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Abstract
We develop an adaptive algorithm for large SDE systems, which automatically selects
(quasi-)deterministic time steps for the semi-implicit Euler method, based on an a
posteriori weak error estimate. Main tools to construct the a posteriori estimator
are the representation of the weak approximation error via Kolmogorov’s backward
equation, a priori bounds for its solution and the Clark–Ocone formula. For a certain
class of SDE systems,we validate optimalweak convergence order 1 of the a posteriori
estimator, and termination of the adaptive method based on it withinO(Tol−1) steps.

Mathematics Subject Classification 65C30 · 60H35 · 65Y20

1 Introduction

Let L, K ∈ N\{0}, and T > 0. In this work, we study a new adaptive time-stepping
strategy to efficiently approximate the R

L -valued solution X ≡ {Xt ; t ∈ [0, T ]} of
the stochastic differential equation (SDE)

dXt = (−A Xt +f(Xt )
)
dt +

K∑

k=1

σσσ k(Xt ) dβk(t) for all t ∈ [0, T ], X0 = y ∈ R
L ,

(1.1)
where {βk(t); t ∈ [0, T ]}, k = 1, . . . , K are independent R-valued Wiener processes
on the filtered probability space (�,F , {Ft }t≥0, P), andA ∈ R

L×L is invertible and
positive definite. We refer to Sect. 2, where proper settings for data A , f, {σσσ k}k , are
given. Problem (1.1) may be motivated from a spatial discretization of the semilinear
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stochastic partial differential equation (SPDE) on a bounded domainDDD ⊂ R
d ,

dXt = (ε�Xt + [βββ · ∇]Xt + F(Xt )
)
dt +

K∑

k=1

�k(Xt ) dβk(t) for all t ∈ [0, T ],

X0 = y ∈ H, (1.2)

for given ε > 0, βββ : DDD → R
d constant for simplicity, and H a Hilbert space; see

Sect. 5 for further details.
Our aim is an adaptive mesh strategy for the semi-implicit Euler method applied to

(1.1),which, for every j ∈ N0, automatically selects the newstep size τ j+1 = t j+1−t j ,
and then determines the R

L -valued random variable Y j+1 from ( j ∈ N0)

Y j+1 = Y j + τ j+1(−A Y j+1 + f(Y j )
)+

K∑

k=1

σσσ k(Y j )� j+1βk, Y0 = y, (1.3)

for� j+1βk := βk(t j+1)−βk(t j ), to approximate the solutionXt j+1 from (1.1) at time
t j+1. Conceptually, we base this local step size selection strategy on a (computable) a
posteriori weak error estimator G in each step, i.e.,

max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]− E
[
φ(Y j )

]∣∣∣ ≤
J−1∑

j=0

τ j+1G
(
φ; τ j+1,Y j ), (1.4)

for φ ∈ C3(RL) with globally bounded first, second and third derivatives. A criterion
may then be set up to select a new, large τ j+1 in every step, such that the right-hand
side of (1.4) stays below a chosen tolerance Tol > 0. For the derivation of (1.4) we
benefit from [28], where an expansion of the weak approximation error for uniform
deterministic time steps (and originally for the explicit Euler method) was obtained
via Kolmogorov’s backward equation:

∂t u(t, x) + Lu(t, x) = 0 for all (t, x) ∈ [0, T ) × R
L ,

u(T , x) = φ(x) for all x ∈ R
L , (1.5)

where L ≡ LX is the generator of the Markovian semigroup from X ≡ {Xt ; t ∈
[0, T ]} in (1.1),

Lu(t, x) = 〈−A x + f(x), Dxu(t, x)
〉
RL + 1

2

K∑

k=1

Tr
(
σσσ k(x)σσσ	

k (x)D2
xu(t, x)

)

= 〈−A x + f(x), Dxu(t, x)
〉
RL + 1

2
Tr
(
σσσ(x)σσσ	(x)D2

xu(t, x)
)
,

with σσσ(·) ≡ [
σσσ 1(·), . . . ,σσσ K (·)] ∈ R

L×K . Under proper assumptions, such as for
instance those stated in Sect. 2, the function u(t, x) = E

[
φ(Xt,x

T )
]
is the unique
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solution of (1.5); see e.g. [15, p. 366ff.]. As usual we denote by Xt,x ≡ {
Xt,x

s ; s ∈
[t, T ]} the R

L -valued process which starts at time t ∈ [0, T ] in x ∈ R
L .

As already mentioned, we are motivated by (a spatial discretization of) SPDE
(1.2), which is why we aim for adaptive methods, which are applicable to SDE (1.1)
with L 
 1 large; in this respect, we prefer (quasi-)deterministic (rather than ran-
dom) meshes {t j } j≥0 ⊂ [0, T ] to avoid requirements for too large storage resources,
or time-consuming post-processing tasks to synchronize data, such as interpolation,
or projection. This approach lends itself to a vectorized implementation (see Algo-
rithm 4.1) and is of advantage over procedurally generated meshes (such as those in
[10,16,17])where the efficient implementation as a vectorized algorithm is an unsolved
problem.

The following example illustrates local mesh refinement and coarsening by the
adaptive Algorithm 4.1, which is detailed in Sects. 4 and 5.

Example 1.1 Let L = 25. Consider SDE system (1.1) with K = 5, which results from
a finite element discretization (with spatial mesh size h = 1

L+1 ) of SPDE (1.2) with
ε = 1, βββ ≡ 000, and

F
(
Xt (x)

) = 1
5 sin

(
π Xt (x)

)
, �k

(
Xt (x)

) = 1

2k
sin(πkx)Xt (x),

y(x) = sin(πx), x ∈ (0, 1);

see Sect. 5.1 for details. For the test function φ(x) = √
h‖x‖RL to approximate the

L
2-norm, and an initial step of size 0.1, we observe an instantaneous refinement via

Algorithm 4.1 to τ 1 ≈ 10−4; the mesh size then rapidly increases to values close to
10−1 at times t ≈ 0.5, reflecting (spatial) smoothing dynamics; see Fig. 1b. Figure 1a
shows a typical trajectory, where the buckling is caused by the driving noise. Figure 1c
compares related errors for (1.3) on uniform vs. adaptive time meshes through Algo-
rithm 4.1. Here, EM[φ(Y j )] := 1

M

∑M
m=1 φ

(
Y j (ωm)

)
denotes the empirical mean to

approximate E[φ(Y j )], where we choose M = 104 Monte-Carlo simulations. For the
tolerance parameter Tol = 0.1, Algorithm 4.1 generates an adaptively refined mesh
with J = 501 time steps to stay below the given error threshold Tol. In contrast,
a uniform mesh needs J = 2000 time steps to perform equally well. In Fig. 1d, the
evolution of the a posteriori error estimator j �→ G(M)

(
φ; τ j+1,Y j

)
is displayed,

that approximately takes values between Tol and Tol
2 ; this is in accordance with the

tolerance criterion of Algorithm 4.1, indicating an efficient selection of variable step
sizes. See Sect. 5.1 for more details.

Different adaptive methods to solve SDE (1.1) may be found in the literature,
addressing diverse numerical goals: in [20], an adaptive time-meshing concept is
combined with the Euler–Maruyama method to foster discrete stability of the explicit
time-stepping scheme in cases where the local Lipschitz drift only satisfies a ‘one-
sided Lipschitz condition’. Automatic mesh refinement (resp. coarsening) for each
realizationω ∈ � is applied if rapid (resp. slow) changes in the drift at two subsequent
states are observed, where a maximum mesh size �max bounds local (random) mesh
sizes {τ j (ω)} j≥0 ⊂ [0,�max] to conclude asymptotic strong convergence. Another
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(a) (b)

(c) (d)

Fig. 1 (Example 1.1 for Tol = 0.1, M = 104, T = 1) aContour plot of the solution for a single realization
ω up to time t = 0.25. b Semi-Log-Plot of the corresponding adaptive time step size. c Error for uniform
(bule line) vs. adaptive (red line) time meshes via Algorithm 4.1. d Plot of the a posteriori weak error
estimator G(M)

(
φ; τ j+1,Y j ) (color figure online)

work which uses adaptive random meshes as well to strengthen the stability of the
underlying explicit discretization of the above mentioned class of SDEs (1.1) is [10]:
here, a ‘discrete one-sided Lipschitz condition’ is used to generate randommesh sizes
{τ j (ω)} j≥0, which are then further constrained to lie in [�min,�max]. The main result

in [10] is the derivation of an optimal convergence rate O(�
1/2
max) on variable random

meshes of size between �min and �max. Close to the goals and applied tools in this
work are [16,17], where, again, to set parameters�min and�max requires some a priori
knowledge, and the complexity in the worst case of the method may depend on �−1

min,
and the dimension L of the problem due to the explicit character of the discretization
that affects relevant discrete solution bounds; see also [13] in this respect.

A different line of research derives a posteriori error estimates (such as (1.4)) to
judge the quality of the current approximation, and uses it then as a ‘steering tool’ to
initiate an automatic remeshing strategy.While this conceptual idea to design adaptive
methods has been well-known in the context of (certain) ODEs and PDEs before, it
has first been introduced in [23,27] for SDEs in the contents of weak approximation
of SDE solutions (here again via Euler–Maruyama discretization). In these works, an
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(asymptotic weak) a posteriori error expansion

∣∣∣E
[
φ(XT )

]− E
[
φ(YT )

]∣∣∣ = E

⎡

⎣
J−1∑

j=0

ρ j+1 · (τ j+1)2
⎤

⎦+ ‘higher order terms’, (1.6)

with computable {ρ j }J
j=1 has first been obtained. Its derivation in [23,27] rests on the

weak error expansion of Talay and Tubaro [28] via Kolmogorov’s backward equation
(1.5), and numerically approximates derivatives of the solution u of the PDE (1.5),
whose simulation is limited to small dimensions L . Then, (random) time meshes are
generated automatically based on the computable part of the right-hand side of (1.6)—
with no minimum or maximummesh sizes to be set, but only the parameter Tol (also
serving as convergence parameter) to bound the leading error term on the right-hand
side of (1.6). The iterative generation of an adapted time mesh requires the repeated
computation of (approximations of) the global problem (1.5)—opposed to determin-
ing local time steps τ j+1 based on ‘so far’ computed solutions {Y�} j+1

�=0 only. From an
analytical viewpoint, the results in [23,27] crucially rest on the assumed boundedness
of the involved drift and diffusion functions to circumvent the deficiency of ‘discrete
stability’ of the governing (explicit) Euler–Maruyama scheme; the advantage, how-
ever, is a theoretical backup for this weak adaptive algorithm in terms of termination
at optimal rate, and the asymptotic weak a posteriori error estimate (1.6).

Conceptually, the derivation of the adaptive Algorithm 4.1 below is close to [23,27]
and uses a related weak error representation (see (1.8) below) for the semi-implicit
Euler scheme (1.3) with the help of the solution u of (1.5)—but differs in some relevant
aspects: the first is the use of the semi-implicit Euler scheme (1.3), which allows for
L−independent (higher moment) stability bounds for its solution in case data satisfy
(A1)–(A3) in Sect. 2.1; see Lemma 2.6. These stability bounds for (1.3) in Lemma 2.6
are the relevant property to show optimal order of weak convergence of the a posteriori
weak error estimator proposed in Theorem 3.1 on given meshes; cf. Theorem 3.5.

A second difference to [23,27] is that we bound derivatives of u that appear in
(1.5) in the weak error representation (1.9) by a priori bounds (see (1.10) below) in
terms of derivatives of φ, which removes the neccessity to numerically approximate
derivatives of the solution of (1.5)—and thus enables the applicability ofAlgorithm4.1
to large SDE systems, as they e.g. come from SPDE (1.2) via spatial discretization (in
Example 1.1).

To further detail relevant steps in our program,we start with the continuified process
YYY ≡ {YYY t ; t ∈ [0, T ]} of the sequence of randomvariables {Y j } j≥0 which solves (1.3).
We easily observe in Sect. 3 that

YYY t := Y j +
((

I + τ j+1A
)−1f(Y j ) − A

(
I + τ j+1A

)−1Y j
)
(t − t j )

+
K∑

k=1

(
I + τ j+1A

)−1
σσσ k(Y j )

(
βk(t) − βk(t j )

)
for all t ∈ [t j , t j+1] (1.7)
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interpolates {Y j } j≥0 at {t j } j≥0, and is {Ft }t≥0-adapted. Now assume 0 = t0 < t1 <

· · · < tJ = T and fix n = 0, . . . , J −1; considering (1.5) on [0, tn+1]×R
L , a standard

argument then leads to (see Lemma 3.2)

∣∣∣E
[
φ(Xtn+1)

]−E
[
φ(Yn+1)

]∣∣∣ =
∣∣∣E
[
u(0, y) − u(tn+1,Yn+1)

]∣∣∣

≤
n∑

j=0

∣∣∣E
[
u(t j+1,Y j+1) − u(t j ,Y j )

]∣∣∣. (1.8)

We may now use Itô’s formula with u from (1.5) to transformYYY on each time interval
[t j , t j+1] to represent each increment u(t j+1,Y j+1) − u(t j ,Y j ) in the last sum, and
employ (1.5) to deduce

E
[
u(t j+1,Y

j+1) − u(t j ,Y
j )
]

=
∫ t j+1

t j
E

⎡

⎢⎢
⎣

〈
(
I + τ j+1A

)−1f(Y j ) − A
(
I + τ j+1A

)−1Y j − f(YYYs ) + A YYYs
︸ ︷︷ ︸

‘error indicator (drift)’

, Dxu(s,YYYs )︸ ︷︷ ︸
‘weight’

〉

RL

⎤

⎥⎥
⎦ ds

+ 1

2

∫ t j+1

t j
E

⎡

⎢
⎢
⎣Tr

(
{(
I + τ j+1A

)−1
σσσ(Y j )

[(
I + τ j+1A

)−1
σσσ(Y j )

]	 − σσσ(YYYs )σσσ
	(YYYs )

}

︸ ︷︷ ︸
‘error indicator (diffusion)’

· D2
xu(s,YYYs )

︸ ︷︷ ︸
‘weight’

)
⎤

⎥
⎥
⎦ ds;

