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Abstract This work concerns the numerical approximation with a finite volume
method of inviscid, nonequilibrium, high-temperature flows in multiple space di-
mensions. It is devoted to the analysis of the numerical scheme for the approxima-
tion of the hyperbolic system in homogeneous form. We derive a general framework
for the design of numerical schemes for this model from numerical schemes for the
monocomponent compressible Euler equations for a polytropic gas. Under a very
simple condition on the adiabatic exponent of the polytropic gas, the scheme for
the multicomponent system enjoys the same properties as the one for the mono-
component system: discrete entropy inequality, positivity of the partial densities
and internal energies, discrete maximum principle on the mass fractions, and dis-
crete minimum principle on the entropy. Our approach extends the relaxation of
energy [Coquel and Perthame, SIAM J. Numer. Anal., 35 (1998), 2223–2249] to
the multicomponent Euler system. In the limit of instantaneous relaxation we show
that the solution formally converges to a unique and stable equilibrium solution
to the multicomponent Euler equations. We then use this framework to design
numerical schemes from three schemes for the polytropic Euler system: the Go-
dunov exact Riemann solver [Godunov, Math. Sbornik, 47 (1959), 271–306] and
the HLL [Harten et al., SIAM Rev., 25 (1983), 35–61] and pressure relaxation based
[Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation
laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser,
2004] approximate Riemann solvers. Numerical experiments in one and two space
dimensions on flows with discontinuous solutions support the conclusions of our
analysis and highlight stability, robustness and convergence of the scheme.
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1 Introduction

We are here interested in finite volume methods to simulate inviscid hypersonic
high-temperature flows. Such simulations are of strong significance in many ap-
plications (e.g., hypersonic air vehicles [32], reentry vehicles [2], meteoroid entry
into atmosphere [29]) and scientific topics (e.g., weakly ionized gases, heat transfer
[39], boundary layer stability [33], shock propagation [30]) related to hypersonic
flows. For such flows, effects of thermal and chemical nonequilibrium are important
and cannot be modeled by the monocomponent compressible Euler equations for
a polytropic gas. Real gas models usually include multiple temperatures, chemical
reaction rates and vibrational relaxation effects [20,2]. We here focus on issues
related to the numerical treatment of the convective fluxes due to their hyper-
bolic nature and on the capture of associated features such as strong shocks. We
therefore consider thermal nonequilibrium only and neglect chemical nonequilib-
rium and relaxation of vibration energies that are associated to numerical issues
of different nature.

The numerical analysis of hypersonic flows is usually challenging because the
characteristic time scales of the chemical reactions and molecular vibrations may
be quite different from the characteristic time scale of the flow field. Taking into
account the variations in the chemical composition and internal energy modes of
a fluid requires to resolve the mass fractions and vibration energies. The thermo-
dynamic properties then depend on these variables which complicates the design
of numerical schemes with sought-after properties such as robustness (i.e., that
keeps positivity of partial densities and internal and vibration energies), stability
from a discrete entropy inequality, maximum principle on the mass fractions, etc.

The design of numerical schemes for the approximation of the compressible
multicomponent Euler equations has been an active field of research over the past
decades. Park proposed an implicit time marching associated to central differencing
of ionized flows [36], while finite volume discretizations have been widely developed
with flux splitting techniques [7,4,34,45], Jacobian based methods such as the Roe
method [10,21], the AUSM scheme [19], relaxation based approximate Riemann
solvers (ARS) [43], etc. High-order extensions have been proposed with the second-
order MUSCL method [15], ENO and WENO reconstructions [50,14], interface
capturing schemes [1,31]. Shock fitting techniques have also been addressed in
[39]. In this work we will consider the design of finite volume schemes based on
ARS.

To ensure entropy stability and robustness when using ARS such as the HLL
[27], Roe [42], Rusanov [44], relaxation [3,9] schemes, etc., one needs an estima-
tion from above of the maximum wave speeds in the Riemann problem. However,
fast estimates such as the two-rarefaction approximation [51, Ch. 9], the itera-
tive algorithm from [25], or the one based on eigenvalues of the Roe linearisation
[16] will require time-consuming Newton-Raphson iterations when the equation of
state (EOS) differs in the left and right states due to different species composi-
tions. In [13] a relaxation technique is applied to the multicomponent Euler system
which allows the use of monocomponent schemes for each component and associ-
ated EOS and the scheme inherits properties from the monocomponent scheme.
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However, this technique requires to compute as many monocomponent schemes
as there are species which can become time consuming. Moreover, the entropy
of the relaxation system is proved to be convex for constant mass fractions only
which is valid for isolated shocks, but fails for interactions of shocks with material
interfaces. Here we consider the energy relaxation technique introduced in [11] for
the approximation of the monocomponent compressible Euler equations with a
general EOS. In this method, one considers a decomposition of the internal en-
ergy including the energy for a polytropic gas thus relaxing the general EOS. The
method then allows the design of numerical schemes by using classical numerical
fluxes for polytropic gases coupled to instantaneous relaxation of the energy.

In this work, we extend this method to our model and show how to define a
numerical scheme from a scheme for the polytropic gas dynamics through a sim-
ple formula (equation (4.25)) which corresponds to a splitting of hyperbolic and
relaxation operators. In the limit of instantaneous relaxation we show that the so-
lution of the energy relaxation approximation formally converges to a unique and
stable equilibrium solution to the multicomponent Euler equations which justify
the splitting. By defining the adiabatic exponent of the polytropic gas as an upper
bound of the possible values of adiabatic exponent of the mixture, the scheme for
the multicomponent system inherits the properties of the scheme for the monocom-
ponent system: discrete entropy inequality, positivity of the partial densities and
internal energies, discrete maximum principle on the mass fractions, and discrete
minimum principle on the entropy. An attempt to apply the energy relaxation
approximation to the multicomponent Euler system for a fluid mixture in thermal
equilibrium has been made in [40]. However, this work did not provide a general
framework to build numerical schemes. The closure laws for the fluid mixture in-
deed prevent the derivation of a strictly convex entropy for the relaxation system
which in turn prevents to apply stability theorems [5] to the relaxation process.
As a consequence the well-posedness of the instantaneous relaxation process has
not been investigated either. On the other hand, the present work successfully
addresses this property and may use any polytropic three-point scheme.

The paper is organized as follows. Section 2 presents the multicomponent
compressible Euler system in thermal nonequilibrium and the entropy pair. The
unstructured finite volume scheme and the three-point scheme are described in
section 3. We introduce and analyze the relaxation in energy approximation in
section 4 that we use in section 5 to derive three numerical fluxes for the finite
volume scheme. These three schemes are then assessed by numerical experiments
in one and two space dimensions in section 6 and concluding remarks about this
work are given in section 7.

2 Model problem

2.1 Governing equations and thermodynamic model

Let Ω ⊂ Rd be a bounded domain in d space dimensions, we consider the multi-
species and multi-temperature model for flows in thermal nonequilibrium [37].
Let the IBVP described by the multicomponent compressible Euler system for a
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mixture of ns species

∂tu +∇ · f(u) = 0, in Ω × (0,∞), (2.1a)

u(·, 0) = u0(·), in Ω, (2.1b)

with some boundary conditions to be prescribed on ∂Ω (see section 5.4). Here

u =


ρ
ρv
ρE
ρev

 , f(u) =


ρv>

ρvv> + pI

(ρE + p)v>

ρevv
>

 , (2.2)

denote the conserved variables and the convective fluxes with ρ = (ρ1, . . . , ρns)
>

the vector of densities of the ns species, while ρ, v in Rd, and E denote the
density, velocity vector, and total specific energy of the mixture, respectively. By
ρev = (ρ1e

v
1 , . . . , ρnde

v
nd)> we denote the vector of partial vibration energies of

the nd diatomic species that are in thermal nonequilibrium. Each partial vibration
energy is linked to the associated vibration temperature Tvβ through

evβ(Tvβ) = rβ
ϑvβ

exp
( ϑvβ
Tvβ

)
− 1

, rβ =
R
Mβ

, (2.3)

where ϑvβ is the characteristic harmonic oscillator temperature, and rβ is the gas
constant of the species β withR is the universal gas constant andMβ the molecular
weight of the species.

