsdt

) 1
p

for p ∈ [1,∞),

ess sup
t∈[0,T ]

‖f(t)‖Hs for p =∞.
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The Fourier coefficients of a function f on T are denoted by Fk[f ] or simply

f̂k, defined by

f̂k =
1

2π

∫
T

e−ikxf(x) dx for k ∈ Z.

The Fourier inversion formula is given by

f(x) =
∑
k∈Z

eikxf̂k.

The Fourier coefficients are known to have the following properties:

‖f‖2L2 = 2π
∑
k∈Z

∣∣f̂k∣∣2 (Plancherel identity);

Fk[fg] =
∑
k1∈Z

f̂k−k1 ĝk1 (Convolution).

For any function σ : Z → C such that |σ(k)| ≤ Cσ(1 + |k|)m for some
constants Cσ and m ≥ 0, we denote by σ(i−1∂x) : Hs(T) → Hs−m(T) the
operator defined by

σ(i−1∂x)f =
∑
k∈Z

σ(k)f̂keikx.

For abbreviation, we denote

〈k〉 = (1 + k2)
1
2 and Js = 〈i−1∂x〉s,

which imply that ∥∥f∥∥2
Hs =

∥∥Jsf∥∥2
L2 and Ĵsfk = 〈k〉sf̂k.

Moreover, we denote by ∂−1x : Hs(T) → Hs+1(T), s ∈ R, the operator such
that

Fk[∂−1x f ] =

{
(ik)−1f̂k, when k 6= 0,

0, when k = 0.
(3.1)

We denote by A . B or B & A the statement A ≤ CB for some constant
C > 0. The value of C may depend on T and ‖u0‖H1 , and may be different at
different occurrences, but is always independent of τ , N and n. The notation
A ∼ B means that A . B . A.

We denote by O(Y ) any quantity X such that X . Y . For any function
σ : Zm+1 → C and w ∈ H1(T) we denote by Tm(σ;w) the class of functions
f ∈ L2(T) such that

f̂k .
∑

k1+···+km=k

|σ(k, k1, · · · , km)| |ŵk1 | · · · |ŵkm | ∀ f ∈ Tm(σ;w). (3.2)

If F =
∫ t2
t1
f(t)dt for some function f(t) ∈ Tm(σ; v(t)), then we simply denote

F ∈
∫ t2

t1

Tm(σ; v(t))dt. (3.3)



8

3.2 Two technical lemmas

We will use the following version of the Kato–Ponce inequalities, which was
originally proved in [12] and subsequently improved to cover the endpoint case
in [3, 13].

Lemma 1 (The Kato–Ponce inequalities)

(i) If s > 1
2 and f, g ∈ Hs(T) then

‖fg‖Hs . ‖f‖Hs‖g‖Hs .

(ii) If s ≥ 0, s1 >
1
2 , f ∈ H

s+s1(T) and g ∈ Hs(T), then

‖fg‖Hs . ‖f‖Hs+s1‖g‖Hs .

In addition to Lemma 1 we also need the following results, which are con-
sequences of the Kato–Ponce inequalities.

Lemma 2

(i) If s > 1
2 and f, g ∈ Hs(T) then

‖J−1(Jf g)‖Hs . ‖f‖Hs‖g‖Hs .

(ii) If f, g ∈ H1(T) then

‖J−1(Jf g)‖L2 . min
{
‖f‖L2‖g‖H1 , ‖g‖L2‖f‖H1

}
.

Proof (i) The desired inequality is equivalent to ‖Js−1(Jf g)‖L2 . ‖f‖Hs‖g‖Hs .
By the duality between L2(T) and itself, it suffices to prove

(Js−1(Jf g), h) . ‖f‖Hs‖g‖Hs‖h‖L2 ∀h ∈ L2(T),

which is equivalent to∑
k

∑
k1+k2=k

〈k〉s−1〈k1〉f̂k1 ĝk2 ĥk . ‖f‖Hs‖g‖Hs‖h‖L2 .

Since the term corresponding to k = 0 satisfies∑
k1+k2=0

〈k1〉f̂k1 ĝk2 ĥ0 =
∑
k1

〈k1〉
1
2 f̂k1〈−k1〉

1
2 ĝ−k1 ĥ0

. ‖(〈k1〉
1
2 f̂k1)k1∈Z‖l2‖(〈−k1〉

1
2 ĝ−k1)k1∈Z‖l2 |ĥ0|

. ‖f‖
H

1
2
‖g‖

H
1
2
‖h‖L1

. ‖f‖Hs‖g‖Hs‖h‖L2 when s >
1

2
,

we only need to prove the following result:∑
k 6=0

∑
k1+k2=k

|k|s−1|k1|f̂k1 ĝk2 ĥk . ‖f‖Hs‖g‖Hs‖h‖L2 .
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To this end, we decompose the left-hand side of the inequality above into two
parts, i.e.,∑
k 6=0

∑
k1+k2=k

|k|s−1|k1|f̂k1 ĝk2 ĥk

.
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk|+
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk|.

(3.4)

The first term on the right-hand side of (3.4) can be estimated by using
Plancherel’s identity and Lemma 1 as follows:∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1+s|k1||f̂k1 ||ĝk2 ||ĥk| .
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|s|f̂k1 ||ĝk2 ||ĥk|

.(Js(f̃ g̃), h̃)

.
∥∥f̃ g̃∥∥

Hs‖h̃‖L2 . ‖f̃‖Hs‖g̃‖Hs‖h̃‖L2 ,

where f̃ , g̃ and h̃ are functions with Fourier coefficients |f̂k|, |ĝk| and |ĥk|,
respectively. Since

‖f̃‖Hs ∼ ‖f‖Hs , ‖g̃‖Hs ∼ ‖g‖Hs and ‖h̃‖L2 ∼ ‖h‖L2 ,

it follows that∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1+s|k1||f̂k1 ||ĝk2 ||ĥk| . ‖f‖Hs‖g‖Hs‖h‖L2 .