(1.9)

see Lemma 3.2 for the justification of this identity. Conceptionally, the right-hand side
of (1.9) uses the continuified processYYY built from the iteratesY j andY j+1—and first
and second derivatives of the solution u from (1.5) to transform {YYY t ; t ∈ [t j , t j+1]}.
An interpretation of (the right-hand side of) (1.9) in a corresponding setting in [23,27]
is its view as products of (local) error indicators for the drift and diffusion, and weights
Dxu, D2

xu, which ‘encode’ the chosen test function φ.
In the next step, we use the first to third variation equations for (1.1), see (2.2)–(2.4)

in Sect. 2.3, to deduce bounds

sup
(t,x)∈[0,T ]×RL

‖D�
xu(t, x)‖L� ≤

�∑

i=1

C�,i sup
x∈RL

‖Diφ(x)‖Li (� ∈ {1, 2, 3}), (1.10)

for derivatives of the solution u of (1.5), where constants C�,i > 0 do not depend
on the dimension L . Note that only derivatives of u are involved in (1.9), so their
estimation with the help of (1.10) suggests to choose test functions φ : R

L → R

in (1.4) whose derivatives are uniformly bounded on R
L—such as norms; see also

Example 1.1.
While the derivation of estimate (1.10) is known for a general class of SDEs, see

e.g. [3, Sec. 1.3], we calculate the constants {C�,i ; 1 ≤ i ≤ �, 1 ≤ � ≤ 3} under the
assumptions (A1)–(A3), which are needed in the a posteriori error estimate (1.4); see
Lemma 2.5. A further tool to derive (1.4) then is the use of commonMalliavin calculus
techniques such as the Clark–Ocone formula, to avoid that the error estimator uses the
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interpolated process YYY in (1.7) rather than computable iterates Y j from (1.3). Here,
we benefitted from similar ideas and concepts, which were used in [6] in the context
of a priori weak error analysis of SPDEs of form (1.2) withβββ ≡ 0; see Remark 3.2 for
further details. For a fixed φ ∈ C3(RL), our first main result in this work then is the
weak a posteriori error estimate (1.4) (see also Theorem 3.1), giving quantitative error
bounds for iterates {Y j } j≥0 solving (1.3) on a given a mesh {t j } j≥0 covering [0, T ]
with the help of computable (local) weak error estimators {G(φ; τ j+1,Y j

)} j≥0.
In Sect. 4, we use the a posteriori error estimation (1.4) for iterates {Y j } j≥0 of

(1.3) to automatically steer the computation of local mesh sizes τ j+1 via the adaptive
Algorithm 4.1, yielding tuples

{
(τ j+1,Y j+1)

}
j≥0. Given j ≥ 0, the guiding criterion

for admissibility of a new tuple (τ j+1,Y j+1) is that the evaluation with the local error
estimator yieldsG

(
φ; τ j+1,Y j

) ≤ Tol
T , where the tolerance Tol > 0 is provided by

the user. We generate such an admissible tuple by successively halving the previous

time step, and thus generating a sequence {τ j+1,�}�≥0 ⊂ R
+ with τ j+1,� = τ j+1,0

2�

and τ j+1,0 ≡ τ j , until admissibility of a tuple for some τ
j+1,�∗

j+1 is attained; see
Fig. 2. This sequence of steps precedes a single potential step of coarsening; see
Algorithm 4.1 for further details. As a result, we obtain an adaptive method where
only Tol > 0 needs be set, and where admissible tuple

{
(τ j+1,Y j+1)

}
j≥0 satisfy

(1.4), where the right-hand side is now bounded by Tol > 0. The second main result
in this paper then is Theorem 4.2, which ensures computation of each new time step
τ j+1 in Algorithm 4.1 after no more than �∗

j+1 = O(log(Tol−1)
)
many iterations

(indexed by j ; local determination), and at most J = O(Tol−1) many steps to reach
T (global termination); its proof again rests on the stability bounds given in Lemma 2.6
and yields the existence of a lower bound of the step sizes generated via Algorithm 4.1;
see also Fig. 2. We remark that this local construction of the new mesh size τ j+1 with
the help of only Y j differs from the strategy in [23,27], where admissible meshes
are obtained by iterative computation of global problems (‘approximate Kolmogorov
equation’), and where again the assumed boundedness of drift and diffusion is crucial
to conclude optimality of attained meshes.

Section 5 then reports on computational studies for different SPDEs (1.2) after finite
element discretization with the help of the adaptive Algorithm 4.1: we specify the cor-
responding a posteriori error estimator, and pinpoint those computable expressions
{E�E�E�}�≥1 involved in the error estimator in Example 1.1, which are mainly responsible
for local mesh adjustments. For the different examples, including one which is convec-
tion dominated, the results evidence efficiency in comparison with uniform meshing,
and accuracy of the weak adaptive Algorithm 4.1.

The paper is organized as follows: Sect. 2 collects the assumptions needed for the
dataA , f, {σσσ k}k of (1.1) and recalls relevant tools fromMalliavin calculus; moreover,
variation equations for (1.1) are recalled to verify the bounds (1.10) and stability
bounds for iterates {Y j } j≥0 from (1.3) are presented. The a posteriori error analysis
for (1.3) is given in Sect. 3. The relatedweak adaptivemethod is proposed and analyzed
in Sect. 4, and corresponding computational studies are reported in Sect. 5.
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Fig. 2 Illustration of the local (for fixed j) and global termination argument given in Theorem 4.2, yielding
a maximum of �∗

j+1 = O(log(Tol−1)
)
many refinement steps (�); see also (4.2), within the loop of

{τ j+1,�}�≥0, to accept the new step size τ j+1 = τ
j+1,�∗

j+1 , and the existence of a lower bound of step
sizes generated via Algorithm 4.1, such that either (2) (∗∗∗1) or (3) (∗∗∗2) is met. Note that due to the choice
of the initial mesh size τ1 for the generation of Y1 and the setup of Algorithm 4.1, it is not possible that
τ j+1,� < Tol

2C̃̃C̃CT
, � ≥ 0

2 Assumptions and tools

Section 2.1 lists basic requirements on data A , f,σσσ ≡ [
σσσ 1, . . . ,σσσ K

]
, y in (1.1)

throughout this work. Section 2.2 shortly recalls needed tools fromMalliavin calculus.
In Sect. 2.3, we derive explicit bounds for {D�

xu}3�=1 from Kolmogorov’s backward
equation (1.5) under Assumptions (A1)–(A2). Stability bounds for {Y j } j≥0 from (1.3)
are given in Sect. 2.4 provided (A1)–(A3) are valid.

2.1 Assumptions

Throughout this work, (�,F , {Ft }t≥0, P) is a given filtered probability space with
natural filtration of the Wiener processes in (1.1). Below, we use positive constants
CD�f , C (�−1)

f , CD�σσσ , C (�−1)
σσσ , C (�−1)

y (1 ≤ � ≤ 3), and λA to specify dependence on
data A , f,σσσ ≡ [

σσσ 1, . . . ,σσσ K
]
in (1.1); none of these constants depend on L . For a

sufficiently smooth g ∈ C(RL ; R
n), corresponding (matrix) operator norms are given

as follows ( n, L ∈ N\{0}, x ∈ R
L ):

‖D�g(x)‖
L

⎛

⎜
⎝R

L × · · · × R
L

︸ ︷︷ ︸
�−times

;Rn

⎞

⎟
⎠

:= sup
‖vi ‖RL =1

‖D�g(x)(v1, . . . , v�)‖Rn (� ∈ N\{0}),

where ‖·‖Rn denotes the (Euclidean) vector norm of a R
n-valued vector. If n = L , we

write L� ≡ L(RL ×· · ·×R
L ; R

L
)
. If n = 1, D ≡ Dx denotes the gradient and D2 ≡

D2
x the Hessian matrix of g, and we also write L� ≡ L(RL ×· · ·×R

L ; R
)
. Moreover,

‖Dxg(x)‖L1 = ‖Dxg(x)‖RL , ‖D2
xg(x)‖L2 = ‖D2

xg(x)‖RL×L , where ‖·‖RL×L denotes
the spectral (matrix) norm.
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(A1) (a) The matrix A ∈ R
L×L is invertible and positive definite, i.e., there exists

a constant λA > 0, s.t.

〈A x, x〉RL ≥ λA ‖x‖2
RL for all x ∈ R

L .

(b) The map f ∈ C3(RL ; R
L), and there exist constants {CD�f }3�=1, s.t.

sup
x∈RL

‖D�f(x)‖L� ≤ CD�f (1 ≤ � ≤ 3);

moreover, there exist constants {C (�)
f }2�=0, s.t.

‖A �f(x)‖RL ≤ C (�)
f

(
1 + ‖A �x‖RL

)
for all x ∈ R

L (0 ≤ � ≤ 2).

(A2) Themapsσσσ k ∈ C3(RL ; R
L) for every k = 1, . . . , K , and there exist constants

{CD�σσσ }3�=1, s.t.

K∑

k=1

sup
x∈RL

‖D�σσσ k(x)‖L� ≤ CD�σσσ (1 ≤ � ≤ 3);

moreover, there exist constants {C (�)
σσσ }2�=0, s.t. for every k = 1, . . . , K

‖A �σσσ k(x)‖RL ≤ C (�)
σσσ

(
1 + ‖A �x‖RL

)
for all x ∈ R

L (0 ≤ � ≤ 2).

(A3) For 0 ≤ � ≤ 2, there exists C (�)
y , s.t. the initial datum y ∈ R

L in (1.1) satisfies

‖A �y‖RL ≤ C (�)
y .

Throughout this work, we admit test functions φ ∈ C3(RL) with globally bounded
first, second and third derivatives.

2.2 Malliavin calculus

Webriefly recall theMalliavin derivative, recall the chain rule forMalliavin derivatives
and state the Clark–Ocone formula. For further details, we refer to [25].—We denote
by C∞

p (RL) the space of all smooth functions g : R
L → R, such that g and all

of its partial derivatives have polynomial growth. Let P the set of R-valued random
variables of the form

F = g
(
W (h1), . . . , W (hL)

)
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for some g ∈ C∞
p (RL) and h1, . . . , hL ∈ L2(0, T ). Here, W : L2(0, T ) → L2

FT
(�)

is defined by

W (h) =
∫ T

0
h(t) dβ(t).

We further define for any F ∈ P its R-valued Malliavin derivative process DF :=
{DtF; 0 ≤ t ≤ T } via

DtF =
L∑

i=1

∂xi g
(
W (h1), . . . , W (hL)

)
hi (t). (2.1)

For any p ≥ 1, let D
1,p denote the closure of the class of smooth random variables

with respect to the norm

‖F‖D1,p =
(
E[|F|p] + E

[
‖DF‖p

L2(0,T )

]) 1
p
.

Next, we recall the chain rule for Malliavin derivatives; see [25, p. 28, Prop. 1.2.3].
Let ϕ : R

L → R be a continuously differentiable function with bounded partial
derivatives of order 1, and p ≥ 1 be fixed. Let further FFF = (F1, . . . ,FL

)	 be a random
vector whose components belong to the space D

1,p. Then ϕ(FFF) ∈ D
1,p, and

D
(
ϕ(FFF)

) =
L∑

i=1

∂xi ϕ(FFF)DFi .

Finally,we recall theClark–Ocone representation formula; see [25, p. 46, Prop. 1.3.14].

Lemma 2.1 Let F ∈ D
1,2, and β be a one-dimensional Wiener process. Then

F = E[F] +
∫ T

0
E
[
DtF|Ft

]
dβ(t).

2.3 Variation equations for (1.1) and a priori bounds for {D�
xu}3�=1 of (1.5)

Kolmogorov’s backward equation (1.5) has a unique solution [0, T ]×R
L � (t, x) �→

u(t, x) = E[φ(Xt,x
T )], whenever assumptions (A1)–(A2) hold; see e.g. [15, p. 366ff.].

The derivation in Sect. 3 requires explicit bounds for derivatives u, which are uniform
in L , in particular. To this end, we use the variation equations corresponding to (1.1)
and derive these results here. For a detailed verification of the upcoming results, we
refer to [22].
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For y ∈ R
L fixed, we denote by X ≡ X0,y the solution of (1.1). Let h ∈ R

L .
Following [3, p. 37ff.], we recall the first variation equation corresponding to (1.1),

dηηηht = (−A + Df(Xt )
) · ηηηht dt +

K∑

k=1

Dσσσ k(Xt ) · ηηηht dβk(t) for all t ∈ [0, T ],

ηηηh0 = h. (2.2)

Since assumptions (A1)–(A2) are valid, there exists a unique solution ηηηh ≡ {ηηηht ; t ∈
[0, T ]}; it is equal to DyX0,y · h, the derivative w.r.t. the initial datum y ∈ R

L of the
map y �→ X0,y, along the direction h ∈ R

L .

Lemma 2.2 Assume (A1)–(A2) in (2.2). Then, for every h ∈ R
L and p ≥ 1,

sup
t∈[0,T ]

E
[‖ηηηht ‖p

RL

] ≤ V (1)
p · ‖h‖p

RL ,

where V (1)
p := e

pT max

{
−λA +CDf+ p−1

2 C2
Dσσσ ,0

}

(p>1), and V (1)
1 :=

e
T max

{
−λA +CDf+ 1

2C2
Dσσσ ,0

}

.

Proof (a) p > 1: Let t ∈ [0, T ], h ∈ R
L and p > 1. By Itô’s formula,

1

p
E
[‖ηηηht ‖p

RL

] ≤ ‖h‖p
RL

p
+ E

[ ∫ t

0

〈(−A + Df(Xs)
) · ηηηhs ,ηηηhs

〉
RL · ‖ηηηhs ‖p−2

RL

+ 1

2

K∑

k=1

Tr
(

Dσσσ k(Xs)ηηη
h
s [Dσσσ k(Xs)ηηη

h
s ]	
)

· (p − 1)‖ηηηhs ‖p−2
RL ds

]
.

Using assumptions (A1)–(A2) leads to

1

p
E
[‖ηηηht ‖p

RL

]

≤ ‖h‖p
RL

p
+ E

[ ∫ t

0

{〈(−AAA + Df(Xs)
) · ηηηhs ,ηηηhs

〉
RL

+ p−1
2

K∑

k=1

‖Dσσσ k(Xs)ηηη
h
s ‖2

RL

}
‖ηηηhs ‖p−2

RL ds

]

≤ ‖h‖p
RL

p
+ max

{
−λA + CDf + p−1

2 C2
Dσσσ , 0

} ∫ t

0
E
[‖ηηηhs ‖p

RL

]
ds.

