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1 Introduction

In this paper we consider immersed finite element (IFE) methods for solving the following second-order
elliptic interface problem

V- (B@)Vu(@) = f() i O\ (L1)
[u]r(x) =0 on I (1.2)
[BVu-n]r(x) =0 on I (1.3)
u(z) =0 on 912, (1.4)

where [ € LQ(Q), 2 C ]Rd, d = 2,3 is a convex polygonal/polyhedral domain and I' is a compact
curve/surface without boundary embedded in 2. The interface I" divides {2 into two disjoint sub-domains
2% and 27. Without loss of generality, we assume that 27 lies strictly inside (2, see Figure [ for an
illustration. The jump conditions on the interface I" are defined as

[ur(z) =u"(z) —u (z), (1.5)
[BVu-n|p(z) := T (2)VuT(2) n(z) — 87 (2)Vu (z) - n(z), (1.6)
where u* = u| o+ and n(z) is the unit normal vector of the interface I" at = € I" pointing toward 27

We first consider the problem in two dimensions (d = 2) with a piecewise constant coefficient, i.e.,
Blz)=pB">0ifze 2T and B(z) =6~ >0ifz € 2. (1.7)

The extensions to variable coefficients and 3D problems are presented in SectionBland Section[6] respectively.

QJr

Fig. 1 A diagram of the geometries of an interface problem.

It is well known that the optimal convergence can be achieved by standard finite element methods if
interface-fitted meshes are used, see for example [6l0l50]. However, for a moving interface, it may be time
consuming to obtain an interface-fitted mesh at different time levels. IFE methods are designed to solve
interface problems using unfitted meshes that are not necessarily aligned with interfaces. An unfitted mesh
is generated independent of the interface and allows the interface cut elements. IFE methods are often
coupled with structured meshes and can utilize fast Poisson solvers and other efficient software packages.
Peskin’s immersed boundary method [46] is one of successful examples using unfitted meshes. We refer the
readers to [4I] for a brief review of various unfitted mesh methods for interface problems.

Traditional finite element methods using unfitted meshes only achieve sub-optimal convergence (i.e.,
O(h'/?) in the H' norm and O(h) in the L? norm) no matter how high degree of the polynomial is used,
see [41[13]. The sub-optimal convergence is due to the interface condition (3] that leads to discontinuous
normal derivative across the interface in general if 7 # 87. Thus, the regularity of the solution is low on
interface elements which the interface cuts and smooth polynomials cannot approximate the solution well
enough on these elements. For finite element methods, roughly speaking, there are two approaches to recover
the optimal convergence. The first one is to enrich the standard finite element space by augmenting extra
degrees of freedom on interface elements and if necessary add some integral terms into the variational form
to weakly enforce interface conditions, for example, the extended finite element method [I4], the unfitted
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Nitsche’s method [2548491[]] and the enriched finite element method [47]. The other approach is to modify
the traditional finite element space on interface elements according to interface conditions to achieve the
optimal approximation, while keeping the degrees of freedom and the structure unchanged, for example, the
multiscale finite method [10] and the IFE method [40,[43[421[27][26,20L21] that we utilize in this paper.

The key idea of the original IFE in [43] is to use a piecewise linear function as the basis function over
an interface element so that the continuity condition can be satisfied both for the function and the flux
along the line segment approximating the interface. It has been shown that the modified finite element
space (called the IFE space) exists and has the optimal approximation capability. However, one trade-
off is that the finite element basis may be discontinuous across interface edges on interface elements. In
[30,29], a Petrov-Galerkin finite element method is proposed, in which the IFE space is used as the trial
function space while the standard conforming linear finite element space is chosen as the test function
space. However, the coefficient matrix of the resulting linear system of equations is non-symmetric and the
convergence proof is still an open challenge except for the one dimensional case [36]. Another approach is to
add the contributions from the line integrals due to the discontinuities in the basis functions in deriving the
weak form as in the symmetric and consistent IFE method in [33]. However, the coercivity was only verified
by numerical examples in [33]. The partially penalized immersed finite element (PPIFE) method developed
in [44] includes some terms only on interface edges to penalize the discontinuity, which can guarantee the
optimal convergence if the penalty parameter is larger enough and the solution is in the piecewise H?®
space. The error estimate in the L? norm cannot be obtained by the standard duality argument due to
the requirement of the higher regularity. The PPIFE method is then extended to the second-order elliptic
interface problem with non-homogeneous jump conditions in [35] under higher regularity assumptions, and
other types of interface problems in [45[32].

In this paper, we develop and analyze a parameter free PPIFE method based on a special designed lifting
operator defined locally on interface elements. The new method avoids the limitation of the PPIFE in [44]
in choosing the stabilization parameter that may depends on %. We show that the lifting operator can be
expressed explicitly, and thus, is easy to be computed. The idea of using liftings comes from discontinuous
Galerkin methods. We refer the readers to the book [I1], particularly Chapter 4.3, for the definition of
liftings for discontinuous Galerkin methods. However, different from the discontinuous Galerkin methods
and the original PPIFE method [44], we show that the penalty term involving the jump of IFE functions
on interface edges does not need to be included since the IFE functions are continuous at nodal points. We
prove optimal error estimates of the new method in the H! and L? norms rigorously with usual piecewise
H? regularity assumptions. In addition, we also show that our method and the analysis can be extended to
variable coefficients and three-dimensional problems.

There are two major contributions in the theoretical analysis for IFE methods in this paper. First, we
present a novel and simple way to prove the optimal interpolation error estimates in the H' and L? norms
for the linear IFE space originally developed in [43]. The first proof of this result was presented in [42] based
on the multipoint Taylor expansion and the piecewise C? assumption. Thus, the proof is long and tedious
with the stronger than necessary regularity assumption. Recently, Guo and Lin [I8] presented a unified
multipoint Taylor expansion procedure for proving the optimal approximation capability of a group of IFE
spaces where the finite element function is a piecewise polynomial on subelements formed by the interface
itself instead of its line approximation. For high-contrast interface problems, Guzmén et al. [24] proposed
a finite element method where the shape functions on interface elements are also defined with subelements
formed by the interface. Note that the finite element functions in [24] are discontinuous on boundaries of
interface elements. Therefore the finite element space has more degrees of freedom than that of IFE methods.
Higher order methods are developed and analyzed in [I7]. The key of the analysis technique developed in
[24] is to use a patch around the interface element to deal with possible small triangles cut by the interface.
Using the patch idea, Guo and Lin [I9] proposed a framework to analyze IFEs and proved the optimal
approximation capability of an IFE space in three dimensions. In this paper, we have developed another
analysis technique for the interpolation error for IFE spaces without using patches. The core ingredient of
the analysis is to introduce some auxiliary functions on interface elements and then to carry out the analysis
(see Lemma [6] in Section [£1]). The idea using the auxiliary functions is inspired from early works on the
augmented IFE method [34].
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Note that some IFE methods use the exact interface information on interface triangles. The downside
of this approach is that the IFE shape functions often are discontinuous for curved interfaces. Other IFE
methods use the line segments to approximate the interface so that the IFE shape functions are continuous
in the interior of interface triangles. The first approach (the exact interface) is advantageous for high order
IFE methods [2)3] and three-dimensional problems [19]. For two-dimensional problems, we use the second
approach (line segments) and present a rigorous proof of the fact that the linear approximation of the
interface is enough to ensure the optimal convergence for linear IFE methods. We note that the existing
error analysis on the mismatch of the actual interface and the approximated interface for approximation
capabilities of IFE spaces is based on the argument in [9]. Thus, there will be a factor |logh| in those
interpolation error estimates. In this paper, we use a technique from [5] so that we can actually remove the
|log h| factor in the optimal interpolation error estimates.

The second major contribution of this paper is a new trace inequality (see Lemma [ in Section [L2)
on interface elements, which is key in proving the optimal convergence of IFE methods under a standard
piecewise H? regularity assumption. The new developed trace inequality can be applied to improve the
error analysis of the PPIFE method developed in [44]. The proof of the new trace inequality is based on
the decomposition of functions along the normal and tangent directions of interfaces, and the fact that the
IFE shape function and its flux are continuous across the approximated interface simultaneously.

The rest of the paper is organized as follows. In Section 2] we introduce notations, and the linear IFE
space. In Section Bl we define the local lifting operator and explain the new parameter free PPIFE method.
The main theoretical results of this paper are presented in Section @ where we give a new proof of the
optimal interpolation error estimates for the linear IFE space; establish a new trace inequality for broken
spaces; and prove the optimal convergence of the new developed parameter free PPIFE method in the H*
and L? norms under the standard piecewise H? regularity assumption. We extend the method and analysis
to variable coefficients and three dimensions in Section Bl and Section[6 Section [ presents some numerical
examples to confirm the theoretical analysis. We conclude in the last section.

2 Notations and the IFE space

Throughout the paper we adopt the standard notation Wzlf(/l) for Sobolev spaces on a domain A with the
norm || - ||W§(A) and the seminorm |- |W§(A). Specially, we denote W (A) by H"(A) with the norm || - | 2% )
and the semi-norm | - | gr(4). As usual H}(A) = {ve H(A) : v =0 on dA}. Furthermore, for a domain A,
we define

AT = Annt, A" =ANN",

and a subspace of H'(A) by
H?(A) := {v € L*(A) : v| 4+ € H*(A%), [v]lraa =0, [BVv-n]raa = 0} (2.1)
equipped with the norm and semi-norm
Iz aroa-y = 1 Wazeary + 11 zasys | 1 Ezaroa-y = | ey + 1 [Eeian)-
We have the following regularity theorem for the interface problem, see [31] and [10].

Theorem 1 If 2 is convex and polygonal, the interface I' is C*, and f € L*(£2), then the interface problem
(I2)-(L8) has a unique solution u € H?(R) satisfying

lull zr2(2+ue-) < CllfllLz(),
where C' is a constant depending only on 2, I' and f.

Let {Tn}n>0 be a family of triangulations of {2 such that no vertex of any element lies in the interior of
an edge of another element. We use hr to denote the diameter of T' € T, and define the mesh-size of the
triangulation by h = maxre7;, hr. We assume that 7}, is quasi-uniform, i.e., for every 7', there exist positive
constants k1 and k2 such that k1h < hp < kapr where pr is the diameter of the largest circle inscribed in
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T. Let &), be the set of edges and N}, be the set of vertices of the triangulation. We adopt the convention
that elements T' € T}, and edges e € &, are open sets. The sets of interface elements and interface edges are
defined as

TE={TeTh:TNT#0} and & :={ec& :enl #0}.

The set of non-interface elements is defined by 7,%°" = T, \ T, .

Assumption A. The interface I does not intersect the boundary of any interface element at more than
two points. The interface I" does not intersect € for any e € &£, at more than one point.

We can always refine the mesh near the interface with large curvature until Assumption A is satisfied.
As a common practice, we approximate the interface I" by I}, that is composed of all the line segments
connecting the intersection points of boundaries of interface elements T € 7;/ and the interface I". The
approximated I}, divides {2 into two disjoint sub-domains Q;l" and (2,". For convenience we approximate
the coefficient 5(x) as

Bu(z)=pTifxe 2 and Bu(z)=p" ifze ;. (2.2)

We will show that the approximation of the interface by I'j, does not affect second order convergence when
the interface I' is in C?. Let ny () be the unit normal vector of I, pointing toward Q; The unit tangent
vector tp, () is obtained by a 90° clockwise rotation of ny(z). We note that np(x) and t,(z) are viewed as
piecewise constant vector-valued functions defined on all interface elements.

Aq

/
T, \T~

Fig. 2 An interface element where the interface is approximated by the line segment.

Linear IFE shape function space. For an interface element T &€ ’7;{ , we denote the intersection
points of I" and T by D and E. The straight line DFE divides T into T,j' =TnN QZ‘ and T, =T N2, , see
Figure @l The linear IFE shape function on an interface element 7" € 7;. is defined as

o) [0 =0 = (o) €T (2.3)
x) = .
¢ =a +b xi+c x2, x=(x1,22) €T},
in which the coefficients are chosen so that the following conditions are satisfied
¢T(D)=0¢"(D), ¢"(B)=¢ (E), BTV  my=5 Vo -my. (2:4)

The linear IFE shape function space Sy (7") is defined as the set of functions in ([Z3)). It is obvious that IFE
shape function ¢ € Sp,(7T") and its flux are continuous across I, N1 simultaneously, i.e.,

[lr,nr =0 and [BnVeé-nplr,nr =0 on I NT. (2.5)

Lemma 1 Let A;, i = 1,2,3 be vertices of an interface element T € 7—hF and aumaz be the mazximum angle
of the interface element T. If otmaz < 7/2, then the function ¢ € Sp(T) defined in (2Z23)-(27) is uniquely
determined by ¢(A;), i = 1,2, 3 regardless of the interface location.
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Proof : See Appendix [A]] O

Linear IFE. On an interface element 7' € 7,1, we define the immersed finite element as (T, Sy, (T), IIr),
where
It = {Ni, N2, N3}, Ni(¢) = p(As), i =1,2,3.