In the second term on the right-hand side of (3.4), we have |k1| ∼ |k2| > |k|.
For s > 1

2 we have

|k|s−1|k1| = |k|−s|k|2s−1|k1| ≤ |k|−s|k1|2s ∼ |k|−s|k1|s|k2|s

and therefore∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk| .
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−s|k1|s|k2|s|f̂k1 ||ĝk2 ||ĥk|

.
∑
k 6=0

Fk[Jsf̃ Jsg̃]|k|−s|ĥk|

.max
k
|Fk[Jsf̃ Jsg̃]|

∑
k 6=0

|k|−s|ĥk|

.‖Jsf̃ Jsg̃‖L1‖(|k|−s)06=k∈Z‖l2‖(|ĥk|)0 6=k∈Z‖l2

.‖Jsf̃‖L2‖Jsg̃‖L2‖h̃‖L2

.‖f‖Hs‖g‖Hs‖h‖L2 .
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This completes the proof of (i).
(ii) Similarly as (i), it suffices to prove∑
k 6=0

∑
k1+k2=k

|k|−1|k1|f̂k1 ĝk2 ĥk . min(‖f‖L2‖g‖H1 , ‖f‖H1‖g‖L2)‖h‖L2

for h ∈ L2(T). In view of the proof of (i), we can assume f̂k ≥ 0, ĝk ≥ 0 and

ĥk ≥ 0 without loss of generality (otherwise we can replace f , g and h by f̃ ,
g̃ and h̃, respectively, in the estimates below). Then∑

k 6=0

∑
k1+k2=k

|k|−1|k1|f̂k1 ĝk2 ĥk

.
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk +
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk.
(3.5)

The first term on the right-hand side of (3.5) can be estimated by using
Plancherel’s identity and Lemma 1:∑

k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

f̂k1 ĝk2 ĥk

.
∑
k 6=0

Fk[fg]ĥk

.‖(Fk[fg])06=k∈Z‖l2‖(ĥk)0 6=k∈Z‖l2

.
∥∥fg∥∥

L2‖h‖L2

.min(‖f‖L2‖g‖L∞ , ‖f‖L∞‖g‖L2)‖h‖L2

.min(‖f‖L2‖g‖H1 , ‖f‖H1‖g‖L2)‖h‖L2 .

In the second term on the right-hand side of (3.5) we have |k1| ∼ |k2| > k. On
the one hand, we have∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k2

|k|−1|k2|f̂k−k2 ĝk2 ĥk

.

(
sup
k

∑
k2

|f̂k−k2 |2
) 1

2
(∑

k2

|k2|2|ĝk2 |2
) 1

2 ∑
k 6=0

|k|−1ĥk

.‖f‖L2‖g‖H1‖h‖L2 .

On the other hand, we have∑
k 6=0

∑
k=k1+k2
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k1

|k|−1|k1|f̂k1 ĝk−k1 ĥk

.

(∑
k1

|k1|2|f̂k1 |2
) 1

2
(

sup
k

∑
k1

|ĝk−k1 |2
) 1

2 ∑
k 6=0

|k|−1ĥk
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.‖f‖H1‖g‖L2‖h‖L2 .

This completes the proof of (ii).

4 Construction of the method through analysing consistency error

In this section we construct the numerical method based on twisted vari-
ables and Duhamel’s formula through analysing the consistency errors in ap-
proximating the exponential integrals using harmonic analysis techniques. For
readers’ convenience, we present the derivation of the numerical method in
subsection 4.1 and defer the technical estimates to subsection 4.2.

4.1 Construction of the numerical method

As mentioned in the introduction section and the beginning of section 2, the
NLS equation (1.1) has a unique solution u ∈ C([0, T ];H1(T)) satisfying the
Duhamel’s formula:

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0

ei(tn+1−(tn+s))∂2
x |u(tn + s)|2u(tn + s) ds, (4.1)

as well as the mass and momentum conservations (2.1)–(2.2). The norm ‖u‖C([0,T ];H1(T))
is bounded by a constant depending on ‖u0‖H1 ; see [2].

Let v(t) := e−it∂
2
xu(t) be the twisted variable. Then v ∈ C([0, T ];H1(T))

satisfies ‖v‖C([0,T ];H1(T)) = ‖u‖C([0,T ];H1(T)) and the following conservation
laws simiarly as u, i.e.,

1. Mass conservation:

1

2π

∫
T
|v(t, x)|2 dx =

1

2π

∫
T
|u(t, x)|2 dx = M for t > 0. (4.2)

2. Momentum conservation:

1

2π

∫
T
v(t, x)∂xv̄(t, x) dx =

1

2π

∫
T
u(t, x)∂xū(t, x) dx = P for t > 0.

(4.3)

Applying the operator e−itn+1∂
2
x to the identity (4.1), we obtain

v(tn+1) = v(tn)− iλ
∫ τ

0

e−i(tn+s)∂
2
x
[
|ei(tn+s)∂

2
xv(tn + s)|2 ei(tn+s)∂

2
xv(tn + s)

]
ds.

(4.4)

The Fourier coefficients of both sides of (4.4) should be equal, i.e.,

v̂k(tn+1) = v̂k(tn)− iλ
∫ τ

0

∑
k1+k2+k3=k

ei(tn+s)φ ˆ̄vk1(tn + s)v̂k2(tn + s)v̂k3(tn + s) ds,

(4.5)



12

with a phase function

φ = φ(k, k1, k2, k3) = k2 + k21 − k22 − k23.

Replacing τ and s in (4.5) by s and σ, respectively, we have

v̂k(tn + s) (4.6)

= v̂k(tn)− iλ
∫ s

0

∑
k1+k2+k3=k

ei(tn+σ)φ ˆ̄vk1(tn + s)v̂k2(tn + σ)v̂k3(tn + σ) dσ.

In view of (4.6) and the definition of Tm(M ; v) in (3.2), we have

v(tn + s)− v(tn) ∈
∫ s

0

T3(1; v(tn + σ))dσ. (4.7)

As a result, (4.5) can be written as

v̂k(tn+1) (4.8)

= v̂k(tn)− iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

ei(tn+s)φ ds+ R̂1,k,

with

R̂1,k = −iλ
∫ τ

0

∑
k1+k2+k3=k

ei(tn+s)φ
(

ˆ̄vk1(tn + s)v̂k2(tn + s)v̂k3(tn + s)

− ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

)
ds

∈
∫ τ

0

∫ s

0

T5(1; v(tn + σ))dσds,

where the last inclusion is based on the definition in (3.3). If R1 denotes the
function with Fourier coefficients R̂1,k, then the relation above implies that
(according to Lemma 3 (i) of the next subsection)∥∥R1

∥∥
H1 . τ2‖v‖5L∞t H1

x
. (4.9)

This term will be dropped in our numerical scheme.
In the following, we approximate the second term on the right-hand side of

(4.8) by expressions that can be evaluated efficiently with FFT. To this end,
we consider the three cases k = 0, |k| > N and 0 6= |k| ≤ N , separately.