Applying Gronwall’s inequality leads to the first result.
(b) p = 1: This follows by using Jensen’s inequality. ��
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Next, following [3, p. 39ff.], we consider the second variation equation correspond-
ing to (1.1), that is, for h,w ∈ R

L ,

dζζζ h,w
t =

((−A + Df(Xt )
) · ζζζ h,w

t + D2f(Xt ) · (ηηηht ,ηηηwt )
)
dt

+
K∑

k=1

(
Dσσσ k(Xt ) · ζζζ h,w

t + D2σσσ k(Xt ) · (ηηηht ,ηηηwt )
)
dβk(t) for all t ∈ [0, T ],

ζζζ
h,w
0 = 0 ∈ R

L . (2.3)

Since assumptions (A1)–(A2) are valid, there exists a unique solution ζζζ h,w ≡
{ζζζ h,w

t ; t ∈ [0, T ]}; it is equal to D2
yX

0,y · (h,w), the second derivative w.r.t. the

initial datum y ∈ R
L of the map y �→ X0,y along the directions h,w ∈ R

L .

Lemma 2.3 Assume (A1)–(A2) in (2.3). Then, for every h,w ∈ R
L , ε1, ε2 > 0 and

p ≥ 1,

sup
t∈[0,T ]

E
[‖ζζζ h,w

t ‖p
RL

] ≤ V (2)
p,ε1,ε2

· ‖h‖p
RL ‖w‖p

RL ,

where V (2)
1,ε1,ε2

:=
√

V (2)
2,ε1,ε2

for p = 1, and

V (2)
p,ε1,ε2

:= T

(
1

ε
p−1
1

C p
D2f + 2

ε
(p−2)/2
2

C p
D2σσσ

(p − 1)
p
2

)

V (1)
2p

· e
pT max

{
−λA +CDf+(p−1)C2

Dσσσ + (p−1)
p ε1+ (p−2)

p ε2,0

}

(p ≥ 2).

Proof The proof follows the steps outlined in the proof of Lemma 2.2: by Itô’s formula,
we may control 1

p E
[‖ζζζ h,w

t ‖p
RL

]
in terms of data, and h,w in (2.3); the assertion then

follows with the help of generalized Young, and Gronwall inequalities. ��

Now, let h1,h2,h3 ∈ R
L . Following [3, p. 43ff.], we recall the third variation

equation corresponding to (1.1),

d���h1,h2,h3
t =

((−A + Df(Xt )
) · ���h1,h2,h3

t + 1

4

∑

ß∈S3
D2f(Xt ) · (ηηη

hß(1)
t , ζζζ

hß(2),hß(3)
t )

+ D3f(Xt ) · (ηηη
h1
t ,ηηη

h2
t ,ηηη

h3
t )

)
dt

+
K∑

k=1

(
Dσσσ k(Xt ) · ���h1,h2,h3

t + 1

4

∑

ß∈S3
D2σσσ k(Xt ) · (ηηη

hß(1)
t , ζζζ

hß(2),hß(3)
t )
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+ D3σσσ k(Xt ) · (ηηη
h1
t ,ηηη

h2
t ,ηηη

h3
t )

)
dβk(t) for all t ∈ [0, T ],

���
h1,h2,h3
0 = 0 ∈ R

L . (2.4)

Here,S3 denotes the set of all permutations of a set of three elements. Since (A1)–(A2)
apply, there exists a unique solution���h1,h2,h3 ≡ {���h1,h2,h3

t ; t ∈ [0, T ]}; it is equal to
D3
yX

0,y · (h1,h2,h3), the third derivative w.r.t. the initial datum y ∈ R
L of the map

y �→ X0,y along the directions h1,h2,h3 ∈ R
L .

Moment bounds for the solution of (2.4) may be obtained as in Lemmata 2.2 and
2.3 ; see [22] for further details; in view of Lemma 2.5 below, it suffices to consider
only second moment bounds in the following lemma.

Lemma 2.4 Assume (A1)–(A2) in (2.4). Then, for every h1,h2,h3 ∈ R
L and ε3 > 0,

sup
t∈[0,T ]

E
[‖���h1,h2,h3

t ‖2
RL

] ≤ V (3)
2,ε3

· ‖h1‖2RL ‖h2‖2RL ‖h3‖2RL ,

where

V (3)
2,ε3

:= T
√

V (1)
4

(√
V (2)
4,ε1,ε2

(
9
4ε3

C2
D2f + 27

4 C2
D2σσσ

)
+
√

V (1)
8

(
1
ε3

C2
D3f + 3C2

D3σσσ

))

· e2T max
{
−λA +CDf+ 3

2C2
Dσσσ +ε3,0

}
.

Moreover for V (3)
1,ε3

:=
√

V (3)
2,ε3

,

sup
t∈[0,T ]

E
[‖���h1,h2,h3

t ‖RL

] ≤ V (3)
1,ε3

· ‖h1‖RL ‖h2‖RL ‖h3‖RL .

Let t ∈ [0, T ] and x ∈ R
L . In order to obtain global bounds for the first and higher

derivatives of u in (1.5), we use the following identities, which can be found in e.g.
[3, p. 94] in connection with Kolmogorov’s forward equation, which is just a time
reversal t �→ T − t and a change of the terminal condition into an initial condition in
(1.5).

〈
Dxu(t, x),h

〉
RL = E

[〈
Dxφ(Xt,x

T ), DxX
t,x
T · h〉

RL

]
for all h ∈ R

L , (2.5)

〈
D2
xu(t, x)h,w

〉
RL = E

[〈
D2
xφ(Xt,x

T )DxX
t,x
T · h, DxX

t,x
T · w〉

RL

]

+ E

[〈
Dxφ(Xt,x

T ), D2
xX

t,x
T · (h,w)

〉
RL

]
for all h,w ∈ R

L

(2.6)

and
〈
Dx
〈
D2
xu(t, x)h1,h2

〉
RL , h3

〉

RL
= E

[〈
D3
xφ(Xt,x

T )DxX
t,x
T · h1DxX

t,x
T · h2, DxX

t,x
T · h3

〉
RL

]
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+ E

[〈
D2
xφ(Xt,x

T )D2
xX

t,x
T · (h1, h3), DxX

t,x
T · h2

〉
RL

]

+ E

[〈
D2
xφ(Xt,x

T )DxX
t,x
T · h1, D2

xX
t,x
T · (h2,h3)

〉
RL

]

+ E

[〈
D2
xφ(Xt,x

T )D2
xX

t,x
T · (h1, h2), DxX

t,x
T · h3

〉
RL

]

+ E

[〈
Dxφ(Xt,x

T ), D3
xX

t,x
T · (h1,h2,h3)

〉
RL

]
for all h1,h2, h3 ∈ R

L .

(2.7)

In the following Lemma 2.5, based upon (2.5)–(2.7) and Lemmata 2.2, 2.3 and 2.4 ,
we derive global bounds for the first, second and third derivatives of the solution u of
(1.5) in terms of derivatives of φ, which are independent of the dimension L .

Lemma 2.5 Assume (A1)–(A2), and let {D�
xu}3�=1 be from (1.5). Then, for all

ε1, ε2, ε3 > 0,

(i) sup
(t,x)∈[0,T ]×RL

‖Dxu(t, x)‖RL ≤ V (1)
1 · sup

x∈RL
‖Dφ(x)‖RL ,

(ii) sup
(t,x)∈[0,T ]×RL

‖D2
xu(t, x)‖RL×L ≤ V (2)

1,ε1,ε2
· sup
x∈RL

‖Dφ(x)‖RL + V (1)
2 · sup

x∈RL
‖D2φ(x)‖RL×L ,

(iii) sup
(t,x)∈[0,T ]×RL

‖D3
xu(t, x)‖L3 ≤ V (3)

1,ε3
· sup
x∈RL

‖Dφ(x)‖RL + 3V (1)
1 V (2)

1,ε1,ε2
· sup
x∈RL

‖D2φ(x)‖RL×L

+ V (1)
1

√
V (1)
4 · sup

x∈RL
‖D3φ(x)‖L3 ,

where V (1)
1 , V (1)

2 , V (1)
4 , V (2)

1,ε1,ε2
, V (3)

1,ε3
are given in Lemmata 2.2, 2.3 and 2.4.

Proof (i) Let x ∈ R
L and 0 �= h ∈ R

L . We apply the Cauchy–Schwarz inequality to
the identity (2.5) and use Lemma 2.2 to get

∣
∣∣
〈
Dxu(t, x),h

〉
RL

∣
∣∣ ≤ V (1)

1 · sup
z∈RL

‖Dφ(z)‖RL · ‖h‖RL .

Thus, taking h = Dxu(t, x) immediately yields the assertion.
(ii) Let x ∈ R

L , 0 �= h,w ∈ R
L and ε1, ε2 > 0. Similar to (i) we obtain, using

Lemmata 2.2 and 2.3 ,
∣∣∣
〈
D2
xu(t, x)h,w

〉
RL

∣∣∣ ≤
(

V (2)
1,ε1,ε2

· sup
z∈RL

‖Dφ(z)‖RL + V (1)
2

· sup
z∈RL

‖D2φ(z)‖RL×L

)
· ‖h‖RL ‖w‖RL .

Taking w = D2
xu(t, x)h, we further obtain

‖D2
xu(t, x)h‖RL

‖h‖RL
≤ V (2)

1,ε1,ε2
· sup
z∈RL

‖Dφ(z)‖RL + V (1)
2 · sup

z∈RL
‖D2φ(z)‖RL×L .

The assertion now follows since

‖D2
xu(t, x)‖RL×L := sup

‖h‖
RL =1

‖D2
xu(t, x)h‖RL .
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(iii) Let x ∈ R
L and 0 �= h1,h2,h3 ∈ R

L . Similar to (i) and (ii), the verification of
assertion (iii) follows by means of identity (2.7), the Cauchy–Schwarz inequality and
Lemmata 2.2, 2.3 and 2.4 . ��

2.4 Stability bounds for iterates {Yj}j≥0 from (1.3)

We derive L-independent stability bounds for iterates {Y j } j≥0 from (1.3), provided
(A1)–(A3) are valid.

Lemma 2.6 Assume (A1)–(A3). Consider a mesh {t j }J
j=0 ⊂ [0, T ]. Let p ∈ N\{0}

and let {Y j } j≥0 solve (1.3). Then, for � = 0, 1, 2, we have

sup
j≥0

E
[‖A �Y j‖2p

RL

] ≤ CCC (�)
1,p,

where constants CCC (�)
1,p > 0 are independent of L.

We give the proof for p = 1, 2, and the proof for general p > 2 then follows induc-
tively.

Proof (a) p = 1: Fix j ≥ 0 and � = 0, 1, 2. Let ZZZ j := A �Y j . We multiply (1.3) by
(A �)	ZZZ j+1 and use the binomial formula, as well as Young’s inequality (δ1, δ2 ≥ 1)
to estimate

1

2

(
‖ZZZ j+1‖2

RL − ‖ZZZ j ‖2
RL

)
+
(
1

2
− 1

4δ1
− 1

4δ2

)
‖ZZZ j+1 − ZZZ j ‖2

RL + τ j+1〈A ZZZ j+1,ZZZ j+1〉
RL

≤ δ1(τ
j+1)2‖A �f(Y j )‖2

RL + τ j+1‖A �f(Y j )‖RL ‖ZZZ j ‖RL

+ δ2

K∑

k=1

‖A �σσσ k(Y j )� j+1βk‖2RL +
K∑

k=1

〈
A �σσσ k(Y j )� j+1βk ,ZZZ j 〉

RL . (2.8)

Note that the last term vanishes if E[·] is applied. By (A1)–(A2), the tower property
for expectations, and the identity E

[|� j+1βk |2
] = τ j+1, we further conclude that

1

2
E
[‖ZZZ j+1‖2

RL

] ≤
(
2δ1
(
C (�)
f

)2
T + 2C (�)

f + 2δ2K
(
C (�)

σσσ

)2) · E
[‖ZZZ j‖2

RL

] · τ j+1

+
(
2δ1
(
C (�)
f

)2
T + 2C (�)

f + 2δ2K
(
C (�)

σσσ

)2) · τ j+1.

We set

C :=
(
2δ1
(
C (�)
f

)2
T + 2C (�)

f + 2δ2K
(
C (�)

σσσ

)2)
.

Summation over all iteration steps, and using (A3) then lead to

E
[‖ZZZ j∗‖2

RL

] ≤ (C (�)
y
)2 + 2Ct j∗ + 2C

j∗−1∑

j=0

τ j+1
E
[‖ZZZ j‖2

RL

]
( j∗ ≥ 1).
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Now, the discrete Gronwall inequality yields the assertion.
(b) p = 2: Multiply (2.8) with ‖ZZZ j+1‖2

RL and use the binomial formula to get the
estimate

1

4

(
‖ZZZ j+1‖4

RL − ‖ZZZ j‖4
RL

)
+ 1

4

(
‖ZZZ j+1‖2

RL − ‖ZZZ j‖2
RL

)2 +
(
1

2
− 1

4δ1
− 1

4δ2

)

‖ZZZ j+1 − ZZZ j‖2
RL ‖ZZZ j+1‖2

RL + τ j+1〈A ZZZ j+1,ZZZ j+1〉
RL ‖ZZZ j+1‖2

RL

≤ δ1(τ
j+1)2‖A �f(Y j )‖2

RL ‖ZZZ j+1‖2
RL + τ j+1‖A �f(Y j )‖RL ‖ZZZ j‖RL ‖ZZZ j+1‖2

RL

+ δ2

K∑

k=1

‖A �σσσ k(Y j )� j+1βk‖2RL ‖ZZZ j+1‖2
RL

+
K∑

k=1

〈
A �σσσ k(Y j )� j+1βk,ZZZ j 〉

RL ‖ZZZ j+1‖2
RL .

We now add and substract ‖ZZZ j‖2
RL in the two terms on the right-hand side which

involve random increments, to then absorb part of it to the second term on the left-
hand side. For δ̃1, δ̃2, δ̃3, δ̃4 > 0, thanks to (A1)–(A2), taking expectations and using
the tower property leads to

1

4

(
E
[‖ZZZ j+1‖4

RL

]− E
[‖ZZZ j‖4

RL

])

+
(
1

4
− 1

4δ̃1
− 1

4δ̃2
− 1

4δ̃3
− 1

4δ̃4

)
E

[∣∣‖ZZZ j+1‖2
RL − ‖ZZZ j‖2

RL

∣∣2
]

+
(
1

2
− 1

4δ1
− 1

4δ2

)
E
[‖ZZZ j+1 − ZZZ j‖2

RL ‖ZZZ j+1‖2
RL

]

+ τ j+1
E
[〈
A ZZZ j+1,ZZZ j+1〉

RL ‖ZZZ j+1‖2
RL

]

≤ C̃
(
1 + E

[‖ZZZ j‖4
RL

]) · τ j+1,

with

C̃ := 8δ̃1δ
2
1T 3(C (�)

f

)4 + 4T δ1
(
C (�)
f

)2 + 4T δ̃2
(
C (�)
f

)2 + 8C (�)
f + 24T δ̃3K 2δ22

(
C (�)

σσσ

)4

+ 4K δ2
(
C (�)

σσσ

)2 + 4K 2δ̃4
(
C (�)

σσσ

)2
.