The mixture density, pressure and vibration energy are defined from quantities
of the individual species through

ρ =

ns∑
α=1

ρα = ρ

ns∑
α=1

Yα, p =

ns∑
α=1

pα, ρev =

nd∑
β=1

ρβe
v
β , (2.4)

where Yα = ρα
ρ denotes the mass fraction of the αth species, so we have

ns∑
α=1

Yα = 1. (2.5)

The specific total energy of the mixture reads

E = h0 + et + ev + ec, h0 =

ns∑
α=1

Yαh
0
α, et =

ns∑
α=1

Yαe
t
α, ec =

1

2
v · v, (2.6)

where h0α ≥ 0 is the enthalpy of formation of species α, etα = CtvαT denotes the
internal translation-rotation energy with Ctvα = 3

2rα for a monoatomic species and
Ctvα = 5

2rα for diatomic molecules. The EOS for the mixture pressure in (2.4) is
given by the Dalton’s law and the partial pressures are assumed to obey polytropic
ideal gas EOSs:

p =

ns∑
α=1

ραrαT = ρr(Y)T, r(Y) = Z(Y)R, Z(Y) =

ns∑
α=1

Yα
Mα

, (2.7)
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where Y = (Y1, . . . , Yns)
>. Note that the pressure may be also written as

p(Y, ρ, et) =
(
γ(Y)− 1

)
ρet, (2.8)

with

γ(Y) =
r(Y)

Cvt(Y)
+ 1, r(Y)

(2.7)
=

ns∑
α=1

Yαrα, Cvt(Y) =

ns∑
α=1

YαC
t
vα . (2.9)

This induces the following bounds on γ(Y):

7

5
≤ γ(Y) ≤ 5

3
∀0 ≤ Y1≤α≤ns ≤ 1. (2.10)

System (2.1a) is hyperbolic in the direction n in Rd over the set of states [34]

Ωa = {u ∈ Rns+nd+d+1 : ρ1≤α≤ns > 0,v ∈ Rd, et > 0, ev1≤β≤nd > 0}, (2.11)

with eigenvalues λ1 = v · n − c ≤ λ2 = · · · = λns+nd+d = v · n ≤ λns+nd+d+1 =
v · n + c, where λ1 and λns+nd+d+1 are associated to genuinely nonlinear fields
and λ2≤i≤ns+nd+d to linearly degenerate fields. The frozen sound speed reads

c(Y, et) =
√
γ(Y)

(
γ(Y)− 1

)
et. (2.12)

Finally note that we are assuming in (2.11) that the partial densities are posi-
tive which would prevent vanishing phases: ρα = 0 for some α. When such situation
occurs the partial velocities, pressure and energies of the species also vanish and
this is equivalent to removing the species in the model (2.1) so ρα > 0 in (2.11) is
justified and do not exclude vanishing phases.

2.2 Entropy pair

Solutions to (2.1) should satisfy an entropy inequality

∂tη(u) +∇ · q(u) ≤ 0 (2.13)

for some entropy – entropy flux pair (η,q) with η(·) a strictly convex function and
η′(u)>f ′i(u) = q′i(u)> for 1 ≤ i ≤ d. In this section we recall the entropy pair for
(2.1) derived in [18] and then prove convexity of the entropy.

Following [18], the entropy for a mixture with internal degrees of freedom in
nonequilibrium is the sum of associated entropies defined by their differential forms

Tdstα = detα + pαdτα ∀1 ≤ α ≤ ns, (2.14a)

Tvβdsvβ = devβ ∀1 ≤ β ≤ nd, (2.14b)

with τα = 1
ρα

the covolume of the species α. The entropy pair in (2.13) reads

η(u) = −ρs(u), q(u) = −ρs(u)v, s ≡
ns∑
α=1

Yαstα +

nd∑
β=1

Yβsvβ . (2.15)
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Neglecting rotation-vibration coupling and anharmonic contributions, the spe-
cific entropies read [18] (up to some additive constants)

stα(τα, e
t
α) = Ctvα ln(etα) + rα ln(τα) ∀1 ≤ α ≤ ns, (2.16a)

svβ(evβ) = rβ ln(evβ) + rβ

(
1 +

evβ
rβϑ

v
β

)
ln
(

1 +
rβϑ

v
β

evβ

)
∀1 ≤ β ≤ nd. (2.16b)

Note that for smooth solutions, manipulations of (2.1) together with (2.14)
show that these entropies satisfy the following conservation laws

∂t
( ns∑
α=1

ραstα

)
+∇·

( ns∑
α=1

ραstαv
)

= 0, ∂t(ρβsvβ)+∇·(ρβsvβv) = 0 ∀1 ≤ β ≤ nd.

Proposition 2.1 The entropy in (2.15) is a strictly convex and twice differen-
tiable function of u in Ωa.

Proof Twice differentiability is straightforward from (2.16). To prove the convexity
we use the trick introduced in [28] and also used in [24] to prove that the Hessian
of the entropy Hη is congruent to the following strictly convex diagonal matrix:

∂u

∂Z

>
Hη

∂u

∂Z
=
∂u

∂Z

> ∂η′(u)

∂Z

= diag
(

(rατα)1≤α≤ns , (ρθ)1≤i≤d, ρCvt(Y)θ2,
(
− ρβsv

′′

β (evβ)
)
1≤β≤nd

)
,

(2.17)

where θ = 1
T , sv

′′

β (evβ) = − rβ
evβ(e

v
β+rβϑ

v
β)
< 0 from (2.16b), and Z(u) = (ρ>,v>,T, e>v )>

denotes a one-to-one change of variables. Indeed, with some slight abuse in the
notation we have

∂u

∂Z
=



1 0 0 0 0 0 0
. . .

...
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

...
0 1 0 0 0 0 0
v · · · v · · · v ρId 0 0 0 0

ρE1 · · · ρEnd · · · ρEns ρv> ρCvt(Y) ρ1 · · · ρnd
ev1 0 · · · 0 0 0 ρ1 0

. . .
. . .

...
...

...
. . .

0 evnd 0 0 0 0 ρnd



,

where Id is the identity matrix of size d and ρEα = ∂ραρE = CtvαT+h0α+ψαe
v
α+ec

with ψα = 1 if 1 ≤ α ≤ nd and ψα = 0 if nd < α ≤ ns. So det(∂Zu) =
ρd+1Cvt(Y)Πnd

β=1ρβ > 0.
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Let gtα = etα + pατα − Tstα be the free Gibbs energy of the αth species and
gvβ = evβ − Tvβsvβ , using the differential forms (2.14) we obtain

T

ns∑
α=1

d(ραstα) =

ns∑
α=1

d(ραe
t
α)− (etα + pατα − Tstα)dρα

= d(ρE)− d(ρev)− v · d(ρv)−
ns∑
α=1

(gtα + h0α − ec)dρα,

nd∑
β=1

d(ρβsvβ) =

nd∑
β=1

(
svβ(evβ)− evβθvβ

)
dρβ + θvβd(ρβe

v
β),

with θvβ = 1
Tvβ

= sv
′

β (evβ), so the entropy variables read

η′(u) :=

(
η(u)

∂u

)>
=



Ctv1 + r1 − st1 + ψ1θ
v
1g
v
1 + (h01 − ec)θ

...
Ctvns + rns − stns + ψnsθ

v
nsg

v
ns + (h0ns − ec)θ

θv
−θ

θ − θv1
...

θ − θvnd


, (2.18)

and we obtain for ∂η′(u)
∂Z



r1
ρ1

0 −θv> −Ctv1θ − (h01 − ec)θ2 ev1sv
′′

1 (ev1) 0

. . .
...

...
. . .

rnd
ρnd

−θv> −Ctvnd θ − (h0nd − ec)θ
2 0 evndsv

′′

nd(evnd)

. . .
...

...
...

. . . 0

0
rns
ρns
−θv> −Ctvns θ − (h0ns − ec)θ

2 0 · · · 0

0 · · · · · · · · · 0 θId −θ2v 0 · · · 0
0 · · · · · · · · · 0 0 θ2 0 · · · 0

0 · · · 0 · · · 0 0 −θ2 −sv
′′

1 (ev1) 0
...

. . .
...

. . .
...

...
...

. . .

0 · · · 0 · · · 0 0 −θ2 0 −sv
′′

nd(evnd)



,

so it may be easily checked that (2.17) holds true. ut

Finally, let τ = 1
ρ be the covolume of the mixture. Using

etα
Ctvα

= et
Cvt (Y) = T

and Yατα = τ , for all α, in (2.16) the entropy of the mixture in (2.15) may be
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written as

s(Y, τ, et, ev) =

ns∑
α=1

YαC
t
vα ln

( Ctvα
Cvt(Y)

et
)

+ Yαrα ln
( τ

Yα

)
+ sv(Y, ev)

= Cvt(Y) ln et + r(Y) ln τ +K(Y) + sv(Y, ev), (2.19a)

K(Y) =

ns∑
α=1

Yα
(
Ctvα ln

( Ctvα
Cvt (Y)

)
− rα lnYα

)
, (2.19b)

sv(Y, ev) =

nd∑
β=1

Yβsvβ(evβ). (2.19c)

3 Finite volume method

We consider finite volume schemes for unstructured meshes Ωh ⊂ Rd of the form

Un+1
κ −Un

κ +
∆t(n)

|κ|
∑
e∈∂κ

|e|h(Un
κ,U

n
κ+
e
,ne) = 0 ∀κ ∈ Ωh, n ≥ 0, (3.1)

for the discretization of (2.1a). Here Un+1
κ approximates the averaged solution in

the cell κ at time t(n+1) = t(n) +∆t(n), ∆t(n) > 0 is the time step, ne is the unit
outward normal vector on the edge e in ∂κ, and κ+e the neighboring cell sharing
the interface e (see fig. 3.1). We assume that each element is shape-regular in the
sense of [6]: the ratio of the radius of the largest inscribed ball to the diameter
is bounded by below by a positive constant independent of the mesh. The initial
condition for (3.1) reads

U0
κ =

1

|κ|

∫
κ

u0(x)dV ∀κ ∈ Ωh.

