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Abstract

We are interested in the long-time behaviour of approximate solutions to anisotropic and
heterogeneous linear advection-diffusion equations in the framework of hybrid finite volume (HFV)
methods on general polygonal/polyhedral meshes. We consider two linear methods, as well as a
new, nonlinear scheme, for which we prove the existence and the positivity of discrete solutions.
We show that the discrete solutions to the three schemes converge exponentially fast in time
towards the associated discrete steady-states. To illustrate our theoretical findings, we present
some numerical simulations assessing long-time behaviour and positivity. We also compare the
accuracy of the schemes on some numerical tests in the stationary case.
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1 Introduction

We are interested in the numerical approximation of linear advection-diffusion equations on bounded
domains. These equations constitute the main building block in the modelling of more complex
problems stemming from physics (e.g., porous media flows [3], or corrosion models [2]), biology, or
electronics (semi-conductor devices modelling [48]). Thus, designing reliable numerical schemes to
approximate their solutions is a pre-requisite before discretising more complex models. Our aim here
is the preservation of some key physical properties of these equations at the discrete level, on a large
variety of meshes.

Let Ω be an open, bounded, connected polytopal subset of Rd, d ∈ {2, 3}, with boundary ∂Ω
divided into two disjoint open subsets ΓD and ΓN , in such a way that ∂Ω = ΓD ∪ ΓN . We consider
the following problem: Find u : R+ × Ω→ R solution to

∂tu− div(Λ(∇u+ u∇φ)) = f in R+ × Ω,

u = gD on R+ × ΓD,

Λ(∇u+ u∇φ) · n = gN on R+ × ΓN ,

u(0, ·) = uin in Ω,

(1.1)
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where n is the unit normal vector to ∂Ω pointing outward Ω, and the data satisfy:

• Λ ∈ L∞(Ω;Rd×d) is a symmetric and uniformly elliptic diffusion tensor: there exist λ[, λ] with
0 < λ[ ≤ λ] <∞ such that, for a.e. x in Ω, ξ ·Λ(x)ξ ≥ λ[|ξ|2 and |Λ(x)ξ| ≤ λ]|ξ| for all ξ ∈ Rd;

• φ ∈ C1(Ω) is a regular potential from which derives the advection field V φ := −Λ∇φ, assumed
to satisfy V φ ∈ H(div; Ω);

• f ∈ L2(Ω) is a source term;

• gD ∈ H
1
2 (ΓD) is a Dirichlet datum, assumed to be the trace on ΓD of uD ∈ H1(Ω) satisfying

‖uD‖H1(Ω) ≤ C‖gD‖H1/2(ΓD) for a given C > 0;

• gN ∈ L2(ΓN ) is a Neumann datum;

• uin ∈ L2(Ω) is an initial datum.

When |ΓD| = 0, we assume that the compatibility condition
∫

Ω f +
∫
∂Ω g

N = 0 holds true, and we
denote by M the initial mass such that M =

∫
Ω u

in, which is known to be preserved along time:∫
Ω u(t) = M for almost every t > 0. For further use, we also let in that case uM := M

|Ω| ∈ R, and we

refer to this quantity as the mass lifting. Advection-diffusion models of the form (1.1) enjoy certain
structural properties. First, when the data f , gD, gN , and uin are positive, then the solution u is
also positive. Second, the asymptotics t → ∞, the so-called long-time behaviour of the solutions,
is well understood (see [6, 15, 16, 47] for related models). Indeed, the solution u to (1.1) converges
exponentially fast when t→∞ towards the steady-state u∞, solution to the stationary problem

−div (Λ(∇u∞ + u∞∇φ)) = f in Ω,

u∞ = gD on ΓD,

Λ(∇u∞ + u∞∇φ) · n = gN on ΓN ,

(1.2)

with additional constraint
∫

Ω u
∞ = M when |ΓD| = 0. The question of the long-time behaviour has

been widely studied in the context of many-particle systems, for which the second law of thermody-
namics ensures a relaxation of the transient phenomena towards an equilibrium. From a mathematical
point of view, this evolution is strongly related to the dissipation of an entropy functional. Such a
vision based on entropy dissipation has given birth to the so-called entropy method. As highlighted
by Arnold et al. in [1], the successful use of the entropy method in kinetic theory paves the way to
extended applications on various dissipative systems. We refer the reader to the book [39] of Jüngel
for a presentation of some of these applications. In [6], Bodineau et al. proposed an entropy functional
adapted to drift-diffusion equations with non-homogeneous Dirichlet boundary conditions. A direct
adaptation of their method allows to conclude in the present case on the exponential convergence in
time of the solution to Problem (1.1) towards the solution to Problem (1.2).

Under appropriate assumptions on the data (a sufficient condition, also valid for more general
advection fields, is to assume that div V φ ≥ 0 a.e. in Ω and V φ · n ≤ 0 a.e. on ΓN ), the stationary
Problem (1.2) is coercive and its well-posedness is straightforward. It turns out that, even if such
assumptions on the data are not fulfilled, for an advection field of the form V φ = −Λ∇φ, the problem
is still coercive in the new unknown ρ∞ = u∞ eφ, so that one can conclude on well-posedness
by solving the problem in the new unknown. Concerning the evolution Problem (1.1), the same
arguments show the existence and uniqueness of a global weak solution. For general advection fields
(not necessarily deriving from a potential), we refer the reader to the results of Droniou [26] (for
mixed Dirichlet-Neumann boundary conditions), and Droniou and Vázquez [31] (for pure Neumann
boundary conditions) for detailed statements about well-posedness and regularity of the solutions.
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When it comes to numerical approximation, the accuracy of the method is not the only important
feature. In some applications (e.g., in subsurface modelling, where the mesh often results from seismic
analysis), the mesh must be taken as a datum of the problem, and the numerical method needs to
be adapted so as to handle potentially fairly general meshes. In some other applications (e.g., power
plant simulation), the preservation of the positivity of the solutions (or better, of the monotonicity
properties of the equation) is an important quality criterion. In yet some other applications (e.g.,
nuclear waste repository management), finally, the reliability of the simulations in very large time
proves to be crucial for sustainability purposes. The positivity and long-time behaviour of discrete
solutions have been closely studied in the context of standard two-point flux approximation (TPFA)
finite volume schemes, for isotropic diffusion (i.e., Λ = λ Id with λ : Ω→ R?+) on orthogonal meshes.
In [35], Filbet and Herda studied the long-time behaviour of a TPFA scheme for nonlinear boundary-
driven Fokker–Planck equations, adapting to the discrete setting the arguments of [6]. In [18],
Chainais-Hillairet and Herda proved on a variety of models that a whole family of TPFA schemes
(the so-called B-schemes) preserves the exponential decay towards discrete steady-states. The results
of [35] and [18] are valid for general advection fields, and a choice of data |ΓD| > 0, f = 0, gD > 0,
gN = 0, and uin ≥ 0. We also refer to [41, 19, 38, 9] for related schemes and similar issues. However,
these TPFA schemes suffer from an intrinsic limitation: the mesh needs to be Λ-orthogonal, which,
in practice, restricts their use to isotropic diffusion tensors and (standard) orthogonal meshes. In
order to overcome this limitation, several linear finite volume methods using auxiliary unknowns have
been designed (cf. [28] for a presentation of some of these schemes). As highlighted by Droniou in
[28], these methods however suffer from a lack of monotonicity, and so do not preserve the positivity
of discrete solutions. As a possible remedy, Cancès and Guichard introduced in [14] (see also the
seminal paper [13]), for a class of models encompassing (1.1) for pure Neumann boundary conditions
and a choice of data f = 0, gN = 0, and uin ≥ 0 with M > 0, a nonlinear vertex approximate gradient
(VAG) scheme, designed so as to preserve at the discrete level the positivity of the solutions and the
entropy structure of the models, for arbitrary anisotropic diffusions and general meshes. Following
the same ideas, Cancès et al. devised and analysed in [12] a (nonlinear) positivity-preserving discrete
duality finite volume (DDFV) scheme, whose discrete entropy structure and long-time behaviour
were fully studied in [11], based on the adaptation to the discrete setting of nonlinear functional
inequalities. The DDFV scheme at hand is however limited to the two-dimensional case, and its
adaptation to a three-dimensional framework seems difficult (cf. [28]). Let us also mention the
work [46] (and the references therein), in which a general framework for the convergence analysis of
positivity-preserving nonlinear cell-centred finite volume methods on general meshes is introduced.
On another level, it is known that, given adequate assumptions hold on the data, the solutions to
Problem (1.1) are regular in space (at least locally). This suggests that the use of high-order methods
shall be an interesting track in order to increase the accuracy at fixed computational cost. Recently
introduced by Di Pietro et al. in [24], hybrid high-order (HHO) methods can be seen as an arbitrary-
order generalisation of hybrid finite volume (HFV) schemes, that were introduced by Eymard et al. in
[34] as yet another way to overcome the limitations of TPFA schemes. HFV methods hinge on cell and
face unknowns (whence the vocable hybrid), and as such benefit from a unified 2D/3D formulation.
HFV methods have also been bridged to the larger family of hybrid mimetic mixed (HMM) methods
in [30]. In view of the above elements, the study of HFV methods appears to be a natural first step
in order to design structure-preserving high-order (HHO) schemes for Problem (1.1), that shall both
increase the accuracy at fixed computational burden, and preserve the key properties (positivity and
long-time behaviour) of the model at hand.

In this article, we study three different HFV schemes for Problem (1.1). The first one is the
HFV variant of the HMM family of schemes introduced and analysed in the stationary setting by
Beirão da Veiga et al. in [4, 27] (note that an arbitrary-order (HHO) generalisation of this scheme has
been proposed in [23]). It is a linear scheme, based on a discretisation of the diffusive and advective
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fluxes, that is well-posed under a coercivity condition. The second scheme is also a linear one. Its
construction is based on exponential fitting, and takes inspiration from ideas in [8] (it also shares
some features with the works [40, 42] and [35], which cover general advection fields). This scheme
is unconditionally coercive. These two linear schemes are not expected to preserve positivity, which
motivates the introduction of the third method. For pure Neumann boundary conditions, and a
choice of data f = 0, gN = 0, and uin ≥ 0 with M > 0 (see Appendix B for the case of mixed
Dirichlet-Neumann boundary conditions), we introduce a nonlinear HFV scheme, that is devised
along the lines of the nonlinear VAG and DDFV schemes of [14] and [12, 11], so as to guarantee the
positivity of discrete solutions. Our first result, stated in Theorem 1, is the existence of (positive)
solutions to this nonlinear scheme. In a second time, we investigate the long-time behaviour of the
three schemes at hand. We establish in Theorems 2, 3, and 4 the exponential decay in time of
their discrete solutions towards the associated discrete steady-states. We numerically validate our
theoretical findings on a set of test-cases and, for completeness, we also compare the accuracy of the
three schemes on stationary problems.

The article is organised as follows. In Section 2, we introduce the HFV framework (mesh, discrete
unknowns and discrete operators) on a steady variable diffusion problem. In Section 3, we introduce
the three schemes for the transient advection-diffusion problem, and we discuss their well-posedness.
In Section 4, we study the long-time behaviour of the three schemes, and prove exponential decay to
equilibrium. In Section 5, we discuss the implementation of the schemes, and provide a numerical
validation of our theoretical results, as well as a comparison of the stationary schemes in terms of
accuracy. Appendices A, B, and C finally collect some functional inequalities and the proofs of
supplementary and auxiliary results.

2 Hybrid finite volume discretisation of a variable diffusion prob-
lem

The aim of this section is to recall the HFV framework on a steady variable diffusion problem, which
corresponds to (1.2) without advection term (V φ = 0). For a detailed presentation of the method,
we refer to [34].

2.1 Mesh and discrete unknowns

The definitions and notation we adopt for the discretisation are essentially the same as in [34].
A discretisation of the (open, bounded) polytopal set Ω ⊂ Rd, d ∈ {2, 3}, is defined as a triplet
D := (M, E ,P), where:

• M (the mesh) is a partition of Ω, i.e., a finite family of nonempty disjoint (open, connected)
polytopal subsets K of Ω (the mesh cells) such that (i) for all K ∈ M, |K| > 0, and (ii)
Ω =

⋃
K∈MK.

• E (the set of faces) is a partition of the mesh skeleton
⋃
K∈M ∂K, i.e., a finite family of nonempty

disjoint (open, connected) subsets σ of Ω (the mesh faces, or mesh edges if d = 2) such that (i)
for all σ ∈ E , |σ| > 0 and there exists Hσ affine hyperplane of Rd such that σ ⊂ Hσ, and (ii)⋃
K∈M ∂K =

⋃
σ∈E σ. We assume that, for all K ∈M, there exists EK ⊂ E (the set of faces of

K) such that ∂K =
⋃
σ∈EK σ. For σ ∈ E , we let Mσ := {K ∈ M | σ ∈ EK} be the set of cells

whose σ is a face. Then, for all σ ∈ E , either Mσ = {K} for a cell K ∈ M, in which case σ is
a boundary face (σ ⊂ ∂Ω) and we note σ ∈ Eext, or Mσ = {K,L} for two cells K,L ∈ M, in
which case σ is an interface and we note σ = K|L ∈ Eint.

• P (the set of cell centres) is a finite family {xK}K∈M of points of Ω such that, for all K ∈M,
(i) xK ∈ K, and (ii) K is star-shaped with respect to xK . Moreover, we assume that the
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Euclidean (orthogonal) distance dK,σ between xK and the affine hyperplane Hσ containing σ
is positive (equivalently, the cell K is strictly star-shaped with respect to xK).

For a given discretisation D, we denote by hD > 0 the size of the discretisation (the meshsize), defined
by hD := sup

K∈M
hK where, for all K ∈ M, hK := sup

x,y∈K
|x − y| is the diameter of the cell K. For all

σ ∈ E , we let xσ ∈ σ be the barycentre of σ. Finally, for all K ∈M, and all σ ∈ EK , we let nK,σ ∈ Rd
be the unit normal vector to σ pointing outward K, and PK,σ be the (open) pyramid of base σ and
apex xK (notice that, when d = 2, PK,σ is always a triangle). Since |σ| and dK,σ are positive, we have

|PK,σ| =
|σ|dK,σ

d > 0. We depict on Figure 1 an example of discretisation. Notice that the mesh cells
are not assumed to be convex, neither xK is assumed to be the barycentre of K ∈ M. Notice that
hanging nodes are seamlessly handled with our assumptions, so that meshes with non-conforming
cells are allowed (see the orange cross in Figure 1; the cell K therein is treated as an hexagon). We

K
xK

xL

L

Ω

dK,σ

σ′ = K|K ′
σ = K|L

PL,σ

nK,σ′

xσ

K ′

hK′

Figure 1: Two-dimensional discretisation and corresponding notation.

consider the following measure of regularity for the discretisation (which is slightly stronger than the
ones advocated in [34, Eq. (4.1)] or in [29, Eq. (7.8)-(7.9)]):

θD := max

(
max

K∈M,σ∈EK

hK
dK,σ

, max
σ∈E,K∈Mσ

hd−1
K

|σ|

)
. (2.1)

Notice that θD ≥ 1, and that for all K ∈M,

hdK ≥ |K| =
∑
σ∈EK

|PK,σ| =
∑
σ∈EK

|σ|dK,σ
d

≥
∑
σ∈EK

hdK
dθ2
D

=
|EK |
dθ2
D
hdK .

Thus, the number of faces of any mesh cell is uniformly bounded:

∀K ∈M, |EK | ≤ dθ2
D. (2.2)
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Also, it is an easy matter to verify that max
σ=K|L∈Eint

max
(
dK,σ
dL,σ

,
dL,σ
dK,σ

)
≤ θ

d
d−1

D . Given F a family of

discretisations, we say that F is uniformly regular if there exists θ ≥ 1 such that for all D ∈ F ,
θD ≤ θ.

We now introduce the set of (hybrid, cell- and face-based) discrete unknowns:

V D :=
{
vD =

(
(vK)K∈M, (vσ)σ∈E

)
: vK ∈ R ∀K ∈M, vσ ∈ R ∀σ ∈ E

}
.