On a non-interface element T' € 7;"°", we denote the set of linear functions by P1(7"). Then, the IFE
space VIFE can be defined as the set of all functions satisfying

¢lr € Sh(T), VT € Ty,
Pl € P1(T), VT € T,"",

¢ is continuous at every vertices z; € Np,.

The IFE space V,{FE is a modification to the standard linear conforming finite element space to recover the
optimal approximation capability. If 37 = 87, the IFE space V,%FE becomes the standard linear conforming
finite element space. We also need the following space for homogeneous boundary condition

V;;FOE ={ve ViFE v(zp) =0, Vo € Ny and xp € 002}

3 The parameter free PPIFE method

To present the new method, we first need a local lifting operator. On each interface element 7' € T;1, we
define the space
Wh(T) = {Vvh Yoy, € Sh(T)}

Let e € & be an interface edge shared by two interface elements 71 and T such that @ = T N Ts. We
define a space associated with the edge e as

We = {wy, € (L*(2))* : wnlr, € Wi(T1), whlr, € Wi(T2), wala\(rum) =0} (3.1)
Given a scalar or vector function, the jump and average across the edge e are denoted by
1
[U]Ene = (U|T1 - U|T2)n5a {U}E = §(U|T1 +U|T2)v

where n. is the unit normal of e pointing from 77 to T%.

We introduce a local lifting operator v : L*(e) — W for each e € £}, which is defined as a functional
() € We such that for all ¢ € L?(e),

/Q Bn(x)re(p) - wpdr = /{ﬂhwh ‘Nete pds, Ywp, € We, (3.2)

where n. is the unit normal of the edge e. Since wh|g\(TluT2) = 0 for all wp € W, we know that 7. is a
local lifting operator. Choosing wy, = Vo, in (B2) and using re(¢)|o\ (r,ur,) = 0, we find

Z / Br(x)re(p) - Vopdx = /{,BhVUh ‘N fepds, Yo, € Vit P (3.3)
T; e

i=1,2

The parameter free PPIFE method: find u, € V,;FOE such that

Ap(up,vp) = ap(up,vp) + sp(up,vp) = /Q fordx, Yo € V;iFOE, (3.4)
where
an(un,vp) = Y / Bu(@)Vun - Vondz — > [ ({BuVun - netelvnle + {BnVon - ne}elunle) ds (3.5)
TeT, T ecel Ve
and

sh(unp,vp) =4 Z /Qﬂh(x)re([uh]e) -re([vp]e)d. (3.6)

ec&l
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Remark 1

(1) The second term of the bilinear form ay,(+,-) and the stability term sp(-,-) are added to offset the errors
from the discontinuities of IFE functions across interface edges. Those terms are zero if 57 = 3~ and the
method becomes the standard linear conforming finite element method.

(2) In practical implementation, these additional terms are only evaluated on interface edges and interface
elements. Thus the extra computational cost in computing those terms is not significant in general.
(3)The idea of using liftings comes from the discontinuous Galerkin methods (see Chapter 4.3 in the book
[I1]). The idea has also be applied to the cut finite element methods [3849]. However, different from
the discontinuous Galerkin methods and the original PPIFE method [44], we do not need to include the
Zees,{ ht J.lun]e[vn]eds term in the bilinear form since the functions in the IFE space are continuous at
vertices of the triangulation.

Remark 2 The local lifting operator re needed in the parameter free penalty term s, (up,vp) is easy to be
computed. Let 71 and T» be two interface elements sharing the edge e. Given a function ¢ € L?(e), from
the definition (32), we know that the support of re(¢) is Th U T and 7e(¢) has the following form

cit;n + B din; inTT",
re«o)w{”’h J L F T (3.7

citip + BT din, inT;,,

where Tiih =T;N .Q,jl:, n;, = ny, T, © = 1,2. We show that the coefficients c¢1,d1, c2, d2
can be expressed explicitly. Choosing basis functions of W, as the test function wy, in ([B.2]), for example,

7, and t; , = tp

Bni, ifxeT],,

tin ifx €Ty, ) 7
wi(z) = { . wa(r) = By, ifzeTy,, (3.8)
0 otherwise, '
0 otherwise,
we obtain
tin-n ds n,-n ds
o — _tun + e J, Bno s iy — 1,h+ e Jo ¥ . (3.9)
28Ty |+ BTy 1) 2087T [ + BTy 1)
Similarly, we have
ton - ne ds ns - Ne ds
c2 20 fe P do = 20 IELP (3.10)

2(BFIT ]+ BT ,)) 206715, + BTy,

4 The error analysis

In the analysis, we use C to denote a generic error constant that is independent of h and the interface
location relative to the mesh but may depend on the coefficients 8%. The independence of the interface
location relative to the mesh means that the constant C' is independent of how small 7N 27 or TN 2~
might be.

Denote dist(z, I") as the distance between a point z and the interface I', and N(I',6) = {z € R? :
dist(z, I") < 6} as the neighborhood of I" of thickness ¢. Define a signed distance function near the interface

as
dist(z, I") if z € QTN N(I,6)

p(z) =<0 ifeerl
—dist(z, ") ifxe 27 NN(I[,d).
It is known that there exists a constant dg > 0 such that the signed distance function p(z) is well-defined in
N(I',60) and p(z) € C*(N(I',80)) since we assume that I' € C? (see [12]). Now the unit normal and tangent
vectors of the interface can be evaluated as n(xz) = Vp and t(z) = (a—i%, — ;zl )T, and these functions n(x)
and t(x) are defined in N(I,dp).
Assumption B. We assume that h < dg so that T'C N(I',00) for all interface elements T" € 771F.
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Since p(z) € C*(N(I',60)), we have
2

n@) e (C'M) and t(@) e (D), Vel (4.1)

For any interface element T € '77{, by Rolle’s Theorem, there exists at least one point z* € I' N T, see
Figure 2 such that

n(z*) =n,p(z*) and t(z*) =tp(z"). (4.2)

By using Taylor’s expansion at z*, we further have
In—np|pery <Ch  and |t —tullp~(ry < Ch, VT €T} . (4.3)

In the following lemma, we present a J-strip argument that will be used for the error estimate in the
region near the interface (see the third inequality in Lemma 2.1 in [39]).

Lemma 2 Let § be sufficiently small. Then it holds for any v € H'(2) that

lollz2(n(rsy) < OVl ).
Furthermore, if v|p = 0, then there holds

lvllLz(n(r,s)) < O8IVl L2 (v r,s))-
We need the following well-known extension result (see [15]).
Lemma 3 Assume that u™ € H?(2F). Then there exist extensions EXu® € H?(2) such that
(E5u®)|gs = v and |E5u| 20y < Oflu™|| g0+
with a constant C > 0 depending only on o*.
Recalling 7% = T'n 27, Thi =TnN Qf for all T € 7,1, we define

T = (AT U (T\T), (4.4)

We shall need the following estimate on the region T (see Lemma 2 in []).

Lemma 4 Assume that w € H'(T) and T € T;' . Then there is a constant C, independent of h and w,
such that

[wl|Z2¢ray < C(R*|wlZ2(rary + A VWl Te(ra)).

4.1 Approximation properties of the linear IFE space

We introduce an interpolation operator It' = : C°(2) — ViFE such that
(IFE0) (zi) = v(xi), Vo, € N, Yo e CO(R).

Let V3, be the standard linear conforming finite element space associated with 7j. Define the corresponding
nodal interpolation operator Iy, : C’O(ﬁ) — V3, such that

(Inv)(x:) = v(zi), Yai € N, Yoe C'(R).
To simplify the notation, for a function v € EQ(Q), we define
v (x) == v g, Vo e 2, i=+4,—,
and for a function vy, € S, (T) on an interface element 7' € 7T,

vh (z) = (EP*Wo,

m)(@), VeeT, i=+—.
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Here EP°Y : Py (T}) — P1(T) is a polynomial extension operator such that (Epozyw)|T;: = w for all w €
P1(T}), i = +, —, where P;(A) denotes the set of linear functions defined on a domain A. We also define an
operator [y, such that, for all v € H?(£2),

(Ero)(o) Etot if z € 2, (45)
v)\xr) = .
" E-v~  ifze ;.

To approximate the broken function E;v with v € I;TQ(.Q), we introduce a new interpolation operator IEK
on interface elements such that

(1K)

o =IEY, i=+,- VTET, YveH () (4.6)

On an interface element T € 7;", for a function v € H?(£2), we define

[v](z) :=EToT (z) —E v (), Ve e T,
[8Vv-n](z) == BTV(ETvT) - n(z) — 7V(E ) -n(z), Ve e T, (47
[P 5] () := (ILEY o) (@) — (IhE™ v ) (x), Vr €T, 7
[BVIF50) - n](z) := BTVILE W) -n(z) — B-VILE v) - n(z), Yz eT,
and for a function v, € VJFE,
[on](z) := v;f (z) — vy, (x), Vo €T, (48)
[BVur -n](z) := BTV -n(z) — B~ Vo, -n(z), Ve e T. .

Note that the difference between [-](z) and [-]r(z) is the range of x.

We introduce auziliary functions on each interface element T' € ’77? . Recalling that D and E are inter-
section points of I and 9T, we define auxiliary functions 7'(x), ¥p(z) and ¥g(zx) as

Yt =at 40tz + Tz, = (x1,22) €T},
Tyl T TUmtee o= (mm) €T (4.9)
Y " =a +b xz1+c x2, x=(x1,22) €T},
such that
T(4;) =0, j=1,2,3,
+ - + - fopt o (4.10)
r(D)=71"(D), Y (£)=7T (£), VY n, - VY -n,=1,
and
Ut =at 40Tz +ct e, x=(x1,22) €T},
Ui):=4q TR (mLr) €00 b, (4.11)
U, =a +b x1+c m2, z=(x1,22) €T},
such that
¥i(A;) =0, j=1,2,3, i=D,E,
+ogt —ow- ‘
VU np, =0"VY, -ny, i=D,E,
5] h=7p h (4.12)

V(D) ~ W5 (D) =1, UH(E) —¥p(E) =0,
V(D) ~ Wy (D) = 0, Wi (E) — ¥y (E) = 1.

Remark 3 The functions 7', ¥p and ¥g defined above exist and are unique. The justification is that the

coefficient matrix is the same as that for determining the IFE shape functions in the space Sy (T) if we write

a linear system for the unknown coefficients a*,b* and ™.

Lemma 5 On each interface element T € T, , let [IF¥v] and [BV(IF%v) - n] be define in {{7). Under
the condition of Lemmald, the following identity holds

1750 — Yo = [IPXo)(D)#p (x) + [T 0] (B)Pe(z) + [BVIEFv) - n](z*)T(z). (4.13)
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Proof : Let wy, := IPXv — I[F¥v. Tt is easy to verify that wy(A;) = 0,5 = 1,2,3 and wy|,+ are linear
h
functions. Define another piecewise linear function v, as

vn(z) := [wn](D)¥p(z) + [wr](E)¥e(z) + [BVwh - nn]T (2).
Next, we prove wp = vp,. From the definition (£9)-(£12), we have
[vr](D) = [wa] (D), [vr](E) = [wa](E), [BVvn-nn] = [BVwh - np], va(Ai) =0,i=1,2,3,

which implies wp, (x) — vp(x) € Sp(T) and (wp, — vp)(As;) = 0,4 = 1,2,3. From Lemma/[I] we know that the
function wy, — vy is unique and wp, — vy, = 0 through a simple verification. Now, we get the decomposition

wp(x) = vp(z) = [wp](D)p(z) + [wp](E)Pe(z) + [BVws - np]T (). (4.14)
From (Z3), (£2) and the definition (£J), we find

[wn](zp) = 111 *v](zp) — [k "ol (zp) = [I1 *v](zp), xp =D, E,
[8Vwn - np] = [B(VIZS0) - np] — [BVIFP0) - ny] = [B(VIZF0) - n](z").