Choosing δ1, δ2 ≥ 1, δ̃1, δ̃2, δ̃3, δ̃4 ≥ 4 and using (A1) then leads to

1

4

(
E
[‖ZZZ j+1‖4

RL

]− E
[‖ZZZ j‖4

RL

]) ≤ C̃ · τ j+1 + C̃E
[‖ZZZ j‖4

RL

] · τ j+1.

Now, similar arguments as in b) yield the assertion. ��
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3 A posteriori weak error estimates for the Scheme (1.3)

In Theorem 3.1, we derive an a posteriori error estimate for iterates {Y j }J
j=0 of scheme

(1.3). It is shown in Theorem 3.5 that this error estimator converges with optimal order
on uniform meshes, recovering a corresponding result in [6] on a priori weak error
analysis for a corresponding time discretization of (1.2); the relevant tools to verify
Theorem 3.5 are the (discrete) stability properties of (1.3) in Lemma 2.6.

3.1 A posteriori weak error estimation: derivation and properties

Webound theweak approximation error max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]−E
[
φ(Y j )

]∣∣∣ in a posteriori

form in Theorem 3.1. For this purpose, we employ the (data-dependent) estimates in
Lemma 2.5, and therefore define [cf. also (1.10)]

CCC D(φ) := V (1)
1︸︷︷︸

C1,1

· sup
x∈RL

‖Dφ(x)‖RL ,

CCC D2(φ) := V (2)
1,ε1,ε2︸ ︷︷ ︸
C2,1

· sup
x∈RL

‖Dφ(x)‖RL + V (1)
2︸︷︷︸

C2,2

· sup
x∈RL

‖D2φ(x)‖RL×L ,

CCC D3(φ) := V (3)
1,ε3︸︷︷︸

C3,1

· sup
x∈RL

‖Dφ(x)‖RL + 3V (1)
1 V (2)

1,ε1,ε2︸ ︷︷ ︸
C3,2

· sup
x∈RL

‖D2φ(x)‖RL×L

+ V (1)
1

√
V (1)
4︸ ︷︷ ︸

C3,3

· sup
x∈RL

‖D3φ(x)‖L3 , (ε1, ε2, ε3 > 0).

The following result estimates the weak error caused by {Y j }J
j=0 from (1.3) on

a mesh of local mesh sizes {τ j+1}J−1
j=0 in terms of a computable a posteriori error

estimator G ≡ {G(φ; τ j+1,Y j
)}J−1

j=0 .

Theorem 3.1 Assume (A1)–(A3). Let {t j }J
j=0 ⊂ [0, T ] be a mesh with local mesh

sizes {τ j+1}J−1
j=0 . Let {Y j }J

j=0 solve (1.3). Then, we have

max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]− E
[
φ(Y j )

]∣∣∣ ≤
J−1∑

j=0

τ j+1G
(
φ; τ j+1,Y j ), (3.1)

where the a posteriori error estimator G
(
φ; τ j+1,Y j

)
is given by

G
(
φ; τ j+1,Y j ) :=

{
3CCC D(φ)

2 ·E1E1E1(Y j ) + CCC D2 (φ)

2 ·E2E2E2(Y j ) + CCC D(φ)
2 ·E3E3E3(Y j )

+ CCC D(φ)
4 ·E4E4E4(Y j ) + CCC D2 (φ)

2 ·E5E5E5(Y j ) + CCC D2(φ)

2
·E6E6E6(Y j ) + CCC D2 (φ)

4 ·E7E7E7(Y j )
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+ CCC D3(φ)

2
·E8E8E8(Y j ) + CCC D2(φ) ·E9E9E9(Y j ) + CCC D2 (φ)C2

Dσσσ

4 ·E12E12E12(Y j )

}
· τ j+1

+
{{

CCC D(φ)CD2f ·
√
E10E10E10(Y j ) +

[
CCC D(φ)CD3f

2 + CCC D2(φ)CD2f

]
·
√
E11E11E11(Y j )

+ CCC D2(φ)CD2σσσ ·
√
E13E13E13(Y j ) +

[CCC D2(φ)CD3σσσ

2
+ CCC D3(φ)CD2σσσ

]

·
√
E14E14E14(Y j )

}
·
√

τ j

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j )

}
· (τ j )1.5

+
{

CCC D2 (φ)C2
Dσσσ

6 ·E10E10E10(Y j ) + CCC D2(φ)

2
·E15E15E15(Y j )

}
· (τ j )2,

with ¯A¯A¯A j+1 := (I + τ j+1A
)−1

, and computable terms

1. E1E1E1(Y j ) = E

[∥
∥A 2 ¯A¯A¯A j+1Y j − A ¯A¯A¯A j+1f(Y j )

∥
∥
RL

]
,

2. E2E2E2(Y j ) := E

[
K∑

k=1

∥∥ ¯A¯A¯A j+1σσσ k(Y j )
∥∥
RL

∥∥A ¯A¯A¯A j+1σσσ k(Y j )
∥∥
RL

]

,

3. E3E3E3(Y j ) := E

[∥∥A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )
∥∥
RL ‖Df(Y j )‖L

]
,

4. E4E4E4(Y j ) := E

[

‖D2f(Y j )‖L2 ·
K∑

k=1

∥∥ ¯A¯A¯A j+1σσσ k(Y j )
∥∥2
RL

]

,

5. E5E5E5(Y j ) := E

[

‖Df(Y j )‖L ·
K∑

k=1

∥∥ ¯A¯A¯A j+1σσσ k(Y j )
∥∥2
RL

]

,

6. E6E6E6(Y j ) :=E

[
∥∥A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )

∥∥
RL ·

K∑

k=1

‖σσσ k(Y j )‖RL ‖Dσσσ k(Y j )‖L
]

,

7. E7E7E7(Y j ) := E

[
K∑

k=1

‖ ¯A¯A¯A j+1σσσ k(Y j )‖2
RL ·

K∑

k=1

‖σσσ k(Y j )‖RL ‖D2σσσ k(Y j )‖L2

]

,

8. E8E8E8(Y j ) := E

[
K∑

k=1

‖ ¯A¯A¯A j+1σσσ k(Y j )‖2
RL ·

K∑

k=1

‖σσσ k(Y j )‖RL ‖Dσσσ k(Y j )‖L
]

,

9. E9E9E9(Y j ) := E

[
K∑

k=1

∥∥A ¯A¯A¯A j+1σσσ k(Y j )
∥∥
RL ‖σσσ k(Y j )‖RL

]

,

10. E10E10E10(Y j ) := E

[∥∥A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )
∥∥2
RL

]
,

11. E11E11E11(Y j ) := E

[∣
∣∣

K∑

k=1

∥
∥ ¯A¯A¯A j+1σσσ k(Y j )

∥
∥2
RL

∣
∣∣
2
]

,

12. E12E12E12(Y j ) := E

[
K∑

k=1

∥∥ ¯A¯A¯A j+1σσσ k(Y j )
∥∥2
RL

]

,
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13. E13E13E13(Y j ) := E

[
∥∥A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )

∥∥2
RL

∣∣∣
K∑

k=1

‖σσσ k(Y j )‖RL

∣∣∣
2
]

,

14. E14E14E14(Y j ) := E

[∣∣∣
K∑

k=1

∥∥ ¯A¯A¯A j+1σσσ k(Y j )
∥∥2
RL

∣∣∣
2∣∣∣

K∑

k=1

‖σσσ k(Y j )‖RL

∣∣∣
2
]

,

15. E15E15E15(Y j ) := E

[
K∑

k=1

∥
∥A ¯A¯A¯A j+1σσσ k(Y j )

∥
∥2
RL

]

.

Remark 3.1 1.1.1. For f ≡ 0 and/orσσσ k , k = 1, . . . , K constant, the estimatorG simplifies
considerably; also, Theorem 3.1 remains valid for ODE systems, i.e., for σσσ k ≡ 0
(k = 1, . . . , K ), where only terms E1E1E1(·), E3E3E3(·) and E10E10E10(·) constitute G.

For ODE systems (1.1) with σσσ k ≡ 0 (k = 1, . . . , K ), a different approach to derive
a (residual-based) a posteriori estimate on a mesh {t j }J

j=0 ⊂ [0, T ] for ‖XT −YJ ‖RL

is via duality methods [8], which exploit (strong stability properties of) the related
adjoint equation; see also 2. below. Another variational approach here that avoids
duality methods is [24], where an inherited ‘(discrete) energy dissipation’ property
of the implicit discretization of (1.1) is used to bound max1≤ j≤J ‖Xt j − Y j‖RL for
cases where the drift operator in (1.1) is the gradient of a convex functional. We
also mention [29, Ch. 6], where (residual-based) a posteriori estimates are derived
by variational methods for space-time discretizations of the more general (1.2) with
�k ≡ 0 (k = 1, . . . , K ), where the drift operator need not be the gradient of a convex
functional.

2.2.2. For finite element based discretizations of (linear elliptic, parabolic) PDEs
A(u) = f , residual-based a posteriori estimates are obtained in [8],where dual/adjoint
problems are the relevant tool; their (global) stability properties may then be exploited
to bound the error in terms of the residual ρ(uh) = A(uh)− f of the computed solution
uh , times a related stability constant. In later works, dual problems involve functionals
φ, and its solution z is computed approximately to then enter as local weights ω(zh)

in the ‘duality-based weighted residual’ estimator of the form

|φ(u) − φ(uh)| ≤ |(ρ(uh), ω(zh)
)| + ‘higher order terms’

to sharpen computable error bounds; see the surveys [2,11].
The derivation of a posteriori error estimate (3.1) for iterates of (1.3) uses the

(backward) Kolmogorov equation (1.5) on [0, tn+1] × R
L for the transform u(t, x) =

E
[
φ(Xt,x

tn+1
)
]
—instead of an adjoint evolutionary problemon (0, tn+1) that ismotivated

from optimal control: the works [23,27] approximate derivatives of u to build local
weights contained in {ρ j }J

j=1 in (1.6), which is possible for small L; in this work, we
use the global stability estimate (1.10) that leads to the a posteriori error estimator in
(3.1) for iterates from (1.3), which is applicable to SDE (1.1) for arbitrary L .

3.3.3. In [23,27], (asymptotic) a posteriori error expansions for the terminal time T are
given for both, random and (quasi-)deterministic meshes, while (3.1) bounds the error
uniformly in time. The proof of Theorem (3.1) exploits that meshes {t j }J

j=0 ⊂ [0, T ]
are (quasi-)deterministic, e.g., by repeated use of Itô’s formula.
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4.4.4. The weak Euler method replaces Wiener increments {� j+1βk}J−1
j=0 in (1.3) by

bounded, discrete random variables {̃ξ j+1
k

√
τ j+1}J−1

j=0 with approximatemoments, see

e.g. [18, p. 458]: for example, P
[
ξ̃

j+1
k = ±1

] = 1
2 leads to iterates {Ỹ j }J

j=0, and their

‘continuification’ ỸYY ≡ {ỸYY t ; t ∈ [0, T ]}, given by

ỸYY t = Ỹ j +
( ¯A¯A¯A j+1f(Ỹ j ) − A ¯A¯A¯A j+1Ỹ j

)
(t − t j )

+
K∑

k=1

¯A¯A¯A j+1σσσ k(Ỹ j )̃ξ
j+1

k

√
t − t j for all t ∈ [t j , t j+1]. (3.2)

The a posterioriweak error analysis now starts again with (1.8), but lacks Itô’s formula
in (1.9), and thus proceeds with the mean value theorem and Taylor’s formula,

E
[
u(t j+1, Ỹ j+1) − u(t j , Ỹ j )

] = E
[
u(t j+1, Ỹ j+1) − u(t j , Ỹ j+1)

+ u(t j , Ỹ j+1) − u(t j , Ỹ j )
]

= E

[
∂t u(t∗, Ỹ j+1) · τ j+1 + 〈Dxu(t j , Ỹ j ), Ỹ j+1 − Ỹ j 〉

RL

+ 1

2
Tr
(

D2
xu(t j , Ỹ∗)

(
Ỹ j+1 − Ỹ j )(Ỹ j+1 − Ỹ j )	)],

where t∗ ∈ (t j , t j+1) and Ỹ∗ := Ỹ j +�(Ỹ j+1− Ỹ j ) for some� ∈ [0, 1]. A repeated
use of (1.5) and (1.3) (in modified form) [cf. also (3.2)] then causes changes to the
proof of Theorem 3.1: no Malliavin calculus is needed any more for the weak Euler
method—as is needed to handle terms (3.9) and (3.29); also, higher derivatives of u
appear, and further computable terms constitute {G̃(φ; τ j+1, Ỹ j , Ỹ j+1

)} j≥0 for (3.1).
5.5.5. In practice, the terms {E�E�E�(·)}���=1,...,15 may be approximated byMonte-Carlomethod;
see Sect. 5 for more details.

The representation of the a posteriori weak error estimator G ≡ {G(φ; τ j+1,

Y j
)}J−1

j=0 in (3.1) involves the bounds (global in time and space) CCC D� (φ) (� = 1, 2, 3;

cf. (1.10)), as well as computable error terms {E�E�E�(Y j )}���, j . The matrix ¯A¯A¯A j+1, which
also arises in the representations of {E�E�E�(Y j )}���=1,...,15 results from the use of the semi-
implicit Euler scheme (1.3).