Given a mesh cell K ∈ M, we let V K := R × R|EK | be the restriction of V D to K, and vK =(
vK , (vσ)σ∈EK

)
∈ V K be the restriction of a generic element vD ∈ V D to K. Also, for vD ∈ V D, we

let vM : Ω→ R and vE :
⋃
K∈M ∂K → R be the piecewise constant functions such that

vM|K = vK for all K ∈M, and vE|σ = vσ for all σ ∈ E .

In what follows, for any set X ⊂ Ω, we denote by (·, ·)X the inner product in L2(X;Rl), for l ∈ {1; d}.
In particular, we have (wM, vM)Ω =

∑
K∈M

|K|wKvK and (wE , vE)∂Ω =
∑
σ∈Eext

|σ|wσvσ. For further

use, we let 1D denote the element of V D with all coordinates equal to 1. Also, given a function
f : R → R, and with a slight abuse in notation, we denote by f(vD) the element of V D whose
coordinates are the (f(vK))K∈M and the (f(vσ))σ∈E . Finally, we let the product wD × vD denote
the element of V D whose i-th coordinate is the product of the i-th coordinates of wD and vD.

When considering mixed Dirichlet-Neumann boundary conditions, we assume that the discreti-
sation D is compliant with the partition ∂Ω = ΓD ∪ ΓN of the boundary of the domain, in the
sense that the set Eext can be split into two (necessarily disjoint) subsets EDext :=

{
σ ∈ Eext | σ ⊂ ΓD

}
and ENext :=

{
σ ∈ Eext | σ ⊂ ΓN

}
such that Eext = EDext ∪ ENext. Notice that as soon as |ΓD| > 0,

|EDext| ≥ 1. We define the following subspace of V D, enforcing strongly a homogeneous Dirichlet
boundary condition on ΓD:

V D
D,0 :=

{
vD ∈ V D : vσ = 0 ∀σ ∈ EDext

}
.

In view of the upcoming analysis, we define a discrete counterpart of the H1 seminorm. Locally to
any cell K ∈ M, we let, for any vK ∈ V K , |vK |21,K :=

∑
σ∈EK

|σ|
dK,σ

(vK − vσ)2. At the global level,

for any vD ∈ V D, we let

|vD|1,D :=

√∑
K∈M

|vK |21,K .

Notice that | · |1,D does not define a norm on V D, but if |vD|1,D = 0, then there is c ∈ R such that
vD = c 1D (vD is constant). Thus, | · |1,D defines a norm on the space V D

D,0 as soon as |ΓD| > 0, as
well as on the space of zero-mass vectors

V N
D,0 :=

{
vD ∈ V D :

∫
Ω
vM = 0

}
.

For further use, and to allow for a seamless treatment of pure Neumann boundary conditions, we
introduce the notation V D,0, to denote either V N

D,0 whenever |ΓD| = 0, or V D
D,0 otherwise.

2.2 Discrete problem

The HFV method hinges on the definition of a discrete gradient operator ∇D, that maps any element
vD ∈ V D to a piecewise constant Rd-valued function on the pyramidal submesh of M formed by all
the PK,σ’s, for K ∈M and σ ∈ EK . More precisely, for all K ∈M, and all σ ∈ EK ,

∇DvD|K := ∇KvK with ∇KvK |PK,σ := ∇K,σvK = GKvK + SK,σvK ∈ Rd,
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where GKvK is the consistent part of the gradient given by

GKvK =
1

|K|
∑
σ′∈EK

|σ′|(vσ′ − vK)nK,σ′ =
1

|K|
∑
σ′∈EK

|σ′|vσ′nK,σ′ ,

and SK,σvK is a stabilisation given, for some free parameter η > 0, by

SK,σvK =
η

dK,σ

(
vσ − vK −GKvK · (xσ − xK)

)
nK,σ. (2.3)

Remark 1 (Choice of η). There are two specific values of the stabilisation parameter η > 0 for which
one recovers known numerical schemes from the literature:

(i) for η =
√
d, one recovers the original HFV scheme of [34], that coincides with the TPFA scheme

on super-admissible meshes (see [34, Lemma 2.10]);

(ii) for η = d, one recovers the Discrete Geometric Approach (DGA) of [21], later bridged to the
non-conforming finite element setting in [25].

The influence of the value of η on the numerical results has been investigated in [7] for anisotropic
diffusion problems. It is shown that the above two values are appropriate choices (neither under- nor
over-penalised).

Let us consider the stationary problem (1.2), without advection term (V φ = 0). Our aim is to
write an HFV discretisation of this steady variable diffusion problem. Locally to any cell K ∈ M,
we introduce the discrete bilinear form aΛ

K : V K × V K → R such that, for all uK , vK ∈ V K ,

aΛ
K(uK , vK) :=

∑
σ∈EK

|PK,σ|∇K,σvK · ΛK,σ∇K,σuK = (Λ∇KuK ,∇KvK)K , (2.4)

where we set ΛK,σ := 1
|PK,σ |

∫
PK,σ

Λ. At the global level, we let aΛ
D : V D × V D → R be the discrete

bilinear form such that, for all uD, vD ∈ V D,

aΛ
D(uD, vD) :=

∑
K∈M

aΛ
K(uK , vK) = (Λ∇DuD,∇DvD)Ω.

The discrete HFV problem then reads: Find uzD ∈ V D,0 such that

aΛ
D(uzD, vD) = (f, vM)Ω + (gN , vE)ΓN − aΛ

D(ulD, vD) ∀vD ∈ V D,0, (2.5)

where ulD ∈ V D is equal

(i) either, when |ΓD| > 0, to the HFV interpolate uDD of the known lifting uD of the Dirichlet datum
gD (satisfying |uDD |1,D ≤ Cl,ΓD‖gD‖H1/2(ΓD), where Cl,ΓD > 0 only depends on the discretisation

D through θD),

(ii) or, when |ΓD| = 0, to uMD := uM1D, where we recall that uM = M
|Ω| is the mass lifting (remark

that aΛ
D(uMD , vD) = 0 for all vD ∈ V D),

and the approximation of the solution to (1.2), denoted u∞D ∈ V D, is finally defined as

u∞D := uzD + ulD. (2.6)

Let us note that the superscript z stands for “zero”, while l stands for “lifting”.
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Problem (2.5) defines a finite volume method, in the sense that it can be equivalently rewritten
under a conservative form, with local mass balance, flux equilibration at interfaces, and boundary
conditions. For all K ∈ M, and all σ ∈ EK , the normal diffusive flux −

∫
σ Λ∇u∞ · nK,σ is approxi-

mated by the following numerical flux:

FΛ
K,σ(uK) =

∑
σ′∈EK

Aσσ
′

K (uK − uσ′), (2.7)

where the Aσσ
′

K are defined by

Aσσ
′

K :=
∑

σ′′∈EK

|PK,σ′′ | yσ
′′σ
K · ΛK,σ′′yσ

′′σ′
K , (2.8)

and the yσσ
′

K ∈ Rd only depend on the geometry of the discretisation D (see, for example, [34,
Eq. (2.22)] for an exact definition with η =

√
d). For all K ∈ M, one can express the local discrete

bilinear form aΛ
K in terms of the local fluxes

(
FΛ
K,σ

)
σ∈EK

: for all uK , vK ∈ V K ,

aΛ
K(uK , vK) =

∑
σ∈EK

FΛ
K,σ(uK)(vK − vσ). (2.9)

As for the VAG [14] and DDFV [12, 11] schemes, we can also express the local discrete bilinear form
in a different way, which will be useful in the sequel:

aΛ
K(uK , vK) = δKvK · AKδKuK , (2.10)

where, for all vK ∈ V K , δKvK ∈ R|EK | is defined by

δKvK := (vK − vσ)σ∈EK ,

and AK ∈ R|EK |×|EK | is the symmetric (because Λ is) positive semi-definite matrix whose entries are
the Aσσ

′
K , that can actually be proved to be nonsingular (cf. Lemma 4).

2.3 Well-posedness

As for the continuous case, the well-posedness of HFV methods for diffusion problems relies on a
coercivity argument. Let K ∈ M, and reason locally. By definition (2.4) of the local discrete
bilinear form aΛ

K , and from the bounds on the diffusion coefficient, we have λ[‖∇KvK‖2L2(K;Rd)
≤

aΛ
K(vK , vK) ≤ λ]‖∇KvK‖2L2(K;Rd)

for all vK ∈ V K . Furthermore, the following comparison result

holds (cf. [29, Lemma 13.11, p = 2] and its proof): there exist α[, α] with 0 < α[ ≤ α] < ∞, only
depending on Ω, d, and θD such that α[|vK |21,K ≤ ‖∇KvK‖2L2(K;Rd)

≤ α]|vK |21,K for all vK ∈ V K .

Combining both estimates, we infer a local coercivity and boundedness result:

∀vK ∈ V K , λ[α[|vK |21,K ≤ aΛ
K(vK , vK) ≤ λ]α]|vK |21,K . (2.11)

Summing over K ∈M, we get the following global estimates:

∀vD ∈ V D, λ[α[|vD|21,D ≤ aΛ
D(vD, vD) ≤ λ]α]|vD|21,D. (2.12)

The well-posedness of Problem (2.5)-(2.6) follows.

Proposition 1 (Well-posedness). There exists a unique solution u∞D ∈ V D to Problem (2.5)-(2.6),

which satisfies |u∞D |1,D ≤ C
(
‖f‖L2(Ω) + ‖gN‖L2(ΓN ) + ‖gD‖H1/2(ΓD)

)
, for some C > 0 depending on

the data, and on the discretisation D only through θD.
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Proof. The existence/uniqueness of uzD ∈ V D,0 solution to (2.5) (and in turn of u∞D = uzD + ulD) is
a direct consequence of the coercivity estimate (2.12), and of the fact that | · |1,D defines a norm on
V D,0 (recall that V D,0 denotes either V N

D,0 when |ΓD| = 0, or V D
D,0 otherwise). To prove the bound

on |u∞D |1,D, we use the triangle inequality:

|u∞D |1,D ≤ |uzD|1,D + |ulD|1,D.

To estimate the first term, we test Problem (2.5) with vD = uzD ∈ V D,0, we use (2.12), and we apply
the Cauchy–Schwarz inequality. We get

λ[α[|uzD|21,D ≤ ‖f‖L2(Ω)‖uzM‖L2(Ω) + ‖gN‖L2(ΓN )‖uzE‖L2(ΓN ) + λ]α] |ulD|1,D|uzD|1,D.

Using a discrete Poincaré inequality, recalled in Proposition 7, and applied to uzD ∈ V D,0, as well as
the discrete trace inequality of [29, Eq. (B.58), p = 2] combined with a discrete Poincaré inequality,
we obtain

|uzD|1,D ≤ C1(‖f‖L2(Ω) + ‖gN‖L2(ΓN )) + C2|ulD|1,D.

It remains to estimate the norm of the lifting |ulD|1,D:

(i) if |ΓD| > 0, one has ulD = uDD (interpolate of the lifting uD), therefore |ulD|1,D ≤ Cl,ΓD‖gD‖H1/2(ΓD);

(ii) if |ΓD| = 0, since ulD = uMD = uM1D, the lifting is constant and |ulD|1,D = 0.

3 Definition of the schemes and well-posedness

In this section, we introduce and study the well-posedness of three HFV schemes, two linear ones
and a nonlinear scheme, for the time-dependent advection-diffusion problem (1.1). For the first two
(linear) schemes, we introduce and study in the first place their steady versions on Problem (1.2).
For the nonlinear scheme, by anticipation of the asymptotic analysis of Section 4.3, we restrict our
study to the case where the (positive) solution to Problem (1.1) converges in long time towards the
so-called thermal equilibrium (see (3.11)). However, as it will be verified numerically in Section 5.4
in the stationary setting, our scheme is applicable to more general data. We consider a fixed spatial
discretisation D of Ω, which satisfies the conditions detailed in Section 2.1, and a fixed time step
∆t > 0 for the time discretisation.

Remark 2 (Linear schemes and nonhomogeneous data). The linearity of Problem (1.1) implies that,
(i) if |ΓD| > 0, the shifted variable uz := u − uD (recall that uD is a known lifting of the Dirichlet
datum gD) satisfies an advection-diffusion equation with zero Dirichlet boundary condition on ΓD,
and (ii) otherwise, the shifted variable uz := u−uM (recall that uM = M

|Ω| is the mass lifting) satisfies

a (compatible) pure Neumann advection-diffusion equation with zero-mass constraint. Thus, without
loss of generality, we can restrict our study to the homogeneous case gD = 0 or M = 0. For an
example (in the steady, purely diffusive case) of how to handle at the discrete level nonhomogeneous
data gD or M , we refer the reader to Problem (2.5)-(2.6) and Proposition 1 above. Notice that such
manipulations are possible for linear schemes only.

3.1 Standard HFV scheme

We present here the HFV variant of the HMM family of schemes introduced in [4, 27].
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3.1.1 Stationary problem

We consider Problem (1.2) with gD = 0 when |ΓD| > 0, or M =
∫

Ω u
∞ = 0 otherwise (cf. Remark 2).

Locally to any cell K ∈ M, we introduce the discrete bilinear form aK : V K × V K → R such that,
for all uK , vK ∈ V K ,

aK(uK , vK) := aΛ
K(uK , vK) + aφK(uK , vK), (3.1)

where the diffusive part aΛ
K is defined by (2.4) (and rewrites as (2.9) in terms of the local diffusive

fluxes FΛ
K,σ(uK) given by (2.7)), and the advective part aφK is defined by

aφK(uK , vK) :=
∑
σ∈EK

F φK,σ(uK)(vK − vσ), (3.2)

with F φK,σ(uK) an approximation of the normal advective flux
∫
σ u
∞V φ ·nK,σ. In order to define the

numerical advective fluxes, we need to introduce some data. We set V φ
K,σ := 1

|σ|
∫
σ V

φ · nK,σ, and

µσ := min
(
1,minK∈Mσ Sp(ΛK)

)
> 0 where ΛK := 1

|K|
∫
K Λ. We could as well use the finer local

Péclet number introduced in [20], namely consider the value µσ := min
(
1,minK∈Mσ(nK,σ ·ΛKnK,σ)

)
,

but we choose here to stick to the formula advocated in [4, 27]. We also consider a Lipschitz continuous
function A : R→ R, satisfying the following conditions:

A(0) = 0,
∀s ∈ R, A(−s)−A(s) = s,
∀s ∈ R, A(−s) +A(s) ≥ 0.

(3.3)

Notice that A = B − 1, where B is the classical function used for the B-schemes introduced in [17].
In the B-schemes framework, advection and diffusion are simultaneously treated in the definition
of the numerical flux. Here, as in [4], only the advective part is considered, whence the fact that
A = B − 1. Standard choices of A functions include:

• the centred discretisation: A : s 7→ − s
2 ;

• the upwind discretisation: A : s 7→ max(−s, 0);

• the Scharfetter–Gummel discretisation: A : s 7→
{

s
es−1 − 1 if s 6= 0

0 if s = 0
.

We eventually define, for all K ∈M, and all σ ∈ EK , the numerical advective flux: for all uK ∈ V K ,

F φK,σ(uK) := |σ| µσ
dK,σ

(
A

(
−
dK,σ
µσ

V φ
K,σ

)
uK −A

(
dK,σ
µσ

V φ
K,σ

)
uσ

)
. (3.4)

Letting aD : V D × V D → R be the (global) discrete bilinear form such that, for all uD, vD ∈ V D,

aD(uD, vD) :=
∑
K∈M

aK(uK , vK), (3.5)

and recalling that V D,0 denotes either V N
D,0 whenever |ΓD| = 0, or V D

D,0 otherwise, the discrete
problem reads: Find u∞D ∈ V D,0 such that

aD(u∞D , vD) = (f, vM)Ω + (gN , vE)ΓN ∀vD ∈ V D,0. (3.6)

Remark that, for pure Neumann boundary conditions with M 6= 0, as opposed to the purely diffusive
case of Problem (2.5), aD(uMD , vD) 6= 0 a priori for vD ∈ V N

D,0. The well-posedness of (3.6) is discussed
in the following proposition.
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Proposition 2 (Well-posedness). Let A be a Lipschitz continuous function satisfying (3.3). If the
advection field V φ satisfies the two following conditions:

(i) almost everywhere on ΓN , V φ · n ≤ 0, (3.7a)

(ii) there exists β <
2λ[α[
C2
P

such that, almost everywhere in Ω, div V φ ≥ −β, (3.7b)

where λ[α[ is the coercivity constant of (2.12), and CP is either equal to CPW if |ΓD| = 0 or to
CP,ΓD otherwise (where CPW , CP,ΓD are the Poincaré constants of Proposition 7), then there exists

κ > 0, only depending on Λ, β, Ω, d, ΓD, and θD such that

∀vD ∈ V D,0, aD(vD, vD) ≥ κ|vD|21,D. (3.8)

Consequently, there exists a unique solution u∞D ∈ V D,0 to Problem (3.6). Moreover, one has

|u∞D |1,D ≤ C
(
‖f‖L2(Ω) + ‖gN‖L2(ΓN )

)
, for some C > 0 depending on the data, and on the dis-

cretisation D only through θD.