The above identities combined with ([@.I4) lead to ([@.I3). O

Lemma 6 For each interface element T € T;!, let Wp(x), Wg(z) and Y(x) be defined in [F-9)-(F-13). Under
the condition of Lemmaldl, there hold

||W'L||%2(T) S ChQa |W’L|i11(T}TUTh_) S C, 1= D, E’
17|72y < CRY, [Yin () < CR?,

where the constant C' only depends on ﬂi and the shape-reqular parameter ka.
Proof : See Appendix[A2] O

The following lemma provides a relation between E,v and I}y for all v € le(Q)

Lemma 7 For any v € EQ(Q), under the condition of Lemmalll, there exists a constant C independent of
h and the interface location relative to the mesh such that

> |Env— I;IzFEU@;m(T}TUT;) < CRUPM ol erun-y, m=0,1.
TeT,

Proof : For each interface element T € T;1', by the triangle inequality, we have
IFE BK BK IFE
|Epv — Iy, UlH’"(T}TUTh_) < |Epv — I, v|H7,,,(T;UTh_) + I v =1 v|H7,,,(T;UTh_). (4.15)
From (A1) and ([4]), the estimate of the first term is the standard

BK_ |2 2 T v |?
[En = 17 0l guryy = (B0 = BET 0 Ty gy + BT = IE ™0 [ )

4—2m 4 42 — -2 (4'16)
<Ch (BT 0" 2 () + [E7 0 [f2(7))-
For the second term on the right-hand side of ({1, from Lemma (5 and Lemma [G we have
BK IFE BK
Iy, " v — I, Uﬁf’"(T;TUT[) <3 Z [Zn U]]Q(wp)wwpﬁ{m(T,juT;)
z,=D,E
+3[BV (I v) - n]* ()Y (@) Fm ) (4.17)

<COR*TE™ N 1 o (2p) + CH TPV (1Y ) -] (@),
rp,=D,F
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Since v € H?(£2), we have [v]*(D) = [v]*(E) = 0, which leads to

Yoo P ) = Y R Fv— vl (@p) < IR v = o] |2 (1)
=D,FE =D,E
o _ 4.18
< O||IL,E vt _E+U+||ioo(T) +C|LE vT —E" v ||2Loc(T) (4.18)
< Ch2(|E+”U+|§_12(T) + UE_U_'%{Q(T)):

where we have used the standard interpolation error estimate in the last inequality, see Theorem 4.4.20 in
7.

The remaining term [V (IF%v) - n](z*) in @I7) cannot be treated as [@IS) because Vu - n is not
well-defined at the point z* when u € H?(2). Using the standard inverse inequality, [{3) and the relation
n(z*) = np, we can derive

BV (I v) - n]* (@) = [[BYV UK 0) - np]l|7~ () < CRT2[BV (IR ) - ma]lL2cr)
< Ch™? (II[[BV(I;?KU) 0y, — BV nu]||Z2 () + [[BVe - (n+ 1y — n)]]||2Lz<T))
=4
<C Y (B fiaery + B i ery ) + Ch > [18V0 - nl e
i==+

where [3Vv - n] represents the jump of the flux of E¥v™ (see (@) for the definition of the notation [-]).
We combine ([{I5)-(I9) to obtain the error estimate on the interface element

|Env — I}LFEU@ITH(T;TUT;) < CR* 7™ Y B 2y + CR* ™ [[BVY - 0] [ Ze(r -
==+

Summing up and using Lemma[3] we get

IFE 4-2m —om
Z |Env — I, Ul%/Vg”(T’jUT,:) <ChiT? HU'@IQ(Q*UQ*) +Cn*? Z 118Vv - n]]”i%T) : (4.20)
TeT,” TeT,

Since v € H?(£2), from the definition ) we know that [3Vv-n] = 0 on I'. Thus, by Lemma B and the
fact n(z) € (C' (N (I, 50)))2, we have

> IIBVY - ]2z < NIBVY - n]ll72(nrnyy < CAIBVY - 0] 7 (n(rny)
TeT,r (4.21)

< Ch2(||E+v+||?{2(N(F,h)) +[E"v™ ”%—IQ(N(I‘,h))) < Ch2||v||§12(n+u(zf)-
Finally, substituting this into (£20) we complete the proof of the lemma. O
Now we are ready to prove the optimal approximation properties of the linear IFE space.
Theorem 2 For any v € HQ(Q), under the condition of Lemmalll there exists a constant C independent
of h and the interface location relative to the mesh such that
1/2
v — I Poll L2y + b ( > v- I}LFEvﬁp(T)) < CR?||v]| g2 (a+ua-)- (4.22)
TeTn
Proof : On each non-interface element 7" € 7;°™, we have the standard estimate
v — TPl Loy + hlo = In ol gy < CR||v]| 2oy (4.23)
On each interface element T' € ’ELF , by the triangle inequality, we have
IFE |2 IFE |2 2
|v = I, " lgmry < 2|EBpv — I, U|HM(T,L+UT;) +2v — Ehle"l(Th*uT,j)v m=1,2. (4.24)

The first term on the right hand-side can be estimated by Lemma [l
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Next, we try to estimate the second term on the right-hand side of (Z24). From (£I), we know that
Epv =ETvT on T,j', which together with the fact Eto™ =v™ = v on T,j' NTT implies

2 2 -2
Erv = 0l fpm gy = B 0T =0l oy = B0 =07 [ i\ payy m= 1,2, (4.25)
Since T, \T" C T4, T,\TT c 27 and Etv™ =E v~ on I, it follows from Lemma[] that

— 2 4 — —2 4 i 02
IE 0" =07 [[Fo iy pey < CHUE T —E7v™ 3104y < Ch > B Fr oy,
==+

IVE D — o) eryrey < C (WPIVEH =07 Eaqrnr + b BP0 — B0 [frgrs,)) (4.26)

< Ch? Z IV 22 (rary + cnt Z |E* " [}z (7.
i=+ =+

From ({.20) and ({26), we get, for m =0, 1,

[0~ Env[3m gty < Ch* 2" N |V L2 rary + CRY Y B |32 (7). (4.27)
i—t i—t

Analogously, we have the following result on 7},

[0 = Envl3m gy < O™ Y IV L2 (ramy + Ch* Y B 521y (4.28)
i=+ i=+

Combining (£23), [@24), (E2Z10), (£2]) and Lemmalll we have

Z v — I;LFEUGP"(T) < optTm <||U||§12(Q+UQ) + Z ||V'Ui||i2(r)> +Cnt Z B 1320, (4.29)
TEThH i=%4 i=+

which together with the global trace inequality on 0*

S IV ey < Cllollrzany + lollzz ) (4.30)
=4

and the continuity of the extension (see Lemma [3)
2 S — 2 2
1B 0F 132 2) + B0 [I20) < Cllvllzacas) + 10llFe2(0-)) (4.31)

implies the estimate ([@.22). O

4.2 The trace inequality for the space H?(T) + Sy (T)

Assume v € H? (T) and wy, € Sp(T'), the standard trace inequality cannot be applied to V(v — wp,) because
v —wy, ¢ H?(T). To establish the trace inequality for the broken space, we first need the following trace
lemma for the space H?(T).

Lemma 8 Assumev € I;TQ(T), there exists a constant C' independent of h and the interface location relative
to the mesh such that

IVollzaor) < C(h™= [Vl acry + A3 ol acrror-)).

Proof : Since v € H?(T), we have VoT € (H'(T*))? with T+ = 2* N T. By @), we obtain
VoT - t(z) € HY(TF) and fEVe™ - n(z) e HY(TF).

Using the condition [v]rar = [BVv - n]rar = 0 in the definition ([Z1J), we have

Vo -t(z) € HY(T) and B(z)Vv-n(z) € H'(T). (4.32)
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By the standard trace inequality, we get
||V1) . tHLz(aT) < C(h_i ||V1) : tHLQ(T) + h2 |V"U : t’|H1(T))7
||BVU . n”L?(BT) < C(h7§ ||BVU . n||L2(T) + h2 |BVU . n|H1(T))~
Hence, we finally conclude
IVollzar) < C(IVV - tll2(a7) + |1BVY -1 2(57))
S Ch_E(HVU . tHLQ(T) + ||,3VU . n||L2(T)) + Ch5(|Vv . t’lHl(T) + |ﬂv’0 . n|H1(T))
< C(h_i ||VU||L2(T) + h2 |U|H7(T+UT*))-

The following trace inequality for the spaces H2(T) + Sp,(T) is important in the convergence proof.

Lemma 9 Let T € T, be an interface element and Sy, (T) be the linear IFE shape function space. For
any v € H*(T) and any wy, € Sy(T), there exists a constant C independent of h and the interface location
relative to the mesh such that

_1 1
||V(’U — ’ll}h)”LZ(aT) <Ch 2 ||V(’U — 'Ll}h)”LZ(T) + Ch?2 (|'U|H2(T+UT*) + |U|H1(T))- (4.33)
Proof : First we split the left-hand side of the inequality as

V(v —wr)llL2ary < CIV(v —wr) - trllL2ar) + ClIBV (v — wh) - nn|l L2 a1)
< C([|[Vv-t = Vwy - tallr2a7) + [[VU - (8= t8)|l 22(07) (4.34)
+ I1BVY - n = B Vwy - mplL2a7) + [|BVY - (0 —np)|| 2 07)) 5

where we have used the fact 8 = 85, on the boundary 9T
Next, we estimate the first and the third terms on the right-hand side of ([£34). From (23], we have

Vuwy, - tn(x) € H'(T), (4.35)

which together with (£32) implies
Vv -t —Vuwy, -t, € H'(T).

Thus, by the standard trace inequality, the first term on the right-hand side of (£34]) can be estimated as
V0t = Vwp - ta 2 om) < C (h’% V0t — Vwy, - tall 2y + b2 Vo -t — Vo, - th|H1(T))
< Ch™F (Vo th — Vwn - tall L2y + | Vo - (6= ta)llL2(r)) + CRE 0] (s ore ) (4.36)
< Ch= (IV (0 —wn) [ 2r) + V0 - (& = t0) 2r)) + Ch= o] wacrsur-).
For the third term on the right-hand side of ([@34]), from (2.3]), we also we have
Bn(x)Vwp, -1y, € H'(T). (4.37)

Thus, it follows from (£32) that
BVv -1 — By Vuwy -ny, € H(T). (4.38)

Similar to (£36), by the standard trace inequality, we obtain
1BV -1 = By Vwn, - nn L2or) < Ch™3 (IV (0 = wi)lz2r) + V0 (0= 14) | L2y
+Ch%|U|H2(T+UT—).
Combining (£34)), (A30) and [A39), we obtain
IV = wi)llz2(or) < Ch™3 IV (0 = wn) g2z + Ch? folmacrsur-)

+Ch™2(|Vv - (n =)l L2y + [V - (t = tn)llL2(1))
+C(IVv - (t = tn)llz2or) + Vv - (n—mp)|[L2(01))-

(4.39)
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Using (43)), we further get

V(v —whn)llL2ory) < Ch™2 ||V (v —wn)l|L2(r) + Ch2 |[v| g2 (r+ur-)
+ Ch>2 ||VU||L2(T) + Ch”VUHLz(aT),

which, together with Lemma[8] completes the proof.

4.3 The stability analysis of the local lifting operator

Lemma 10 There exists a constant C' independent of h and the interface location relative to the mesh such
that
1
Ire(@)llz2(a) < Ch™7 @2y, Vo € L(e), Ve €&y .

Proof : Let Ty and T, be the interface elements sharing the edge e, i.e., T1 N Ty = € and T1,T> € T;' . Then
the support of re(¢) is T1 U Ts. Taking wp = re(¢) in B2), we have

Ire(@)l22(2) < CI8 *re(@)lIza(rum) = C/{Bhre(w) ‘Detepds

< Oll{Bure(@)Yellzaelielizace) < Cllellzzey D llre(v)

i=1,2

(4.40)

Tl L2 e)-

By definition, there exists a function vy, € Sy (T1) such that Vv, = re(¢)|r,. Choosing v = 0 and wy, = vy,
in Lemma [9 we have

_1 1
Ire(@)mllL2(e) = IVonllLzey < Ch72 [Vonllp2(ryy = Ch™ 2 ||re(@) | 2(1y)- (4.41)

Similarly, on the element 75, we also have the estimate

1
[re(@)TallL2(e) < Ch2re(@)l L2 (1) - (4.42)

The lemma follows from (L40)-(Z42). O

4.4 The optimal convergence analysis of the parameter free PPIFE method
For all v € (H&(Q) N E[Q(Q)) + VIFE we define the following mesh-dependent norms

Jollh = Z IVBrV V|72 (1)

TETh
and
2 2 2 -1 2
ollli = lolla + D BV VYellTae) + Y A7 Il Za(e) + sn(v, ). (4.43)
ec&l ec&}l
Note that || - ||, is indeed a norm because ||v||, = 0 implies v is a piecewise constant, which together with

the zero boundary condition and the continuity at I}, and nodal points implies v = 0.

It follows from the Cauchy-Schwarz inequality that
An(w, o) <l s llvlln, — Yw,o € (H3(2) 0 H*(2)) + Vi™. (4.44)
The following lemma shows that the parameter free PPIFE method is coercive with respect to || - ||4.
Lemma 11 (Coercivity) The parameter free PPIFE method has the following coercive relation

1
Ap(vn,vp) > 5||vh||i, Yop, € Vi P (4.45)
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Proof : For any e € £, we denote by P, the set of two triangles in 7,/ sharing the edge e. From (Z2) and
B3), we know that the support of re([vp]e) is Upep, T and

2 ) /{Bthh ‘Netelvnleds =2 ) > / Br(@)re([vnle) - Vopda.
ecel ¢ ecel TP’ T
From the Cauchy-Schwarz inequality, we further get

2 Z {BrVup, - netelvn]eds

ecel ¢

<2 Brre([vnle) - re([v ]e)dm) ( BrnVuy, - Vo dx) ’
(5 oo rimiam) (5 [ aiwn-va a

<2 XY [l rmlas | (XS [ 5o vods

ecgl TEP. ecgl TEP.

