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Abstract This paper presents a new parameter free partially penalized immersed finite element method and

convergence analysis for solving second order elliptic interface problems. A lifting operator is introduced on

interface edges to ensure the coercivity of the method without requiring an ad-hoc stabilization parameter.

The optimal approximation capabilities of the immersed finite element space is proved via a novel new

approach that is much simpler than that in the literature. A new trace inequality which is necessary to

prove the optimal convergence of immersed finite element methods is established on interface elements.

Optimal error estimates are derived rigorously with the constant independent of the interface location

relative to the mesh. The new method and analysis have also been extended to variable coefficients and

three-dimensional problems. Numerical examples are also provided to confirm the theoretical analysis and

efficiency of the new method.
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1 Introduction

In this paper we consider immersed finite element (IFE) methods for solving the following second-order

elliptic interface problem

−∇ · (β(x)∇u(x)) = f(x) in Ω\Γ, (1.1)

[u]Γ (x) = 0 on Γ, (1.2)

[β∇u · n]Γ (x) = 0 on Γ, (1.3)

u(x) = 0 on ∂Ω, (1.4)

where f ∈ L2(Ω), Ω ⊂ R
d, d = 2, 3 is a convex polygonal/polyhedral domain and Γ is a compact

curve/surface without boundary embedded in Ω. The interface Γ divides Ω into two disjoint sub-domains

Ω+ and Ω−. Without loss of generality, we assume that Ω− lies strictly inside Ω, see Figure 1 for an

illustration. The jump conditions on the interface Γ are defined as

[u]Γ (x) := u+(x)− u−(x), (1.5)

[β∇u · n]Γ (x) := β+(x)∇u+(x) · n(x)− β−(x)∇u−(x) · n(x), (1.6)

where u± = u|Ω± and n(x) is the unit normal vector of the interface Γ at x ∈ Γ pointing toward Ω+.

We first consider the problem in two dimensions (d = 2) with a piecewise constant coefficient, i.e.,

β(x) = β+ > 0 if x ∈ Ω+ and β(x) = β− > 0 if x ∈ Ω−. (1.7)

The extensions to variable coefficients and 3D problems are presented in Section 5 and Section 6, respectively.

Ω+

Ω−

n(x)

Γ

Fig. 1 A diagram of the geometries of an interface problem.

It is well known that the optimal convergence can be achieved by standard finite element methods if

interface-fitted meshes are used, see for example [6,9,50]. However, for a moving interface, it may be time

consuming to obtain an interface-fitted mesh at different time levels. IFE methods are designed to solve

interface problems using unfitted meshes that are not necessarily aligned with interfaces. An unfitted mesh

is generated independent of the interface and allows the interface cut elements. IFE methods are often

coupled with structured meshes and can utilize fast Poisson solvers and other efficient software packages.

Peskin’s immersed boundary method [46] is one of successful examples using unfitted meshes. We refer the

readers to [41] for a brief review of various unfitted mesh methods for interface problems.

Traditional finite element methods using unfitted meshes only achieve sub-optimal convergence (i.e.,

O(h1/2) in the H1 norm and O(h) in the L2 norm) no matter how high degree of the polynomial is used,

see [4,13]. The sub-optimal convergence is due to the interface condition (1.3) that leads to discontinuous

normal derivative across the interface in general if β+ 6= β−. Thus, the regularity of the solution is low on

interface elements which the interface cuts and smooth polynomials cannot approximate the solution well

enough on these elements. For finite element methods, roughly speaking, there are two approaches to recover

the optimal convergence. The first one is to enrich the standard finite element space by augmenting extra

degrees of freedom on interface elements and if necessary add some integral terms into the variational form

to weakly enforce interface conditions, for example, the extended finite element method [14], the unfitted
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Nitsche’s method [25,48,49,8] and the enriched finite element method [47]. The other approach is to modify

the traditional finite element space on interface elements according to interface conditions to achieve the

optimal approximation, while keeping the degrees of freedom and the structure unchanged, for example, the

multiscale finite method [10] and the IFE method [40,43,42,27,26,20,21] that we utilize in this paper.

The key idea of the original IFE in [43] is to use a piecewise linear function as the basis function over

an interface element so that the continuity condition can be satisfied both for the function and the flux

along the line segment approximating the interface. It has been shown that the modified finite element

space (called the IFE space) exists and has the optimal approximation capability. However, one trade-

off is that the finite element basis may be discontinuous across interface edges on interface elements. In

[30,29], a Petrov-Galerkin finite element method is proposed, in which the IFE space is used as the trial

function space while the standard conforming linear finite element space is chosen as the test function

space. However, the coefficient matrix of the resulting linear system of equations is non-symmetric and the

convergence proof is still an open challenge except for the one dimensional case [36]. Another approach is to

add the contributions from the line integrals due to the discontinuities in the basis functions in deriving the

weak form as in the symmetric and consistent IFE method in [33]. However, the coercivity was only verified

by numerical examples in [33]. The partially penalized immersed finite element (PPIFE) method developed

in [44] includes some terms only on interface edges to penalize the discontinuity, which can guarantee the

optimal convergence if the penalty parameter is larger enough and the solution is in the piecewise H3

space. The error estimate in the L2 norm cannot be obtained by the standard duality argument due to

the requirement of the higher regularity. The PPIFE method is then extended to the second-order elliptic

interface problem with non-homogeneous jump conditions in [35] under higher regularity assumptions, and

other types of interface problems in [45,32].

In this paper, we develop and analyze a parameter free PPIFE method based on a special designed lifting

operator defined locally on interface elements. The new method avoids the limitation of the PPIFE in [44]

in choosing the stabilization parameter that may depends on β±. We show that the lifting operator can be

expressed explicitly, and thus, is easy to be computed. The idea of using liftings comes from discontinuous

Galerkin methods. We refer the readers to the book [11], particularly Chapter 4.3, for the definition of

liftings for discontinuous Galerkin methods. However, different from the discontinuous Galerkin methods

and the original PPIFE method [44], we show that the penalty term involving the jump of IFE functions

on interface edges does not need to be included since the IFE functions are continuous at nodal points. We

prove optimal error estimates of the new method in the H1 and L2 norms rigorously with usual piecewise

H2 regularity assumptions. In addition, we also show that our method and the analysis can be extended to

variable coefficients and three-dimensional problems.

There are two major contributions in the theoretical analysis for IFE methods in this paper. First, we

present a novel and simple way to prove the optimal interpolation error estimates in the H1 and L2 norms

for the linear IFE space originally developed in [43]. The first proof of this result was presented in [42] based

on the multipoint Taylor expansion and the piecewise C2 assumption. Thus, the proof is long and tedious

with the stronger than necessary regularity assumption. Recently, Guo and Lin [18] presented a unified

multipoint Taylor expansion procedure for proving the optimal approximation capability of a group of IFE

spaces where the finite element function is a piecewise polynomial on subelements formed by the interface

itself instead of its line approximation. For high-contrast interface problems, Guzmán et al. [24] proposed

a finite element method where the shape functions on interface elements are also defined with subelements

formed by the interface. Note that the finite element functions in [24] are discontinuous on boundaries of

interface elements. Therefore the finite element space has more degrees of freedom than that of IFE methods.

Higher order methods are developed and analyzed in [17]. The key of the analysis technique developed in

[24] is to use a patch around the interface element to deal with possible small triangles cut by the interface.

Using the patch idea, Guo and Lin [19] proposed a framework to analyze IFEs and proved the optimal

approximation capability of an IFE space in three dimensions. In this paper, we have developed another

analysis technique for the interpolation error for IFE spaces without using patches. The core ingredient of

the analysis is to introduce some auxiliary functions on interface elements and then to carry out the analysis

(see Lemma 6 in Section 4.1). The idea using the auxiliary functions is inspired from early works on the

augmented IFE method [34].
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Note that some IFE methods use the exact interface information on interface triangles. The downside

of this approach is that the IFE shape functions often are discontinuous for curved interfaces. Other IFE

methods use the line segments to approximate the interface so that the IFE shape functions are continuous

in the interior of interface triangles. The first approach (the exact interface) is advantageous for high order

IFE methods [2,3] and three-dimensional problems [19]. For two-dimensional problems, we use the second

approach (line segments) and present a rigorous proof of the fact that the linear approximation of the

interface is enough to ensure the optimal convergence for linear IFE methods. We note that the existing

error analysis on the mismatch of the actual interface and the approximated interface for approximation

capabilities of IFE spaces is based on the argument in [9]. Thus, there will be a factor | logh| in those

interpolation error estimates. In this paper, we use a technique from [5] so that we can actually remove the

| logh| factor in the optimal interpolation error estimates.

The second major contribution of this paper is a new trace inequality (see Lemma 9 in Section 4.2)

on interface elements, which is key in proving the optimal convergence of IFE methods under a standard

piecewise H2 regularity assumption. The new developed trace inequality can be applied to improve the

error analysis of the PPIFE method developed in [44]. The proof of the new trace inequality is based on

the decomposition of functions along the normal and tangent directions of interfaces, and the fact that the

IFE shape function and its flux are continuous across the approximated interface simultaneously.

The rest of the paper is organized as follows. In Section 2, we introduce notations, and the linear IFE

space. In Section 3, we define the local lifting operator and explain the new parameter free PPIFE method.

The main theoretical results of this paper are presented in Section 4, where we give a new proof of the

optimal interpolation error estimates for the linear IFE space; establish a new trace inequality for broken

spaces; and prove the optimal convergence of the new developed parameter free PPIFE method in the H1

and L2 norms under the standard piecewise H2 regularity assumption. We extend the method and analysis

to variable coefficients and three dimensions in Section 5 and Section 6. Section 7 presents some numerical

examples to confirm the theoretical analysis. We conclude in the last section.

2 Notations and the IFE space

Throughout the paper we adopt the standard notation W k
p (Λ) for Sobolev spaces on a domain Λ with the

norm ‖ ·‖W k
p
(Λ) and the seminorm | · |W k

p
(Λ). Specially, we denote W

k
2 (Λ) by Hk(Λ) with the norm ‖ ·‖Hk(Λ)

and the semi-norm | · |Hk(Λ). As usual H1
0 (Λ) = {v ∈ H1(Λ) : v = 0 on ∂Λ}. Furthermore, for a domain Λ,

we define

Λ+ := Λ ∩Ω+, Λ− := Λ ∩Ω−,

and a subspace of H1(Λ) by

H̃2(Λ) := {v ∈ L2(Λ) : v|Λ± ∈ H2(Λ±), [v]Γ∩Λ = 0, [β∇v · n]Γ∩Λ = 0} (2.1)

equipped with the norm and semi-norm

‖ · ‖2H2(Λ+∪Λ−) = ‖ · ‖2H2(Λ+) + ‖ · ‖2H2(Λ−), | · |2H2(Λ+∪Λ−) = | · |2H2(Λ+) + | · |2H2(Λ−).

We have the following regularity theorem for the interface problem, see [31] and [10].

Theorem 1 If Ω is convex and polygonal, the interface Γ is C2, and f ∈ L2(Ω), then the interface problem

(1.1)-(1.6) has a unique solution u ∈ H̃2(Ω) satisfying

‖u‖H2(Ω+∪Ω−) ≤ C‖f‖L2(Ω),

where C is a constant depending only on Ω, Γ and β.

Let {Th}h>0 be a family of triangulations of Ω such that no vertex of any element lies in the interior of

an edge of another element. We use hT to denote the diameter of T ∈ Th and define the mesh-size of the

triangulation by h = maxT∈Th
hT . We assume that Th is quasi-uniform, i.e., for every T , there exist positive

constants κ1 and κ2 such that κ1h ≤ hT ≤ κ2ρT where ρT is the diameter of the largest circle inscribed in
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T . Let Eh be the set of edges and Nh be the set of vertices of the triangulation. We adopt the convention

that elements T ∈ Th and edges e ∈ Eh are open sets. The sets of interface elements and interface edges are

defined as

T Γ
h := {T ∈ Th : T ∩ Γ 6= ∅} and EΓ

h := {e ∈ Eh : e ∩ Γ 6= ∅}.
The set of non-interface elements is defined by T non

h = Th\T Γ
h .

Assumption A. The interface Γ does not intersect the boundary of any interface element at more than

two points. The interface Γ does not intersect e for any e ∈ Eh at more than one point.

We can always refine the mesh near the interface with large curvature until Assumption A is satisfied.

As a common practice, we approximate the interface Γ by Γh that is composed of all the line segments

connecting the intersection points of boundaries of interface elements T ∈ T Γ
h and the interface Γ . The

approximated Γh divides Ω into two disjoint sub-domains Ω+
h and Ω−

h . For convenience we approximate

the coefficient β(x) as

βh(x) = β+ if x ∈ Ω+
h and βh(x) = β− if x ∈ Ω−

h . (2.2)

We will show that the approximation of the interface by Γh does not affect second order convergence when

the interface Γ is in C2. Let nh(x) be the unit normal vector of Γh pointing toward Ω+
h . The unit tangent

vector th(x) is obtained by a 90◦ clockwise rotation of nh(x). We note that nh(x) and th(x) are viewed as

piecewise constant vector-valued functions defined on all interface elements.

D

E

A1

A2

A3

nh

x∗

nh

th

n(x)T+
h

T−
h

T+
h \T+

T−
h \T−

Fig. 2 An interface element where the interface is approximated by the line segment.

Linear IFE shape function space. For an interface element T ∈ T Γ
h , we denote the intersection

points of Γ and ∂T by D and E. The straight line DE divides T into T+
h = T ∩Ω+

h and T−
h = T ∩Ω−

h , see

Figure 2. The linear IFE shape function on an interface element T ∈ T Γ
h is defined as

φ(x) :=

{
φ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+

h ,

φ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−
h ,

(2.3)

in which the coefficients are chosen so that the following conditions are satisfied

φ+(D) = φ−(D), φ+(E) = φ−(E), β+∇φ+ · nh = β−∇φ− · nh. (2.4)

The linear IFE shape function space Sh(T ) is defined as the set of functions in (2.3). It is obvious that IFE

shape function φ ∈ Sh(T ) and its flux are continuous across Γh ∩ T simultaneously, i.e.,

[φ]Γh∩T = 0 and [βh∇φ · nh]Γh∩T = 0 on Γh ∩ T. (2.5)

Lemma 1 Let Ai, i = 1, 2, 3 be vertices of an interface element T ∈ T Γ
h and αmax be the maximum angle

of the interface element T . If αmax ≤ π/2, then the function φ ∈ Sh(T ) defined in (2.3)-(2.4) is uniquely

determined by φ(Ai), i = 1, 2, 3 regardless of the interface location.
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Proof : See Appendix A.1. ⊓⊔

Linear IFE. On an interface element T ∈ T Γ
h , we define the immersed finite element as (T, Sh(T ),ΠT ),

where

ΠT = {N1, N2, N3}, Ni(φ) = φ(Ai), i = 1, 2, 3.