Proof. Let K ∈ M, and σ ∈ EK . Let sK,σ :=
dK,σ
µσ

V φ
K,σ and ζK,σ := A(−sK,σ) + A(sK,σ). According

to (3.3), ζK,σ ≥ 0, and we have A(−sK,σ) =
sK,σ+ζK,σ

2 and −A(sK,σ) =
sK,σ−ζK,σ

2 . Consequently, for
all vK ∈ V K ,(

A(−sK,σ)vK −A(sK,σ)vσ
)
(vK − vσ) =

1

2
sK,σ(v2

K − v2
σ) +

1

2
ζK,σ(vK − vσ)2 ≥ 1

2
sK,σ(v2

K − v2
σ).

Recalling (3.2) and (3.4), we infer that, for all vD ∈ V D,

aφD(vD, vD) :=
∑
K∈M

aφK(vK , vK) ≥ 1

2

∑
K∈M

∑
σ∈EK

|σ|V φ
K,σ(v2

K − v2
σ).

Since, for all K ∈ M,
∑

σ∈EK |σ|V
φ
K,σ =

∫
K div V φ and, for all σ ∈ Eint,

∑
K∈Mσ

|σ|V φ
K,σ = 0, we

have, for all vD ∈ V D,0,

aφD(vD, vD) ≥ 1

2
(div V φ, v2

M)Ω −
1

2
(V φ · n, v2

E)ΓN . (3.9)

Combining (3.1) with (3.5), (3.7) with (3.9), and the coercivity result (2.12), we deduce that, for all
vD ∈ V D,0,

aD(vD, vD) ≥ λ[α[|vD|21,D −
β

2
‖vM‖2L2(Ω). (3.10)

Using a Poincaré inequality from Proposition 7, one has, for all vD ∈ V D,0,

aD(vD, vD) ≥
(
λ[α[ −

βC2
P

2

)
|vD|21,D,

therefore the estimate (3.8) holds for κ = λ[α[ −
βC2

P
2 , which is positive according to (3.7b). The

existence/uniqueness of u∞D ∈ V D,0 solution to (3.6) is a direct consequence of the coercivity esti-
mate (3.8), and of the fact that | · |1,D defines a norm on V D,0. The continuous dependency of u∞D
with respect to the data can then be proved as in the proof of Proposition 1.

Remark 3 (Assumptions on the advection field). The well-posedness result of Proposition 2 does
not use the fact that V φ is related to the gradient of a potential, and thus extends to general advection
fields. Even better, under a smallness assumption on the meshsize hD, it is actually possible to prove
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well-posedness for Problem (3.6) without assumptions (3.7) on the advection field. The starting point
to prove so is a discrete G̊arding inequality like (3.10), which can be easily obtained in full generality
from (3.9) (in the case |ΓN | > 0, it is obtained from the multiplicative discrete trace inequality of [29,
Eq. (B.57), p = 2] and holds for hD sufficiently small). The proof then proceeds by contradiction,
assuming that a discrete inf-sup condition does not hold in the limit hD → 0, and using a compactness
argument (cf. [29, Lemmas B.27-B.33, p = 2]), together with the unconditional well-posedness of the
continuous problem (1.2) (cf. [26]).

Remark 4 (Choice of A). The choice of the function A is of great importance. In particular, the
Scharfetter–Gummel approximation is rather classical in various contexts. First introduced in [45]
in the framework of TPFA schemes, this approximation of the flux ensures the preservation of the
so-called thermal (or Gibbs) equilibrium at the discrete level, which has the form:

u∞th = ρ̄ e−φ (3.11)

where ρ̄ ∈ R+ is prescribed by the data. For instance, for pure Neumann boundary conditions, f = 0,
and gN = 0, we have ρ̄ = M/

∫
Ω e−φ. The discrete solution obtained with the TPFA scheme is

then the interpolate of u∞th . This property is no more true for the hybrid scheme and we observe
numerically that, for ρ̄ 6= 0, the discrete solution u∞D ∈ V D is in general not the HFV interpolate of
u∞th . However, as explained in [27, pp. 553-554], provided the parameters (µσ)σ∈E are well-chosen, the
Scharfetter–Gummel flux ensures an automatic upwinding to the scheme in the advection-dominated
regime (whereas it degenerates towards the centred scheme in the diffusion-dominated regime).

3.1.2 Evolution problem

We consider Problem (1.1) with gD = 0 when |ΓD| > 0, or M =
∫

Ω u
in = 0 otherwise (see Remark 2).

We use a backward Euler discretisation in time, and the HFV discretisation introduced in Section 3.1.1
in space. The discrete problem reads: Find

(
unD ∈ V D,0

)
n≥1

such that
1

∆t
(unM − un−1

M , vM)Ω + aD(unD, vD) = (f, vM)Ω + (gN , vE)ΓN ∀vD ∈ V D,0,

u0
K =

1

|K|

∫
K
uin ∀K ∈M,

(3.12a)

(3.12b)

where aD is defined by (3.1) and (3.5). Since aD is coercive, the bilinear form in (3.12a) is also
coercive, so the scheme (3.12) is well-posed under the assumptions (3.7) on the advection field, as a
straightforward consequence of Proposition 2.

Remark 5 (Pure Neumann case). When considering pure Neumann boundary conditions, and con-
trary to the stationary case, one can actually seek at each time step for a solution to Problem (3.12)
in V D, i.e., it is not necessary to seek for a solution in the constrained space V N

D,0. Indeed, test-

ing (3.12a) by 1D ∈ V D, and using that
∫

Ω f+
∫
∂Ω g

N = 0 and aD(unD, 1D) = 0, one can automatically

infer that
∫

Ω u
n
M =

∫
Ω u

n−1
M for all n ≥ 1, that is,

∫
Ω u

n
M =

∫
Ω u

0
M =

∫
Ω u

in = M = 0 for all n ≥ 1,

i.e., unD ∈ V
N
D,0 for all n ∈ N?.

3.2 Exponential fitting HFV scheme

Following ideas in [8] (cf. also [40, 42] and [35] for general advection fields) in the context of finite
element methods, we aim to design an unconditionally (i.e., without the need for assumptions (3.7) on
the advection field V φ) coercive scheme for the advection-diffusion problem in the HFV framework.
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3.2.1 Stationary problem

We consider Problem (1.2). The strategy advocated in [8] is based on the following observation: at
the continuous level, if u∞ is a solution to (1.2), letting

ω := e−φ, (3.13)

we can introduce the Slotboom change of variable ρ∞ := u∞

ω (see [43, 44]). Then, noticing that
∇u∞+u∞∇φ = ω∇ρ∞− ρ∞ω∇φ+ ρ∞ω∇φ = ω∇ρ∞, the Slotboom variable ρ∞ equivalently solves
the following pure diffusion problem:

−div (ωΛ∇ρ∞) = f in Ω,

ρ∞ = ω−1gD on ΓD,

ωΛ∇ρ∞ · n = gN on ΓN ,

(3.14)

with additional constraint
∫

Ω ωρ
∞ = M when |ΓD| = 0. Following Remark 2 (with ρ instead of u,

ρD lifting of ω−1gD instead of uD lifting of gD, and ρM := M∫
Ω ω
∈ R instead of uM ), we consider

Problem (3.14) with ρ∞ = 0 on ΓD when |ΓD| > 0, or
∫

Ω ωρ
∞ = 0 otherwise (which is equivalent

to consider Problem (1.2) with gD = 0 or M =
∫

Ω u
∞ = 0). Since φ is continuous on Ω, there exist

ω[, ω] with 0 < ω[ ≤ ω] < ∞, only depending on φ and Ω, such that ω[ ≤ ω(x) ≤ ω] for all x ∈ Ω.
We then denote by L2

ω(Ω) the ω-weighted L2 space on Ω.
At the discrete level, instead of discretising (1.2), we approximate the solution to (3.14). For any

K ∈M, we let aωK : V K × V K → R be the discrete bilinear form such that, for all ρ
K
, vK ∈ V K ,

aωK(ρ
K
, vK) := (ωΛ∇KρK ,∇KvK)K , (3.15)

and, classically, we let aωD : V D×V D → R be the corresponding global discrete bilinear form obtained
by sum of the local contributions. To account for the change of variable, we let V ω

D,0 be the space

V D
D,0 when |ΓD| > 0, and the space

{
vD ∈ V D :

∫
Ω ωvM = 0

}
otherwise. The discrete problem reads:

Find ρ∞D ∈ V
ω
D,0 such that

aωD(ρ∞D , vD) = (f, vM)Ω + (gN , vE)ΓN ∀vD ∈ V ω
D,0. (3.16)

Remark that, for pure Neumann boundary conditions with M 6= 0, as for Problem (2.5), letting
ρMD := ρM1D, aωD(ρMD , vD) = 0 for all vD ∈ V D. Letting ωD ∈ V D be the HFV interpolate of ω, i.e.,

ωK :=
1

|K|

∫
K
ω ∀K ∈M, ωσ :=

1

|σ|

∫
σ
ω ∀σ ∈ E , (3.17)

the approximation of the solution to Problem (1.2) is finally defined as the product u∞D := ωD × ρ∞D ,
that is

u∞K = ωKρ
∞
K ∀K ∈M, u∞σ = ωσρ

∞
σ ∀σ ∈ E . (3.18)

Remark that u∞D ∈ V D,0. Reasoning as in Section 2.3, one can easily prove that, for all vD ∈ V D,

aωD(vD, vD) ≥ ω[λ[α[ |vD|21,D. (3.19)

This estimate is instrumental to infer well-posedness for Problem (3.16)-(3.18).

Proposition 3 (Well-posedness). There exists a unique solution u∞D ∈ V D,0 to Problem (3.16)-

(3.18), which satisfies |u∞D |1,D ≤ C
(
‖f‖L2(Ω) + ‖gN‖L2(ΓN )

)
, for some C > 0 depending on the data,

and on the discretisation D only through θD.
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Proof. The existence/uniqueness of ρ∞D ∈ V
ω
D,0 solution to (3.16) (and in turn of u∞D ∈ V D,0) is a

direct consequence of the coercivity estimate (3.19), and of the fact that | · |1,D clearly defines a norm
on V ω

D,0. To prove the bound on |u∞D |1,D, we use the fact that u∞D = ωD × ρ∞D . For all K ∈M,

|u∞K |21,K =
∑
σ∈EK

|σ|
dK,σ

(ωKρ
∞
K − ωσρ∞σ )2 ≤ 2

∑
σ∈EK

|σ|
dK,σ

(
ω2
σ(ρ∞K − ρ∞σ )2 + (ρ∞K )2(ωK − ωσ)2

)
.

By definition (3.17) of ωD, and local stability of the HFV interpolant (cf. [29, Proposition B.7, p = 2]
and its proof), we infer

|u∞K |21,K ≤ 2ω2
] |ρ∞K |

2
1,K + 2 (ρ∞K )2C2

sta‖∇ω‖2L2(K;Rd),

with Csta > 0 only depending on d and θD. Since ∇ω = −ω∇φ, φ ∈ C1(Ω), and ω > 0, we have

‖∇ω‖2L2(K;Rd) ≤ ω] sup
x∈Ω

|∇φ(x)|2|K|ωK .

Summing over K ∈M then yields

|u∞D |21,D ≤ 2ω2
] |ρ∞D |

2
1,D + 2C2

sta ω] sup
x∈Ω

|∇φ(x)|2‖ρ∞M‖2L2
ω(Ω).

When |ΓD| > 0, ‖ρ∞M‖2L2
ω(Ω) ≤ ω]‖ρ∞M‖2L2(Ω) ≤ ω]C

2
P,ΓD
|ρ∞D |

2
1,D, where we have applied the dis-

crete Poincaré inequality (A.2) to ρ∞D ∈ V D
D,0. Otherwise, ρ∞D ∈ V ω

D,0 satisfies
∫

Ω ωρ
∞
M = 0,

and one can use [11, Lemma 5.2] to infer that ‖ρ∞M‖L2
ω(Ω) ≤ 2‖ρ∞M −

1
|Ω|
∫

Ω ρ
∞
M‖L2

ω(Ω), and fi-

nally get that ‖ρ∞M‖L2
ω(Ω) ≤ 2

√
ω]CPW |ρ∞D |1,D applying the discrete Poincaré inequality (A.1) to

ρ∞D −
1
|Ω|
∫

Ω ρ
∞
M1D ∈ V N

D,0. In any case, we end up bounding |u∞D |1,D by |ρ∞D |1,D, with multiplica-
tive constant depending on the data, and on the discretisation D only through θD. The rest of
the proof consists in bounding |ρ∞D |1,D, and proceeds as in the proof of Proposition 1, using that

‖ρ∞M‖L2(Ω) ≤ 2
√

ω]
ω[
CPW |ρ∞D |1,D when |ΓD| = 0.

In the sequel, the HFV scheme (3.16)-(3.18) will be referred to as “exponential fitting”. Notice that
no assumption on V φ is needed to ensure its coercivity.

Remark 6 (Preservation of the thermal equilibrium). As for the exponential fitting scheme of [8], the
method (3.16)-(3.18) preserves the thermal equilibrium, in the sense that u∞D = ρ̄ ωD when u∞ = u∞th
(see (3.11)). This property is analogous to what holds true for the TPFA Scharfetter–Gummel scheme.

3.2.2 Evolution problem

We consider Problem (1.1). Following the previous strategy, letting ρ := u
ω , one can show that ρ

equivalently solves the following transient pure diffusion problem:
ω∂tρ− div(ωΛ∇ρ) = f in R+ × Ω,

ρ = ω−1gD on R+ × ΓD,

ωΛ∇ρ · n = gN on R+ × ΓN ,

ρ(0, ·) = ρin in Ω,

(3.20)

where ρin := uin

ω . Following Remark 2, we consider Problem (3.20) with ρ = 0 on ΓD when |ΓD| > 0,
or
∫

Ω ωρ
in = 0 otherwise (which is equivalent to consider Problem (1.1) with gD = 0 or M =

∫
Ω u

in =
0).
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At the discrete level, instead of discretising (1.1), we approximate the solution to (3.20). We use
a backward Euler discretisation in time, and the HFV discretisation introduced in Section 3.2.1 in
space. The discrete problem reads: Find

(
ρnD ∈ V

ω
D,0
)
n≥1

such that
1

∆t
(ρnM − ρn−1

M , ωMvM)Ω + aωD(ρnD, vD) = (f, vM)Ω + (gN , vE)ΓN ∀vD ∈ V ω
D,0,

ρ0
K =

1

ωK |K|

∫
K
uin ∀K ∈M,

(3.21a)

(3.21b)

where aωD is defined (locally) by (3.15), and the approximation unD ∈ V D,0 of the solution to Prob-
lem (1.1) is finally defined as unD := ωD × ρnD, i.e., according to (3.18) (with superscript n instead of
∞). Once again, because of the coercivity of aωD, the scheme (3.21) is unconditionally well-posed, as
a straightforward consequence of Proposition 3.

Remark 7 (Pure Neumann case). When considering pure Neumann boundary conditions, as for the
standard HFV scheme (see Remark 5), one can seek for a solution to Problem (3.21) in V D.

