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ERROR ESTIMATES FOR DEEP LEARNING METHODS IN

FLUID DYNAMICS

ANIMIKH BISWAS, JING TIAN, AND SULEYMAN ULUSOY

Abstract. In this study, we provide error estimates and stability analysis of
deep learning techniques for certain partial differential equations including the
incompressible Navier-Stokes equations. In particular, we obtain explicit error
estimates (in suitable norms) for the solution computed by optimizing a loss
function in a Deep Neural Network (DNN) approximation of the solution, with
a fixed complexity.

1. Introduction

Machine Learning, which has been at the forefront of the data science and artifi-
cial intelligence revolution in the last twenty years, has a wide range of applications
in natural language processing, computer vision, speech and image recognition,
among others [9, 11, 17]. Recently, its use has proliferated in computational sciences
and physical modeling such as the modeling of turbulence [7, 26, 27, 16, 28, 29].
Moreover, machine learning methods (which are mesh-free) have gained wide ap-
plicability in obtaining numerical solutions of various types of partial differential
equations (PDEs); see [2, 3, 10, 20, 21, 22, 23, 20] and the references therein. The
need for these studies stems from the fact that when using traditional numerical
methods in a high-dimensional PDE, the methods sometimes become infeasible.
High-dimensional PDEs appear in a number of models for instance in the financial
industry, in a variety of contexts such as in derivative pricing models, credit valu-
ation adjustment models, or portfolio optimization models. Such high-dimensional
fully nonlinear PDEs are exceedingly difficult to solve as the computational effort
for standard approximation methods grows exponentially with the dimension. For
example, in finite difference methods, as the dimension of the PDEs increases, the
number of grids increases considerably and there is a need for reduced time step-
size. This increases the computational cost and memory demands. Under these
circumstances, implementing the deep learning algorithms can be helpful. In par-
ticular, the neural networks approach in partial differential equations (PDEs) offer
implicit regularization and can overcome the curse of high dimensions [2, 3].

Many infinite dimensional dynamical systems of practical interest arise in the
context of geophysical flows related to the atmosphere and ocean. The Navier-
Stokes and Euler equations, either alone or coupled with governing equations of
other physical quantities such as the temperature and/or the magnetic field, are
the fundamental equations governing the motion of fluids. They appear in the
study of diverse physical phenomena such as aerodynamics, geophysics, atmospheric
physics, meteorology and plasma physics. Especially, the Navier-Stokes equations
can be used to model the Incompressible fluid flow and have been employed in
describing many phenomena in science and engineering applications. For example,
they are used in modeling the water flow in a pipe, air flow around a wing, ocean
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currents and weather. They are employed in the design of cars, aircrafts, and power
stations, in the study of blood flow and many other applications. In this study, we
mainly focus on using the neural networks techniques to solve two dimensional
Navier-Stokes equations. However, we consider the elliptic case first to illustrate
the fundamental issues involved.

In literature, most studies [10, 20, 21, 22] focus on the numerical efficacy study
of designing the neural network algorithms. Concrete and complete mathematical
analysis are meager for such methods applied to PDEs, in particular, for the Navier-
Stokes equations, although some results on convergence (as the complexity of the
neural network tends to infinity) in the weak topology for some semilinear PDEs
can be found in [23]. The goal of this paper is to provide a mathematically rigorous
error analysis of deep learning methods employed in [10, 20, 21, 22] for the general
elliptic and two-dimensional Navier-Stokes equations. Our goal in this paper is not
to analyze all the details of different possibilities of neural network architecture.
Instead, we would like to provide a mathematically rigorous analysis of the method,
with error estimates, and stability analysis, similar in spirit to the probabilistic
error analysis for machine learning algorithms for the Black-Scholes equations in
[3]. We consider two different settings: the elliptic PDEs, mainly to fix ideas and
illustrate our approach, and the Navier-Stokes equations, which is the main focus
of this work. Although our results are proven in the context of the two-dimensional
Navier-Stokes equations, we note that our analysis applies equally well to the three
dimensional case, up to the interval of existence of a strong solution, which in the
two dimensional case, exists globally in time.

The computational algorithm employed in machine learning of PDEs (for in-
stance in [10, 20, 21, 22]) involves representing the approximate solution by a Deep
Neural Network (DNN), in lieu of a spectral or finite element approximation, and
then minimizing, over all such representations, an appropriate loss function, mea-
suring the deviation of this representation from the PDE and the initial and bound-
ary conditions. One important thing to note in this approach is the following. It is
well-known that optimization of loss functions in a deep neural network is a non-
convex optimization problem. Therefore, neither the existence nor the uniqueness
of a global optimum is guaranteed. Nevertheless, we side step this issue by obtain-
ing an explicit error estimate in terms of the attained value of the loss function
(which takes the value zero for the true solution). The estimate we obtain in turn
guarantees that the approximate solution thus constructed converges, in the strong
topology, to the true solution as the complexity of the networks tends to infinity.

The rest of the paper is organized as follows. Section 2 provides the preliminaries
for both Neural Network settings and approximation properties which will be used
in this study. Section 3 is devoted to the statement of our main results. In section
4, we present the mathematical analysis of the neural network algorithm in the
elliptic system. This also serves as a systematic introduction of our analysis. In
section 5, we present our main results in two dimensional Navier-Stokes equations.
By using Hodge decomposition, we have shown that the approximate solution using
the neural network algorithm is close to the actual solution of the two dimensional
Navier-Stokes equations under certain conditions. Moreover, we have proved that
our scheme is approximately stable. The existence of the approximate solution is
shown by applying approximation properties of neural networks.

2. Preliminaries

2.1. Neural Networks. In a DNN, we consider a mapping f : x 7→ y, where x is
the input variable and y is the output variable. The mapping function f is obtained
by (function) composition of layer functions, comprising of an input layer, an output
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layer and multiple hidden layers, connected in neural network. The details are as
follows.