The proof of Theorem 3.1 consists of several steps: Lemma 3.2 is based on the
identity (1.8) in the introduction, where we represent the weak approximation error
via (1.5). Lemma 3.3 then examines the first expectation on the right-hand side of
(3.3), where only the drift term of (1.3) appears; and in a similar manner, Lemma 3.4
examines the second expectation on the right-hand side of (3.3), where only the dif-
fusion term is involved. The proof of Theorem 3.1 then follows by combining these
lemmata. Note that similar concepts for the investigation of the weak approximation
error with the explicit Euler scheme have been proposed in e.g. [28], which here are
adapted to the implicit scheme (1.3); see also [6], where weak a priori error estimates
are obtained for a time-implicit discretization of SPDE (1.2) with βββ ≡ 0, and Remark
3.2.
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Lemma 3.2 Assume (A1)–(A3). Let {t j }J
j=0 ⊂ [0, T ], with local mesh sizes

{τ j+1}J−1
j=0 , and {Y j }J

j=0 solves (1.3). Then, for every n = 0, . . . , J − 1, we have

∣∣∣E
[
φ(Xtn+1)

]− E
[
φ(Yn+1)

]∣∣∣

≤
n∑

j=0

{∣∣∣∣E
[ ∫ t j+1

t j

〈 ¯A¯A¯A j+1f(Y j ) − f(YYYs) + AYYYs

− A ¯A¯A¯A j+1Y j , Dxu(s,YYYs)
〉
RL ds

]∣∣∣∣

+ 1

2

∣∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
([ ¯A¯A¯A j+1σσσ k(Y j )

[ ¯A¯A¯A j+1σσσ k(Y j )
]	

− σσσ k(YYYs)σσσ
	
k (YYYs)

]
D2
xu(s,YYYs)

)
ds

]∣∣∣∣

}
. (3.3)

Proof Fix n = 0, . . . , J − 1 and consider (1.5), where we replace T by tn+1. Note
that under assumptions (A1)–(A3), the function u ∈ C1,3

([0, tn+1] × R
L ; R

)
with

bounded continuous derivatives w.r.t. the state and continuous derivative w.r.t. the
time, and given by u(t, x) = E

[
φ(Xt,x

tn+1
)
]
is the unique solution of (1.5); see e.g. [15,

p. 366ff.]. Thus, putting x = Yn+1(ω) in the second equation in (1.5) on [0, tn+1]×R
L ,

we immediately conclude that

E
[
φ(Xtn+1)

] = u(0, y) and E
[
φ(Yn+1)

] = E
[
u(tn+1,Yn+1)

]
. (3.4)

Hence, applying (3.4), a first calculation yields (1.8). Since u is the unique solution
of (1.5) on [0, tn+1] × R

L , we use Itô’s formula with u to (1.7) in (1.8) to deduce

E
[
u(t j+1,Y j+1) − u(t j ,Y j )

]

= E

[ ∫ t j+1

t j

∂su(s,YYYs) + 〈− A ¯A¯A¯A j+1Y j + ¯A¯A¯A j+1f(Y j ), Dxu(s,YYYs)
〉
RL

+ 1

2

K∑

k=1

Tr
( ¯A¯A¯A j+1σσσ k(Y j )

[ ¯A¯A¯A j+1σσσ k(Y j )
]	

D2
xu(s,YYYs)

)
ds

]
. (3.5)

Using (1.5) on [0, tn+1] × R
L to eliminate ∂su(s,YYYs) in (3.5) further leads to (1.9).

Finally, combining (1.8) and (1.9) yields the assertion. ��
The next lemma examines the first expectation appearing on the right-hand side of

(1.9).

Lemma 3.3 Suppose the setting in Lemma 3.2. Then we have

∣∣∣∣E
[ ∫ t j+1

t j

〈 ¯A¯A¯A j+1f(Y j ) − f(YYYs) + AYYYs − A ¯A¯A¯A j+1Y j , Dxu(s,YYYs)
〉
RL ds

]∣∣∣∣
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≤
{
3CCC D(φ)

2 ·E1E1E1(Y j ) + CCC D2(φ)

2 ·E2E2E2(Y j ) + CCC D(φ)
2 ·E3E3E3(Y j ) + CCC D(φ)

4 ·E4E4E4(Y j )

+ CCC D2 (φ)

2 ·E5E5E5(Y j )

}
· (τ j+1)2

+
{{

CCC D(φ)CD2f ·
√
E10E10E10(Y j ) +

[
CCC D(φ)CD3f

2 + CCC D2(φ)CD2f

]
·
√
E11E11E11(Y j )

}

·
√

τ j

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j )

}
· (τ j+1)2.5. (3.6)

In the proof of Lemma 3.3, we use Lemma 2.5 to (globally) bound the first and
second derivative of u by CCC D(φ) and CCC D2(φ), respectively. Besides some standard
arguments, we also use Malliavin calculus techniques to validate O(|τ j+1|2) on the
right hand-side of (3.6).

Proof Using the fact that for any v ∈ R
L it holds

¯A¯A¯A j+1v = v − τ j+1A ¯A¯A¯A j+1v,

we obtain in a first calculation

〈 ¯A¯A¯A j+1f(Y j ) − f(YYYs) + AYYYs − A ¯A¯A¯A j+1Y j , Dxu(s,YYYs)
〉
RL

= τ j+1 · 〈A 2 ¯A¯A¯A j+1Y j − A ¯A¯A¯A j+1f(Y j ), Dxu(s,YYYs)
〉
RL

+ 〈AYYYs − A Y j , Dxu(s,YYYs)
〉
RL

+ 〈f(Y j ) − f(YYYs), Dxu(s,YYYs)
〉
RL . (3.7)

We use this identity and Lemma 2.5 to bound the left-hand side of (3.6),

∣∣
∣∣E
[ ∫ t j+1

t j

〈 ¯A¯A¯A j+1f(Y j ) − f(YYYs) + AYYYs − A ¯A¯A¯A j+1Y j , Dxu(s,YYYs)
〉
RLds

]∣∣
∣∣

≤ CCC D(φ) ·E1E1E1(Y j ) · (τ j+1)2 +
∣∣
∣∣E
[ ∫ t j+1

t j

〈
AYYYs − A Y j , Dxu(s,YYYs)

〉
RL ds

]∣∣
∣∣

+
∣
∣∣∣E
[ ∫ t j+1

t j

〈
f(YYYs) − f(Y j ), Dxu(s,YYYs)

〉
RLds

]∣∣∣∣

=: I + II + III. (3.8)

We estimate the terms in (3.8) independently, starting with
Step 1: (Estimation of III) (a) We apply Itô’s formula with { fi ; 1 ≤ i ≤ L} to (1.7)
to get

∣∣∣∣E
[ ∫ t j+1

t j

〈
f(YYYs) − f(Y j ), Dxu(s,YYYs)

〉
RLds

]∣∣∣∣
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=
∣∣∣∣

L∑

i=1

E

[ ∫ t j+1

t j

{
fi (YYYs) − fi (Y j )

}
∂xi u(s,YYYs) ds

]∣∣∣∣

≤
∣∣∣
∣E
[ ∫ t j+1

t j

∫ s

t j

〈
Df(YYYr )

(−A ¯A¯A¯A j+1Y j + ¯A¯A¯A j+1f(Y j )
)
, Dxu(s,YYYs))

〉
RL dr ds

]∣∣∣
∣

+1

2

K∑

k=1

∣∣
∣∣E
[ ∫ t j+1

t j

∫ s

t j

〈
D2f(YYYr ) ¯A¯A¯A j+1σσσ k(Y j ) ¯A¯A¯A j+1σσσ k(Y j ),

Dxu(s,YYYs))
〉
RL dr ds

]∣∣∣
∣+ M1M1M1,

where

M1M1M1 :=
∣∣∣∣

L∑

i=1

K∑

k=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D fi (YYYr ), ¯A¯A¯A j+1σσσ k(Y j ) dβk(r)

〉
RL ds · ∂xi u(s,YYYs)

]∣∣∣∣

:=
∣∣
∣∣

L∑

i=1

M1,i

∣∣
∣∣. (3.9)

We add and substract Df(Y j ) and D2f(Y j ) as integrands in order to get closer to
computable optimal terms. This step leads to the additional terms

K1K1K1 :=
∣∣∣∣E
[ ∫ t j+1

t j

∫ s

t j

〈{
Df(YYYr ) − Df(Y j )

}(−A ¯A¯A¯A j+1Y j

+ ¯A¯A¯A j+1f(Y j )
)
, Dxu(s,YYYs)

〉
RL dr ds

]∣∣
∣∣

and

K2K2K2 :=
K∑

k=1

∣∣∣
∣E
[ ∫ t j+1

t j

∫ s

t j

〈{
D2f(YYYr ) − D2f(Y j )

} ¯A¯A¯A j+1σσσ k(Y j ) ¯A¯A¯A j+1σσσ k(Y j ),

Dxu(s,YYYs)
〉
RL dr ds

]∣∣∣∣,

which will be estimated in (c) below. Thus, we obtain

∣∣
∣∣E
[ ∫ t j+1

t j

〈
f(YYYs) − f(Y j ), Dxu(s,YYYs)

〉
RLds

]∣∣
∣∣

≤
∣
∣∣∣E
[ ∫ t j+1

t j

∫ s

t j

〈
Df(Y j )

(−A ¯A¯A¯A j+1Y j + ¯A¯A¯A j+1f(Y j )
)
, Dxu(s,YYYs)

〉
RL dr ds

]∣∣∣∣

+1

2

K∑

k=1

∣
∣∣∣E
[ ∫ t j+1

t j

∫ s

t j

〈
D2f(Y j ) ¯A¯A¯A j+1σσσ k(Y j ) ¯A¯A¯A j+1σσσ k(Y j ),
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Dxu(s,YYYs)
〉
RL dr ds

]∣∣
∣∣+ M1M1M1 + K1K1K1 + 1

2
K2K2K2.

We apply the Cauchy–Schwarz inequality, Lemma 2.5 (i), and some standard calcu-
lations to obtain

∣∣∣∣E
[ ∫ t j+1

t j

〈
f(YYYs) − f(Y j ), Dxu(s,YYYs)

〉
RLds

]∣∣∣∣

≤
{

CCC D(φ)
2 ·E3E3E3(Y j ) + CCC D(φ)

4 ·E4E4E4(Y j )

}
· (τ j+1)2 + M1M1M1 + K1K1K1 + 1

2
K2K2K2. (3.10)

We estimate the terms M1M1M1, K1K1K1, K2K2K2 independently in parts (b) and (c).
(b)We consider M1M1M1 in (3.9): for its successul treatment, we use tools from Malliavin
calculus. For i = 1, . . . , L , we have

M1,i =
K∑

k=1

L∑

l=1

E

[∫ t j+1

t j

∂xi u(s,YYYs)

∫ s

t j

∂xl fi (YYYr )
( ¯A¯A¯A j+1σσσ k(Y j )

)
ldβk(r) ds

]

(3.11)
Since ∂xi u(s,YYYs) ∈ D

1,2 (see e.g. [1,25]), we apply the Clark–Ocone formula in
Lemma 2.1 to ∂xi u(s,YYYs), to get

∂xi u(s,YYYs) = E
[
∂xi u(s,YYYs)

]+
∫ s

t j

E

[
D(k)

r

(
∂xi u(s,YYYs)

)∣∣Fr

]
dβk(r), (3.12)

where D(k)
r denotes the Malliavin derivative w.r.t. βk(r). Applying (2.1) to D(k)

r(
∂xi u(s,YYYs)

)
further leads to

D(k)
r

(
∂xi u(s,YYYs)

) =
L∑

m=1

∂xm

(
∂xi u(s,YYYs)

)( ¯A¯A¯A j+1σσσ k(Y j )
)

m . (3.13)

Now, inserting (3.12) into (3.11) and using the fact that the expectation of a stochastic
integral w.r.t. the Wiener process is zero, we conclude

M1,i =
K∑

k=1

L∑

l=1

E

[ ∫ t j+1

t j

∫ s

t j

E

[
D(k)

r

(
∂xi u(s,YYYs)

)∣∣Fr

]
dβk(r)

∫ s

t j

∂xl fi (YYYr )
( ¯A¯A¯A j+1σσσ k(Y j )

)
l dβk(r) ds

]

=
K∑

k=1

L∑

l=1

∫ t j+1

t j

E

[ ∫ s

t j

E

[
D(k)

r

(
∂xi u(s,YYYs)

)∣∣Fr

]
∂xl fi (YYYr )

( ¯A¯A¯A j+1σσσ k(Y j )
)

l dr

]
ds,

(3.14)
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where in the last step we used a (generalized) Itô isometry argument; see e.g. [12,
p. 135, Thm. 4.2.3]. An application of the tower property (law of total expectation) in
(3.14), and (3.13) then lead to

M1M1M1 =
∣∣
∣
∣∣
∣

K∑

k=1

L∑

i,�=1

∫ t j+1

t j

∫ s

t j
E

⎡

⎣

⎛

⎝
L∑

m=1

∂xm
(
∂xi u(s,YYYs )

)( ¯A¯A¯A j+1σσσ k (Y j )
)
m

⎞

⎠ ∂xl fi (YYYr )
( ¯A¯A¯A j+1σσσ k (Y j )

)
l

⎤

⎦ dr ds

∣∣
∣
∣∣
∣

=
∣∣
∣
∣∣
∣

K∑

k=1

E

[∫ t j+1

t j

∫ s

t j
Tr
(

D2
xu(s,YYYs )Df(YYYr ) ¯A¯A¯A j+1σσσ k (Y j )

[ ¯A¯A¯A j+1σσσ k (Y j )
]	) dr ds

]∣∣
∣
∣∣
∣
.

In the next step, we add and substract in the second argument Df(Y j ) as well, to then
obtain

M1M1M1 ≤
∣∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

∫ s

t j

Tr
(

D2
xu(s,YYYs )Df(Y j ) ¯A¯A¯A j+1σσσ k (Y j )

[ ¯A¯A¯A j+1σσσ k (Y j )
]	) dr ds

]∣∣∣∣

+ K3K3K3

where

K3K3K3 :=
∣∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

∫ s

t j

Tr
(

D2
xu(s,YYYs)

{
Df(YYYr )

− Df(Y j )
} ¯A¯A¯A j+1σσσ k(Y j )

[ ¯A¯A¯A j+1σσσ k(Y j )
]	) dr ds

]∣∣∣∣.

Using Lemma 2.5 (ii), and Tr(Bvw	) ≤ ‖B‖RL×L ‖v‖RL ‖w‖RL for any B ∈ R
L×L ,

v,w ∈ R
L , consequently lead to

M1M1M1 ≤ CCC D2(φ)

2 ·E5E5E5(Y j ) · (τ j+1)2 + K3K3K3. (3.15)

(c) We show that the terms K1K1K1, K2K2K2, K3K3K3 are the higher order terms in (3.5), which
account for the difference betweenYYY and {Y j } j≥0. Since the treatment of K1K1K1, K2K2K2 and
K3K3K3 is similar, we only consider K1K1K1 in detail. We start with a standard calculation, that
is for s ∈ [t j , t j+1] and r ∈ [t j , s] we have, considering the continuified process (1.7)
and using some standard calculations

E

[
‖YYYr − Y j‖2

RL

]
≤ E10E10E10(Y j ) · (r − t j )

2 +E12E12E12(Y j ) · (r − t j ). (3.16)

Using

‖Df(YYYr ) − Df(Y j )‖L ≤ CD2f · ‖YYYr − Y j‖RL ,
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Cauchy–Schwarz inequality and Lemma 2.5 (i), we get

K1K1K1 ≤ CCC D(φ)CD2f ·
√
E10E10E10(Y j ) ·

(
τ j+1

∫ t j+1

t j

(s − t j )

∫ s

t j

E

[
‖YYYr − Y j‖2

RL

]
dr ds

) 1
2
.