3.3 Nonlinear HFV scheme

We are interested in the evolution problem (1.1). We restrict our study to the pure Neumann case
(|ΓD| = 0), and to the choice of data f = 0, gN = 0, and uin ≥ 0 with M =

∫
Ω u

in > 0 (see
Appendix B for the case of mixed Dirichlet-Neumann thermal equilibrium boundary conditions).
Under these assumptions, it is known that the solution u to Problem (1.1) is strictly positive on
R?+ × Ω. Furthermore, in long time, u(t) converges towards the thermal equilibrium. Indeed, we
easily verify that the function u∞ = ρM e−φ, where we recall that ρM = M∫

Ω e−φ
> 0 (cf. Section 3.2.1),

solves the steady problem (1.2) with same data. Since u > 0 on R?+ × Ω, we can rewrite the flux
J = −Λ(∇u+ u∇φ) under the nonlinear form

J = −uΛ∇
(

log(u) + φ
)

= −uΛ∇ log
( u

u∞

)
.

At the continuous level, introducing this nonlinearity enables to highlight the following entropy/dissipation
structure of the model at hand: testing the equation against log

(
u
u∞

)
, we get

d

dt
E(t) + D(t) = 0, (3.22)

where

E(t) :=

∫
Ω
u∞Φ1

(
u(t)

u∞

)
and D(t) :=

∫
Ω
u(t) Λ∇ log

(
u(t)

u∞

)
· ∇ log

(
u(t)

u∞

)
, (3.23)

with Φ1(s) = s log(s)− s+ 1 for all s > 0. Since Φ1 ≥ 0, the relative entropy E(t) is a non-negative
quantity (as well as the relative dissipation D(t)). The entropy/dissipation structure (3.22)-(3.23)
is instrumental to prove the exponential convergence in time of the solution u(t) to Problem (1.1)
towards the equilibrium u∞. From the above nonlinear expression of the flux J , we build a nonlinear
hybrid discretisation of the problem, leading to a scheme designed along the same principles as the
nonlinear VAG and DDFV schemes of [14] and [12, 11]. This scheme is devised so as to ensure the
positivity of discrete solutions, as well as to preserve at the discrete level the entropy/dissipation
structure (and the long-time behaviour) of the model. The choice of designing a nonlinear HFV
scheme is driven by the prospect of the design of hybrid high-order (HHO) schemes which could have
similar features.
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3.3.1 Definition of the scheme and key properties of discrete solutions

In the sequel, a vector of discrete unknowns vD ∈ V D will be called positive if and only if, for all
K ∈ M and all σ ∈ E , vK > 0 and vσ > 0. Recall the definition (3.13) of ω = e−φ, as well as the
definition (3.17) of the HFV interpolate ωD ∈ V D of ω. Remark that ωD is positive. If uD ∈ V D is
positive, one can then define wD as the element of V D such that

wK := log

(
uK
ωK

)
∀K ∈M, wσ := log

(
uσ
ωσ

)
∀σ ∈ E . (3.24)

In what follows, to emphasise the dependency of wD upon uD, we sometimes write wD(uD). Locally
to any cell K ∈M, we define an approximation of

(u, v) 7→ −
∫
K
J · ∇v =

∫
K
uΛ∇ log

( u

u∞

)
· ∇v

under the form

TK(uK , wK , vK) :=

∫
K
rK(uK) Λ∇KwK · ∇KvK ,

for all uK ∈ V K positive and all vK ∈ V K , where rK :
(
V K

)?
+
→ R?+ is a local reconstruction

operator. Since rK(uK) is a (positive) constant on K, we have

TK(uK , wK , vK) = rK(uK)aΛ
K

(
wK , vK

)
, (3.25)

where aΛ
K is defined by (2.4). Following (2.10), one can equivalently reformulate (3.25) using the

local matrix AK defined by (2.8):

TK(uK , wK , vK) = rK(uK) δKvK · AKδKwK . (3.26)

As already pointed out in the analysis of the nonlinear DDFV scheme of [12, 11], the definition
of the local reconstruction operator is crucial to guarantee the existence of solutions and a good
long-time behaviour to the scheme. The most natural choice in the HFV context would obviously be
rK(uK) = uK , however it turns out that such a reconstruction embeds too few information on uK
to conclude, as already suggested in [10]. Therefore, we use a richer reconstruction, described below,
which embeds information from both the local cell and face unknowns. For uK ∈ V K positive, we
let

rK(uK) := f|EK |

((
m(uK , uσ)

)
σ∈EK

)
, (3.27)

with m : (R?+)2 → R?+ and, for k ≥ 1 integer, fk : (R?+)k → R?+, such that

m is non-decreasing with respect to both its variables, (3.28a)

m(x, x) = x for all x ∈ R?+ and m(y, x) = m(x, y) for all (x, y) ∈ (R?+)2, (3.28b)

m(λx, λy) = λm(x, y) for all λ > 0 and all (x, y) ∈ (R?+)2, (3.28c)

y − x
log(y)− log(x)

≤ m(x, y) ≤ max(x, y) for all (x, y) ∈ (R?+)2, x 6= y, (3.28d)

and

fk(x1, . . . , xk) =
1

k

k∑
i=1

xi or fk(x1, . . . , xk) = max(x1, . . . , xk). (3.29)

Note that, for all (x, y) ∈ (R?+)2, one has

y − x
log(y)− log(x)

≤
(√

x+
√
y

2

)2

≤ x+ y

2
≤ max(x, y),
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and each expression of the previous sequence is a mean function m satisfying the properties (3.28).
Heuristically, rK(uK) computes an average of the unknowns attached to the cell K, especially it
contains information about all the local face unknowns. As far as the properties (3.28)-(3.29) are
concerned, they will be instrumental to prove Lemma 2 and Proposition 6 below. As now standard,
we finally let TD be such that, for all uD ∈ V D positive, and all vD ∈ V D,

TD(uD, wD, vD) :=
∑
K∈M

TK(uK , wK , vK), (3.30)

where the local contributions TK are defined by (3.25).
Using a backward Euler discretisation in time, and the HFV discretisation we have just introduced

in space, our discrete problem reads: Find
(
unD ∈ V D

)
n≥1

such that
1

∆t
(unM − un−1

M , vM)Ω + TD(unD, wD(unD), vD) = 0 ∀vD ∈ V D,

u0
K =

1

|K|

∫
K
uin ∀K ∈M.

(3.31a)

(3.31b)

Notice that if (unD)n≥1 solves Problem (3.31), then, necessarily, unD is positive for all n ≥ 1. Therefore,
in the sequel, we will speak about the positive solutions to (3.31). Notice also that u0

M may vanish
in some cells of the mesh, since we only impose that uin ≥ 0 (but u0

M cannot be identically zero in
Ω since M > 0). Notice finally that u0

E needs not be defined, as the scheme only uses u0
M.

Testing (3.31a) with vD = 1D, and remarking that TD(unD, wD(unD), 1D) = 0 for all n ≥ 1, we
immediately infer the following discrete mass conservation property.

Proposition 4 (Mass conservation). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (3.31), then

∀n ∈ N?,
∫

Ω
unM =

∫
Ω
u0
M =

∫
Ω
uin = M.

Following Proposition 4, a discrete steady-state u∞D ∈ V D of (3.31) shall satisfy

TD(u∞D , wD(u∞D ), vD) = 0 ∀vD ∈ V D, (3.32)

and
∫

Ω u
∞
M = M . Letting w∞D := wD(u∞D ), and testing (3.32) with vD = w∞D , by (3.25) and (3.30),

since rK(u∞K ) > 0 for all K ∈M, we necessarily have aΛ
D(w∞D , w

∞
D ) = 0, which yields |w∞D |1,D = 0 by

the coercivity property (2.12). Hence, w∞D = c 1D for some constant c ∈ R, and since
∫

Ω u
∞
M = M ,

by (3.24), we necessarily have ec = ρM , that is c = log(ρM ) and w∞D = log(ρM )1D. As a consequence,
again by (3.24), u∞D = ρMωD, i.e., u∞D is the HFV interpolate of u∞th . Thus, just like the exponential
fitting scheme (cf. Remark 6), the nonlinear scheme preserves the thermal equilibrium. We notice
that wD, first defined by (3.24), can actually be modified up to an additive constant without any
impact on the scheme (3.31). Hence, we can redefine wD as

wK := log

(
uK
u∞K

)
∀K ∈M, wσ := log

(
uσ
u∞σ

)
∀σ ∈ E . (3.33)

Another important consequence of the fact that u∞D is the HFV interpolate of u∞th is the following.

Letting u∞[ := Mω[
|Ω|ω] > 0 and u∞] :=

Mω]
|Ω|ω[

> 0 (recall that ω[ and ω] only depend on φ and Ω), we

have u∞[ ≤ u
∞
th ≤ u∞] , but we also have that

u∞[ 1D ≤ u∞D ≤ u∞] 1D, (3.34)

where the inequalities shall be understood coordinate-wise. In other words, the continuous bounds
on the steady-state are transferred to the discrete level.
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Given a (positive) solution
(
unD ∈ V D

)
n≥1

to (3.31), we define the following discrete versions of

the relative entropy and dissipation introduced in (3.23): for all n ≥ 1,

En :=

∫
Ω
u∞MΦ1

(
unM
u∞M

)
and Dn := TD

(
unD, w

n
D, w

n
D
)
, (3.35)

where we let wnD := wD(unD), and we recall that Φ1(s) = s log(s) − s + 1 for all s > 0. Notice that
En ≥ 0 for all n ≥ 1 since Φ1 ≥ 0. For further use, we extend the function Φ1 by continuity to
0, letting Φ1(0) = 1. We can then define, in case there exists K ∈ M such that u0

K = 0, E0 ≥ 0
according to (3.35). As far as Dn is concerned, by (3.25) and (3.30), for all n ≥ 1, we have

Dn =
∑
K∈M

rK(unK)aΛ
K(wnK , w

n
K) ≥ 0.

We can now establish the following discrete counterpart of (3.22).

Proposition 5 (Entropy dissipation). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (3.31), then

∀n ∈ N,
En+1 − En

∆t
+ Dn+1 ≤ 0. (3.36)

Proof. Let n ∈ N. By the expression (3.35) of the discrete relative entropy, and the convexity of Φ1,
we have

En+1 − En ≤
∑
K∈M

|K|u∞KΦ′1

(
un+1
K

u∞K

)(
un+1
K − unK
u∞K

)
.

Thus, by (3.33), we get

En+1 − En ≤
∫

Ω

(
un+1
M − unM

)
log

(
un+1
M
u∞M

)
= (un+1

M − unM, wn+1
M )Ω.

By (3.31a) and (3.35), we finally infer

En+1 − En ≤ −∆t TD(un+1
D , wn+1

D , wn+1
D ) = −∆tDn+1,

which yields (3.36).

We finally state the main result of Section 3.3, about the existence of (positive) solutions to the
nonlinear scheme (3.31). The proof of this result is the subject of the next subsection.

Theorem 1 (Existence of positive solutions). Let uin ∈ L2(Ω) be a non-negative function such
that

∫
Ω u

in = M > 0. There exists at least one positive solution
(
unD ∈ V D)n≥1 to the nonlinear

scheme (3.31). Moreover, there exists ε > 0, depending on Λ, φ, uin, M , Ω, d, ∆t, and D such that

∀n ≥ 1, unK ≥ ε ∀K ∈M and unσ ≥ ε ∀σ ∈ E . (3.37)

The uniform-in-time positivity result (3.37) on discrete solutions is the equivalent in the HFV context
of [14, Lemma 3.7] and [12, Lemma 3.5] obtained, respectively, in the VAG and DDFV contexts.
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3.3.2 Existence of discrete solutions

The existence of discrete solutions to the nonlinear scheme (3.31) is proved in two steps. First,
we introduce a regularised scheme, for which we prove the existence of solutions by a fixed-point
argument, inspired from the proof of existence in [5]. Then, we prove that sequences of regularised
solutions satisfy uniform a priori bounds, which allows us to pass to the limit in the regularisation
parameter. Notice that our proof of existence uses the same estimates, but follows a quite different
path than the ones in the VAG [14] and DDFV [12] contexts, in which the proof is based on the
topological degree, together with a monotonicity argument. Henceforth, we reason in the wD variable,
and we recall that uD = u∞D × exp(wD) according to (3.33). The advantage of doing so is that we
can seek for solutions wD in the whole space V D, with bijective correspondence with solutions uD
that are automatically positive. Recalling the definition (3.35) of the discrete relative entropy and
dissipation, and using (3.30) combined with (3.26), we let, for all wD ∈ V D,

E(wM) :=
∑
K∈M

|K|u∞KΦ1(ewK ), D(wD) :=
∑
K∈M

rK
(
u∞K × exp(wK)

)
δKwK · AKδKwK , (3.38)

in such a way that En = E
(
wM(unM)

)
and Dn = D

(
wD(unD)

)
for all n ≥ 1. Using the fact that

Φ1(0) = 1, we extend the definition of E(wM) to the case where some wK ’s are equal to −∞.
Before proceeding with the proof of Theorem 1, we state two preliminary lemmas. The first one,

that can be found, e.g., in [32, Section 9.1], is a corollary of Brouwer’s fixed-point theorem. This
result is instrumental to show the existence of solutions to the regularised scheme.

Lemma 1. Let N ∈ N?, and let P : RN → RN be a continuous vector field. Assume that there is
r > 0 such that

P (x) · x ≥ 0 if |x| = r.

Then, there exists a point x0 ∈ RN such that P (x0) = 0 and |x0| ≤ r.

The second lemma, whose proof is postponed until Appendix C.1, establishes sufficient boundedness
conditions on the discrete mass and (relative) dissipation so that a priori bounds hold for vectors of
discrete unknowns. This result is instrumental to show that sequences of regularised solutions satisfy
(uniform) a priori bounds.

Lemma 2. Let wD ∈ V D, and assume that there exist C] > 0, and M] ≥M[ > 0 such that

M[ ≤
∑
K∈M

|K|u∞K ewK ≤M] and D(wD) ≤ C]. (3.39)

Then, there exists C > 0, depending on Λ, u∞[ , u∞] , M[, M], C], Ω, d, and D such that

|wK | ≤ C ∀K ∈M and |wσ| ≤ C ∀σ ∈ E .

We can now proceed with the proof of Theorem 1. Let us first define the following inner product
and corresponding norm on the space V D: for all zD, vD ∈ V D,

〈zD, vD〉 :=
∑
K∈M

zKvK +
∑
σ∈E

zσvσ and ‖vD‖ :=
√
〈vD, vD〉.

Letting N := |M|+|E|, and identifying V D to RN , the inner product 〈·, ·〉 is nothing but the standard
inner product on RN . For all K ∈M, and all σ ∈ EK , we let, for uK ∈ V K positive,

Fnl
K,σ(uK) := rK(uK)

∑
σ′∈EK

Aσσ
′

K

(
log

(
uK
u∞K

)
− log

(
uσ′

u∞σ′

))
, (3.40)
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where the Aσσ
′

K are defined by (2.8). Combining (3.25) and (3.33) with (2.9) and (2.7), there holds
that TK(uK , wK , vK) =

∑
σ∈EK F

nl
K,σ(uK)(vK − vσ) for all vK ∈ V K . In what follows, we let n ∈ N?

and un−1
M ≥ 0 be given. We assume that Mn−1 :=

∫
Ω u

n−1
M > 0 and that un−1

M > 0 if n > 1. We also

assume that E(wn−1
M ) > 0. If E(wn−1

M ) = 0 (which is equivalent to un−1
M = u∞M), then necessarily,

by (3.36), unD = u∞D uniquely solves (3.31a). Letting, for any uD ∈ V D positive, GnD(uD) be the
element of V D such that

GnK(uD) := |K|
uK − un−1

K

∆t
+
∑
σ∈EK

Fnl
K,σ(uK) ∀K ∈M, (3.41a)

Gnσ (uD) := −
(
Fnl
K,σ(uK) + Fnl

L,σ(uL)
)

∀σ = K | L ∈ Eint, (3.41b)

Gnσ (uD) := −Fnl
K,σ(uK) ∀σ ∈ Eext with Mσ = {K}, (3.41c)

we infer that, for all vD ∈ V D,

1

∆t

(
uM − un−1

M , vM
)

Ω
+ TD(uD, wD(uD), vD) =

〈
GnD(uD), vD

〉
. (3.42)

Hence, a positive vector unD ∈ V D is a solution to the nonlinear equation (3.31a) if and only if
GnD(unD) = 0D. With this observation in hand, we now detail the two steps of the proof.

