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Abstract
The mathematical P2D model is a system of strongly coupled nonlinear parabolic-
elliptic equations that describes the electrodynamics of lithium-ion batteries. In this
paper, we present the numerical analysis of a finite element-implicit Euler scheme for
such a model. We obtain error estimates for both the spatially semidiscrete and the
fully discrete systems of equations, and establish the existence and uniqueness of the
fully discrete solution.

1 Introduction

In this paper, we present the numerical analysis of a finite element-implicit Euler
method to calculate the numerical solution of the so called pseudo-two-dimensional
(P2D)model proposed by J. Newman and coworkers [3]. This is amathematical model
based on the electrochemical kinetics and continuun mechanics laws, which consists
of a system of coupled nonlinear parabolic-elliptic equations to model the physical-
chemical phenomena governing the behavior of lithium ion batteries. The P2D model
is verymuch used in engineering studies. A good presentation of it can be found in [13]
and [15]. A lithium-ion battery system is composed of a number of lithium-ion cells.
A typical cell consists of three regions, namely, a porous negative electrode (which
plays the role of anode of the cell in the discharge process) connected to the negative
terminal collector of the battery, a separator that is an electron insulator allowing
the flow of lithium ions between the anode and the cathode, and a porous positive
electrode (which plays the role of cathode during the discharge process) connected
to the positive terminal, see Fig. 1. We must point out that in the charge process the
negative electrode plays the role of cathode and the positive electrode is the anode. The
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464 R. Bermejo

Fig. 1 Upper panel: a cross-section of a cell along the x-direction. The lithium ions travel from the anode
to the cathode during the discharge process and in the opposite direction during the charge process.Middel
panel: the cell model as a non-denumerable collection of solid spheres plus the separator, there is one sphere
of radius Rs (x) at each point x of the electrodes. Lower panel: the domain D3

electrodes are composite porous structures of highly packed active lithium particles,
typically LixC6 in the negative electrode and metal oxide, such as Li1−xMn2O4, in
the positive electrode, plus a binder and a polymer that act as conductive agents.
Furthermore, the cell is filled with the electrolyte that occupies the holes left free by
the particles and the filler material. The electrolyte is a lithium salt dissolved in an
organic solvent. In the description of the model it is customary to consider two phases:
the electrolyte phase and the solid phase, the latter is composed of the solid particles
of the electrodes.

The P2D model of a lithium-ion cell considers that the dynamics is only relevant
along the x-axis, neglecting what happens along the y-axis and z-axis, because the
ratios Lx

L y
and Lx

Lz
= O(10−3), Lx , Ly and Lz being the characteristic length scales

along the corresponding axes. The main modeling assumptions are the following : (1)
The active particles of the electrodes are assumed to be spheres of radius Rs which
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may be different in each electrode. (2) Side reactions are neglected and no gas phase is
present. (3) The transport of lithium ions is due to diffusion and migration in the elec-
trolyte solution, and in the solid particles the atoms of lithiummove between vacancies
in the crystalline structure of the particles due to local diffusion in concentration. By
longitudinal and latitudinal symmetry considerations, the diffusion in the active parti-
cles is only in the radial direction. (4) The electrochemical reaction of lithium insertion
and extraction processes follows the Buttler-Volmer law. (5) The effective transport
coefficients are calculated by the Bruggeman relation, i.e.,μe f f = με p (p=1.5), where
μ is a generic transport coefficient and ε is the component volume fraction of themate-
rial in the composite electrodes and separator.To formulate the equations of the model
we distinguish the following domains.

⎧
⎨

⎩

Dn = (0, Ln), Ds = (Ln, Ln + δ), Dp = (Ln + δ, L), L p := L − (Ln + δ),

D1 = (0, L), D2 = Dn ∪ Dp and D3 = ∪x∈D2 {x} × (0, Rs(x)),

where Dn, Ds and Dp denote the domains of the negative electrode, the separator and
the positive electrode respectively. Notice that D1 represents the cell domain, D2 is
a domain that is the union of two disjoint domains corresponding to the electrodes,
and D3 is in a certain sense a modeling space accounting for the spherical balls of
radius Rs(x) that represent at each x ∈ D2 the solid active particles, such that when
x ∈ Dn , Rs(x) = R−

s , and when x ∈ Dp, Rs(x) = R+
s . The variables of the model

are the following: for the electrolyte phase, the molar concentration of lithium ions
u(x, t), and the electric potential φ1(x, t), x ∈ D1; for the solid phase, the molar
concentration of lithium v(x; r , t), x ∈ D2 and r ∈ (0; Rs(x)), and the electric
potential φ2(x, t), x ∈ D2. Another important variable is the so called molar flux of
lithium ions exiting the solid particles, J (x, u, v, φ1, φ2,U )/F , F being the Faraday
constant. The mathematical expression of J is given by the Buttler-Volmer law, see
(1).

Many numerical models to integrate the P2D model have been proposed. The first
one is the Dualfoil model developed by J. Newman and his collaborators [12], this is
a model that uses second order finite differences for space discretization of the differ-
ential operators combined with the first order backward Euler time stepping scheme;
the Dualfoil model is distributed as free software, which is being updated through
time. Later on, authors such as [11] and [17], just to cite a few, have developed their
own codes by using second order finite volume for space discretizations combined
with the first order in time implicit Euler scheme for time discretization. Other authors
make the numerical simulations with COMSOLmulti-physics package that uses finite
elements for space discretizations of the equations, the resulting system of nonlinear
differential equations is integrated by different time stepping schemes, in particular,
conventional DAE solvers, such as DASK [14]. New numerical models have recently
been proposed to improve the computational efficiency, to this respect, wemention the
operator splitting technique of [6], the orthogonal collocation method for space dis-
cretization combined with the first order implicit Euler scheme for time discretization
of [9], and the implicit-explicit Runge-Kutta-Chebyshev finite element method of [1].
Despite the activity in the development of numerical methods no rigorous numerical
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analysis of such methods has been published so far; so, to the best of our knowl-
edge, this is the first paper presenting the analysis of a numerical method developed
to integrate the P2D model.

The layout of the paper is the following. In Sect. 2 we introduce the governing
equations of the P2D model together with the functional framework needed for the
numerical analysis. Section 3 is devoted to the semidiscrete space discretization of the
model in a finite element framework. The error analysis of the semi-discrete solution
is performed in Sect. 4. Since this analysis is long, then we have split the section
into three subsections in order to make more palatable its presentation. Section 4.1 is a
collection of auxiliary results; Sections 4.2 and 4.3 deal with the error estimates for the
potentials and the concentrations, respectively. The fully discrete model and its error
analysis is presented in Sect. 5, which is also split into subsections. Since the fully
discrete model is a nonlinear system of elliptic and fully discrete parabolic equations
at each time instant tn , then we have also studied the existence and uniqueness of
the solution by applying Minty-Browder theorem [18] for the elliptic equations, and
Brower‘s fixed point theorem for the parabolic equations.

2 The governing equations of the isothermal P2Dmodel

We consider the governing equations of the isothermal P2D model for the variables
u(x, t), v(x; r , t), φ1(x, t) and φ2(x, t) presented in Chapters 3 and 4 of [15]. How-
ever, to facilitate both the formulation of the numerical method to integrate these
equations and its numerical analysis, it is convenient to make the changes of variable
introduced in [10] and [19]. Thus, in order to make homogeneous the Neumann type
boundary conditions for the potential φ2 one considers the function H(x, t) given by
the expression

H(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− (x − Ln)
2 I (t)

2σ Ln A
, x ∈ Dn,

(x − (Ln + δ))2 I (t)

2σ L p A
, x ∈ Dp,

where I (t) denotes the applied current, A is the area of the plate andσ is a positive coef-
ficient defined below, and replace φ2(x, t) by φ2(x, t)+ H(x, t); likewise, we replace

the potential φ1(x, t) by φ1(x, t) + α ln u(x, t), with α = α(u) = 2RT κ(u)

F
(t0+ − 1),

where κ(u) > 0 denotes the effective electrolyte phase ionic conductivity; t0+ > 0 is
the so called transfer number, which is assumed to be constant; R is the universal gas
constant and T denotes the absolute temperature inside the cell, which is assumed to be
constant in the isothermal model; this latter change of variable for φ1(x, t) simplifies
the expression of the equation for the potential of the electrolyte phasewritten in Chap-
ter 4 of [15], making it more manageable from a computational viewpoint. Another
important variable, as we mentioned above, is the reaction current density J . The
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reaction rate is coupled to phase potentials by the Buttler-Volmer kinetic expression.

J = J (x, u, vs, T , η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

asi0

(

exp
αa F

RT

(

η − RSE I

as
J

)

− exp
−αcF

RT

(

η − RSE I

as
J

))

if x ∈ Dn ∪ Dp,

0 if x ∈ Ds .

(1)

In this expression, vs = v(x; Rs(x), t) denotes the lithiumconcentration on the surface

of the active particles; as = as(x) = 3εs(x)

Rs(x)
is the active area per electrode unit

volume; εs(x) denotes the volume fraction of the active material, εs(x) = ε−
s > 0 for

x ∈ Dn and εs(x) = ε+
s > 0 for x ∈ Dp; αa ∈ (0, 1) and αc ∈ (0, 1) are anodic

and cathodic transfer coefficients for an electron reaction; RSE I represents the solid
interface resistance, usually, RSE I = 0 in the engineering literature unless the model
also considers aging phenomena of the battery, so in this paper we take RSE I = 0.

η = η(x, φ1, φ2,U ) =
⎧
⎨

⎩

φ2(x, t) − φ1(x, t) −U (x, vs) if x ∈ Dn ∪ Dp,

0 ifx ∈ Ds,

where U stands for the equilibrium potential at the solid electrolyte interface, which
is assumed to be known. i0 is the exchange current density, i.e.,

i0 = i0(u, vs) = kuαa (vmax − vs)
αavαc

s if x ∈ Dn ∪ Ln, (2)

here, vmax is the maximum concentration of lithium in the solid phase, which may
have different values in the positive and negative electrodes, so

vmax = vmax(x) =
{

v−
max if x ∈ Dn,

v+
max if x ∈ Dp,

the coefficient k represents the kinetic rate constant,

k = k(x) =
{
k− if x ∈ Dn,

k+ if x ∈ Dp.

Considering the above mentioned changes of variable and taking the transfer coeffi-
cients αa and αc equal to 0.5, as many engineering papers do, the expression for the
reaction current that we use in the paper is

J = J (x, u, vs, φ1, φ2,U ) =
⎧
⎨

⎩

a2(x)i0 sinh (βη) , ∀x ∈ D2,

0 for x /∈ D2,

(3)
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where β = F

2RT
; a2(x) = 3εs(x)/Rs(x); and

η = φ2 − φ1 − α ln u −U , (4)

U = U (x, t, vs) = U (vs) − H(x, t). Noting that the boundaries ∂D1 and ∂D2 of the
domains D1 and D2 are ∂D1 := {0, L} and ∂D2 := {0, Ln, Ln + δ, L}, we formulate
the equations of the model as follows.

Concentration u(x, t) in the electrolyte phase.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
− ∂

∂x
(k1

∂u

∂x
) = a1(x)J in D1 × (0, Tend),

∂u

∂x
|∂D1×(0,Tend)= 0, u(x, 0) = u0(x) inD1.

(5)

Concentration v(x; r , t) in the solid phase. For almost every x ∈ D2,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v

∂t
− k2

r2
∂

∂r

(

r2
∂v

∂r

)

v = 0 in D3 × (0, Tend),

∂v

∂r
|r=0= 0, k2

∂v

∂r
|r=Rs(x)=

−J

a2(x)F
, v(x; r , 0) = v0(x; r) in D3.

(6)

Electrolyte potential φ1(x, t).

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂x
(κ(u)

∂φ1

∂x
) = J in D1 × (0, T end),

∂φ1

∂x
|∂D1×(0,Tend)= 0,

∫

D1
φ1(x, t)dx = 0.

(7)
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Solid phase potential φ2(x, t).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x

(

σ
∂φ2

∂x

)

= J + g in D2 × (0, Tend),

σ
∂φ2

∂x
|∂D2×(0,Tend)= 0,

g(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−I (t)

Ln A
, x ∈ Dn,

I (t)

L p A
, x ∈ Dp,

(8)

where a1(x) = 1 − t0+
3εs(x)F

. In these equations, k1(x) > 0 and k2(x) > 0 represent

effective diffusion coefficients in the electrolyte and solid phases respectively, and
σ(x) denotes the effective electric conductivity in the solid phase. The functions
a1(x), a2(x) , σ(x) and k2(x) are considered to be piecewise positive constant func-
tions in the sense that they have different constant values in the negative electrode,
separator and positive electrode.

We also have to consider that for t ∈ (0, Tend), J (x, u, vs, φ1, φ2) satisfies the
algebraic conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

D1

Jdx =
∫

D2

Jdx = 0,

∫

Dn

Jdx = I (t),
∫

Dp

Jdx = −I (t).