κ κ+e

e

ne

Fig. 3.1: Notations for the mesh for d = 2.

It is convenient to also consider three-point numerical schemes of the form

Un+1
j −Un

j +
∆t(n)

∆x

(
h(Un

j ,U
n
j+1,n)− h(Un

j−1,U
n
j ,n)

)
= 0, (3.2)
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where Un
j approximates the averaged solution in the jth cell at time t(n), ∆x is the

space step. In particular we are looking for schemes (3.2) that have the following
properties under a given condition on the time step

∆t(n)

∆x
max
j∈Z
|λ(Un

j )| ≤ 1

2
, (3.3)

where |λ(·)| corresponds to the maximum absolute value of the wave speeds (and
will be defined in section 5): the scheme is

(i) consistent with (2.1a) and conservative which requires the numerical flux to be
consistent:

h(u,u,n) = f(u) · n ∀u ∈ Ωa, (3.4)

and conservative:

h(u−,u+,n) = −h(u+,u−,−n) ∀u± ∈ Ωa; (3.5)

(ii) Lipschitz continuous which also requires the numerical flux to be Lipschitz
continuous;

(iii) entropy stable (ES) for the pair (η,q) in (2.13): it satisfies the inequality

η(Un+1
j )− η(Un

j ) +
∆t(n)

∆x

(
Q(Un

j ,U
n
j+1,n)−Q(Un

j−1,U
n
j ,n)

)
≤ 0, (3.6)

with some conservative and consistent entropy numerical flux Q(u,u,n) =
q(u) · n;

(iv) robust: the solution remains in the set of states (2.11): Un
j∈Z in Ωa implies

Un+1
j∈Z in Ωa;

(v) and it satisfies a discrete maximum principle on the mass fractions:

min(Y nαj−1
, Y nαj , Y

n
αj+1

) ≤ Y n+1
αj ≤ max(Y nαj−1

, Y nαj , Y
n
αj+1

) ∀1 ≤ α ≤ ns, (3.7)

(vi) together with a minimum principle on the specific entropy in (2.15) [47,24]:

s(Un+1
j ) ≥ min

(
s(Un

j−1), s(Un
j ), s(Un

j+1)
)
. (3.8)

Then it is a classical matter (see e.g. [38,48,49,22] and references therein)
that the finite volume scheme (3.1) with the same numerical flux enjoys similar
properties. Under the following condition on the time step

∆t(n) max
κ∈Ωh

|∂κ|
|κ| max

e∈∂κ
|λ(Un

κ±)| ≤ 1

2
, |∂κ| :=

∑
e∈∂κ

|e|, (3.9)

the scheme is robust and is a convex combination of updates of three-point schemes
(3.2):

Un+1
κ =

∑
e∈∂κ

|e|
|∂κ|

(
Un
κ −

∆t(n)|∂κ|
|κ|

(
h(Un

κ,U
n
κ+
e
,ne)− h(Un

κ,U
n
κ,ne)

))
, (3.10)

with weights |e|
|∂κ| . Therefore, the scheme (3.1) also satisfies the discrete minimum

and maximum principles together with the entropy inequality

η(Un+1
κ )− η(Un

κ) +
∆t(n)

|κ|
∑
e∈∂κ

|e|Q(Un
κ,U

n
κe ,ne) ≤ 0, (3.11)
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consistent with (2.13).
In the following we design finite volume schemes (3.1) with the CFL condition

(3.9) by first designing three-point schemes (3.2) that satisfy properties (i) to (vi)
with (3.3).

4 Energy relaxation approximation

In this section we derive a general framework that allows the use of standard
numerical schemes for the classical gas dynamics with a polytropic ideal gas EOS.
The main results are summarized in theorem 4.3 and show how to build a three-
point scheme for (2.1a) that enjoys the properties (i) to (vi) in section 3 from a
three-point scheme for the compressible Euler equations with a polytropic law.

We here extend the energy relaxation approximation for the multicomponent
Euler system [11] to include the vibration energies (section 4.1) and introduce a
convex entropy in section 4.2. Section 4.3 is devoted to the analysis of solutions to
the relaxation system close to equilibrium. In the limit of instantaneous relaxation,
we prove that:

– solutions to the relaxation system formally converge to a unique and sta-
ble equilibrium solution to the multicomponent Euler equations (2.1a) (the-
orem 4.1);

– this equilibrium corresponds to a global minimum of the relaxation entropy
which satisfies a variational principle (lemma 4.3);

– small perturbations close to the equilibrium are associated to dissipative pro-
cesses in (2.1a) (theorem 4.2).

These results are then used to infer a numerical scheme for (2.1a) from one
for the relaxation system (section 4.4) based on a splitting of the hyperbolic and
relaxation operators.

4.1 Energy relaxation system

Following the energy relaxation method introduced in [11], we consider the system

∂tw
ε +∇ · g(wε) = −1

ε

(
wε −M(wε)

)
, (4.1)

and we will denote by (4.1)ε→∞ the system in homogeneous form, i.e., with ε→∞.
Here

w =


ρ
ρv
ρEr
ρev
ρes

 , g(w) =


ρv>

ρvv> + pr(ρ, er)I(
ρEr + pr(ρ, er)

)
v>

ρevv
>

ρesv
>

 , w−M(w) =


0
0

ρ
(
F (Y, er)− es

)
0

ρ
(
es − F (Y, er)

)

 ,

with ε > 0 the relaxation time scale, and

pr(ρ, er) = (γ − 1)ρer, er = Er − ec. (4.2)
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Solutions to (4.1) satisfy the additional conservation law

∂tρ
ε +∇ · (ρεvε) = 0, (4.3)

for the mixture density so the variables ρ, ρv and ρEr are uncoupled from Y
and ev and coupled to es through the relaxation source terms only. This is an
important aspect of the model (4.1) and also allows to interpret Er, er, and pr as
the energies and pressure of a polytropic EOS.

From (2.10) we set γ as

γ > max
0≤Y1≤α≤ns≤1

γ(Y) =
5

3
, (4.4)

which constitutes the subcharacteristic condition for (4.1) to relax to an equilib-
rium as ε ↓ 0 [11]. The set of states for (4.1) is

Ωr =
{
w ∈ Rns+nd+d+2 : ρ1≤α≤ns > 0,v ∈ Rd, er > 0, ev1≤β≤nd > 0, es > 0

}
.

(4.5)
Let w = limε↓0 wε, in this limit, one formally recovers (2.1a) with

u = Lw, w =M(w), f(u) = Lg(P(u)), (4.6)

with the operators L : Ωr → Ωa and P : Ωa → Ωr defined by

Lw =
(
ρ>, ρv>, ρEr + ρes + ρh0 + ρev, ρe

>
v

)>
, (4.7a)

P(u) =
(
ρ>, ρv>, ρer(ρ, p) + ρec, ρe

>
v , ρ

(
et − er(ρ, p)

))>
, (4.7b)

with er(ρ, pr) defined from (4.2), ρ =
∑ns
α=1 ρα, and p = p(Y, ρ, et) defined from

(2.8). The equilibrium (4.6) corresponds to

E = Er + es + h0 + ev, et = er + es, es = F (Y, er) :=
γ − γ(Y)

γ(Y)− 1
er, (4.8)

where the expression for F follows from the consistency relation on the pressure:

p
(
Y, ρ, er +F (Y, er)

)
= pr(ρ, er)

(2.8)⇔
(4.2)

(
γ(Y)− 1

)
ρ
(
er +F (Y, er)

)
= (γ− 1)ρer.

(4.9)

4.2 Entropy

Let define the convex function

sr(τ, er) = −(τγ−1er)
1
γ , (4.10)

with τ = 1
ρ the covolume of the mixture, and further introduce

ζ(Y, τ, er, es, ev) = −s
(
Y(Y), T

(
Y, sr(τ, er), es

)
, E(Y, es) + es, ev

)
, (4.11a)

E(Y, es) = γ(Y)−1
γ−γ(Y)es, T (Y, sr, es) =

(γ−γ(Y)
γ(Y)−1

(−sr)
γ

es

) 1
γ−1 , Y = Y(Y), (4.11b)
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where s is the mixture entropy (2.19) for (2.1a) and

Y = (Y1, . . . , Yns−1)> (4.12)

the vector of the mass fractions of the ns − 1 first species. This particular change
of variables will be used only in the proof of lemma 4.3 below where we will clarify
the choice for ns. Note that the mapping between Y = Y(Y) is obviously one-to-
one from (2.5) and (4.3) which is always satisfied for w in Ωr in (4.5), so we may
adopt equivalently the notations Y or Y for the sake of clarity and write

r(Y) = r(Y) = rns +

ns−1∑
α=1

Yα(rα − rns). (4.13)

In (4.11b), the function E solves es = F (Y, er) for er with F defined in (4.8),
while T solves sr = sr(τ, E(Y, es)) for τ through (4.10). Using (2.19) and (4.11),
we easily obtain

ζ(Y, τ, er, es, ev) = −s
(
Y(Y), τ, er + es, ev

)
+ ς(Y, er, es), (4.14a)

ς(Y, er, es) = Cvt(Y) ln
(
γ−γ(Y)
γ−1

er+es
es

( γ(Y)−1
γ−γ(Y)

es
er

) γ(Y)−1

γ−1

)
, (4.14b)

with partial derivatives

∂τζ = − r(Y)
τ , ∂erζ = − r(Y)

(γ−1)er
, ∂esζ = γ(Y)−γ

γ−1

Cvt (Y)

es
. (4.15)

Likewise, the mapping w 7→ (Y, τ, er, es, ev) is surjective in Ωr, so we may
rewrite ζ = ζ(w) as a function of the arguments in (4.11a). This change of variables
is also motivated by the following result which will be used to prove convexity of
the entropy in lemma 4.2.