In a DNN, each layer is a function of the form σ(wx + b), x ∈ R
d, w =

(w1, · · · , wd), b ∈ R. Here, σ is called the activation function and is usually taken

to be either a sigmoid (σ(x) = ex

ex+1 ) , tanh or ℜ ln, where ℜ ln(ξ) := max(0, ξ). In
applications to PDE, where we require adequate regularity of solutions, a popular

choice is the tanh function where tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
.

Consider the collection of functions of the form∑
αjf1 ◦ f2 ◦ f3 ◦ · · · ◦ flj (x), (2.1)

where fi is a function of the form σ(wx + b) described above. In (2.1), max lj is
called the depth of the network. Henceforth, we will denote by FN the class of
functions in (2.1), where N represents the network complexity (e.g. N could be the
sum of the ranks of the weight matrices w and the number of layers in the DNN).

For the sake of completeness, we give a schematic representation of a neural net-
work. Here, we adapt the standard dense neural networks which can be expressed
as a series of compositions:

y2(x) = σ(W1x+ b1),

y3(y2) = σ(W2y2 + b2),

·
·
·

ynl
(ynl−1) = σ(Wnl−1ynl−1 + bnl−1),

ynl+1(ynl
) = σ(Wnl

ynl
+ bnl

),

fθ = ynl+1(ynl
(· · · (y2(x)))),

(2.2)

where θ ensembles all the weights and parameters.

θ = {W1,W2, · · · ,Wnl
, b1, · · · , bnl

} . (2.3)

In practice, different neural network architectures are possible such as those in-
volving recurrent cells [14], convolutional layers [17], sparse convolutional neural
networks [15], pooling layers, residual connections [11].

In this study, we assume that our neural networks are equipped with uniformly
bounded weights and the final bias term bnl

. We do not need any boundedness
assumption on the other bias terms bi.

2.2. Function Approximation. Approximation properties of different DNNs has
been studied extensively since the work of Cybenko [4] and Hornik [13]; see [19, 30]
and the references therein for more recent work. An important question in the
approximation process is how many neural network layers are needed to guarantee
the approxmation accuracy? In [1], the author showed that by using the sigmoidal
activation funciton, at most O(ε−2) neurons are needed to achieve the order of
approximation ε. In [4], Cybenko proved that continuous functions can be ap-
proximated with arbitrary precision by the DNNs with one internal layer and an
arbitrary continuous sigmoidal function providing that no constraints are placed on
the number of nodes or the size of the weights. Also, in [12], Hornik et. al. provided
the conditions ensuring that DNNs with a single hidden layer and an appropriately
smooth hidden layer activation function are capable of arbitrarily accurate approx-
imation to an arbitrary function and its derivatives. A relevant theorem from [30],
relating the accuracy of the approximation of a DNN with the complexity of the
DNN and the regularity of the function being approximated, is given below.
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Theorem 2.1. Suppose that σ ∈ C∞(R), σ(v)(0) 6= 0 for ν = 0, 1, ..., and K ⊂ R
d

is any compact set. If f ∈ Ck(K), then a function φn represented by a DNN with
complexity n ∈ N exists such that

‖Dαf −Dαφn‖C(K) = O

(
1

n(k−|α|)/d
ω

(
Dβf,

1

n1/d

))

holds for all multi-indexes α, β with |α| ≤ k, |β| = k, where

ω(g, δ) = sup
x,y∈K,|x−y|≤δ

|g(x)− g(y)|.

3. Main results

Let FN be a DNN with complexity N , which is a finite dimensional function
space on a bounded domain. Below is a list of our main results.

3.1. Elliptic case. Consider a bounded domain Ω of R2 and the following partial
differential equation {

Lu = f,

u|∂Ω = g,
(3.1)

where L : H2(Ω) → L2(Ω) is a second order uniformly bounded elliptic operator.
In this study, for simplicity, we consider only the case g = 0, although the general
case is similar.

Recall that (3.1) is well-posed and a unique solution exists satisfying

M := ‖u‖H2(Ω) ≤ c‖f‖L2(Ω).

Consequently, the minimization problem

inf
u∈ appropriate Sobolev class

{
‖(Lu)(x) − f(x)‖2L2(Ω) + ‖u|∂Ω‖2L2(∂Ω)

}
(3.2)

has a unique solution, with the value of the infimum being 0, and the infimum is
attained at the solution u of (3.1). More generally, the same conclusion holds if we
consider a loss function of the type

L = α2‖Lu− f‖2L2(Ω) + β2‖u|∂Ω‖2L2(∂Ω).

Thus, in order to approximate u using a DNN, one considers the loss function

L = α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2L2(∂Ω), uN ∈ FN , (3.3)

under the restriction that ‖uN‖H2(Ω) ≤ M̃ (i.e. ‖uN‖H2(Ω) is bounded) for suitable

M̃ (e.g. M̃ = 2M), with α, β > 0. Since the chosen activation function σ =
tanh is smooth, in practice, this is achieved by restricting the (finite dimensional)
parameter set in the neural network to a compact subset.

In the neural network framework, the optimization is usually conducted in a
discrete setting as follows [21]. More precisely, let FN be a finite dimensional
function space on a bounded domain Ω. Choose a collocation points {xj}mj=1 ⊂ Ω

and {yj}nj=1 ⊂ ∂Ω. Find

inf
u∈FN ,‖uN‖H2(Ω)≤M̃





m∑

j=1

α2 |(Lu)(xj)− f(xj)|2 +
n∑

j=1

β2 |u(yj)− g(yj)|2


 . (3.4)

Note that (3.4) may be regarded as a Monte Carlo approximation of the corre-
sponding Lebesgue integrals. Consequently, for mathematical convenience, let us
consider the following optimization problem, namely, find

inf
u∈FN ,‖uN‖H2(Ω)≤M̃

{
‖(Lu)(x)− f(x)‖2L2(Ω) + ‖u|∂Ω − g‖2L2(∂Ω)

}
. (3.5)
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The infimum can be attained provided that we restrict the parameters in FN in a
compact set. However in this case, the infimum may not be unique.