(9)

Notice that the first row of algebraic conditions follow directly from (7) and the
definition of J , whereas the second row conditions translates the boundary conditions
of the solid phase potential. It is worth remarking the conservative properties enjoyed
by both u(x, t) and v(x; r , t); namely, for all t ∈ [0, Tend]

∫

D1

u(x, t)dx =
∫

D1

u(x, 0)dx,

and

∫

D2

∫ Rs (x)

0
v(x; r , t)r2drdx =

∫

D2

∫ Rs (x)

0
v(x; r , 0)r2drdx .
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470 R. Bermejo

These relations are readily obtained by integrating (5) and (6) and using the corre-
sponding boundary conditions. Moreover, it can be shown [10] that for t ≥ 0 and
x ∈ D1, u(x, t) > 0, similarly, for (x, r) ∈ D3, 0 < v(x; r , t) < vmax.

Let D denote a generic openboundeddomain inR; hereafter, the closure of a domain
D is denoted D. The functional spaces that we use in this paper are the following.
The Sobolev spaces Hm(D), m being a nonnegative integer, when m = 0, H0(D) :=
L2(D); the Lebesgue spaces L p(D), 1 ≤ p ≤ ∞; the spaces of measurable radial
functions [4]

Hq
r (0, R) :=

⎧
⎨

⎩
v : (0, R) → R: ‖v‖2

Hq
r (0,R)

=
q∑

j=0

∫ R

0

(
d jv

dr j

)2

r2dr < ∞
⎫
⎬

⎭
,

q being a nonnegative integer, when q = 0 we set H0
r (0, R) := L2

r (0, R); also, for p
being a nonnegative integer, the normed spaces of measurable functions

H p(D2; Hq
r (0, Rs(·))) :=

{
v : D2 → Hq

r (0, Rs(·)) : ‖v‖H p(D2;Hq
r (0,Rs (·))) < ∞

}
,

where ‖v‖2
H p(D2;Hq

r (0,Rs (·))) =
p∑

j=0

∫

D2

∥
∥
∥
∥
∂ jv(x; ·)

∂x j

∥
∥
∥
∥

2

Hq
r (0,Rs (x))

dx ; and the spaces

H p,q
r (D2 × (0, Rs(·))) = H p(D2, L

2
r (0, Rs(·))) ∩ L2(D2, H

q
r (0, Rs(·)))

with norm

‖u‖2
H p,q

r (D2×(0,Rs (·))) := ‖u‖2H p(D2,L2
r (0,Rs (·))) + ‖u‖2

L2(D2,H
q
r (0,Rs (·))) .

Notice that H0,0
r (D2 × (0, Rs(·))) = L2(D2, L2

r (0, Rs(·))).
Since the variables of the model depend on time, then we also introduce the normed

spaces L p(0, t; X), where 1 ≤ p ≤ ∞, and (X , ‖·‖X ) being a real Banach space.

L p(0, t; X) := {
v : (0, t) → X strongly measurable such that ‖v‖L p(0,t;X) < ∞}

,

with ‖v‖L p(0,t;X) =
(∫ t

0
‖v(τ)‖p

X dτ

)1/p

when 1 ≤ p < ∞, and for p = ∞,

‖v‖L∞(0,t;X) = ess sup0<τ<t ‖v(τ)‖X . Other spaces used in the paper areW (D1) :=
{

v ∈ H1(D1) :
∫

D1

vdx = 0

}

, which is a closed subspace of H1(D1) where the

potential φ1(x, t) is calculated, and the space of q times continuously differentiable
functions defined on D, Cq(D), when q = 0, C0(D) := C(D).

Next, we introduce the following regularity assumptions on the data and the molar
flux J [4].
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A1)

u0 ∈ H1(D), u0 > 0, v0 ∈ C(D3), 0 < v0 < vmax,

I (t) ∈ Cpart ([0, T ∗]), 0 < Tend ≤ T ∗ < ∞,

where Cpart denotes the set of piecewise continuous functions, i.e.,

Cpart([a, b]) = {g : [a, b] → R : ∃a = t0 < t1 < · · · tN = b such that g ∈ C ([ti−1, ti ])} .

A2) For 0 < a < c < +∞, k0 and σ0 positive constants,

k1 ∈ L∞(D1), k1 ≥ k0 > 0, k2 ∈ [a, c], κ ∈ C2 ((0,+∞)) ,

σ ∈ L∞(D2), κ ≥ κ0 > 0, σ ≥ σ0 > 0.

Moreover, k1 := infx∈D1 k1(x) and k2 := minx∈D2 k2(x).
A3) For all (x, u, vs, η) ∈ D2 × (0,+∞) × (0, vs,max) × R,

J ∈ C2(D2 × (0,+∞) × (0, vs,max) × R),
∂ J

∂η
> 0.

A weak formulation to (5)-(8) is the following. Find

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L2
(
0, Tend; H1(D1

)
),

du

dt
∈ L2(0, Tend; H1(D1))

∗,

v∈ L2
(
0, Tend; L2(D2, H1

r (0, Rs(·))
)
),

dv

dt
∈ L2 (

0, Tend; L2(D2, H
1
r (0, Rs(·))

)
)∗,

φ1 ∈ L2(0, Tend; W (D1)) and φ2 ∈ L2(0, Tend; H1(D2)),

such that
∫

D1

∂u

∂t
wdx +

∫

D1

k1
∂u

∂x

dw

dx
dx =

∫

D1

a1 Jwdx ∀w ∈ H1(D1); (10)

for a.e. x ∈ D2 and for all w ∈ H1
r (0, Rs(x)) radially symmetric

∫ Rs (x)

0

∂v

∂t
wr2dr +

∫ Rs (x)

0
k2

∂v

∂r

∂w

∂r
r2dr = −R2

s (x)Jw(Rs(x))

a2(x)F
; (11)

∫

D1

κ(u)
∂φ1

∂x

dw

dx
dx =

∫

D1

Jwdx ∀w ∈ H1(D1); (12)

and
∫

D2

σ
∂φ2

∂x

dw

dx
dx = −

∫

D2

(J + g)wdx,∀w ∈ H1(D2), (13)
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472 R. Bermejo

where L2(0, Tend; H1(D1))
∗ and L2

(
0, Tend; L2(D2, H1

r (0, Rs(·))
)
)∗ denote the

respective dual spaces of L2(0, Tend; H1(D1)) and L2
(
0, Tend; L2(D2,H1

r (0, Rs

(·)))).
Remark 1 Following the arguments of [4], where its non-isothermal P2D model
includes an additional time dependent non linear ordinary differential equation for
the bulk temperature T (t), one can formulate an alternative definition of the weak
solution to (5 )-(8) based on its Definition 2.7 and prove, under the assumptions A1-
A3 and for a partition t0 < t1 < · · · < tN of [0, Tend], Tend being small enough,
that there is a unique weak solution (u, v, φ1, φ2) in each interval [tn, tn+1], such that
(u, v, φ1, φ2) ∈ C([tn, tn+1]; KZ ), where KZ := H1(D1) × L2(D2, H1

r (0, Rs(·)))×
W (D1) × H1(D2). (u(tn), v(tn)) being the initial condition in such an interval. Also,
Kröner [10] proves a local existence and uniqueness theorem for the weak solution of
the isothermal P2D model under less general assumptions than in [4].

3 The semidiscrete finite element formulation of the isothermal P2D
model

We use H1-conforming linear finite elements (P1−finite elements) for the space
approximation of the variables u(x, t), φ1(x, t) and φ2(x, t); however, v(x; r , t) is
approximated by nonconforming P0−finite elements in the x−coordinate and H1-
conforming P1−finite elements in the r−coordinate. The family of meshes D1h
constructed on the domain D1 includes the points x = 0, x = Ln , x = Ln + δ

and x = L as mesh points; since these points are also boundary points of D2, then
they are also considered as mesh points in the family of meshes D2h . Figure 2 illus-
trates the families of meshes that we are going to describe next. Noting that D2 ⊂ D1,
we choose the family of meshes D2h as a subset of D1h . Let NE1 and NE2 be the
number of elements of D1h and D2h respectively, and let M1 and M2 be the number
of mesh points of such meshes, then, for i = 1, 2, we have that

Dih = {em}NEi
m=1 and Di = ∪NEi

m=1em,

where the mth element, em := {
x : xm1 ≤ x ≤ xm2

}
, and hm := xm2 − xm1 is the

length of the element em ; the points xm1 xm2 are denoted element nodes. We set
h = maxm hm , and γ = h−1 minm hm . The parameter γ is a measure of the uniformity
of the meshes. The collection of all the element nodes defines the set of nodes, {xl}Mi

l=1,
of the mesh Dih . To construct the family of meshes D̂3hr on D3, we recall that
D3 = ∪x∈D2 {x}× (0, Rs(x)), where Rs(x) is the radius of the solid spherical particle
associatedwith the point {x}. Thus, for eachmesh point {xl} ∈ D2h wedefine the radial
vertical domain D(l)

r := {r ∈ R : 0 < r < Rs(xl)}, which represents the spherical
particle at xl , and let

D(l)
r =

{
e(l)
k

}NE (l)

k=1
such that D

(l)
r = ∪NE (l)

k=1 e(l)
k ,
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where NE (l) denotes the number of elements in the interval [0, Rs(xl)] andr (l)
k is the

width of the element e(l)
k := {r : r (l)k

1 ≤ r ≤ r (l)k
2 }, we set r = maxl(maxk r (l)

k )

and γr = r−1 minl(mink r (l)
k ).The set ofmesh points in eachmesh D(l)

r is denoted
{
r (l)
j

}M(l)

j=1
. Furthermore, let {̂el}M2

l=1 be the collection of nonconforming elements of

the mesh D̂2h which are associated with the nodes {xl}, they are defined as follows: if
{xl} is not a boundary point, then

êl :=
{

x ∈ D2 : xl − hl−1

2
≤ x < xl + hl

2

}

;

on the contrary, if {xl} is a left boundary point, then

êl :=
{

x ∈ D2 : xl ≤ x < xl + hl
2

}

,

and if {xl} is a right boundary point, then

êl :=
{

x ∈ D2 : xl − hl−1

2
≤ x ≤ xl

}

.

We define the meshes D̂3hr as

D̂3hr :=
{
êl × D

(l)
r

}M2

l=1
such that D3 := ∪M2

l=1êl × D
(l)
r .

The families of conforming linear finite element spaces associated with these
meshes are the following. For i = 1, 2,

V (1)
h (Di ) := {

vh ∈ C(Di ) : ∀em ∈ Dih, vh |em∈ P1(em)
}
,

where P1(em) denotes the set of linear polynomials defined on em . Let {ψl(x)}Mi
l=1 be

the set of nodal basis functions for the spaceV (1)
h (Di ), then any functionvh ∈ V (1)

h (Di )

can be written as

vh(x) =
Mi∑

l=1

Vlψl(x), where Vl = vh(xl).

Note that V (1)
h (Di ) ⊂ H1(Di ). The nonconforming finite element space associated

with the mesh D̂2h is defined as

V (0)
h (D2) :=

{
vh ∈ L2(D2) : ∀̂el ∈ D̂2h, vh |̂el∈ P0(̂el)

}
,
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474 R. Bermejo

Fig. 2 Panel (a): the mesh for the domain D1, which includes the negative electrode (anode in the figure)
Da , the separator Ds and the positive electrode (cathode in the figure) Dc . Panel (b): the mesh for the
domain D2 = Da ∪ Dc . Panel (c): the mesh of nonconforming elements for the domain D2. Panel (d): the
mesh for the domain D3

where P0(̂el) is the set of polynomials of degree zero defined on êl . Let {χl(x)}M2
l=1 be

the set of nodal basis functions for V (0)
h (D2),

χl(x) =
⎧
⎨

⎩

1 if x ∈ êl ,

0 otherwise,

then any function vh(x) ∈ V (0)
h (D2) is expressed as

vh(x) =
M2∑

l=1

Vlχl(x), where Vl = vh(xl).

It is worth remarking that for 1 ≤ p < ∞, the L p-norm of vh(x) ∈ V (0)
h (D2) is

given as ‖vh‖p
L p(D2)

= ∑M2
l=1 ĥl V

p
l , where ĥl denotes the length of the element êl ,
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and the L2-inner product of vh, wh ∈ V (0)
h (D2),

∫

D2

vhwhdx =
M2∑

l=1

ĥl VlWl . Next,

we introduce the finite element space V (1)
r (D

(l)
r ). For 1 ≤ l ≤ M2,

V (1)
r (D

(l)
r ) :=

{
vr ∈ C(D

(l)
r ) : ∀e(l)

k ∈ D(l)
r , v

(l)
r (r) |

e(l)
k

∈ P1(e
(l)
k )

}
.

So, if
{
α

(l)
j (r)

}M(l)

j=1
denotes the set of nodal basis of Vr (D

(l)
r ), any function v

(l)
r ∈

V (1)
r (D

(l)
r ) ⊂ H1

r (0, Rs(xl)) can be written as

v
(l)
r (r) =

M(l)
∑

j=1

V (l)
j α

(l)
j (r), where V (l)

j = v
(l)
h (r j ).