Using (3.16) consequently leads to

K1K1K1 ≤ CCC D(φ)CD2f ·
√
E10E10E10(Y j ) ·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j ) · (τ j+1)2.5. (3.17)

In a similar way, we obtain

K2K2K2 ≤ CCC D(φ)CD3f ·
√
E11E11E11(Y j ) ·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j ) · (τ j+1)2.5 (3.18)

and

K3K3K3 ≤ CCC D2(φ)CD2f ·
√
E11E11E11(Y j ) ·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j ) ·(τ j+1)2.5. (3.19)

Step 2: (Estimation of II) Similar arguments as used for III in Step 1 give the bound

II ≤
{

CCC D(φ)
2 ·E1E1E1(Y j ) + CCC D2 (φ)

2 ·E2E2E2(Y j )

}
· (τ j )2. (3.20)

Step 3: (Finishing the proof) We combine (3.17), (3.18), (3.19) and (3.15) with (3.10)
andplug the resulting expression aswell as (3.20) into (3.8),which proves the assertion.

��
We now bound the last sum on the right hand-side of (3.3).

Lemma 3.4 Suppose the setting in Lemma 3.2. Then we have

∣
∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
([ ¯A¯A¯A j+1σσσ k (Y j )

[ ¯A¯A¯A j+1σσσ k (Y j )
]	 − σσσ k (YYYs )σσσ

	
k (YYYs )

]
D2
xu(s,YYYs )

)
ds

]∣∣∣∣

≤
{

CCC D2 (φ) ·E6E6E6(Y j ) + CCC D2 (φ)

2 ·E7E7E7(Y j ) + CCC D3 (φ) ·E8E8E8(Y j )

+ 2CCC D2 (φ) ·E9E9E9(Y j ) + CCC D2 (φ)C2
Dσσσ ·

[
τ j+1

3 ·E10E10E10(Y j ) + 1
2 ·E12E12E12(Y j )

]}
· (τ j+1)2

+
{{

2CCC D2 (φ)CD2σσσ ·
√
E13E13E13(Y j ) +

[
CCC D2 (φ)CD3σσσ + 2CCC D3 (φ)CD2σσσ

]
·
√
E14E14E14(Y j )

}

·
√

τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j )

}
· (τ j+1)2.5

+ CCC D2 (φ) ·E15E15E15(Y j ) · (τ j+1)3. (3.21)

Proof Similar as in (3.7), we start with a straightforward calculation. For k =
1, . . . , K , we have

¯A¯A¯A j+1σσσ k(Y j )
[ ¯A¯A¯A j+1σσσ k(Y j )

]	 − σσσ k(YYYs)σσσ
	
k (YYYs)
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= σσσ k(Y j )σσσ	
k (Y j ) − τ j+1 · σσσ k(Y j )

[
A ¯A¯A¯A j+1σσσ k(Y j )

]	

− τ j+1 · A ¯A¯A¯A j+1σσσ k(Y j )σσσ	
k (Y j )

+ (τ j+1)2 · A ¯A¯A¯A j+1σσσ k(Y j )
[
A ¯A¯A¯A j+1σσσ k(Y j )

]	 − σσσ k(YYYs)σσσ
	
k (YYYs).

This yields

Tr

([ ¯A¯A¯A j+1σσσ k(Y j )
[ ¯A¯A¯A j+1σσσ k(Y j )

]	 − σσσ k(YYYs)σσσ
	
k (YYYs)

]
D2
xu(s,YYYs)

)

= Tr
([

σσσ k(Y j )σσσ	
k (Y j ) − σσσ k(YYYs)σσσ

	
k (YYYs)

]
D2
xu(s,YYYs)

)

−
(
Tr
(
σσσ k(Y j )

[
A ¯A¯A¯A j+1σσσ k(Y j )

]	
D2
xu(s,YYYs)

)

+ Tr
(
A ¯A¯A¯A j+1σσσ k(Y j )σσσ	

k (Y j )D2
xu(s,YYYs)

))
· τ j+1

+ Tr
(
A ¯A¯A¯A j+1σσσ k(Y j )

[
A ¯A¯A¯A j+1σσσ k(Y j )

]	
D2
xu(s,YYYs)

)
· (τ j+1)2. (3.22)

We set

T1T1T1 :=
∣∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
([

σσσ k(Y j )σσσ	
k (Y j ) − σσσ k(YYYs)σσσ

	
k (YYYs)

]
D2
xu(s,YYYs)

)
ds

]∣∣∣∣

and plug (3.22) into the left-hand side of (3.21) to deduce

∣
∣
∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
([ ¯A¯A¯A j+1σσσ k(Y j )

[ ¯A¯A¯A j+1σσσ k(Y j )
]	 − σσσ k(YYYs)σσσ

	
k (YYYs)

]
D2
xu(s,YYYs)

)
ds

]∣∣
∣∣

≤
∣∣
∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
(
σσσ k(Y j )

[
A ¯A¯A¯A j+1σσσ k(Y j )

]	
D2
xu(s,YYYs)

+ A ¯A¯A¯A j+1σσσ k(Y j )σσσ	
k (Y j )D2

xu(s,YYYs)
)
ds

]∣∣
∣
∣ · τ j+1

+
∣∣
∣∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
(
A ¯A¯A¯A j+1σσσ k(Y j )

[
A ¯A¯A¯A j+1σσσ k(Y j )

]	
D2
xu(s,YYYs)

)
ds

]∣∣
∣∣

· (τ j+1)2 + T1T1T1 =: IV + V + T1T1T1.

Step 1: (Estimation of IV) Some standard calculations and Lemma 2.5 (ii) lead to

IV ≤ 2CCC D2(φ) ·E9E9E9(Y j ) · (τ j+1)2. (3.23)

Step 2: (Estimation of V) Again, standard calculations and Lemma 2.5 (ii), lead to

V ≤ CCC D2(φ) ·E15E15E15(Y j ) · (τ j+1)3. (3.24)
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Step 3: (Estimation of T1T1T1) (a) For k = 1, . . . , K , we add and substract σσσ k(Y j )σσσ k(YYYs)

and use Tr(B) = Tr(B	) for B ∈ R
L×L to obtain

Tr
([

σσσ k(Y j )σσσ	
k (Y j ) − σσσ k(YYYs)σσσ

	
k (YYYs)

]
D2
xu(s,YYYs)

)

= 2 · Tr
([

σσσ k(Y j ) − σσσ k(YYYs)
]
σσσ	

k (Y j )D2
xu(s,YYYs)

)

− Tr
([

σσσ k(YYYs) − σσσ k(Y j )
][

σσσ k(YYYs) − σσσ k(Y j )
]	

D2
xu(s,YYYs)

)
. (3.25)

Plugging (3.25) into T1T1T1 immediately leads to

T1T1T1 ≤ 2 · T1,aT1,aT1,a + T1,bT1,bT1,b, (3.26)

where

T1,aT1,aT1,a :=
∣∣∣∣
∣

K∑

k=1

E

[∫ t j+1

t j

Tr
([

σσσ k(Y j ) − σσσ k(YYYs)
]
σσσ	

k (Y j )D2
xu(s,YYYs)

)
ds

]∣∣∣∣
∣

and

T1,bT1,bT1,b :=
∣
∣∣
∣

K∑

k=1

E

[ ∫ t j+1

t j

Tr
([

σσσ k(YYYs) − σσσ k(Y j )
][

σσσ k(YYYs) − σσσ k(Y j )
]	

D2
xu(s,YYYs)

)
ds

]∣∣∣
∣.

(b)We estimate T1,bT1,bT1,b with the help of Lemma 2.5 (ii),

T1,bT1,bT1,b ≤ CCC D2(φ) · E

[∫ t j+1

t j

K∑

k=1

‖σσσ k(YYYs) − σσσ k(Y j )‖2
RL ds

]

.

Assumption (A2) and (3.16) then lead to

T1,bT1,bT1,b ≤ CCC D2(φ)C2
Dσσσ ·

{
τ j+1

3 ·E10E10E10(Y j ) + 1
2 ·E12E12E12(Y j )

}
· (τ j+1)2. (3.27)

(c)Next, we consider the expression T1,aT1,aT1,a . We apply Itô’s formula with {σ (i)
k ; 1 ≤ k ≤

K , 1 ≤ i ≤ L} to (1.7) and use standard arguments to get

T1,aT1,aT1,a =
∣∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

L∑

i=1

〈
Dx∂xi u(s,YYYs),σσσ k(Y j )

〉
RL

{
σ

(i)
k (YYYs) − σ

(i)
k (Y j )

}
ds

]∣∣∣∣

≤ T1,a,1T1,a,1T1,a,1 + T1,a,2T1,a,2T1,a,2 + M2M2M2, (3.28)

123



An adaptive time-stepping method based on a posteriori... 445

where

T1,a,1T1,a,1T1,a,1 :=
∣
∣∣∣

K∑

k=1

E

[ ∫ t j+1

t j

L∑

i=1

〈
Dx∂xi u(s,YYYs),σσσ k(Y j )

〉
RL

·
∫ s

t j

〈 ¯A¯A¯A j+1f(Y j ) − A ¯A¯A¯A j+1Y j , Dσ
(i)
k (YYYr )

〉
RL dr ds

]∣∣∣
∣

=
∣∣
∣∣

K∑

k=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D2
xu(s,YYYs)σσσ k(Y j ),

Dσσσ k(YYYr )
(
A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )

)〉
RL dr ds

]∣∣∣
∣,

T1,a,2T1,a,2T1,a,2 := 1

2

∣∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

L∑

i=1

〈
Dx∂xi u(s,YYYs),σσσ k(Y j )

〉
RL

·
∫ s

t j

Tr
( ¯A¯A¯A j+1σσσ l(Y j )

[ ¯A¯A¯A j+1σσσ l(Y j )
]	

D2σ
(i)
k (YYYr )

)
dr ds

]∣∣∣∣

= 1

2

∣∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D2
xu(s,YYYs)σσσ k(Y j ),

D2σσσ k(YYYr ) ¯A¯A¯A j+1σσσ l(Y j ) ¯A¯A¯A j+1σσσ l(Y j )
〉
RL dr ds

]∣∣
∣∣

and

M2M2M2 :=
∣∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

L∑

i=1

〈
Dx∂xi u(s,YYYs),σσσ k(Y j )

〉
RL

∫ s

t j

〈
Dσ

(i)
k (YYYr ), ¯A¯A¯A j+1σσσ l(Y j ) dβl(r)

〉
RL ds

]∣∣
∣∣

=
∣
∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D2
xu(s,YYYs)σσσ k(Y j ),

Dσσσ k(YYYr ) ¯A¯A¯A j+1σσσ l(Y j ) dβl(r)
〉
RL ds

]∣∣∣
∣. (3.29)

Almost the same arguments as we used for the treatment of (3.10) in Lemma 3.3, that
is generating additional higher order terms to get closer to computable terms gives

T1,a,1T1,a,1T1,a,1 ≤ CCC D2 (φ)

2 ·E6E6E6(Y j ) · (τ j+1)2 + K4K4K4 (3.30)
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and

T1,a,2T1,a,2T1,a,2 ≤ CCC D2 (φ)

4 ·E7E7E7(Y j ) · (τ j+1)2 + K5K5K5, (3.31)

where

K4K4K4 :=
∣∣∣
∣

K∑

k=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D2
xu(s,YYYs)σσσ k(Y j ),

(
Dσσσ k(YYYr ) − Dσσσ k(Y j )

)(
A ¯A¯A¯A j+1Y j − ¯A¯A¯A j+1f(Y j )

)〉
RL dr ds

]∣∣∣∣

and

K5K5K5 := 1

2

∣∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

〈
D2
xu(s,YYYs)σσσ k(Y j ),

(
D2σσσ k(YYYr ) − D2σσσ k(Y j )

) ¯A¯A¯A j+1σσσ l(Y j ) ¯A¯A¯A j+1σσσ l(Y j )
〉
RL dr ds

]∣∣∣∣

are higher order terms.
(d) Next, we consider the expression M2M2M2. Here, our approach is very similar to that in
Lemma 3.3, where we used tools fromMalliavin calculus for an appropriate treatment
of M1M1M1, and therefore skip most of the details here. We obtain

M2M2M2 =
∣∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

Tr
(

D3
xu(s,YYYs )σσσ k(Y j )Dσσσ k(YYYr ) ¯A¯A¯A j+1σσσ l (Y j )

[ ¯A¯A¯A j+1σσσ l (Y j )
]	)drds

]∣∣∣∣

≤
∣∣∣
∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

Tr
(

D3
xu(s,YYYs )σσσ k (Y j )Dσσσ k(Y j ) ¯A¯A¯A j+1σσσ l (Y j )

[ ¯A¯A¯A j+1σσσ l (Y j )
]	)drds

]∣∣∣
∣

+ K6K6K6,

where

K6K6K6 :=
∣
∣∣∣

K∑

k,l=1

E

[ ∫ t j+1

t j

∫ s

t j

Tr
(

D3
xu(s,YYYs)σσσ k(Y j ){Dσσσ k(YYYr )

− Dσσσ k(Y j )} ¯A¯A¯A j+1σσσ l(Y j )
[ ¯A¯A¯A j+1σσσ l(Y j )

]	)drds

]∣∣∣
∣

is again an additional higher order term, which results from adding and substracting
Dσσσ k(Y j ), k = 1, . . . , K , in order to obtain an almost fully computable leading order
term.