On a non-interface element T ∈ T non
h , we denote the set of linear functions by P1(T ). Then, the IFE

space V IFE
h can be defined as the set of all functions satisfying





φ|T ∈ Sh(T ), ∀T ∈ T Γ
h ,

φ|T ∈ P1(T ), ∀T ∈ T non
h ,

φ is continuous at every vertices xi ∈ Nh.

The IFE space V IFE
h is a modification to the standard linear conforming finite element space to recover the

optimal approximation capability. If β+ = β−, the IFE space V IFE
h becomes the standard linear conforming

finite element space. We also need the following space for homogeneous boundary condition

V IFE
h,0 = {v ∈ V IFE

h : v(xb) = 0, ∀xb ∈ Nh and xb ∈ ∂Ω}.

3 The parameter free PPIFE method

To present the new method, we first need a local lifting operator. On each interface element T ∈ T Γ
h , we

define the space

Wh(T ) := {∇vh : ∀vh ∈ Sh(T )}.
Let e ∈ EΓ

h be an interface edge shared by two interface elements T1 and T2 such that e = T1 ∩ T2. We

define a space associated with the edge e as

We := {wh ∈ (L2(Ω))2 : wh|T1
∈ Wh(T1), wh|T2

∈ Wh(T2), wh|Ω\(T1∪T2) = 0}. (3.1)

Given a scalar or vector function, the jump and average across the edge e are denoted by

[v]ene := (v|T1
− v|T2

)ne, {v}e :=
1

2
(v|T1

+ v|T2
),

where ne is the unit normal of e pointing from T1 to T2.

We introduce a local lifting operator re : L2(e) → We for each e ∈ EΓ
h , which is defined as a functional

re(ϕ) ∈ We such that for all ϕ ∈ L2(e),
∫

Ω

βh(x)re(ϕ) · whdx =

∫

e

{βhwh · ne}e ϕds, ∀wh ∈ We, (3.2)

where ne is the unit normal of the edge e. Since wh|Ω\(T1∪T2) = 0 for all wh ∈ We, we know that re is a

local lifting operator. Choosing wh = ∇vh in (3.2) and using re(ϕ)|Ω\(T1∪T2) = 0, we find

∑

i=1,2

∫

Ti

βh(x)re(ϕ) · ∇vhdx =

∫

e

{βh∇vh · ne}eϕds, ∀vh ∈ V IFE
h . (3.3)

The parameter free PPIFE method: find uh ∈ V IFE
h,0 such that

Ah(uh, vh) := ah(uh, vh) + sh(uh, vh) =

∫

Ω

fvhdx, ∀vh ∈ V IFE
h,0 , (3.4)

where

ah(uh, vh) :=
∑

T∈Th

∫

T

βh(x)∇uh · ∇vhdx−
∑

e∈EΓ
h

∫

e

({βh∇uh · ne}e[vh]e + {βh∇vh · ne}e[uh]e) ds (3.5)

and

sh(uh, vh) := 4
∑

e∈EΓ
h

∫

Ω

βh(x)re([uh]e) · re([vh]e)dx. (3.6)
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Remark 1

(1) The second term of the bilinear form ah(·, ·) and the stability term sh(·, ·) are added to offset the errors

from the discontinuities of IFE functions across interface edges. Those terms are zero if β+ = β− and the

method becomes the standard linear conforming finite element method.

(2) In practical implementation, these additional terms are only evaluated on interface edges and interface

elements. Thus the extra computational cost in computing those terms is not significant in general.

(3)The idea of using liftings comes from the discontinuous Galerkin methods (see Chapter 4.3 in the book

[11]). The idea has also be applied to the cut finite element methods [38,49]. However, different from

the discontinuous Galerkin methods and the original PPIFE method [44], we do not need to include the∑
e∈EΓ

h
h−1

∫
e
[uh]e[vh]eds term in the bilinear form since the functions in the IFE space are continuous at

vertices of the triangulation.

Remark 2 The local lifting operator re needed in the parameter free penalty term sh(uh, vh) is easy to be

computed. Let T1 and T2 be two interface elements sharing the edge e. Given a function ϕ ∈ L2(e), from

the definition (3.2), we know that the support of re(ϕ) is T1 ∪ T2 and re(ϕ) has the following form

re(ϕ)|Ti
=

{
citi,h + β−dini,h in T+

i,h,

citi,h + β+dini,h in T−
i,h,

i = 1, 2, (3.7)

where T±
i,h = Ti ∩ Ω±

h , ni,h = nh|Ti
and ti,h = th|Ti

, i = 1, 2. We show that the coefficients c1, d1, c2, d2
can be expressed explicitly. Choosing basis functions of We as the test function wh in (3.2), for example,

ω1(x) =

{
t1,h if x ∈ T1,

0 otherwise,
ω2(x) =





β−n1,h if x ∈ T+
1,h,

β+n1,h if x ∈ T−
1,h,

0 otherwise,

(3.8)

we obtain

c1 =
t1,h · ne

∫
e
βhϕds

2(β+|T+
1,h|+ β−|T−

1,h|)
, d1 =

n1,h · ne

∫
e
ϕds

2(β−|T+
1,h|+ β+|T−

1,h|)
. (3.9)

Similarly, we have

c2 =
t2,h · ne

∫
e
βhϕds

2(β+|T+
2,h|+ β−|T−

2,h|)
, d2 =

n2,h · ne

∫
e
ϕds

2(β−|T+
2,h|+ β+|T−

2,h|)
. (3.10)

4 The error analysis

In the analysis, we use C to denote a generic error constant that is independent of h and the interface

location relative to the mesh but may depend on the coefficients β±. The independence of the interface

location relative to the mesh means that the constant C is independent of how small T ∩ Ω+ or T ∩ Ω−

might be.

Denote dist(x,Γ ) as the distance between a point x and the interface Γ , and N(Γ, δ) = {x ∈ R
2 :

dist(x, Γ ) < δ} as the neighborhood of Γ of thickness δ. Define a signed distance function near the interface

as

ρ(x) =





dist(x,Γ ) if x ∈ Ω+ ∩N(Γ, δ0)

0 if x ∈ Γ

− dist(x,Γ ) if x ∈ Ω− ∩N(Γ, δ0).

It is known that there exists a constant δ0 > 0 such that the signed distance function ρ(x) is well-defined in

N(Γ, δ0) and ρ(x) ∈ C2(N(Γ, δ0)) since we assume that Γ ∈ C2 (see [12]). Now the unit normal and tangent

vectors of the interface can be evaluated as n(x) = ∇ρ and t(x) =
(

∂ρ
∂x2

,− ∂ρ
∂x1

)T
, and these functions n(x)

and t(x) are defined in N(Γ, δ0).

Assumption B. We assume that h < δ0 so that T ⊂ N(Γ, δ0) for all interface elements T ∈ T Γ
h .
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Since ρ(x) ∈ C2(N(Γ, δ0)), we have

n(x) ∈
(
C1(T )

)2
and t(x) ∈

(
C1(T )

)2
, ∀T ∈ T Γ

h . (4.1)

For any interface element T ∈ T Γ
h , by Rolle’s Theorem, there exists at least one point x∗ ∈ Γ ∩ T , see

Figure 2, such that

n(x∗) = nh(x
∗) and t(x∗) = th(x

∗). (4.2)

By using Taylor’s expansion at x∗, we further have

‖n− nh‖L∞(T ) ≤ Ch and ‖t− th‖L∞(T ) ≤ Ch, ∀T ∈ T Γ
h . (4.3)

In the following lemma, we present a δ-strip argument that will be used for the error estimate in the

region near the interface (see the third inequality in Lemma 2.1 in [39]).

Lemma 2 Let δ be sufficiently small. Then it holds for any v ∈ H1(Ω) that

‖v‖L2(N(Γ,δ)) ≤ C
√
δ‖v‖H1(Ω).

Furthermore, if v|Γ = 0, then there holds

‖v‖L2(N(Γ,δ)) ≤ Cδ‖∇v‖L2(N(Γ,δ)).

We need the following well-known extension result (see [15]).

Lemma 3 Assume that u± ∈ H2(Ω±). Then there exist extensions E
±u± ∈ H2(Ω) such that

(E±u±)|Ω± = u± and ‖E±u‖H2(Ω) ≤ C‖u±‖H2(Ω±)

with a constant C > 0 depending only on Ω±.

Recalling T± = T ∩ Ω±, T±
h = T ∩Ω±

h for all T ∈ T Γ
h , we define

T△ := (T+
h \T+) ∪ (T−

h \T−). (4.4)

We shall need the following estimate on the region T△ (see Lemma 2 in [5]).

Lemma 4 Assume that w ∈ H1(T ) and T ∈ T Γ
h . Then there is a constant C, independent of h and w,

such that

‖w‖2L2(T△) ≤ C(h2‖w‖2L2(Γ∩T ) + h4‖∇w‖2L2(T△)).

4.1 Approximation properties of the linear IFE space

We introduce an interpolation operator IIFE
h : C0(Ω) → V IFE

h such that

(IIFE
h v)(xi) = v(xi), ∀xi ∈ Nh, ∀v ∈ C0(Ω).

Let Vh be the standard linear conforming finite element space associated with Th. Define the corresponding

nodal interpolation operator Ih : C0(Ω) → Vh such that

(Ihv)(xi) = v(xi), ∀xi ∈ Nh, ∀v ∈ C0(Ω).

To simplify the notation, for a function v ∈ H̃2(Ω), we define

vi(x) := v|Ωi , ∀x ∈ Ωi, i = +,−,

and for a function vh ∈ Sh(T ) on an interface element T ∈ T Γ
h ,

vih(x) := (Epolyvh|T i
h
)(x), ∀x ∈ T, i = +,−.
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Here E
poly : P1(T

i
h) → P1(T ) is a polynomial extension operator such that (Epolyw)|T i

h
= w for all w ∈

P1(T
i
h), i = +,−, where P1(Λ) denotes the set of linear functions defined on a domain Λ. We also define an

operator Eh such that, for all v ∈ H̃2(Ω),

(Ehv)(x) =

{
E
+v+ if x ∈ Ω+

h ,

E
−v− if x ∈ Ω−

h .
(4.5)

To approximate the broken function Ehv with v ∈ H̃2(Ω), we introduce a new interpolation operator IBK
h

on interface elements such that

(IBK
h v)|T i

h
= IhE

ivi, i = +,−, ∀T ∈ T Γ
h , ∀v ∈ H̃2(Ω). (4.6)

On an interface element T ∈ T Γ
h , for a function v ∈ H̃2(Ω), we define

[[v]](x) := E
+v+(x)− E

−v−(x), ∀x ∈ T,

[[β∇v · n]](x) := β+∇(E+v+) · n(x)− β−∇(E+v−) · n(x), ∀x ∈ T,

[[IBK
h v]](x) := (IhE

+v+)(x)− (IhE
−v−)(x), ∀x ∈ T,

[[β∇(IBK
h v) · n]](x) := β+∇Ih(E

+v+) · n(x)− β−∇Ih(E
−v−) · n(x), ∀x ∈ T,

(4.7)

and for a function vh ∈ V IFE
h ,

[[vh]](x) := v+h (x)− v−h (x), ∀x ∈ T,

[[β∇vh · n]](x) := β+∇v+h · n(x)− β−∇v−h · n(x), ∀x ∈ T.
(4.8)

Note that the difference between [[·]](x) and [·]Γ (x) is the range of x.

We introduce auxiliary functions on each interface element T ∈ T Γ
h . Recalling that D and E are inter-

section points of Γ and ∂T , we define auxiliary functions Υ (x), ΨD(x) and ΨE(x) as

Υ (x) :=

{
Υ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+

h ,

Υ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−
h ,

(4.9)

such that

Υ (Aj) = 0, j = 1, 2, 3,

Υ+(D) = Υ−(D), Υ+(E) = Υ−(E), β+∇Υ+ · nh − β−∇Υ− · nh = 1,
(4.10)

and

Ψi(x) :=

{
Ψ+
i = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+

h ,

Ψ−
i = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−

h ,
i = D,E, (4.11)

such that

Ψi(Aj) = 0, j = 1, 2, 3, i = D,E,

β+∇Ψ+
i · nh = β−∇Ψ−

i · nh, i = D,E,

Ψ+
D(D)− Ψ−

D (D) = 1, Ψ+
D(E)− Ψ−

D (E) = 0,

Ψ+
E (D)− Ψ−

E (D) = 0, Ψ+
E (E)− Ψ−

E (E) = 1.

(4.12)

Remark 3 The functions Υ , ΨD and ΨE defined above exist and are unique. The justification is that the

coefficient matrix is the same as that for determining the IFE shape functions in the space Sh(T ) if we write

a linear system for the unknown coefficients a±,b± and c±.

Lemma 5 On each interface element T ∈ T Γ
h , let [[IBK

h v]] and [[β∇(IBK
h v) · n]] be define in (4.7). Under

the condition of Lemma 1, the following identity holds

IBK
h v − IIFE

h v = [[IBK
h v]](D)ΨD(x) + [[IBK

h v]](E)ΨE(x) + [[β∇(IBK
h v) · n]](x∗)Υ (x). (4.13)
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Proof : Let wh := IBK
h v − IIFE

h v. It is easy to verify that wh(Ai) = 0, i = 1, 2, 3 and wh|T±

h

are linear

functions. Define another piecewise linear function vh as

vh(x) := [[wh]](D)ΨD(x) + [[wh]](E)ΨE(x) + [[β∇wh · nh]]Υ (x).

Next, we prove wh = vh. From the definition (4.9)-(4.12), we have

[[vh]](D) = [[wh]](D), [[vh]](E) = [[wh]](E), [[β∇vh · nh]] = [[β∇wh · nh]], vh(Ai) = 0, i = 1, 2, 3,

which implies wh(x)− vh(x) ∈ Sh(T ) and (wh − vh)(Ai) = 0, i = 1, 2, 3. From Lemma 1, we know that the

function wh − vh is unique and wh − vh = 0 through a simple verification. Now, we get the decomposition

wh(x) = vh(x) = [[wh]](D)ΨD(x) + [[wh]](E)ΨE(x) + [[β∇wh · nh]]Υ (x). (4.14)

From (2.5), (4.2) and the definition (4.8), we find

[[wh]](xp) = [[IBK
h v]](xp)− [[IIFE

h v]](xp) = [[IBK
h v]](xp), xp = D,E,

[[β∇wh · nh]] = [[β(∇IBK
h v) · nh]]− [[β(∇IIFE

h v) · nh]] = [[β(∇IBK
h v) · n]](x∗).