Regarding the meshes D̂3hr , we define the finite element space Vhr (D3) as follows.
For 1 ≤ l ≤ M2 and 1 ≤ k ≤ NE (l)

Vhr (D3) :=
{
vhr∈ H0,1

r (D2×(0, Rs)(·)) : vhr (x; r) |̂
el×e(l)

k
∈ P0(̂el) ⊗ P1(e

(l)
k )

}
,

noting thatwhen x ∈ êl , Rs(x) = Rs(xl). Hence, any function vhr (x; r) ∈ Vhr (D3)

is of the form

vhr (x; r) =
M2∑

l=1

M(l)
∑

j=1

Vl jχl(x)α
(l)
j (r), where Vl j = vhr ( xl , r j ),

or equivalently, using the notation v
(l)
r (r) to denote vhr (xl; r), we can write

vhr (x; r) =
M2∑

l=1

v
(l)
r (r)χl(x). (14)

. The function vsh(x) := vhr (x; Rs(x)) is given by the expression

vsh(x; Rs(x)) =
M2∑

l=1

VlM(l)χl(x),

so that vsh(x) ∈ V (0)
h (D2). We calculate φ1h(x, t), which is the approximation to

φ1(x, t), in the finite dimensional space

Wh(D1) :=
{

vh ∈ V (1)
h (D1) :

∫

D1

vhdx = 0

}

, Wh(D1) ⊂ W (D1).
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Thus, the finite element formulation is as follows. For all t ∈ (0, Tend), the semi-
discrete approximation (uh(t), vhr (t), φ1h(t), φ2h(t)) ∈ V (1)

h (D1) × Vhr (D3) ×
Wh(D1) × V (1)

h (D2), (u0h, v
0
h) ∈ V (1)

h (D1) × Vhr (D3), is solution to the following
system of equations.

∫

D1

∂uh
∂t

whdx +
∫

D1

k1
∂uh
∂x

dwh

dx
dx =

∫

D1

a1 Jhwhdx ∀wh ∈ V (1)
h (D1). (15)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

D2

∫ Rs (x)

0

∂vhr

∂t
whr r

2drdx +
∫

D2

∫ Rs (x)

0
k2

∂vhr

∂r

∂whr

∂r
r2drdx

= −
∫

D2

R2
s (x)Jhwhr (x, Rs(x))

a2(x)F
dx ∀whr ∈ Vhr (D3).

(16)

∫

D1

κ(uh)
∂φ1h

∂x

dwh

dx
dx =

∫

D1

Jhwhdx ∀wh ∈ V (1)
h (D1). (17)

∫

D2

σ
∂φ2h

∂x

dwh

dx
dx = −

∫

D2

(Jh + g)whdx ∀wh ∈ V (1)
h (D2). (18)

∫

D1

Jhdx =
∫

D2

Jhdx = 0, with
∫

Dn

Jhdx = I (t) = −
∫

Dp

Jhdx . (19)

In this system,

Jh := J (x, uh , vsh, ηh) = a2(x)i0h sinh (βηh) , i0h := i0(uh, vsh)

ηh := φ1h − φ2h − αh ln uh −Uh(vsh), αh = α(uh).

(20)

Note that Jh also depends on t through uh , vsh and ηh .

Remark 2 Wemust note, see (14), that vhr and whr are elementwise constant func-
tions in the x direction, and Jh is a piecewise continuous function in x for which it
makes sense to consider the approximation, I (0)

h Jh ∈ V (0)
h (D2), see in Section 4.1

the definition of the interpolant I (0)
h . Then, approximating Jh by I (0)

h Jh one readily
shows, by performing the integral on D2, that (16) can be recast as follows: for all

mesh-point {xl} ∈ D2h , calculate v
(l)
r (r , t) ∈ V (1)

r (D
(l)
r ) such that

∫ Rs (xl )

0

∂v
(l)
r (r , t)

∂t
w

(l)
r (r)r

2dr +
∫ Rs (xl )

0
k2

∂v
(l)
r (r , t)

∂r

∂w
(l)
r (r)

∂r
r2dr

= −R2
s (xl)(a2(xl)F)−1 Jh |x = xlw

(l)
r (Rs(xl)) ∀w

(l)
r ∈ V (1)

r (D
(l)
r ).

(21)

Once v
(l)
r (r , t) is known, one calculates vhr by the expression (14).
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Notice that this equation is the finite element approximation of (11) for w ∈
H1
r (0, Rs(xl)), see [1].
Based on Remark 1 and since H1(Di ) ↪→ C(Di ), we introduce the following

spaces which are used in the error analysis and in the application of the fixed point
theorems in Sect. 4.

SP :=
{

u ∈ Cpart(D1 × [0, Tend]) : 1

P
≤ u ≤ P

}

,

SQ :=
{

w ∈ Cpart(D2 × [0, Tend]) : 1

Q
≤ w ≤ 1 − 1

Q

}

,

S∗
Q :=

{

w ∈ C∗
part(D2 × [0, Tend]) : 1

Q
≤ w ≤ 1 − 1

Q

}

,

where P and Q are constants sufficiently large; for i = 1, 2, Cpart(Di × [0, Tend])
denotes the set of piecewise continuous functions in time and continuous in space and
C∗
part(D2 × [0, Tend]) denotes the set of piecewise continuous functions in both time

and space. SP is the candidate pool for the concentration u and its approximate uh ,
whereas SQ and S∗

Q play the same role for the concentrations vs
vmax

and vsh
vmax

respectively.
So, we make the following assumption.

A4) There exist constants P, Q and K sufficiently large such that for almost every
t ∈ [0, Tend] the following bounds hold:

1

P
≤ u(t), uh(t) ≤ P,

1

Q
≤ vs(t)

vmax
,

vsh(t)

vmax
≤

(

1 − 1

Q

)

, (22)

and for i = 1, 2,

∥
∥
∥
∥
∂φ1(t)

∂x

∥
∥
∥
∥
L∞(D1)

, ‖φi (t)‖H1(Di )
, ‖φi (t)‖L∞(Di )

, ‖φih(t)‖L∞(Di )
≤ K . (23)

4 Error analysis for the semidiscrete problem

We present in this section the error analysis for the semidiscrete potentials and con-
centrations. Since the development of such an analysis is long, we have split its
presentation in a sequence of three subsections. In the first one, we introduce some
auxiliary results needed for the error analysis. The second subsection deals with the
error estimate for the potentials. Observing that the P2D model is a nonlinear coupled
system of equations, then the error for the potentials depends on the error estimates
for the concentrations, the analysis of which is carried out in the last subsection.

4.1 Auxiliary results

It is well known [2] that for the finite element spaces V (p)
h (Di ) (i = 1, 2; p = 0, 1)

the following approximation property holds. For 1 ≤ s ≤ p + 1,
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inf
vh∈V (p)

h (Di )

{

‖v − vh‖L2(Di )
+ h

∥
∥
∥
∥
d p (v − vh)

dx p

∥
∥
∥
∥
L2(Di )

}

≤ Chs |v|Hs (Di ) , (24)

where it should be understood that for p = 0,
d p (v − vh)

dx p
= v − vh . For symmetric

radial functions defined in the interval [0, R], let V (1)
r [0, R] be a linear finite element

space where we approximate such functions, one can prove, following the approach
used to prove Lemmas 1 and 2 in [5], that when w ∈ H2

r (0, R),

inf
wr∈V (1)

r [0,R]

{

‖w − wr‖L2
r (0,R) + r

∥
∥
∥
∥
d (w − wr )

dr

∥
∥
∥
∥
L2
r (0,R)

}

≤ Cr2 |w|H2
r (0,R) .

(25)

We consider the interpolants I (1)
h : C(Di ) → V (1)

h (Di ), I
(0)
h : C(D2) → V (0)

h (D2),

and the elliptic projection P1 : H1(D1) → V (1)
h (D1) such that for u ∈ H1(D1)

∫

D1

(

k1
d(P1u − u)

dx

duh
dx

+ λ(P1u − u)uh

)

dx = 0 ∀uh ∈ V (1)
h (D1), (26)

where λ > 0 is a constant; the error analysis for elliptic problems suggests that a good
choice is λ = k1. By virtue of (24) it follows that there exists a constantC independent
of h such that

∥
∥
∥v − I (0)

h v

∥
∥
∥
L2(D2)

≤ Ch ‖v‖H1(D2)
; (27)

for 1 ≤ m ≤ 2, 0 ≤ l ≤ 1,

∥
∥
∥v − I (1)

h v

∥
∥
∥
Hl (Di )

≤ Chm−l ‖v‖Hm (Di ) ; (28)

and from the well known error analysis for elliptic problems [2]

‖u − P1u‖Hl (D1)
≤ Chm−l ‖u‖Hm (D1) . (29)

Likewise, for symmetric radial functions v ∈ Hq
r (0, R), we define the elliptic projector

Pr
1 : H1

r (0, R) → V (1)
r [0, R] as the solution of the problem

∫ R

0

(

k2
d(Pr

1w − w)

dr

dwr

dr
+ λ(Pr

1w − w)wr

)

r2dr = 0 ∀wr ∈ V (1)
r [0, R],

(30)
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with λ > 0; as before, a good choice now is λ = k2. By virtue of (25) it follows that
there exists a constant C independent of r such that

∥
∥w − Pr

1w
∥
∥
L2
r (0,R)

+ r

∥
∥
∥
∥
∥

d
(
w − Pr

1w
)

dr

∥
∥
∥
∥
∥
L2
r (0,R)

≤ Cr2 |w|H2
r (0,R) . (31)

Pr
1 can be extended to functions of x and r in an L2-sense. Thus, for (x, r) ∈ D2 ×

(0, R(·)) we define the extended projection Pr
1 : H1,1

r (D2 × (0, R(·))) → L2(D2) ⊗
V (1)

r [0, R(·)] as
∫

D2

∫ R(x)

0

(

k2
∂(Pr

1w − w)

∂r

dwr

dr
+ λ(Pr

1w − w)wr

)

r2drdx

= 0 ∀wr ∈ L2(D2) ⊗ V (1)
r [0, R(·)]. (32)

Assuming that w ∈ H1,1
r (D2 × (0, R(·)) is such that for a.e. x ∈ D2, w(x, ·) ∈

H2
r (0, R(x)), then by virtue of (31)

∥
∥
(
w − Pr

1w
)
(x, ·)∥∥L2

r (0,R(x)) + r

∥
∥
∥
∥
∥

(
∂

(
w − Pr

1w
))

(x, ·)
∂r

∥
∥
∥
∥
∥
L2
r (0,R(x))

≤ Cr2 |w(x, ·)|H2
r (0,R(x)) .

Noting that H0,q
r (D2 × (0, R(·))) = L2(D2, L2

r (0, R(·))) ∩ L2(D2, H
q
r (0, R(·))) ,

then it readily follows that for q = 0, 1

∥
∥w − Pr

1w
∥
∥
H0,q

r (D2×(0,R(·))) ≤ Cr2−q ‖w‖H0,2
r (D2×(0,R(·))) . (33)

We shall also consider the x-Lagrange interpolant for functions that depend on x
and r , I x0 : H1,1

r (D2 × (0, R(·))) → V (0)
h (D2) ⊗ H1

r (0, R(·)). Thus, for v(x; r) ∈
H1,1

r (D2 × (0, R(·)))

I x0 v(x; r) =
M2∑

l=1

v(xl; r)χl(x) with r ∈ (0, R(xl)). (34)

Since I x0 can be viewed as an extended Lagrange interpolant I (0)
h : C(D2) →

V (0)
h (D2) , then based on (27) one can show that

∥
∥v − I x0 v

∥
∥
L2(D2,L2

r (0,R(·))) ≤ Ch ‖v‖H1(D2;L2
r (0,Rs (·))) . (35)
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Lemma 3 Let I = (a, b), 0 ≤ a < b, be a bounded interval with I = [a, b], and let
f ∈ H1(I ). There exists an arbitrarily small number ε and a positive constant C(ε)

such that

‖ f ‖L∞(I ) ≤ ε

∥
∥
∥
∥
d f

dx

∥
∥
∥
∥
L2(I )

+ C(ε) ‖ f ‖L2(I ) . (36)

Proof Since H1(I ) ↪→ C(I ), then f ∈ C(I ) and so does f 2, so for any y, z ∈ I ,
y < z, we have that

f 2(z) − f 2(y) =
∫ z

y

d f 2

dx
dx = 2

∫ z

y
f
d f

dx
dx

≤ ε2
∫

I

∣
∣
∣
∣
d f

dx

∣
∣
∣
∣

2

dx + ε−2
∫

I
f 2dx .

Since there exists x∗ ∈ I such that f 2(x∗) = minx∈I f 2(x), then letting y = x∗ it
follows that

f 2(y) ≤ 1

|I |
∫

I
f 2dx

Substituting this estimate the result follows. ��
The next result is a rewording of Lemma 2.4 of [16]. Let F1(R) be the closure of

C∞− functions with respect to the H1
r (0, R)-norm and with the property that their

with first derivative vanishes at r = 0.