Case 1: k = 0. In this case, (4.8) reduces to

v̂0(tn+1) = v̂0(tn)− iλ
∑

k1+k2+k3=0

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

ei(tn+s)(k
2
1−k

2
2−k

2
3) ds

+ R̂1,0

= v̂0(tn)− iλτ
∑

k1+k2+k3=0

eitn(k
2
1−k

2
2−k

2
3) ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)



13

+ R̂1,0 + R̂2,0

= v̂0(tn)− iλτΠ0

(∣∣eitn∂2
xv(tn)

∣∣2eitn∂
2
xv(tn)

)
+ R̂1,0 + R̂2,0

= v̂0(tn)− iλτΠ0

[
ΠN

(∣∣eitn∂2
xv(tn)

∣∣2)eitn∂
2
xv(tn)

]
+ R̂1,0 + R̂2,0 + R̂∗2,0, (4.10)

with

R̂2,k

= −iλ
∑

k1+k2+k3=k̂

v̄k1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

(ei(tn+s)(k
2
1−k

2
2−k

2
3) − eitn(k

2
1−k

2
2−k

2
3)) ds,

R∗2
= −iλτ

[
(1−ΠN )

(∣∣eitn∂2
xv(tn)

∣∣2)]eitn∂2
xv(tn) ∈ τeitn∂

2
xv(tn)T2(1>N ; v(tn)),

where

(1>N )k = 1|k|>N =

{
0 for |k| ≤ N,
1 for |k| > N.

(4.11)

Since k1 + k2 + k3 = 0, it follows that there holds k21 − k22 − k23 = 2k2k3 and
therefore ∫ τ

0

(
ei(tn+s)(k

2
1−k

2
2−k

2
3) − eitn(k

2
1−k

2
2−k

2
3)
)
ds = τ2O(k2k3).

As a result, the function R2 (with Fourier coefficients R̂2,k) satisfies that
R2 ∈ τ2T3(k2k3; v(tn)) in view of the definition in (3.2). According to Lemma
3 (i)–(ii) of the next subsection, R2 and R∗2 satisfy the following estimates:

|R̂2,0| . τ2‖v‖3L∞t H1
x
, (4.12)

|R̂∗2,0| . ‖R∗2‖L1

. τ‖eitn∂
2
xv(tn)‖L∞‖(1−ΠN )(|eitn∂

2
xv(tn)|2)‖L2

. τN−1‖v‖3L∞t H1
x
. (4.13)

The two terms R̂2,0 and R̂∗2,0 will be dropped in our numerical scheme.
Case 2: |k| > N . Let R3 be the function with Fourier coefficients

R̂3,k = −1|k|>N iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

ei(tn+s)φ ds.

Then

R3 ∈ τ T3 (1>N ; v(tn)) .
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Lemma 3 (i) of the next subsection implies that∥∥R3

∥∥
Hs . τN−1+s‖v‖3L∞t H1

x
for s ∈ [0, 1]. (4.14)

This term will be dropped in the numerical scheme.
Case 3: 0 6= |k| ≤ N . By using the identity

1 =
(k1 + k2) + (k1 + k3)− k1

k

and symmetry between k2 and k3, we can decompose the second term on the
right-hand side of (4.8) into two parts, i.e.,

v̂k(tn+1)

= v̂k(tn)− 2iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

(4.15a)

+ iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

k1
k

ei(tn+s)φ ds (4.15b)

+ R̂1,k. (4.15c)

We furthermore truncate (4.15a) to the frequency domain |k1 + k3| ≤ N ,
i.e.,

(4.15a) =v̂k(tn)

− 2iλ
∑

k1+k2+k3=k
|k1+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ R̂4,k, (4.16)

with

R̂4,k =


− 2iλ

∑
k1+k2+k3=k
|k1+k3|>N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

for 0 6= |k| ≤ N,

0 otherwise.

The corresponding function R4 with Fourier coefficients R̂4,k satisfies that

R4 ∈ τ T3
(
k1 + k2

k
10 6=|k|≤N1|k1+k3|>N ; v(tn)

)
.

By Lemma 3 (iii) in the next subsection and symmetry between k2 and k3,
and we have ∥∥R4

∥∥
Hs . τN−1+s‖v‖3L∞t H1

x
for s ∈ [0, 1]. (4.17)
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Since k1+k2+k3 = k, it is straightforward to verify that φ = 2(k1+k2)(k1+k3).
As a result, if k1 + k3 6= 0 then∫ τ

0

k1 + k2
k

ei(tn+s)φ ds =
1

2ik(k1 + k3)

(
eitn+1φ − eitnφ

)
; (4.18)

If k1 + k3 = 0 then φ = 0 and k = k2, and therefore∫ τ

0

k1 + k2
k

ei(tn+s)φ ds = τ
(k1
k

+ 1
)
. (4.19)

Substituting the two relations (4.18)–(4.19) into (4.16), we obtain

(4.15a) = v̂k(tn)− λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− 2iλτ
∑

k1+k3=0

(k1
k

+ 1
)

ˆ̄vk1(tn)v̂k(tn)v̂k3(tn) + R̂4,k.

Then we apply the mass and momentum conservations in (4.2)–(4.3), which
imply that

−2iλτ
∑

k1+k3=0

(k1
k

+ 1
)

ˆ̄vk1(tn)v̂k(tn)v̂k3(tn) =− 2iλτP (ik)−1v̂k(tn)− 2iλτM v̂k(tn).

Therefore,

(4.15a) =v̂k(tn)− λ
∑

k1+k2+k3=k
0 6=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− 2iλτP (ik)−1v̂k(tn)− 2iλτM v̂k(tn) + R̂4,k

=e−2iλτP (ik)−1−2iλτM v̂k(tn)

− λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ R̂4,k + R̂∗4,k, (4.20)

where

R̂∗4,k =


(
1− 2iλτP (ik)−1 − 2iλτM − e−2iλτP (ik)−1−2iλτM)v̂k(tn)

for 0 6= |k| ≤ N,

0 otherwise.

From this expression we see that the function R∗4 with Fourier coefficients R̂∗4,k
satisfies that

R∗4 ∈ τ2T1(1; v(tn)). (4.21)
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Note that for k1 + k2 + k3 = k the following equalities hold:

φ(k, k1, k2, k3) = 2kk1 + 2k2k3, (4.22a)

2kk1 = k2 + k21 − (k2 + k3)2, (4.22b)

2k2k3 = (k2 + k3)2 − k22 − k23. (4.22c)

By using these relations, we have

ei(tn+s)φ =eitnφe2iskk1e2isk2k3

=eitnφ[e2iskk1 + (e2isk2k3 − 1) + (e2iskk1 − 1)(e2isk2k3 − 1)],

and therefore (4.15b) can be decomposed into the following three terms:

(4.15b) =iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

(4.23-1)

+ iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

(4.23-2)

+ R̂5,k + R̂∗5,k, (4.23-3)

where

R̂5,k

= iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2iskk1−1

)(
e2isk2k3−1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn),

(4.24)

R̂∗5,k = iλ
∑

k1+k2+k3=k
|k2+k3|>N

(∫ τ

0

k1
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn), (4.25)

for 0 6= |k| ≤ N , and R̂5,k = R̂∗5,k = 0 for k = 0 and |k| > N . Lemma 4 of the
next subsection implies that∥∥R5

∥∥
Hs . τ

3
2 ‖v‖3L∞t H1

x
for s ∈ ( 1

2 , 1), (4.26a)∥∥R5

∥∥
L2 . τ2

√
ln τ−1‖v‖3L∞t H1

x
. (4.26b)

Obviously,

R∗5 ∈ τT3 (σ; v(tn)) with some |σ(k, k1, k2, k3)| ≤ |k|−1|k1|10 6=|k|≤N1|k2+k3|>N .