The above identities combined with (4.14) lead to (4.13). ⊓⊔

Lemma 6 For each interface element T ∈ T Γ
h , let ΨD(x), ΨE(x) and Υ (x) be defined in (4.9)-(4.12). Under

the condition of Lemma 1, there hold

‖Ψi‖2L2(T ) ≤ Ch2, |Ψi|2H1(T+

h
∪T−

h
) ≤ C, i = D,E,

‖Υ‖2L2(T ) ≤ Ch4, |Υ |2H1(T ) ≤ Ch2,

where the constant C only depends on β± and the shape-regular parameter κ2.

Proof : See Appendix A.2. ⊓⊔

The following lemma provides a relation between Ehv and IIFE
h v for all v ∈ H̃2(Ω).

Lemma 7 For any v ∈ H̃2(Ω), under the condition of Lemma 1, there exists a constant C independent of

h and the interface location relative to the mesh such that

∑

T∈T Γ
h

|Ehv − IIFE
h v|2Hm(T+

h
∪T−

h
) ≤ Ch4−2m‖v‖2H2(Ω+∪Ω−), m = 0, 1.

Proof : For each interface element T ∈ T Γ
h , by the triangle inequality, we have

|Ehv − IIFE
h v|Hm(T+

h
∪T−

h
) ≤ |Ehv − IBK

h v|Hm(T+

h
∪T−

h
) + |IBK

h v − IIFE
h v|Hm(T+

h
∪T−

h
). (4.15)

From (4.5) and (4.6), the estimate of the first term is the standard

|Ehv − IBK
h v|2Hm(T+

h
∪T−

h
) = (|E+v+ − IhE

+v+|2Hm(T+

h
) + |E−v− − IhE

−v−|2Hm(T−

h
))

≤ Ch4−2m(|E+v+|2H2(T ) + |E−v−|2H2(T )).
(4.16)

For the second term on the right-hand side of (4.15), from Lemma 5 and Lemma 6, we have

|IBK
h v − IIFE

h v|2Hm(T+

h
∪T−

h
) ≤ 3

∑

xp=D,E

[[IBK
h v]]2(xp)|Ψxp

|2Hm(T+

h
∪T−

h
)

+ 3[[β∇(IBK
h v) · n]]2(x∗)|Υ (x)|2Hm(T )

≤ Ch2−2m
∑

xp=D,E

[[IBK
h v]]2(xp) + Ch4−2m[[β∇(IBK

h v) · n]]2(x∗).

(4.17)
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Since v ∈ H̃2(Ω), we have [[v]]2(D) = [[v]]2(E) = 0, which leads to

∑

xp=D,E

[[IBK
h v]]2(xp) =

∑

xp=D,E

[[IBK
h v − v]]2(xp) ≤ C‖[[IBK

h v − v]]‖2L∞(T )

≤ C‖IhE+v+ − E
+v+‖2L∞(T ) + C‖IhE−v− − E

−v−‖2L∞(T )

≤ Ch2(|E+v+|2H2(T ) + |E−v−|2H2(T )),

(4.18)

where we have used the standard interpolation error estimate in the last inequality, see Theorem 4.4.20 in

[7].

The remaining term [[β∇(IBK
h v) · n]](x∗) in (4.17) cannot be treated as (4.18) because ∇u · n is not

well-defined at the point x∗ when u ∈ H̃2(Ω). Using the standard inverse inequality, (4.3) and the relation

n(x∗) = nh, we can derive

|[[β∇(IBK
h v) · n]]2(x∗) = ‖[[β∇(IBK

h v) · nh]]‖2L∞(T ) ≤ Ch−2‖[[β∇(IBK
h v) · nh]]‖2L2(T )

≤ Ch−2
(
‖[[β∇(IBK

h v) · nh − β∇v · nh]]‖2L2(T ) + ‖[[β∇v · (n+ nh − n)]]‖2L2(T )

)

≤ C
∑

i=±

|Eivi|2H2(T ) + Ch−2
(
‖[[β∇v · n]]‖2L2(T ) + ‖nh − n‖2L∞(T ) ‖[[β∇v]]‖2L2(T )

)

≤ C
∑

i=±

(
|Eivi|2H2(T ) + |Eivi|2H1(T )

)
+ Ch−2 ‖[[β∇v · n]]‖2L2(T ) ,

(4.19)

where [[β∇v · n]] represents the jump of the flux of E±v± (see (4.7) for the definition of the notation [[·]]).
We combine (4.15)-(4.19) to obtain the error estimate on the interface element

|Ehv − IIFE
h v|2Hm(T+

h
∪T−

h
) ≤ Ch4−2m

∑

i=±

‖Eivi‖2H2(T ) + Ch2−2m ‖[[β∇v · n]]‖2L2(T ) .

Summing up and using Lemma 3, we get

∑

T∈T Γ
h

|Ehv − IIFE
h v|2Wm

2
(T+

h
∪T−

h
) ≤ Ch4−2m‖v‖2H2(Ω+∪Ω−) + Ch2−2m

∑

T∈T Γ
h

‖[[β∇v · n]]‖2L2(T ) . (4.20)

Since v ∈ H̃2(Ω), from the definition (2.1) we know that [[β∇v · n]] = 0 on Γ . Thus, by Lemma 2 and the

fact n(x) ∈
(
C1 (N(Γ, δ0))

)2
, we have

∑

T∈T Γ
h

‖[[β∇v · n]]‖2L2(T ) ≤ ‖[[β∇v · n]]‖2L2(N(Γ,h)) ≤ Ch2 |[[β∇v · n]]|2H1(N(Γ,h))

≤ Ch2(‖E+v+‖2H2(N(Γ,h)) + ‖E−v−‖2H2(N(Γ,h))) ≤ Ch2‖v‖2H2(Ω+∪Ω−).

(4.21)

Finally, substituting this into (4.20) we complete the proof of the lemma. ⊓⊔

Now we are ready to prove the optimal approximation properties of the linear IFE space.

Theorem 2 For any v ∈ H̃2(Ω), under the condition of Lemma 1, there exists a constant C independent

of h and the interface location relative to the mesh such that

‖v − IIFE
h v‖L2(Ω) + h

( ∑

T∈Th

|v − IIFE
h v|2H1(T )

)1/2

≤ Ch2‖v‖H2(Ω+∪Ω−). (4.22)

Proof : On each non-interface element T ∈ T non
h , we have the standard estimate

‖v − IIFE
h v‖L2(T ) + h|v − IIFE

h v|H1(T ) ≤ Ch2‖v‖H2(T ). (4.23)

On each interface element T ∈ T Γ
h , by the triangle inequality, we have

|v − IIFE
h v|2Hm(T ) ≤ 2|Ehv − IIFE

h v|2Hm(T+

h
∪T−

h
) + 2|v − Ehv|2Hm(T+

h
∪T−

h
), m = 1, 2. (4.24)

The first term on the right hand-side can be estimated by Lemma 7.
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Next, we try to estimate the second term on the right-hand side of (4.24). From (4.5), we know that

Ehv = E
+v+ on T+

h , which together with the fact E+v+ = v+ = v on T+
h ∩ T+ implies

|Ehv − v|2Hm(T+

h
) = |E+v+ − v|2Hm(T+

h
) = |E+v+ − v−|2Hm(T+

h
\T+), m = 1, 2. (4.25)

Since T+
h \T+ ⊂ T△, T+

h \T+ ⊂ Ω− and E
+v+ = E

−v− on Γ , it follows from Lemma 4 that

‖E+v+ − v−‖2L2(T+

h
\T+) ≤ Ch4|E+v+ − E

−v−|2H1(T△) ≤ Ch4
∑

i=±

|Eivi|2H1(T ),

‖∇(E+v − v−)‖2L2(T+

h
\T+) ≤ C

(
h2‖∇(v+ − v−)‖2L2(Γ∩T ) + h4|E+v − E

−v−|2H2(T△)

)

≤ Ch2
∑

i=±

‖∇vi‖2L2(Γ∩T ) + Ch4
∑

i=±

|Eivi|2H2(T ).

(4.26)

From (4.25) and (4.26), we get, for m = 0, 1,

|v − Ehv|2Hm(T+

h
) ≤ Ch4−2m

∑

i=±

‖∇vi‖2L2(Γ∩T ) + Ch4
∑

i=±

‖Eivi‖2H2(T ). (4.27)

Analogously, we have the following result on T−
h ,

|v − Ehv|2Hm(T−

h
) ≤ Ch4−2m

∑

i=±

‖∇vi‖2L2(Γ∩T ) + Ch4
∑

i=±

‖Eivi‖2H2(T ). (4.28)

Combining (4.23), (4.24), (4.27), (4.28) and Lemma 7, we have

∑

T∈Th

|v − IIFE
h v|2Hm(T ) ≤ Ch4−2m

(
‖v‖2H2(Ω+∪Ω−) +

∑

i=±

‖∇vi‖2L2(Γ )

)
+ Ch4

∑

i=±

‖Eivi‖2H2(Ω), (4.29)

which together with the global trace inequality on Ω±

∑

i=±

‖∇vi‖2L2(Γ ) ≤ C(‖v‖2H2(Ω−) + ‖v‖2H2(Ω+)) (4.30)

and the continuity of the extension (see Lemma 3)

‖E+v+‖2H2(Ω) + ‖E−v−‖2H2(Ω) ≤ C(‖v‖2H2(Ω+) + ‖v‖2H2(Ω−)) (4.31)

implies the estimate (4.22). ⊓⊔

4.2 The trace inequality for the space H̃2(T ) + Sh(T )

Assume v ∈ H̃2(T ) and wh ∈ Sh(T ), the standard trace inequality cannot be applied to ∇(v−wh) because

v − wh 6∈ H2(T ). To establish the trace inequality for the broken space, we first need the following trace

lemma for the space H̃2(T ).

Lemma 8 Assume v ∈ H̃2(T ), there exists a constant C independent of h and the interface location relative

to the mesh such that

‖∇v‖L2(∂T ) ≤ C(h− 1

2 ‖∇v‖L2(T ) + h
1

2 |v|H2(T+∪T−)).

Proof : Since v ∈ H̃2(T ), we have ∇v± ∈ (H1(T±))2 with T± = Ω± ∩ T. By (4.1), we obtain

∇v± · t(x) ∈ H1(T±) and β±∇v± · n(x) ∈ H1(T±).

Using the condition [v]Γ∩T = [β∇v · n]Γ∩T = 0 in the definition (2.1), we have

∇v · t(x) ∈ H1(T ) and β(x)∇v · n(x) ∈ H1(T ). (4.32)
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By the standard trace inequality, we get

‖∇v · t‖L2(∂T ) ≤ C(h− 1

2 ‖∇v · t‖L2(T ) + h
1

2 |∇v · t|H1(T )),

‖β∇v · n‖L2(∂T ) ≤ C(h− 1

2 ‖β∇v · n‖L2(T ) + h
1

2 |β∇v · n|H1(T )).

Hence, we finally conclude

‖∇v‖L2(∂T ) ≤ C(‖∇v · t‖L2(∂T ) + ‖β∇v · n‖L2(∂T ))

≤ Ch− 1

2 (‖∇v · t‖L2(T ) + ‖β∇v · n‖L2(T )) + Ch
1

2 (|∇v · t|H1(T ) + |β∇v · n|H1(T ))

≤ C(h− 1

2 ‖∇v‖L2(T ) + h
1

2 |v|H2(T+∪T−)).

⊓⊔

The following trace inequality for the spaces H̃2(T ) + Sh(T ) is important in the convergence proof.

Lemma 9 Let T ∈ T Γ
h be an interface element and Sh(T ) be the linear IFE shape function space. For

any v ∈ H̃2(T ) and any wh ∈ Sh(T ), there exists a constant C independent of h and the interface location

relative to the mesh such that

‖∇(v − wh)‖L2(∂T ) ≤ Ch− 1

2 ‖∇(v − wh)‖L2(T ) + Ch
1

2 (|v|H2(T+∪T−) + |v|H1(T )). (4.33)

Proof : First we split the left-hand side of the inequality as

‖∇(v − wh)‖L2(∂T ) ≤ C‖∇(v − wh) · th‖L2(∂T ) + C‖β∇(v− wh) · nh‖L2(∂T )

≤ C
(
‖∇v · t−∇wh · th‖L2(∂T ) + ‖∇v · (t− th)‖L2(∂T )

+ ‖β∇v · n− βh∇wh · nh‖L2(∂T ) + ‖β∇v · (n− nh)‖L2(∂T )

)
,

(4.34)

where we have used the fact β = βh on the boundary ∂T .

Next, we estimate the first and the third terms on the right-hand side of (4.34). From (2.5), we have

∇wh · th(x) ∈ H1(T ), (4.35)

which together with (4.32) implies

∇v · t−∇wh · th ∈ H1(T ).

Thus, by the standard trace inequality, the first term on the right-hand side of (4.34) can be estimated as

‖∇v · t−∇wh · th‖L2(∂T ) ≤ C
(
h− 1

2 ‖∇v · t−∇wh · th‖L2(T ) + h
1

2 |∇v · t−∇wh · th|H1(T )

)

≤ Ch− 1

2

(
‖∇v · th −∇wh · th‖L2(T ) + ‖∇v · (t− th)‖L2(T )

)
+ Ch

1

2 |v|H2(T+∪T−)

≤ Ch− 1

2

(
‖∇(v − wh)‖L2(T ) + ‖∇v · (t− th)‖L2(T )

)
+ Ch

1

2 |v|H2(T+∪T−).

(4.36)

For the third term on the right-hand side of (4.34), from (2.5), we also we have

βh(x)∇wh · nh ∈ H1(T ). (4.37)

Thus, it follows from (4.32) that

β∇v · n− βh∇wh · nh ∈ H1(T ). (4.38)

Similar to (4.36), by the standard trace inequality, we obtain

‖β∇v · n− βh∇wh · nh‖L2(∂T ) ≤ Ch− 1

2

(
‖∇(v− wh)‖L2(T ) + ‖∇v · (n− nh)‖L2(T )

)

+ Ch
1

2 |v|H2(T+∪T−).
(4.39)

Combining (4.34), (4.36) and (4.39), we obtain

‖∇(v − wh)‖L2(∂T ) ≤ Ch− 1

2 ‖∇(v− wh)‖L2(T ) + Ch
1

2 |v|H2(T+∪T−)

+ Ch− 1

2 (‖∇v · (n− nh)‖L2(T ) + ‖∇v · (t− th)‖L2(T ))

+ C(‖∇v · (t− th)‖L2(∂T ) + ‖∇v · (n− nh)‖L2(∂T )).
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Using (4.3), we further get

‖∇(v− wh)‖L2(∂T ) ≤ Ch− 1

2 ‖∇(v− wh)‖L2(T ) + Ch
1

2 |v|H2(T+∪T−)

+ Ch
1

2 ‖∇v‖L2(T ) + Ch‖∇v‖L2(∂T ),

which, together with Lemma 8, completes the proof.