Lemma 4 If v ∈ F1(R), then for all 0 < a < R,

1) v ∈ H1(a, R).

2) There exists an arbitrarily small number ε and a positive (possibly large) constant
C(ε), both depending on a, such that

‖v‖L∞(a,R) ≤ ε

∥
∥
∥
∥
dv

dr

∥
∥
∥
∥
L2
r (0,R)

+ C(ε) ‖v‖L2
r (0,R) . (37)

Proof To prove 1) we note that for any v ∈ F1(R),

‖v‖2H1
r (0,R)

=
∫ R

0
v2r2dr +

∫ R

0

∣
∣
∣
∣
dv

dr

∣
∣
∣
∣

2

r2dr

≥
∫ R

a
v2r2dr +

∫ R

a

∣
∣
∣
∣
dv

dr

∣
∣
∣
∣

2

r2dr

≥ a2
∫ R

a
v2dr +

∫ R

a

∣
∣
∣
∣
dv

dr

∣
∣
∣
∣

2

dr = a2 ‖v‖2H1(a,R)
. (38)
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So, any sequence {vn} that converges with respect to the H1
r (0, R)−norm also con-

verges with respect to the H1(a, R)−norm. As for the point 2), we notice that from
(36) and (38) it readily follows (37). ��
Lemma 5 For each (x, t) ∈ D2 × [0, Tend] we have the following estimates.

|i0 − i0h | ≤ C |u − uh | + C |vs − vhs | ,
|ln u − ln uh | ≤ C |u − uh | ,

∣
∣U (vs) −U (vsh)

∣
∣ ≤ C |vs − vsh | . (39)

Proof Noting that the functions x → √
x, x → √

1 − x, x → ln x and x → U (x) are
smooth bounded and Lipschitz functions in any bounded interval [a, b], 0 < a < b,
and that the composition and multiplication of bounded Lipschitz functions results in
a Lipschitz function, then the estimates follow. The constant C in (39) depends on the
constants P and Q of (22). ��
Lemma 6 Let us consider J and its approximate Jh, then for a.e. t ∈ [0, Tend ] there
exists a positive constant C such that

‖J − Jh‖2L2(D2)
≤ C

{
‖φ2(t) − φ2h(t)‖2L2(D2)

+ ‖φ1(t) − φ1h(t)‖2L2(D1)

+‖u(t) − uh(t)‖2L2(D1)
+ ‖vs(t) − vsh(t)‖2L2(D2)

}
. (40)

Proof Recalling the expressions for J , see (2)-(3), and Jh , see (20), using the assump-
tion A4 and the bounds (22) and (23), we have that for all (x, t) ∈ D2 × [0, Tend]

|J − Jh | = |a2i0 sinh(βη) − a2i0h sinh(βηh)|
≤ |a2i0 (sinh(βη) − sinh(βηh))| + |a2 (i0 − i0h) sinh(βηh)|
≤ C |sinh(βη) − sinh(βηh)| + ‖a2 sinh(βηh)‖L∞(D2×[0,Tend ]) |i0 − i0h |
≤ C |sinh(βη) − sinh(βηh)| + C |i0 − i0h | .

where due to the bounds (22) and (23) the constantsC = C(P, Q, K ). Now, by virtue
of the mean value theorem there exists z ∈ (η, ηh) such that

|sinh(βη) − sinh(βηh)| ≤ β |cosh(z)| |η − ηh | ≤ C |η − ηh | ,

and resorting again to (22) and (23) it follows that

‖z‖L∞(D2×[0,Tend]) ≤ ‖η‖L∞(D2×[0,Tend]) + ‖ηh‖L∞(D2×[0,Tend]) ≤ C

Hence, applying Lemma 5 yields

|J − Jh | ≤ C (|φ2 − φ2h | + |φ1 − φ1h | + |u − uh | + |vs − vsh |)

From this estimate it follows (40). ��
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4.2 Error estimates for the potentials

To estimate the error for the potentials φ1 and φ2 is convenient to introduce the spaces
V := H1(D1) × H1(D2) := {

w = (w1, w2) : w1 ∈ H1(D1), w2 ∈ H1(D2)
}
and

Vh ⊂ V , where Vh := V (1)
h (D1) × V (1)

h (D2). V is a Hilbert space with norm

‖w‖V =
(
‖w1‖2H1(D1)

+ ‖w2‖2H1(D2)

)1/2
,

and seminorm

|v|V =
(
|w1|2H1(D1)

+ |w2|2H1(D2)

)1/2
.

Considering the bilinear forms a1 : H1(D1) × H1(D1) → R and a2 : H1(D2) ×
H1(D2) → R,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1(φ1, ψ1) =
∫

D1

κ(u)
dφ1

dx

dψ1

dx
dx,

a2(φ2, ψ2) =
∫

D2

σ
dφ2

dx

dψ2

dx
dx,

we can define the bilinear form a : V × V → R as follows. Let � and � ∈ V ,
� = (φ1, φ2) and � = (ψ1, ψ2), then

a(�,�) = a1(φ1, ψ1) + a2(φ2, ψ2).

Furthermore, concerning the right hand side terms of (12) and (13 ), we introduce the
operator B : V → V ∗, V ∗ being the dual for V , as

〈B(�),�〉 =
∫

D2

J (ψ2 − ψ1) dx .

Hence, we can recast the equations (12) and (13) as follows. Find � ∈ L2(0, Tend;
W (D1) × H1(D2)) such that

a(�,�) + 〈B(�),�〉 = −
∫

D2

gψ2dx ∀� ∈ V . (41)

Likewise, the finite element solutions φ1h and φ2h that satisfy (17) and (18) respec-
tively, can be formulated as follows. For all t ∈ [0, Tend ], find �h ∈ Wh(D1) ×
V (1)
h (D2) such that

ah(�h, �h) + 〈Bh(�h),�h〉 = −
∫

D2

gψ2hdx ∀�h ∈ Vh, (42)
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where

ah(�h, �h) = a1h(φ1h, ψ1h) + a2(φ2h, ψ2h), (43)

with

a1h(φ1h, ψ1h) =
∫

D1

κ(uh)
dφ1h

dx

dψ1h

dx
dx,

and

〈Bh(�h),�h〉 =
∫

D2

Jh (ψ2h − ψ1h) dx . (44)

Remark 7 The existence and uniqueness of � is proven in [4] under the same kind
of assumptions as A1-A4, whereas in [19] and [10] the existence is proven applying
Schauder Fixed Point Theorem [7] and the uniqueness using the fact that φ1(x) ∈
W (D1).

As for the bilinear form a and the operator B, we have the following result.

Lemma 8 Assuming that A1-A4 hold, we have that: (i) the bilinear form a is contin-
uous, (ii) the operator B is monotone, i.e.,

〈
B(�) − B(�̂),� − �̂

〉 ≥ 0, (45)

bounded and continuous in the sense that for all� ∈ V there exists a constant C such
that

〈
B(�) − B(�̂),�

〉 ≤ C
(∥
∥� − �̂

∥
∥
V

) (‖ψ1‖L2(D1)
+ ‖ψ2‖L2(D2)

)
. (46)

Proof It is easy to prove the continuity of the bilinear form a if one takes into account
the regularity assumption A2. To prove (45) we note that

〈
B(�) − B(�̂),� − �̂

〉 =
∫

D2

a2i0 (sinh(βη) − sinh(βη̂))
((

φ2 − φ̂2
) − (

φ1 − φ̂1
))
dx,

where η = φ2 − φ1 − α ln u −U and η̂ = φ̂2 − φ̂1 − α ln u −U . Since for all x ∈ D2
a2i0 > 0, then by virtue of A4 we can choose a constant C(P, Q) such that for all
x ∈ D2 C(P, Q) ≤ a2i0, and by the mean value theorem sinh(βη) − sinh(βη̂) ≥
β(η − η̂), then one readily obtains

〈
B(�) − B(�̂),� − �̂

〉 ≥ C
∫

D2

(
(φ2 − φ1) − (

φ̂2 − φ̂1
))2

dx ≥ 0. (47)
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To prove that B is bounded we notice that for all � ∈ V

〈B(�),�〉 ≤
∫

D2

|J | × |φ2 − φ1| dx =
∫

D2

|a2i0(sinh(βη)| × |φ2 − φ1| dx,

but |J | is bounded by virtue of A4, then using theCauchy-Schwarz inequality it readily
follows that there exists a bounded positive constant C such that

〈B(�),�〉 ≤ C ‖�‖V ,

so B is bounded. To prove that B is continuous, we again notice that

〈
B(�) − B(�̂),�

〉 ≤
∫

D2

|a2i0(sinh(βη) − sinh(βη̂))| × |ψ2 − ψ1| dx,

so, arguing as in the proof of Lemma 6 we have that there exists a positive constant C
such that

|a2i0(sinh(βη) − sinh(βη̂))| ≤ C |η − η̂| = C
∣
∣
(
φ2 − φ̂2

) − (
φ1 − φ̂1

)∣
∣ .

Substituting this estimate in the above inequality and making use of the Cauchy-
Schwarz inequality it follows that

〈
B(�) − B(�̂),�

〉 ≤ C
(∥
∥φ2 − φ̂2

∥
∥
L2(D2)

+ ∥
∥φ1 − φ̂1

∥
∥
L2(D1)

)

(‖ψ2‖L2(D2)
+ ‖ψ1‖L2(D1)

) ≤ C
∥
∥� − �̂

∥
∥
V

(‖ψ2‖L2(D2)
+ ‖ψ1‖L2(D1)

)
.

��
Corollary 9 The discrete bilinear form ah defined in (43) is continuous. The discrete
operator Bh defined in (44) is monotone, bounded and continuous.

Theorem 10 For a.e. t ∈ [0, Tend], let the solution of (41), �(t) = (φ1(t), φ2(t)), be
in H2(D1) × H2(D2). There exists a constant C independent of h such that

‖�(t) − �h(t)‖2V ≤ C
(
h2(‖φ1(t)‖2H2(D1)

+ ‖φ2(t)‖2H2(D2)
)

+‖u(t) − uh(t)‖2L2(D1)
+ ‖vs(t) − vsh(t)‖2L2(D2)

)
. (48)

Proof Setting � = �h in (41) and subtracting (42) yields

a(�,�h) − ah(�h, �h) + 〈B(�) − B (�h) ,�h〉 = − 〈B(�h) − Bh (�h) ,�h〉 .

Noting that

a(�,�h) − ah(�h, �h) = ah(� − �h, �h) +
∫

D1

(κ(u) − κ(uh))
∂φ1

∂x

dψ1h

dx
dx,
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it follows that

ah(� − �h, �h) + 〈B(�) − B (�h) ,�h〉 = 〈Bh(�h) − B (�h) ,�h〉
−

∫

D1

(κ(u) − κ(uh))
∂φ1

∂x

dψ1h

dx
dx . (49)

To estimate the terms of this expression we choose �h = I (1)
h � − �h =

(
I (1)
h φ1 − φ1h, I

(1)
h φ2 − φ2h

)
, I (1)

h being theLagrange interpolant onVh = V (1)
h (D1)×

V (1)
h (D2), this means that I (1)

h φ1 ∈ V (1)
h (D1) and I (1)

h φ2 ∈ V (1)
h (D2). For conve-

nience, we shall split the expression for �h as

�h = (� − �h) +
(
I (1)
h � − �

)
.

Replacing this expression for �h in (49) we have that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ah(� − �h,� − �h) + 〈B(�) − B (�h) ,� − �h〉

= ah(� − �h,� − I (1)
h �) +

〈
B(�) − B (�h) ,� − I (1)

h �
〉

+
〈
Bh(�h) − B (�h) , (� − �h) +

(
I (1)
h � − �

)〉

+
∫

D1

(κ(u) − κ(uh))
∂φ1

∂x

∂
(
(φ1 − φ1h) +

(
I (1)
h φ1 − φ1h

))

∂x
dx .

(50)

We bound the terms of (50). We start by showing that there exists a positive constant
α such that the term on the left hand side satisfies

ah(� − �h,� − �h) + 〈B(�) − B (�h) ,� − �h〉 ≥ α ‖� − �h‖2V . (51)

To do so we note that by virtue of (47)

ah(� − �h,� − �h) + 〈B(�) − B (�h) ,� − �h〉
≥ a1h(φ1 − φ1h, φ1 − φ1h) + a2(φ2 − φ2h, φ2 − φ2h)

+C
∫

D2

((φ2 − φ1) − (φ2h − φ1h))
2 dx . (52)

Since φ1 −φ1h ∈ W (D1), we can use A2 and Poincaré-Wirtinger inequality to bound
a1(φ1 − φ1h, φ1 − φ1h) from below as

a1h(φ1 − φ1h, φ1 − φ1h) ≥ c1 ‖φ1 − φ1h‖2H1(D1)
,
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where the constant c1 = κ0 (1 + CP )−1, CP being the constant of the Poincaré-
Wirtinger inequality; using again A2, we bound the term a2(φ2 − φ2h, φ2 − φ2h)

as

a2(φ2 − φ2h, φ2 − φ2h) ≥ σ0 |φ2 − φ2h |2H1(D2)
.