By Lemma 3 (iii) and symmetry, and we have that for any s ∈ [0, 1],∥∥R∗5∥∥Hs . τN−1+s‖v‖3L∞t H1
x
. (4.27)
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Note that

(4.23-1) =
∑

k1+k2+k3=k
|k2+k3|≤N

λ

2k2
eitnφ

(
eiτ(k

2+k21−(k2+k3)
2) − 1

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn),

(4.28)

(4.23-2) = iλ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

= λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
2kk2k3

eitnφ
(
e2iτk2k3 − 1

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− iλτ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

= λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
2kk2k3

eitnφ
(

eiτ
(
(k2+k3)

2−k22−k
2
3

)
− 1
)

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− iλτ
∑

k1+k2+k3=k
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ 2iλτ
∑

k1+k2=k
|k2|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂0(tn)

− iλτeitnφ ˆ̄vk(tn)v̂0(tn)v̂0(tn). (4.29)

Substituting (4.28)–(4.29) into (4.23), and then substituting (4.20) and
(4.23) into (4.15), we obtain

v̂k(tn+1)

= e−2iλτP (ik)−1−2iλτM v̂k(tn)

+ λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

ik(ik1 + ik3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− λ
∑

k1+k2+k3=k
|k2+k3|≤N

1

2(ik)2
eitnφ

(
eiτ(k

2+k21−(k2+k3)
2) − 1

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

ik1
2(ik)(ik2)(ik3)

eitnφ
(
eiτ((k2+k3)

2−k22−k
2
3) − 1

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)
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− iλτ
∑

k1+k2+k3=k
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ 2iλτ
∑

k1+k2=k
|k2|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂0(tn)

− iλτeitnφ ˆ̄vk(tn)v̂0(tn)v̂0(tn)

+ R̂1,k + R̂4,k + R̂∗4,k + R̂5,k + R̂∗5,k for k 6= 0 and |k| ≤ N. (4.30)

Then substituting (4.10) and (4.30) into the expression v(tn+1) =
∑
k∈Z v̂k(tn+1)eikx

yields

v(tn+1) =Φn(v(tn);M,P ) +R1 + R̂2,0 + R̂∗2,0 +R3 +R4 +R∗4 +R5 +R∗5,
(4.31)

where

Φn(f ;M,P )

:= e−2iλτP∂
−1
x −2iλτMf + (1− e−2iλτM )Π0f

− iλτΠ0

[
ΠN

(∣∣eitn∂2
xf
∣∣2)eitn∂2

xf
]

+ λe−itn+1∂
2
x∂−1x ΠN

[(
eitn+1∂

2
xf
)
· ∂−1x ΠN

(
|eitn+1∂

2
xf |2

)]
− λe−itn∂

2
x∂−1x ΠN

[(
eitn∂

2
xf
)
· ∂−1x ΠN

(
|eitn∂

2
xf |2

)]
− λ

2

[
e−itn+1∂

2
x∂−2x ΠN

((
e−itn+1∂

2
x f̄
)
· eiτ∂

2
xΠN

(
eitn∂

2
xf
)2)

− e−itn∂
2
x∂−2x ΠN

(
e−itn∂

2
x f̄ΠN

(
eitn∂

2
xf
)2)]

− λ

2

[
e−itn∂

2
x∂−1x ΠN

((
e−itn∂

2
x∂xf̄

)
· e−iτ∂

2
xΠN

(
eitn+1∂

2
x∂−1x f

)2)
− e−itn∂

2
x∂−1x ΠN

((
e−itn∂

2
x∂xf̄

)
·ΠN

(
eitn∂

2
x∂−1x f

)2)]
− iλτe−itn∂

2
x∂−1x ΠN

(
e−itn∂

2
x∂xf̄ΠN

(
eitn∂

2
xf
)2)

+ 2iλτΠ0(f)e−itn∂
2
x∂−1x

(
e−itn∂

2
x∂xf̄ eitn∂

2
xf
)

− iλτ(Π0f)2Π6=0

(
e−itn∂

2
x f̄
)
. (4.32)

The numerical scheme can be defined by dropping the defect terms Rj and
R∗j in (4.31) and replacing the numbers M and P by their approximations MN

and PN defined in (2.10), respectively. Namely, for given vn ∈ SN compute
vn+1 ∈ SN by

vn+1 = Φn(vn;MN , PN ), n = 0, 1 . . . , L− 1; with v0 = u0. (4.33)
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Then, replacing vn and vn+1 by e−itn∂
2
xun and e−itn+1∂

2
xun in (4.33), we obtain

the numerical scheme (2.8)–(2.9).

4.2 Technical lemmas for analysing the consistency errors

In this subsection, we present two technical lemmas, which are used in esti-
mating the defect terms Rj and R∗j in the previous subsection.

Lemma 3 For any given v ∈ H1(T) and s ∈ [0, 1], the following results hold.

(i) Let m ≥ 1, N ∈ Z+. Then, for any f ∈ Tm(1; v) and any g ∈ Tm(1>N ; v),∥∥f∥∥
H1 . ‖v‖mH1 ;∥∥g∥∥
Hs . N−1+s‖v‖mH1 .

(ii) For any f ∈ T3(k2k3; v) there holds

|Π0f | . ‖v‖3H1 .

(iii) Let N ∈ Z+, N ≥ 10 and f ∈ T3(σ; v). If

|σ(k, k1, k2, k3)| . |k|−1|kj | 106=|k|≤N 1|k1+k2|>N , for some j ∈ {1, 2, 3},

then
‖f‖Hs . N−1+s‖v‖3H1 .

Proof Without loss of generality, we can assume that v̂kj , j = 1, · · · ,m are
positive for any t ∈ [0, T ]. Otherwise we replace v̂kj by |v̂kj | as we did in the
proof of Lemma 2.

(i) By the definition of Tm(σ; v) in (3.2), f ∈ Tm(1; v) implies that

|f̂k| .
∑

k1+···+km=k

v̂k1 · · · v̂km ∼ Fk[vm].

By Plancherel’s identity and Lemma 1 (i), we obtain that

‖f‖H1 . ‖vm‖H1 . ‖v‖mH1 .

For g ∈ Tm(1>N ; v), we use the inequality ‖g‖Hs . N−1+s‖g‖H1 together
with the inequality above, which implies that ‖g‖H1 . ‖v‖mH1 . This yields the
desired inequality for g, i.e.,

‖g‖Hs . N−1+s‖v‖mH1 .