Lemma 4.1 Given twice differentiable functions f(w) = ρg(Y, τ, er, es, ev), f is
strictly convex iff. g is strictly convex in Ωr.

Proof Convexity being invariant under linear maps, the convexity of f is equivalent
to that of f(w) = f1(ρ1, . . . , ρns−1, ρ, ρv

>, ρEr, ρev, ρes). Then, it is a classical
matter that the convexity of f1 and f2 with f1(ρ,y) = ρf2

(
1
ρ ,

1
ρy
)

are equivalent.

Since Er = er − 1
2v · v, the convexity of f is equivalent to the convexity of

ρf2(Y, τ,v, Er, es, ev) = ρg(Y, τ, er, es, ev) [22, chap. 2]. ut

Lemma 4.2 Under the assumption (4.4), the function ρζ(w) defined by (4.11) is
a strictly convex entropy in Ωr for (4.1).

Proof This proof has been moved to appendix A for the sake of clarity. ut

4.3 Properties of the relaxation system close to equilibrium

We first prove the following variational principle which states that the equilibrium
(4.8) minimizes the entropy ζ and constitutes an analogue to the Gibbs Lemma
in kinetic theory.
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Lemma 4.3 Under the assumption (4.4), the function ζ defined by (4.11) satisfies
the following variational principle:

− s(Y, τ, et, ev) = min
er+es=et

{
ζ
(
Y(Y), τ, er, es, ev

)
:

0 < Y1≤α≤ns ≤ 1, τ > 0, er > 0, es > 0, ev1≤β≤nd > 0
}
, (4.16)

and the minimum is reached at a unique global equilibrium which is solution to
(4.8).

Proof Note that (4.16) corresponds to the minimization of a strictly convex func-
tion (see lemma 4.2) in the convex set (4.5) under the linear constraint er+es = et,
so we only need to find a local minimum for ζ which satisfies (4.16). We further
prove that ς in (4.14) is positive and vanishes at equilibrium (4.8) that consti-
tutes a global minimum. Let us rewrite ς as Cvt(Y) ln

(
f(α, x)

)
with f(α, x) =

(1−α)(1+x)
x

(
αx
1−α

)α
, x = es

er
> 0, and α = γ(Y)−1

γ−1 in (0, 1) from (4.4). We have

∂xf(α, x) = 1−α
x2 (αx + α − 1), thus ∂xf(α, x) < 0 for 0 < x < xmin := 1−α

α ,
∂xf(α, x) > 0 for x > xmin, and ∂xf(α, xmin) = 0. Since f(α, xmin) = 1, ς van-

ishes at the global minimum αxmin = 1 − α ⇔ γ(Y)−1
γ−1

es
er

= 1 − γ(Y)−1
γ−1 which

indeed corresponds to the equilibrium (4.8): es = F (Y, er). ut

The next result concerns the spatially homogeneous system in (4.1):

∂tw
ε = −1

ε

(
wε −M(wε)

)
, (4.17)

and is analogue to the H-theorem for kinetic equations. The result below shows
that in the limit of instantaneous relaxation ε ↓ 0 the solution to (4.1) will converge
to the equilibrium (4.8).

Theorem 4.1 The vector of variables u = (ρ>, ρv>, ρE, ρe>v )> with E = Er +
es+h0+ev is a constant of (4.17) and the entropy ρζ decreases in time and reaches
a unique minimum which corresponds to the equilibrium (4.8). This equilibrium is
stable in the sense of Lyapunov.

Proof From (4.17), we directly obtain that ρ, ρv, and ρev are constant so ∂t(ρev) =
0 and ∂tY = 0. Then summing the ρEr and ρes equations gives ∂t(ρEr+ρes) = 0
so u in theorem 4.1 is constant.

Then, for smooth solutions of (4.17) we get

∂tζ(Y
ε, τ ε, eεr, e

ε
s) = −τ ε

2

∂τζ∂tρ
ε + ∂erζ∂te

ε
r + ∂esζ∂te

ε
s

=
1

ε

(
eεs − F (Yε, eεr)

)
(∂erζ − ∂esζ)

ε

(4.15)
= −1

ε

r(Yε)
(γ − 1)eεreεs

(
eεs − F (Yε, eεr)

)2 ≤ 0,

so ∂tζ ≤ 0 and ∂tζ = 0 iff. eεs = F (Yε, eεr) which corresponds to the equilibrium
(4.8) which in turn corresponds to the global minimum of ζ from lemma 4.3. We
therefore conclude that the system is stable by applying the Lyapunov stability
criterion with the Lyapunov function w 7→ ζ(w + w0)− ζ(w0) where w0 = P(u)
corresponds to the equilibrium (4.8) with P defined in (4.7). Finally note that the
partial energies are given explicitly by etα = Ctvαet/Cvt(Y) which confirms that
the equilibrium corresponds to a unique state. ut
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The last result describes the first-order asymptotic analysis of small pertur-
bations in the relaxation process in the neighborhood of the equilibrium (4.8)
by performing a formal Chapman-Enskog expansion [5]. This result extends [11,
Prop. 2.4] to multicomponent flows and allows to understand the relaxation process
close to equilibrium as a viscous perturbation to (2.1a) and to prove well-posedness
of (4.1) and consistency with (2.1a) when ε ↓ 0.

Theorem 4.2 In the limit ε ↓ 0, small perturbations to the equilibrium (4.8) obey
the following first order asymptotic expansion in ε:

∂tu
ε+∇·f(uε)−∇·fv(uε,∇uε) = 0, fv(uε,∇uε) = µ(Yε, ρε, eεt)


0

(∇ · vε)Id
(∇ · vε)vε>

0

 ,

with µ(Yε, ρε, eεt) = ε (γ−γ(Y
ε))(γ(Yε)−1)2

γ−1 ρεeεt positive under (4.4).

Proof Let consider perturbations to the equilibrium expanded in the form

eεr = e0r + εe1r + ε2e2r + . . . , eεs = e0s + εe1s + ε2e2s + . . . . (4.18)

First observe that smooth solutions to (4.1) with (4.2) satisfy

∂tY
ε + vε · ∇Yε = 0, (4.19a)

∂te
ε
r + vε · ∇eεr + (γ − 1)eεr∇ · vε =

eεs − F (Yε, eεr)

ε
, (4.19b)

∂te
ε
s + vε · ∇eεs = −e

ε
s − F (Yε, eεr)

ε
, (4.19c)

from which we deduce

∂tF (Yε, eεr) + vε · ∇F (Yε, eεr) =
γ − γ(Yε)

γ(Yε)− 1

(eεs − F (Yε, eεr)

ε
− (γ − 1)eεr∇ · vε

)
.

(4.20)
Plugging (4.18) into either (4.19b), or (4.19c), the order O(ε−1) imposes

e0s = F (Yε, e0r) =
γ − γ(Yε)

γ(Yε)− 1
e0r,

while the constraint eεt = eεr + eεs = e0r + F (Yε, e0r) in (4.16) gives

e0r =
γ(Yε)− 1

γ − 1
eεt, e0s =

γ − γ(Yε)

γ − 1
eεt, ekr + eks = 0 ∀k ≥ 1.

Plugging again (4.18) into (4.19c) and (4.20), we obtain at leading order

∂te
0
s + vε · ∇e0s = −

(
e1s − F (Yε, e1r)

)
,

∂tF (Yε, e0r) + vε · ∇F (Yε, e0r) =
γ − γ(Yε)

γ(Yε)− 1

(
e1s − F (Yε, e1r)− (γ − 1)e0r∇ · vε

)
,

and since e0s = F (Yε, e0r), we get

−
(
e1s − F (Yε, e1r)

)
=
γ − γ(Yε)

γ(Yε)− 1

(
e1s − F (Yε, e1r)− (γ − 1)e0r∇ · vε

)
,
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and using the above expressions for e0r and e0s gives

e1r = −e1s = −
(
γ − γ(Yε)

)(γ(Yε)− 1

γ − 1

)2
eεt∇ · vε.