=

S
Wl

From Assumption A, we know that each interface element has at most two interface edges. Thus, each
interface element is calculated at most twice, i.e.,

>N /,Bthh-Vvhdx§2 > /ﬂh(x)Vvh-Vvhdx. (4.47)
T T

ceel TEP. TET,

Substituting [B6) and [@Z7) into (£40), we find

2 Z /{,Bthh ‘Nete[vnleds < (sh(vh,vh))% (2 Z /Tﬁh(ac)Vvh . Vvhdm> ’

ecel 7 TETh

1
< Q—Sh(vh,vh) +€ Z / Br(z)Vup, - Vupdz.
¢ TeT,” T

With e = %, the inequality above becomes,

1
2 Z /{,Bthh ‘Netelvnleds < sp(vp,vp) + = Z / Br(z)Voyp, - Vopdz.
ecel e 2 it I

Therefore, from [B3) and ([B6) we arrive at

1 1
an(vn, vn) + sn(vn,vn) 2 5 > / Br(z)Vop, - Vopdr = §||vh||i.
TeT; ' T

This completes the proof of this lemma. ]

Next, we try to prove the equivalence of the two norms || - ||, and ||| - ||| on the IFE space V,'F. We
need the following lemma, see Lemma 3.4 in [33] and (4.15) in [16] for the 2D cases, and Appendix [B:3] for
the 3D cases.

Lemma 12 Under the condition of Lemmalll, there exists a constant C independent of h and the interface
location relative to the mesh such that

li6lellZ2e) < Ch (IV@l3acryy + Vel Tacry ), Vee&d, VoeVi™, (4.48)
where Ty N T =€ and T1, Ty € T;L .
The equivalence of these two norms is shown in the following lemma.

Lemma 13 Under the condition of Lemmalll, there exists a constant C independent of h and the interface
location relative to the mesh such that

lonlln < llvalln < Cllonlln, Yo € VAT E. (4.49)
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Proof : The first inequality is obvious. Thus, we just need to prove the second inequality. For any e € &/,
we denote by Pe the set of two triangles in ThF sharing the edge e. Setting v = 0 in Lemma [0 we have

D hl{BVuRYelTzey C Y- D BlIVurlizer <C Y Y IVorlizr) < Clloalli. (4.50)

ecel’ ecel’ TePe. ecel’ TePe.

From Lemma[I2] we obtain

> BT HInlel ey <C Y0 > IVunlZecry < Clloalli (4.51)

ecgfl ecgl TeP,

From Lemma[IQ for the local lifting operator and ([@3E]]), we arrive at

sn(on,vn) C Y lIre(fonle)lza gy < C Y b Ifvnlellzagey < Clonllz,

ecel ecel
which together with (£43), (£50) and (@E]) yields the second inequality in (£49). O
The following lemma provides an optimal estimate for the interpolation error in terms of the norm ||| - ||| .

Lemma 14 Suppose v € HQ(Q) and the condition of Lemma [0 holds, then there exists a constant C
independent of h and the interface location relative to the mesh such that

IFE
I,

[lv — vlln < Chllv||g2(erue-)-

Proof : For any e € £, let T1 and T» be two elements sharing the edge e. Since (v — I} "v)|r € H(T) for
all T e 771 , by the standard trace inequality, we have

- fiILFEU]eHQLZ(e) <Ch™? Z llv — IfILFEv”%Z(Ti) +C Z v — I}ILFEU&P(T,;)' (4.52)

i=1,2 i=1,2
On the other hand, since (v — I Fv)|p € H?(T) 4 Sp(T) for all T € T;, by Lemma [ we have

h{BrY (v = I F0) el L2y < Ch Y IV (0 = I F0) L2 o)
TEP.

(4.53)
IFE \ |2 2 2 2
<C Z V(v =1 "v)l L2z, + Ch Z (vl (rrormy + [0l (1))
i=1,2 i=1,2

From Lemma[IQ for the local lifting operator, we find

sn(v— I Bo,o — IFE) < € Z )Te([vfI;IlFEv]E L2(Q) Z h™ v]e||2Lz(e). (4.54)
ecgfl
Combining (£43), (@52), (£53) and ([@54), we obtain
llo = IFPllh < Ch™2Jlo = I B0l R0y +C > o = I Foltn(ry + CR2(v]l m2(o+ua-),
TETh

which together with Theorem 2] implies this lemma. O

The following lemma concerns the consistent error caused by replacing 8(x) by SBr(z).

Lemma 15 Let u and up, be the solutions to (IL1)-(L8) and (37)-(34), respectively. Then it holds that

An(u = un,vp) = / (Br(x) = B(x))Vu - Vondz, Yo, € VTP,
TeT,F

where T is define in “Z4).
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Proof : Integrating by parts and summing up over all triangles in 7;,, we have, for any v, € Vi/ZF,

/vahdm: Z /Tﬂ(l‘)VU‘V’Uhdl‘f Z B(x)Vu - nelvp]ds

TETh ecel v e

= Z /TB(x)Vu« Vopdr — Z {BVu-nc}elvn]e + {BVvp - ne}elu]eds,

TETh ecgfl ¢

(4.55)

where we have used the facts that ulpo = 0, vplage = 0, the function v and its flux are continuous on all

edges &, since u € I;TQ(.Q), and v, € VFE is only discontinuous on interface edges &7 .

Since [u]e = 0, for any e € £}, we have r([u]e) = 0 and

sp(u,vp) =4 Z /Q,Bh(z)re([u]e) -re([vn]e)dz = 0, Yo, € Vi P, (4.56)

ec&l

Combining ([F4)-38), @E55) and @356), and using the fact that 8, (z) = B(z) on interface edges EL, we

arrive at the desired identity,
ap(u — up,vp) + sp(u—up,vp) = Z / (Br(z) — B(z))Vu - Vopdz.
TeT,F T4
O

We now provide the H! error estimate for the parameter free PPIFE method in the following theorem.

Theorem 3 Let u and up, be the solutions to (I1)-(114) and [37)-(34), respectively. Under the condition
of Lemmaldl, there exists a constant C' independent of h and the interface location relative to the mesh such
that

e = wnlln < Chllull g2(2+ue-).- (4.57)

Proof : By using Lemmal[I3 for the equivalence of two norms, the coercivity ([£45) and the continuity (£44)
of the bilinear form Ap(+,-), we have

llun = I Funlln < Cllun — Iy Funllh < CAw(un = In “unyun — I un)
=CAp(u — I;ILFEuh, up — I;ILFEuh) + CAp(up — u,up — I;{LFEuh) (4.58)
< Clllw =I5 un in Nl = 25 ln+C An(un = w,un — I un)
From Lemma [T8] we get
‘Ah(uh — U, Up — I;ILFEuh)) < Z / )(Bh —B)Vu- V(up — I;ILFEuh)) ds
A

TeT,”
1/2 (4.59)

<c Y / (V- Vun = 1) ds < Cllun = B lln |2 I9ulFegre)
T

TeTk TeTk

From Lemmad the global trace inequality on 2% and Lemma[3] we continue to derive the following,

Yo IVullieray = Y D IVElliaranry £ D D IVEW La(ra,

TET TeT, =+ TeTl i=+
<C Z Z (hQHVUi”QLZ(TmI‘) + h4|EiUi|i{2(TA))
i (4.60)
<CR* Y IV |iagr) + Ch* Y [E 32
i=+ i=£
<cn Z HUH?LI?(Q") = Chz”“”%ﬂ(rﬁu(zf)-
i=+

Substituting (£359) and (£60) into (£58), we obtain

IFE IFE
llun = In" unllln < Clllw — Iy “un |ln +Chllull g2 o+ ue-)-
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Thus, by the triangle inequality and Lemma [T4] we arrive at

IFE
I,

IFE
llw = wnllln < lllw =T “un llln + [l un = I " uslls

< Clu— 14 Pup ln +Chllull g2 o+ va-) < Chllullz(o+uo-),
which completes the proof of the theorem. 0O

Finally, we show the optimal L? error estimate for the parameter free PPIFE method using the standard
duality argument.

Theorem 4 Let u and up, be the solutions to (I1)-(14) and [37)-(3.4), respectively. Under the condition

of Lemmalll, there exists a constant C independent of h and the interface location relative to the mesh such
that

lu —unll20) < Ch2||u||Hz(Q+UQ,),
Proof : Let z be the solution of the following auxiliary problem

— V- (B(x)Vz) =u—up in Q\T,
[z2]lr =0, [BVz-n]p =0 on I, (4.61)
z=0 on 0f2.

Since u — uy, € L*(§2), it follows from Theorem [ that
2 H'(2) and ||z]lg2(a+uo-) < Cllu—unlr2(o)- (4.62)

Multiplying (£61]) by u — uj, and integrating by parts, we find

o=l = 3 /T—V.(,B(z)Vz)(u—uh)dm

TETh

Z /T,BVZ -V(u —up)dx — Z {BVz nc}le[u — upleds.

TETh ecel "¢

Using the facts that [z]e = 0 and sp(z,u — up) = 0, we have

||ufuh||2Lz(Q): Z /TBVz~V(ufuh)dachsh(z,ufuh)

TETh

= > [ {BVz nelelu —unle + {8V (u—un) - ne}e[z]e) ds

e r €
& (4.63)
= An(z,u—up) + Y / (B = Br)Vz-V(u—up)de
TeT, T
= An(z = I Pz,u — un) + ATy Pz,u —up) + Y / (B —=Bn)Vz-V(u—up)dz.
e, 7T
The first term of (£63) is bounded as shown below,
An(z = I Pz, u—up)| S Ol 2 = Iy "z lln lw = unllln < Ch?|1z] m2@+ue-) lull m2(@+ue), (4.64)

where we have used (£44]) in the first inequality, and Lemma [[4] and Theorem B in the second inequality.
From Lemma [[5] and the symmetry of the bilinear form Aj(-,-), we estimate the second term of (LG3)
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below,

)Ah(I}lFEz,U*”h)‘S > AA‘(Bh—ﬂ)vu.VJ;FEZ‘dm

TeTk
<C Z IVull 2oy IVIR B2 = 2| 2oy + C Z IVullLz(ray V2l L2 (02
TeTF TeTF
1/2 1/2
<ClI ™z =zl + | D IIV2llizcra > IVulleers)
TeTk TeTk

1/2

< CR?||2)l 2o+ v llull 2o+ ue-) + Chllullrzerua-y | D IV2lTe(ray :
TeT,”

where we have used ([L.60) and Lemma[I4] in the last inequality. Similar to (Z60), we also have

Z ||VZ||i2(TA) < Ch?||2l1H2 (2 +ua-y.s (4.65)
TeT,l
which leads to
A2 = wn)| < OBz v o Il 12 - (4.66)

Next, the third term of (£63)) can be estimated below

<C Z IVzllL2ray[IV(u = un)| L2 (ra)
TeT,
1/2 (4.67)

2 2
Sllw=unlln [ Y IV2lZray < CR%| 2|l 2 (rua-) vl z2(erue-),
TeTk

Z /T(/B - ﬁh)vz . V(u — Uh)dm

TeTh

where we have used ([.60) and Lemma[I4]in the last inequality. Substituting (4.64), (4.66) and (4£67) into
(£63)) and using the regularity result ([L.G2), we finally arrive at

lu = unllz20) < CR?|lullg2(o+ruo-),

which completes the proof of the theorem. a

5 Extension to the interface problem with variable coefficients

In this section, we consider the interface problem with variable coefficients, i.e.,
B(x)=pT(x) if e 2" and Bx)=p (z) if zen,

where Bi(m) are defined in slight larger domains 2F := QF U N(I,80). We assume 3 € C1(2%), i =+, —.
Thus, there exist positive constants Bmin, Bmaz and Cg such that

Bmin < BE(2) < Bmas, Yo € QF  and  [|VAE| 52 < Cs. (5.1)

On an interface element T € 7—hp , we use some sort of averages of the coefficients B: and B; over the
sub-region such that

1By — B (@)llp~ry <Ch and |[B), — B~ (@)l p=(r) < Ch, (5.2)

where the constant C' may depend on ||B+||W§C(T) and [|B7 lw (). For example, we can choose Ef =
ﬂi(mm) with an arbitrary point z,, € T.
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Modifications to the parameter free PPIFE method for variable coefficients. The coefficients
Br(z) in the local lifting operator ([3.2) and the method ([B4)-([3.6) are replaced by

Bu(z)=pT(z)ifzc 2 and Bn(z) =p" (z)ifz € 2.
In the construction of the IFE space, we replace the third equation in (Z4) by
Brve® ny =B, Ve -my. (5.3)

The constants 8% in W (T) are also replaced by Bi The coefficients (39) and BI0) for the local lifting
operator now are computed from the following,

== =+
ti,n - ne fe Breds 4 nip - Ne (th fe+ Brpds + By, fe— IBhSOdS)
c1 = 1=

2 [p, Bnda 2812 fr;, Bnda +2(B,)? [y Buda

ey — tl,h ‘Ne fe ﬂhgods d2 _ ng p-Ne (B; f€+ /Bh(,DdS +B: fe— ﬂh@d‘s)
2 [, Brdz 2B1)? [y Brda + 282 Jy.. Brdx

where e = en Q,f

Modifications to the analysis. On an interface element 7' € 7, , we define a function B, (z) such
that
Bu(x)=B, if zeT; and B,(x)=35, if zcTy .