(ii) For any f ∈ T3(k2k3; v) we have that

|Π0f | .
∑

k1+k2+k3=0

v̂k1(t) |k2|v̂k2(t) |k3|v̂k3(t)

.
∑

k1+k′1=0

v̂k1(t)Fk′1 [(|∇|v(t))2]
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.
∫
T
v (|∇|v)

2
dx . ‖v‖L∞‖|∇|v‖2L2 . ‖v‖3H1 .

(iii) We only consider the case when j = 1, since the other cases can be
treated in the same way. Since the Fourier coefficients of Jsf satisfies

Fk[Jsf ] = 〈k〉sf̂k .
∑

k1+k2+k3=k
|k1+k2|>N

106=|k|≤N 〈k〉−1+s〈k1〉 v̂k1(t)v̂k2(t)v̂k3(t)

.N−1+s
∑

k1+k2+k3=k
|k1+k2|>N

〈k〉−1〈k1 + k2〉〈k1〉v̂k1(t)v̂k2(t)v̂k3(t)

.N−1+sFk[J−1(vJ(vJv))],

it follows from Lemma 2 (ii) that

‖Jsf‖L2 .N−1+s‖vJv‖L2‖v‖H1 . N−1+s‖v‖L∞‖Jv‖L2‖v‖H1 . N−1+s‖v‖3H1 .

This proves the desired results in Lemma 3.

Lemma 4 If v ∈ L∞(0, T ;H1(T)) then∥∥R5

∥∥
L2 . τ2

√
ln τ−1‖v‖3L∞(0,T ;H1). (4.34)

Moreover, for any s ∈ ( 1
2 , 1),∥∥R5

∥∥
Hs . τ

3
2 ‖v‖3L∞(0,T ;H1). (4.35)

Proof For k1+k2+k3 = k and |k2| ≥ |k3| we claim that the following inequality
holds:∣∣∣∣k1k (e2iskk1 − 1

)(
e2isk2k3 − 1

)∣∣∣∣ . τ |k|−α|k1||k2||k3|α ∀ s ∈ [0, τ ], ∀α ∈ [0, 1].

(4.36)

In order to prove (4.36), we consider the following two cases: |k| ≥ |k3| and
|k| < |k3|.

Case 1: |k| ≥ |k3|. In this case, we use the following inequalities:∣∣e2iskk1 − 1
∣∣ ≤ 2 and

∣∣e2isk2k3 − 1
∣∣ ≤ 2τ |k2||k3|,

it follows that∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ ≤ 4τ |k|−1|k1||k2||k3| . τ |k|−α|k1||k2||k3|α.

Case 2: |k| < |k3|. In this case k1 + k2 + k3 = k and |k2| ≥ |k3| imply

|k1| ≤ |k2|+ |k3|+ |k| . |k2|.

We use the following inequalities:∣∣e2iskk1 − 1
∣∣ ≤ 2τ |k||k1| and

∣∣e2isk2k3 − 1
∣∣ ≤ 2.
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Then we obtain ∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ ≤ 4τ |k1|2.

Since |k1| . |k2|, it follows that

|k1|2 . |k1||k2| . |k1||k2|
(
|k3|
|k|

)α
.

This proves (4.36).
By using the symmetry between k2 and k3 in the expression of |R̂5,k| in

(4.24) and applying (4.36) with α = 1 in the case |k| ≥ |k3| and α = 0 in the
case |k| < |k3|, we obtain for any k 6= 0,

|R̂5,k| . τ2
∑

k1+k2+k3=k
|k2|≥|k3|,|k|≥|k3|

|k|−1|k1||k2||k3||ˆ̄vk1(tn)||v̂k2(tn)||v̂k3(tn)|

+ τ2
∑

k1+k2+k3=k
|k2|≥|k3|,|k|<|k3|

|k1||k2||ˆ̄vk1(tn)||v̂k2(tn)||v̂k3(tn)|. (4.37)

Without loss of generality, we may assume that ˆ̄vk1(tn), v̂k2(tn) and v̂k3(tn)
are nonnegative. Otherwise we replace them by their absolute values as we did
in the proof of Lemma 2.

By the duality between L2(T) and itself, it is sufficient to prove the follow-
ing result to obtain (4.34):

|〈R5, f〉| . τ2
√

ln(τ−1)‖v‖3L∞(0,T ;H1)‖f‖L2 ∀ f ∈ L2(T). (4.38)

From the definition below (4.25) we see that R5,0 = 0. As a result, we have

|〈R5, f〉| .
∑
k 6=0

|R̂5,k| |f̂k| .
∑
|k|>τ−1

|R̂5,k| |f̂k|+
∑

06=|k|≤τ−1

|R̂5,k| |f̂k|. (4.39)

From the expression of R5,k in (4.24) we see that for |k| > τ−1 there holds

|R̂5,k| ≤ τ2
∑

k1+k2+k3=k

|k1|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn).

Hence, by the Cauchy–Schwartz inequality and Plancherel’s identity, we have∑
|k|>τ−1

|R̂5,k| |f̂k|

≤τ2
∑
k

∑
k1+k2+k3=k

|k1|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) |f̂k|

=τ2
∑
k2,k3

∑
k

|k − k2 − k3|ˆ̄vk−k2−k3(tn)v̂k2(tn)v̂k3(tn) |f̂k|

.τ2‖(f̂k)k∈Z‖l2‖(k1 ˆ̄vk1(tn))k1∈Z‖l2‖(v̂k2(tn))k2∈Z‖l1‖(v̂k3(tn))k3∈Z‖l1
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.τ2‖f‖L2‖v‖3H1 , (4.40)

where the last inequality uses the following result:

‖(v̂k2(tn))k2∈Z‖l1 . ‖(〈k2〉−1)k2∈Z‖l2‖(〈k2〉v̂k2(tn))k2∈Z‖l2 . ‖v‖H1 .

The second term in (4.39) can be estimated by using (4.37), i.e.,∑
06=|k|≤τ−1

|R̂5,k| |f̂k| (4.41)

.τ2
∑

06=|k|≤τ−1

∑
k1+k2+k3=k
|k2|≥|k3|,|k|≥|k3|

|k|−1|k1||k2||k3||f̂k|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ τ2
∑

0 6=|k|≤τ−1

∑
k1+k2+k3=k
|k2|≥|k3|,|k|<|k3|

|k1||k2||f̂k|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

.τ2
∑

0 6=|k|≤τ−1

∑
|k3|≤|k|

∑
k1

|k|−1|f̂k||k1|ˆ̄vk1(tn)|k − k1 − k3|v̂k−k1−k3(tn)|k3|v̂k3(tn)

+ τ2
∑

0 6=|k|≤τ−1

∑
|k3|>|k|

∑
k1

|f̂k||k1|ˆ̄vk1(tn)|k − k1 − k3|v̂k−k1−k3(tn)v̂k3(tn)