Remark 3.1. We can also use an unrestricted optimization in (3.4) or (3.5). How-

ever, in this case, the condition on ‖uN‖H2(Ω) ≤ M̃ can be replaced by suitably
adding a penalty/regularization term in the loss function. This converts the re-
stricted minimization problem to an unrestricted one and is illustrated in the
Navier-Stokes case. This drawback is due to the fact in contrast to spectral or
finite element methods, the boundary conditions are not encoded in a DNN, but
rather are enforced “approximately”.

In all the boundary integrals above, the quantity u|∂Ω is interpreted as trace in
case u ∈ H1(Ω). However, since uN is smooth, its trace coincides with its restriction
on the boundary. Recall that the trace operator is defined as a bounded operator
γ ∈ L(H1(Ω), L2(Γ)) such that γu is the restriction of u to Γ for every function
u ∈ H1(Ω) which is twice continuously differentiable in Ω.

First, we show that when the approximate solution and actual solution are close
to each other, we can control the loss function.

Theorem 3.1. Let u be the solution of (3.1) and α, β, ǫ > 0. Then there exists
uN ∈ FN with ‖u− uN‖H2(Ω) ≤ ε such that

α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2L2(∂Ω) ≤ cε2 and ‖uN‖H2(Ω) ≤ M̃,

where M̃ can be taken to be 2M = 2‖u‖H2(Ω).

On the other hand, we can show that by controlling the loss function, we can
have a good approximation to the solution u of (3.1) by using a DNN. The requisite
error estimate is given in the theorem below.

Theorem 3.2. Let u be a solution of (3.1) and α, β, ǫ > 0. Assume that uN ∈ FN

is such that

α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2L2(∂Ω) ≤ ε2, (3.6)

with ‖uN‖H2(Ω) ≤ M̃. Then

‖u− uN‖H1(Ω) ≤ O((M + M̃)1/2ε1/2),

and

‖u− uN‖L2(Ω) ≤ O((M + M̃)1/3ε2/3).

Observe that in the Theorem above, as expected, the error estimate in the L2-
norm is stronger than the error estimate in the H1-norm. We show in the theorem
below how the error estimate in the L2-norm can be improved further by altering
the loss function.

Theorem 3.3. Let u be a solution of (3.1) and let uN ∈ FN be such that

α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2H1/2(∂Ω) ≤ ε2, (3.7)

with ‖uN‖H2(Ω) ≤ M̃. Then

‖u− uN‖L2(Ω) < O(ε).
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3.2. Incompressible Navier-Stokes Equations. The incompressible Navier-Stokes
equations (NSE) are given by

∂tu−∆u+ u · ∇u+∇p = f,

∇ · u = 0,

u|∂Ω = 0,

u(x, 0) = u0(x), x ∈ Ω.

(3.8)

In (3.8), u denotes the velocity of the fluid and p the pressure. Similar to the elliptic
case, we show that when applying the FN on the Navier-Stokes equations, with a
small loss function, the approximate solution and actual solution are close to each
other.

Theorem 3.4. Assume that u is a strong solution of the 2D NSE (3.8) and ũN ∈
FN such that

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω)) + ‖ũN(x, 0)− u0(x)‖2L2(Ω) (3.9)

+ ‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f‖2L2(Ω×[0,T ])

+ ‖∇ · ũN‖4L4([0,T ];L2(Ω)) + λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ ε2.

Then

‖u− ũN‖L4([0,T ];L2(Ω)) ≤ O
(
ε1/2 +

ε

λ1/4

)
. (3.10)

The reverse direction of Theorem 3.4 has also been proved.

Theorem 3.5. Given any ε > 0, we can find ũN ∈ FN , such that

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω)) + ‖ũN(x, 0)− u0(x)‖2L2(Ω) (3.11)

+ ‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f‖2L2(Ω×[0,T ])

+ ‖∇ · ũN‖4L4([0,T ];L2(Ω)) + λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ O
(
ε2
)
.

Furthermore, we prove that our scheme is approximately stable.

Theorem 3.6. Assume ũN1 ∈ FN1 is the approximate solution of

∂

∂t
u1 −∆u1 + u1 · ∇u1 +∇p1 = f1,

∇ · u1 = 0,

u1|∂Ω = 0,

u1(x, 0) = u0,1(x).

(3.12)

Assume ũN2 ∈ FN2 is the approximate solution of

∂

∂t
u2 −∆u2 + u2 · ∇u2 +∇p2 = f2,

∇ · u2 = 0,

u2|∂Ω = 0,

u2(x, 0) = u0,2(x).

(3.13)

Here, ũN1 and ũN2 satisfy (3.9) with corresponding f1 and f2. Then, we have

‖ũN1 − ũN2‖L4([0,T ];L2(Ω)) ≤

O
(
ε1/2 +

ε

λ1/4
+ ‖u0,1 − u0,2‖L2(Ω) + ‖f1 − f2‖L4([0,T ];L2(Ω))

)
.
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4. Elliptic Equations: Proofs of Main Theorems

Proof of Theorem 3.1:

Proof. We remark first that given any ǫ > 0, by Theorem 2.1, there exists a DNN
FN of complexity N and uN ∈ FN such that ‖u− uN‖H2(Ω) ≤ ǫ.

‖LuN − f‖2L2(Ω) = ‖LuN − Lu‖2L2(Ω)

≤ C2
L
‖uN − u‖2H2(Ω)

≤ C2
L
ε2,

where CL is the operator norm bound of L. Therefore

α2‖LuN − f‖2L2(Ω) ≤ CLα
2ε2. (4.1)

We also have

‖uN |∂Ω‖2L2(∂Ω) = ‖uN |∂Ω − u|∂Ω‖2L2(∂Ω)

≤ CTr‖uN − u‖2H2(Ω)

≤ CTrε
2,

where CTr is the constant from the trace operator. Therefore

β2‖uN |∂Ω‖2L2(∂Ω) ≤ CTrβ
2ε2. (4.2)

Combining (4.1) and (4.2), we have

α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2L2(∂Ω) ≤ cε2.

Finally,

‖uN‖H2(Ω) ≤ ‖uN − u‖H2(Ω) + ‖u‖H2(Ω)

≤ ε+M = M̃.