First we consider the modification to the proof of Lemma [ for the trace inequality. From (&.3), the
second equality in (2.5) becomes

[Bthﬁ . nh]phmT =0 onlIyNnT.
Thus, we only need to replace (£37) and (£38) by
By, (x)Vwp -ny € HY(T) and Vo -1 — 3, Vwy, -ny, € H' (T),

and the remaining proof process is the same.

Next we consider modifications to the proof of Lemma [7 for the interpolation error estimation. In the
construction of the auxiliary functions, we change the corresponding identities in (£I0) and (£I2) to

Bivrt n, —B, VY n,=1, BiV¥ -n,=pB,V¥ -n, i=D,E.
Now the result (4I3) in Lemmal[f and the inequality ({IT) in Lemmalll become
IP%0 — [0 = [IPSo(D)p (@) + Pl (EWs (@) + [B,V (18" v) - 0] (o)1 (x)
and

11050 = B0l e oy S CRPT2™ Y 1750 (2p) + CR* T2 [B, V(17 ) -n]* (@), (5.4)
z,=D,E

Thus, the estimate [@I9) in the proof of Lemma [7] needs to be changed as
18,V (12" v) - n]*(2") < |[BaV IR 0) - nn]ll T (ry < ChT2[BLV (17 0) - mill72(ry
< CR BV PR 0) - mall3aery + CR (B - Bu) VIPS0) - 3y

The estimation of the first term on the right-hand side is the same as that in (£I9). For the second term,
using (5.2)), we have

W2(1(8 = Br) VIR v) - nu] L r)

< Oh2 3T N8 = Bllie ) IVIRE' Eacr) < € Y- IVIE oy (5.6)
i=t == .

<C Y (IVEY — LEW) |72 + IVEV [Fary) <€ B i ry.
i=% i=%

(5.5)
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Combining (.4)-([E.6) and (ETI9), we can see that ([@20) also holds. Using (&), we find that [@ZI)) is also

correct. Hence, the optimal interpolation error estimates are not affected and Lemma[7 is still valid.

The other lemmas and theorems can be adapted to the variable case easily. Note that for Theorem ]
about the L? error estimate, we need the regularity result ([£62) for the problem with variable coefficients
which was proved in [51].

6 Extension to three dimensions

In this section, we extend our method and analysis to three dimensions. For simplicity, we also assume that
B(x) is a piecewise constant. Let now 7, be a simplicial triangulation of 2 and &, be all the faces of the mesh
Tr. We assume that the triangulation is quasi-uniform. Different from the 2D cases, the points of intersection
of the interface and the edges of a tetrahedron are usually not coplanar. The linear approximation of the
interface determined by three of these intersection points on each interface element may not be continuous
across interface faces (see [37, ?]). Thus, we should construct the IFE space according to the exact interface.
However, a discrete interface is also needed for the purpose of analysis. On an interface element 7' € 7,1, let
z* be a fixed point on I'NT and I';;% be the plane which is tangent to I" at 2*. Then we have n, = n(z*) on
this interface element. In practical implementations, we can choose z* as one of the intersection points of the
interface and the edges of the interface element. The discrete interface now is defined as I}, = UTeThr I 7

with I = I'3% NT. As I' € C?, similar to the 2D cases, if h < ho, it holds

| dist(z, T5%) || Lo (rary < CR®, ||n—nyg||p=(ry < Ch, VT €T . (6.1)

Modifications to the parameter free PPIFE method in 3D. The local IFE space on an interface
element T is then defined by

Sh(T) :={¢p € L*(T) : @|p+ = ¢F|p+, Vo* € Pi(T) satisfying [¢]

We note that the condition [¢]| rg=: = 0 in the above definition is equivalent to
[¢](z*) =0 and [Vé-t;n] =0, i = 1,2, (6.3)

where t1; and t2; are standard basis vectors in the plane Fﬁx}

Lemma 16 Let A;, i = 1,2,3,4 be vertices of an interface element T € ’7;{, Qmaz be the maximum angle
of all faces of the tetrahedron, and Ymaz be the mazimum dihedral angle of the tetrahedron. If aumar < 7/2
and Ymaez < 7/2, then the function ¢ € Sp(T) defined in (63) is uniquely determined by ¢(A;), i =1,2,3,4,
regardless of the interface location.

Proof : See Appendix [Bl O

We emphasize that, different from the 2D cases, the discrete interface I, now is not continuous. If the
IFE space is defined according to the discrete interface I}, then the IFE functions are not well defined on
interface faces due to the discontinuity of I',. The same issue exists for 8y, (z) defined in ([2.2]).

We replace the coefficient 8 (x) in the definition of the local lifting operator (8.2) and ([B.4)-(B3.0) of the
algorithm by the exact coeflicient 5(z). We also replace the constant 4 in the bilinear form s, (-, -) (see (36))
by 8 to ensure the the coercivity (£40]) since each interface element is now calculated at most four times
when estimating the integrals in the left-hand side of (£47). Although the IFE function vy, is discontinuous
across the interface, we also use the notation Vuv;, for the piecewise gradient for simplicity.

Modifications to the analysis in 3D. On an interface element with vertices A;, i = 1,2,3,4, we
define the auxiliary functions ¥(x), 7'(z) and ©;, i = 1,2 as

Olps = 0F|pe, F € PI(T), Vips =TF e, YE € P(T), Oilrs = OF |7z, OF e P1(T),  (6.4)

such that
V(Aj) =T(A;) = 0i(A;) =0, j=1,2,3,4,
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and
[[W]](l‘ [[BVW . l’lh]] = 0, [[VW . tj,h]] = 0, j = 1, 2,

[[T]](:E*) =0, [[ﬂvy : nh]] =1, IIVT ' tj,h]] =0, Jj=12 (65)
[6:](z") =0, [6VO;-ni] =0, [VO; -t;n] =65, j=1,2.

Lemma 17 Under the conditions of Lemmallfl, the auziliary functions defined above satisfy the following
estimates:

@3 ror-y < CR° 2™ X ormreur-y < CR° 2™, |Oi|fm(peur-y < Ch°72™, i=1,2, m = 0,1,
where the constant C' is independent of h and the interface location relative to the mesh.

Proof : See Appendix [B.2 |

Since the IFE space and the auxiliary functions are defined according to the exact interface, we replace
T[L" and T,, by T and T in the definition of the operator IBE in @9), i.e.,

(IPE0)| i = IEW', i=+,—, VT €T, VYveH*R). (6.6)

Similar to Lemma B we have the following identity on interface elements,

%0 = 1P = [1 5] (@)W (2) + [BV I 0) - mp] T (@) + ) [BVIR 0) - ti,n]Oi(x). (6.7)

i=1,2

We emphasize that the relation (6.3) has been utilized to prove the above decomposition. The optimal
interpolation error estimates are proved in the following theorem.

Theorem 5 For anyv € HQ(Q), under the conditions of Lemmall@, there exists a constant C independent
of h and the interface location relative to the mesh such that

Z v — I;LFEUﬁ{m(T‘*'UT—) < Ch472m||v||§{2(n+u(z—), m =0, 1.
TEThH

Proof : The proof is along the same lines as that of Lemma [7 It suffices to consider an interface element
T € T, The triangle inequality leads to

IFE BK BK IFE
v =TI, “v|gmrror-y < v =1 " vlgmrror-y + I v =1y 0| gm e ur-)-
The estimate of the first term is similar to ([£I6). For the second term, using (G.7)) and Lemma [I7] we have

[BE [IFE, 12
|h v —1p UlH’"(TJrUT*)

< C’h372m[[l;?Kv]]2(x*) i Ch572m[[BV(I;?Kv) ) nh]]Q L Opsm Z [[V(I}JLBKU) 'ti,h]]Q- (6.8)

i=1,2
Since [v]?(z*) = 0, it holds

[0l (@) =[17 " v = o]*(@") < Ol v — o]l (r)

<O EY —E|[Fery < Ch Y [E B2 (1. (6.9)
i=+ i=+

Similar to (£J9)), using the second inequality in (6]) we have

BV (I 0) - 0]? < Ch 30 (I gy + B sy ) + Ch™> 1890 n] [, - (6.10)
i=%

To estimate the third term on the right-hand side of (G.8)), we need tangential gradients V and V p, which
are defined by

(Vrz)(z) :=Vz—(n-V2)n, (Vp,2)(z):=Vz—(n,-V2)ny,, Ye €T, Yz€ H(T), VT € T .
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By definition, it holds

|vz'ti,h| < |thZ|7 |VFhZ| < |VZ|7
IVr,z = Vrzlr) = [[(n-Vz)n — (ng, - V2)ng| 27 (6.11)
=[[(n-Vz)(n—mnp) — (0 —np) - V2)nu| r2(1)

< COlln = npl[oe @) V2l L2 (1)
Using the above inequalities and the second inequality in (6.1]) we derive
[VUIES) -t u]? < [V, (IE50)]° < Oh™3 [V 1, (TE50)] 3y
< Ch73 [V, (I v = v) + (Vi = Vi + Vr)o ]| Tar
< o= (11, (P50 — 0)]ery + WV 0 — Vel Becry + NIV rell3acr))
< 0h72 (IIVEF<0 — )] ar) + I = nal =y | IV By + IV rel e

<Cch! Z (|Eivi|§12(m + |Eivi|%11(T)) +Ch™? ||[[VF”U]]||i2(T) .
i—t

(6.12)

Substituting ([69), (€I0) and ([EI2) into ([G8) yields

|75 — I;LFEvﬁ{’"'(T*UT*) < OoptPm Z ||Ei”i||%12(T) +CR*m (ll[[ﬁVv : n]]||2LZ(T) + ||[[VF”U]]||i2(T)) .
i—t

Using the facts [Vv] € (H'(N(I, 60)))3 and [Vrv]|r = 0, the remaining proof is the same as that of
Lemma[7] since Lemma [2] also holds for the 3D cases. a

The trace inequality @33) in Lemma [ also holds. Note that for any z € H'(T), we have
Vz=(Vp,z)+ (n, - Vz)ny,. (6.13)
Then, the split [£34)) in the proof is changed to

V(v —wn)llL2or) < ClIVr, (v —wn)llL2or) + ClIBV (v — wh) - np| L2 (o7)
S C (HVFU — Vphwh||L2(3T) + ||VFU — thv||L7(8T) (6.14)
+ ||5V1) -n — ,vah . nhHLZ(aT) + ||5V1) . (n — nh)||L2(3T)) .

The remaining proof of Lemma [0 can be easily adapted to the 3D cases using (6I1]) and the fact that
BVwy, -nyp, and V, wy, are constants.

Since the IFE space is defined according to the exact interface and the exact coefficient 5(z) is used in
the IFE method, the analysis for the IFE method in subsection [£4] can be adapted to the 3D cases if we
replace Thi and S by T+ and ,Bi, respectively. Note that, we only need to take into consideration of the
discontinuity of IFE functions across the interface I".

The discontinuity of IFE functions on I' causes two issues. The first one is that the trace inequality
[@52) in the proof of Lemma [ does not hold since (v — IFFPv)|7 does not belong to H(T) now. To

overcome this issue, we define an operator I,IALFE by
(IFE)t i T,

(6.15)
(IFE0)”  in Ty,

(IFBy)|p = {

where T, and T}, are subdomains of 7' divided by the plane I'¥“*. It is obvious that (Izﬁjv)h« € C°(T).
We have the following lemma whose proof is given in Appendix [B.4]

Lemma 18 Let T € T;' be an interface element and e € EL be one of its interface faces. For any v €
H?(), there exists a constant C independent of h and the interface location relative to the mesh such that

|TIFEy — Lol gy < CRY272M B Bo) g, (6.16)
10 = BP0l ey < R vl .
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Based on the above lemma, the inequality ([£52]) in the proof of Lemma [T4] is changed to

W= o = I vlell7zge) < CR7HIlw = LFPolelZee) + ChTH IR0 — IR vlel e e

<C Z (W2l — IIFRv|| T2y + [0 = IFB0| 3 (1) + CR IR — I P 0)e|| 72 (e

i=1,2
<C S (Bl = B 0lecry + o = BEPolin ey + A0 = BP0l e,
i=1,2
+|[[FEy — I,ILFEUﬁ{l(Ti) + h71||(I;LFEU — ;7R |p, QLz(e))
<oy (h_2||v — D)2 + |0 — IR0 2 g + h|1,£FEv|ip(Ti)) .
i=1,2

Summing over all interface faces and using Theorem [B, we have
Z h I — I P vlel| 2oy < CR2|[v]|Fr2(a+u0-) + Ch Z (|U|%{1(T) + v — I}IzFEU@Il(T))
SGSFI: TGIT;LI‘

< ChQHUH?‘IQ(QJrUQ*) +Ch Z |Ei”i|§11(1\r(r,h))
i=+

< CR*|vl|iz(a+ua-y + Ch? Z IE 0" ||} 2y < CR |0l 322+ 02y
i—t

where we have used Lemma [2] in the third inequality. Therefore, the result of Lemma [I4] also holds.