Finally, in (4.1) consider the momentum equation and add up the equations
for ρEr, ρes, ρev together with an equation for ρh0 =

∑
α ραh

0
α. We then obtain

up to order O(ε)

∂tρ
εvε +∇ ·

(
ρεvεvε> + pr(ρ

ε, e0r + εe1r)
)

= 0,

∂tρ
εEε +∇ ·

((
ρεEε + pr(ρ

ε, e0r + εe1r)
)
vε
)

= 0,

and we conclude by observing that pr(ρ
ε, e0r) = p(Yε, ρε, eεt) from (4.9) and by

using the expression for e1r. ut

4.4 General framework for the design of three-point schemes

We now clarify the form of the numerical flux for (2.1a) that we deduce from a
numerical flux for (4.1) in homogeneous form. The former flux will satisfy the prop-
erties (i) to (vi) in section 3 providing that the latter satisfies similar properties.
The three-point scheme for (4.1)ε→∞ reads

Wn+1
j −Wn

j + ∆t(n)

∆x

(
H(Wn

j ,W
n
j+1,n)−H(Wn

j−1,W
n
j ,n)

)
= 0, (4.21)

with H(w,w,n) = g(w) · n. We assume that under some CFL condition on the
time step (see section 5), (4.21) enjoys the properties (i) to (vi) in section 3. In
particular we have

ρζ(Wn+1
j ) ≤ ρζ(Wn

j )− ∆t(n)

∆x

(
Z(Wn

j ,W
n
j+1,n)− Z(Wn

j−1,W
n
j ,n)

)
, (4.22)

with Z(w,w,n) = ρζv · n. Then, from (4.21) we may design a scheme for (2.1a)
as stated in the theorem below.

Theorem 4.3 Consider the three-point numerical scheme (4.21) for (4.1)ε→∞,
i.e., ε → ∞ in (4.1), with Lipschitz, consistent and conservative numerical flux.
Assume that it satisfies (4.22) with a consistent numerical flux, some maximum
principle on the mass fractions

min(Y nαj−1
, Y nαj , Y

n
αj+1

) ≤ Y n+1
αj ≤ max(Y nαj−1

, Y nαj , Y
n
αj+1

) ∀1 ≤ α ≤ ns, (4.23)

and the specific entropy

ζ(Wn+1
j ) ≤ max

(
ζ(Wn

j−1), ζ(Wn
j ), ζ(Wn

j+1)
)
, (4.24)

and is robust, Wn≥0
j∈Z ∈ Ω

r. If (4.4) holds, the three-point numerical scheme (3.2)
with the Lipschitz, consistent and conservative numerical flux

h(u−,u+,n) = LH
(
P(u−),P(u+),n

)
, (4.25)

hX(u−,u+,n) = HX
(
P(u−),P(u+),n

)
, X ∈ {ρ, ρv, ρev},

hρE(u−,u+,n) = HρEr (P(u−),P(u+),n
)

+Hρes(P(u−),P(u+),n
)

+

ns∑
α=1

h0αHρα(P(u−),P(u+),n
)

+

nd∑
β=1

Hρevβ (P(u−),P(u+),n
)
,
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with L defined in (4.7), is ES for the pair (η,q) in (2.13), satisfies (3.6) with
Q(u−,u+,n) = Z

(
P(u−),P(u+),n

)
, the minimum and maximum principles (3.7)

and (3.8), and is robust, Un≥0
j∈Z ∈ Ω

a.

Proof By consistency of H: h(u,u,n)
(4.25)

= LH
(
P(u),P(u),n

)
= Lg(P(u)) ·

n
(4.6)
= f(u) · n, while Lipschitz continuity and conservation are direct since L is

linear.
Then, let Wn

j = P(Un
j ) so ρζ(Wn

j ) = η(Un
j ) and Z(Wn

j ,W
n
j+1,n) = Q(Un

j ,U
n
j+1,n),

and define Wn+1
j from (4.21) and Un+1

j = LWn+1
j . If Un

j ∈ Ωa, then Wn
j =

P(Un
j ) ∈ Ωr since er = γ(Y)−1

γ−1 et and es = γ−γ(Y)
γ−1 et, and Wn+1

j ∈ Ωr so

Un+1
j = LWn+1

j ∈ Ωa by (4.6). Now, by the variational principle (4.16) we have

η(Un+1
j )

(4.16)

≤ ρζ(Wn+1
j )

(4.22)

≤ ρζ(Wn
j )− ∆t(n)

∆x

(
Z(Wn

j ,W
n
j+1,n)− Z(Wn

j−1,W
n
j ,n)

)
= ρζ

(
P(Un

j )
)
− ∆t(n)

∆x

(
Z
(
P(Un

j ),P(Un
j+1),n

)
− Z

(
P(Un

j−1),P(Un
j ),n

))
= η(Un

j )− ∆t(n)

∆x

(
Q(Un

j ,U
n
j+1,n)−Q(Un

j−1,U
n
j ,n)

)
.

Finally, pluging ζ(Wn
j ) = −s(Un

j ) into (4.24) for all j and using (4.16) we
obtain (3.8), while (3.7) holds because (4.23) and the components associated to ρ
in (4.25) remain unaffected. ut

Since the pressure in (4.1) obeys a polytropic ideal gas EOS and the variables
(Y, ev, es) are purely advected, one may use many methods for (4.21) such as, e.g.,
the Godunov [23], Rusanov [44], HLL [27], or Roe [42] schemes, though the latter
method does not guaranty robustness [16]. In the next section we will consider
some of these schemes.

In the definition of the numerical flux (4.25), the L operator consists in adding
up some components of H to build the numerical flux for the total energy, ρE, while
the P operators consist in taking data at equilibrium. This last operation is equiv-
alent to applying instantaneous relaxation, i.e., to consider (4.1)ε→∞, through a
splitting of hyperbolic and relaxation operators [11]. Note that instantaneous re-
laxation is here justified by the analysis in section 4.3. This approach is also in
agreement with the numerical flux we will consider that uses discrete projections
onto Maxwellian equibria [3].

Remark 4.1 We note that theorem 4.3 may be directly applied to the multidimen-
sional schemes (3.1) instead of the three-point scheme (3.2). This may allow to use
gueninely multi-dimensional schemes possibly with a less restrictive constraint on
the time step. In contrast considering (3.2) with the CFL condition (3.9) would
allow to encompass more general schemes such as the ARS we will consider in
section 5.

5 Examples of three-point schemes

In this section we consider examples of three-point schemes (4.21) for the homoge-
neous energy relaxation system (4.1)ε→∞ to illustrate theorem 4.3. Such schemes
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define schemes (3.2) for (2.1a) through (4.25). As already noticed, other numerical
schemes may be used since we use a simple polytropic EOS in (4.1).

The schemes we consider use Riemann type solvers with numerical flux in
(4.21) of the form

H(w−,w+,n) = g
(
W(0; w−,w+,n)

)
· n, (5.1)

whereW(·; wL,wR,n) is used to approximate the solution to the Riemann prob-
lem (4.1)ε→∞ with initial data w0(x) = wL if x := x · n < 0 and w0(x) = wR if
x ·n > 0. We then build three-point schemes for (2.1a) by simply applying (4.25).

5.1 The Godunov method

As noticed in [11] it is possible to apply the exact Riemann solver [23] for polytropic
gas to (4.21) where W corresponds to the exact entropy weak solution to the
Riemann problem. Consider the compressible Euler equations

∂tw̃ +∇ · g̃(w̃) = 0, w̃ =

 ρ
ρv
ρEr

 , g̃(w̃) =

 ρv>

ρvv> + prI

(ρEr + pr)v
>

 , (5.2)

with pr defined from (4.2) and γ satisfying (4.4).

Any variable ψ in {Y, ev, es} is uncoupled from the w̃ variables and is only
purely transoprted in (4.1)ε→∞. Noting that the intermediate states are (ψL, ψL, ψR, ψR),
the entropy weak solution is made of the Riemann solution for the Euler equa-
tions with variables w̃ and fluxes g̃(w̃) plus the states for ψ [11, Lemma 4.6]. The
Godunov method is thus ES and guaranties robustness of (4.21) as well as the
minimum and maximum principles (4.23) and (4.24) under some standard CFL
condition.