�

Let us consider the converse of Theorem 3.1. Same as in the previous settings,
u is the unique solution of (3.1) and FN is a DNN. We have the following results.

Lemma 4.1. If ‖uN‖H2(Ω) ≤ M̃, ‖∇(u−uN)‖2L2(Ω) ≤ cε(M + M̃)

(
1

α
+

1

β

)
, and

‖(u− uN)|∂Ω‖2L2(∂Ω) <
ε2

β2
, then

‖u− uN‖2L2(Ω) < O((M + M̃)ε). (4.3)

Proof. Since

‖u− uN‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖uN‖L2(Ω)

≤ ‖u‖L2(Ω) + ‖uN‖H2(Ω),

and

‖u‖L2(Ω) ≤ ‖u‖H2(Ω) ≤M ; ‖uN‖H2(Ω) ≤ M̃,

we have

‖u− uN‖L2(Ω) ≤M + M̃ and ‖u− uN‖H2(Ω) ≤M + M̃. (4.4)
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Consider

‖(u− uN)|∂Ω‖H1/2(∂Ω) ≤ ‖(u− uN)|∂Ω‖2/3L2(∂Ω)‖(u− uN)|∂Ω‖1/3H3/2(∂Ω)
(4.5)

≤ c
ε2/3

β2/3
‖(u− uN )‖1/3H2(Ω)

≤ c(M + M̃)1/3
ε2/3

β2/3
.

Consider the lifting operator lΩ : H1/2(∂Ω) → H1(Ω), which is linear and
bounded such that TrlΩ = I. Here, Tr is the trace operator and I is the iden-
tity operator.

‖lΩ(u− uN)‖H1(Ω) ≤ ClΩ‖(u− uN)|∂Ω‖H1/2(∂Ω) ≤ c(M + M̃)1/3
ε2/3

β2/3
,

where ClΩ is the constant from the lifting operator. Moreover

‖(u− uN)− lΩ(u − uN)‖L2(Ω) ≤ c‖∇((u− uN )− lΩ(u− uN))‖L2(Ω)

≤ c‖∇(u− uN)‖L2(Ω) + c‖∇(lΩ(u− uN))‖L2(Ω)

≤ cε1/2(M + M̃)1/2
(
1

α
+

1

β

)1/2

+ c‖lΩ(u − uN)‖H1(Ω)

≤ cε1/2(M + M̃)1/2
(
1

α
+

1

β

)1/2

+ c(M + M̃)1/3
ε2/3

β2/3
.

Therefore

‖u− uN‖L2(Ω) ≤ ‖(u− uN)− lΩ(u− uN ) + lΩ(u− uN )‖L2(Ω)

≤ ‖(u− uN)− lΩ(u− uN )‖L2(Ω) + ‖lΩ(u − uN)‖L2(Ω)

≤ cε1/2(M + M̃)1/2
(
1

α
+

1

β

)1/2

+ c(M + M̃)1/3
ε2/3

β2/3

= O((M + M̃)1/2ε1/2).

�

Proof of Theorem 3.2:

Proof. First, we have

‖(u− uN )|∂Ω‖2L2(∂Ω) = ‖uN |∂Ω‖2L2(∂Ω) ≤
ε2

β2
. (4.6)

Moreover

‖∇(u− uN)‖2L2(Ω) (4.7)

=

ˆ

Ω

(∇(u − uN ))2dx

=

ˆ

∂Ω

∇(u − uN)|∂Ω · (u− uN )|∂Ωdx−
ˆ

Ω

(u − uN) · (∆(u− uN ))dx

≤ ‖∇(u− uN)|∂Ω‖L2(∂Ω) · ‖(u− uN)|∂Ω‖L2(∂Ω) + ‖u− uN‖L2(Ω) · ‖∆(u− uN )‖L2(Ω).

Since

‖∆(u− uN)‖L2(Ω) ≤ c‖LuN − f‖L2(Ω) ≤ c
ε

α
,

‖u− uN‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖uN‖L2(Ω)

≤ ‖u‖L2(Ω) + ‖uN‖H2(Ω),
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and

‖u‖L2(Ω) ≤ ‖u‖H2(Ω) ≤M ; ‖uN‖H2(Ω) ≤ M̃,

we have

‖u− uN‖L2(Ω) ≤M + M̃.

Moreover

‖(u− uN )|∂Ω‖L2(∂Ω) ≤
ε

β
,

and

‖∇(u− uN)|∂Ω‖L2(∂Ω) ≤ c‖u− uN‖H2(Ω)

≤ c(‖u‖H2(Ω) + ‖uN‖H2(Ω)) < c(M + M̃).

Therefore, we have

‖∇(u− uN)‖2L2(Ω) ≤ cε(M + M̃)

(
1

α
+

1

β

)
. (4.8)

Therefore, we can apply Lemma 4.1 and obtain (4.3). Combining (4.8) and (4.3),
we have

‖u− uN‖H1(Ω) = ‖u− uN‖L2(Ω) + ‖∇(u− uN)‖L2(Ω) = O((M + M̃)1/2ε1/2).

We can improve the rate of ‖u− uN‖L2(Ω) by using a different approach:
Denote LuN = fε and uN |∂Ω = Tr(uN ) = gε. From (3.6), we have ‖f − fε‖L2(Ω) ≤
ε

α
, from (4.5), we have ‖gε‖H1/2(∂Ω) < c(M + M̃)1/3

ε2/3

β2/3
. Let ũN = uN − lΩgε.

Then

LũN = fε − LlΩgε,

ũN |∂Ω = 0.
(4.9)

Note that since L is a second order elliptic operator and lΩgε ∈ H1(Ω), we have
LlΩgε ∈ H−1(Ω). From Lax-Milgram [6], we have

‖u− ũN‖H1(Ω) ≤ CL−1‖(f − fε) + LlΩgε‖H−1(Ω). (4.10)

Therefore, we have

‖u− uN‖H1(Ω)

= ‖u− (uN − lΩgε)− lΩgε‖H1(Ω)

≤ ‖u− ũN‖H1(Ω) + ‖lΩgε‖H1(Ω)

≤ CL−1‖(f − fε) + LlΩgε)‖H−1(Ω) + ‖lΩ‖‖gε‖H1/2(∂Ω).