.τ2‖(k1v̂k1(tn))k1∈Z‖l2‖(k2v̂k2(tn))k2∈Z‖l2
∑

06=|k|≤τ−1

|k|−1|f̂k|
∑
|k3|≤|k|

|k3|v̂k3(tn)

+ τ2‖(k1v̂k1(tn))k1∈Z‖l2‖(k2v̂k2(tn))k2∈Z‖l2
∑

0 6=|k|≤τ−1

|f̂k|
∑
|k3|>|k|

v̂k3(tn)

.τ2‖v(tn)‖2H1

∑
0 6=|k|≤τ−1

|k|− 1
2 |f̂k|‖(k3v̂k3(tn))k3∈Z‖l2

+ τ2‖v(tn)‖2H1

∑
06=|k|≤τ−1

|f̂k|‖(〈k3〉−1)|k3|>k‖l2‖(〈k3〉v̂k3(tn))|k3|>k‖l2

.τ2‖v(tn)‖2H1

∑
06=|k|≤τ−1

|k|− 1
2 |f̂k|‖(k3v̂k3(tn))k3∈Z‖l2

.τ2‖v(tn)‖3H1‖(|k|−
1
2 )06=|k|≤τ−1‖l2‖(f̂k)|k|≤τ−1‖l2

.τ2‖v(tn)‖3H1

√
ln(τ−1)‖f‖L2 . (4.42)

Substituting (4.40)–(4.42) into (4.39) yields (4.38), which implies the desired
result in (4.34).

It remains to prove (4.35). To this end, we use the following inequalities:

|e2iskk1 − 1| ≤ 2 and |e2isk2k3 − 1| . s
1
2 ||k2|

1
2 |k3|

1
2 ,

which imply that∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ . τ

1
2 |k|−1|k1||k2|

1
2 |k3|

1
2 ∀ s ∈ [0, τ ].
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By substituting this into the expression of R̂5,k in (4.24), and using Plancherel’s
identity, we obtain∥∥R5

∥∥
Hs . τ

3
2

∥∥∥|∇|−1+s (|∇|v̄ (|∇| 12 v)2)∥∥∥
L2
.

Then using the Sobolev inequality, we get that for any s ∈ ( 1
2 , 1),∥∥R5

∥∥
Hs .τ

3
2

∥∥∥|∇|v̄ (|∇| 12 v)2∥∥∥
L

2
3−2s

.τ
3
2

∥∥|∇|v̄∥∥
L2

∥∥|∇| 12 v∥∥2
L

2
1−s

. τ
3
2 ‖v‖3H1 .

This completes the proof of Lemma 4.

5 Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In subsection 5.1, we present
an error estimate for the numerical solution in Hs(T) with s ∈ ( 1

2 , 1), and then
use this result to prove the boundedness of the numerical solution in H1(T)
uniformly with respect to τ and N . In subsection 5.2, we utilize the H1-
boundedness of the numerical solution to prove the desired error estimate in
L2(T).

5.1 Boundedness of the numerical solution in H1(T)

Lemma 5 Let u0 ∈ H1(T), and let unτ,N , n = 0, 1, . . . , L, be the numerical
solution given by (2.8)–(2.9). Then there exist positive constants τs and Ns
such that for τ ∈ (0, τs] and N ≥ Ns the following error bound holds:

max
0≤n≤L

‖u(tn, ·)− unτ,N‖Hs .s τ
1
2 +N−1+s ∀ s ∈ ( 1

2 , 1), (5.1)

where τs and Ns depend only on ‖u0‖H1 , T and s.

Proof Let vn = e−itn∂
2
xunτ,N . Then vn+1 = Φn(vn;MN , PN ) as shown in (4.33).

By using this identity we have

v(tn+1)− vn+1

=v(tn+1)− Φn(v(tn);M,P ) + Φn(v(tn);M,P )− Φn(vn;MN , PN )

=: Ln + Φn(v(tn);M,P )− Φn(vn;MN , PN ), (5.2)

where

Ln = v(tn+1)−Φn(v(tn);M,P ) = R1+R̂2,0+R̂∗2,0+R̂3,0+R4+R∗4+R5+R∗5,

which is shown in (4.31). From (4.9), (4.12), (4.14), (4.17), (4.26) and (4.27)
we see that ∥∥Ln∥∥

Hs . τ
3
2 + τN−1+s ∀ s ∈ [0, 1). (5.3)
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Note that the functional Φn(f ;M,P ) defined in (4.32) can be rewritten into
the following form:

Φn(f ;M,P )

= f +
(
e−2iλτP∂

−1
x −2iλτM − 1 + 2iλτP∂−1x + 2iλτM

)
f + (1− e−2iλτM )Π0f

− iλτΠ0

[
ΠN

(∣∣eitn∂2
xf
∣∣2)eitn∂2

xf
]

− 2iλ
∑

0 6=|k|≤N

eikx
( ∑
k1+k2+k3=k
|k2+k3|≤N

∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄fk1 f̂k2 f̂k3

+ iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)
ˆ̄fk1 f̂k2 f̂k3

+ iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄fk1 f̂k2 f̂k3 .

(5.4)

For example, the third line of (5.4) comes from (4.20), which can be rewritten
back into (4.16). This is how we obtain the third line in the expression above.
The other terms are obtained similarly.

From (5.4) we furthermore derive that

Φn(v(tn);M,P )− Φn(vn;MN , PN )

= v(tn)− vn + Φn1 + Φn2 + Φn3 + Φn4 + Φn5 , (5.5)

where

Φn1 =
(
e−2iλτP∂

−1
x −2iλτM − 1 + 2iλτP∂−1x + 2iλτM

)
v(tn)

+ (1− e−2iλτM )Π0v(tn)

−
(
e−2iλτPN∂

−1
x −2iλτMN − 1 + 2iλτPN∂

−1
x + 2iλτMN

)
vn

− (1− e−2iλτMN )Π0v
n,

Φn2 =− iλτΠ0

(
|eitn∂

2
xv(tn)|2eitn∂

2
xv(tn)− |eitn∂

2
xvn|2eitn∂

2
xvn
)
,

Φn3 =− 2iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)

·
(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
,

Φn4 =iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)

·
(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
,
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Φn5 =iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)

·
(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
.

Note that P , M , PN and MN defined in (2.4) and (2.10) are all bounded
numbers, with bounds depending on ‖u0‖H1 . In particular,

|M −MN | =
∣∣∣∣ 1

2π

∫
T
(|u0|2 − |u0τ,N |2) dx

∣∣∣∣
.

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )u0 + u0τ,N (u0 − u0τ,N )

]
dx

∣∣∣∣
. ‖u0 − u0τ,N‖L2(‖u0‖L2 + ‖u0τ,N‖L2)

. N−1‖u0‖2H1 (5.6)

and

|P − PN | =
∣∣∣∣ 1

2π

∫
T
(u0∂xu0 − u0τ,N∂xu0τ,N ) dx

∣∣∣∣
.