Let ρ, u = v · n and pr be the solution to the Riemann problem for (5.2) with

initial data w̃0(x) =
(
ρL, uL,p(YL, ρL, etL)

)>
if x := x · n < 0 and w̃0(x) =(

ρR, uR,p(YR, ρR, etR)
)>

if x ·n > 0 and let u? be the velocity in the star region.
Note that prX = pX given by (2.8) forX = L,R since data are taken at equilibrium
in (4.25). Then the numerical flux for (3.2) reads

hGod(uL,uR,n) =


ρ(εLYL + εRYR)u

ρu(un + εLv⊥L + εRv⊥R) + prn
ρ
(
εLE

?
L + εRE

?
R

)
u+ pru

ρ(εLevL + εRevR)u

 , (5.3)

where E?X = h0(YX) + er + γ−γ(YX)
γ(YX)−1 er + evX +

v⊥X ·v
⊥
X+u2

2 , er = pr
(γ−1)ρ , v⊥X =

vX − (vX · n)n, X = L,R, εL = 1 if u? > 0 and 0 else, and εR = 1 − εL.
Finally, the condition on the time step is (3.3) with λ(u) = |v · n|+ cγ(ρ, p) with
cγ(ρ, p) =

√
γp/ρ and p defined from (2.8).
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5.2 The HLL numerical flux

The HLL approximate Riemann solver [27] for (4.21) reads

Whll(wL,wR,n) =


wL,

x
t < SL,

SRwR−SLwL+g(wL)−g(wR)
SR−SL , SL <

x
t < SR,

wR, SR < x
t ,

(5.4)

and is ES [27] and robust [16] under the CFL condition (3.3), with λ = max(|SL|, |SR|),
providing that SL (resp. SR) is a lower (resp. upper) bound of the speed of the
leftmost (resp. rightmost) wave in the exact Riemann solution. Applying (4.25),
the numerical flux for (3.2) reads

hhll(uL,uR,n) =


f(uL) · n, x

t < SL,
SRf(uL)·n−SLf(uR)·n+SLSR(uR−uL)

SR−SL , SL <
x
t < SR,

f(uR) · n, SR < x
t ,

(5.5)

and we evaluate the wave speeds from the two-rarefaction approximation [51,
Ch. 9]:

SL = vL ·n− cL, SR = vR ·n + cR, cX = cγ(ρX , pX)

√
1 +

γ + 1

2γ

(p?tr
pX
− 1
)+
,

where (·)+ = max(·, 0) denotes the positive part, cγ(ρ, p) =
√
γp/ρ, pX =

p(YX , ρX , etX ) given by (2.8), γ satisfying (4.4), and

p?tr =

(
cγ(ρL, pL) + cγ(ρR,pR) + γ−1

2 (vL − vR) · n

cγ(ρL,pL)p
− γ−1

2γ

L + cγ(ρR,pR)p
− γ−1

2γ

R

) 2γ
γ−1

.

Note that the two-rarefaction approximation holds for the compressible Euler
equations with a polytropic EOS for an adiabatic exponent 1 < γ ≤ 5

3 [25].
The strict inequality in (4.4) may thus prevent the bound estimates with this
approach. However, the analysis in [25, Lemma 4.2] shows that this may occur
only for moderate shock strengths so the scheme remains ES for strong shocks as
expected in practice. For instance, we use γ = 1.01×5

3 in the numerical experiments
of section 6 for which the above estimates are valid when either p?tr ≤ pX , or
p?tr & 1.05pX .

5.3 Pressure relaxation-based numerical flux

We now consider the numerical flux based on relaxation of pressure [3, Prop. 2.21].
The approximate Riemann solver for (4.21) reads

Wr(xt ; wL,wR,n) =


wL,

x
t < SL,

w?
L, SL <

x
t < u?,

w?
R, u

? < x
t < SR,

wR, SR < x
t ,

(5.6)



FV methods for nonequilibrium multicomponent flows 19

where w?
X = (ρ?XY>X , ρ

?
Xv?>X , ρ?XE

?
r,X , ρ

?
Xe>v,X , ρ

?
Xes,X)>, for X = L,R, and

v?L = v⊥L + u?n, v?R = v⊥R + u?n, (5.7a)

u? =
aLuL + aRuR + pr,L − pr,R

aL + aR
, p? =

aRpr,L + aLpr,R + aLaR(uL − uR)

aL + aR
,

(5.7b)

1

ρ?L
=

1

ρL
+
u? − uL
aL

,
1

ρ?R
=

1

ρR
+
uR − u?

aR
, (5.7c)

E?r,L = Er,L −
p?u? − pr,LuL

aL
, E?r,R = Er,R −

pr,RuR − p?u?

aR
, (5.7d)

where v⊥X = vX − uXn, uX = vX · n, ρX =
∑ns
α=1 ραX , YX = 1

ρX
ρX , and

pr,X = pr(ρX , er,X) defined by (4.2).

The wave speeds in (5.6) are evaluated from SL = uL − aL/ρL and SR =
uR + aR/ρR where the approximate Lagrangian sound speeds [3] are defined by

aL
ρL

= cγ(ρL, pr,L) + γ+1
2

(
pr,R−pr,L

ρRcγ(ρR,pr,R) + uL − uR
)+

aR
ρR

= cγ(ρR, pr,R) + γ+1
2

(
pr,L−pr,R

aL
+ uL − uR

)+ , if pr,R ≥ pr,L,

(5.8a)
aR
ρR

= cγ(ρR, pr,R) + γ+1
2

(
pr,L−pr,R

ρLcγ(ρL,pr,L)
+ uL − uR

)+
aL
ρL

= cγ(ρL, pr,L) + γ+1
2

(
pr,R−pr,L

aR
+ uL − uR

)+ , else, (5.8b)

with γ defined from (4.4).

This numerical scheme is based on a relaxation approximation using evolution
equations for a relaxation pressure in place of pr and for a in (5.7) in place of the
Lagrangian sound speed ρcγ(ρ, pr). The Riemann solution contains only linearly
degenerate fields and (5.6) follows from projection of the initial data onto an
equilibrium manifold. We refer to [3, Sec. 2.4] or [9] for complete introductions
and in-depth analyses. In particular, the analysis in [3, Sec. 2.4] proves the ES,
robustness and the minimum principle on entropy by reversing the roles of energy
conservation and entropy inequality [8]. This technique also applies to the entropy
ρζ(w) and we may consider ρEr = ρer(Y, τ, ζ, es, ev) + 1

2v · v as an entropy for

the system defined by conservation laws for (ρ>, ρv>, ρζ, ρev, ρes)
>. Indeed, the

convexity of Er(Y, τ, ζ, es, ev) is equivalent to the convexity of ζ(Y, τ, er, es, ev)

since from (4.14) ∂erζ = − r(Y)
(γ−1)er

< 0 [22, chap. 2].

The Bouchut scheme guaranties positivity of ρ and er under the CFL condition
(3.3) with λ = max(|SL|, |SR|). Positivity of ρ = ρY, es and ev then follows by cell-
averaging the Riemann solution (5.7). Likewise, the discrete minimum maximum
principle (4.23) holds for the same reason. Applying (4.25), the numerical flux for
(3.2) reads

hr(uL,uR,n) =


f(uL) · n, xt < SL,
f(u?L) · n, SL < x

t < u?,
f(u?R) · n, u? < x

t < SR,
f(uR) · n, SR < x

t ,

(5.9)
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with u?X = (ρ?XY>X , ρ
?
Xv?>X , ρ?XE

?
X , ρ

?
Xe>v,X)>, for X = L,R, and

u? =
aLuL + aRuR + pL − pR

aL + aR
, p? =

aRpL + aLpR + aLaR(uL − uR)

aL + aR
,

E?L = EL −
p?u? − pLuL

aL
, E?R = ER −

pRuR − p?u?

aR
,

pX = p(YX , ρX , etX ) for X = L,R, the other quantities being defined in (5.7)
and the wave speed estimates are defined from (5.8) with pr = p from (4.25).

5.4 Wall boundary conditions

Let consider the case of an impermeability condition, v ·n = 0, at a wall Γw ⊂ ∂Ωh
which is commonly imposed through the use of mirror state u+ = (ρ,−ρv>, ρE, ρe>v )>.
For elements κ adjacent to a wall, we modify (3.1) in the following way

Un+1
κ = Un

κ−
∆t(n)

|κ|

( ∑
e∈∂κ\Γw

|e|h(Un
κ,U

n
κ+
e
,ne)+

∑
e∈∂κ∩Γw

|e|hr(0,Un
κ,U

n+

κ ,ne)
)
,

where h corresponds to one of the above numerical fluxes, hr is pressure relaxation-
based flux (5.9), and the exponent + denotes the mirror state. The above scheme
still can be written as a convex combination of updates of three-point schemes
(3.2) as in (3.10), so the entropy inequality (3.11) holds.

Using the mirror state we have from (5.7) that aL = aR = a, pL = pR =
p given by (2.8), YL = YR = Y so the left and right states have the same
thermodynamics. We thus obtain hr(0,u,u+,n) = (0, 0,p?n, 0, 0)> with p? =
p + av · n, and a =

√
γ(Y)ρp + (γ(Y) + 1)ρ(v · n)+. This boundary condition

is consistent with the impermeability condition and enforces the pressure through
the characteristic associated to the eigenvalue v · n + c(Y, et).

Note that from theorem 4.3 the entropy flux vanishes at wall boundary in-
terfaces since by Q(u,u+,n) = Z

(
P(u),P(u+),n

)
= η(u)v · n evaluated at

Wr
(
0;P(u),P(u+),n

)
for which v · n = u? = 0. Assuming either compactly

supported solutions, or using ES boundary conditions from [46] at far-field bound-
aries, we end with the following global estimate on the entropy:∑

κ∈Ωh

|κ|η(Un+1
κ ) ≤

∑
κ∈Ωh

|κ|η(Un
κ) + C,

where C is a constant that depends on boundary data. Using the strict convexity
of the entropy η(u), one may use Dafermos’ argument to prove L2 stability of the
solution [12] (see e.g. [46, Th. 2.6]).