Similar calculations as we used before and using Lemma 2.5 (iii), yields

M2M2M2 ≤ CCC D3 (φ)

2 ·E8E8E8(Y j ) · (τ j+1)2 + K6K6K6. (3.32)

123



An adaptive time-stepping method based on a posteriori... 447

(e) Hence, plugging (3.30), (3.31) and (3.32) into (3.28) yields

T1,aT1,aT1,a ≤
{

CCC D2 (φ)

2 ·E6E6E6(Y j ) + CCC D2 (φ)

4 ·E7E7E7(Y j ) + CCC D3 (φ)

2 ·E8E8E8(Y j )

}

· (τ j+1)2 + K4K4K4 + K5K5K5 + K6K6K6. (3.33)

(f) Plugging further (3.27) and (3.33) into (3.26) yields

T1T1T1 ≤
{

CCC D2(φ) ·E6E6E6(Y j ) + CCC D2 (φ)

2 ·E7E7E7(Y j ) + CCC D3(φ) ·E8E8E8(Y j )

+ CCC D2(φ)C2
Dσσσ ·

{
τ j+1

3 ·E10E10E10(Y j ) + 1
2 ·E12E12E12(Y j )

}}
· (τ j+1)2

+ 2K4K4K4 + 2K5K5K5 + 2K6K6K6. (3.34)

(g) It remains to examine the terms K4K4K4, K5K5K5 and K6K6K6 and to show that these terms are
indeed higher order terms. Again, a similar treatment as we did for the higher order
terms K1K1K1, K2K2K2, K3K3K3 in Lemma 3.3 yields

K4K4K4 ≤ CCC D2(φ)CD2σσσ ·
√
E13E13E13(Y j ) ·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j ) · (τ j+1)2.5,

(3.35)

K5K5K5 ≤ CCC D2 (φ)CD3σσσ
2 ·

√
E14E14E14(Y j ) ·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j ) · (τ j+1)2.5 (3.36)

and

K6K6K6 ≤ CCC D3(φ)CD2σσσ ·
√
E14E14E14(Y j )·

√
τ j+1

15 ·E10E10E10(Y j ) + 1
8 ·E12E12E12(Y j )·(τ j+1)2.5. (3.37)

Step4: (Finishing the proof)Wecombine (3.35), (3.36) and (3.37)with (3.34), and then
combine the resulting expression with (3.23) and (3.24), which proves the assertion.

��
Next, we show convergence with optimal weak order O(τ ) for the a posteriori

error estimator in (3.1) on a mesh with maximum mesh size τ > 0 with the help of
Lemma2.6—andhence of theweak error of {Y j }J

j=0 from (1.3) thanks toTheorem3.1.

Theorem 3.5 Assume (A1)–(A3). Let {Y j }J
j=0 solve (1.3) on a mesh {t j }J

j=0 ⊂ [0, T ]
with local mesh sizes {τ j+1}J−1

j=0 and maximum mesh size τ = max j τ j+1. Then, there
exists CCC ≡ CCC(φ) > 0 independent of L, such that

J−1∑

j=0

τ j+1G
(
φ; τ j+1,Y j ) ≤ CCC · τ.
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Remark 3.2 1.1.1. The work [7] derives a weak a priori error estimate for the linear
stochastic heat equation with additive noise, where the analysis exploits the repre-
sentation formula for the mild solution, and a transformation of it to another process
which solves a further SPDE without drift term and additive noise. In contrast, the
weak a priori error analysis in [6] for SPDE (1.2) with βββ = 0 requires Malliavin
calculus to efficiently estimate additionally appearing stochastic integral terms due to
the nonlinearities F and�—which are of similar type as M1M1M1 in (3.9) and M2M2M2 in (3.29)
appearing here. The a posteriori error analysis to verify Theorem 3.1 with estimators
{G(φ; τ j+1,Y j

)} j≥0 also exploits Malliavin calculus, and eventually enables Theo-
rem 3.5. We remark that the tools from Malliavin calculus used here slightly differ
from those in [6]: while [6] utilizes an integration by parts formula (cf. [6, Lemma
2.1]), we are making use of the Clark–Ocone formula (cf. Lemma 2.1).
2.2.2.The work [6] uses less regular initial data, in particular, and exploits the regularizing
effect of the involved semigroup. In this work, we assume (A3) to verify Theorem 3.5;
however, we believe a corresponding result to hold for less ‘regular’ initial data, by
using a modification of Lemma 2.6 that involves temporal weights in the functional to
handle less regular initial data, and mimic the regularizing effect in the present context
of arguments.

Proof We independently bound {E�E�E�(Y j )}���=1,...,15, j=0,...,J−1 in G ≡ {G(
φ; τ j+1,Y j

)}J−1
j=0 in (3.1) with the help of Lemma 2.6

(a) Second moment bounds for E�E�E�(Y j ), ��� = 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, j =
0, . . . , J − 1: We show for � = 0, 1, 2 that

(i) max
j=0,...,J−1

E
[‖A � ¯A¯A¯A j+1Y j‖2

RL

] ≤ CCC (�)
1,1,

(ii) max
j=0,...,J−1

E
[‖A � ¯A¯A¯A j+1f(Y j )‖2

RL

] ≤ 2
(
C (�)
f

)2(1 + CCC (�)
1,1

)
,

(iii) max
j=0,...,J−1

K∑

k=1

E
[‖A � ¯A¯A¯A j+1σσσ k(Y j )‖2

RL

] ≤ 2K
(
C (�)

σσσ )2
(
1 + CCC (�)

1,1

)
,

(iv) max
j=0,...,J−1

K∑

k=1

E
[‖σσσ k(Y j )‖2

RL

] ≤ 2K
(
C (0)

σσσ )2
(
1 + CCC (0)

1,2

)
,

where CCC (�)
1,1 > 0, � = 0, 1, 2, are the constants from Lemma 2.6, and ¯A¯A¯A j+1 =

(
I + τ j+1A

)−1.
Let � = 0, 1, 2 and j = 0, . . . , J −1. Since ‖ ¯A¯A¯A j+1‖RL×L ≤ 1 for every τ j+1 > 0,

we immediately obtain

‖A � ¯A¯A¯A j+1Y j‖2
RL ≤ ‖A �Y j‖2

RL · ‖ ¯A¯A¯A j+1‖RL×L ≤ ‖A �Y j‖2
RL .

Hence, taking the expectation and using Lemma 2.6, assertion (i) follows. In almost
the same way, on using (A1) (b), we obtain

‖A � ¯A¯A¯A j+1f(Y j )‖2
RL ≤ ‖A �f(Y j )‖2

RL ≤ 2
(
C (�)
f

)2(1 + ‖A �Y j‖2
RL

)
.
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Again, taking the expectation and applying Lemma 2.6, assertion (ii) follows. State-
ment (iii) follows by the same argumentation and (iv) immediately follows from (A2)
and Lemma 2.6.

The bounds (i)–(iv) now yield these for E�E�E�(Y j ), ��� = 1, 2, 3, 4, 5, 6, 9, 10, 12, 15,
j = 0, . . . , J − 1.
(b) Fourth moment bounds for E�E�E�(Y j ), ��� = 7, 8, 11, 13, 14, j = 0, . . . , J − 1:

Similar as in (a), by Lemma 2.6, we obtain

(v) max
j=0,...,J−1

E
[‖A ¯A¯A¯A j+1Y j‖4

RL

] ≤ CCC (1)
1,2,

(vi) max
j=0,...,J−1

E
[‖A ¯A¯A¯A j+1f(Y j )‖4

RL

] ≤ 8
(
C (0)
f

)4(1 + CCC (0)
1,2

)
,

(vii) max
j=0,...,J−1

K∑

k=1

E
[‖ ¯A¯A¯A j+1σσσ k(Y j )‖4

RL

] ≤ 8K
(
C (0)

σσσ )4
(
1 + CCC (0)

1,2

)
,

(viii) max
j=0,...,J−1

K∑

k=1

E
[‖σσσ k(Y j )‖4

RL

] ≤ 8K
(
C (0)

σσσ )4
(
1 + CCC (0)

1,2

)
,

where CCC (�)
1,2 > 0, � = 0, 1, are the constants from Lemma 2.6. Again, the bounds

(v)–(viii) yield these for E�E�E�(Y j ), ��� = 7, 8, 11, 13, 14, j = 0, . . . , J − 1.
(c): By means of (a) and (b), we can find a constant C̃̃C̃C ≥ 1 independent of L and

j such that for all j ≥ 0

G
(
φ; τ j+1,Y j ) ≤ C̃̃C̃C · τ j+1. (3.38)

Hence, plugging (3.38) into (3.1), using τ j+1 ≤ τ for every j ≥ 0, and setting
CCC := C̃̃C̃C · T yields the assertion. ��

In the next section, we base an adaptive method on the a posteriori error estimate
(3.1) to automatically select local step sizes. For every j ≥ 0,we show that the adaptive
method selects a new time step τ j+1 within finitely many steps, and that the algorithm
reaches the terminal time T > 0 after finitely many steps as well (global termination).

4 Weak adaptive approximation via (1.1): algorithm and convergence

By Theorem 3.1, the weak error caused by scheme (1.3) on a given partition {t j }J
j=0 ⊂

[0, T ] is controllable via the a posteriori error estimate (1.4). In this section, we use
this result for an adaptive method that automatically steers local mesh size selection.
For this purpose, we check if the criterion G

(
φ; τ j+1,Y j

) ≤ Tol
T is met or not: in

the first case, τ j+1 is admissible, bounding the new local error in such a way that
the overall error will be bounded by Tol through Theorem 3.1; in the latter case,

τ j+1 will be replaced by the refined mesh size τ̃ j+1 := τ j+1

2 , and the criterion will
be checked again. The following algorithm contains a refinement step (1) to generate
{τ j+1,�}�≥0 and—if G

(
φ; τ j+1,�,Y j

)
is ‘too small’—a final coarsening step (3) in

the loop of generating the subsequent iterate from (1.3), after accepting the possible
underestimation of G

(
φ; τ j+1,�,Y j

)
.
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Algorithm 4.1 Fix Tol > 0 and τ 1 ≥ Tol
T . Let (τ j ,Y j ) be given for some j ≥ 1.

Define τ j+1,0 := τ j .—For � = 0, 1, 2, ... compute G
(
φ; τ j+1,�,Y j

)
and decide:

(1) If G
(
φ; τ j+1,�,Y j

)
> Tol

T , set τ j+1,�+1 := τ j+1,�

2 , and � ↪→ � + 1.
(2) If Tol

2T ≤ G
(
φ; τ j+1,�,Y j

) ≤ Tol
T , set τ j+1 := τ j+1,�, t j+1 := t j + τ j+1,

compute � j+1,�βk := βk
(
t j + τ j+1,�

) − βk(t j ), for k = 1, . . . , K , then solve
(1.3) for Y j+1, and j ↪→ j + 1.

(3) If G
(
φ; τ j+1,�,Y j

)
< Tol

2T , set τ j+1 := τ j+1,�, t j+1 := t j +τ j+1, compute Y j+1

via (1.3) with τ j+1 and {� j+1,�βk, k = 1, . . . , K }. Then set τ j+1 := 2τ j+1 and
j ↪→ j + 1.

Stop, if t j ≥ T for some j and set J := j .

This sequence of refinement steps, which is succeeded by possibly one coarsening
step prevents infinite loops of refinement and coarsening, and enables a flexible re-
meshing to capture local dynamics. The following theorem validates termination of
the adaptive method, consisting of (1.3) and Algorithm 4.1.

Theorem 4.2 LetTol > 0. Suppose (A1)–(A3). Then, the adaptive method consisting
of (1.3) and Algorithm 4.1 generates each of the local step sizes of {τ j+1} j≥0 after
O(log(Tol−1)

)
many iterations and the algorithm reaches the terminal time T > 0

within J = O(Tol−1
)

time steps. Furthermore, admissible tuple {(τ j+1,Y j+1)}J−1
j=0

satisfy

max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]− E
[
φ(Y j )

]∣∣∣ ≤ Tol. (4.1)

Remark 4.1 1. An adaptive method based on a strong a posteriori error estimate to
steer automatic spatio-temporal remeshing for a discretization of (1.2) with additive
noise is proposed in [21], for which termination of an iterative strategy to select new
local mesh parameters for a fixed index j ∈ N\{0} is shown. [21] conceptionally
follows ideas in [4] for the heat equation (i.e., �k ≡ 0 (1 ≤ k ≤ K ) in (1.2)),
where a local approximation argument in step j ∈ N\{0} settles the existence of a
value τ

j+1∗ > 0, s.t. values τ j+1,� ≤ τ
j+1∗ meet the stopping criterion; this argument,

however, does not exclude selected τ
j+1∗ in [4,21] to crucially depend on j , leaving

open global termination. This deficiency has been overcome in [19] for a modified
version of the adaptive algorithm in [4],which, in particular, exploits a discrete stability
property of the underlying discretization to herewith establish inf j τ

j+1∗ ≥ τ∗ > 0.—
We here proceed analogously to settle convergence of Algorithm 4.1 with the help of
Lemma 2.6.
2.2.2. Automatic mesh refinement in [23] is based on the computable leading-order term
in the weak a posteriori estimator (1.6) that has been derived in [27], provided that
the involved drift and diffusion functions are bounded. For a sufficiently fine initial
mesh IJ 0 := {t j }J 0

j=0 ⊂ [0, T ] and given IJ � , the new mesh IJ �+1 ⊃ IJ � refines those

intervals [t j� , t( j+1)�], where ρ( j+1)� |τ ( j+1)� |2 overshoots Tol
J � . Note that this iterative

strategy requires the global re-computation of {ρ j�} j� for every � ≥ 0: termination

after �∗ < ∞ iterations, with J �∗ = O(Tol−1) is then shown in [23].
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Proof (a) Termination for each j ≥ 0: Fix j ≥ 0, and recall (3.38) in the proof
of Theorem 3.5. Since the constant C̃̃C̃C ≥ 1 appearing there does not depend on j ,

we generate a finite sequence {τ j+1,�}�
∗
j+1

�=0 with τ j+1,� = τ j+1,0

2� , � = 0, . . . , �∗
j+1,

according to the refinement mechanism (1) of Algorithm 4.1, until either (2) or (3)

is met. In view of (3.38), we find out that � =
⌈
log

(
τ j+1,0C̃̃C̃CT

Tol

)
/log(2)

⌉
is the smallest

natural number such that

G
(
φ; τ j+1,�,Y j ) ≤ C̃̃C̃C · τ j+1,� = C̃̃C̃C · τ j+1,0

2�

!≤ Tol

T
.

Consequently, we have

0 ≤ �∗
j+1 ≤

⎡

⎢⎢⎢

log
(

τ j+1,0C̃̃C̃CT
Tol

)

log(2)

⎤

⎥⎥⎥
, (4.2)

which yields a maximum of O(log(Tol−1)
)
(refinement) steps to accept the local

step size τ j+1 := τ
j+1,�∗

j+1 = τ j+1,0

2
�∗j+1

.

(b) Global termination rate: We show by induction that

τ j+1 ≥ Tol

2C̃̃C̃CT
( j ≥ 0),

where C̃̃C̃C ≥ 1 is the constant in (3.38). In particular, this means that T is reached within
J = O(Tol−1

)
many time steps.