Applying Young inequality we find that there exists a constant γ ∈ (0, 1) such that

C
∫

D2

((φ2 − φ1) − (φ2h − φ1h))
2 dx .

≥ C

[

(1 − 4

γ
) ‖φ1 − φ1h‖2L2(D2)

+ (1 − γ ) ‖φ2 − φ2h‖2L2(D2)

]

≥ C

[

(1 − 4

γ
) ‖φ1 − φ1h‖2L2(D1)

+ (1 − γ ) ‖φ2 − φ2h‖2L2(D2)

]

.

Now, we can choose the constants C and γ such that c2 = c1 + C(1 − 4
γ
) > 0,

and substitute these bounds in (52) to obtain the inequality (51), where α =
min(c1, c2, σ0, (1 − γ )C). Next, we bound the terms on the right hand side. By con-
tinuity of the bilinear form and Young inequality, we find that there exists a small
positive number ε1 and a constant C(ε1) such that

ah(� − �h,� − I (1)
h �) ≤ C ‖� − �h‖V

∥
∥
∥� − I (1)

h �

∥
∥
∥
V

≤ ε1 ‖� − �h‖2V + C(ε1)

∥
∥
∥� − I (1)

h �

∥
∥
∥
2

V
. (53)

To bound
〈
B(�) − B (�h) ,� − I (1)

h �
〉
we note that

〈
B(�) − B (�h) ,� − I (1)

h �
〉
≤

∫

D2

|a2i0|
∣
∣
∣
∣

∫ βη

βηh

cosh ξdξ

∣
∣
∣
∣

∣
∣
∣� − I (1)

h �

∣
∣
∣ dx .

By virtue of (22) and (23) and the mean value theorem for the integral

〈
B(�) − B (�h) ,� − I (1)

h �
〉
≤ C

∫

D2

|η − ηh |
∣
∣
∣� − I (1)

h �

∣
∣
∣ dx

≤ C
∫

D2

(|φ2 − φ2h | + |φ1 − φ1h |

+ |u − uh | + |vs − vsh |)
∣
∣
∣� − I (1)

h �

∣
∣
∣ dx .
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Applying Young inequality yields

〈
B(�) − B (�h) ,� − I (1)

h �
〉
≤ ε2

(
‖� − �h‖2V + ‖u − uh‖2L2(D1)

+‖vs − vsh‖2L2(D2)

)
+ C(ε2)

∥
∥
∥� − I (1)

h �

∥
∥
∥
2

V
,

(54)

where ε2 is a small positive number andC(ε2) is a constant. Next, noting that by virtue
of (22) and (23) |sinh(βηh)| is bounded in D2, then

〈
Bh(�h) − B (�h) , (� − �h) +

(
I (1)
h � − �

)〉

≤ C
∫

D2

a2 |i0 − i0h |
∣
∣
∣(� − �h) +

(
I (1)
h � − �

)∣
∣
∣ dx .

Again, using Lemma 5 and Young inequality we obtain that there exist a small number
ε3 and a constant C(ε3) such that

〈
Bh(�h) − B (�h) , (� − �h) +

(
I (1)
h � − �

)〉
≤ ε3 ‖� − �h‖2V

+ε3

(
‖u − uh‖2L2(D1)

+ ‖vs − vsh‖2L2(D2)

)
+ C(ε3)

∥
∥
∥� − I (1)

h �

∥
∥
∥
2

V
. (55)

To bound the last term on the right hand side of (50) we note that
∥
∥
∥

∂φ1
∂x

∥
∥
∥
L∞(D1)

is bounded and by virtue of assumption A4, and by the mean value theorem,
|(κ(u) − κ(uh))| ≤ C |u − uh |, then it follows that

∫

D1

(κ(u) − κ(uh))
∂φ1

∂x

∂
(
(φ1 − φ1h) +

(
I (1)
h φ1 − φ1h

))

∂x
dx

≤ C
∫

D1

|u − uh |
∣
∣
∣
∣
∣
∣

∂
(
(φ1 − φ1h) +

(
I (1)
h φ1 − φ1h

))

∂x

∣
∣
∣
∣
∣
∣
dx

≤ ε4 ‖� − �h‖2V + C(ε4)

(

‖u − uh‖2L2(D1)
+

∥
∥
∥� − I (1)

h �

∥
∥
∥
2

V

)

. (56)

Letting ε1 + · · · + ε4 = α/2 and noting that, see (34),

∥
∥
∥� − I (1)

h �

∥
∥
∥
2

V
=

∥
∥
∥φ1 − I (1)

h φ1

∥
∥
∥
2

H1(D1)
+

∥
∥
∥φ2 − I (1)

h φ2

∥
∥
∥
2

H1(D2)

≤ Ch2
(
‖φ1‖2H2(D1)

+ ‖φ2‖2H2(D2)

)
.

the estimate (48) follows from (50)-(56). ��
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4.3 Error estimates for the concentrations u(x, t) and v(x; r, t)

We wish to estimate u(x, t) − uh(x, t) and v(x; r , t) − vhr (x; r , t) in the L2−norm
assuming that both u(x, t) and v(x; r , t) are as regular as required. Following the
standard approach, we decompose u − uh as

u − uh = (u − P1u) + (P1u − uh) ≡ ρu + θu, (57)

where P1 is the elliptic projector defined in (26), and note that θu(x, t) ∈ V (1)
h (D1).

To carry out a decomposition of this kind for v(x; r , t) − vhr (x; r , t), at first we can
try using the extended elliptic projector Pr

1 : H1,1
r (D2 × (0, Rs(·))) → L2(D2) ⊗

V (1)
r [0, Rs(·)] defined in (32) and assume that for all t , v(x; r , t) ∈ H1,1

r (D2 ×
(0, Rs(·))), then we find that for a. e. x ∈ D2

Pr
1 v(x; r , t) =

M∑

j=1

Pr
1 v(x; r j , t)α j (r),

here, M denotes the number of mesh points in [0, Rs(·)],
{
α j (r)

}M
j=1 the nodal basis

of the linear finite element space V (1)
r [0, Rs(·)] ⊂ H1

r (0, Rs(·)) and the function
Pr
1 v(x; r j , t) ∈ L2(D2); so, in general, Pr

1 v(x; r , t) is not in Vhr (D3) and, con-
sequently, it does not make sense to use Pr

1 v(x; r , t) − vhr (x; r , t) for such type

of decomposition; however, recalling the interpolant I x0 : H1,1
r (D2 × (0, R(·))) →

V (0)
h (D2) ⊗ H1

r (0, R(·)) defined in (34) and further assuming that Pr
1 v(x; r j , t) ∈

H1(D2), then it follows that Pr
1 v(x; r , t) ∈ H1,1

r (D2 × (0, R(·))) and, therefore, we
can define I x0 P

r
1 v(x; r , t) as

I x0 P
r
1 v(x; r , t) =

M2∑

l=1

M(l)
∑

j=1

Pr
1 v(xl; r j , t)α(l)

j (r)χl(x);

this expression implies that I x0 P
r
1 v(x; r , t) ∈ Vhr (D3), so it makes sense to set

θv(x; r , t) = I x0 P
r
1 v(x; r , t) − vhr (x; r , t).

Now, using again the extended Pr
1 elliptic projector we define

ρv(x; r , t) = v(x; r , t) − Pr
1 v(x; r , t) ∈ H1,1

r (D2 × (0, R(·))),

and consequently

I x0 ρv(x; r , t) = I x0 v(x; r , t) − I x0 P
r
1 v(x; r , t).
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Then, from all these considerations we can write that

v(x; r , t) − vhr (x; r , t) = (v − I x0 v)(x; r , t) + I x0 ρv(x; r , t) + θv(x; r , t). (58)

From (57) and (58) it follows that

‖u(t) − uh(t)‖L2(D1)
≤ ‖ρu(t)‖L2(D1)

+ ‖θu(t)‖L2(D1)
,

and

‖v(t) − vhr (t)‖L2(D2,L2
r (0,R(·))) ≤ ∥

∥v(t) − I x0 v(t)
∥
∥
L2(D2,L2

r (0,R(·)))
+ ∥

∥I x0 ρv(t)
∥
∥
L2(D2,L2

r (0,R(·))) + ‖θv(t)‖L2(D2,L2
r (0,R(·))) .

The estimates for ρu and ρv are given in (29) and ( 33) respectively, i.e.,

⎧
⎨

⎩

‖ρu(t)‖L2(D1)
≤ Ch2 ‖u(t)‖H2(D1)

,

‖ρv(t)‖L2(D2,L2
r (0,R(·))) ≤ Cr2 ‖v(t)‖L2(D2,H2

r (0,R(·))) ,

(59)

then, it remains to calculate the estimates for θu and θv; but before going into
the details of such calculations, we present new estimates for ‖J − Jh‖2L2(D2)

and

‖vs(t) − vsh(t)‖2L2(D2)
, which depend on θu and θv respectively, and will be useful for

the subsequent part of the analysis.

Lemma 11 Assuming that the regularity assumptions required in the estimates hold,
there exist an arbitrarily small positive number ε and constants C and C(ε) indepen-
dent of h and r such that

‖vs(t) − vsh(t)‖2L2(D2)
≤ Ch2 |vs(t)|2H1(D2)

+ C(ε)r2 ‖v(t)‖2L2(D2,H2
r (0,Rs (·)))

+C(ε) ‖θv(t)‖2L2(D2,L2
r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

,

(60)

and

‖J − Jh‖2L2(D2)
≤ Ch2

(
‖φ1(t)‖2H2(D1)

+ ‖φ2(t)‖2H2(D2)
+ h2 ‖u(t)‖2H2(D1)

)

+C ‖vs(t) − vsh(t)‖2L2(D2)
+ C ‖θu(t)‖2L2(D1)

. (61)

Proof To calculate the estimate (60) we set vs − vsh = (
vs − I 0h vs

) + (
I 0h vs − vsh

)
,

so using (27) it follows that

‖vs(t) − vsh(t)‖2L2(D2)
= Ch2 |vs(t)|2H1(D2)

+ 2
∥
∥
∥I 0h vs(t) − vsh(t)

∥
∥
∥
2

L2(D2)
.
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Since I 0h vs−vsh = (
I 0h v − vhr

)
(x; Rs(x), t) = (

I x0 ρv + θv

)
(x; Rs(x), t) (recalling

the definition of θv) then by virtue of the definition of the L2-norm for functions of
V 0
h (D2) presented in Sect. 3, we have that

∥
∥
∥I 0h vs(t) − vsh(t)

∥
∥
∥
2

L2(D2)
≤ 2

M2∑

l=1

ĥl
(
ρ2

v (xl; Rs(xl), t) + θ2v (xl; Rs(xl), t)
)

.

To estimate ρ2
v (xl; Rs(xl), t) and θ2v (xl; Rs(xl), t) we make use of Lemma 4 noting

that there exists a real number a, 0 < a < Rs(xl), such that ρ2
v (xl; Rs(xl), t) ≤

‖ρv(xl; r , t)‖2L∞(a,R(xl ))
and θ2v (xl; Rs(xl), t) ≤ ‖θv(xl; r , t)‖2L∞(a,R(xl ))

, thus by
virtue of (37) it follows that there are a real number ε and positive constant C(ε) > ε

such that

M2∑

l=1

ĥlρ
2
v (xl; Rs(xl), t) ≤ ε

M2∑

l=1

ĥl

∫ Rs (xl )

0
r2

∣
∣
∣
∣
∂ρv(xl; r , t)

∂r

∣
∣
∣
∣

2

dr

+C(ε)

M2∑

l=1

ĥl

∫ Rs (xl )

0
r2 |ρv(xl; r , t)|2 dr

≤ C(ε)
∥
∥I x0 ρv(t)

∥
∥2
L2(D2,H1

r (0,Rs (·)))
≤ C(ε) ‖ρv(t)‖L2(D2,H1

r (0,Rs (x)))

≤ C(ε)r2 ‖v(t)‖2L2(D2,H2
r (0,Rs (·))) ,

because by approximation theory
∥
∥I x0 ρv(t)

∥
∥
L2(D2,H1

r (0,Rs (x)))
≤ C

‖ρv(t)‖L2(D2,H1
r (0,Rs (x))), this latter term being estimated according to (33). Similarly,

M2∑

l=1

ĥlθ
2
v (xl; Rs(xl), t) ≤ ε

M2∑

l=1

ĥl

∫ Rs (xl )

0
r2

∣
∣
∣
∣
∂θv(xl; r , t)

∂r

∣
∣
∣
∣

2

dr

+C(ε)

M2∑

l=1

h̃l

∫ Rs (xl )

0
r2 |θv(xl; r , t)|2 dr

≤ ε |θv(t)|2L2(D2,H1
r (0,Rs (·))) + C(ε) ‖θv(t)‖2L2(D2,L2

r (0,Rs (·))) .