(4.11)

Since
‖f − fε‖H−1(Ω) ≤ c‖f − fε‖L2(Ω)

and
‖LlΩgε‖H−1(Ω) ≤ CL‖lΩgε‖H1(Ω) ≤ CL‖lΩ‖‖gε‖H1/2(∂Ω).

Thus

‖u− uN‖L2(Ω) ≤ ‖u− uN‖H1(Ω)

≤ c‖f − fε‖L2(Ω) + c‖gε‖H1/2(∂Ω).
(4.12)

Therefore, we have

‖u− uN‖L2(Ω) ≤
c

α
ε+

c(M + M̃)1/3

β2/3
ε2/3 =: O((M + M̃)1/3ε2/3). (4.13)

�
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We will show below that by considering the loss function to be

α2‖LuN − f‖2L2(Ω) + β2‖uN |∂Ω‖2H1/2(∂Ω),

we have an improved result on ‖u− uN‖L2(Ω) which is stated in Theorem 3.3.

Proof of Theorem 3.3:

Proof. Same as before, LuN = fε and uN |∂Ω = Tr(uN) = gε. From (3.7), we have

‖f − fε‖L2(Ω) ≤
ε

α
, and ‖gε‖H1/2(∂Ω) ≤

ε

β
. Let ũN = uN − lΩgε.

LũN = fε − LlΩgε,

ũN |∂Ω = 0.
(4.14)

Similar to the proof of Theorem 3.2, we have

‖u− uN‖H1(Ω) ≤ CL−1‖(f − fε) + LlΩgε)‖H−1(Ω) + ‖lΩ‖‖gε‖H1/2(∂Ω),

and

‖u− uN‖L2(Ω) ≤ ‖u− uN‖H1(Ω)

≤ c‖f − fε‖L2(Ω) + c‖gε‖H1/2(∂Ω).

Therefore, we have

‖u− uN‖L2(Ω) ≤
c

α
ε+

c

β
ε = O(ε).

�

5. Navier-Stokes Equations: Proof of Main Theorems

5.1. Functional analytic framework. Let Ω be a bounded domain in R
2 and

H :=
{
u ∈ L2(Ω), ∇ · u ∈ L2(Ω), ∇ · u = 0

}
,

V :=
{
u ∈ H1

0 (Ω), ∇ · u = 0
}
.

V ′ is the dual space of V .
Let P be the Leray Projection which is an orthogonal projection from L2 onto the
subset of L2 consisting of those functions whose weak derivatives are divergence-free
in the L2 sense. A is the Stokes operator, defined as A = −P∆. B is the bilinear
form defined by B(u, u) = P [(u · ∇)u] .

Applying the projection P on (3.8), the functional form of the NSE can be written
as

du

dt
+Au+ B(u, u) = Pf, (5.1)

u|∂Ω = 0.

We recall the definition of strong solutions from [24]:
Let W =

{
u ∈ H1

loc(Ω) and ∇ · u = 0 in Ω
}
and u0 ∈ W , u is a strong solution of

NSE if it solves the variational formulation of (3.8) as in [5, 24], and

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;W ),

for T > 0.
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5.2. Hodge decomposition. The idea of Hodge decomposition is to decompose
a vector u ∈ L2(Ω) uniquely into a divergence-free part u1 and an irrotational part
u2, which is orthogonal in L2(Ω) to u1:

u = u1 + u2, ∇ · u1 = 0 and (u1, u2) = 0.

When we apply the Leray Projection P on u, we have

Pu = u1.

More precisely, we have the following proposition, the proof of which can be found
in [5].

Proposition 5.1. Let Ω be open, bounded, connected with boundary of class C2.
Then L2(Ω) = H ⊕H1 ⊕H2, where H,H1, H2 are mutually orthogonal spaces and
moreover

H1 = {u ∈ L2(Ω)|u = ∇p, p ∈ H1(Ω),∆p = 0},
and

H2 = {u ∈ L2(Ω)|u = ∇p, p ∈ H1
0 (Ω)}.

The decomposition above is obtained as follows. Let v ∈ L2(Ω). Then,

v = u+ u1 + u2, u ∈ H, and u2 = ∇p2, ∆p2 = ∇ · v ∈ H−1(Ω), p2 ∈ H1
0 (Ω).

Subsequently, u1 is obtained by solving the Neumann problem

u1 = ∇p1, ∆p1 = 0,
∂p1

∂nΩ
= γ(v − u2),

where nΩ is the unit normal vector on the boundary of Ω and γ denotes the normal
trace on the boundary (see [5, 25] for more details).

5.3. Proofs. Consider an approximate solution ũN ∈ FN , i.e. ũN satisfies (3.9)

and denote ũN |∂Ω = g̃, ∇ · ũN = h̃. Let f̃ := ∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f.

Then

∂tũN −∆ũN + ũN · ∇ũN +∇p̃N = f + f̃ ,

∇ · ũN = h̃,

ũN |∂Ω = g̃.

(5.2)

Applying the Hodge decomposition on ũN :

ũN = PũN + (I − P)ũN =: uN + vN , (5.3)

where uN = PũN , ∇ · uN = 0, uN |∂Ω = 0, and vN = (I− P)ũN .
Before we prove our main theorems, we first introduce two Lemmas.

Lemma 5.2. Consider uN satisfying

duN

dt
+AuN +B(uN , uN ) = Pf + ϕ, (5.4)

uN |∂Ω = 0.

where
ˆ T

0

‖ϕ‖2V ′ dt ≤ O

(
ε+

ε2√
λ

)
, (5.5)

and let u be a strong solution of (5.1), with ‖uN(x, 0)− u0(x)‖2L2 ≤ ε2.