⊓⊔

4.3 The stability analysis of the local lifting operator

Lemma 10 There exists a constant C independent of h and the interface location relative to the mesh such

that

‖re(ϕ)‖L2(Ω) ≤ Ch− 1

2 ‖ϕ‖L2(e), ∀ϕ ∈ L2(e), ∀e ∈ EΓ
h .

Proof : Let T1 and T2 be the interface elements sharing the edge e, i.e., T1 ∩ T2 = e and T1, T2 ∈ T Γ
h . Then

the support of re(ϕ) is T1 ∪ T2. Taking wh = re(ϕ) in (3.2), we have

‖re(ϕ)‖2L2(Ω) ≤ C‖β1/2
h re(ϕ)‖2L2(T1∪T2) = C

∫

e

{βhre(ϕ) · ne}eϕds

≤ C‖{βhre(ϕ)}e‖L2(e)‖ϕ‖L2(e) ≤ C‖ϕ‖L2(e)

∑

i=1,2

‖re(ϕ)|Ti
‖L2(e).

(4.40)

By definition, there exists a function vh ∈ Sh(T1) such that ∇vh = re(ϕ)|T1
. Choosing v = 0 and wh = vh

in Lemma 9, we have

‖re(ϕ)|T1
‖L2(e) = ‖∇vh‖L2(e) ≤ Ch− 1

2 ‖∇vh‖L2(T1) = Ch− 1

2 ‖re(ϕ)‖L2(T1). (4.41)

Similarly, on the element T2, we also have the estimate

‖re(ϕ)|T2
‖L2(e) ≤ Ch− 1

2 ‖re(ϕ)‖L2(T2). (4.42)

The lemma follows from (4.40)-(4.42). ⊓⊔

4.4 The optimal convergence analysis of the parameter free PPIFE method

For all v ∈
(
H1

0 (Ω) ∩ H̃2(Ω)
)
+ V IFE

h , we define the following mesh-dependent norms

‖v‖2h =
∑

T∈Th

‖
√

βh∇v‖2L2(T )

and

9 v9
2
h = ‖v‖2h +

∑

e∈EΓ
h

h‖{βh∇v}e‖2L2(e) +
∑

e∈EΓ
h

h−1‖[v]e‖2L2(e) + sh(v, v). (4.43)

Note that ‖ · ‖h is indeed a norm because ‖v‖h = 0 implies v is a piecewise constant, which together with

the zero boundary condition and the continuity at Γh and nodal points implies v = 0.

It follows from the Cauchy-Schwarz inequality that

|Ah(w, v)| ≤ 9w 9h 9v9h, ∀w, v ∈
(
H1

0 (Ω) ∩ H̃2(Ω)
)
+ V IFE

h . (4.44)

The following lemma shows that the parameter free PPIFE method is coercive with respect to ‖ · ‖h.

Lemma 11 (Coercivity) The parameter free PPIFE method has the following coercive relation

Ah(vh, vh) ≥
1

2
‖vh‖2h, ∀vh ∈ V IFE

h . (4.45)
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Proof : For any e ∈ EΓ
h , we denote by Pe the set of two triangles in T Γ

h sharing the edge e. From (3.2) and

(3.3), we know that the support of re([vh]e) is ∪T∈Pe
T and

2
∑

e∈EΓ
h

∫

e

{βh∇vh · ne}e[vh]eds = 2
∑

e∈EΓ
h

∑

T∈Pe

∫

T

βh(x)re([vh]e) · ∇vhdx.

From the Cauchy-Schwarz inequality, we further get

2
∑

e∈EΓ
h

∫

e

{βh∇vh · ne}e[vh]eds

≤ 2
∑

e∈EΓ
h

( ∑

T∈Pe

∫

T

βhre([vh]e) · re([vh]e)dx
) 1

2

( ∑

T∈Pe

∫

T

βh∇vh · ∇vhdx

) 1

2

≤ 2


∑

e∈EΓ
h

∑

T∈Pe

∫

T

βhre([vh]e) · re([vh]e)dx




1

2


∑

e∈EΓ
h

∑

T∈Pe

∫

T

βh∇vh · ∇vhdx




1

2

.

(4.46)

From Assumption A, we know that each interface element has at most two interface edges. Thus, each

interface element is calculated at most twice, i.e.,

∑

e∈EΓ
h

∑

T∈Pe

∫

T

βh∇vh · ∇vhdx ≤ 2
∑

T∈Th

∫

T

βh(x)∇vh · ∇vhdx. (4.47)

Substituting (3.6) and (4.47) into (4.46), we find

2
∑

e∈EΓ
h

∫

e

{βh∇vh · ne}e[vh]eds ≤ (sh(vh, vh))
1

2

(
2
∑

T∈Th

∫

T

βh(x)∇vh · ∇vhdx

) 1

2

≤ 1

2ǫ
sh(vh, vh) + ǫ

∑

T∈Th

∫

T

βh(x)∇vh · ∇vhdx.

With ǫ = 1
2 , the inequality above becomes,

2
∑

e∈EΓ
h

∫

e

{βh∇vh · ne}e[vh]eds ≤ sh(vh, vh) +
1

2

∑

T∈Th

∫

T

βh(x)∇vh · ∇vhdx.

Therefore, from (3.5) and (3.6) we arrive at

ah(vh, vh) + sh(vh, vh) ≥
1

2

∑

T∈Th

∫

T

βh(x)∇vh · ∇vhdx =
1

2
‖vh‖2h.

This completes the proof of this lemma. ⊓⊔

Next, we try to prove the equivalence of the two norms ‖ · ‖h and 9 · 9h on the IFE space V IFE
h . We

need the following lemma, see Lemma 3.4 in [33] and (4.15) in [16] for the 2D cases, and Appendix B.3 for

the 3D cases.

Lemma 12 Under the condition of Lemma 1, there exists a constant C independent of h and the interface

location relative to the mesh such that

‖[φ]e‖2L2(e) ≤ Ch
(
‖∇φ‖2L2(T1) + ‖∇φ‖2L2(T2)

)
, ∀e ∈ EΓ

h , ∀φ ∈ V IFE
h , (4.48)

where T1 ∩ T2 = e and T1, T2 ∈ T Γ
h .

The equivalence of these two norms is shown in the following lemma.

Lemma 13 Under the condition of Lemma 1, there exists a constant C independent of h and the interface

location relative to the mesh such that

‖vh‖h ≤ 9vh9h ≤ C‖vh‖h, ∀vh ∈ V IFE
h . (4.49)
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Proof : The first inequality is obvious. Thus, we just need to prove the second inequality. For any e ∈ EΓ
h ,

we denote by Pe the set of two triangles in T Γ
h sharing the edge e. Setting v = 0 in Lemma 9, we have

∑

e∈EΓ
h

h‖{βh∇vh}e‖2L2(e) ≤ C
∑

e∈EΓ
h

∑

T∈Pe

h‖∇vh‖2L2(∂T ) ≤ C
∑

e∈EΓ
h

∑

T∈Pe

‖∇vh‖2L2(T ) ≤ C‖vh‖2h. (4.50)

From Lemma 12, we obtain

∑

e∈EΓ
h

h−1‖[vh]e‖2L2(e) ≤ C
∑

e∈EΓ
h

∑

T∈Pe

‖∇vh‖2L2(T ) ≤ C‖vh‖2h. (4.51)

From Lemma 10 for the local lifting operator and (4.51), we arrive at

sh(vh, vh) ≤ C
∑

e∈EΓ
h

‖re([vh]e)‖2L2(Ω) ≤ C
∑

e∈EΓ
h

h−1‖[vh]e‖2L2(e) ≤ C‖vh‖2h,

which together with (4.43), (4.50) and (4.51) yields the second inequality in (4.49). ⊓⊔

The following lemma provides an optimal estimate for the interpolation error in terms of the norm 9·9h.

Lemma 14 Suppose v ∈ H̃2(Ω) and the condition of Lemma 1 holds, then there exists a constant C

independent of h and the interface location relative to the mesh such that

9v − IIFE
h v9h ≤ Ch‖v‖H2(Ω+∪Ω−).

Proof : For any e ∈ EΓ
h , let T1 and T2 be two elements sharing the edge e. Since (v− IIFE

h v)|T ∈ H1(T ) for

all T ∈ T Γ
h , by the standard trace inequality, we have

h−1‖[v − IIFE
h v]e‖2L2(e) ≤ Ch−2

∑

i=1,2

‖v − IIFE
h v‖2L2(Ti) + C

∑

i=1,2

|v − IIFE
h v|2H1(Ti). (4.52)

On the other hand, since (v − IIFE
h v)|T ∈ H̃2(T ) + Sh(T ) for all T ∈ T Γ

h , by Lemma 9, we have

h‖{βh∇(v − IIFE
h v)}e‖2L2(e) ≤ Ch

∑

T∈Pe

‖∇(v− IIFE
h v)‖2L2(∂T )

≤ C
∑

i=1,2

‖∇(v − IIFE
h v)‖2L2(Ti) + Ch2

∑

i=1,2

(|v|2H2(T+

i
∪T−

i
) + |v|2H1(Ti)).

(4.53)

From Lemma 10 for the local lifting operator, we find

sh(v − IIFE
h v, v − IIFE

h v) ≤ C
∑

e∈EΓ
h

∥∥∥re([v − IIFE
h v]e)

∥∥∥
2

L2(Ω)
≤ C

∑

e∈EΓ
h

h−1‖[v − IIFE
h v]e‖2L2(e). (4.54)

Combining (4.43), (4.52), (4.53) and (4.54), we obtain

9v − IIFE
h v92

h ≤ Ch−2‖v − IIFE
h v‖2L2(Ω) + C

∑

T∈Th

|v − IIFE
h v|2H1(T ) + Ch2‖v‖H2(Ω+∪Ω−),

which together with Theorem 2 implies this lemma. ⊓⊔

The following lemma concerns the consistent error caused by replacing β(x) by βh(x).

Lemma 15 Let u and uh be the solutions to (1.1)-(1.6) and (3.4)-(3.6), respectively. Then it holds that

Ah(u− uh, vh) =
∑

T∈T Γ
h

∫

T△

(βh(x)− β(x))∇u · ∇vhdx, ∀vh ∈ V IFE
h ,

where T△ is define in (4.4).
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Proof : Integrating by parts and summing up over all triangles in Th, we have, for any vh ∈ V IEF
h ,

∫

Ω

fvhdx =
∑

T∈Th

∫

T

β(x)∇u · ∇vhdx−
∑

e∈EΓ
h

∫

e

β(x)∇u · ne[vh]ds

=
∑

T∈Th

∫

T

β(x)∇u · ∇vhdx−
∑

e∈EΓ
h

∫

e

{β∇u · ne}e[vh]e + {β∇vh · ne}e[u]eds,
(4.55)

where we have used the facts that u|∂Ω = 0, vh|∂Ω = 0, the function u and its flux are continuous on all

edges Eh since u ∈ H̃2(Ω), and vh ∈ V IFE
h is only discontinuous on interface edges EΓ

h .

Since [u]e = 0, for any e ∈ EΓ
h , we have re([u]e) = 0 and

sh(u, vh) = 4
∑

e∈EΓ
h

∫

Ω

βh(x)re([u]e) · re([vh]e)dx = 0, ∀vh ∈ V IFE
h . (4.56)

Combining (3.4)-(3.6), (4.55) and (4.56), and using the fact that βh(x) = β(x) on interface edges EΓ
h , we

arrive at the desired identity,

ah(u− uh, vh) + sh(u− uh, vh) =
∑

T∈T Γ
h

∫

T△

(βh(x)− β(x))∇u · ∇vhdx.

⊓⊔
We now provide the H1 error estimate for the parameter free PPIFE method in the following theorem.

Theorem 3 Let u and uh be the solutions to (1.1)-(1.6) and (3.4)-(3.6), respectively. Under the condition

of Lemma 1, there exists a constant C independent of h and the interface location relative to the mesh such

that

9 u− uh9h ≤ Ch‖u‖H2(Ω+∪Ω−). (4.57)

Proof : By using Lemma 13 for the equivalence of two norms, the coercivity (4.45) and the continuity (4.44)

of the bilinear form Ah(·, ·), we have

9uh − IIFE
h uh9

2
h ≤ C‖uh − IIFE

h uh‖2h ≤ CAh(uh − IIFE
h uh, uh − IIFE

h uh)

= CAh(u− IIFE
h uh, uh − IIFE

h uh) + CAh(uh − u, uh − IIFE
h uh)

≤ C 9 u− IIFE
h uh 9h 9uh − IIFE

h uh 9h +CAh(uh − u, uh − IIFE
h uh)

(4.58)

From Lemma 15, we get

∣∣∣Ah(uh − u, uh − IIFE
h uh)

∣∣∣ ≤
∑

T∈T Γ
h

∫

T△

∣∣∣(βh − β)∇u · ∇(uh − IIFE
h uh)

∣∣∣ ds

≤ C
∑

T∈T Γ
h

∫

T△

∣∣∣∇u · ∇(uh − IIFE
h uh)

∣∣∣ ds ≤ C 9 uh − IIFE
h uh 9h


 ∑

T∈T Γ
h

‖∇u‖2L2(T△)




1/2

.

(4.59)

From Lemma 4, the global trace inequality on Ω± and Lemma 3, we continue to derive the following,
∑

T∈T Γ
h

‖∇u‖2L2(T△) =
∑

T∈T Γ
h

∑

i=±

‖∇ui‖2L2(T△∩T i) ≤
∑

T∈T Γ
h

∑

i=±

‖∇E
iui‖2L2(T△)

≤ C
∑

T∈T Γ
h

∑

i=±

(
h2‖∇ui‖2L2(T∩Γ ) + h4|Eiui|2H2(T△)

)

≤ Ch2
∑

i=±

‖∇ui‖2L2(Γ ) + Ch4
∑

i=±

|Eiui|2H2(Ω)

≤ Ch2
∑

i=±

‖u‖2H2(Ωi) = Ch2‖u‖2H2(Ω+∪Ω−).

(4.60)

Substituting (4.59) and (4.60) into (4.58), we obtain

9uh − IIFE
h uh9h ≤ C 9 u− IIFE

h uh 9h +Ch‖u‖H2(Ω+∪Ω−).
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Thus, by the triangle inequality and Lemma 14, we arrive at

9u− uh9h ≤ 9u− IIFE
h uh 9h + 9 uh − IIFE

h uh9h

≤ C 9 u− IIFE
h uh 9h +Ch‖u‖H2(Ω+∪Ω−) ≤ Ch‖u‖H2(Ω+∪Ω−),

which completes the proof of the theorem. ⊓⊔

Finally, we show the optimal L2 error estimate for the parameter free PPIFE method using the standard

duality argument.