6 Numerical experiments

In this section we present numerical experiments, obtained with the CFD code
Aghora developed at ONERA [41], on problems in one and two space dimensions
in order to illustrate the performance of the schemes derived in this work. We
use γ = 1.01 × 5

3 in (5.3) to ensure the inequality in (4.4), while we set γ = 5
3
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(a) γ(Y) (b) ρ (c) u (d) p

Fig. 6.1: Convection of a material interface: results obtained with the numerical
fluxes (5.9) (REL), (5.5) (HLL), and (5.3) (GOD), on two grids with N = 100 and
N = 800 elements.

in (5.8) and increase the wave speed estimates SX=L,R by a factor 1.01 in (5.5)
and (5.9). The time step is evaluated through (3.3). For 2D simulations, we impose
the freestream values at supersonic inlets and extrapolate variables at supersonic
outlets, while we apply the impermeability boundary condition in section 5.4 at
walls. Steady computations are obtained by using local time stepping until the `2

norm of the vector of residuals has decreased by a factor 1010. Additional results
obtained for a monocomponent perfect gas with an equivalent adiabatic exponent
are also reported for the sake of comparison: we use either the Roe solver [42]
with entropy fix [26] (referred to as ROE-PG), or the HLL solver [27] with the
two-rarefaction approximation [51, Ch. 9] for computing the wave speeds (referred
to as HLL-PG).

6.1 One-dimensional shock-tube problems

We first consider the convection of a material interface separating air (ρL =
3.607655, Y1,L = 1 − Y2,L = 1, ev1,L = 1.8070291, γ1 = 1.4) in thermal dise-
quilibrium from helium (ρR = 0.5, Y1,R = 1 − Y2,R = 0, ev1,R = 0, γ2 = 5

3 ) in a
flow with pressure pL = pR = 1 and velocity uL = uR = 1. Results are shown in
fig. 6.1 and highlight convergence of the three schemes with some more smearing
of the contact by the HLL scheme as expected.

We now consider a shock tube problem adapted from [45] initially separating
regions with large pressure and temperature ratios: uL = uR = 0, pL = 100pR =
100bars, and TL = 30TR = 9000K. We consider air in thermal equilibrium with
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(a) ρ (b) u (c) p
pR

(d) T
TR

Fig. 6.2: Shock tube filled with air: results at time t = 1.5×10−4 obtained with the
numerical fluxes (5.9) (REL), (5.5) (HLL), (5.3) (GOD), and the Roe solver for a
monocomponent perfect gas (ROE-PG), on two grids with N = 100 and N = 800
elements.

a 5 species model with a uniform composition YN2
= 0.7543, YO2

= 0.2283,
YNO = 0.01026, YN = 6.5 × 10−7, and YO = 0.00713. We neglect the enthalpies
of formation so the gas is a perfect gas with an equivalent adiabatic exponent
γ(Y) = 1.402 and we compare our results to the Roe solver for a perfect gas with
an adiabatic exponent of 1.402 (ROE-PG). Results in fig. 6.2 show that all solvers
provide similar results and converge to the entropy weak solution. We stress that
in spite of the crude assumption γ > 5

3 in the numerical fluxes from section 5 they
offer similar accuracy as the Roe solver.

6.2 Hypersonic flow over a sphere

We now consider the 2D hypersonic flow over a 1
4 inch diameter sphere with the

freestream conditions of Lobb’s experiments [35]. The freestream Mach number
is M∞ = u∞

c∞
= 15.3 with ρ∞ = 7.83 × 10−3kg/m3 and T∞ = 293K. The up-

stream flow is made of nitrogen and oxigen with YN2
= 0.79, YO2

= 0.21 which
are uniform in the flow domain since we do not consider chemical reactions or
molecular relaxation. The freestream vibration temperatures are taken at T∞ for
both species. A symmetry condition is imposed at the bottom boundary.

Figure 6.4 displays the contours of Mach number and translation-rotation
temperature on two different grids with the three different schemes. Neglecting
chemical reactions overestimates the shock distance to the sphere and prevents
comparison to Lobb’s experiments. As we do not consider chemical reactions or
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(a) (b)

Fig. 6.3: Exemples of meshes for the 2D simulations: hypersonic flows over (a) a
sphere with N = 100 elements, (b) a double cone with N = 749 elements.

molecular relaxation, a partial validation of the current results can be obtained
by comparison with simulations of an equivalent monocomponent perfect gas with
adiabatic exponent γ = 1.4. The simulations of the considered gas mixture using
the numerical flux (5.5) and of the equivalent perfect gas using the HLL flux for
polytropic gas dynamics (HLL-PG) are reported in fig. 6.5. As expected, while
some differences can be identified for underresolved simulations, the results are
almost perfectly overlapping for sufficiently fine resolutions.

We are however interested in comparing results obtained with the different
schemes and analysing their convergence under grid refinement. To this end we
compare the convergence of shock distance from the sphere in fig. 6.6. We use grids
with N = 20× 20, 40× 40, 80× 80 and 160× 160 elements for the simulation (see
fig. 6.3), while the reference distance xref is evaluated with the Godunov numerical
flux on a fine mesh with N = 320 × 320. The results confirm convergence of the
shock position and highlight close values obtained with the three different schemes.

6.3 Hypersonic flow over a double cone

We finally consider the 2D hypersonic flow over a double cone with angles 25 and
55 deg. adapted from [15,32] and made of molecular and atomic nitrogen with mass
fractions YN2

= 0.99, YN = 0.01. The freestream Mach number is M∞ = 11.3 with
ρ∞ = 1.34× 10−3kg/m3 and T∞ = 303K. The freestream vibration temperature
of the molecular nitrogen is taken at TN2∞ = 3085K. We use a series of five
unstructured grids (see fig. 6.3). A symmetry condition is imposed at the bottom
boundary.

Contours of Mach number and translation-rotation temperature obtained with
the three different schemes on the second finest mesh are displayed in fig. 6.7.
Compared to references [15,32], we observe a strong overestimation of the distance
of the bow shock to the wall due to the absence of chemical reactions. However,
the results with the three schemes are in good agreement. As done for the previous
configuration, we compare in fig. 6.8 the obtained solution to that corresponding to
the use of an equivalent perfect gas with adiabatic exponent γ = 1.4032 (HLL-PG)
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Fig. 6.4: Hypersonic flow over Lobb’s sphere: Mach number M and temperature
T contours obtained with the numerical fluxes (5.9) (top row), (5.5) (middle row),
(5.3) (bottom row), on two grids with N = 20× 20 and 160× 160 elements.

on a fine grid. Once again a very good agreement is obtained. Finally in fig. 6.9,
we display the pressure distribution at the wall obtained with the schemes on the
five grids. The first pressure peak corresponds to the reflexion of the separated
shock at the wall, while the second peak corresponds to rapid pressure variations
due to the geometrical transition between the cones. We observe convergence of
the solution as the mesh is refined and a close agreement between results from the
three schemes on the finest grids.

7 Concluding remarks

We introduce a general framework to design finite volume schemes for the com-
pressible multicomponent Euler equations in thermal nonequilibrium. The frame-
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Fig. 6.5: Hypersonic flow over Lobb’s sphere: Mach number M and temperature T
contours obtained with the HLL numerical flux (5.5) (red), and the HLL-PG flux
considering an equivalent monocomponent perfect gas (black) on two grids with
N = 20× 20 and 160× 160 elements.

Fig. 6.6: Hypersonic flow over Lobb’s sphere: convergence of the shock position in
the symmetry plane y = 0 under mesh refinement.

work allows to define a numerical scheme for its discretization from a scheme for
the discretization of the monocomponent polytropic gas dynamics through a sim-
ple linear formula. Moreover, the numerical scheme inherits the properties of the
scheme for the polytropic gas dynamics under a subcharacteristic condition on the
adiabatic exponent of the polytropic gas.

This framework relies on the extension of the relaxation of energy for the gas
dynamics equations [11] to the model under consideration in this work. Three
different numerical fluxes are constructed with this framework the polytropic Go-
dunov exact Riemann solver [23], HLL numerical flux [27], and pressure-based
relaxation solver [3]. They are assessed through numerical simulations of flows in
one and two space dimensions with discontinuous solutions and complex wave in-
teractions. The results highlight robustness, nonlinear stability, convergence of the
present method, as well as similar performances of the three schemes.

Other numerical fluxes may be deduced from this framework. We also stress
that the numerical fluxes designed in this framework can be used as building blocks
in the general framework of conservative elementwise flux differencing schemes
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(a) REL (b) HLL (c) GOD

Fig. 6.7: Hypersonic flow over a double cone: Mach number M (top row) and
temperature T (bottom row) contours obtained with the numerical fluxes (5.9)
(REL), (5.5) (HLL), and (5.3) (GOD) on a fine grid with N = 52, 237 elements.