Step 1: Using the relation uD = u∞D × exp(wD), we define the vector field Pn,µD : V D → V D such
that, for all wD ∈ V D,

Pn,µD (wD) := GnD
(
u∞D × exp(wD)

)
+ µwD, (3.43)

with GnD defined by (3.41) and µ ≥ 0. Notice that, unlike GnD, the vector field Pn,µD is continuous on the

whole space V D for any µ ≥ 0. If wnD ∈ V D satisfies Pn,0D (wnD) = 0D, then letting unD := u∞D ×exp(wnD),
we have GnD(unD) = 0D, therefore unD is a (positive) solution to (3.31a). For µ > 0, the problem of
finding wn,µD ∈ V D such that Pn,µD (wn,µD ) = 0D can thus be seen as a regularisation of the original
problem. By (3.43) and (3.42), for all wD ∈ V D, we have〈

Pn,µD (wD), wD
〉

=
∑
K∈M

|K|
∆t

(
u∞K ewK −un−1

K

)
wK

+
∑
K∈M

rK
(
u∞K × exp(wK)

)
δKwK · AKδKwK + µ‖wD‖2.

(3.44)

By (3.38), we recognise in the second term of the right-hand side the quantity D(wD) ≥ 0. As far
as the first term is concerned, for n > 1, by positivity of the (un−1

K )K∈M, there exist real numbers

(wn−1
K )K∈M such that un−1

K = u∞K ew
n−1
K for all K ∈M, and since Φ1 is convex,∑

K∈M

|K|
∆t

(
u∞K ewK −un−1

K

)
wK =

∑
K∈M

|K|
∆t

u∞KwK
(

ewK − ew
n−1
K
)

≥
∑
K∈M

|K|
∆t

u∞K

(
Φ1

(
ewK

)
− Φ1

(
ew

n−1
K
))

=
E(wM)− E(wn−1

M )

∆t
,

(3.45)

where we have used the definition (3.38) of E(wM). For n = 1, now, it may happen that u0
K be zero

for some K ∈M, and then w0
K such that u0

K = u∞K ew
0
K cannot be defined. However, letting in that

case w0
K := −∞, the inequality above still holds since Φ1(0) = 1 and Φ1(es)− 1 ≤ s es for all s ∈ R.

By non-negativity of E(wM), we finally infer from (3.44) and (3.45) that〈
Pn,µD (wD), wD

〉
≥ µ‖wD‖2 −

E(wn−1
M )

∆t
,
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so that, for µ > 0, there holds
〈
Pn,µD (wD), wD

〉
≥ 0 if ‖wD‖ =

√
E(wn−1

M )
µ∆t > 0. By Lemma 1, we then

conclude about the existence of solutions to the regularised scheme. There exists wn,µD ∈ V D such
that

Pn,µD (wn,µD ) = 0D and ‖wn,µD ‖ ≤

√
E(wn−1

M )

µ∆t
. (3.46)

Step 2: Since
〈
Pn,µD (wn,µD ), wn,µD

〉
= 0, by (3.44) and (3.45), we have

E(wn,µM )

∆t
+ D(wn,µD ) + µ‖wn,µD ‖

2 ≤
E(wn−1

M )

∆t
.

The three terms on the left-hand side being non-negative, we infer that

D(wn,µD ) ≤ C], (3.47)

with C] :=
E(wn−1

M )
∆t > 0. Moreover, since

〈
Pn,µD (wn,µD ), 1D

〉
= 0, by (3.43) and (3.42), we have∑

K∈M
|K|u∞K ew

n,µ
K −Mn−1 = −µ∆t

〈
wn,µD , 1D

〉
.

Applying a Cauchy–Schwarz inequality, and recalling the bound (3.46), we obtain∣∣∣∣∣ ∑
K∈M

|K|u∞K ew
n,µ
K −Mn−1

∣∣∣∣∣ ≤ µ∆t‖1D‖‖w
n,µ
D ‖ ≤

√
µ
√
N∆tE(wn−1

M ),

so that, letting µ0 := (Mn−1)2

4N∆tE(wn−1
M )

> 0, the following holds for all 0 < µ ≤ µ0:

0 <
Mn−1

2
=: M[ ≤

∑
K∈M

|K|u∞K ew
n,µ
K ≤M] :=

3Mn−1

2
. (3.48)

By (3.48) and (3.47), we infer that wn,µD satisfies (3.39) for µ sufficiently small with constants that
are uniform in µ, so that by Lemma 2 the family (wn,µD )0<µ≤µ0 is bounded uniformly in µ. As a
consequence, by compactness, there is wnD ∈ V D such that, up to extraction, wn,µD converges towards

wnD when µ tends to zero. Since Pn,µD converges to Pn,0D as µ tends to zero, we finally infer that

Pn,0D (wnD) = 0D (also,
∑

K∈M |K|u∞K ew
n
K = Mn−1).

Conclusion: Letting unD := u∞D × exp(wnD), we have GnD(unD) = 0D, therefore unD is a (positive)
solution to (3.31a). By Propositions 4 and 5, and since D

(
wnD
)

= Dn, En is non-negative, and En is
non-increasing in n according to (3.36), we deduce that

∑
K∈M

|K|u∞K ew
n
K = M and D(wnD) ≤ E0

∆t
.

By Lemma 2 (recall also that u∞[ , u
∞
] only depend on M , φ, and Ω), there exists C > 0, depending

on Λ, φ, uin, M , Ω, d, ∆t, and D, but not on n ∈ N?, such that −C1D ≤ wnD ≤ C1D. By (3.34), we
finally infer that unD ≥ ε1D, with ε := u∞[ e−C > 0 still independent of n ∈ N?. This concludes the
proof of Theorem 1.
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4 Long-time behaviour

In this section, we analyse the long-time behaviour of the three HFV schemes we have introduced in
Section 3, thereby proving the main results of this paper.

Remark 8 (Linear schemes and nonhomogeneous data). In order to stay consistent with Section 3,
we here below state our asymptotic results of Theorems 2 and 3, which respectively concern the (linear)
standard and exponential fitting schemes, for discrete problems that feature homogeneous data (i.e.,
gD = 0 when |ΓD| > 0, or M = 0 otherwise). Nonetheless, Theorems 2 and 3 remain valid in the
general case of nonhomogeneous data (we refer to Remark 2 for the straightforward adaptation of
the schemes to this situation). Indeed, the proofs of the latter results only hinge on the fact that the
difference between the discrete transient and steady-state solutions belongs to the homogeneous space
V D,0 or V ω

D,0, which is always true. This remark does not apply, however, to the nonlinear scheme.

4.1 Asymptotic behaviour of the standard HFV scheme

We recall that u is the solution to Problem (1.1), and that u∞ is the corresponding steady-state,
solution to Problem (1.2), and we consider the following definition of the relative entropy and dissi-
pation:

E(t) :=
1

2
‖u(t)− u∞‖2L2(Ω) , D(t) :=

∫
Ω

(
Λ∇(u(t)− u∞)− (u(t)− u∞)V φ

)
· ∇(u(t)− u∞).

It can be easily verified that the following entropy/dissipation relation holds at the continuous level:

d

dt
E(t) + D(t) = 0.

It is assumed that V φ is such that D(t) ≥ C‖∇(u(t) − u∞)‖2
L2(Ω;Rd)

for some C > 0, so that D(t)

indeed defines a dissipation.
At the discrete level, recalling that

(
unD ∈ V D,0

)
n≥1

is the solution to Problem (3.12), and that

u∞D ∈ V D,0 is the corresponding steady-state, solution to Problem (3.6), we consider the following
equivalents of the relative entropy and dissipation: for all n ∈ N?,

En :=
1

2
‖unM − u∞M‖

2
L2(Ω) , Dn := aD

(
unD − u∞D , unD − u∞D

)
,

where the discrete bilinear form aD is defined by (3.1) and (3.5). The definition of the relative
entropy is seamlessly extended to the case n = 0. Our main result on the standard HFV scheme is
the following.

Theorem 2 (Asymptotic stability). Assume that the advection field V φ satisfies the conditions (3.7)
of Proposition 2, with constant β. Then, the following discrete entropy/dissipation relation holds true:

∀n ∈ N,
En+1 − En

∆t
+ Dn+1 ≤ 0. (4.1)

Furthermore, the discrete entropy decays exponentially fast in time: there is ν := 2κ
C2
P
> 0, where κ

is the constant of (3.8) (only depending on Λ, β, Ω, d, ΓD, and θD), and CP is either equal to CPW
if |ΓD| = 0 or to CP,ΓD otherwise (where CPW , CP,ΓD are the Poincaré constants of Proposition 7),
such that

∀n ∈ N, En+1 ≤ (1 + ν∆t)−1 En. (4.2)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N?,

‖unM − u∞M‖L2(Ω) ≤ (1 + ν∆t)−
n
2

∥∥u0
M − u∞M

∥∥
L2(Ω)

. (4.3)
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Proof. Let n ∈ N. One has

En+1 − En =
∑
K∈M

|K|
2

((
un+1
K − u∞K

)2 − (unK − u∞K )2
)
.

Since x 7→ x2 is convex, for all x, y ∈ R, we have y2 − x2 ≤ 2y(y − x), therefore

En+1 − En ≤
∑
K∈M

|K|
(
un+1
K − unK

)(
un+1
K − u∞K

)
=
(
un+1
M − unM, un+1

M − u∞M
)

Ω
. (4.4)

Now, testing (3.12a) with vn+1
D := un+1

D − u∞D ∈ V D,0 yields(
un+1
M − unM, vn+1

M
)

Ω
= −∆taD

(
un+1
D , vn+1

D
)

+ ∆t
(
(f, vn+1

M )Ω + (gN , vn+1
E )ΓN

)
.

By definition (3.6) of the discrete steady-state u∞D , we also have

(f, vn+1
M )Ω + (gN , vn+1

E )ΓN = aD
(
u∞D , v

n+1
D
)
,

whence, by bilinearity of aD, we infer(
un+1
M − unM, vn+1

M
)

Ω
= −∆t aD

(
un+1
D − u∞D , vn+1

D
)

= −∆tDn+1.

Combined to (4.4), this proves the entropy/dissipation relation (4.1). Now, since the advection field
V φ satisfies (3.7), we can invoke (3.8) from Proposition 2 to infer that

Dn+1 ≥ κ|un+1
D − u∞D |21,D,

where κ > 0 only depends on Λ ,β, Ω, d, ΓD, and θD. Combining this estimate with a discrete
Poincaré inequality from Proposition 7 (applied to un+1

D −u∞D ∈ V D,0), and with the definition of the
discrete (relative) entropy, yields

Dn+1 ≥ κ

C2
P

∥∥un+1
M − u∞M

∥∥2

L2(Ω)
=

2κ

C2
P

En+1,

where CP is either equal to CPW if |ΓD| = 0 or to CP,ΓD otherwise. This last inequality, combined
with the entropy/dissipation relation (4.1), implies the entropy decay (4.2). The inequality (4.3) is
then a straightforward consequence of the definition of En.

The result of Theorem 2 does not use the fact that V φ is related to the gradient of a potential, it
thus extends to general advection fields.

4.2 Asymptotic behaviour of the exponential fitting scheme

We recall that ρ = u
ω , with ω = e−φ, is the solution to Problem (3.20), and that ρ∞ is the corre-

sponding steady-state, solution to Problem (3.14). We consider the following ω-weighted definitions
of the relative entropy and dissipation:

Eω(t) :=
1

2
‖ρ(t)− ρ∞‖2L2

ω(Ω) , Dω(t) :=

∫
Ω
ωΛ∇(ρ(t)− ρ∞) · ∇(ρ(t)− ρ∞).

It can be easily verified that the following entropy/dissipation relation holds at the continuous level:

d

dt
Eω(t) + Dω(t) = 0.
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At the discrete level, let us recall that
(
ρnD ∈ V

ω
D,0
)
n≥1

is the solution to Problem (3.21). We then

set unD = ωD × ρnD with ωD defined by (3.17), in such a way that unD ∈ V D,0. Similarly, ρ∞D ∈ V
ω
D,0

is the corresponding steady-state, solution to Problem (3.16), and we set u∞D = ωD × ρ∞D ∈ V D,0.
We consider the following equivalents of the ω-weighted (relative) entropy and dissipation: for all
n ∈ N?,

Enω :=
1

2
‖ρnM − ρ∞M‖

2
L2
ω(Ω) , Dnω := aωD

(
ρnD − ρ

∞
D , ρ

n
D − ρ

∞
D

)
,

where the discrete bilinear form aωD is defined (locally) by (3.15). The definition of the relative
entropy is seamlessly extended to the case n = 0. Our main result on the exponential fitting HFV
scheme is the following, whose proof is very similar to the one of Theorem 2.

Theorem 3 (Asymptotic stability). The following discrete entropy/dissipation relation holds true:

∀n ∈ N,
En+1
ω − Enω

∆t
+ Dn+1

ω ≤ 0. (4.5)

Furthermore, the discrete entropy decays exponentially fast in time: there is νω := 2ω[λ[α[
ω]C

2
P

> 0, where

λ[α[ is the coercivity constant of (2.12) (only depending on Λ, Ω, d, and θD), (we recall that) the
bounds ω[, ω] only depend on φ and Ω, and CP is either equal to 2CPW if |ΓD| = 0 or to CP,ΓD
otherwise (where CPW , CP,ΓD are the Poincaré constants of Proposition 7), such that

∀n ∈ N, En+1
ω ≤ (1 + νω∆t)−1 Enω. (4.6)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N?,

‖unM − u∞M‖L2(Ω) ≤
√
ω]
ω[

(1 + νω∆t)−
n
2 ‖u0

M − u∞M‖L2(Ω). (4.7)

Proof. Let n ∈ N. Reasoning as in the proof of Theorem 2, we infer

En+1
ω − Enω ≤ −∆t aωD

(
ρn+1
D − ρ∞D , ρ

n+1
D − ρ∞D

)
= −∆tDn+1

ω ,

which proves (4.5). By the coercivity estimate (3.19), we have that Dn+1
ω ≥ ω[λ[α[

∣∣ρn+1
D − ρ∞D

∣∣2
1,D,

where α[ > 0 from Section 2.3 only depends on Ω, d, and θD, and ω[ > 0 only depends on φ
and Ω. Reasoning as in the proof of Proposition 3, and using a discrete Poincaré inequality from
Proposition 7 (combined with [11, Lemma 5.2] in the case |ΓD| = 0), we also infer that

‖ρn+1
M − ρ∞M‖L2

ω(Ω) ≤
√
ω]CP |ρn+1

D − ρ∞D |1,D,

where ω] > 0 only depends on φ and Ω, and CP is either equal to 2CPW if |ΓD| = 0 or to CP,ΓD
otherwise. Thus, we finally get that

Dn+1
ω ≥ 2ω[λ[α[

ω]C
2
P

En+1
ω .

Combined to (4.5), this yields (4.6). Deriving (4.7) is then straightforward.

4.3 Asymptotic behaviour of the nonlinear scheme

Recall that u > 0 is the solution to Problem (1.1) endowed with pure Neumann boundary conditions
(|ΓD| = 0), and data f = 0, gN = 0, and uin ≥ 0 with M =

∫
Ω u

in > 0 (see Appendix B for the case
of mixed Dirichlet-Neumann boundary conditions), and that u∞ > 0, solution to Problem (1.2) with
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same data, is the thermal equilibrium u∞th given by (3.11) with ρ̄ = ρM . The analysis of the nonlinear
scheme relies on the entropy/dissipation structure (3.22)-(3.23) introduced in Section 3.3. Notice
that the relative dissipation (or relative Fisher information) of (3.23) can be equivalently rewritten

D(t) =

∫
Ω
u(t)Λ∇ log

(
u(t)

u∞

)
· ∇ log

(
u(t)

u∞

)
= 4

∫
Ω
u∞Λ∇

√
u(t)

u∞
· ∇
√
u(t)

u∞
.