Theorem 4 Let u and uh be the solutions to (1.1)-(1.6) and (3.4)-(3.6), respectively. Under the condition

of Lemma 1, there exists a constant C independent of h and the interface location relative to the mesh such

that

‖u− uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω+∪Ω−).

Proof : Let z be the solution of the following auxiliary problem

−∇ · (β(x)∇z) = u− uh in Ω\Γ,
[z]Γ = 0, [β∇z · n]Γ = 0 on Γ,

z = 0 on ∂Ω.

(4.61)

Since u− uh ∈ L2(Ω), it follows from Theorem 1 that

z ∈ H̃2(Ω) and ‖z‖H2(Ω+∪Ω−) ≤ C‖u− uh‖L2(Ω). (4.62)

Multiplying (4.61) by u− uh and integrating by parts, we find

‖u− uh‖2L2(Ω) =
∑

T∈Th

∫

T

−∇ · (β(x)∇z)(u− uh)dx

=
∑

T∈Th

∫

T

β∇z · ∇(u− uh)dx−
∑

e∈EΓ
h

∫

e

{β∇z · ne}e[u− uh]eds.

Using the facts that [z]e = 0 and sh(z, u− uh) = 0, we have

‖u− uh‖2L2(Ω) =
∑

T∈Th

∫

T

β∇z · ∇(u− uh)dx+ sh(z, u− uh)

−
∑

e∈EΓ
h

∫

e

({β∇z · ne}e[u− uh]e + {β∇(u− uh) · ne}e[z]e) ds

= Ah(z, u− uh) +
∑

T∈Th

∫

T

(β − βh)∇z · ∇(u− uh)dx

= Ah(z − IIFE
h z, u− uh) +Ah(I

IFE
h z, u− uh) +

∑

T∈Th

∫

T

(β − βh)∇z · ∇(u− uh)dx.

(4.63)

The first term of (4.63) is bounded as shown below,

∣∣∣Ah(z − IIFE
h z, u− uh)

∣∣∣ ≤ C 9 z − IIFE
h z 9h 9u− uh9h ≤ Ch2‖z‖H2(Ω+∪Ω−)‖u‖H2(Ω+∪Ω−), (4.64)

where we have used (4.44) in the first inequality, and Lemma 14 and Theorem 3 in the second inequality.

From Lemma 15 and the symmetry of the bilinear form Ah(·, ·), we estimate the second term of (4.63)
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below, ∣∣∣Ah(I
IFE
h z, u− uh)

∣∣∣ ≤
∑

T∈T Γ
h

∫

T△

∣∣∣(βh − β)∇u · ∇IIFE
h z

∣∣∣ dx

≤ C
∑

T∈T Γ
h

‖∇u‖L2(T△)‖∇IIFE
h z − z‖L2(T△) + C

∑

T∈T Γ
h

‖∇u‖L2(T△)‖∇z‖L2(T△)

≤ C


9IIFE

h z − z 9h +


 ∑

T∈T Γ
h

‖∇z‖2L2(T△)




1/2




 ∑

T∈T Γ
h

‖∇u‖2L2(T△)




1/2

≤ Ch2‖z‖H2(Ω+∪Ω−)‖u‖H2(Ω+∪Ω−) + Ch‖u‖H2(Ω+∪Ω−)


 ∑

T∈T Γ
h

‖∇z‖2L2(T△)




1/2

,

where we have used (4.60) and Lemma 14 in the last inequality. Similar to (4.60), we also have

∑

T∈T Γ
h

‖∇z‖2L2(T△) ≤ Ch2‖z‖2H2(Ω+∪Ω−), (4.65)

which leads to ∣∣∣Ah(I
IFE
h z, u− uh)

∣∣∣ ≤ Ch2‖z‖H2(Ω+∪Ω−)‖u‖H2(Ω+∪Ω−). (4.66)

Next, the third term of (4.63) can be estimated below

∣∣∣∣∣
∑

T∈Th

∫

T

(β − βh)∇z · ∇(u− uh)dx

∣∣∣∣∣ ≤ C
∑

T∈T Γ
h

‖∇z‖L2(T△)‖∇(u− uh)‖L2(T△)

≤ 9u− uh 9h


 ∑

T∈T Γ
h

‖∇z‖2L2(T△)




1/2

≤ Ch2‖z‖H2(Ω+∪Ω−)‖u‖H2(Ω+∪Ω−),

(4.67)

where we have used (4.65) and Lemma 14 in the last inequality. Substituting (4.64), (4.66) and (4.67) into

(4.63) and using the regularity result (4.62), we finally arrive at

‖u− uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω+∪Ω−),

which completes the proof of the theorem. ⊓⊔

5 Extension to the interface problem with variable coefficients

In this section, we consider the interface problem with variable coefficients, i.e.,

β(x) = β+(x) if x ∈ Ω+ and β(x) = β−(x) if x ∈ Ω−,

where β±(x) are defined in slight larger domains Ω±
e := Ω± ∪N(Γ, δ0). We assume βi ∈ C1(Ωi

e), i = +,−.

Thus, there exist positive constants βmin, βmax and Cβ such that

βmin ≤ β±(x) ≤ βmax, ∀x ∈ Ω±
e and ‖∇β±‖Ω±

e
≤ Cβ . (5.1)

On an interface element T ∈ T Γ
h , we use some sort of averages of the coefficients β

+
h and β

−
h over the

sub-region such that

‖β+
h − β−(x)‖L∞(T ) ≤ Ch and ‖β−

h − β−(x)‖L∞(T ) ≤ Ch, (5.2)

where the constant C may depend on ‖β+‖W 1
∞

(T ) and ‖β−‖W 1
∞

(T ). For example, we can choose β
±
h =

β±(xm) with an arbitrary point xm ∈ T .
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Modifications to the parameter free PPIFE method for variable coefficients. The coefficients

βh(x) in the local lifting operator (3.2) and the method (3.4)-(3.6) are replaced by

βh(x) = β+(x) if x ∈ Ω+
h and βh(x) = β−(x) if x ∈ Ω−

h .

In the construction of the IFE space, we replace the third equation in (2.4) by

β
+
h∇φ+ · nh = β

−
h ∇φ− · nh. (5.3)

The constants β± in Wh(T ) are also replaced by β
±
h . The coefficients (3.9) and (3.10) for the local lifting

operator now are computed from the following,

c1 =
t1,h · ne

∫
e
βhϕds

2
∫
T1

βhdx
, d1 =

n1,h · ne

(
β
−
h

∫
e+ βhϕds+ β

+
h

∫
e− βhϕds

)

2(β
−
h )2

∫
T+

1,h

βhdx+ 2(β
+
h )

2
∫
T−

1,h

βhdx
,

c2 =
t1,h · ne

∫
e
βhϕds

2
∫
T2

βhdx
, d2 =

n1,h · ne

(
β
−
h

∫
e+ βhϕds+ β

+
h

∫
e− βhϕds

)

2(β
−
h )2

∫
T+

2,h

βhdx+ 2(β
+
h )

2
∫
T−

2,h

βhdx
,

where e± = e ∩Ω±
h .

Modifications to the analysis. On an interface element T ∈ T Γ
h , we define a function βh(x) such

that

βh(x) = β
+
h if x ∈ T+

h and βh(x) = β
−
h if x ∈ T−

h .

First we consider the modification to the proof of Lemma 9 for the trace inequality. From (5.3), the

second equality in (2.5) becomes

[βh∇φ · nh]Γh∩T = 0 on Γh ∩ T.

Thus, we only need to replace (4.37) and (4.38) by

βh(x)∇wh · nh ∈ H1(T ) and β∇v · n− βh∇wh · nh ∈ H1(T ),

and the remaining proof process is the same.

Next we consider modifications to the proof of Lemma 7 for the interpolation error estimation. In the

construction of the auxiliary functions, we change the corresponding identities in (4.10) and (4.12) to

β
+
h∇Υ+ · nh − β

−
h ∇Υ− · nh = 1, β

+
h∇Ψ+

i · nh = β
−
h ∇Ψ−

i · nh, i = D,E.

Now the result (4.13) in Lemma 5 and the inequality (4.17) in Lemma 7 become

IBK
h v − IIFE

h v = [[IBK
h v]](D)ΨD(x) + [[IBK

h v]](E)ΨE(x) + [[βh∇(IBK
h v) · n]](x∗)Υ (x)

and

|IBK
h v − IIFE

h v|2Hm(T+

h
∪T−

h
) ≤ Ch2−2m

∑

xp=D,E

[[IBK
h v]]2(xp) + Ch4−2m[[βh∇(IBK

h v) · n]]2(x∗). (5.4)

Thus, the estimate (4.19) in the proof of Lemma 7 needs to be changed as

|[[βh∇(IBK
h v) · n]]2(x∗) ≤ ‖[[βh∇(IBK

h v) · nh]]‖2L∞(T ) ≤ Ch−2‖[[βh∇(IBK
h v) · nh]]‖2L2(T )

≤ Ch−2‖[[β∇(IBK
h v) · nh]]‖2L2(T ) + Ch−2‖[[(β − βh)∇(IBK

h v) · nh]]‖2L2(T )

(5.5)

The estimation of the first term on the right-hand side is the same as that in (4.19). For the second term,

using (5.2), we have

h−2‖[[(β − βh)∇(IBK
h v) · nh]]‖2L2(T )

≤ Ch−2
∑

i=±

‖βi − β
i
h‖2L∞(T )‖∇IhE

ivi‖2L2(T ) ≤ C
∑

i=±

‖∇IhE
ivi‖2L2(T )

≤ C
∑

i=±

(
‖∇(Eivi − IhE

ivi)‖2L2(T ) + ‖∇E
ivi‖2L2(T )

)
≤ C

∑

i=±

|Eivi|2H1(T ).

(5.6)
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Combining (5.4)-(5.6) and (4.19), we can see that (4.20) also holds. Using (5.1), we find that (4.21) is also

correct. Hence, the optimal interpolation error estimates are not affected and Lemma 7 is still valid.

The other lemmas and theorems can be adapted to the variable case easily. Note that for Theorem 4

about the L2 error estimate, we need the regularity result (4.62) for the problem with variable coefficients

which was proved in [51].

6 Extension to three dimensions

In this section, we extend our method and analysis to three dimensions. For simplicity, we also assume that

β(x) is a piecewise constant. Let now Th be a simplicial triangulation of Ω and Eh be all the faces of the mesh

Th. We assume that the triangulation is quasi-uniform. Different from the 2D cases, the points of intersection

of the interface and the edges of a tetrahedron are usually not coplanar. The linear approximation of the

interface determined by three of these intersection points on each interface element may not be continuous

across interface faces (see [37,?]). Thus, we should construct the IFE space according to the exact interface.

However, a discrete interface is also needed for the purpose of analysis. On an interface element T ∈ T Γ
h , let

x∗ be a fixed point on Γ ∩T and Γ ext
h,T be the plane which is tangent to Γ at x∗. Then we have nh = n(x∗) on

this interface element. In practical implementations, we can choose x∗ as one of the intersection points of the

interface and the edges of the interface element. The discrete interface now is defined as Γh =
⋃

T∈T Γ
h
Γh,T

with Γh,T = Γ ext
h,T ∩ T . As Γ ∈ C2, similar to the 2D cases, if h ≤ h0, it holds

‖dist(x, Γ ext
h,T )‖L∞(Γ∩T ) ≤ Ch2, ‖n− nh‖L∞(T ) ≤ Ch, ∀T ∈ T Γ

h . (6.1)

Modifications to the parameter free PPIFE method in 3D. The local IFE space on an interface

element T is then defined by

Sh(T ) := {φ ∈ L2(T ) : φ|T± = φ±|T± , ∀φ± ∈ P1(T ) satisfying [[φ]]|Γ ext
h,Γ

= 0, [[β∇φ · nh]] = 0}. (6.2)

We note that the condition [[φ]]|Γ ext
h,Γ

= 0 in the above definition is equivalent to

[[φ]](x∗) = 0 and [[∇φ · ti,h]] = 0, i = 1, 2, (6.3)

where t1,h and t2,h are standard basis vectors in the plane Γ ext
h,Γ .

Lemma 16 Let Ai, i = 1, 2, 3, 4 be vertices of an interface element T ∈ T Γ
h , αmax be the maximum angle

of all faces of the tetrahedron, and γmax be the maximum dihedral angle of the tetrahedron. If αmax ≤ π/2

and γmax ≤ π/2, then the function φ ∈ Sh(T ) defined in (6.2) is uniquely determined by φ(Ai), i = 1, 2, 3, 4,

regardless of the interface location.

Proof : See Appendix B.1. ⊓⊔

We emphasize that, different from the 2D cases, the discrete interface Γh now is not continuous. If the

IFE space is defined according to the discrete interface Γh, then the IFE functions are not well defined on

interface faces due to the discontinuity of Γh. The same issue exists for βh(x) defined in (2.2).

We replace the coefficient βh(x) in the definition of the local lifting operator (3.2) and (3.4)-(3.6) of the

algorithm by the exact coefficient β(x). We also replace the constant 4 in the bilinear form sh(·, ·) (see (3.6))
by 8 to ensure the the coercivity (4.45) since each interface element is now calculated at most four times

when estimating the integrals in the left-hand side of (4.47). Although the IFE function vh is discontinuous

across the interface, we also use the notation ∇vh for the piecewise gradient for simplicity.

Modifications to the analysis in 3D. On an interface element with vertices Ai, i = 1, 2, 3, 4, we

define the auxiliary functions Ψ(x), Υ (x) and Θi, i = 1, 2 as

Ψ |T± = Ψ±|T± , Ψ± ∈ P1(T ), Υ |T± = Υ±|T± , Υ± ∈ P1(T ), Θi|T± = Θ±
i |T± , Θ±

i ∈ P1(T ), (6.4)

such that

Ψ(Aj) = Υ (Aj) = Θi(Aj) = 0, j = 1, 2, 3, 4,
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and
[[Ψ ]](x∗) = 1, [[β∇Ψ · nh]] = 0, [[∇Ψ · tj,h]] = 0, j = 1, 2,

[[Υ ]](x∗) = 0, [[β∇Υ · nh]] = 1, [[∇Υ · tj,h]] = 0, j = 1, 2,

[[Θi]](x
∗) = 0, [[β∇Θi · nh]] = 0, [[∇Θi · tj,h]] = δij , j = 1, 2.

(6.5)

Lemma 17 Under the conditions of Lemma 16, the auxiliary functions defined above satisfy the following

estimates:

|Ψ |2Hm(T+∪T−) ≤ Ch3−2m, |Υ |2Hm(T+∪T−) ≤ Ch5−2m, |Θi|2Hm(T+∪T−) ≤ Ch5−2m, i = 1, 2, m = 0, 1,

where the constant C is independent of h and the interface location relative to the mesh.