The other issue caused by the discontinuity of IFE functions on I" is the consistent error of the proposed
IFE method. The identity in Lemma [TH now becomes

Ap(u — up,vp) = / B~ Vu~ -nfvy]rds, Yo, € ViFE. (6.17)
r
The estimate of the consistent error is shown in the following lemma whose proof is given in Appendix

Lemma 19 For any u € H*(2) and v, € V;'¥®, it holds
1/2

< CR*||ull g2 > IVonllieerror-)
TeT,"

/ B~ Vu~ - nfvy|rds
r

With the help of ([G.I7) and the above lemma, the proof of Theorem [B] can be easily modified and the
result (£57) also holds under the conditions of Lemma [I6]

For the proof of Theorem M the equation ([AG3) now becomes
||u — uh||2L2(Q) = Ap(w—I7%2,u —up) + / B™Vu -n[I T2 pds + / B~ Vz" -nluplrds. (6.18)
r r

By Lemma [I9] the second term can be estimated as

1/2
/5—w—-n[1,£FEz]pds < CPP||ullgaco-y | Y IVIE 2l 20 or-)
r TeT,
1/2
< OB |lull 2 (- Z IV 2 = 2) |72 (rror-) +IV2|lL2(nv(rn))

TeT,

< Ch3/2||u||H2(rz—) (h||z||H2(rz+un—) + Z HVEiziHLQ(N(F,h)))
i—t

< Ch3/2||u||H2(Q—) <h||z||H2(Q+UQ—) + Z h1/2||Eizi||H2(Q))
i—t

< Ch?||ullgzca+uo-) 2l 22+ ua-),
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where in the third inequality we have used Theorem [l and in the fourth inequality we have used Lemma 2
The estimate of the third term on the right-hand of (6.I8) is analogous. The remaining proof is standard.
The L? error estimate in Theorem @ also holds under the conditions of Lemma [Tl

7 Numerical examples

In this section, we present some numerical examples for the parameter free PPIFE method to validate the
theoretical analysis. Let the domain {2 be the unit square (—1,1) x (=1, 1), and the interface I" be the zero
level set of a function ¢(z) so that 27 = {z € 2 : p(z) > 0} and 2~ = {z € 2 : p(z) < 0}. We use a
non-homogeneous boundary condition u|sn = g.

For simplicity, we use Cartesian meshes that are formed by first partitioning (2 into N x N congruent
squares and then cutting these squares along one of diagonals in the same direction. We examine the
convergence rate of the parameter free PPIFE method using the following norms:

lenlm == ||lu — un||n and llenllze = llu — unllL2¢0)- (7.1)

Example 1 (from [43]). The level set function is ¢(z) = \/x% + % —ro with ro = 0.5. The exact solution
to the interface problem is chosen as

g—i in 2,
u(r) = 3 1 1 s (7.2)
/8_"" + (ﬂ__ — ﬂ_‘l') 70 in 2 )

where r = y/z? + z3. From the PDE, we find the source term is f(x) = —9/x% + x3.

We test our method for two cases: Case 1: = = 1, 7 = 2, 10, 1000 and 100000; Case 2: 87 = 1
and 8~ = 2, 10, 1000 and 100000. The numerical results reported in Tables IH4l show optimal orders of
convergence:

len|mr ~ O(R) and lenllz2 = O(R?),

which are in agreement with Theorems [B] and @l

Table 1 The |lep|| 2 errors and convergence rates for Case 1 of Example 1, 3~ =1, 8+ = 2, 10, 1000 and 100000.

N Bt =2 rate Bt =10 rate | Bt =1000 rate | BT = 100000 rate

8 4.029E-02 1.363E-02 1.210E-02 1.211E-02

16 1.018E-02 1.99 | 3.734E-03  1.87 | 4.353E-03  1.47 4.505E-03 1.43
32 2.560E-03  1.99 | 9.981E-04 1.90 | 1.312E-03 1.73 1.842E-03 1.29
64 6.403E-04 2.00 | 2.480E-04 2.01 4.034E-04 1.70 8.009E-04 1.20
128 | 1.605E-04 2.00 | 6.344E-05 1.97 | 7.446E-05 2.44 2.445E-04 1.71
256 | 4.013E-05 2.00 | 1.580E-05 2.01 | 1.674E-05  2.15 6.692E-05 1.87
512 1.004E-05  2.00 | 3.953E-06 2.00 | 3.953E-06  2.08 1.794E-05 1.90
1024 | 2.509E-06  2.00 | 9.851E-07 2.00 | 9.485E-07  2.06 3.887E-06 2.21

Table 2 The |ep| 1 errors and convergence rates for Case 1 of Example 1, 3~ =1, 3T = 2, 10, 1000 and 100000.

N Bt =2 rate BT =10 rate | BT = 1000 rate | BT = 100000 rate

8 5.823E-01 2.851E-01 1.313E-01 1.288E-01

16 2.929E-01 0.99 | 1.466E-01 0.96 | 8.084E-02  0.70 8.127E-02 0.66
32 1.467E-01  1.00 | 7.402E-02 0.99 | 4.323E-02  0.90 4.950E-02 0.72
64 7.337E-02  1.00 | 3.709E-02 1.00 | 2.206E-02  0.97 2.903E-02 0.77
128 | 3.669E-02 1.00 | 1.856E-02 1.00 | 1.029E-02  1.10 1.459E-02 0.99
256 | 1.835E-02 1.00 | 9.282E-03 1.00 | 5.039E-03  1.03 7.163E-03 1.03
512 | 9.173E-03 1.00 | 4.642E-03 1.00 | 2.498E-03 1.01 3.335E-03 1.10
1024 | 4.587E-03  1.00 | 2.321E-03  1.00 1.240E-03 1.01 1.485E-03 1.17
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Table 3 The |lep|| 2 errors and convergence rates for Case 2 of Example 1, 7 =1, 8~ =2, 10, 1000 and 100000.

N BT =2 rate B~ =10 rate | S~ = 1000 rate | S~ = 100000 rate
8 7.770E-02 7.758E-02 7. 776 E-02 7.7TTE-02

16 1.957E-02 1.99 | 1.953E-02 1.99 | 1.959E-02  1.99 1.959E-02 1.99
32 4.908E-03  2.00 | 4.904E-03 1.99 | 4.937E-03  1.99 5.005E-03 1.97
64 1.229E-03  2.00 | 1.229E-03  2.00 1.237E-03 2.00 1.281E-03 1.97
128 | 3.074E-04 2.00 | 3.078E-04 2.00 | 3.078E-04  2.01 3.698E-04 1.79
256 | 7.687E-05 2.00 | 7.701E-05 2.00 | 7.692E-05  2.00 9.528E-05 1.96
512 1.922E-05 2.00 | 1.926E-05 2.00 | 1.925E-05  2.00 2.564E-05 1.89
1024 | 4.805E-06 2.00 | 4.817E-06 2.00 | 4.820E-06  2.00 5.997E-06 2.10

Table 4 The |ep| 1 errors and convergence rates for Case 2 in Example 1, 3T =1, 3~ = 2, 10, 1000 and 100000.

N BT =2 rate B~ =10 rate | S~ = 1000 rate | S~ = 100000 rate
8 8.046E-01 7.998E-01 7.949E-01 7.948E-01

16 4.036E-01  1.00 | 4.008E-01 1.00 | 3.996E-01  0.99 3.996E-01 0.99
32 2.020E-01  1.00 | 2.005E-01 1.00 | 2.008E-01  0.99 2.020E-01 0.98
64 1.010E-01  1.00 | 1.003E-01  1.00 1.005E-01 1.00 1.011E-01 1.00
128 | 5.051E-02 1.00 | 5.013E-02 1.00 | 5.011E-02  1.00 5.106E-02 0.99
256 2.526E-02 1.00 | 2.507E-02 1.00 2.504E-02 1.00 2.545E-02 1.00
512 1.263E-02 1.00 | 1.253E-02  1.00 1.252E-02 1.00 1.271E-02 1.00
1024 | 6.314E-03 1.00 | 6.267E-03 1.00 | 6.257E-03  1.00 6.308E-03 1.01

Example 2 (an interface problem with a variable coefficient and a non-convex interface). The interface
is the zero level set of the function,

e(z) = (3(1“% + 1‘%) - ﬂl‘1)2 — 22 — 22 +0.02.

The exact solution is chosen as u(x) = ¢(z)/B(x), where
B(e) = {,Bj(x) = 300(2 + sin(6x1 + 622)) %f o(z) >0, (7.3)
B~ (x) = 2 + cos(6x1 + 6x2) if p(x) < 0.

It is easy to verify that the jump conditions (L2)-(I3)) are satisfied. The interface in this example is non-
convex and more general, see Figure 3

For this variable coefficient interface problem, the average of the coefficient on an interface element
T € T;F' is chosen as Bi = ,Bi(acm), where ., is the midpoint of I, NT. The numerical results are reported
in Table Bl which confirm the optimal convergence.

Table 5 The |ley|| 2 and |ep| 1 errors and convergence rates for Example 2.

N llenll 12 rate len| g1 rate

8 3.146E-02 1.673E+00

16 1.210E-02 1.38 | 8.997E-01 0.89
32 4.882E-03 1.31 4.661E-01 0.95
64 1.456E-03  1.75 2.339E-01 0.99
128 2.603E-04 2.48 1.156E-01 1.02
256 5.795E-05  2.17 | 5.763E-02 1.00
512 1.376E-05 2.07 | 2.878E-02 1.00
1024 | 2.676E-06 2.36 1.435E-02 1.00
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Fig. 3 The solution and the error distribution obtained with N = 128 for Example 2. Left: the plot of —u(x); Right: the
plot of up(x) — u(z).

8 Conclusions and outlook

In this paper, a new parameter free partially penalized immersed finite element method with unfitted meshes
for solving elliptic interface problems has been developed and analyzed. The degrees of freedom of the new
method are the same as that of the standard linear conforming finite element method. Furthermore, if
the coefficient is continuous, then the new method becomes the standard linear conforming finite element
method. Not only the optimal approximation capabilities of the immersed finite element space but also the
optimal convergence of the new PPIFE method are proved via a new trace inequality and a novel proof
technique using auxiliary functions. The method and analysis has been extended to variable coefficients and
3D problems.

Further directions of research include the extension of the method and the analysis in this paper to
non-homogeneous jump conditions and higher order IFE methods. We plan to use the correction functions
defined in [2228] to deal with non-homogeneous jump conditions. The correction functions are constructed
to satisfy non-homogeneous jump conditions exactly on some points on the interface, which requires that
the exact solution has a higher regularity to make the flux jump Jn(z) := [8Vu - n]r(z) well-defined at
these points on the interface. The method in [28] has been analyzed in [23] under the assumption that
u € Cz(ﬁi). Another way to construct correction functions is based on the extension of Jn(x) (see [35]).
The analysis requires u € H*(27 U 27). When v € H*(2F U 27), the flux jump Jn(x) belongs to L(I")
and Jn(z) is not well-defined at points on the interface. Once common approach is to use the average of
Jn along I'NT to construct correction functions on an interface element 7. Since |I' N T'| may be close to
zero, we should define the correction function on a larger fictitious interface element as it has been done
in [TI7]. For high order IFE methods, there are many exploratory works [2L[3]. To our best knowledge, the
proof of the optimal approximation capabilities of those higher order IFE spaces developed in [2,3] is an
open problem. How to extend the analysis here to high order IFE methods is under investigation.

Acknowledgment. The authors would like to thank the anonymous referees sincerely for their careful
reading and helpful suggestions that improved the quality of this paper.

References

1. S. Adjerid, 1. Babuska, R. Guo, and T. Lin. An enriched immersed finite element method for interface problems with
nonhomogeneous jump conditions. arXiv preprint arXiv:2004.13244, 2020.

2. S. Adjerid, M. Ben-Romdhane, and T. Lin. Higher degree immersed finite element spaces constructed according to the
actual interface. Comput. Math. Appl., 75:1868-1881, 2018.

3. S. Adjerid, R. Guo, and T. Lin. High degree immersed finite element spaces by a least squares method. Int. J. Numer.
Anal. Model., 14:604-626, 2017.