At the discrete level, recalling that
(
unD ∈ V D

)
n≥1

is a (positive) solution to Problem (3.31), and

that u∞D ∈ V D is the corresponding steady-state, solution to Problem (3.32), that is equal to the
HFV interpolate of u∞th , we consider the discrete entropy En and dissipation Dn defined by (3.35),
and we define a discrete counterpart of the relative dissipation written in root-form: for all n ≥ 1,

D̂n := 4
∑
K∈M

u∞K,[

∫
K

Λ∇KξnK · ∇Kξ
n
K

= 4
∑
K∈M

u∞K,[δKξ
n
K
· AKδKξnK , (4.8)

where, for all K ∈M, u∞K,[ := min

(
u∞K , min

σ∈EK
u∞σ

)
and the matrix AK is defined by (2.8), and ξnD is

the element of V D such that

ξnK :=

√
unK
u∞K

∀K ∈M, ξnσ :=

√
unσ
u∞σ

∀σ ∈ E . (4.9)

At the discrete level, and as opposed to the continuous level, the quantities Dn and D̂n are not equal,
therefore we need to compare them. The definition of u∞K,[ results from the following observation:

according to the structures of Dn and D̂n, locally, we expect to have to compare u∞K,[ with rK(unK),
which depends on unK and on the (unσ)σ∈EK .

Proposition 6 (Fisher information). There is CF > 0, only depending on Λ, Ω, d, and θD such that

∀n ≥ 1, D̂n ≤ CFDn. (4.10)

Proof. Let n ∈ N?, and K ∈M. By (C.5) from Lemma 4, we first have that

4u∞K,[ δKξ
n
K
· AKδKξnK ≤ 4u∞K,[ δKξ

n
K
· BKδKξnK , (4.11)

where the matrix BK is the diagonal matrix defined by (C.4). Since for all (x, y) ∈
(
R?+
)2

,
∫ y
x

dz√
z

=

2
(√
y −
√
x
)
, the Cauchy–Schwarz inequality yields

4
(√
y −
√
x
)2 ≤ (y − x)

(
log(y)− log(x)

)
.

By the property (3.28d) of the function m, we then get that

∀(x, y) ∈
(
R?+
)2
, 4

(√
y −
√
x
)2 ≤ m(x, y)

(
log(y)− log(x)

)2
. (4.12)

Since BK is diagonal, the combination of (4.11), (4.9), and (4.12), yields

4u∞K,[ δKξ
n
K
· AKδKξnK ≤

∑
σ∈EK

4u∞K,[B
σσ
K

(√
unK
u∞K
−

√
unσ
u∞σ

)2

≤
∑
σ∈EK

u∞K,[B
σσ
K m

(
unK
u∞K

,
unσ
u∞σ

)(
log

(
unK
u∞K

)
− log

(
unσ
u∞σ

))2

.
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By definition of u∞K,[, and monotonicity (3.28a) and homogeneity (3.28c) of m, we infer that, for all
σ ∈ EK ,

u∞K,[m

(
unK
u∞K

,
unσ
u∞σ

)
≤ u∞K,[m

(
unK
u∞K,[

,
unσ
u∞K,[

)
= m (unK , u

n
σ) .

By definition (3.29) of f|EK |, and the bound (2.2) on |EK |, we then have

max
σ∈EK

u∞K,[m

(
unK
u∞K

,
unσ
u∞σ

)
≤ max

σ∈EK
m (unK , u

n
σ) ≤ |EK |rK(unK) ≤ dθ2

D rK(unK).

We deduce that

4u∞K,[ δKξ
n
K
· AKδKξnK ≤ dθ

2
D rK(unK)

∑
σ∈EK

Bσσ
K

(
log

(
unK
u∞K

)
− log

(
unσ
u∞σ

))2

= dθ2
D rK(unK) δKw

n
K · BKδKwnK ,

where wnK ∈ V K is such that unK = u∞K × exp(wnK). Using again (C.5) from Lemma 4, we finally infer
that

4u∞K,[ δKξ
n
K
· AKδKξnK ≤ dθ

2
DCB rK(unK) δKw

n
K · AKδKwnK ,

with CB > 0 only depending on Λ, Ω, d, and θD. Summing over K ∈ M, and recalling the
definitions (4.8) of D̂n, and (3.35) of Dn, eventually yields (4.10) with CF = dθ2

DCB.

The long-time behaviour of the nonlinear HFV scheme is studied in the following result.

Theorem 4 (Asymptotic stability). Recall the discrete entropy/dissipation relation of Proposition 5.

The discrete entropy decays exponentially fast in time: there is νnl :=
4u∞
[
λ[α[

CFC
2
LS,∞

> 0, depending on Λ,

φ, M , Ω, d, and θD such that

∀n ∈ N, En+1 ≤ (1 + νnl ∆t)−1En. (4.13)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N?,

‖unM − u∞M‖L1(Ω) ≤
√

2ME0 (1 + νnl∆t)
−n

2 . (4.14)

Proof. Let n ∈ N. By definition (4.8) of D̂n, and from the coercivity estimate (2.12), we first infer
that

D̂n+1 = 4
∑
K∈M

u∞K,[a
Λ
K

(
ξn+1
K

, ξn+1
K

)
≥ 4u∞[ a

Λ
D
(
ξn+1
D , ξn+1

D

)
≥ 4u∞[ λ[α[

∣∣ξn+1
D

∣∣2
1,D,

which, combined with (4.10), implies that

Dn+1 ≥ 1

CF
D̂n+1 ≥

4u∞[ λ[α[
CF

∣∣ξn+1
D

∣∣2
1,D.

In order to compare this quantity with the entropy, we use the discrete log-Sobolev inequality (A.5)
from Proposition 9, applied to the couple (un+1

D , u∞D ) (which satisfies the mass condition owing to
Proposition 4). We get

En+1 =

∫
Ω
u∞MΦ1

(
un+1
M
u∞M

)
≤ C2

LS,∞
∣∣ξn+1
D

∣∣2
1,D,
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which, combined with the previous estimate, yields

Dn+1 ≥
4u∞[ λ[α[
CFC2

LS,∞
En+1.

Combined with (3.36) from Proposition 5, this shows (4.13). The L1-norm estimate (4.14) is then a
direct consequence of (4.13) and of the Csiszár–Kullback lemma (cf., e.g., [11, Lemma 5.6]) applied

to the probability measure µ(x) dx = u∞M(x) dx
M and to the function g =

unM
u∞M

such that
∫

Ω gdµ = 1,

which yields ‖unM − u∞M‖L1(Ω) ≤
√

2MEn for all n ≥ 1.

Remark 9 (Norms and long-time behaviour). Notice that Theorem 4 states an exponential decay in
L1-norm, whereas Theorems 2 and 3 assert a convergence in L2, and thus a convergence in Lp for
any p ∈ [1, 2]. This is reminiscent of the fact that the natural topologies for the linear and nonlinear
problems differ.

5 Numerical results

5.1 Implementation

In this section, we discuss some practical aspects concerning the implementation of the schemes
described in this paper. In all the test-cases presented below, the two-dimensional domain is taken
to be Ω = (0, 1)2. The meshes used for the numerical tests, presented on Figure 2, are the classical
Cartesian, triangular, and Kershaw meshes from the FVCA V benchmark (see [37]), as well as a tilted
hexagonal-dominant mesh (cf. [25]). These meshes have convex cells, hence we always choose xK to

(a) Cartesian mesh (b) Triangular mesh (c) Kershaw mesh (d) Tilted hexagonal mesh

Figure 2: Implementation. Coarsest meshes of each family used in the numerical tests.

be the barycentre of K ∈ M. In our implementation, we compute the meshsize as h̃D = max
K∈M

|K|
|∂K| .

Observe that h̃D/hD is framed by constants only depending on the mesh regularity. Notice also that
the Kershaw mesh family is not uniformly regular in the sense defined in Section 2.1. In practice, we
use a fixed value

√
2 < η = 1.5 < 2 of the stabilisation parameter (see Remark 1). In the sequel, we

denote by HMM the classical HFV linear scheme for advection-diffusion, and we restrict our attention
to the Scharfetter–Gummel discretisation of the flux (3.4), namely to the function A(s) = s

es−1 − 1,
extended by continuity to 0 at s = 0.

5.1.1 Linear systems and static condensation

The two linear (HMM and exponential fitting) schemes are implemented in the same way. To fix
ideas, we consider the evolution problem with pure Neumann boundary conditions, of unknown
solution uD ∈ V D. We denote by UM ∈ R|M| and UE ∈ R|E| the unknown vectors (uK)K∈M and
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(uσ)σ∈E . The linear schemes result in the following block system:(
MM MM,E
ME,M ME

)(
UM
UE

)
=

(
SM
SE

)
, (5.1)

where MM ∈ R|M|×|M|, MM,E ∈ R|M|×|E|, ME,M ∈ R|E|×|M|, ME ∈ R|E|×|E|, and SM ∈ R|M| and
SE ∈ R|E| stem from the loading term and the boundary conditions. By construction, the matrix MM
is diagonal with non-zero diagonal entries, and can therefore be inverted at a very low computational
cost. Thus, one can eliminate the cell unknowns, noticing that

UM = M−1
M (SM −MM,EUE) . (5.2)

Using this relation, one infers that UE is the solution to the following linear system:(
ME −ME,MM−1

MMM,E
)
UE = SE −ME,MM−1

MSM, (5.3)

where MD := ME − ME,MM−1
MMM,E , the so-called Schur complement of the matrix MM, is an

invertible matrix of size |E|×|E|. In practice, we solve the linear system (5.3) using an LU factorisation
algorithm, and we use the solution UE to reconstruct UM from (5.2). This method, called static
condensation, allows one to replace a system of size |M| + |E| by a system of size |E| without
additional fill-in. In the case of mixed Dirichlet-Neumann boundary conditions, the Dirichlet face
unknowns are eliminated from the global linear system.

5.1.2 Exponential fitting scheme: choice of unknown and harmonic averaging

The exponential fitting scheme can be expressed in either the u or the ρ = u eφ variable. In the ρ
variable, the resulting linear system is symmetric. One can then use, e.g., Cholesky factorisation
or a conjugate gradient method. However, the formulation in ρ is ill-conditioned. In our numerical
experiments, the ratio between the condition numbers of the linear systems in ρ and in u often
exceeds 105. Because of this, we chose and we recommend to solve the linear system in the unknown
u. Notice that solving the system in u is equivalent to right pre-condition the system in ρ with the
inverse of the diagonal matrix with entries the coordinates of the interpolate of ω = e−φ.

In order to implement the exponential fitting scheme, one needs to evaluate averages of the diffu-

sion tensor 1
|PK,σ |

∫
PK,σ

ωΛ. Observe that ω(x)/ω(xK) is of order e
hK‖∇φ‖L∞(PK,σ) in PK,σ. Therefore,

with large advection fields, the diffusion problem (3.14) becomes strongly heterogeneous. It is pointed
out in [8] that an (empirical) solution to improve robustness to this heterogeneity is to use harmonic
averages to approximate integrals of the diffusion tensor. In the numerical tests of the following
subsections, we compare the “classical” exponential fitting scheme (for which the integral is approxi-
mated by a standard - second order - quadrature) with the “harmonic” one, in which case we choose
to use the following approximation:

1

|PK,σ|

∫
PK,σ

ωΛ ≈ 3

 ∑
F∈EPK,σ

1

ω(xF )

−1

Λ(xK),

where EPK,σ denotes the set of edges of the triangle PK,σ (recall that d = 2 in our experiments), and
xF is the barycentre of F ∈ EPK,σ .

5.1.3 Nonlinear scheme and Newton’s method

The implementation of the nonlinear scheme relies on the following formulation: given un−1
D ∈ V D

positive, we want to solve the nonlinear system Gn,δtD (unD) = 0D, where Gn,δtD is defined as in (3.41)
but with a time step δt instead of ∆t. The resolution of this system relies on Newton’s method.
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First, one initialises the method with δt = ∆t, and initial guess max(un−1
D , ε1D) ∈ V D (where

the maximum is taken coordinate by coordinate), in order to avoid potential problems due to the
singularity of the log near 0. The successive linear systems to compute the residue have the same
structure as (5.1). We thus perform static condensation at each Newton iteration. As a stopping
criterion, we compare the l∞ relative norm of the residue with a threshold tol. If the method does
not converge after imax iterations, we divide the time step by 2, and we restart the resolution. When
the method converges, one can proceed with the approximation of un+1

D , with an initial time step of
min(∆t, 2δt). In practice, we use ε = 10−11, imax = 50, and tol = 10−11.

The implementation of the nonlinear scheme relies on the computation of log(ωK) and log(ωσ).
Since we have chosen xK to be the barycentre of K, we choose to approximate 1

|K|
∫
K e−φ by e−φ(xK).

Therefore, log(ωK) is computed as log(e−φ(xK)) = −φ(xK). The same holds true for log(ωσ).
In the simulations shown below, we use arithmetic means for the functions m and f|EK | of the

reconstruction rK defined by (3.27)-(3.29). For all K ∈M, and all uK ∈ V K , we thus consider

rK(uK) =
1

2

uK +
1

|EK |
∑
σ∈EK

uσ

 .

This choice is close to the one advocated in [10, Eq. (58)]. For a discussion on other choices of
reconstructions, we refer to [11, Section 6.2].

5.2 Long-time behaviour of discrete solutions

In this section, we present some numerical illustration of the long-time behaviour of discrete solutions.
We focus on a test-case from [14, 12, 11]. We consider homogeneous pure Neumann boundary
conditions (ΓD = ∅ and gN = 0), and zero loading term (f = 0). The advective potential and

diffusion tensor are set to φ(x, y) = −x and Λ =

(
lx 0
0 1

)
for lx > 0. The exact solution is given by

u(t, x, y) = C1 e−αt+
x
2 (2π cos(πx) + sin(πx)) + 2C1π ex−

1
2 ,

where C1 > 0 and α = lx

(
1

4
+ π2

)
. Note that uin vanishes on {x = 1}, but for any t > 0, u(t, ·) > 0.

The associated steady-state is

u∞(x, y) = 2C1π ex−
1
2 .

Our experiments are performed using the following values:

lx = 10−2 and C1 = 10−1.

We compute the solution on the time interval [0, Tf ], and we denote by (unD)1≤n≤Nf the corresponding
approximate solution. Note that the number of time steps Nf may differ between the linear and
nonlinear schemes, because of the adaptive time step refinement procedure used for the nonlinear
scheme.

We set Tf = 350 in order to see the complete evolution. Since the long-time behaviour of the
schemes does not depend on the size of the discretisation, we can explore the evolution using a large
time step ∆t = 10−1. We perform the numerical experiments on two Kershaw meshes (see Figure
2c) of sizes 0.02 and 0.006. In Figure 3, we depict, as a function of time, the L1 distance between unD
and u∞ (the exact steady-state) computed as∑

K∈M
|K||unK − u∞(xK)|.
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Figure 3: Long-time behaviour of discrete solutions. Comparison of the long-time behaviour
on Kershaw meshes for Tf = 350 and ∆t = 0.1.

We observe the exponential decay towards the steady-state, until some precision is reached. Note
that for the HMM scheme, some saturation occurs at precision of magnitude 10−6 and 10−7: the
scheme does not preserve the thermal equilibrium (see Remark 4). This saturation corresponds to
the accuracy of the stationary scheme (see Section 5.4), so the threshold is lower on the refined

mesh. Note that one could also consider the error measure
∑
K∈M

|K||unK − u∞K | between the discrete

solution and the discrete steady-state: this quantity decays exponentially, with a lower saturation of
magnitude 10−12, corresponding to machine precision. The other (nonlinear and exponential fitting)
schemes have the same decay rate, and the saturation occurs at machine precision. For the four
schemes, the rates of convergence are similar to the real one α. In particular, the use of harmonic
averages in the exponential fitting scheme does not have any impact on the long-time behaviour.

5.3 Positivity of discrete solutions

We are now interested in the positivity of the discrete solutions. We use the following test-case with
anisotropic diffusion and homogeneous pure Neumann boundary conditions. We set ΓD = ∅, f = 0,
gN = 0,

φ(x, y) = −
(
(x− 0.4)2 + (y − 0.6)2

)
and Λ =

(
0.8 0
0 1

)
.

For the initial datum, we take
uin = 10−3 1B + 1Ω\B,

where B is the Euclidean ball
{

(x, y) ∈ R2 | (x− 0.5)2 + (y − 0.5)2 ≤ 0.22
}

. These data ensure that
the solution u is positive on R+ × Ω. The experiment is performed on a tilted hexagonal-dominant
mesh (see Figure 2d) of size 4.3 · 10−3, made up of 4192 cells and 12512 edges. Since we deal with
a diffusive phenomenon, the smallest values of u are expected for small time, hence we perform the
simulation with a relatively small final time Tf = 5.10−4, alongside with a time step of ∆t = 10−5.