The base case follows by the choice of the initial mesh size τ 1 ≥ Tol
T . Now

suppose that we have generated Y j with step size τ j ≥ Tol
2C̃̃C̃CT

; see also Fig. 2. In order

to successfully compute Y j+1, we set τ j+1,0 := τ j (if (2) occurred in the generation
of τ j ), or τ j+1,0 := 2τ j (if (3) occurred in the generation of τ j ). In both cases,

τ j+1,0 ≥ Tol
2C̃̃C̃CT

. Via a), we generate a finite sequence {τ j+1,�}�
∗
j+1

�=0 until either (2) or

(3) is met, and then generate Y j+1 with step size τ j+1 := τ
j+1,�∗

j+1 = τ j+1,0

2
�∗j+1

. Since

�x� < 1 + x , x ∈ R, we conclude by means of (4.2)

τ j+1 := τ
j+1,�∗

j+1 = τ j+1,0

2�∗
j+1

≥ Tol

2C̃̃C̃CT
.

(c) Estimate (4.1) immediately follows from (3.1) and part (2) of Algorithm 4.1. ��

5 Computational experiments

The simulations of iterates {Y j } j≥0 from (1.3) use independent standard normally
distributed pseudo-random numbers (‘randn’) in MATLAB (version: 2017a). By Kol-
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mogorov’s extension theorem, see e.g. [26, p. 11, Thm. 2.1.5], a family of probability
measures {NNN 0,tI; 0 ≤ t ≤ T } on (RK ,B(RK )) yields the existence of a (fil-
tered) probability space (�,F , {Ft }t≥0, P) andWiener processes {βk(t); t ∈ [0, T ]},
k = 1, . . . , K on it; we consider them to be the ones with which (1.1) and (1.3) are
defined.

Let Tol > 0. We use (1.3) in combination with the adaptive Algorithm 4.1 for
different examples, which result from afinite element spatial discretization of an SPDE
(1.2). We show how the involved a posteriori error estimate (1.4) serves to estimate
related weak errors, and that adaptive remeshing substantially reduces the amount
of needed steps to overcome the interval [0, T ]. For the sake of computations, we
therefore use sufficiently large M-samples to suppress additional statistical errors in
theMonte-Carlomethod due to approximating appearing expectationsE[·] byEM[·]—
as in (1.4), which then takes the form

max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]− EM
[
φ(Y j )

]∣∣∣ ≤ 2Tol, (5.1)

and which now holds with high probability. In order to obtain (5.1), we first add and
substract E

[
φ(Y j )

]
and use Theorem 3.1, which yields

max
0≤ j≤J

∣
∣∣E
[
φ(Xt j )

]− EM
[
φ(Y j )

]∣∣∣ ≤
J−1∑

j=0

τ j+1G
(
φ; τ j+1,Y j )

+ max
0≤ j≤J

∣
∣∣E
[
φ(Y j )

]− EM
[
φ(Y j )

]∣∣∣.

Replacing all arising expectations EEE���(·), ��� = 1, . . . , 15 in the representation of the
error estimatorG by their corresponding empirical meansEEE(M)

���
(·) and writingG(M) for

the related (empirical) error estimator further leads to

max
0≤ j≤J

∣∣∣E
[
φ(Xt j )

]− EM
[
φ(Y j )

]∣∣∣ ≤
J−1∑

j=0

τ j+1G(M)
(
φ; τ j+1,Y j )

+ ERRG(M) + ERRφ(M), (5.2)

where ERRG(M), ERRφ(M) denote the arising statistical errors resulting from the
approximation of the error estimatorG and from the approximation of the expectation
of the test function φ. Algorithm 4.1 controls the first expression on the right-hand
side of (5.2). In order to control the remaining statistical errors, i.e., to ensure that
ERRG(M) + ERRφ(M) ≤ Tol holds with high probability, and to conclude (5.1),
one can (asymptotically) determine a number M ≡ M(Tol) ∈ N\{0} of Monte-Carlo
samples by means of concentration inequalities, the central limit theorem or other
(non-)asymptotic controls; we refer to [12] for more details in this direction—In the
computational studies reported below, wemostly chose M = 104 for which theMonte-
Carlo simulations performed stably.
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5.1 The one-dimensional stochastic heat equation in Example 1.1

Let T > 0, K ∈ N\{0} and DDD = (0, 1) ⊂ R. We consider the SPDE (1.2) with
ε = 1, βββ ≡ 000, and F, � ∈ C3

(
R
) ∩ H

1
0(DDD), as well as homogeneous Dirichlet

boundary conditions, and y0 ∈ H
1
0(DDD). These assumptions ensure the existence of a

unique strong solution of (1.2); see e.g. [5, p. 197ff.]. We use standard notation, as
e.g. L

2 ≡ L
2(DDD) and H

1
0 ≡ H

1
0(DDD) below; see e.g. [9, p. 244 ff.].

Let L ∈ N\{0}. We consider a (uniform) triangulation of the domainDDD such that

0 = x0<x1 < · · · < xL < xL+1=1, with h≡x� − x�−1 = 1
L+1 (�=1, . . . , L).

Following [14], we use a finite element method based on piecewise affine functions
to spatially discretize SPDE (1.2) with ε = 1 and βββ ≡ 000. In combination with ‘mass
lumping’, we obtain the following L−dimensional SDE system:

{
dXh

t = (−A Xh
t + f(Xh

t )
)
dt +∑K

k=1 σσσ k(Xh
t )dβk(t) for all t ∈ [0, T ],

Xh
0 = (y0(x1), . . . , y0(xL)

)	 ∈ R
L ,

(5.3)

where

Xh
t := (Xh

t (x1), . . . , Xh
t (xL)

)	 ∈ R
L ,

f(Xh
t ) := (F(Xh

t (x1)
)
, . . . , F

(
Xh

t (xL)
)	 ∈ R

L ,

σσσ k(Xh
t ) := (�k

(
Xh

t (x1)
)
, . . . , �k

(
Xh

t (xL)
))	 ∈ R

L ,

A := 1

h2
tridiag[−1, 2,−1] ∈ R

L×L .

Example 1.1 discusses computational studies for (5.3) via (1.3) in combinationwith
adaptive Algorithm 4.1. We choose φ(x) = √

h‖x‖RL to approximate the L
2−norm

of (the finite element approximation of) {Xt , t ∈ [0, T ]} from SPDE (1.2). The related
constants to compute G ≡ {G(φ; τ j+1,Y j

)} j≥0 below (3.1) are:

λA ≈ π2, CDf = π
5 , CD2f = π2

5 , CD3f = π3

5 , CDσσσ = 137
120 ,

CD2σσσ = 0.158, CD3σσσ = 0.518,

CCC D(φ) = √
h, CCC D2(φ) = 0, CCC D3(φ) = 0

(
ε1 = ε2 = ε3 = 6

)
.

Figure 3 below displays the contributions of the different EEE(M)
���

(·), ��� ∈ {1, . . . , 15}\
{7, 13, 14} in the a posteriori error estimator G, which steers the step size selection
of the adaptive Algorithm 4.1. Note that G consists of leading order terms E�E�E�(·),
��� ∈ {1, 2, 3, 4, 5, 6, 8, 9, 12}, as well as ‘higher order terms’ E�E�E�(·), ��� ∈ {10, 11, 15}.
Mainly responsible for mesh adjustments are the leading order terms—in particu-
lar E1E1E1(·), which addresses higher derivatives (up to order 4) of the (approximated)
solution {Xt , t ∈ [0, T ]} of (1.2), starting with x �→ sin(πx) as initial function.

123



454 F. Merle, A. Prohl

(a) (b) (c)

Fig. 3 (Error indicators of the weak a posteriori error estimator G(M) of Example 1.1 for Tol = 0.1,

M = 104, T = 1) a Semi-Log-Plot of the corresponding computable error indicators t j �→ EEE(M)
���

(Y j ),
��� = 1, 3, 10, which only involve the drift term. b Semi-Log-Plot of the corresponding computable error

indicators t j �→ EEE(M)
���

(Y j ), ��� = 2, 8, 9, 11, 12, 15, which only involve the diffusion term. c Semi-Log-Plot

of the corresponding computable error indicators t j �→ EEE(M)
���

(Y j ), ��� = 4, 5, 6, where both the drift and
diffusion are involved

Fig. 4 (Adaptive vs. uniform: Influence of noise parameter K on the total amount of time steps within
Example 1.1 for Tol = 0.1, M = 5000, T = 1) Semi-Log-Plot of the total amount of time steps for unifom
(blue line) vs. adaptive (red line) (color figure online)

Heuristically, it might therefore be justified to neglect ‘higher order terms’ in order to
save computational effort, and only take into account leading order terms in G.

For different noise parameters K ∈ {0, 1, 3, 5, 6, 8, 10}, Fig. 4 compares the total
amount of time steps needed for adaptive and uniform meshes to perform equally
well, indicating that: the larger K the more improved performance of the adaptive
Algorithm 4.1 compared to scheme (1.3) with uniform time steps may be expected.
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Table 1 Different Setups for Example 5.1

L T y0(x) K �k
(
Xt (x)

)

Setup A 50 1 sin(πx) 1 0

Setup B 50 1 sin(πx) 5 1
2 Xt

Setup C 50 1 sin(3πx) 5 1
K+1−k sin(πkx)

(
Xt + 0.2

)

5.2 A convection dominated (stochastic) problem

Example 5.1 Consider (1.2) on DDD = (0, 1), T > 0, with ε > 0, βββ ∈ R, F ≡ 0 and
homogeneous Dirichlet boundary conditions. After a finite element discretization,
using ‘mass lumping’, and h = 1

L+1 for some L ∈ N\{0}, we obtain
{
dXh

t = −A Xh
t dt +∑K

k=1 σσσ k(Xh
t )dβk(t) for all t ∈ [0, T ],

Xh
0 = (y0(x1), . . . , y0(xL)

)	 ∈ R
L ,

where σσσ k(Xh
t ) as in (5.3), and

A := ε

h2
tridiag[−1, 2,−1] − βββ

2h
tridiag[−1, 0, 1] ∈ R

L×L .

We study three different cases given in Table 1, where we, among other things,
discuss the influence of varying ε on the total amount of adaptive versus uniform time
steps; see Fig. 5. Setup A deals with a purely deterministic version of Example 5.1,

Fig. 5 (Adaptive vs. uniform: Influence of parameter ε on the total amount of time steps within Setup B
for Tol = 0.1, M = 5000,βββ = 1, T = 1) Semi-Log-Plot of the total amount of time steps for unifom (blue
line) vs. adaptive (red line) (color figure online)
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(a) (b)

(c) (d)

Fig. 6 (Setup A with Tol = 0.1, βββ = 2, ε = 2h and φ(x) = √
h‖x‖

RL ) a Contour plot of the solution. b
Plot of the corresponding adaptive time step size. c Error for uniform (blue line) vs. adaptive (red line) time
meshes via Algorithm 4.1. d Plot of the a posteriori weak error estimator G

(
φ; τ j+1,Y j ) (color figure

online)

(a) (b) (c)

Fig. 7 (Setup A with Tol = 0.1, βββ = 2, ε = 2h and φ(x) = ‖x‖∞) a Plot of the corresponding adaptive
time step size. b Error for uniform (blue line) vs. adaptive (red line) time meshes via Algorithm 4.1. c Plot
of the a posteriori weak error estimator G

(
φ; τ j+1,Y j ) (color figure online)

i.e., no diffusion is involved. In this context, for fixed βββ and ε, we discuss the role of
the chosen test function φ in the adaptive method; see Figs. 6 and 7 below. Then, for a
fixed test function, Setup B studies the impact of different choices of βββ, ε on adaptive
meshing; see Figs. 8, 9 and 10 below. Setup C investigates Example 5.1 for a different
initial function and a different type of multiplicative noise, but with fixed βββ, ε and φ;
see Fig. 11 below.
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(a)

(c) (d)

(b)

Fig. 8 (Setup B with Tol = 0.1, M = 104, βββ = 1, ε = 2h and φ(x) = √
h‖x‖

RL ) a Contour plot of the
solution for a single realization ω. b Plot of the corresponding adaptive time step size. c Error for uniform
(blue line) vs. adaptive (red line) time meshes via Algorithm 4.1. d Plot of the a posteriori weak error
estimator G(M)

(
φ; τ j+1,Y j ) (color figure online)
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(a)

(c) (d)

(b)

Fig. 9 (Setup B with Tol = 0.1, M = 104, βββ = 1, ε = 5h and φ(x) = √
h‖x‖

RL ) a Contour plot of the
solution for a single realization ω. b Plot of the corresponding adaptive time step size. c Error for uniform
(blue line) vs. adaptive (red line) time meshes via Algorithm 4.1. d Plot of the a posteriori weak error
estimator G(M)

(
φ; τ j+1,Y j ) (color figure online)
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(a)

(c) (d)

(b)

Fig. 10 (Setup B with Tol = 0.1, M = 104, βββ = −2, ε = 2h and φ(x) = √
h‖x‖

RL ) a Contour plot
of the solution for a single realization ω. b Plot of the corresponding adaptive time step size. c Error for
uniform (blue line) vs. adaptive (red line) time meshes via Algorithm 4.1. d Plot of the a posteriori weak
error estimator G(M)

(
φ; τ j+1,Y j ) (color figure online)
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(a) (b)

(c) (d)

Fig. 11 (Setup C with Tol = 0.1, M = 104, β = 1, ε = 2h and φ(x) = √
h‖x‖

RL ) a Contour plot
of the solution for a single realization ω. b Plot of the corresponding adaptive time step size. c Error for
uniform (blue line) vs. adaptive (red line) time meshes via Algorithm 4.1. d Plot of the a posteriori weak
error estimator G(M)

(
φ; τ j+1,Y j ) (color figure online)

As we can see in Figs. 6 and 7, different choices of test functions might lead to huge
changes in the amount of time steps generated via Algorithm 4.1. In Figs. 6 and 7 we
choose φ(x) = √

h‖x‖RL (resp. φ(x) = ‖x‖∞ := max�=1,...,L |x�|) to approximate
the L

2−norm (resp. the L
∞−norm) of (the finite element approximation of) {Xt ,

t ∈ [0, T ]}, from SPDE (1.2). Although both figures illustrate similar behaviours of
time step size, error and a posteriori error plots, the amount of time steps needed to
stay below the given error threshold Tol in Fig. 7 is larger compared to Fig. 6, which
is due to the different scalings of the considered norms.

Different choices of βββ and ε affect the amount of total steps generated via Algo-
rithm 4.1. A larger size of βββ increases the convection effect and leads to more time
steps; see Figs. 10 and 6 . In turn, larger values of ε reduce the transport, which requires
fewer time steps, seeFig. 9. For different parameters ε ∈ {h, 2h, 5h, 15h, 30h, 1}, Fig. 5
compares the total amount of time steps needed for adaptive and uniform meshes to
perform equally well, indicating that the smaller ε is, the more savings are obtained
via the adaptive Algorithm 4.1, if compared to scheme (1.3) with uniform time steps.
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