Then

sup
[0,T ]

‖u(x, t)− uN(x, t)‖2L2(Ω) ≤ O

(
ε+

ε2√
λ

)
.
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Proof. Considering w(t) = u(t)− uN(t), from (5.1) and (5.4), we have

dw

dt
+Aw +B(u, u)−B(uN , uN) = −ϕ,

w|∂Ω = 0.
(5.6)

Since

B(u, u)−B(uN , uN ) = B(u,w) +B(w, uN ) = B(u,w) +B(w, u)−B(w,w),

we have
dw

dt
+Aw +B(u,w) +B(w, u)−B(w,w) = −ϕ. (5.7)

Taking inner product of (5.7) with w, we obtain

1

2

d

dt
‖w‖2L2 + ‖A1/2w‖2L2 + (B(w, u), w) = −(ϕ,w).

Therefore

1

2

d

dt
‖w‖2L2 + ‖A1/2w‖2L2 ≤ |(B(w, u), w)| + |(ϕ,w)|.

Since

|(B(w, u), w)| ≤ c‖A1/2u‖L2‖w‖L2‖A1/2w‖L2 ≤ c
‖A1/2u‖2L2‖w‖2L2

2
+

‖A1/2w‖2L2

2
,

and

|(ϕ,w)| ≤ ‖ϕ‖V ′‖A1/2w‖L2 ≤ ‖ϕ‖2V ′

2
+

‖A1/2w‖2L2

2
,

we have

1

2

d

dt
‖w‖2L2 − c

‖A1/2u‖2L2‖w‖2L2

2
≤ ‖ϕ‖2V ′

2
.

Equivalently

d

dt
‖w‖2L2 − c‖A1/2u‖2L2‖w‖2L2 ≤ ‖ϕ‖2V ′ .

Applying Gronwall’s inequality, we have

‖w(t)‖2L2 ≤ e
´

t
0
c‖A1/2u‖2

L2ds‖w(0)‖2L2 + e
´

t
0
c‖A1/2u‖2

L2ds

ˆ t

0

e−
´

s
0
c‖A1/2u‖2

L2dτ‖ϕ‖2V ′ds.

Since
ˆ t

0

c‖A1/2u‖2L2ds ≤ cF (G)t,

where, G is the Grashof number (defined as G = ‖f‖ [8]) and F (G) is a function
of G, we have

e
´

t
0
c‖A1/2u‖2

L2ds ≤ ecF (G)t.

Moreover

e−
´ s
0
c‖A1/2u‖2

L2dτ ≤ 1,

and

‖w(0)‖2L2 = ‖uN(x, 0)− u0(x)‖2L2 ≤ ε2.

We have

‖w(t)‖2L2 ≤ ecF (G)t‖w(0)‖2L2 + ecF (G)t

ˆ t

0

||ϕ||2V ′ds

≤ O

(
ε+

ε2√
λ

)
ecF (G)t.
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Therefore

sup
[0,T ]

‖w(t)‖2L2 ≤ O

(
ε+

ε2√
λ

)
.

�

Lemma 5.3. Assume

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω)) + ‖∇ · ũN‖4L4([0,T ];L2(Ω)) ≤ ε2, (5.8)

and with the Hodge decomposition (5.3), we have

‖vN‖L4([0,T ];H1(Ω)) ≤ c
√
ε. (5.9)

Proof. Consider the Hodge decomposition

ũN = uN + vN = uN ⊕ v1 ⊕ v2

with
vN = v1 ⊕ v2,

where v1 = ∇p1 and v2 = ∇p2, p1 and p2 are the solutions of the following two
systems, respectively. 




∆p1 = 0,

∂p1

∂n
= γ(ũN − v2),

(5.10)

and {
∆p2 = ∇ · ũN ,

T r(p2) = 0.
(5.11)

Here, γ is the trace operator and Tr(p2) means the value of p2 on the boundary.
According to Lions & Magenes [18], the above two systems have unique solutions
(up to an additive constant). First, we solve for p2 from (5.11). Accordingly, v2 can
be obtained. Then, we use v2 to solve for p1 from (5.10) and find v1 afterwards.

From (5.11) and (5.8), we have

‖v2‖L4([0,T ];H1(Ω)) ≤ ‖p2‖L4([0,T ];H2(Ω))

≤ c‖∇ · ũN‖L4([0,T ];L2(Ω))

≤ cε1/2.

From (5.10) and (5.8),

‖v1‖L4([0,T ];H1(Ω)) ≤ ‖p1‖L4([0,T ];H2(Ω)) (5.12)

≤ c‖γ(ũN − v2)‖L4([0,T ];H1/2(Ω))

≤ c‖ũN |∂Ω‖L4([0,T ];H1/2(∂Ω)) + c‖γ(v2)‖L4([0,T ];H1/2(Ω))

≤ cε1/2 + c‖Tr(v2) · nΩ‖L4([0,T ];H1/2(Ω))

≤ cε1/2 + c‖v2‖L4([0,T ];H1(Ω))

≤ c
√
ε.

Therefore,

‖vN‖L4([0,T ];H1(Ω)) = ‖v1‖L4([0,T ];H1(Ω)) + ‖v2‖L4([0,T ];H1(Ω)) ≤ c
√
ε.

�

Note that (5.9) also implies
(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/4

≤ c
√
ε,

(
ˆ T

0

‖vN‖4L2(Ω)dt

)1/4

≤ c
√
ε.

Proof of Theorem 3.4
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Proof. Applying the Leray projection operator P to (5.2), one obtains, under the
assumption that Pf = f ,

∂tPũN − P∆ũN + PũN · ∇ũN = f + Pf̃ .

Recall that P is the orthogonal projection. By Hodge decomposition

ũN = PũN + (I − P)ũN =: uN + vN .

Then

∂tuN +AuN + PuN · ∇uN + P(ũN · ∇ũN − uN · ∇uN ) = f + Pf̃ + P∆vN .

Here, A is the Stokes’ operator.

P (ũN · ∇ũN − uN · ∇uN ) = P ((ũN − uN ) · ∇ũN + uN · ∇(ũN − uN))

= P (vN · ∇ũN + uN · ∇vN )

=: ψ.