4. I. Babuska. The finite element method for elliptic equations with discontinuous coefficients. Computing, 5:207-213,
1970.


http://arxiv.org/abs/2004.13244

28 Haifeng Ji et al.
5. J. H. Bramble and J. T. King. A robust finite element method for nonhomogeneous Dirichlet problems in domains with
curved boundaries. Math. Comp., 63:1-17, 1994.
6. J. H. Bramble and J. T. King. A finite element method for interface problems in domains with smooth boundaries and
interfaces. Adv. Comput. Math., 6:109-138, 1996.
7. S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Texts in Applied Mathematics 15,
Springer, Berlin, 2008.
8. E. Burman, J. Guzmam, M. Sénchez, and M. Sarkis. Robust flux error estimation of an unfitted Nitsche method for
high-contrast interface problems. IMA J. Numer. Anal., 38:646-668, 2018.
9. Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer.
Math., 79:175-202, 1998.
10. C.-C. Chu, I. G. Graham, and T.-Y. Hou. A new multiscale finite element method for high-contrast elliptic interface
problems. Math. Comp., 79:1915-1955, 2010.
11. D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69. Mathématiques &
Applications (Berlin) [Mathematics & Applications], Springer, Heidelberg, 2012.
12. R. L. Foote. Regularity of the distance function. Proc. Amer. Math. Soc., 92:153-155, 1984.
13. S. Frei and T. Richter. A locally modified parametric finite element method for interface problems. SIAM J. Numer.
Anal., 52:2315-2334, 2014.
14. T. Fries and T. Belytschko. The extended/generalized finite element method: an overview of the method and its
applications. Int. J. Numer. Meth. Engng., 84:253-304, 2010.
15. D. Gilbarg and N. S. Trudinger. FElliptic partial differential equations of second order. Classics in Mathematics.
Springer-Verlag, Berlin, 2001. Reprint of the 1998edition.
16. R. Guo. Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully
Discrete Analysis. SIAM J. Numer. Anal., 59:797-828, 2021.
17. R. Guo and T. Lin. A Higher Degree Immersed Finite Element Method Based on a Cauchy Extension for Elliptic
Interface Problems. SIAM J. Numer. Anal., 57:1545-1573, 2019.
18. R. Guo and T. Lin. A group of immersed finite-element spaces for elliptic interface problems. IMA J. Numer. Anal.,
39:482-511, 2019.
19. R. Guo and T. Lin. An immersed finite element method for elliptic interface problems in three dimensions. J. Comput.
Phys., 414:109478, 2020.
20. R. Guo, T. Lin, and X. Zhang. Nonconforming immersed finite element spaces for elliptic interface problems. Comput.
Math. Appl., 75:2002-2016, 2018.
21. R. Guo, T. Lin, and Q. Zhuang. Improved error estimation for the partially penalized immersed finite element methods
for elliptic interface problems. Int. J. Numer. Anal. Model., 16:575-589, 2019.
22. J. Guzméan, M. Sénchez, and M. Sarkis. Higher-order finite element methods for elliptic problems with interfaces.
ESAIM: Math. Model. Numer. Anal., 50:1561-1583, 2016.
23. J. Guzmén, M. Sanchez, and M. Sarkis. On the accuracy of finite element approximations to a class of interface
problems. Math. Comp., 85:2071-2098, 2016.
24. J. Guzmén, M. Sénchez, and M. Sarkis. A finite element method for high-contrast interface problems with error
estimates independent of contrast. J. Sci. Comput., 73:330-365, 2017.
25. A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems.
Comput. Methods Appl. Mech. Engrg., 191:5537-5552, 2002.
26. X. He, T. Lin, and Y. Lin. Approximation capability of a bilinear immersed finite element space. Numer. Methods
Partial Differential Equations, 24:1265-1300, 2008.
27. X. He, T. Lin, and Y. Lin. The convergence of the bilinear and linear immersed finite element solutions to interface
problems. Numer. Methods Partial Differential Equations, 28:312-330, 2012.
28. X. He, T. Lin, and Y. Lin. Immersed finite element methods for elliptic interface problems with non-homogeneous jump
conditions. Int. J. Numer. Anal. Model., 8:284-301, 2012.
29. S. Hou and X. Liu. A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comput.
Phys., 202:411-445, 2005.
30. T. Hou, X. Wu, and Y. Zhang. Removing the cell resonance error in the multiscale finite element method via a
Petrov-Galerkin formulation. Comm. Math. Sci, 2:185-205, 2004.
31. J. Huang and J. Zou. Some new a priori estimates for second-order elliptic and parabolic interface problems. J.
Differential Equations, 184:570-586, 2002.
32. P. Huang and Z. Li. Partially penalized ife methods and convergence analysis for elasticity interface problems. J.
Comput. Appl. Math., 382:113059, 2021.
33. H. Ji, J. Chen, and Z. Li. A symmetric and consistent immersed finite element method for interface problems. J. Sci.
Comput., 61:533-557, 2014.
34. H. Ji, Z. Weng, and Q. Zhang. An augmented immersed finite element method for variable coefficient elliptic interface
problems in two and three dimensions. J. Comput. Phys., 418:109631, 2020.
35. H. Ji, Q. Zhang, Q. Wang, and Y. Xie. A partially penalised immersed finite element method for elliptic interface
problems with non-homogeneous jump conditions. East Asian J. Appl. Math., 8:1-23, 2018.
36. H. Ji, Q. Zhang, and B. Zhang. Inf-sup stability of Petrov-Galerkin immersed finite element methods for one-dimensional
elliptic interface problems. Numer. Methods Partial Differential Equations, 34:1917-1932, 2018.
37. R. Kafafy, T. Lin, Y. Lin, and J. Wang. Three-dimensional immersed finite element methods for electric field simulation
in composite materials. Internat. J. Numer. Methods Engrg., 64:940-972, 2005.
38. C. Lehrenfeld. Removing the stabilization parameter in fitted and unfitted symmetric Nitsche formulations. arXiv

preprint |arX1ww:1603.00617, 2016.


http://arxiv.org/abs/1603.00617

Analysis of immersed finite element method 29

39. J. Li, J. Markus, B. Wohlmuth, and J. Zou. Optimal a priori estimates for higher order finite elements for elliptic
interface problems. Appl. Numer. Math., 60:19-37, 2010.

40. Z. Li. The immersed interface method using a finite element formulation. Appl. Numer. Math., 27:253-267, 1998.

41. Z. Li and K. Ito. The immersed interface method: numerical solutions of PDEs involving interfaces and irregular
domains. Frontiers in Applied Mathematics, 33, SIAM, Philadelphia, 2006.

42. 7. Li, T. Lin, Y. Lin, and R. Rogers. An immersed finite element space and its approximation capability. Numer.
Methods Partial Differential Equations, 20:338—-367, 2004.

43. Z. Li, T. Lin, and X. Wu. New Cartesian grid methods for interface problems using the finite element formulation.
Numer. Math., 96:61-98, 2003.

44. T. Lin, Y. Lin, and X. Zhang. Partially penalized immersed finite element methods for elliptic interface problems.
SIAM J. Numer. Anal., 53:1121-1144, 2015.

45. T. Lin, Q. Yang, and X. Zhang. Partially penalized immersed finite element methods for parabolic interface problems.
Numer. Methods Partial Differential Equations, 31:1925-1947, 2015.

46. C. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25:220-252, 1977.

47. H. Wang, J. Chen, P. Sun, and F. Qin. A conforming enriched finite element method for elliptic interface problems.
Appl. Numer. Math., 127:1-17, 2018.

48. H. Wu and Y. Xiao. An unfitted hp-interface penalty finite element method for elliptic interface problems. J. Comput.
Math., 37:316-339, 2019.

49. Y. Xiao, J. Xu, and F. Wang. High-order extended finite element methods for solving interface problems. Comput.
Methods Appl. Mech. Engrg., 364:112964, 2016.

50. J. Xu. Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients.
J. Xiangtan Unwversity, 1:1-5, 1982.

51. J. Zou and J. Huang. Uniform a priori estimates for elliptic and static maxwell interface problems. Discrete and
Continuous Dynamical Systems - Series B, 7:145—170, 2007.

Appendix A Technical results for the 2D cases
A.1 Proof of Lemma[I]

Proof: Note that when T is an isosceles right triangle, the proof can be found in the literature, see for
example [43/[I8]. We now provide the proof for amaee < 7/2. Given a function ¢ € Sp,(T), if we known the
jump ¢ = (V¢+ — V¢7) - np, which is a constant, then the function ¢ can be written as

¢ =In1o+ c1(w— InTw), (A1)
with

+ _ : + . ext . +
w' (x) = dpext (x) in T, dist(z, I ifeeT),,
w(z) = { e " (= Dz " (A.2)

dl-veant (m) = . ext . _
w” (z) =0 in Ty, wT —dist(z, I'yr) ifzeTy,,
where I}, 7 is the standard linear nodal interpolation operator on T, Fﬁmfu is a straight line containing I, N7,

and dist(z, [%) is the distance between = and I';%. Substituting (A]) into the third identity in (Z4), we
obtain the following equation for ¢y,

1+ (87 /8" =)V rw-np)er = (87 /8T = 1)VIL1d - ny. (A.3)

Clearly, if we can prove
0 S VI;hTw - Np S 1, (A4)

then
1 if B7/87 > 1,

B=/B* if0<p™/B" <1,
which implies that the equation (A.3) has a unique solution. Substituting the solution of (A3) into (AJ)
yields

(1+ (87 /8" = 1)VIzw-ny) > { (A.5)

(B~ /BT —1)VInr¢-np
1+ (57/B+ — 1)th7Tw Ny

d) = [h,Td) =+ (w — Ih,Tw), (AG)

which proves the lemma.

Next, we prove (Ad). There are two cases. Case I: AA3DE = T,j' (see Figure [4(a)) and Case II:
ANAsDE =T, . In Case I, since w(A1) = w(Asz) = 0, it holds

th,T’w cNp = V)\Q . nhdpﬁ?%(AQ) = V/\Q . nh|A2A2,J_| =1- AQ(AQ,J_)7 (A7)
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where Ao | is the orthogonal projection of the point Az onto the line DE, and \;(z) is the standard
linear basis function defined by A;(A;) = d;; (the Kronecker symbol). The polynomial extension of \;(x)
is also denoted by A;i(x) for simplicity of notations. In Case II (AA2DE = T, ), for the sake of clarity,
we replace the notations w, np and dpﬁzlg by w, np and dpﬁzjg, respectively. Obviously, n = —nj and
Jpﬁf%(Ag) = —|A2Az 1 |. Similar to (A7), we have

V[;“T”(I]-flh = 1—>\1(A17L)+1—>\3(A37l). (A8)

However, using the signed distance function d re=t we also have
.\

i=1,3 (A.9)
=1- V)\Q . nh|A2A27L| =1- VI;hTw - 1Np.

Thus, it suffices to consider Case I: AA;DE = T;‘ which is shown in Figure

If A2 and Ay | are on different sides of the line A1 A3 (see Figure for an illustration), then we have
ZA1A3A2 > LA3QA2 > T This contradicts the condition cma. < 5. Thus, we conclude that Az and A |
are on the same side of the line A; As, which together with the fact A2(A2) = 1, A2(A1) = A2(A43) = 0,
leads to

VI;%Tw -np = 1— >\2(A2,i) S 1,
On the other hand, using the condition ZA2A3A; and ZA2A1A3 < Qmaz < %, we conclude A As -t > 0,
which implies
ViInrw-n, = VA2 -np|A2As 1| =[A242 1 [|V2lna 4, -np
i
= |A2As 1 ||[VA2||A1As| TP AL A3 - £y, > 0,

where ny, 4, is the unit normal vector of the line A; Az pointing toward As. O

Fig. 4 A diagram of an interface element.

A counter example for amaz > 5

Ay = (0,0), As = (—V3,1), Az =(1,0), D =(0,0),
E=(-2+V3)7,V32+V3)™h), 87 =3, g7 =1, T = ADA:E.

By a direct calculation, we find that the shape function ¢(x) cannot be determined by ¢(A;), i = 1,2,3 in
this case.



Analysis of immersed finite element method 31

A.2 Proof of Lemma [0l

Proof : First we present the following useful inequality about basis functions of the linear IFE space Sy, (T).
Let ¢pa, € Sp(T) be the basis function corresponding to a vertex A; of T defined by ¢4,(A;) = d;5. From

(A6 and (A4, it is easy to prove that
|¢Ai

where the constant C' is independent of h and the interface location relative to the mesh.

Wm(T) S Ch_m, m = O, 1, (AIO)

Derive upper bounds of |Y'(x)|gmry, m =0,1. We construct 1" as follows,
v in T;F,
T:z—I;quxz, z= }1 (A.11)
0 in Ty,
where the function v is linear and satisfies
BTVuv-n, =1, v(D)=uv(E)=0. (A.12)

Here I,IALF:,Eﬂz interpolates nodal values of v defined on T, i.e., I;Ifqu = >, v(Ai)pa,. It is easy to verify that

the constructed function 7" satisfies the definitions ([@.9)-([Z10). Since v(D) = v(E) = 0, we have Vv-t; = 0.
Thus,
IVo|® = [Vu-n,|* + [V - t,|* < C.

For any point P € T}, using the relation v(P) = v(D) + Vv - lﬁ, we have
2 2 2 2 2
|Z|Lo<>(T) = |U|L°°(T;r) S |V”U| |DP| S Ch .