Proof : See Appendix B.2. ⊓⊔

Since the IFE space and the auxiliary functions are defined according to the exact interface, we replace

T+
h and T−

h by T+ and T− in the definition of the operator IBK
h in (4.6), i.e.,

(IBK
h v)|T i = IhE

ivi, i = +,−, ∀T ∈ T Γ
h , ∀v ∈ H̃2(Ω). (6.6)

Similar to Lemma 5, we have the following identity on interface elements,

IBK
h v − IIFE

h v = [[IBK
h v]](x∗)Ψ(x) + [[β∇(IBK

h v) · nh]]Υ (x) +
∑

i=1,2

[[β∇(IBK
h v) · ti,h]]Θi(x). (6.7)

We emphasize that the relation (6.3) has been utilized to prove the above decomposition. The optimal

interpolation error estimates are proved in the following theorem.

Theorem 5 For any v ∈ H̃2(Ω), under the conditions of Lemma 16, there exists a constant C independent

of h and the interface location relative to the mesh such that

∑

T∈Th

|v − IIFE
h v|2Hm(T+∪T−) ≤ Ch4−2m‖v‖2H2(Ω+∪Ω−), m = 0, 1.

Proof : The proof is along the same lines as that of Lemma 7. It suffices to consider an interface element

T ∈ T Γ
h . The triangle inequality leads to

|v − IIFE
h v|Hm(T+∪T−) ≤ |v − IBK

h v|Hm(T+∪T−) + |IBK
h v − IIFE

h v|Hm(T+∪T−).

The estimate of the first term is similar to (4.16). For the second term, using (6.7) and Lemma 17 we have

|IBK
h v − IIFE

h v|2Hm(T+∪T−)

≤ Ch3−2m[[IBK
h v]]2(x∗) + Ch5−2m[[β∇(IBK

h v) · nh]]
2 + Ch5−2m

∑

i=1,2

[[∇(IBK
h v) · ti,h]]2. (6.8)

Since [[v]]2(x∗) = 0, it holds

[[IBK
h v]]2(x∗) =[[IBK

h v − v]]2(x∗) ≤ C‖[[IBK
h v − v]]‖2L∞(T )

≤ C
∑

i=±

‖IhEivi − E
ivi‖2L∞(T ) ≤ Ch

∑

i=±

|Eivi|2H2(T ).
(6.9)

Similar to (4.19), using the second inequality in (6.1) we have

[[β∇(IBK
h v) · nh]]

2 ≤ Ch−1
∑

i=±

(
|Eivi|2H2(T ) + |Eivi|2H1(T )

)
+ Ch−3 ‖[[β∇v · n]]‖2L2(T ) . (6.10)

To estimate the third term on the right-hand side of (6.8), we need tangential gradients ∇Γ and ∇Γh
which

are defined by

(∇Γ z)(x) := ∇z − (n · ∇z)n, (∇Γh
z)(x) := ∇z − (nh · ∇z)nh, ∀x ∈ T, ∀z ∈ H1(T ), ∀T ∈ T Γ

h .
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By definition, it holds

|∇z · ti,h| ≤ |∇Γh
z|, |∇Γh

z| ≤ |∇z|,
‖∇Γh

z −∇Γ z‖L2(T ) = ‖(n · ∇z)n− (nh · ∇z)nh‖L2(T )

= ‖(n · ∇z)(n− nh)− ((n− nh) · ∇z)nh‖L2(T )

≤ C‖n− nh‖L∞(T )‖∇z‖L2(T ).

(6.11)

Using the above inequalities and the second inequality in (6.1) we derive

[[∇(IBK
h v) · ti,h]]2 ≤ [[∇Γh

(IBK
h v)]]2 ≤ Ch−3‖[[∇Γh

(IBK
h v)]]‖2L2(T )

≤ Ch−3‖[[∇Γh
(IBK

h v − v) + (∇Γh
−∇Γ +∇Γ )v

±]]‖2L2(T )

≤ Ch−3
(
‖[[∇Γh

(IBK
h v − v)]]‖2L2(T ) + ‖[[∇Γh

v −∇Γ v]]‖2L2(T ) + ‖[[∇Γ v]]‖2L2(T )

)

≤ Ch−3
(
‖[[∇(IBK

h v − v)]]‖2L2(T ) + ‖n− nh‖2L∞(T )‖[[∇v]]‖2L2(T ) + ‖[[∇Γ v]]‖2L2(T )

)

≤ Ch−1
∑

i=±

(
|Eivi|2H2(T ) + |Eivi|2H1(T )

)
+ Ch−3 ‖[[∇Γ v]]‖2L2(T ) .

(6.12)

Substituting (6.9), (6.10) and (6.12) into (6.8) yields

|IBK
h v − IIFE

h v|2Hm(T+∪T−) ≤ Ch4−2m
∑

i=±

‖Eivi‖2H2(T ) + Ch2−2m
(
‖[[β∇v · n]]‖2L2(T ) + ‖[[∇Γ v]]‖2L2(T )

)
.

Using the facts [[∇Γ v]] ∈
(
H1(N(Γ, δ0))

)3
and [[∇Γ v]]|Γ = 0, the remaining proof is the same as that of

Lemma 7 since Lemma 2 also holds for the 3D cases. ⊓⊔

The trace inequality (4.33) in Lemma 9 also holds. Note that for any z ∈ H1(T ), we have

∇z = (∇Γh
z) + (nh · ∇z)nh. (6.13)

Then, the split (4.34) in the proof is changed to

‖∇(v− wh)‖L2(∂T ) ≤ C‖∇Γh
(v − wh)‖L2(∂T ) + C‖β∇(v− wh) · nh‖L2(∂T )

≤ C
(
‖∇Γ v −∇Γh

wh‖L2(∂T ) + ‖∇Γ v −∇Γh
v‖L2(∂T )

+ ‖β∇v · n− β∇wh · nh‖L2(∂T ) + ‖β∇v · (n− nh)‖L2(∂T )

)
.

(6.14)

The remaining proof of Lemma 9 can be easily adapted to the 3D cases using (6.11) and the fact that

β∇wh · nh and ∇Γh
wh are constants.

Since the IFE space is defined according to the exact interface and the exact coefficient β(x) is used in

the IFE method, the analysis for the IFE method in subsection 4.4 can be adapted to the 3D cases if we

replace T±
h and βh by T± and β±, respectively. Note that, we only need to take into consideration of the

discontinuity of IFE functions across the interface Γ .

The discontinuity of IFE functions on Γ causes two issues. The first one is that the trace inequality

(4.52) in the proof of Lemma 14 does not hold since (v − IIFE
h v)|T does not belong to H1(T ) now. To

overcome this issue, we define an operator ÎIFE
h by

(ÎIFE
h v)|T =

{
(IIFE

h v)+ in T+
h ,

(IIFE
h v)− in T−

h ,
(6.15)

where T+
h and T−

h are subdomains of T divided by the plane Γ ext
h . It is obvious that (ÎIFE

h v)|T ∈ C0(T ).

We have the following lemma whose proof is given in Appendix B.4

Lemma 18 Let T ∈ T Γ
h be an interface element and e ∈ EΓ

h be one of its interface faces. For any v ∈
H̃2(Ω), there exists a constant C independent of h and the interface location relative to the mesh such that

|ÎIFE
h v − IIFE

h v|Hm(T ) ≤ Ch5/2−2m|IIFE
h v|H1(T ),

‖(ÎIFE
h v − IIFE

h v)|T‖L2(e) ≤ Ch3/2|IIFE
h v|H1(T ).

(6.16)
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Based on the above lemma, the inequality (4.52) in the proof of Lemma 14 is changed to

h−1‖[v − IIFE
h v]e‖2L2(e) ≤ Ch−1‖[v − ÎIFE

h v]e‖2L2(e) + Ch−1‖[ÎIFE
h v − IIFE

h v]e‖2L2(e)

≤ C
∑

i=1,2

(h−2‖v − ÎIFE
h v‖2L2(Ti) + |v − ÎIFE

h v|2H1(Ti)) + Ch−1‖[ÎIFE
h v − IIFE

h v]e‖2L2(e)

≤ C
∑

i=1,2

(
h−2‖v − IIFE

h v‖2L2(Ti) + |v − IIFE
h v|2H1(Ti) + h−2‖ÎIFE

h v − IIFE
h v‖2L2(Ti)

+|ÎIFE
h v − IIFE

h v|2H1(Ti) + h−1‖(ÎIFE
h v − IIFE

h v)|Ti
‖2L2(e)

)

≤ C
∑

i=1,2

(
h−2‖v − IIFE

h v‖2L2(Ti) + |v − IIFE
h v|2H1(Ti) + h|IIFE

h v|2H1(Ti)

)
.

Summing over all interface faces and using Theorem 5, we have

∑

e∈EΓ
h

h−1‖[v − IIFE
h v]e‖2L2(e) ≤ Ch2‖v‖2H2(Ω+∪Ω−) + Ch

∑

T∈T Γ
h

(
|v|2H1(T ) + |v − IIFE

h v|2H1(T )

)

≤ Ch2‖v‖2H2(Ω+∪Ω−) + Ch
∑

i=±

|Eivi|2H1(N(Γ,h))

≤ Ch2‖v‖2H2(Ω+∪Ω−) + Ch2
∑

i=±

‖Eivi‖2H2(Ω) ≤ Ch2‖v‖2H2(Ω+∪Ω−),

where we have used Lemma 2 in the third inequality. Therefore, the result of Lemma 14 also holds.

The other issue caused by the discontinuity of IFE functions on Γ is the consistent error of the proposed

IFE method. The identity in Lemma 15 now becomes

Ah(u− uh, vh) =

∫

Γ

β−∇u− · n[vh]Γds, ∀vh ∈ V IFE
h . (6.17)

The estimate of the consistent error is shown in the following lemma whose proof is given in Appendix B.5

Lemma 19 For any u ∈ H̃2(Ω) and vh ∈ V IFE
h , it holds

∣∣∣∣
∫

Γ

β−∇u− · n[vh]Γds
∣∣∣∣ ≤ Ch3/2‖u‖H2(Ω−)


 ∑

T∈T Γ
h

‖∇vh‖2L2(T+∪T−)




1/2

.

With the help of (6.17) and the above lemma, the proof of Theorem 3 can be easily modified and the

result (4.57) also holds under the conditions of Lemma 16.

For the proof of Theorem 4, the equation (4.63) now becomes

‖u− uh‖2L2(Ω) = Ah(w − IIFE
h z, u− uh) +

∫

Γ

β−∇u− · n[IIFE
h z]Γ ds+

∫

Γ

β−∇z− · n[uh]Γ ds. (6.18)

By Lemma 19, the second term can be estimated as

∣∣∣∣
∫

Γ

β−∇u− · n[IIFE
h z]Γ ds

∣∣∣∣ ≤ Ch3/2‖u‖H2(Ω−)


 ∑

T∈T Γ
h

‖∇IIFE
h z‖2L2(T+∪T−)




1/2

≤ Ch3/2‖u‖H2(Ω−)





 ∑

T∈T Γ
h

‖∇(IIFE
h z − z)‖2L2(T+∪T−)




1/2

+ ‖∇z‖L2(N(Γ,h))




≤ Ch3/2‖u‖H2(Ω−)

(
h‖z‖H2(Ω+∪Ω−) +

∑

i=±

‖∇E
izi‖L2(N(Γ,h))

)

≤ Ch3/2‖u‖H2(Ω−)

(
h‖z‖H2(Ω+∪Ω−) +

∑

i=±

h1/2‖Eizi‖H2(Ω)

)

≤ Ch2‖u‖H2(Ω+∪Ω−)‖z‖H2(Ω+∪Ω−),
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where in the third inequality we have used Theorem 5 and in the fourth inequality we have used Lemma 2.

The estimate of the third term on the right-hand of (6.18) is analogous. The remaining proof is standard.

The L2 error estimate in Theorem 4 also holds under the conditions of Lemma 16.

7 Numerical examples

In this section, we present some numerical examples for the parameter free PPIFE method to validate the

theoretical analysis. Let the domain Ω be the unit square (−1, 1)× (−1, 1), and the interface Γ be the zero

level set of a function ϕ(x) so that Ω+ = {x ∈ Ω : ϕ(x) > 0} and Ω− = {x ∈ Ω : ϕ(x) < 0}. We use a

non-homogeneous boundary condition u|∂Ω = g.

For simplicity, we use Cartesian meshes that are formed by first partitioning Ω into N ×N congruent

squares and then cutting these squares along one of diagonals in the same direction. We examine the

convergence rate of the parameter free PPIFE method using the following norms:

|eh|H1 := ‖u− uh‖h and ‖eh‖L2 := ‖u− uh‖L2(Ω). (7.1)

Example 1 (from [43]). The level set function is ϕ(x) =
√
x2
1 + x2

2−r0 with r0 = 0.5. The exact solution

to the interface problem is chosen as

u(x) =





r3

β−
in Ω−,

r3

β+
+

(
1

β−
− 1

β+

)
r30 in Ω+,

(7.2)

where r =
√

x2
1 + x2

2. From the PDE, we find the source term is f(x) = −9
√
x2
1 + x2

2.

We test our method for two cases: Case 1: β− = 1, β+ = 2, 10, 1000 and 100000; Case 2: β+ = 1

and β− = 2, 10, 1000 and 100000. The numerical results reported in Tables 1–4 show optimal orders of

convergence:

|eh|H1 ≈ O(h) and ‖eh‖L2 ≈ O(h2),

which are in agreement with Theorems 3 and 4.

Table 1 The ‖eh‖L2 errors and convergence rates for Case 1 of Example 1, β− = 1, β+ = 2, 10, 1000 and 100000.

N β+ = 2 rate β+ = 10 rate β+ = 1000 rate β+ = 100000 rate

8 4.029E-02 1.363E-02 1.210E-02 1.211E-02

16 1.018E-02 1.99 3.734E-03 1.87 4.353E-03 1.47 4.505E-03 1.43

32 2.560E-03 1.99 9.981E-04 1.90 1.312E-03 1.73 1.842E-03 1.29

64 6.403E-04 2.00 2.480E-04 2.01 4.034E-04 1.70 8.009E-04 1.20

128 1.605E-04 2.00 6.344E-05 1.97 7.446E-05 2.44 2.445E-04 1.71

256 4.013E-05 2.00 1.580E-05 2.01 1.674E-05 2.15 6.692E-05 1.87

512 1.004E-05 2.00 3.953E-06 2.00 3.953E-06 2.08 1.794E-05 1.90

1024 2.509E-06 2.00 9.851E-07 2.00 9.485E-07 2.06 3.887E-06 2.21

Table 2 The |eh|H1 errors and convergence rates for Case 1 of Example 1, β− = 1, β+ = 2, 10, 1000 and 100000.