(5.13)

Next, we will estimate

ˆ T

0

‖ψ‖2V ′ dt.

Note that ‖ψ‖V ′ = sup
w∈V,‖w‖V ≤1

〈ψ,w〉, where

〈ψ,w〉 =
ˆ

Ω

P(vN · ∇ũN + uN · ∇vN ) · w dx. (5.14)

We estimate (5.14) term by term. Since w is divergence free, we have
ˆ

Ω

P(vN · ∇ũN ) · w dx =

ˆ

Ω

(vN · ∇ũN ) · w dx

≤ ‖∇ũN‖L2(Ω)‖vN‖L4(Ω)‖w‖L4(Ω).

By Sobolev inequality, ‖w‖L4(Ω) ≤ c‖w‖V ≤ c and thus

‖P(vN · ∇ũN )‖V ′ ≤ c‖∇ũN‖L2(Ω)‖vN‖L4(Ω)

≤ c‖∇ũN‖L2(Ω)‖vN‖1/2L2(Ω)‖∇vN‖1/2L2(Ω),
(5.15)

where in the last line, we used the Ladyzhenskaya’s inequality [5].
Therefore

ˆ T

0

‖P(vN · ∇ũN )‖2V ′ dt ≤ c

ˆ T

0

‖∇ũN‖2L2(Ω)‖vN‖L2(Ω)‖∇vN‖L2(Ω) dt

≤ c

(
ˆ T

0

‖∇ũN‖4L2(Ω)dt

)1/2(
ˆ T

0

‖vN‖4L2(Ω)dt

)1/4(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/4

.

Since

λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ ε2,

we have
ˆ T

0

‖∇ũN‖4L2(Ω)dt ≤
ε2

λ
.

Therefore (
ˆ T

0

‖∇ũN‖4L2(Ω)dt

)1/2

≤ ε√
λ
. (5.16)

Applying Lemma 5.3, we have
(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/4

≤ c
√
ε,

(
ˆ T

0

‖vN‖4L2(Ω)dt

)1/4

≤ c
√
ε.
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Therefore
ˆ T

0

‖P(vN · ∇ũN)‖2V ′ dt ≤ cε2√
λ
. (5.17)

Next, we estimate the second term of (5.14):

ˆ

Ω

P(uN · ∇vN ) · w dx.
Similarly, we have

‖P(uN · ∇vN )‖V ′ ≤ ‖∇vN‖L2(Ω)‖uN‖L4(Ω) ≤ ‖∇vN‖L2(Ω)‖uN‖H1(Ω).

Therefore
ˆ T

0

‖P(uN · ∇vN )‖2V ′ dt ≤
ˆ T

0

‖∇vN‖2L2(Ω)‖uN‖2H1(Ω) dt

≤
(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/2(
ˆ T

0

‖uN‖4H1(Ω)dt

)1/2

.

Since
(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/2

≤ cε,

and (
ˆ T

0

‖uN‖4H1(Ω)dt

)1/2

≤
(
ˆ T

0

‖ũN‖4H1(Ω)dt

)1/2

≤ ε√
λ
.

Therefore
ˆ T

0

‖P(uN · ∇vN )‖2V ′ dt ≤ cε2√
λ
. (5.18)

Combining (5.17) and (5.18), we have
ˆ T

0

‖ψ‖2V ′ dt ≤ O

(
ε2√
λ

)
. (5.19)

Moreover, since

‖P(∆vN )‖V ′ ≤ ‖∇vN‖L2(Ω)‖w‖H1(Ω), (5.20)

we have
ˆ T

0

‖P(∆vN )‖2V ′ dt ≤
ˆ T

0

‖∇vN‖2L2(Ω)‖w‖2H1(Ω) dt (5.21)

≤
(
ˆ T

0

‖∇vN‖4L2(Ω)dt

)1/2(
ˆ T

0

‖w‖4H1(Ω)dt

)1/2

≤ cε.

Denoting ϕ := Pf̃ + P(∆vN )− ψ, we have

duN

dt
+AuN +B(uN , uN ) = Pf + ϕ.

Since
ˆ T

0

‖P(∆vN )‖2V ′ dt ≤ cε,

ˆ T

0

‖Pf̃‖2V ′ dt ≤
ˆ T

0

‖Pf̃‖2L2 dt ≤ ε2,

ˆ T

0

‖ψ‖2V ′ dt ≤ O

(
ε2√
λ

)
,

we obtain
ˆ T

0

‖ϕ‖2V ′ dt ≤ O

(
ε+

ε2√
λ

)
.



16 A. BISWAS, J. TIAN, AND S. ULUSOY

Since ‖uN(x, 0) − u0(x)‖2L2 ≤ ‖ũN(x, 0)− u0(x)‖2L2 ≤ ε2. Applying Lemma 5.2,
we have

sup
[0,T ]

‖u(t)− uN (t)‖2L2 ≤ O

(
ε+

ε2√
λ

)
.

Moreover, since

(
ˆ T

0

‖vN‖4L2(Ω)dt

)1/4

≤ c
√
ε,

Therefore
ˆ T

0

‖u− ũN‖4L2(Ω)dt ≤
ˆ T

0

‖u− uN‖4L2(Ω)dt+

ˆ T

0

‖vN‖4L2(Ω)dt

≤ O

(
ε2 +

ε4

λ

)
+O

(
ε2
)
= O

(
ε2 +

ε4

λ

)
.

So
(
ˆ T

0

‖u− ũN‖4L2(Ω)dt

)1/4

≤ O
(
ε1/2 +

ε

λ1/4

)
.

�

Lemma 5.4. Given ε > 0, assume that (u, p) satisfies (3.8), then, there exists
(ũN , p̃N) ∈ FN satisfying

sup
t∈[0,T ]

‖u− ũN‖L2(Ω) ≤ ε, ‖u− ũN‖H1,2(Ω×[0,T ]) ≤ ε, (5.22)

(
ˆ T

0

‖u− ũN‖4W 1,4(Ω)dt

)1/4

≤ ε, ‖p− p̃N‖L2([0,T ];H1(Ω)) ≤ ε.