The results are collected in Table 1. The cost is defined as the number of linear systems solved
in order to compute the solution (unD)1≤n≤Nf , and the minimum values min cells and min edges are
defined by

min {unK | 1 ≤ n ≤ Nf , K ∈M} and min {unσ | 1 ≤ n ≤ Nf , σ ∈ E} .
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The indicated number of negative unknowns is for the whole simulation. Here, Nf = 50 also for the
nonlinear scheme (no sub-division of the time step was needed in Newton’s method). As expected,

cost min cells min edges # negative unknowns

Nonlinear 175 9.93e-04 7.36e-04 0

HMM 50 -5e-03 –7.74e-02 593

ExpF 50 -4.98e-03 -7.72e-02 590

ExpF (harmonic) 50 -4.98e-03 -7.74e-02 588

Table 1: Positivity of discrete solutions. Numerical results for Tf = 5.10−4 and ∆t = 10−5 on
a tilted hexagonal-dominant mesh. At each time step, there are 4192 cell unknowns and 12512 edge
unknowns.

the nonlinear scheme has positive discrete solutions, whereas the linear ones exhibit a violation of
positivity (the value of η can have some influence on positivity; see [33]). Note that the use of
harmonic averages for the exponential fitting scheme has no impact on the undershoots.

We observe that the nonlinear scheme requires approximately 3.5 times more linear system inver-
sions than the linear schemes. However, this value depends strongly on the final time of simulation
Tf . Indeed, the number of linear systems solved at step n decreases when n increases. The first time
step costs 9 resolutions, but this number rapidly decreases as the solution approaches the steady-state
(the second and the third time steps respectively cost 5 and 4 resolutions).

5.4 Accuracy of stationary solutions

In this section, we aim at comparing the accuracy of the different schemes for the stationary problem.
To do so, we define the discrete L2-norm and H1-seminorm errors as (i) the L2-norm of the difference
uM − ΠM(u), and (ii) the | · |1,D-seminorm of the difference uD − ΠD(u), where uD is the discrete
solution, and ΠD(u) is the HFV interpolate of the continuous solution u (computed as ΠD(u) ≈
((u(xK))K∈M, (u(xσ))σ∈E)). In what follows, we reason in relative errors.

The nonlinear scheme is extended to a more general setting, in order to take into account a
loading term f ≥ 0 and mixed Dirichlet-Neumann boundary conditions (|ΓD| > 0) with gD > 0 and
gN ≥ 0. The scheme writes:

Find uD ∈ V D positive such that GD(uD) = 0D, (5.4)

where GD : (V D)?+ → V D is the vector field defined by

GK(uD) :=
∑
σ∈EK

Fnl
K,σ(uK)−

∫
K
f ∀K ∈M, (5.5a)

Gσ(uD) := −
(
Fnl
K,σ(uK) + Fnl

L,σ(uL)
)

∀σ = K | L ∈ Eint,
(5.5b)

Gσ(uD) := −
∫
σ
gN −Fnl

K,σ(uK) ∀σ ∈ ENext with Mσ = {K},

(5.5c)

Gσ(uD) :=
1

|σ|

∫
σ
gD − uσ ∀σ ∈ EDext, (5.5d)

Fnl
K,σ(uK) = rK(uK)

∑
σ′∈EK

Aσσ
′

K (log(uK) + φ(xK)− log(uσ′)− φ(xσ′)) ∀K ∈M,∀σ ∈ EK .

(5.5e)
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The implementation of this scheme still relies on a Newton method similar to the one used for the
evolution scheme. It is here initialised with ΠD(ω) = ωD.
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Figure 4: Accuracy of stationary solutions. Relative errors in discrete L2-norm and H1-
seminorm for the first test-case on triangular meshes.

The first test-case we consider is the same as in [4]. It is an isotropic problem, with Λ = I2,
ΓN = ∅, φ(x, y) = −(2x+ 3y), and exact solution

u(x, y) =
(
x− e2(x−1)

)(
y − e3(y−1)

)
,

the other data f and gD being set accordingly. Note that for this test-case, the diffusion and
advection terms are of the same order of magnitude. The numerical experiments are performed on
the triangular mesh family (see Figure 2b). The convergence results are depicted in Figure 4. As
expected, the two linear schemes are of order two in L2-norm, and one in H1-seminorm. The same
holds for the nonlinear scheme, whose accuracy is rather the same as the classical HMM scheme,
one order of magnitude better than the exponential fitting schemes. On this test-case, the use of
harmonic averages for the exponential fitting scheme does not have a significant impact.

The second test-case is an advection-dominated problem, with anisotropic diffusion and mixed
Dirichlet-Neumann boundary conditions. We set ΓD = ({0} × (0, 1)) ∪ ({1} × (0, 1)), ΓN = ((0, 1)×
{0}) ∪ ((0, 1)× {1}), gD = 1, gN = 0, and f = 0. The diffusion tensor and the potential are defined
by the following expressions:

Λ =

(
1 0
0 ly

)
and φ(x, y) = log

(
1

v
+ x

)
,

with ly, v > 0. Note that the advection field V φ = −
(

v
1+vx

0

)
has a magnitude of order v when x is

small. Thus, near the boundary {0}× [0, 1], the problem is advection-dominated if v is large enough.

Moreover, div(V φ) =
v2

(1 + vx)2 > 0 and V φ · n = 0 on ΓN , so the problem is coercive. The exact

solution is given by

u(x, y) =
v

1 + vx

(
2vx

2 + v

(
1

v
+
x

2

)
+

1

v

)
.
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We perform our numerical experiments on the Cartesian mesh family (see Figure 2a), with

ly = 100 and v = 200.
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Figure 5: Accuracy of stationary solutions. Relative errors in discrete L2-norm and H1-
seminorm for the second test-case on Cartesian meshes.

The results are depicted in Figure 5. They show that the HMM scheme suffers, most probably
because of the fact that the advective term predominates over the diffusive term, at least in some
part of the domain. The order of convergence of the HMM scheme is less than one in H1-seminorm,
and than two in L2-norm. The other schemes converge with order one in H1-seminorm, and two
in L2-norm. Moreover, on this test-case, their accuracy is better than that of the HMM scheme.
Notice that ω = e−φ = v

1+vx has small variations (i.e., not exponential) in the cells, even if v is large.
Therefore, the diffusion tensor ωΛ of the problem in the ρ unknown for the exponential fitting schemes
is not that heterogeneous (locally). It could explain the good performances of the exponential fitting
schemes in this case. Moreover, on this test-case, using harmonic averages in the exponential fitting
scheme gives a substantial gain in accuracy for both the L2 and H1 relative errors, of magnitude 101.

6 Conclusion

In this paper, by means of discrete entropy methods, we have analysed the long-time behaviour of
three hybrid finite volume schemes for linear advection-diffusion equations. We have proved that the
solutions to all schemes converge exponentially fast in time towards the associated discrete steady-
states. Two schemes among the three are new, that are the (linear) exponential fitting scheme
(adapting known ideas to the HFV context) and the nonlinear scheme, for which we have proved the
existence of solutions. All schemes can handle anisotropy and general meshes. The two linear schemes
can deal with general data and mixed Dirichlet-Neumann boundary conditions, however they do not
preserve the positivity of solutions. On the other hand, the nonlinear scheme preserves positivity and
can be used in practice with general boundary conditions. However, at the moment, its asymptotic
analysis is limited to systems that converge in time towards the thermal equilibrium, restricting
the admissible data. We have finally validated our theoretical findings on different numerical tests,
assessing long-time behaviour, positivity, and spatial accuracy of the schemes.
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A Functional inequalities

A.1 Discrete Poincaré inequalities

We recall the following hybrid discrete Poincaré inequalities (cf. [29, Lemmas B.25 and B.32, p = 2]).

Proposition 7 (Discrete Poincaré inequalities). Let D be a given discretisation of Ω, with regularity
parameter θD. There exists CPW > 0, only depending on Ω, d, and θD such that

∀vD ∈ V N
D,0, ‖vM‖L2(Ω) ≤ CPW |vD|1,D. (A.1)

Assume that |ΓD| > 0. Then, there exists CP,ΓD > 0, only depending on Ω, d, ΓD, and θD such that

∀vD ∈ V D
D,0, ‖vM‖L2(Ω) ≤ CP,ΓD |vD|1,D. (A.2)

A.2 Logarithmic Sobolev inequalities

In this section, we derive logarithmic Sobolev inequalities on a bounded domain, in the continuous
setting. The intermediate results of Proposition 8 below will be useful in the discrete setting. In the
following, µ is a probability measure on the bounded domain Ω, and the space Lqµ(Ω) denotes the
space endowed with the norm ‖f‖q

Lqµ(Ω)
=
∫

Ω |f |
qdµ. We start with a preliminary lemma, which is

an adaptation of part of the proof of [22, Theorem 6.1.22] (see also [36]). We recall that Φ1(s) =
s log(s)− s+ 1.

Lemma 3. For all t ∈ R and ψ ∈ L2
µ(Ω) such that ‖ψ‖L2

µ(Ω) = 1, one has∫
Ω

Φ1

(
(1 + tψ)2

)
dµ ≤ t2

∫
Ω
ψ2 log(ψ2)dµ+ (1 + t2) log(1 + t2) + (1 + |〈ψ〉µ|)t2,

where 〈ψ〉µ :=
∫

Ω ψ dµ.

Proof. Let us define, for δ > 0,

fδ(t) =

∫
Ω

Φ1

(
(1 + tψ)2 + δ

)
dµ− t2

∫
Ω
ψ2 log(ψ2)dµ− (1 + t2) log(1 + t2) .

Differentiating fδ yields

f ′δ(t) = 2

∫
Ω

(1 + tψ)ψ log
(
(1 + tψ)2 + δ

)
dµ− 2t

∫
Ω
ψ2 log(ψ2)dµ− 2t log(1 + t2)− 2t .

In particular, f ′δ(0) = 2 log(1 + δ)〈ψ〉µ. Differentiating once more, and using that ‖ψ‖2L2
µ(Ω) = 1, we

obtain

f ′′δ (t) = 2

∫
Ω
ψ2 log

(
(1 + tψ)2 + δ

(1 + t2)ψ2

)
dµ+ 4

∫
Ω
ψ2 (1 + tψ)2

δ + (1 + tψ)2
dµ− 4t2

1 + t2
− 2 .

Therefore, using that log(x) ≤ x− 1 in the first term, that x
δ+x ≤ 1 in the second, together with the

fact that µ is a probability measure and that ‖ψ‖2L2
µ(Ω) = 1, one gets

f ′′δ (t) ≤ 2δ

1 + t2
+

4t

1 + t2
〈ψ〉µ + 4− 4t2

1 + t2
− 2 ≤ 2δ + 2|〈ψ〉µ|+ 2 .

One concludes by integrating this inequality twice between 0 and t, using that fδ(0) = Φ1(1 + δ),
and letting δ → 0.
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Proposition 8. For any ξ ∈ Lqµ(Ω) with q > 2, one has∫
Ω
ξ2 log

(
ξ2

‖ξ‖2
L2
µ(Ω)

)
dµ ≤ q

q − 2
‖ξ − 〈ξ〉µ‖2Lqµ(Ω) +

q − 4

q − 2
‖ξ − 〈ξ〉µ‖2L2

µ(Ω), (A.3)

where 〈ξ〉µ :=
∫

Ω ξ dµ. Besides, one also has∫
Ω

Φ1(ξ2) dµ ≤ q

q − 2
‖ξ − 1‖2Lqµ(Ω) +

2q − 6

q − 2
‖ξ − 1‖2L2

µ(Ω) + Φ1

(
1 + ‖ξ − 1‖2L2

µ(Ω)

)
. (A.4)

Proof. i) Assume that 〈ξ〉µ 6= 0, and take t and ψ such that ξ = 〈ξ〉µ(1 + tψ) and ‖ψ‖L2
µ(Ω) = 1.

In particular, 〈ψ〉µ = 0, and 1 + t2 =
‖ξ‖2

L2
µ(Ω)

〈ξ〉2µ
. Using Lemma 3, a somewhat tedious but

straightforward computation yields∫
Ω
ξ2 log

(
ξ2

‖ξ‖2
L2
µ(Ω)

)
dµ ≤

∫
Ω

(ξ − 〈ξ〉µ)2 log

(
(ξ − 〈ξ〉µ)2

‖ξ − 〈ξ〉µ‖2L2
µ(Ω)

)
dµ+ 2‖ξ − 〈ξ〉µ‖2L2

µ(Ω) .

Observe that the last inequality also holds if 〈ξ〉µ = 0. Let φ = ξ − 〈ξ〉µ. Then,∫
Ω
ξ2 log

(
ξ2

‖ξ‖2
L2
µ(Ω)

)
dµ ≤ 2

q − 2
‖φ‖2L2

µ(Ω)

∫
Ω

φ2

‖φ‖2
L2
µ(Ω)

log

 φq−2

‖φ‖q−2
L2
µ(Ω)

 dµ+ 2‖φ‖2L2
µ(Ω) .

Therefore, by Jensen’s inequality for the probability measure φ2

‖φ‖2
L2
µ(Ω)

dµ applied to the concave

function log, one obtains∫
Ω
ξ2 log

(
ξ2

‖ξ‖2
L2
µ(Ω)

)
dµ ≤ 2

q − 2
‖φ‖2L2

µ(Ω) log

(
‖φ‖q

Lqµ(Ω)

‖φ‖q
L2
µ(Ω)

)
+ 2‖φ‖2L2

µ(Ω)

=
q

q − 2
‖φ‖2L2

µ(Ω) log

(
‖φ‖2

Lqµ(Ω)

‖φ‖2
L2
µ(Ω)

)
+ 2‖φ‖2L2

µ(Ω) ,

and one concludes using that log(x) ≤ x− 1.

ii) Take t and ψ such that ξ = 1 + tψ and ‖ψ‖L2
µ(Ω) = 1. Remark that t = ‖ξ − 1‖L2

µ(Ω). Using

that |〈ψ〉µ| ≤ ‖ψ‖L2
µ(Ω) = 1, Lemma 3 yields∫

Ω
Φ1(ξ2) dµ− Φ1

(
1 + ‖ξ − 1‖2L2

µ(Ω)

)
≤
∫

Ω
(ξ − 1)2 log

(
(ξ − 1)2

‖ξ − 1‖2
L2
µ(Ω)

)
dµ+ 3‖ξ − 1‖2L2

µ(Ω) .

Letting φ = ξ − 1, the proof goes on as for i).

From there, logarithmic Sobolev inequalities are immediate consequences of Poincaré–Sobolev in-
equalities, of [11, Lemma 5.2], and of the fact that Φ1(1 + s) ≤ s log(1 + s).

Corollary 1 (Logarithmic Sobolev inequalities). Assume that µ has a density (still denoted by µ)
with respect to the Lebesgue measure such that 0 < µ[ ≤ µ(x) ≤ µ] for a.e. x ∈ Ω. Then, for any
ξ ∈ H1(Ω), one has ∫

Ω
ξ2 log

(
ξ2

‖ξ‖2
L2
µ(Ω)

)
dµ ≤ C(Ω, d, µ[, µ])‖∇ξ‖2L2

µ(Ω;Rd) .
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Besides, if |ΓD| > 0 and ξ − 1 ∈ H1,D
0 (Ω) := {v ∈ H1(Ω) | v = 0 on ΓD}, then∫

Ω
Φ1(ξ2) dµ ≤ C ′(Ω, d, µ[, µ])

(
1 + log

(
1 + ‖ξ − 1‖2L2

µ(Ω)

))
‖∇ξ‖2L2

µ(Ω;Rd) .

A.3 Discrete logarithmic Sobolev inequalities

Similarly to what was done in [11], one can derive discrete logarithmic Sobolev inequalities adapted
to the hybrid setting.

Proposition 9 (Discrete logarithmic Sobolev inequality, Neumann case). Let D be a given discreti-
sation of Ω, with regularity parameter θD. Let vD, v

∞
D ∈ V D be two positive vectors of unknowns such

that ∫
Ω
vM =

∫
Ω
v∞M =: M,

and set v∞M,] := sup
K∈M

v∞K . Define ξD as the element of V D such that

ξK :=

√
vK
v∞K

∀K ∈M, ξσ :=

√
vσ
v∞σ

∀σ ∈ E .