N β+ = 2 rate β+ = 10 rate β+ = 1000 rate β+ = 100000 rate

8 5.823E-01 2.851E-01 1.313E-01 1.288E-01

16 2.929E-01 0.99 1.466E-01 0.96 8.084E-02 0.70 8.127E-02 0.66

32 1.467E-01 1.00 7.402E-02 0.99 4.323E-02 0.90 4.950E-02 0.72

64 7.337E-02 1.00 3.709E-02 1.00 2.206E-02 0.97 2.903E-02 0.77

128 3.669E-02 1.00 1.856E-02 1.00 1.029E-02 1.10 1.459E-02 0.99

256 1.835E-02 1.00 9.282E-03 1.00 5.039E-03 1.03 7.163E-03 1.03

512 9.173E-03 1.00 4.642E-03 1.00 2.498E-03 1.01 3.335E-03 1.10

1024 4.587E-03 1.00 2.321E-03 1.00 1.240E-03 1.01 1.485E-03 1.17
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Table 3 The ‖eh‖L2 errors and convergence rates for Case 2 of Example 1, β+ = 1, β− = 2, 10, 1000 and 100000.

N β− = 2 rate β− = 10 rate β− = 1000 rate β− = 100000 rate

8 7.770E-02 7.758E-02 7.776E-02 7.777E-02

16 1.957E-02 1.99 1.953E-02 1.99 1.959E-02 1.99 1.959E-02 1.99

32 4.908E-03 2.00 4.904E-03 1.99 4.937E-03 1.99 5.005E-03 1.97

64 1.229E-03 2.00 1.229E-03 2.00 1.237E-03 2.00 1.281E-03 1.97

128 3.074E-04 2.00 3.078E-04 2.00 3.078E-04 2.01 3.698E-04 1.79

256 7.687E-05 2.00 7.701E-05 2.00 7.692E-05 2.00 9.528E-05 1.96

512 1.922E-05 2.00 1.926E-05 2.00 1.925E-05 2.00 2.564E-05 1.89

1024 4.805E-06 2.00 4.817E-06 2.00 4.820E-06 2.00 5.997E-06 2.10

Table 4 The |eh|H1 errors and convergence rates for Case 2 in Example 1, β+ = 1, β− = 2, 10, 1000 and 100000.

N β− = 2 rate β− = 10 rate β− = 1000 rate β− = 100000 rate

8 8.046E-01 7.998E-01 7.949E-01 7.948E-01

16 4.036E-01 1.00 4.008E-01 1.00 3.996E-01 0.99 3.996E-01 0.99

32 2.020E-01 1.00 2.005E-01 1.00 2.008E-01 0.99 2.020E-01 0.98

64 1.010E-01 1.00 1.003E-01 1.00 1.005E-01 1.00 1.011E-01 1.00

128 5.051E-02 1.00 5.013E-02 1.00 5.011E-02 1.00 5.106E-02 0.99

256 2.526E-02 1.00 2.507E-02 1.00 2.504E-02 1.00 2.545E-02 1.00

512 1.263E-02 1.00 1.253E-02 1.00 1.252E-02 1.00 1.271E-02 1.00

1024 6.314E-03 1.00 6.267E-03 1.00 6.257E-03 1.00 6.308E-03 1.01

Example 2 (an interface problem with a variable coefficient and a non-convex interface). The interface

is the zero level set of the function,

ϕ(x) = (3(x2
1 + x2

2)− x1)
2 − x2

1 − x2
2 + 0.02.

The exact solution is chosen as u(x) = ϕ(x)/β(x), where

β(x) =

{
β+(x) = 300(2 + sin(6x1 + 6x2)) if ϕ(x) > 0,

β−(x) = 2 + cos(6x1 + 6x2) if ϕ(x) < 0.
(7.3)

It is easy to verify that the jump conditions (1.2)-(1.3) are satisfied. The interface in this example is non-

convex and more general, see Figure 3.

For this variable coefficient interface problem, the average of the coefficient on an interface element

T ∈ T Γ
h is chosen as β

±
h = β±(xm), where xm is the midpoint of Γh∩T . The numerical results are reported

in Table 5, which confirm the optimal convergence.

Table 5 The ‖eh‖L2 and |eh|H1 errors and convergence rates for Example 2.

N ‖eh‖L2 rate |eh|H1 rate

8 3.146E-02 1.673E+00

16 1.210E-02 1.38 8.997E-01 0.89

32 4.882E-03 1.31 4.661E-01 0.95

64 1.456E-03 1.75 2.339E-01 0.99

128 2.603E-04 2.48 1.156E-01 1.02

256 5.795E-05 2.17 5.763E-02 1.00

512 1.376E-05 2.07 2.878E-02 1.00

1024 2.676E-06 2.36 1.435E-02 1.00
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Fig. 3 The solution and the error distribution obtained with N = 128 for Example 2. Left: the plot of −u(x); Right: the

plot of uh(x)− u(x).

8 Conclusions and outlook

In this paper, a new parameter free partially penalized immersed finite element method with unfitted meshes

for solving elliptic interface problems has been developed and analyzed. The degrees of freedom of the new

method are the same as that of the standard linear conforming finite element method. Furthermore, if

the coefficient is continuous, then the new method becomes the standard linear conforming finite element

method. Not only the optimal approximation capabilities of the immersed finite element space but also the

optimal convergence of the new PPIFE method are proved via a new trace inequality and a novel proof

technique using auxiliary functions. The method and analysis has been extended to variable coefficients and

3D problems.

Further directions of research include the extension of the method and the analysis in this paper to

non-homogeneous jump conditions and higher order IFE methods. We plan to use the correction functions

defined in [22,28] to deal with non-homogeneous jump conditions. The correction functions are constructed

to satisfy non-homogeneous jump conditions exactly on some points on the interface, which requires that

the exact solution has a higher regularity to make the flux jump JN (x) := [β∇u · n]Γ (x) well-defined at

these points on the interface. The method in [28] has been analyzed in [23] under the assumption that

u ∈ C2(Ω
±
). Another way to construct correction functions is based on the extension of JN (x) (see [35]).

The analysis requires u ∈ H3(Ω+ ∪Ω−). When u ∈ H2(Ω+ ∪Ω−), the flux jump JN (x) belongs to L2(Γ )

and JN (x) is not well-defined at points on the interface. Once common approach is to use the average of

JN along Γ ∩ T to construct correction functions on an interface element T . Since |Γ ∩ T | may be close to

zero, we should define the correction function on a larger fictitious interface element as it has been done

in [1,17]. For high order IFE methods, there are many exploratory works [2,3]. To our best knowledge, the

proof of the optimal approximation capabilities of those higher order IFE spaces developed in [2,3] is an

open problem. How to extend the analysis here to high order IFE methods is under investigation.

Acknowledgment. The authors would like to thank the anonymous referees sincerely for their careful
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Appendix A Technical results for the 2D cases

A.1 Proof of Lemma 1

Proof : Note that when T is an isosceles right triangle, the proof can be found in the literature, see for

example [43,18]. We now provide the proof for αmax ≤ π/2. Given a function φ ∈ Sh(T ), if we known the

jump c1 := (∇φ+ −∇φ−) · nh which is a constant, then the function φ can be written as

φ = Ih,Tφ+ c1(w − Ih,Tw), (A.1)

with

w(x) =

{
w+(x) = dΓ ext

h,T
(x) in T+

h ,

w−(x) = 0 in T−
h ,

dΓ ext
h,T

(x) =

{
dist(x, Γ ext

h,T ) if x ∈ T+
h ,

− dist(x, Γ ext
h,T ) if x ∈ T−

h ,
(A.2)

where Ih,T is the standard linear nodal interpolation operator on T , Γ ext
h,T is a straight line containing Γh∩T ,

and dist(x, Γ ext
h,T ) is the distance between x and Γ ext

h,T . Substituting (A.1) into the third identity in (2.4), we

obtain the following equation for c1,

(1 + (β−/β+ − 1)∇Ih,Tw · nh)c1 = (β−/β+ − 1)∇Ih,Tφ · nh. (A.3)

Clearly, if we can prove

0 ≤ ∇Ih,Tw · nh ≤ 1, (A.4)

then

(1 + (β−/β+ − 1)∇Ih,Tw · nh) ≥
{
1 if β−/β+ ≥ 1,

β−/β+ if 0 < β−/β+ < 1,
(A.5)

which implies that the equation (A.3) has a unique solution. Substituting the solution of (A.3) into (A.1)

yields

φ = Ih,Tφ+
(β−/β+ − 1)∇Ih,Tφ · nh

1 + (β−/β+ − 1)∇Ih,Tw · nh
(w − Ih,Tw), (A.6)

which proves the lemma.

Next, we prove (A.4). There are two cases. Case I: △A2DE = T+
h (see Figure 4(a)) and Case II:

△A2DE = T−
h . In Case I, since w(A1) = w(A3) = 0, it holds

∇Ih,Tw · nh = ∇λ2 · nhdΓ ext
h,T

(A2) = ∇λ2 · nh|A2A2,⊥| = 1− λ2(A2,⊥), (A.7)
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where A2,⊥ is the orthogonal projection of the point A2 onto the line DE, and λi(x) is the standard

linear basis function defined by λi(Aj) = δij (the Kronecker symbol). The polynomial extension of λi(x)

is also denoted by λi(x) for simplicity of notations. In Case II (△A2DE = T−
h ), for the sake of clarity,

we replace the notations w, nh and dΓ ext
h,T

by w̃, ñh and d̃Γ ext
h,T

, respectively. Obviously, ñh = −nh and

d̃Γ ext
h,T

(A2) = −|A2A2,⊥|. Similar to (A.7), we have

∇Ih,T w̃ · ñh = 1− λ1(A1,⊥) + 1− λ3(A3,⊥). (A.8)

However, using the signed distance function d̃Γ ext
h,T

we also have

∇Ih,T w̃ · ñh = ∇(
∑

i=1,3

d̃Γ ext
h,T

(Ai)λi) · ñh = ∇(d̃Γ ext
h,T

− d̃Γ ext
h,T

(A2)λ2) · ñh

= 1−∇λ2 · nh|A2A2,⊥| = 1−∇Ih,Tw · nh.

(A.9)

Thus, it suffices to consider Case I: △A2DE = T+
h which is shown in Figure 4(a).

If A2 and A2,⊥ are on different sides of the line A1A3 (see Figure 4(b) for an illustration), then we have

∠A1A3A2 > ∠A3QA2 > π
2 . This contradicts the condition αmax ≤ π

2 . Thus, we conclude that A2 and A2,⊥

are on the same side of the line A1A3, which together with the fact λ2(A2) = 1, λ2(A1) = λ2(A3) = 0,

leads to

∇Ih,Tw · nh = 1− λ2(A2,⊥) ≤ 1,

On the other hand, using the condition ∠A2A3A1 and ∠A2A1A3 ≤ αmax ≤ π
2 , we conclude

−−−→
A1A3 · th > 0,

which implies

∇Ih,Tw · nh = ∇λ2 · nh|A2A2,⊥| = |A2A2,⊥||∇λ2|nA1A3
· nh

= |A2A2,⊥||∇λ2||A1A3|−1−−−→A1A3 · th ≥ 0,

where nA1A3
is the unit normal vector of the line A1A3 pointing toward A2. ⊓⊔

E

A2

D

A1

T+
h

T−
h A3

A2,⊥

nh th

(a)

A2

A2,⊥

A1

A3

D E

Q

(b)

A2

A2,⊥

D′ E ′D E

(c)

Fig. 4 A diagram of an interface element.

A counter example for αmax > π
2 :

A1 = (0, 0), A2 = (−
√
3, 1), A3 = (1, 0), D = (0, 0),

E = (−(2 +
√
3)−1,

√
3(2 +

√
3)−1), β− = 3, β+ = 1, T+

h = △DA2E.

By a direct calculation, we find that the shape function φ(x) cannot be determined by φ(Ai), i = 1, 2, 3 in

this case.
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A.2 Proof of Lemma 6

Proof : First we present the following useful inequality about basis functions of the linear IFE space Sh(T ).

Let φAi
∈ Sh(T ) be the basis function corresponding to a vertex Ai of T defined by φAi

(Aj) = δij . From

(A.6) and (A.4), it is easy to prove that

|φAi
|Wm

∞
(T ) ≤ Ch−m, m = 0, 1, (A.10)

where the constant C is independent of h and the interface location relative to the mesh.

Derive upper bounds of |Υ (x)|Hm(T ), m = 0, 1. We construct Υ as follows,

Υ = z − IIFE
h,T z, z =

{
v in T+

h ,

0 in T−
h ,

(A.11)

where the function v is linear and satisfies

β+∇v · nh = 1, v(D) = v(E) = 0. (A.12)

Here IIFE
h,T z interpolates nodal values of v defined on T , i.e., IIFE

h,T z =
∑

i v(Ai)φAi
. It is easy to verify that

the constructed function Υ satisfies the definitions (4.9)-(4.10). Since v(D) = v(E) = 0, we have ∇v ·th = 0.

Thus,

|∇v|2 = |∇v · nh|2 + |∇v · th|2 ≤ C.

For any point P ∈ T+
h , using the relation v(P ) = v(D) +∇v · −−→DP , we have

|z|2L∞(T ) = |v|2L∞(T+

h
) ≤ |∇v|2|DP |2 ≤ Ch2.

From (A.11) and (A.10), we get the desired estimates

‖Υ‖2L2(T ) ≤ 2‖z‖2L∞(T )|T |+ 2
∑

i

z2(Ai)‖φAi
‖2L∞(T )|T | ≤ Ch4,

|Υ |2H1(T ) ≤ 2|∇v|2|T+
h |+ 2

∑

i

z2(Ai)|φAi
|2W 1

∞
(T )|T | ≤ Ch2.

Derive upper bounds of |Ψi(x)|Hm(T+

h
∪T−

h
), i = D,E, m = 0, 1. Without loss of generality, we

assume that the interface Γ intersects with the line segments A1A2 and A2A3 at points D,E, respectively,

see Figure 4(a) for an illustration. Since the triangulation is regular, we assume that there are two constants

αmin and αmax such that αmin ≤ ∠A1A2A3 ≤ αmax.

Let D′ and E′ be two points on the line DE such that ∠DA2E = ∠D′A1E
′ and |A2D

′| = |A2E
′|, see

Figure 4(c) for an illustration. Then, we have the key inequality

|DE| ≥ |D′E′| = 2|A2A2,⊥| tan ∠A1A2A3

2
≥ 2|A2A2,⊥| tan αmin

2
≥ C|A2A2,⊥|. (A.13)

Similar to (A.11), we construct ΨD(x) as follows,

ΨD = z − IIFE
h,T z, z =

{
v in T+

h ,

0 in T−
h ,

(A.14)

where the function v is linear and satisfies

β+∇v · nh = 0, v(D) = 1, v(E) = 0. (A.15)

From (A.15), we have

|∇v · th| =
1

|DE| , |v(A2)| = |v(A2,⊥)| = |v(E)|+ |A2,⊥E| |∇v · th| =
|A2,⊥E|
|DE| .