Proof. From Theorem 2.1, as long as the solution (u, p) of the NSEs belongs to the
spaces in (5.22), we can find (ũN , p̃N ) ∈ FN as smooth as we want and close to
(u, p), which means (5.22) holds. From the classical results of the 2-D NSEs, we
know that we can find the solution (u, p) that belongs to the spaces in (5.22). �

Proof of Theorem 3.5:

Proof. From Lemma 5.4, given ε > 0, assume that u is a strong solution of (3.8)
and there is an N such that ũN ∈ FN satisfying sup

t∈[0,T ]

‖u − ũN‖L2(Ω) ≤ ε, ‖u −

ũN‖H1,2(Ω×[0,T ]) ≤ ε,

(
ˆ T

0

‖u− ũN‖4W 1,4(Ω)dt

)1/4

≤ ε, ‖p−p̃N‖L2([0,T ];H1(Ω)) ≤ ε.

Now, we estimate the left hand side of (3.11) term by term:
Since sup

t∈[0,T ]

‖u− ũN‖L2(Ω) ≤ ε, we have

‖u(x, 0)− ũN (x, 0)‖2L2(Ω) ≤ ε2. (5.23)

Since ∇ · u = 0, we have

‖∇ · ũN‖4L4([0,T ];L2(Ω)) = ‖∇ · ũN −∇ · u‖4L4([0,T ];L2(Ω)) (5.24)

≤ c‖ũN − u‖4L4([0,T ];H1(Ω))

≤ cε4.
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Consider

λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ cλ‖ũN − u‖4L4([0,T ];H1(Ω)) + cλ‖u‖4L4([0,T ];H1(Ω))

≤ cλε4 + cλF (G).

Picking λ small enough, we have

λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ cε4. (5.25)

Consider

‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f‖2L2(Ω×[0,T ]) (5.26)

= ‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − (∂tu−∆u+ u · ∇u+∇p) ‖2L2(Ω×[0,T ])

= ‖(∂tũN − ∂tu) + (∆u −∆ũN) + (ũN · ∇ũN − u · ∇u) + (∇p̃N −∇p)) ‖2L2(Ω×[0,T ])

≤ c‖∂tũN − ∂tu‖2L2(Ω×[0,T ]) + c‖∆u−∆ũN‖2L2(Ω×[0,T ])

+ c‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ]) + c‖∇p̃N −∇p‖2L2(Ω×[0,T ]).

We have
‖∂tũN − ∂tu‖2L2(Ω×[0,T ]) ≤ ε2,

‖∆u−∆ũN‖2L2(Ω×[0,T ]) ≤ ε2,

and
‖∇p̃N −∇p‖2L2(Ω×[0,T ]) ≤ ε2.

Moreover

‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ]) (5.27)

= ‖ũN · ∇ũN − u · ∇ũN + u · ∇ũN − u · ∇u‖2L2(Ω×[0,T ])

= ‖(ũN − u) · ∇ũN + u · (∇ũN −∇u)‖2L2(Ω×[0,T ])

≤ ‖ũN − u‖2L4(Ω×[0,T ])‖∇ũN‖2L4(Ω×[0,T ]) + ‖u‖2L4(Ω×[0,T ])‖∇ũN −∇u‖2L4(Ω×[0,T ]).

We have

‖∇ũN‖L4(Ω×[0,T ]) ≤ ‖∇ũN−∇u‖L4(Ω×[0,T ])+‖∇u‖L4(Ω×[0,T ]) ≤ cε+cF (G) ≤ cF (G).

Moreover,

‖ũN − u‖L4(Ω×[0,T ]) ≤ cε, ‖u‖L4(Ω×[0,T ]) ≤ cF (G), ‖∇ũN −∇u‖L4(Ω×[0,T ]) ≤ cε.

So
‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ]) ≤ cε2.

Therefore

‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f‖2L2(Ω×[0,T ]) ≤ O
(
ε2
)
. (5.28)

Moreover

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω)) = ‖ũN |∂Ω − u|∂Ω‖4L4([0,T ];H1/2(∂Ω)) (5.29)

≤ c‖ũN − u‖4L4([0,T ];H1(Ω))

≤ cε4.

In summary, combining (5.23)-(5.29), we have

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω)) + ‖ũN(x, 0)− u0(x)‖2L2(Ω)

+ ‖∂tũN −∆ũN + ũN · ∇ũN +∇p̃N − f‖2L2(Ω×[0,T ])

+ ‖∇ · ũN‖4L4([0,T ];L2(Ω)) + λ‖ũN‖4L4([0,T ];H1(Ω)) ≤ O
(
ε2
)
.

�

Proof of Theorem 3.6:
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Proof. Considering

‖ũN1 − ũN2‖L4([0,T ];L2(Ω))

= ‖ũN1 − u1 + u2 − ũN2 + u1 − u2‖L4([0,T ];L2(Ω))

≤ ‖ũN1 − u1‖L4([0,T ];L2(Ω)) + ‖u2 − ũN2‖L4([0,T ];L2(Ω)) + ‖u1 − u2‖L4([0,T ];L2(Ω)).

From (3.10), ‖ũN1−u1‖L4([0,T ];L2(Ω)) ≤ O
(
ε1/2 +

ε

λ1/4

)
and ‖u2−ũN2‖L4([0,T ];L2(Ω)) ≤

O
(
ε1/2 +

ε

λ1/4

)
, from the stability of solutions of NSE, we have ‖u1−u2‖L4([0,T ];L2(Ω)) ≤

O(‖u0,1 − u0,2‖L2(Ω) + ‖f1 − f2‖L4([0,T ];L2(Ω))).
Therefore

‖uN1−uN2‖L4([0,T ];L2(Ω)) ≤ O
(
ε1/2 +

ε

λ1/4
+ ‖u0,1 − u0,2‖L2(Ω) + ‖f1 − f2‖L4([0,T ];L2(Ω))

)
.

This implies that our scheme is approximately stable. �
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