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )∂xu0 + u0τ,N∂x(u0 − u0τ,N )

]
dx

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )∂xu0 − ∂xu0τ,N (u0 − u0τ,N )

]
dx

∣∣∣∣
. ‖u0 − u0τ,N‖L2(‖∂xu0‖L2 + ‖∂xu0τ,N‖L2)

. N−1‖u0‖2H1 . (5.7)

From the expression of Φn1 we see that its Fourier coefficients can be written
as

Fk[Φn1 ] = F (M,P ; k)v̂k(tn)− F (MN , PN ; k)v̂nk ,

with

F (M,P ; k) := e−2iλτPk
−11k 6=0−2iλτM − 1 + 2iλτPk−11k 6=0 + 2iλτM

+ (1− e−2iλτM )1k=0.

By using Taylor’s expansion and mean value theorem, it is straightforward to
verify that

|F (M,P ; k)− F (MN , PN ; k)| . τ(|P − PN |+ |M −MN |).

As a result, we have

‖Φn1‖Hs .‖(〈k〉sFk[Φn1 ])k∈Z‖l2
.τ(|P − PN |+ |M −MN |)‖(〈k〉sv̂k(tn))k∈Z‖l2

+ ‖(〈k〉s(v̂k(tn)− v̂k))k∈Z‖l2
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.τ(|P − PN |+ |M −MN |)‖v(tn)‖Hs + τ‖v(tn)− vn‖Hs

.τN−1‖v‖3L∞(0,T ;H1) + τ‖v(tn)− vn‖Hs , (5.8)

where the last inequality follows from (5.6)–(5.7).
Since Φn2 is a constant, it is straightforward to show that (similarly as (5.6))

|Φn2 | .τ
(
‖vn − v(tn)‖L2(‖eitn∂

2
xv(tn)‖2L∞ + ‖eitn∂

2
xvn‖2L∞)

.τ
(
‖vn − v(tn)‖L2(‖v(tn)‖2Hs + ‖vn‖2Hs) (this holds for s > 1

2 )

.τ
(
‖vn − v(tn)‖L2(‖v(tn)‖2Hs + ‖vn − v(tn)‖2Hs). (5.9)

Similarly, Φn3 can be decomposed into several functions of the following
form:

Φn3 =− 2i
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
f̂1,k1 f̂2,k2 f̂3,k3 ,

where f̂j,k denotes the kth Fourier coefficient of the functions fj , and one of
the three functions fj , j = 1, 2, 3, is

vn − v(tn) or its conjugate;

the other two of the three functions fj , j = 1, 2, 3, are either vn or v(tn) or

their conjugates. We assume that f̂j,k, k ∈ Z are nonnegative; otherwise we

consider functions with Fourier coefficients |f̂j,k| as we did in the proof of
Lemma 2 (ii). Then∣∣(Φ̂n3 )k∣∣ .τ ∑

k1+k2+k3=k

|k1 + k2|
|k|

f̂1,k1 f̂2,k2 f̂3,k3 = Fk[τJ−1(f1J(f2f3))].

As a result, by Plancherel’s identity and Lemma 2 (i), we have

‖Φn3‖Hs .‖τJ−1(f3J(f1f2))‖Hs

.τ‖f3‖Hs‖f1f2‖Hs (this requires s > 1
2 )

.τ‖f3‖Hs‖f1‖Hs‖f2‖Hs

.τ‖vn − v(tn)‖Hs(‖vn‖2Hs + ‖v(tn)‖2Hs)

.τ‖vn − v(tn)‖Hs(‖vn − v(tn)‖2Hs + ‖v(tn)‖2Hs). (5.10)

Φn4 and Φn5 can be estimated similarly, i.e.,

‖Φn4‖Hs + ‖Φn5‖Hs .τ‖vn − v(tn)‖Hs(‖vn − v(tn)‖2Hs + ‖v(tn)‖2Hs).

Hence, combining with the estimates of Φnj , j = 1, . . . , 5, we have

‖Φn(v(tn);M,P )− Φn(vn;MN , PN )‖Hs

≤ (1 + Cτ)‖vn − v(tn)‖Hs + Cτ‖vn − v(tn)‖3Hs + CτN−1,
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which holds for any given s ∈ ( 1
2 , 1). Substituting this and (5.3) into (5.2)

yields that

‖v(tn+1)− vn+1‖Hs ≤C
(
τ

3
2 + τN−1+s

)
+ (1 + Cτ)‖vn − v(tn)‖Hs

+ Cτ‖vn − v(tn)‖3Hs .

By using the discrete Gronwall’s inequality with induction assumption on
‖vn − v(tn)‖Hs ≤ 1, we obtain (for sufficiently small τ)

max
0≤n≤L

∥∥v(tn)− vn
∥∥
Hs . τ

1
2 +N−1+s.

This proves the desired result in Lemma 5.

Lemma 5 implies that ‖v(tn) − vn‖Hs . 1. Then, by using the triangle
inequality and boundedness of the exact solution in H1, we have

‖vn‖Hs . ‖v(tn)− vn‖Hs + ‖v(tn)‖Hs . 1.

This result can be furthermore improved to the H1 norm, as shown in the
following lemma.

Lemma 6 Let u0 ∈ H1(T), and let unτ,N , n = 0, 1, . . . , L, be the numerical
solution given by (2.8)–(2.9). Then there exists a constant τ0 > 0 such that
for τ ∈ (0, τ0] the following estimate holds:

max
0≤n≤L

‖unτ,N‖H1 . 1. (5.11)

Proof Let vn = e−itn∂
2
xunτ,N . By using the expression of Φn in (5.4), we imme-

diately obtain that

‖Φn(vn;MN , PN )‖H1 ≤ ‖vn‖H1 + Cτ‖vn‖H1 + Cτ‖vn‖H1‖vn‖2Hs , (5.12)

which holds for any fixed s ∈ ( 1
2 , 1). Since ‖vn‖Hs . 1 is already proved in

Lemma 5, substituting this into (4.33) yields

‖vn+1‖H1 ≤ ‖vn‖H1 + Cτ‖vn‖H1 , (5.13)

which implies max
0≤n≤L

‖vn‖H1 . 1 after iteration in n. The desired result follows

from the relation ‖vn‖H1 = ‖unτ,N‖H1 .
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5.2 Error estimation in L2(T)

From (4.9), (4.12), (4.14), (4.17), (4.26) and (4.27) we conclude that∥∥Ln∥∥
L2 ≤ C

(
τ2
√

ln τ−1 + τN−1
)
. (5.14)

By choosing s = 0 in (5.8) and choosing a fixed s ∈ ( 1
2 , 1) in (5.9), we have

‖Φn1‖L2 + ‖Φn2‖L2 .τN−1 + τ‖vn − v(tn)‖L2 .