Then, there exists CLS,∞ > 0, only depending on M , v∞M,], Ω, d, and θD such that∫
Ω
v∞MΦ1

(
ξ2
M
)
≤ C2

LS,∞
∣∣ξD∣∣21,D . (A.5)

Proof. By (A.3) and [11, Lemma 5.2] applied to the probability measure µ(x) dx = v∞M(x) dx
M and to

the function ξM =
√

vM
v∞M

, we first infer that, for q > 2,∫
Ω
vM log

(
ξ2
M
)
≤ C(M,v∞M,], q)

(
‖ξM − ξM‖2Lq(Ω) + ‖ξM − ξM‖2L2(Ω)

)
,

where we let ξM := 1
|Ω|
∫

Ω ξM dx. The conclusion then falls in two steps. On the one hand, since∫
Ω vM =

∫
Ω v
∞
M, we remark that ∫

Ω
v∞MΦ1

(
ξ2
M
)

=

∫
Ω
vM log

(
ξ2
M
)
.

On the other hand, we invoke (A.1) and the discrete Poincaré–Sobolev inequality of [29, Lemma
B.25, p = 2] for 2 < q < 2d

d−2 :

∀wD ∈ V N
D,0, ‖wM‖Lq(Ω) ≤ CPS |wD|1,D,

where CPS > 0 only depends on Ω, d, and θD, that we apply to wD = ξD − ξM 1D ∈ V N
D,0. This

proves (A.5).

Starting from (A.4), a similar proof yields the following result. The relevant discrete Poincaré–
Sobolev inequality in this case is given in [29, Lemma B.32, p = 2].

Proposition 10 (Discrete logarithmic Sobolev inequality, Dirichlet case). Assume that |ΓD| > 0.
Let D be a given discretisation of Ω, with regularity parameter θD. Let vD, v

∞
D ∈ V D be two positive

vectors of unknowns such that
vD − v∞D ∈ V D

D,0,
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and set v∞M,] := sup
K∈M

v∞K and M∞ :=
∫

Ω v
∞
M. Define ξD as the element of V D such that

ξK :=

√
vK
v∞K

∀K ∈M, ξσ :=

√
vσ
v∞σ

∀σ ∈ E .

Then, letting µ :=
v∞M
M∞ , there exists CLS,ΓD,∞ > 0, only depending on M∞, v∞M,], Ω, d, ΓD, and θD

such that ∫
Ω
v∞MΦ1(ξ2

M) ≤ C2
LS,ΓD,∞

(
1 + log

(
1 + ‖ξM − 1‖2L2

µ(Ω)

))
|ξD|

2
1,D. (A.6)

B Nonlinear scheme for mixed Dirichlet-Neumann boundary con-
ditions

In this appendix, we introduce and analyse a version of the nonlinear scheme for the evolution
problem (1.1) when |ΓD| > 0. In order to perform the asymptotic analysis, we need to assume that
the data are compatible with the thermal equilibrium:

f = 0, gN = 0, and there exists ρD > 0 such that gD = ρD e−φ = ρDω.

For such data, given uin ≥ 0, the solution u to (1.1) is positive for t > 0, and converges towards
u∞ = ρD e−φ when t→∞.

B.1 Scheme and well-posedness

Accordingly to this setting, we define u∞D = ρDωD. One has u∞[ 1D ≤ u∞D ≤ u∞] 1D, where 0 < u∞[ ≤
u∞] only depend on ρD, φ, and Ω. Remind that, as in (3.33), given a positive uD ∈ V D, one defines
wD(uD) ∈ V D as

wK := log

(
uK
u∞K

)
∀K ∈M, wσ := log

(
uσ
u∞σ

)
∀σ ∈ E .

For mixed boundary conditions, the discrete problem reads: Find
(
unD ∈ V D

)
n≥1

positive such that

1

∆t
(unM − un−1

M , vM)Ω + TD (unD, wD(unD), vD) = 0 ∀vD ∈ V D
D,0,

wD(unD) ∈ V D
D,0,

u0
K =

1

|K|

∫
K
uin ∀K ∈M.

(B.1a)

(B.1b)

(B.1c)

Notice that, since for all σ ∈ E , wnσ = log

(
unσ
u∞σ

)
, the equation (B.1b) only means that, for all

σ ∈ EDext, unσ = u∞σ , which enforces strongly the Dirichlet boundary condition on ΓD. One can show
the following existence result.

Theorem 5 (Existence of positive solutions and entropy dissipation). Let uin ∈ L2(Ω) be a non-
negative function. There exists at least one positive solution

(
unD ∈ V D)n≥1 to the nonlinear scheme (B.1).

It satisfies the following entropy/dissipation relation:

∀n ∈ N,
En+1 − En

∆t
+ Dn+1 ≤ 0, (B.2)

where En and Dn are, respectively, the discrete relative entropy and dissipation defined in (3.35).
Moreover, there exists ε > 0, depending on Λ, φ, uin, ρD, Ω, d, ∆t, and D such that, for all n ≥ 1,
unK ≥ ε for all K ∈M and unσ ≥ ε for all σ ∈ E.
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The proof of this theorem relies on the same arguments as the one of Theorem 1 for (homogeneous)
pure Neumann boundary conditions. The major difference lies in the counterpart of Lemma 2, which
is no longer based on the positivity of the mass, but on the prescribed (zero) value on the Dirichlet
faces.

B.2 Long-time behaviour

In the next theorem, we state the long-time behaviour of the discrete solutions to the nonlinear
scheme (B.1).

Theorem 6 (Asymptotic stability). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (B.1), then the

discrete entropy decays exponentially fast in time: there is νnl,ΓD > 0, depending on Λ, φ, ΓD, ρD,
uin, Ω, d, and θD such that

∀n ∈ N, En+1 ≤ (1 + νnl,ΓD ∆t)−1En. (B.3)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state.

Proof. Let n ∈ N?. As in Section 4.3, one has Dn ≥ 1

CF
D̂n ≥

4u∞[ λ[α[
CF

∣∣ξnD∣∣21,D, where CF > 0

depends on the data. Using the discrete log–Sobolev inequality (A.6) from Proposition 10, we get

En ≤ C2
LS,ΓD,∞

(
1 + log

(
1 + ‖ξnM − 1‖2L2

µ(Ω)

))
|ξnD|

2
1,D

≤
C2
LS,ΓD,∞CF

4u∞[ λ[α[

(
1 + log

(
1 + ‖ξnM − 1‖2L2

µ(Ω)

))
Dn. (B.4)

Then, there is C > 0 such that (recall that ξnD is positive)

‖ξnM − 1‖2L2
µ(Ω) ≤ ‖(ξ

n
M)2‖L1

µ(Ω) + 1 ≤
∥∥Φ1

(
(ξnM)2

)∥∥
L1
µ(Ω)

+ C = (M∞)−1En + C ,

where the last inequality is an application of the Fenchel–Young inequality x ≤ Φ1(x)+Φ?
1(1), where

Φ?
1 is the convex conjugate of Φ1 and x = (ξnM)2. But, since the entropy/dissipation relation (B.2)

holds, the discrete entropy decays and En ≤ E0. Therefore, one has

‖ξnM − 1‖2L2
µ(Ω) ≤ (M∞)−1E0 + C .

Combining this estimate with (B.4), we deduce that there exists νnl,ΓD > 0, depending on Λ, φ, ΓD,

ρD, uin, Ω, d, and θD such that En ≤ νnl,ΓDDn. Then, using the entropy/dissipation relation (B.2),
we get (B.3).

C Proofs of technical results

C.1 Discrete boundedness by mass and dissipation

We prove Lemma 2 from Section 3.3.2. To ease the reading, we first recall the result.

Lemma 2. Let wD ∈ V D, and assume that there exist C] > 0, and M] ≥M[ > 0 such that

M[ ≤
∑
K∈M

|K|u∞K ewK ≤M] and D(wD) ≤ C]. (3.39)

Then, there exists C > 0, depending on Λ, u∞[ , u∞] , M[, M], C], Ω, d, and D such that

|wK | ≤ C ∀K ∈M and |wσ| ≤ C ∀σ ∈ E .
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Proof. For K ∈M, using (2.10) and (2.11), we first infer that

δKwK · AKδKwK = aΛ
K(wK , wK) ≥ λ[α[|wK |21,K = λ[α[

∑
σ∈EK

|σ|
dK,σ

(
wK − wσ

)2
.

By definition (2.1) of the regularity parameter θD, we have that |σ|
dK,σ

≥ hd−2
K
θD

for all σ ∈ EK , so that

δKwK · AKδKwK ≥
λ[α[
θD

hd−2
K |δKwK |2. (C.1)

By the expression (3.38) of D(wD), and the local lower bound (C.1), we thus get

D(wD) =
∑
K∈M

rK
(
u∞K × exp(wK)

)
δKwK · AKδKwK

≥ λ[α[
θD

∑
K∈M

hd−2
K rK

(
u∞K × exp(wK)

)
|δKwK |2

=
λ[α[
θD

∑
K∈M

∑
σ∈EK

hd−2
K rK

(
u∞K × exp(wK)

)
(wK − wσ)2.

Let K ∈ M and σ ∈ EK be fixed. Using, successively, the definition (3.27) of rK combined with the
definition (3.29) of f|EK |, the combination of (3.34) with assumptions (3.28a) and (3.28c), and the
assumptions (3.28b) and (3.28d) combined with the bound (2.2) on |EK |, we infer, for wσ 6= wK ,

rK
(
u∞K × exp(wK)

)
(wK − wσ)2 ≥ 1

|EK |
m
(
u∞K ewK , u∞σ ewσ

)
(wK − wσ)2

≥
u∞[
|EK |

m
(

ewK , ewσ
)
(wK − wσ)2

≥
u∞[
dθ2
D

(ewK − ewσ) (wK − wσ) ≥ 0,

and we verify that this inequality still holds when wσ = wK . Since D(wD) ≤ C] by (3.39), for all
K ∈M, and all σ ∈ EK , we have

0 ≤ (ewK − ewσ) (wK − wσ) ≤ ζh2−d
K , (C.2)

with ζ :=
dC]θ

3
D

λ[α[u
∞
[
> 0 (recall that α[ depends on Ω, d, and θD). Besides, since

∑
K∈M |K|u∞K ewK ≤

M] again by (3.39), we have |K|u∞K ewK ≤ M] for all K ∈ M. Similarly, since
∑

K∈M |K|u∞K ewK ≥
M[, there exists K0 ∈ M such that |Ω|u∞K0

ewK0 ≥ M[ > 0. Combining these bounds, we infer that
there exists K0 ∈M such that

log

(
M[

|Ω|u∞]

)
≤ wK0 ≤ log

(
M]

|K0|u∞[

)
. (C.3)

Now, let us show that we can similarly frame all the other components of wD.
For a, x ∈ R, let us define E(a, x) = (ex− ea) (x − a) ≥ 0. Observe that E(a, y + a) e−a =

(ey −1)y =: ξ(y) and that ξ is continuous, strictly decreasing for y < 0, strictly increasing for y > 0,
ξ(0) = 0, and ξ(y)→ +∞ when y → ±∞. Let b, a] > 0, and take |a| ≤ a]. By the properties of ξ, if
E(a, x) ≤ b, then |x| ≤ κb(a]) := a]+max{|y| s.t. ξ(y) = b ea]}. We can thus infer that if (xk)k=0,...,m

is a finite sequence of real numbers such that E(xk, xk+1) ≤ b and |x0| ≤ a], then |xm| ≤ κ
(m)
b (a])

where κ
(m)
b is m compositions of κb. In particular, the bound only depends on a], m and b.
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Now we can conclude the proof. Because of the connectivity of the mesh, for any cell K (re-
spectively, face σ) there is a finite sequence of components of wD, denoted (xk)k=0,...,m, starting at
x0 = wK0 and finishing at xm = wK (respectively, xm = wσ) such that, by (C.2), E(xk, xk+1) ≤
b := ζh2−d

D . The inequality (C.3) yields the initial bound on |x0|, and one concludes by the above
argument.

C.2 A local comparison result

We prove a local comparison result between the matrices AK and some (local) diagonal matrices.
The proof relies on arguments that are similar to those advocated in [14] to analyse the VAG scheme.

Lemma 4. For K ∈ M, let AK ∈ R|EK |×|EK | be the matrix defined by (2.8). The matrices AK are
symmetric positive-definite, and there exists CA > 0, only depending on Λ, Ω, d, and θD such that

∀K ∈M, Cond2(AK) ≤ CA,

where Cond2(AK) := ‖A−1
K ‖2‖AK‖2 is the condition number of the matrix AK . Moreover, letting for

K ∈M, BK ∈ R|EK |×|EK | be the diagonal matrix with entries

Bσσ
K :=

∑
σ′∈EK

|Aσσ′K | for all σ ∈ EK , (C.4)

there exists CB > 0, only depending on Λ, Ω, d, and θD such that

∀K ∈M, ∀w ∈ R|EK |, w · AKw ≤ w · BKw ≤ CB w · AKw. (C.5)

Proof. Let K ∈ M and k := |EK |. As a direct consequence of its definition (2.8), the matrix
AK ∈ Rk×k is symmetric and positive semi-definite. Now, let w := (wσ)σ∈EK ∈ Rk, and define
vK ∈ V K such that

vK = 0 and vσ = −wσ for all σ ∈ EK .

Then, δKvK = (vK − vσ)σ∈EK = w. By (C.1), we immediately get that

w · AKw ≥
λ[α[
θD

hd−2
K |w|2,

which implies, since w ∈ Rk is arbitrary, that AK is invertible, and gives us a lower bound on its
smallest eigenvalue. By the same arguments advocated to prove (C.1), noticing that |σ|

dK,σ
≤ θDhd−2

K

for all σ ∈ EK , we infer that
w · AKw ≤ λ]α]θDhd−2

K |w|2.

We eventually get, using the estimates on the eigenvalues of AK , that

Cond2(AK) ≤
λ]α]
λ[α[

θ2
D =: CA, (C.6)

with CA > 0 only depending on Λ, Ω, d, and θD. Now, by (C.4), since AK is symmetric, we have

w · BKw =
∑
σ∈EK

∑
σ′∈EK

|Aσσ′K |w2
σ =

∑
σ∈EK

∑
σ′∈EK

|Aσσ′K |w2
σ′ ,

and we can use the half-sum to get

w · BKw =
∑
σ∈EK

∑
σ′∈EK

|Aσσ′K |
w2
σ + w2

σ′

2
.
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Using Young’s inequality, we infer

w · AKw =
∑
σ∈EK

∑
σ′∈EK

Aσσ
′

K wσwσ′ ≤
∑
σ∈EK

∑
σ′∈EK

|Aσσ′K ||wσ||wσ′ |

≤
∑
σ∈EK

∑
σ′∈EK

|Aσσ′K |
w2
σ + w2

σ′

2
= w · BKw.

For the second inequality, by symmetry of AK , we have

w · BKw =
∑
σ∈EK

Bσσ
K w2

σ ≤ max
σ∈EK

(Bσσ
K )

∑
σ∈EK

w2
σ = max

σ∈EK

 ∑
σ′∈EK

|Aσ′σK |

 |w|2 = ‖AK‖1|w|2.

The space Rk×k being of finite dimension, the norms ‖ · ‖1 and ‖ · ‖2 are equivalent, and there exists
γk > 0 such that ‖ · ‖1 ≤ γk‖ · ‖2. Moreover, since AK is symmetric positive-definite, the following
inequality holds:

w · AKw ≥
‖AK‖2

Cond2(AK)
|w|2.

From the previous estimates and (C.6), we deduce that

w · BKw ≤ γk Cond2(AK)w · AKw ≤ γk CAw · AKw.

But, according to (2.2), we have max
K∈M

γk ≤ max
(d+1)≤l≤dθ2

D

γl, therefore

w · BKw ≤ CB w · AKw,

where CB = CA max
(d+1)≤l≤dθ2

D

γl is a positive constant only depending on Λ, Ω, d, and θD. This completes

the proof of the comparison result (C.5).
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