Fig. 6.8: Hypersonic flow over a double cone: Mach number M (left) and tem-
perature T (right) contours obtained with the numerical flux (5.5) (red), and the
HLL-PG flux considering an equivalent perfect gas (black) on a fine grid with
N = 52, 237 elements.



FV methods for nonequilibrium multicomponent flows 27

(a) REL (b) HLL (c) GOD

Fig. 6.9: Hypersonic flow over a double cone: pressure distribution at the wall
obtained with the numerical fluxes (5.9) (REL), (5.5) (HLL), and (5.3) (GOD) on
a series of five grids with N elements.

[17] and future work will consider the use of discontinuous Galerkin schemes for
the discretization of the compressible multicomponent Euler equations in thermal
nonequilibrium.

A Convexity of the entropy for the energy relaxation system

The object of this appendix is the proof of lemma 4.2. Without loss of generality we define ns
in the mapping (4.12) as the one corresponding to one species that satisfies rns = minα rα.
To prove that ρζ(w) is convex it is sufficient to prove that ζ(Y, τ, er, es, ev) is convex from
lemma 4.1 and, from (4.14), we rewrite ζ as

ζ(Y, τ, er, es, ev) = Cvt (Y) ln
(
(γ − γ(Y))Cvt (Y)

)
+

ns∑
α=1

rαYα lnYα +
r(Y)
γ−1

ln
γ(Y)−1
γ−γ(Y)

− r(Y) ln τ − r(Y)
γ−1

ln er −
(γ−γ(Y))Cvt (Y)

γ−1
ln es + l(Y)− sv(Y, ev),

with l(Y) = −
∑
α YαC

t
vα

lnCtvα − Cvt (Y) ln(γ − 1), with Yns = 1−
∑
α<ns

Yα, linear in Y.

Introducing the short notations ∂kr ≡ ∂Ykr(Y), ∂kCvt ≡ ∂YkCvt (Y), and ∂kγ ≡ ∂Ykγ(Y),
the Hessian Hζ(Y, τ, er, es, ev) of ζ reads



(
∂2klζ − δk,lψk

ev
2

k sv
′′
k (evk)

Yk

)
kl

(−∂kr
τ

)
k

( −∂kr
(γ−1)er

)
k

( ∂kr−(γ−1)∂kCvt
(γ−1)es

)
k

( evksv′′k (evk)

Yk

)
1≤k≤nd(−∂lr

τ

)
l

r(Y)

τ2
0 0 0( −∂lr

(γ−1)er

)
l

0
r(Y)

(γ−1)e2r
0 0( ∂lr−(γ−1)∂lCvt

(γ−1)es

)
l

0 0
γ−γ(Y)
γ−1

Cvt (Y)

e2s
0( evl sv′′l (evl )

Yl

)
1≤l≤nd

0 0 0
(
− δk,l

sv
′′
k (evk)

Yk

)
k,l


(A.1)

with δk,l the Kronecker symbol and ψk = 1 if 1 ≤ k ≤ nd and ψk = 0 if nd < k < ns. Unless
stated otherwise, the subscripts are in the range 1 ≤ k, l < ns, k corresponding to a row index
and l corresponding to a column index. Likewise

∂kr
(2.9)
= Cvt (Y)∂kγ + (γ(Y)− 1)∂kCvt , (A.2)
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and

∂2klζ =
rns
Yns

+
rk

Yk
δk,l +

∂kCvt∂lCvt
Cvt (Y)

+
Cvt (Y)∂kγ∂lγ(

γ − γ(Y)
)(
γ(Y)− 1

) , 1 ≤ k, l < ns. (A.3)

We now prove thatHζ is symmetric positive definite. Let x = (x1≤i<ns , xτ , xr, xs, x
v
1≤i≤nd

)>

in Rns+nd+3 non zero and use the notation
∑
≡
∑ns−1
k=1 , we get

ns−1∑
k,l=1

xk∂
2
klζxl

(A.3)
=

rns (
∑
xk)2

Yns
+
∑ rkx

2
k

Yk
+

(
∑
xk∂kCvt )

2

Cvt (Y)
+

Cvt (Y)(
∑
xk∂kγ)2(

γ − γ(Y)
)(
γ(Y)− 1

)
(A.2)

=
rns (

∑
xk)2

Yns
+
∑ rkx

2
k

Yk
+

(
∑
xk∂kCvt )

2

Cvt (Y)

+

(∑
xk
(
∂kr − (γ(Y)− 1)∂kCvt

))2(
γ − γ(Y)

)
r(Y)

=
rns (

∑
xk)2

Yns
+
∑ rkx

2
k

Yk
+

(
∑
xk∂kCvt )

2

Cvt (Y)

+
(
∑
xk∂kr)

2(
γ − γ(Y)

)
r(Y)

+
(γ(Y)− 1)(

∑
xk∂kCvt )

2(
γ − γ(Y)

)
Cvt (Y)

−
2(
∑
xk∂kr)(

∑
xk∂kCvt )(

γ − γ(Y)
)
Cvt (Y)

(A.2)
=

rns (
∑
xk)2

Yns
+
∑ rkx

2
k

Yk
+

(
∑
xk∂kr)

2

(γ − 1)r(Y)
+

(
∑
xk(γ − 1)∂kCvt − xk∂kr)2(
γ − γ(Y)

)
(γ − 1)Cvt (Y)

,

(A.4)

so using (A.1) and (A.4) we obtain

x>Hζx =
rns (

∑
xk)2

Yns
+
∑ rkx

2
k

Yk
+
(

1 +
1

γ − 1
− 1
) (
∑
xk∂kr)

2

r(Y)
−

nd∑
k=1

sv
′′
k (evk)

Yk
(xvk − e

v
kxk)2

+
(
∑
xk(γ − 1)∂kCvt − xk∂kr)2(
γ − γ(Y)

)
(γ − 1)Cvt (Y)

+ r(Y)
x2τ
τ2

+
r(Y)

γ − 1

x2r
e2r

+

(
γ − γ(Y)

)
Cvt (Y)

γ − 1

x2s
e2s
− 2

∑
xk

(
∂kr

xτ

τ
+

∂kr

γ − 1

xr

er
+

(γ − 1)∂kCvt − ∂kr
γ − 1

xs

es

)
= Q(x) +

(∑
xk∂kr − r(Y)xτ

τ

)2
r(Y)

+

(∑
xk∂kr − r(Y)xr

er

)2
(γ − 1)r(Y)

+

(∑
xk((γ − 1)∂kCvt − ∂kr)− (γ − γ(Y))Cvt (Y)xs

es

)2
(γ − γ(Y))(γ − 1)Cvt (Y)

−
nd∑
k=1

sv
′′
k (evk)

Yk
(xvk − e

v
kxk)2,

with sv
′′
k (evk) = − rk

ev
k
(ev
k
+rkϑ

v
k
)
< 0, so the four last terms are non-negative, and

Q(x) =
rns (

∑
xk)2

Yns
+
∑ rkx

2
k

Yk
−

(
∑
xk∂kr)

2

r(Y)
.

Using (4.13), we get ∂kr = rk−rns ≥ 0 since by assumption rns = minα rα, so we rewrite∑ rkx
2
k

Yk
=
∑ rns + ∂kr

Yk
x2k =

∑ rns
Yk

x2k +
∑ rns +

∑
l Yl∂lr

r(Y)

∂kr

Yk
x2k,

and hence obtain

Q(x) =
rns (

∑
xk)2

Yns
+
∑ rns

Yk

(
1 +

∂kr

r(Y)

)
x2k +

ns−1∑
k,l=1

∂kr∂lr

r(Y)

( Yl
Yk
x2k − xkxl

)

=
rns (

∑
xk)2

Yns
+
∑ rns

Yk

(
1 +

∂kr

r(Y)

)
x2k +

1

2

ns−1∑
k,l=1

∂kr∂lrYkYl

r(Y)

(xk
Yk
−
xl

Yl

)2
,
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which is positive, providing that the x1≤k<ns are not all zero since ∂kr ≥ 0, so x>Hζx > 0
and we conclude that ζ(Y, τ, er, es, ev) is strictly convex. ut
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16. Einfeldt, B., Munz, C., Roe, P., Sjögreen, B.: On Godunov-type methods near low densities.
J. Comput. Phys. 92(2), 273 – 295 (1991)

17. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for
nonlinear conservation laws: Finite domains. J. Comput. Phys. 252, 518–557 (2013)

18. Flament, C., Prud’homme, R.: Entropy and entropy production in thermal and chemical
non-equilibrium flows. J. Non-Equilib. Thermodyn. 18(4), 295–310 (1993). DOI https:
//doi.org/10.1515/jnet.1993.18.4.295. URL https://www.degruyter.com/view/journals/
jnet/18/4/article-p295.xml

19. Gaitonde, D.: An Assessment of CFD for Prediction of 2-D and 3-D High-Speed Flows
(2012). DOI 10.2514/6.2010-1284

20. Giovangigli, V.: Multicomponent Flow Modeling. Modeling and Simulation in Science,
Engineering and Technology. Birkhäuser Basel (1999)
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