(62)

So, putting these bounds together the result (60) follows. To calculate the estimate
(61) we notice that by virtue of (40) and Theorem 10

‖J − Jh‖2L2(D2)
≤ C

(
h2

(
‖φ1(t)‖2H2(D1)

+ ‖φ2(t)‖2H2(D2)

)

+‖u(t) − uh(t)‖2L2(D1)
+ ‖vs(t) − vsh(t)‖2L2(D2)

)
.
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Since u − uh = ρu + θu , then taking into account (29)

‖u(t) − uh(t)‖2L2(D1)
≤ Ch4 ‖u(t)‖2H2(D1)

+ 2 ‖θu‖2L2(D1)
,

so the result (61) follows. ��
Next, we calculate an estimate for θv . To this end, we obtain, based on equation

(11), the integral equation for I x0 v(x; r , t) that will be used for that purpose. Thus, for
each one of the mesh points {xl}M2

l=1 of D2h the equation (11) reads

∫ Rs (xl )

0

∂v(l)

∂t
w(l)r2dr +

∫ Rs (xl )

0
k2

∂v(l)

∂r

∂w(l)

∂r
r2dr

= −
(
R2
s (x)a

−1
2 (x)F−1 Jw(l)(Rs(x))

)
|x=xl , (63)

where v(l) := v(xl; r , t) ∈ H1
r (0, Rs(xl) and w(l) := w(xl; r) ∈ H1

r (0, Rs(xl)).
Using the nodal basis functions {χl(x)}M2

l=1 of the finite element space V (0)
h (D2) we

can write

I x0 v(x; r , t) =
M2∑

l

v(l)(r , t)χl(x) and w(x; r) =
M2∑

l=1

w(l)(r)χl(x).

Now, noting that

∫

D2

∫ Rs (x)

0

(
I x0 v

)
wr2drdx =

M2∑

l=1

∫

D2

χ2
l (x)

(∫ Rs (x)

0
v(l)(r , t)w(l)(r)r2dr

)

dx,

and for x ∈ êl , Rs(x) = Rs(xl), then it follows that

M2∑

l=1

∫

D2

χ2
l (x)

(∫ Rs (x)

0
v(l)(r , t)w(l)(r)r2dr

)

dx =
M2∑

l=1

ĥl

∫ Rs (xl )

0
v(l)(r , t)w(l)(r)r2dr .

Hence, (63) becomes

∫

D2

∫ Rs (x)

0

(
∂ I x0 v

∂t
w + k2

∂ I x0 v

∂r

∂w

∂r

)

r2drdx

= −
∫

D2

I x0 (R2
s (x)a

−1
2 (x)F−1 Jw(x; Rs(x)))dx . (64)

We proceed to formulate the equation for θv . From (58) it follows that vhr = I x0 v −
(I x0 ρv + θv), then replacing this expression for vhr in (16) and using (32) and (64) it
follows that for all whr ∈ Vhr (D3),
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∫

D2

∫ Rs (x)

0

(
∂θv

∂t
whr + k2

∂θv

∂r

∂whr

∂r

)

r2drdx

= λ

∫

D2

∫ Rs (x)

0
I x0 ρvwhr r

2drdx −
∫

D2

∫ Rs (x)

0

∂ I x0 ρv

∂t
whr r

2drdx

−
∫

D2

I 0h (R2
s (x)a

−1
2 (x)F−1(J (x) − Jh(x))wsh(x))dx

+
∫

D2

(
R2
s (x)a

−1
2 (x)F−1 Jh(x) − I 0h (R2

s (x)a
−1
2 F−1(x)Jh(x)

)
)wsh(x)dx,(65)

where we have made use of the following properties of the interpolant I x0 : (i) for
whr (x, r) ∈ Vhr (D3), whr (x, r) = I x0 whr (x, r), and (ii) when r = Rs(x)
, we can define the function wsh(x) = whr (x, Rs(x)) such that wsh(x) =
I x0 whr (x, Rs(x)) = I 0hwsh(x). Setting whr = θv yields

1

2

d

dt
‖θv(t)‖2L2(D2,L2

r (0,Rs (·))) + k2

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

≤ λ
∥
∥I x0 ρv(t)

∥
∥
L2(D2,L2

r (0,Rs (·))) ‖θv(t)‖L2(D2,L2
r (0,Rs (·)))

+
∥
∥
∥
∥
∂ I x0 ρv(t)

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))
‖θv(t)‖L2(D2,L2

r (0,Rs (·)))

+C
∥
∥
∥I

(0)
h ((J − Jh)θvs(t))

∥
∥
∥
L1(D2)

+ C
∥
∥
∥(Jh − I 0(0) Jh)θvs(t)

∥
∥
∥
L1(D2)

≡
4∑

i=1

Ri ,

(66)

where, θvs(t) = θv(x; Rs(x), t) is the value of θv on the surface of the sphere of radius
Rx (x) associated with the point {x} of D2.

Lemma 12 There exists a constant C independent of h and r , but depending on k1
and k2, such that

d

dt
‖θv(t)‖2L2(D2,L2

r (0,Rs (·))) + k2

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

≤ Ch2
(
‖φ1(t)‖2H2(D1)

+ ‖φ2(t)‖2H2(D2)

)

+Ch2
(

|vs(t)|2H1(D2)
+ h2 ‖u(t)‖2H2(D1)

+
∥
∥
∥
∥
∂ J

∂x

∥
∥
∥
∥

2

L2(D2)

)

+Cr2
(

‖v(t)‖2L2(D2,H2
r (0,Rs (·))) + r2

∥
∥
∥
∥
∂v(t)

∂t

∥
∥
∥
∥

2

L2(D2,H2
r (0,Rs (·)))

)

+C
(
‖θu(t)‖2L2(D1)

+ ‖θv(t)‖L2(D2,L2
r (0,Rs (·)))

)
. (67)
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Proof We bound the terms R1, . . . , R4 on the right hand side of (66 ). Noting that∥
∥I x0 ρv(t)

∥
∥
L2(D2,L2

r (0,Rs (·))) ≤ C ‖ρv(t)‖L2(D2,L2
r (0,Rs (·))), then by virtue of Young

inequality and (33) it follows that

R1 ≤ Cr4 ‖v(t)‖2L2(D2,H2
r (0,Rs (·))) + C ‖θv(t)‖2L2(D2,L2

r (0,Rs (·))) . (68)

To bound R2 we notice that

∥
∥
∥
∥
∂ I x0 ρv(t)

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))
≤ C

∥
∥
∥
∥
∂ρv(t)

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))

= C

∥
∥
∥
∥(I − Pr

1 )
∂v(t)

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))

≤ Cr2
∥
∥
∥
∥
∂v(t)

∂t

∥
∥
∥
∥
L2(D2,H2

r (0,Rs (·)))
.

Hence, by Young inequality it follows that

R2 ≤ Cr4
∥
∥
∥
∥
∂v(t)

∂t

∥
∥
∥
∥

2

L2(D2,H2
r (0,Rs (·)))

+ C ‖θv(t)‖2L2(D2,L2
r (0,Rs (·))) . (69)

We bound the term R3. Thus, we have that

C
∥
∥I 0h ((J − Jh)θvs(t))

∥
∥
L1(D2)

= C
M2∑

l=1

ĥl |(J (xl) − Jh(xl))θv(xl ; Rs(xl), t)|

≤ C2

2

M2∑

l=1

ĥl (J (xl) − Jh(xl))
2 + 1

2

M2∑

l=1

ĥlθ
2
v (xl ; Rs(xl), t)

≤ C2

2

∥
∥I 0h (J − Jh)

∥
∥2
L2(D2)

+ 1

2

M2∑

l=1

ĥlθ
2
v (xl ; Rs(xl), t).

Estimating the last term on the right hand side of this inequality as we did
before in the proof of Lemma 11, see (62), and noting that

∥
∥I 0h (J − Jh)

∥
∥
L2(D2)

≤
C ‖J − Jh‖2L2(D2)

, it readily follows that

R3 ≤ C ‖J − Jh‖2L2(D2)
+ C(ε) ‖θv(t)‖2L2(D2,L2

r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

.

(70)

To bound R4 we notice that Jh − I (0)
h Jh = (Jh − J ) + (J − I (0)

h J ) + I (0)
h (J − Jh),

so by the triangle inequality it follows that

C
∥
∥
∥(Jh − I (0)

h Jh)θvs(t)
∥
∥
∥
L1(D2)

≤ C ‖(Jh − J )θvs(t)‖L1(D2)
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+C
∥
∥
∥(J − I (0)

h J )θvs(t)
∥
∥
∥
L1(D2)

+ C
∥
∥
∥I

(0)
h (J − Jh)θvs(t)

∥
∥
∥
L1(D2)

.

Noting that‖ab‖L1(D2)
≤ ε

2 ‖a‖2
L2(D2)

+ 1
2ε ‖b‖2L2(D2)

and applying the same argument
as we have just done to bound R3, we obtain that

∥
∥
∥(Jh − I 0h Jh)θvs(t)

∥
∥
∥
L1(D2)

≤ C

(

‖J − Jh‖2L2(D2)
+

∥
∥
∥J − I 0h J

∥
∥
∥
2

L2(D2)

)

+
M2∑

l=1

ĥlθ
2
v (xl; Rs(xl), t).

We bound the last term of this inequality as we have done for R3, and by virtue of

assumption A3 set
∥
∥
∥J − I (0)

h J
∥
∥
∥
2

L2(D2)
≤ Ch2

∥
∥ ∂ J

∂x

∥
∥2
L2(D2)

. Hence,

R4 ≤ C(ε) ‖θv(t)‖2L2(D2,L2
r (0,Rs (·))) + ε

∣
∣
∣
∣
∂θv(t)

∂r

∣
∣
∣
∣

2

L2(D2,L2
r (0,Rs (·)))

+C ‖J − Jh‖2L2(D2)
+ Ch2

∥
∥
∥
∥
∂ J

∂x

∥
∥
∥
∥

2

L2(D2)

. (71)

Letting ε = k2/8 in (61), (70) and (71), and replacing (68)-(71) in (66), the result (67)
follows. ��

Next, we proceed to calculate an estimate for θu . Thus, subtracting (15) from (10)
it readily follows that

∫

D1

∂θu

∂t
whdx +

∫

D1

k1
∂θu

∂x

dwh

dx
dx = λ

∫

D1

ρuwhdx −
∫

D1

∂ρu

∂t
whdx

+
∫

D1

a1 (J − Jh) whdx .

Setting wh = θu in this equation yields

1

2

d

dt
‖θu(t)‖2L2(D1)

+ k1

∥
∥
∥
∥
∂θu(t)

∂x

∥
∥
∥
∥

2

L2(D1)

≤ C

(

‖ρu(t)‖2L2(D1)
+

∥
∥
∥
∥
∂ρu(t)

∂t

∥
∥
∥
∥

2

L2(D1)

)

+C ‖J − Jh‖2L2(D1)
+ C ‖θu(t)‖2L2(D1)

.

By virtue of Lemma 11 we have the following result.

Lemma 13 There exists a constant C independent of h and r , but depending on k1
and k2, such that
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d

dt
‖θu(t)‖2L2(D1)

+ k1

∥
∥
∥
∥
∂θu(t)

∂x

∥
∥
∥
∥

2

L2(D1)

≤ C
{
h2(‖φ1(t)‖2H2(D1)

+ ‖φ2(t)‖2H2(D2)
+ |vs(t)|2H1(D2)

)

+h4
(

‖u(t)‖2H2(D1)
+

∥
∥
∥
∥
∂u(t)

∂t

∥
∥
∥
∥

2

H2(D1)

)

+ r2 ‖v(t)‖2L2(D2,H2
r (0,Rs (·)))

}

+C
(
‖θu(t)‖2L2(D1)

+ ‖θv(t)‖L2(D2,L2
r (0,Rs (·)))

)
+ k2

4

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))
.

(72)

We are now in a position to establish the main result of this subsection.

Theorem 14 Let (u, v, φ1, φ2) and (uh, vhr , φ1h, φ2h) be the solutions to (10)-(13)
and ( 15)-(18) respectively, with

‖u(0) − uh(0)‖L2(D1)
≤ Ch2 and ‖v(0) − vhr (0)‖L2(D2,L2

r (0,Rs (·))) ≤ C(h + r2).