From ([AT]) and ([(AT0Q), we get the desired estimates

1117207y < 2Ml2ll7e ()| T2 2% (A 6, I Loe () I T] < CRY,

Yy < 2AVOPIT [ +2) 2%(A0)|da,live ()| T] < OB,

K3
Derive upper bounds of |q7i(x)|H"l(T,juT,j)> i = D,E, m = 0,1. Without loss of generality, we
assume that the interface I' intersects with the line segments A; A2 and A2 A3 at points D, E, respectively,
see Figure for an illustration. Since the triangulation is regular, we assume that there are two constants
min and Qumaz such that amin < ZA1A42A3 < Amas-
Let D' and E’ be two points on the line DE such that ZDAsE = /D' A1E’ and |A2D'| = |A2E’|, see
Figure for an illustration. Then, we have the key inequality

|DE| > |D'E'| = 2|A2A2,L|tan% > 2|A2A2,L|tanaL2m > C|A2A2, 1 |. (A.13)

Similar to (A1), we construct ¥p(z) as follows,

Up =z IE. o= {v n T{’ (A.14)

0 in Ty,

where the function v is linear and satisfies

BTVu-n, =0, v(D)=1, v(E)=0. (A.15)
From ([ATH), we have

1 |A2 L E|

[Vo-tn] = v(A2)| = [v(A2, )| = |[v(E)| + [A2, LE| Vv - th] =

pE" | DE[

If Ao | € T, then |As, | E| < |DE| and |v(A2)| = |v(Az,1)| < 1. Otherwise, we have ZA1A2A3 < /2.
Using (A-13), we obtain

|A2, 1 E|

A < C—"——
|’U( 2)| = |A2A27l|

< Ctan(g - ZA1A2A3) < Ctan(g - Oémin) <C,
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where we have used the fact that the line DFE cannot be parallel to the line A; As. Hence, we have
2]l L(ry < C and |[2]|72¢ry < |2l T ()| T] < Ch2.
Using (AT4) and (AI0), we have
2 2 2 2
1¥D|z2(r) < C(v(A2)l[@ ;11| T| + |2/l L2(7)) < CR™.
Since v is linear, we know that

T, | |DE||A2Az 1 |
< > <
DEE = gpEp . =

2 2
|Z|H1(T,L+UT;) = |Vol*| T | <
where we have used the equality (ATI3)). It follows from (AT4) and (AI0) that

|WD|?{1(TJUT;) < C(U(A2)|¢A2|%V;O(T)|T| =+ |Z|?{1(T}TUT;)) < C.

The upper bound estimate for ¥ is analogous. O

Appendix B Technical results for the 3D cases
B.1 Proof of Lemma[I6l

Proof: Similar to (A6) for the 2D cases, we also have

(B~ /BT —1)VInrd np
1+ 8~/ — I)VI;MTIU ‘ny

¢ =1In1o+ (w—IhyTw), Vo € Sp(T), (B.1)

where T} and 7}, in the definition of w in (A2) are replaced by T and T, that is,

+ ot
w™ (z) = dpeat () inT™,
w(z) = T (B.2)
w (z)=0 inT".
It suffices to prove the following relation:
0 S VI;hTw -y S 1. (B.3)

There are only two types of interface elements. Type I interface element: the plane I ﬁ?‘% cuts three
edges of the tetrahedron (see Figures [H); Type II interface element: the plane F,fth cuts four edges of the
tetrahedron (see Figures [6]).

For Type I interface element, we take the tetrahedron in Figures Bl as an illustration. Similar to the 2D

cases, we only need to consider the case A1 € T". Let A; | be the orthogonal projection of the point A;
onto the plane I'y%:. Similar to (A7), we have

VIhVT’LU Ny = 1-— Al(Al,J_), (B.4)

where \; is the standard 3D linear basis function associated with the vertex A;. Let H be the orthogonal
projection of the point A; onto the plane A2 A3 A4. The dihedral angle between A1 A2 A3 and AsA2As is
denoted by Ai-A2Asz-Ay4. As we assume that the dihedral angles A1-AxA3-Ag, A1-AzAs-Agz, A1-AzAs-As
are less than or equal to 7/2, the point H must be on the triangle AAsA>A4 or its boundary, and there

exists a point of intersection D of the line segment A1 H and the plane I';%. Let (F,;””Tt)L be a plane that

passes through the points Ay, H and A; ;. Obviously, we can choose a point @, different from H, on the
line of intersection of the plane (Ffl””Tt)l and the plane A3 A2 A4 such that F,fmTt N A1Q # (. The point of
intersection of Fﬁ?‘% and A;1Q is denoted by E.

Now we focus on the triangle AA1 HQ (see the right picture in Figure B]). Let A1 be the standard 2D
linear basis function on the triangle AA; HQ associated with the point A;. Note that A1 (H) = M (Q) =0
and A\1(A1) = 1, it holds A\i(z) = Ai(z) on the plane (Fﬁxfx)l Since the maximum angle of the triangle
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ext
F}L,T

(T3~

Fig. 6 Type II interface element in 3D. The plane F;L”LT’Z cuts four edges of the element.

AA1HQ is equal to m/2, using the result of the 2D cases (see the proof of Lemma[Ilin Appendix [AT]), we
obtain
Vlh;pw -np =1— )\1(A17l) S [0, 1].

For Type II interface element, we take the tetrahedron in Figures[6l as an illustration. The plane Fﬁx}

intersects with the edges A1 A2, A2A4, AzAs and A1 A3 at the points D1, D2, D3 and D4. In view of the
limiting cases,

ext

Dy — Ay, Ds — Ay i.e.,F,%T — the plane A1A0Ay),
Do — Az, D3 — As
D1 — As, Dy — As

Dy %Al,D2—>A4

1.e.,F,ff”7§ — the plane A1 A2As
i.e.,Fﬁfq’i — the plane A2 AsAy
i.e.,Fﬁfq’i — the plane A1 A3A4),

I

o~ o~ o~ —

)
),
)
)

the following relation must be true,
0 < D4-D1D2-As < max{As-A1 As-As, A3-AsAs-A1,m — Az-A1 As-As}.
Together with the condition Ymaez < 7/2, we conclude that,
0 < D4y-D1D3-As < m — A3z-A1As-As. (B.5)
Without loss of generality, we assume A; € 7", so we have

VI;hTw -np =1— )\1(A17L) + (1 — )\4(A47l)).
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ext

Let (Fﬁ?‘%)J‘ be the plane that passes through the points A; and A4 and is perpendicular to the plane I';7%
Let @ be the point of intersection of the plane (Ffl””Tt)l and line AgAs.

Now we focus on the triangle AA1 QA4 (see the right picture in Figure[d]). Let A1 and A4 be the standard
2D linear basis functions on the triangle AA; QA4 associated with the points A; and A4, respectively. Note
that A1(As4) = A1 (Q) = 0 and As(A1) = M (Q) = 0, we have A1 (z) = A1 (2) and Aa(z) = Aa(z) on the plane
(% L. Therefore, it holds

Vinrw-ng, =1—X (A1) + (1 - (A4,.1)),

which is the same as the equation ([A.g) for Case II in the 2D cases if we consider the triangle AA;QAx.
In order to use the result of the 2D cases, we need to verify the angle condition of the triangle AA1QA4.
In view of the relation (B.A]), we consider two cases: Da-D1D2-As € (0,7/2] and D4—D1D2—A4_€>[7r/2, T —
Asz-A1As-Ag). If the dihedral angle D4-D1D2-As € (0,7/2], then the point @ is on the ray A2 A3 and the
following relation holds:

0< Q—A1A4—A2 < 7r/2. (B.G)

Note that the existence of the point @ relies on maz < T/2, Ymae < 7/2 and the relation (B.f]). By the

A

Fig. 7 Estimate the angle ZQA4A;

conditions ZA2A4A1 < amax < /2, Q-As1A2-A1 < Vmax < /2, and the relation @Q-A1As-As < w/2 from
(BH), it is easy to see that ZQA4A; < /2 (see Figure[D for clarity). Analogously, we have ZQA1 A4 < /2
since Q-A1A4-As < /2, Q-A1A2-As < Ymax < /2 and LA2A1 A4 < amax < 7/2. In view of the proof of
Lemma[llin Appendix [ATlfor Case II, by the relations ZQA1As < 7/2 and ZQA4 A1 < w/2, we obtain the
estimate (B.3). We emphasize that the condition for the angle ZA1QA4 is actually unnecessary when the
points D and E are on the edges QA1 and QA4, respectively.

If the dihedral angle D4-D1D2-A4 € [7/2,m — Az-A1 As-A2), then the point @Q is on the ray m, and
Mds 0 < Q-A1As-As < w/2 — A3-A1 As-As, where the point G is on the line A2 A3 but not on the ray
Az Az (see Figure[dl). Obviously, we have Q-A1As-As < 7/2. Therefore, the proof of ZQA4A1 < w/2 and
ZQA1 Ay < /2 is similar to that of the case Da-D1D2-As € (0,7/2]. O

B.2 Proof of Lemma [I7]

Proof: Let A; be a vertice of the element T, and ¢4, be the corresponding IFE basis function. Similar to
the 2D cases, using (B)-(B3) we obtain

|¢Ai

Wm(T+uT~) S Ch_m7 m = 07 1.
The function ¥(z) can be constructed explicitly as

1 inTT,

V=z— I Fz, z(x) =
T @=% T
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Then, we have

AN

P |wmr+ur-) < |2lwmror-) + 112l Le(T) Z|¢Ai wmn(r+ur-) < Ch™™,

which implies |M7|?{7,,,(T+UT,)

IN

structing these function as

1
—(z—2") n, in 77,

T=z2-I}Tz 2(z) = { BT
0 in T~
and +
(z—2") - tin in T,

O;=z—I}Ez, z(x) = ’

- =10 in T

B.3 Proof of Lemma [I2] for the 3D cases

Proof: Since Ip,¢ is continuous across each face of the triangulation, it holds

¢lellZa(e) = l[é = Indlelze) < C Y (¢ = Ind)|mll7zce) -

i=1,2
It suffices to estimate the term on an element T" with e as its face. By (BI)-(B.3]), we have

16 = In@)|l|72(0) < CH*|el|VInrd - ma|* < OBV Ino¢ - nil|La(r)-
Using the identity (Bl we also have

(14 (87/BT = )VInrw-np) (Voo - np)
1+ (8~/B8T — 1)Vw* -ny )

By the definition of w in (B:2) and the estimate (B3], we get

Vlh’T(j) Ny =

IVInre -nu| <C|IV¢ my| and |VIpré nu < C[Ve™ -myl,

which leads to ) ) )
IVInr¢ nullieery = VI nn 2T+ [VInrd 0, ||T7|
< CVe - mp*ITT |+ C|Ve™ -1y |[T7|
< OVl ecry.-

The desired result (£48) now follows from (B)-(B3).

B.4 Proof of Lemma [I8

Ch372™. The estimates for 7 and ©; can be obtained similarly by con-

(B.7)

(B.8)

Proof: Note that T = (T;)\TT)U (T}, \T ™) is the mis-matched region on T For any ¢ € Sy, (T), it follows

from (BI)-(B2) that for m = 0,1,

(B~ /BT =DV r¢-ny
1+ (ﬂ_/ﬂ"" — 1)th7Tw s Np

T — ¢ lwmray =

|drest lwm(ray < CR* 2™V ré - nal,

where in the last inequality we have utilized (B.3)) and the first inequality in (E1]). The first inequality in
@) also implies [74|/|T| < Ch. By the definition of I['® in (EIH) and the inequality (BJ) we have

[IFEG — ¢|2mry = 67 = ¢ |Fm(ray < CH* VI rd - 0 *|T|(IT2]/|T))
S ChP M|V I ¢ - |72y < CR* V|| T2(r),

(B.10)
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and

1556 = 91120y = 107 = &7 [L2(e) < ORIV Inrd - ma*|TI(lel/|T]) (B.11)

< CR||VInre - nplliziry < CRYIVO|T2(r).
Choosing ¢ = I}'Ev, we get
IFE¢ — 6 = PRI ) - 1P = 7w — 1},
which together with (BI0) and (BII) yields the desired results (6.16).
B.5 Proof of Lemma [I9
Proof: By the Cauchy-Schwarz inequality we have
2
/ B™VuT -mloplrds| < CVuT -nliary Y lorlrliarar)- (B.12)
r

TeT,
For any ¢ € Sy (T), it follows from (BI)-(B.2) that

| B /BT = 1)V e -y
lélrarlizerar = |5 + (B~ /Bt = DVIprw-np

ldreellLoe(rar) < Ch*|NIn7¢ -1y,

where in the last inequality we have used (B.3) and the first inequality in @1)). Using the fact [I'NT| < Ch?
which can be obtain by applying the interface trace inequality (see Lemma 3.2 in [49]) to a constant function,
we further have

@l rarlZz(rar) < ChIVInrd nu|* < CR?|VInrd - nplfzry < CR||¢ - 1l Fecry,

where we have used (B.J9) in the last inequality. The lemma follows from the above inequalities and the
global trace inequality on 2.
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