If A2,⊥ ∈ T , then |A2,⊥E| ≤ |DE| and |v(A2)| = |v(A2,⊥)| ≤ 1. Otherwise, we have ∠A1A2A3 < π/2.

Using (A.13), we obtain

|v(A2)| ≤ C
|A2,⊥E|
|A2A2,⊥| ≤ C tan(

π

2
− ∠A1A2A3) ≤ C tan(

π

2
− αmin) ≤ C,
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where we have used the fact that the line DE cannot be parallel to the line A1A2. Hence, we have

‖z‖L∞(T ) ≤ C and ‖z‖2L2(T ) ≤ ‖z‖2L∞(T )|T | ≤ Ch2.

Using (A.14) and (A.10), we have

‖ΨD‖2L2(T ) ≤ C(v(A2)‖φA2
‖2L∞(T )|T |+ ‖z‖2L2(T )) ≤ Ch2.

Since v is linear, we know that

|z|2H1(T+

h
∪T−

h
) = |∇v|2|T+

h | ≤ |T+
h |

|DE|2 ≤ |DE||A2A2,⊥|
2|DE|2 ≤ C,

where we have used the equality (A.13). It follows from (A.14) and (A.10) that

|ΨD|2H1(T+

h
∪T−

h
) ≤ C(v(A2)|φA2

|2W 1
∞

(T )|T |+ |z|2H1(T+

h
∪T−

h
)) ≤ C.

The upper bound estimate for ΨE is analogous. ⊓⊔

Appendix B Technical results for the 3D cases

B.1 Proof of Lemma 16

Proof : Similar to (A.6) for the 2D cases, we also have

φ = Ih,Tφ+
(β−/β+ − 1)∇Ih,Tφ · nh

1 + (β−/β+ − 1)∇Ih,Tw · nh
(w − Ih,Tw), ∀φ ∈ Sh(T ), (B.1)

where T+
h and T−

h in the definition of w in (A.2) are replaced by T+ and T−, that is,

w(x) =

{
w+(x) = dΓ ext

h,T
(x) in T+,

w−(x) = 0 in T−.
(B.2)

It suffices to prove the following relation:

0 ≤ ∇Ih,Tw · nh ≤ 1. (B.3)

There are only two types of interface elements. Type I interface element: the plane Γ ext
h,T cuts three

edges of the tetrahedron (see Figures 5); Type II interface element: the plane Γ ext
h,T cuts four edges of the

tetrahedron (see Figures 6).

For Type I interface element, we take the tetrahedron in Figures 5 as an illustration. Similar to the 2D

cases, we only need to consider the case A1 ∈ T+. Let Ai,⊥ be the orthogonal projection of the point Ai

onto the plane Γ ext
h,T . Similar to (A.7), we have

∇Ih,Tw · nh = 1− λ1(A1,⊥), (B.4)

where λi is the standard 3D linear basis function associated with the vertex Ai. Let H be the orthogonal

projection of the point A1 onto the plane A2A3A4. The dihedral angle between A1A2A3 and A4A2A3 is

denoted by A1-A2A3-A4. As we assume that the dihedral angles A1-A2A3-A4, A1-A3A4-A2, A1-A2A4-A3

are less than or equal to π/2, the point H must be on the triangle △A2A2A4 or its boundary, and there

exists a point of intersection D of the line segment A1H and the plane Γ ext
h,T . Let (Γ ext

h,T )
⊥ be a plane that

passes through the points A1, H and A1,⊥. Obviously, we can choose a point Q, different from H, on the

line of intersection of the plane (Γ ext
h,T )

⊥ and the plane A2A2A4 such that Γ ext
h,T ∩ A1Q 6= ∅. The point of

intersection of Γ ext
h,T and A1Q is denoted by E.

Now we focus on the triangle △A1HQ (see the right picture in Figure 5). Let λ̃1 be the standard 2D

linear basis function on the triangle △A1HQ associated with the point A1. Note that λ1(H) = λ1(Q) = 0

and λ1(A1) = 1, it holds λ̃1(x) = λ1(x) on the plane (Γ ext
h,T )

⊥. Since the maximum angle of the triangle
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Fig. 5 Type I interface element in 3D. The plane Γ ext
h,T cuts three edges of the element.
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Fig. 6 Type II interface element in 3D. The plane Γ ext
h,T cuts four edges of the element.

△A1HQ is equal to π/2, using the result of the 2D cases (see the proof of Lemma 1 in Appendix A.1), we

obtain

∇Ih,Tw · nh = 1− λ̃1(A1,⊥) ∈ [0, 1].

For Type II interface element, we take the tetrahedron in Figures 6 as an illustration. The plane Γ ext
h,Γ

intersects with the edges A1A2, A2A4, A3A4 and A1A3 at the points D1, D2, D3 and D4. In view of the

limiting cases, 



D4 → A1, D3 → A4 (i.e.,Γ ext
h,T → the plane A1A2A4),

D2 → A2, D3 → A3 (i.e.,Γ ext
h,T → the plane A1A2A3),

D1 → A2, D4 → A3 (i.e.,Γ ext
h,T → the plane A2A3A4),

D1 → A1, D2 → A4 (i.e.,Γ ext
h,T → the plane A1A3A4),

the following relation must be true,

0 < D4-D1D2-A4 < max{A3-A1A2-A4, A3-A2A4-A1, π − A3-A1A4-A2}.

Together with the condition γmax ≤ π/2, we conclude that,

0 < D4-D1D2-A4 < π −A3-A1A4-A2. (B.5)

Without loss of generality, we assume A1 ∈ T+, so we have

∇Ih,Tw · nh = 1− λ1(A1,⊥) + (1− λ4(A4,⊥)).
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Let (Γ ext
h,T )

⊥ be the plane that passes through the points A1 and A4 and is perpendicular to the plane Γ ext
h,T .

Let Q be the point of intersection of the plane (Γ ext
h,T )

⊥ and line A2A3.

Now we focus on the triangle △A1QA4 (see the right picture in Figure 6). Let λ̃1 and λ̃4 be the standard

2D linear basis functions on the triangle △A1QA4 associated with the points A1 and A4, respectively. Note

that λ1(A4) = λ1(Q) = 0 and λ4(A1) = λ4(Q) = 0, we have λ̃1(x) = λ1(x) and λ̃4(x) = λ4(x) on the plane

(Γ ext
h,T )

⊥. Therefore, it holds

∇Ih,Tw · nh = 1− λ̃1(A1,⊥) + (1− λ̃4(A4,⊥)),

which is the same as the equation (A.8) for Case II in the 2D cases if we consider the triangle △A1QA4.

In order to use the result of the 2D cases, we need to verify the angle condition of the triangle △A1QA4.

In view of the relation (B.5), we consider two cases: D4-D1D2-A4 ∈ (0, π/2] and D4-D1D2-A4 ∈ [π/2, π −
A3-A1A4-A2). If the dihedral angle D4-D1D2-A4 ∈ (0, π/2], then the point Q is on the ray

−−−→
A2A3 and the

following relation holds:

0 ≤ Q-A1A4-A2 < π/2. (B.6)

Note that the existence of the point Q relies on αmax ≤ π/2, γmax ≤ π/2 and the relation (B.6). By the

A4

A2

A1

Q

Fig. 7 Estimate the angle ∠QA4A1

conditions ∠A2A4A1 ≤ αmax ≤ π/2, Q-A4A2-A1 ≤ γmax ≤ π/2, and the relation Q-A1A4-A2 < π/2 from

(B.6), it is easy to see that ∠QA4A1 ≤ π/2 (see Figure 7 for clarity). Analogously, we have ∠QA1A4 ≤ π/2

since Q-A1A4-A2 < π/2, Q-A1A2-A4 ≤ γmax ≤ π/2 and ∠A2A1A4 ≤ αmax ≤ π/2. In view of the proof of

Lemma 1 in Appendix A.1 for Case II, by the relations ∠QA1A3 ≤ π/2 and ∠QA4A1 ≤ π/2, we obtain the

estimate (B.3). We emphasize that the condition for the angle ∠A1QA4 is actually unnecessary when the

points D and E are on the edges QA1 and QA4, respectively.

If the dihedral angle D4-D1D2-A4 ∈ [π/2, π − A3-A1A4-A2), then the point Q is on the ray
−−→
A2G, and

it holds 0 ≤ Q-A1A4-A2 < π/2− A3-A1A4-A2, where the point G is on the line A2A3 but not on the ray−−−→
A2A3 (see Figure 6). Obviously, we have Q-A1A4-A3 < π/2. Therefore, the proof of ∠QA4A1 ≤ π/2 and

∠QA1A4 ≤ π/2 is similar to that of the case D4-D1D2-A4 ∈ (0, π/2]. ⊓⊔

B.2 Proof of Lemma 17

Proof : Let Ai be a vertice of the element T , and φAi
be the corresponding IFE basis function. Similar to

the 2D cases, using (B.1)-(B.3) we obtain

|φAi
|Wm

∞
(T+∪T−) ≤ Ch−m, m = 0, 1.

The function Ψ(x) can be constructed explicitly as

Ψ = z − IIFE
h,T z, z(x) =

{
1 in T+,

0 in T−.



Analysis of immersed finite element method 35

Then, we have

|Ψ |Wm
∞

(T+∪T−) ≤ |z|Wm
∞

(T+∪T−) + ‖z‖L∞(T )

∑

i

|φAi
|Wm

∞
(T+∪T−) ≤ Ch−m,

which implies |Ψ |2Hm(T+∪T−) ≤ Ch3−2m. The estimates for Υ and Θi can be obtained similarly by con-

structing these function as

Υ = z − IIFE
h,T z, z(x) =





1

β+
(x− x∗) · nh in T+,

0 in T−,

and

Θi = z − IIFE
h,T z, z(x) =

{
(x− x∗) · ti,h in T+,

0 in T−.

⊓⊔

B.3 Proof of Lemma 12 for the 3D cases

Proof : Since Ihφ is continuous across each face of the triangulation, it holds

‖[φ]e‖2L2(e) = ‖[φ− Ihφ]e‖2L2(e) ≤ C
∑

i=1,2

‖(φ− Ihφ)|Ti
‖2L2(e) . (B.7)

It suffices to estimate the term on an element T with e as its face. By (B.1)-(B.3), we have

‖(φ− Ihφ)|T ‖2L2(e) ≤ Ch2|e||∇Ih,Tφ · nh|2 ≤ Ch‖∇Ih,Tφ · nh‖2L2(T ). (B.8)

Using the identity (B.1) we also have

∇Ih,Tφ · nh =

(
1 + (β−/β+ − 1)∇Ih,Tw · nh

)
(∇φ± · nh)

1 + (β−/β+ − 1)∇w± · nh
.

By the definition of w in (B.2) and the estimate (B.3), we get

|∇Ih,Tφ · nh| ≤ C|∇φ+ · nh| and |∇Ih,Tφ · nh| ≤ C|∇φ− · nh|,

which leads to
‖∇Ih,Tφ · nh‖2L2(T ) = |∇Ih,Tφ · nh|2|T+|+ |∇Ih,Tφ · nh|2||T−|

≤ C|∇φ+ · nh|2|T+|+ C|∇φ− · nh||T−|
≤ C‖∇φ‖2L2(T ).

(B.9)

The desired result (4.48) now follows from (B.7)-(B.9). ⊓⊔

B.4 Proof of Lemma 18

Proof : Note that T△ = (T+
h \T+)∪ (T−

h \T−) is the mis-matched region on T . For any φ ∈ Sh(T ), it follows

from (B.1)-(B.2) that for m = 0, 1,

|φ+ − φ−|Wm
∞

(T△) =

∣∣∣∣
(β−/β+ − 1)∇Ih,Tφ · nh

1 + (β−/β+ − 1)∇Ih,Tw · nh

∣∣∣∣ |dΓ ext
h,T

|Wm
∞

(T△) ≤ Ch2−2m|∇Ih,Tφ · nh|,

where in the last inequality we have utilized (B.3) and the first inequality in (6.1). The first inequality in

(6.1) also implies |T△|/|T | ≤ Ch. By the definition of ÎIFE
h in (6.15) and the inequality (B.9) we have

|ÎIFE
h φ− φ|2Hm(T ) = |φ+ − φ−|2Hm(T△) ≤ Ch4−4m|∇Ih,Tφ · nh|2|T |(|T△|/|T |)

≤ Ch5−4m‖∇Ih,Tφ · nh‖2L2(T ) ≤ Ch5−4m‖∇φ‖2L2(T ),
(B.10)
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and

|ÎIFE
h φ− φ|2L2(e) = |φ+ − φ−|2L2(e) ≤ Ch4|∇Ih,Tφ · nh|2|T |(|e|/|T |)

≤ Ch3‖∇Ih,Tφ · nh‖2L2(T ) ≤ Ch3‖∇φ‖2L2(T ).
(B.11)

Choosing φ = IIFE
h v, we get

ÎIFE
h φ− φ = ÎIFE

h (IIFE
h v)− IIFE

h v = ÎIFE
h v − IIFE

h v,

which together with (B.10) and (B.11) yields the desired results (6.16).

B.5 Proof of Lemma 19

Proof : By the Cauchy-Schwarz inequality we have

∣∣∣∣
∫

Γ

β−∇u− · n[vh]Γds
∣∣∣∣
2

≤ C‖∇u− · n‖2L2(Γ )

∑

T∈T Γ
h

‖[vh]Γ‖2L2(Γ∩T ). (B.12)

For any φ ∈ Sh(T ), it follows from (B.1)-(B.2) that

‖[φ]Γ∩T‖L∞(Γ∩T ) =

∣∣∣∣
(β−/β+ − 1)∇Ih,Tφ · nh

1 + (β−/β+ − 1)∇Ih,Tw · nh

∣∣∣∣ ‖dΓ ext
h,T

‖L∞(Γ∩T ) ≤ Ch2|∇Ih,Tφ · nh|,

where in the last inequality we have used (B.3) and the first inequality in (6.1). Using the fact |Γ ∩T | ≤ Ch2

which can be obtain by applying the interface trace inequality (see Lemma 3.2 in [49]) to a constant function,

we further have

‖[φ]Γ∩T‖2L2(Γ∩T ) ≤ Ch6|∇Ih,Tφ · nh|2 ≤ Ch3‖∇Ih,Tφ · nh‖2L2(T ) ≤ Ch3‖φ · nh‖2L2(T ),

where we have used (B.9) in the last inequality. The lemma follows from the above inequalities and the

global trace inequality on Ω−.
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