Furthermore, for 0 ≤ t ≤ Tend, the following regularity assumptions hold:

R1) u and
∂u

∂t
∈ L2(0, Tend; H2(D1)),

R2) v and
∂v(t)

∂t
∈ L2(0, Tend; L2(D2; H2

r (0, Rs(·)))), and vs ∈ L2(0, Tend; H1

(D2)),

R3) φ1 ∈ L2(0, Tend; H2(D1)), φ2 ∈ L2(0, Tend; H2(D2)), and J ∈ L2(0, Tend;
H1(D2));

then there is a constant C(t, k1, k2) such that

‖u(t) − uh(t)‖2L2(D1)
+ ‖v(t) − vhr (t)‖2L2(D2,L2

r (0,Rs (·)))

+
∫ t

0
‖�(τ) − �h(τ )‖2V dτ ≤ C(h2 + r2). (73)

Proof Bounding ‖u(t) − uh(t)‖2L2(D1)
as 2

(‖ρu(t)‖2 + ‖θu(t)‖2
)
and using the esti-

mate of Lemma 11 for ‖vs(t) − vsh(t)‖L2(D2)
, Theorem 10 yields

‖�(t) − �h(t)‖2V ≤ Ch2 |vs(t)|2H1(D2)
+ Ch4 ‖u(t)‖2H2(D1)

+ C ‖θu‖2L2(D1)

+C(ε) ‖θv(t)‖2L2(D2,L2
r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

.

Considering this estimate together with those of Lemmas 12 and 13 it readily follows
that
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d

dt

(
‖θu(t)‖2L2(D1)

+ ‖θv(t)‖2L2(D2,L2
r (0,Rs (·)))

)
+‖�(t) − �h(t)‖2V ≤C(h2+r2)

+C
(
‖θu(t)‖2L2(D1)

+ ‖θv(t)‖2L2(D2,L2
r (0,Rs (·)))

)
.

Then, Gronwall inequality yields

‖θu(t)‖2L2(D1)
+ ‖θv(t)‖2L2(D2,L2

r (0,Rs (·)))

+
∫ t

0
‖�(τ) − �h(τ )‖2V dτ ≤ C(t, k1, k2)(h

2 + r2). (74)

The terms ‖θu(0)‖2L2(D1)
and ‖θv(0)‖2L2(D2,L2

r (0,Rs (·))) are considered to be zero. From
(57), (58), (59) and (35) it follows that

‖u(t) − uh(t)‖2L2(D1)
+ ‖v(t) − vhr (t)‖2L2(D2,L2

r (0,Rs (·)))
≤ 2

(‖ρu(t)‖L2(D1)
+ ‖θu(t)‖L2(D1)

)

+C
(
h2 ‖v(t)‖H1(D2;L2

r (0,Rs (·))) + ‖ρv(t)‖2L2(D2,L2
r (0,Rs (·))

+‖θv(t)‖2L2(D2,L2
r (0,Rs (·))

)
.

So, by combining this inequality with (74) we obtain (73). ��

5 Fully discrete model

We now consider the fully discrete model based on the time stepping backward Euler
scheme. This scheme has been used to discretize in time the equations of the P2D
model either with finite differences [12], finite volumes [11,17], or finite elements.
For convenience, hereafter we shall use the notation an := a(x, tn), where n is a
nonnegative integer and tn = nt , t being a uniform time step. The formulation of
the fully discrete model is as follows. Assuming that at time tn−1, n = 1, 2, . . . , N , the
solution (un−1

h , vn−1
hr , φ

n−1
1h , φn−1

1h ) ∈ V (1)
h (D1)×Vhr (D3)×Wh(D1)×V (1)

h (D2) is

known, calculate (unh, v
n
hr , φ

n
1h, φ

n
1h) ∈ V (1)

h (D1)×Vhr (D3)×Wh(D1)×V (1)
h (D2)

as solution of the system

∫

D1

∂̃t u
n
hwhdx +

∫

D1

k1
dunh
dx

dwh

dx
dx =

∫

D1

a1 J
n
h whdx ∀wh ∈ V (1)

h (D1). (75)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

D2

∫ Rs (x)

0
∂̃tv

n
hrwhr r

2drdx +
∫

D2

∫ Rs (x)

0
k2

∂vnhr

∂r

∂whr

∂r
r2drdx

= −
∫

D2

R2
s (x)J

n
h whr (x, Rs(x))

a2(x)F
dx ∀whr ∈ Vhr (D3).

(76)
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∫

D1

κ(unh)
dφn

1h

dx

dwh

dx
dx =

∫

D1

Jnh whdx ∀wh ∈ V (1)
h (D1). (77)

∫

D2

σ
dφn

2h

dx

dwh

dx
dx = −

∫

D2

(
Jnh + g

)
whdx ∀wh ∈ V (1)

h (D2). (78)

∫

D2

Jnh dx = 0 with
∫

Da

Jnh dx = I (tn) = −
∫

Dc

Jnh dx, (79)

where

∂̃t u
n
h = unh − un−1

h

t
, ∂̃tv

n
hr = vnhr − vn−1

hr

t
,

Jnh = J (x, un
h
, vnsh, η

n
h) = a2(x)i

n
0h sinh

(
βηnh

)
, in0h = i0(u

n
h, v

n
sh),

ηnh = φn
1h − φn

2h − αn
h ln u

n
h −Uh(v

n
sh), αn

h = α(unh). (80)

5.1 On the existence and uniqueness of the solution of the fully discrete model

To prove that the system (75)-(78) has a unique solution, we first show that assuming
(unh, v

n
hr , v

n
sh) ∈ V (1)

h (D1) × Vhr (D3) × V (0)
h (D2) and the assumptions A1-A4

hold, the system (77)-(78) has a unique solution (φn
1h, φ

n
2h) ∈ Wh(D1) × V (1)

h (D2);
then, returning to the system (75)-(76) and applying a well-known consequence of
Brower‘s fixed point theorem, which is presented as Corollary 1.1 in [8], we prove
that there exists (unh, v

n
hr ) ∈ V (1)

h (D1) × Vhr (D3).

Lemma 15 Assuming that for all n, (unh, v
n
hr , v

n
sh) ∈ V (1)

h (D1) × Vhr (D3) ×
V (0)
h (D2), and the assumptions A1-A4 hold, then the system (77)-(78) has a unique

solution (φn
1h, φ

n
2h) ∈ Wh(D1) × V (1)

h (D2).

Proof Looking at (77)-(78) and in order to applyMinty-Browder theorem to prove the
existence of a solution, we define the functions

η̂nh := −αn
h ln u

n
h −Uh(v

n
sh) and Ĵ nh := Jnh (x, unh, v

n
sh, η̂

n
h),

it is worth noticing that η̂nh is equal to ηnh when the potentials φn
1h and φn

1h are zero.
Now, going back to Sect. 4.2 and using Ĵ nh , we define the operators B̂h : Vh → V ∗

h
and Ah : Vh → V ∗

h as follows: for all n = 1, 2, .., N ,

〈
B̂h(�

n
h),�h

〉 =
∫

D2

(Jnh − Ĵ nh )(ψ2h − ψ1h)dx ∀�h ∈ Vh .

and

〈
Ah(�

n
h),�h

〉 = ah(�
n
h, �h) + 〈

B̂h(�
n
h),�h

〉
.
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Notice that when �n
h = (0, 0),

〈
B̂h(�

n
h),�h

〉 = 0 because Jnh = Ĵ nh . Now, we can

recast (77)-(78) as follows. Find �n
h := (φn

1 , φn
1 ) ∈ Wh(D1) × V (1)

h (D2) such that

〈
Ah(�

n
h),�h

〉 = −
∫

D2

gψ2hdx −
∫

D2

Ĵ nh (ψ2h − ψ1h)dx ∀�h ∈ Vh . (81)

We can prove, using the same arguments as in Lemma 8, that the operator B̂h is
monotone, bounded and continuous satisfying an inequality as (46); since the bilinear
form ah is continuous and semi-definite positive, then it follows that the operator
Ah is monotone, bounded and continuous satisfying an inequality as (46). In order
to prove that (81) has a solution it remains to show that Ah is coercive, i.e., ∀�n

h ∈
Wh(D1) × V (1)

h (D2), there exists a positive constant α such that

〈
Ah(�

n
h),�

n
h

〉 ≥ α
∥
∥�n

h

∥
∥2
V .

This can be easily done by considering the following facts: 1) Ah is monotone; 2) it
is easy to check, using the same arguments as in Theorem 10 to prove (51), that ∀�n

h ,

�
n
h ∈ Wh(D1) × V (1)

h (D2)

ah(�
n
h − �

n
h,�

n
h − �

n
h) +

〈
B̂h(�

n
h) − B̂h(�

n
h),�

n
h − �

n
h

〉
≥ α

∥
∥
∥�n

h − �
n
h

∥
∥
∥
2

V
,

then taking �
n
h = (0, 0) it follows the coerciveness of Ah . Hence, the Minty-Browder

theorem [18] guaranties the existence of a solution�n
h of (81). To prove the uniqueness

of this solution we follow the argument put forward in [19] to prove the uniqueness
of the exact solution, and assume that there two solutions �n

h := (φn
1h, φ

n
2h) and

�
n
h :=

(
φ
n
1h, φ

n
2h

)
of (77)-(78), then setting, z1h = φn

1h − φ
n
1h and z2h = φn

2h − φ
n
2h ,

from (77) it follows that

∫

D1

κ(unh)
dz1h
dx

dwh

dx
dx =

∫

D2

(
Jnh − J

n
h

)
whdx ∀wh ∈ V (1)

h (D1)

and from (78)

∫

D1

σ
dz2h
dx

dvh

dx
dx = −

∫

D2

(
Jnh − J

n
h

)
vhdx ∀vh ∈ V (1)

h (D2),

where Jnh = Jnh (x, unh, v
n
sh, η

n
h) and J

n
h = Jnh (x, unh, v

n
sh, η

n
h), with ηnh = φ

n
2h − φ

n
1h −

αn
h ln u

n
h − Uh(v

n
sh). Setting wh = z1h and vh = z2h and applying the mean value

theorem one readily obtains that

∫

D1

κ(unh)

(
dz1h
dx

)2

dx +
∫

D1

σ

(
dz2h
dx

)2

dx +
∫

D2

∂ Jnh (ξ)

∂ηn
(z2h − z1h)

2 = 0,
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here
∂ Jnh (ξ)

∂ηn
> 0 according to assumption A3. The first term of this expression implies

that for all n,

z1h = φn
1h − φ

n
1h = K1,

but the constant K1 = 0 because φn
1h and φ

n
1h are inWh(D1), so φn

1h = φ
n
1h Similarly,

from the second and third terms it follows that z2h = 0, and consequently φn
2h = φ

n
2h .

Hence, we have just proved that for all n there is a unique solution (φn
1h, φ

n
2h). ��

Lemma 16 Let (φn
1h, φ

n
2h) ∈ Wh(D1) × V (1)

h (D2) be the solution to (77)-( 78). There

exists a unique solution
(
unh, v

n
hr

) ∈ V (1)
h (D1) × Vhr (D3) to the system (75)-(76).

Proof We start proving the existence of unh ∈ V (1)
h (D1) as solution of (75). To this

end, we write (75) as Fh(unh) = 0, where Fh : V (1)
h (D1) → V (1)

h (D1) is a continuous
mapping defined by the relation

∫

D1

Fh(χh)whdx =
∫

D1

(
χh − un−1

h

)
whdx + t

∫

D1

k1
dχn

h

dx

dwh

dx
dx

−t
∫

D1

a1 J
n
h (χh)whdx = 0 ∀wh ∈ V (1)

h (D1),

here, Jnh (χh) = J (x, χh, vsh, φ
n
1h, φ

n
2h,Uh(vsh)), with vsh being picked up from S∗

Q
because we assume that vnhr belongs to this space; moreover, we also assume that
χh is in SP . According to Brower‘s fixed point theorem, the equation Fh(χh) = 0 has

a solution χh ∈ Bq :=
{
vh ∈ V (1)

h (D1) : ‖vh‖L2(D1)
≤ q

}
, if

∫

D1
Fh(χh)χhdx > 0

for ‖χh‖L2(D1)
= q. On account of the assumptions vsh ∈ S∗

Q and χh ∈ SP , it
follows that there exists a constantC1 = C1(P, Q, K ) such that

∫

D1
a1 Jnh (χh)χhdx ≤

C1 ‖χh‖L2(D1)
. Hence,

∫

D1

Fh(χh)χhdx ≥ ‖χh‖2
L2(D1)

−
∥
∥
∥un−1

h

∥
∥
∥
2

L2(D1)

+tk0

∥
∥
∥
∥

dχn
h

dx

∥
∥
∥
∥

2

L2(D1)

− tC1 ‖χh‖L2(D1)

≥ ‖χh‖2L2(D1)
−

∥
∥
∥un−1

h

∥
∥
∥
2

L2(D1)
− tC1

(
1 + ‖χh‖L2(D1)

)
‖χh‖L2(D1)

.

Then, taking t ≤ t0 < 1/C1,
∫

D1
Fh(χh)χhdx is positive for ‖χh‖L2(D1)

suf-

ficiently large. This shows the existence of the solution unh ∈ V (1)
h (D1). Next, we

prove the uniqueness. To this end, we consider that there exist X and Y ∈ V (1)
h (D1)

satisfying (75), so

∫

D1

(X − Y ) whdx + t
∫

D1

k1
d(X − Y )

dx

dwh

dx
dx
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= t
∫

D1

a1
(
Jnh (X) − Jnh (Y )

)
whdx ∀wh ∈ V (1)

h (D1).