Instead of (5.10), we need to use the following estimate for Φn3 :

‖Φn3‖L2 .‖τJ−1(f3J(f1f2))‖L2 . τ min(‖f3‖H1‖f1f2‖L2 , ‖f3‖L2‖f1f2‖H1).

which is a consequence of Lemma 2 (ii). Recall that one of the three functions
fj , j = 1, 2, 3, is vn − v(tn) or its conjugate, and the other two functions are
either vn or v(tn) (or their conjugates). If f1 is vn − v(tn) or its conjugate,
then we choose L2 norm on f1; otherwise we choose L2 norm on f2f3. In either
case we obtain

‖Φn3‖L2 .τ‖vn − v(tn)‖L2(‖v(tn)‖2H1 + ‖vn‖2H1) . τ‖vn − v(tn)‖L2 .

The two terms Φn4 and Φn5 can be estimated similarly, i.e.,

‖Φn4‖L2 + ‖Φn5‖L2 . τ‖vn − v(tn)‖L2 .

Substituting the estimates of ‖Φnj ‖L2 , j = 1, . . . , 5, into (5.5), we have

‖Φn(v(tn);M,P )− Φn(vn;MN , PN )‖L2 . τN−1 + τ‖vn − v(tn)‖L2 .

Then, substituting this into (5.2) and using estimate (5.14), we obtain

‖v(tn+1)− vn+1‖L2 ≤ C
(
τ2
√

ln τ−1 + τN−1
)

+ (1 + Cτ)‖vn − v(tn)‖L2 .
(5.15)

Iterating this inequality yields

max
1≤n≤L

‖v(tn)− vn‖L2 . ‖v(t0)− v0‖L2 + τ
√

ln τ−1 +N−1 . τ
√

ln τ−1 +N−1.

This completes the proof of Theorem 1 in view of the following identity:

‖v(tn)− vn‖L2 = ‖u(tn)− unτ,N‖L2 .

ut
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6 Numerical experiments

In this section we present numerical experiments to support the theoretical
analysis presented in Theorem 1. We consider the NLS equation (1.1) with
λ = −1 and initial value

u0(x) =
1

10

∑
06=k∈Z

|k|−0.51−αeikx, (6.1)

which satisfies that u0 ∈ Hα(T) and u0 /∈ Hα+0.01(T).

We solve the problem by the proposed method (2.8)–(2.9) for α = 2
and α = 1, respectively, and present the time discretisation errors ‖uτ,Nref

−
uτref ,Nref

‖L2 in Tables 1–2 for several sufficiently large Nref , with a reference
stepsize τref = 2−13. From the numerical results we can see that the error from
spatial discretisation is negligibly small in observing the temporal convergence
rates, i.e., almost first-order convergent as τ → 0. This is consistent with the
theoretical result proved in Theorem 1.

Table 1 Temporal discretisation error ‖uτ,Nref
− uτref ,Nref

‖L2 at T = 1
with α = 2 in (6.1) (for H2 initial data).

Nref = 28 Nref = 29 Nref = 210

τ = 2−5 3.054E–05 3.054E–05 3.054E–05

τ = 2−6 1.519E–05 1.519E–05 1.519E–05

τ = 2−7 7.539E–06 7.539E–06 7.539E–06

convergence rate O(τ1.01) O(τ1.01) O(τ1.01)

Table 2 Temporal discretisation error ‖uτ,Nref
− uτref ,Nref

‖L2 at T = 1
with α = 1 in (6.1) (for H1 initial data).

Nref = 28 Nref = 29 Nref = 210

τ = 2−5 8.971E–05 8.973E–05 8.975E–05

τ = 2−6 4.123E–05 4.126E–05 4.126E–05

τ = 2−7 2.004E–05 2.005E–05 2.006E–05

convergence rate O(τ1.04) O(τ1.04) O(τ1.04)

We present the spatial discretisation errors ‖uτref ,N−uτref ,Nref
‖L2 for α = 2

and α = 1 in Tables 3–4 for several sufficiently small stepsize τref , with Nref =
1024. From the numerical results we can see that the error from temporal
discretisation is negligibly small in observing the spatial convergence rates,
i.e., αth-order convergence for Hα initial data. This is consistent with the
result proved in Theorem 1 and the comments in Remark 1.
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Table 3 Spatial discretisation error ‖uτref ,N − uτref ,Nref
‖L2 at T = 1

with α = 2 in (6.1) (for H2 initial data).

τref = 2−8 τref = 2−9 τref = 2−10

N = 16 2.514E–04 2.514E–04 2.514E–04

N = 32 6.446E–05 6.446E–05 6.446E–05

N = 64 1.626E–05 1.626E–05 1.626E–05

convergence rate O(N−1.99) O(N−1.99) O(N−1.99)

Table 4 Spatial discretisation error ‖uτref ,N − uτref ,Nref
‖L2 at T = 1

with α = 1 in (6.1) (for H1 initial data).

τref = 2−8 τref = 2−9 τref = 2−10

N = 16 5.856E–03 5.856E–03 5.856E–03

N = 32 2.954E–03 2.954E–03 2.954E–03

N = 64 1.477E–03 1.477E–03 1.477E–03

convergence rate O(N−1.00) O(N−1.00) O(N−1.00)

7 Conclusion

We have constructed a fast fully discrete low-regularity integrator for solving
the NLS equation with nonsmooth initial data in one dimension. The method
can be implemented by using FFT with O(N lnN) operations at every time
level, and is proved to have an error bound of O(τ

√
ln(1/τ) + N−1) when

the initial data is in H1(T). For initial data in Hs(T) with s > 1, the nu-
merical results show that the proposed method can have an error bound of
O(τ+N−s). We expect that the techniques for constructing and analysing the
spatial discretisation method in combination with the temporal low-regularity
integrator may also be extended to other dispersive equations with nonsmooth
data.
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1. C. Besse, B. Bidégaray, and S. Descombes: Order estimates in time of splitting methods
for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002), pp. 26–40.



31

2. J. Bourgain: Fourier transform restriction phenomena for certain lattice subsets and
applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct.
Anal. 3 (1993), pp. 107–156.

3. J. Bourgain and D. Li: On an endpoint Kato-Ponce inequality. Differential Integral
Equations 27 (2014), pp. 1037–1072.

4. T. Cazenave: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics
10, American Mathematical Society, 2003.

5. E. Chu: Discrete and continuous Fourier transforms analysis, applications and fast
algorithms. CRC Press, New York, 2008.

6. J. Eilinghoff, R. Schnaubelt, and K. Schratz: Fractional error estimates of splitting
schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl. 442 (2016), pp.
740–760.

7. F. Rousset and K. Schratz: A general framework of low regularity integrators.
arXiv:2010.01640

8. M. Hochbruck and A. Ostermann: Exponential integrators. Acta Numerica 19 (2010),
pp. 209–286.
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