Setting wh = X − Y and invoking the arguments of Lemmas 5 and 6 yields

‖X − Y‖2L2(D1)
+ k1t

∥
∥
∥
∥
d(X − Y )

dx

∥
∥
∥
∥

2

L2(D1)

≤ tC2 ‖X − Y‖2L2(D1)
,

where the constantC2 = C2(P, Q, K ). Thus, takingt ≤ t0 < 1/C2 it follows that
X = Y . It remains to prove the existence and uniqueness of vnhr , but the arguments
to be used for such a proof are the same as for unh , so we omit them. ��

5.2 Error estimates for the fully discrete solution

As in Sect. 4.3, we write for t = tn

⎧
⎨

⎩

un − unh = ρn
u + θnu ,

vn − vnhr = vn − I x0 vn + I x0 ρn
v + θnv .

(82)

Theorem 17 Let (unh, v
n
hr , φ

n
1 , φn

2 ) be the solution to (75)-(78). Then, under proper
regularity assumptions there exists a constant C such that for t small

∥
∥un − unh

∥
∥2
L2(D1)

+ ∥
∥vn − vnhr

∥
∥2
L2(D2,L2

r (0,Rs (·)))

+t
tn∑

j=1

∥
∥
∥� j − �

j
h

∥
∥
∥
2

V
dτ ≤ C(h2 + r2 + t2). (83)

The constant C is of the form C(�) exp(C(k1, k2)tn, C(�) being another constant that
depends on the exact solution (u, v, φ1, φ2), see (87) below.

Proof Since ρn
u , vn − I x0 vn + I x0 ρn

v and
∥
∥
∥� j − �

j
h

∥
∥
∥
2

V
are estimated as in Sect. 4.3,

we shall address our attention to the estimations for θnu and θnv . We start with the
calculation for θnv . For this purpose, we recast (64) for t = tn as

∫

D2

∫ Rs (x)

0

(

∂̃t I
x
0 vnw + k2

∂ I x0 vn

∂r

∂w

∂r

)

r2drdx

= −
∫

D2

I x0 (R2
s (x)a

−1
2 (x)F−1 Jnw(x; Rs(x)))dx

+
∫

D2

∫ Rs (x)

0

(

∂̃t I
x
0 vnw − ∂ I x0 vn

∂t
w

)

r2drdx . (84)
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Setting, as we did in Sect. 4.3, vnhr = I x0 vn − (
I x0 ρn

v + θnv
)
in (76) and using ( 32)

and (84 ) yields for t = tn

∫

D2

∫ Rs (x)

0

(

∂̃tθ
n
v whr + k2

∂θnv

∂r

∂whr

∂r

)

r2drdx

= λ

∫

D2

∫ Rs (x)

0
I x0 ρn

v whr r
2drdx −

∫

D2

∫ Rs (x)

0
∂̃t I

x
0 ρn

v whr r
2drdx

−
∫

D2

I 0h (R2
s (x)a

−1
2 (x)F−1(Jn(x) − Jnh (x))whs(x))dx

+
∫

D2

(
R2
s (x)a

−1
2 (x)F−1 Jnh (x) − I 0h (R2

s (x)a
−1
2 (x)F−1 Jnh (x))

)
whs(x)dx,

−
∫

D2

∫ Rs (x)

0

(

∂̃t I
x
0 vn − ∂ I x0 vn

∂t

)

r2drdx

Letting whr = θnv , whs = θnvs , and noting that for a and b real numbers, 2(a−b)b =
a2 − b2−(a − b)2, it follows that

1

2
∂̃t

∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + k2

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

≤ λ
∥
∥I x0 ρn

v

∥
∥
L2(D2,L2

r (0,Rs (·)))
∥
∥θnv

∥
∥
L2(D2,L2

r (0,Rs (·)))
+ ∥

∥̃∂t I
x
0 ρn

v

∥
∥
L2(D2,L2

r (0,Rs (·)))
∥
∥θnv

∥
∥
L2(D2,L2

r (0,Rs (·)))
+C

∥
∥
∥I 0h

(
(Jn − Jnh )θnvs

)∥∥
∥
L1(D2)

+ C
∥
∥
∥(Jnh − I 0h J

n
h )θnvs

∥
∥
∥
L1(D2)

+
∥
∥
∥
∥∂̃t I

x
0 vn − ∂ I x0 vn

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))

∥
∥θnv

∥
∥
L2(D2,L2

r (0,Rs (·))) ≡
5∑

i=1

Rn
i .

(85)

We bound the right hand side of this inequality applying the same arguments as in
(66). Thus, we have that

Rn
1 ≤ Cr4

∥
∥vn

∥
∥2
L2(D2,H2

r (0,Rs (·))) + C
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·)))

Rn
2 ≤ Cr4

t

∫ tn

tn−1

∥
∥
∥
∥
∂v

∂t

∥
∥
∥
∥

2

L2(D2,H2
r (0,Rs (·)))

dt + C
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) .

Rn
3 ≤ C

∥
∥Jn − Jnh

∥
∥2
L2(D2)

+ C(ε)
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

.

Rn
4 ≤ C

∥
∥Jn − Jnh

∥
∥2
L2(D2)

+ C(ε)
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + ε

∣
∣
∣
∣
∂θnv

∂r

∣
∣
∣
∣

2

L2(D2,L2
r (0,Rs (·)))

+Ch2
∥
∥
∥
∥
∂ Jn

∂x

∥
∥
∥
∥

2

L2(D2)

.
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In both Rn
3 and Rn

4 the term C
∥
∥Jn − Jnh

∥
∥2
L2(D2)

is bounded by Lemma 11 for t = tn ;
thus, using the notation � = (u, v, vs, φ1, φ2), we can set that

C
∥
∥Jn − Jnh

∥
∥2
L2(D2)

≤ C(�)(h2 + r2) + C
∥
∥θnu

∥
∥2
L2(D1)

+C(ε)
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

,(86)

where the constant C(�) is given as

C(�) = C max
(‖φ1‖L∞(0,Tend;H2(D1))

, ‖φ2‖L∞(0,Tend;H2(D2))
, ‖vs‖L∞(0,Tend;H1(D2))

,

‖u‖L∞(0,Tend;H2(D1))
, ‖v‖L∞(0,Tend;L2(D2;H2

r (0,Rs (·))))
)

. (87)

Hence, we can write

Rn
3 + Rn

4 ≤ C(�)(h2 + r2) + Ch2
∥
∥
∥
∥
∂ Jn

∂x

∥
∥
∥
∥

2

L2(D2)

+ C
∥
∥θnu

∥
∥2
L2(D1)

+C(ε) ‖θv(t)‖2L2(D2,L2
r (0,Rs (·))) + ε

∥
∥
∥
∥
∂θv(t)

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

.

To estimate the term Rn
5 , we notice that by approximation theory

∥
∥
∥
∥∂̃t I

x
0 vn − ∂ I x0 vn

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))
≤ C

∥
∥
∥
∥∂̃tv

n − ∂vn

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))

and

∂̃tv
n − ∂vn

∂t
= −1

t

∫ tn

tn−1

(t − tn−1)
∂2v

∂t2
dt,

so,

∥
∥
∥
∥∂̃t I

x
0 vn − ∂ I x0 vn

∂t

∥
∥
∥
∥
L2(D2,L2

r (0,Rs (·)))
≤ C

(

t
∫ tn

tn−1

∥
∥
∥
∥
∂2v

∂t2

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

dt

)1/2

.

Applying Young inequality yields

Rn
5 ≤ Ct

∫ tn

tn−1

∥
∥
∥
∥
∂2v

∂t2

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

dt + C
∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·)))
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Collecting these bounds in (85) and letting ε = k2/2 yields

∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + tk2

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

≤ ∥
∥θn−1

v

∥
∥2
L2(D2,L2

r (0,Rs (·))) + Fn
v

+C(k2)t
(∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + ∥
∥θnu

∥
∥2
L2(D1)

)
, (88)

where

Fn
v = t

(

C(�)(h2 + r2) + Ch2
∥
∥
∥
∥
∂ Jn

∂x

∥
∥
∥
∥

2

L2(D2)

+ Cr4
∥
∥vn

∥
∥2
L2(D2,H2

r (0,Rs (·)))

)

+Cr4
∫ tn

tn−1

∥
∥
∥
∥
∂v

∂t

∥
∥
∥
∥

2

L2(D2,H2
r (0,Rs (·)))

dt + Ct2
∫ tn

tn−1

∥
∥
∥
∥
∂2v

∂t2

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

dt .

(89)

To calculate an estimate for θnu , we observe that subtracting (75) from (10) and
setting θnu = enu − ρn

u it follows that

∫

D1

∂̃tθ
n
u whdx +

∫

D1

k1
dθnu

dx

dwh

dx
dx = λ

∫

D1

ρn
uwhdx −

∫

D1

∂ρn
uwhdx

+
∫

D1

a1
(
Jn − Jnh

)
whdx +

∫

D1

(

∂̃t u
n − ∂un

∂t

)

whdx .

Letting wh = θnu yields

1

2
∂̃t

∥
∥θnu

∥
∥2
L2(D1)

+ k1

∥
∥
∥
∥
dθnu

dx

∥
∥
∥
∥

2

L2(D1)

≤ C

(
∥
∥ρn

u

∥
∥2
L2(D1)

+ 1

t

∫ tn

tn−1

∥
∥
∥
∥
∂ρu

∂t

∥
∥
∥
∥

2

L2(D1)

dt

)

+Ct
∫ tn

tn−1

∥
∥
∥
∥
∂2u

∂2t

∥
∥
∥
∥

2

L2(D1)

dt + C
∥
∥Jn − Jnh

∥
∥2
L2(D1)

+ C
∥
∥θnu

∥
∥2
L2(D1)

.

Then by virtue of (29) and Lemma 11 it follows that

∥
∥θnu (t)

∥
∥2
L2(D1)

+ tk1

∥
∥
∥
∥
dθnu

dx

∥
∥
∥
∥

2

L2(D1)

≤
∥
∥
∥θn−1

u (t)
∥
∥
∥
2

L2(D1)
+ Fn

u

+C(k1, k2)t
(∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·)))+
∥
∥θnu

∥
∥2
L2(D1)

)
+ k2

2

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

(90)
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where

Fn
u = tC(�)(h2+r2)+Ch4

∫ tn

tn−1

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

H2(D1)

dt + Ct2
∫ tn

tn−1

∥
∥
∥
∥

∂2u

∂2t

∥
∥
∥
∥

2

L2(D1)

dt (91)

It remains to estimate
∥
∥�n − �n

h

∥
∥
V . Returning to the proof of Theorem 14 we have

that for t = tn

∥
∥�n − �n

h

∥
∥2
V ≤ C(�)h2 + C(ε)

(∥
∥θnu

∥
∥2
L2(D1)

+ ∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·)))
)

+ε

∥
∥
∥
∥
∂θnv

∂r

∥
∥
∥
∥

2

L2(D2,L2
r (0,Rs (·)))

. (92)

Thus, setting ε = k2/2 in (92) and adding (88), (90) and (92) we obtain that

(
1 − C(k1, k2)t

) (∥
∥θnu

∥
∥2
L2(D1)

+ ∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·)))
)

+t
∥
∥�n − �n

h

∥
∥2
V ≤ Fn

v + Fn
u

+
∥
∥
∥θn−1

u

∥
∥
∥
2

L2(D1)
+

∥
∥
∥θn−1

v

∥
∥
∥
2

L2(D2,L2
r (0,Rs (·)))

For t small

∥
∥θnu

∥
∥2
L2(D1)

+ ∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + t
∥
∥�n − �n

h

∥
∥2
V ≤ C

(
Fn

v + Fn
u

)

(
1 + C(k1, k2)t

)
(∥
∥
∥θn−1

u

∥
∥
∥
2

L2(D1)
+

∥
∥
∥θn−1

v

∥
∥
∥
2

L2(D2,L2
r (0,Rs (·)))

)

.

Hence, by repeated application and taking
∥
∥θ0u

∥
∥2
L2(D1)

+ ∥
∥θ0v

∥
∥2
L2(D2,L2

r (0,Rs (·))) = 0, it
results that

∥
∥θnu

∥
∥2
L2(D1)

+ ∥
∥θnv

∥
∥2
L2(D2,L2

r (0,Rs (·))) + t
n∑

j=1

∥
∥
∥� j − �

j
h

∥
∥
∥
2

V

≤ C
n∑

j=1

F j
v + F j

u
(
1 + C(k1, k2))t

) j−n
.

Noting that (1 + C(k1, k2)t) ≤ eC(k1,k2)t , then we can write

n∑

j=1

F j
v + F j

u
(
1 + C(k1, k2)t

) j−n
≤ eC(k1,k2)tn

n∑

j=1

F j
v + F j

u (by (89) and (91))

≤ C(�)eC(k1,k2)tn
(
h2 + r2 + t2

)
.

This completes the proof ��
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