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Abstract

In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in
the interaction between a free fluid and a flow in a poroelastic medium. The flows are governed
by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass
conservation, balance of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed for-
mulations in both domains, where the symmetry of the Stokes and poroelastic stress tensors is
imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In turn,
since the transmission conditions become essential, they are imposed weakly, which is done by
introducing the traces of the fluid velocity, structure velocity, and the poroelastic media pressure
on the interface as the associated Lagrange multipliers. The existence and uniqueness of a solution
are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time
formulation with non-matching grids, together with the corresponding stability bounds. In addi-
tion, we develop a new multipoint stress-flux mixed finite element method by involving the vertex
quadrature rule, which allows for local elimination of the stresses, rotations, and Darcy fluxes.
Well-posedness and error analysis with corresponding rates of convergence for the fully-discrete
scheme are complemented by several numerical experiments.

1 Introduction

The interaction of a free fluid with a deformable porous medium, referred to as fluid-poroelastic
structure interaction (FPSI), is a challenging multiphysics problem. It has applications to predicting
and controlling processes arising in gas and oil extraction from naturally or hydraulically fractured
reservoirs, modeling arterial flows, and designing industrial filters, to name a few. For this physical
phenomenon, the free fluid region can be modeled by the Stokes (or Navier—Stokes) equations, while
the flow through the deformable porous medium is modeled by the Biot system of poroelasticity. In
the latter, the volumetric deformation of the elastic porous matrix is complemented with the Darcy
equation that describes the average velocity of the fluid in the pores. The two regions are coupled via
dynamic and kinematic interface conditions, including balance of forces, continuity of normal velocity,
and a no slip or slip with friction tangential velocity condition. The model exhibits features of both
coupled Stokes-Darcy flows and fluid-structure interaction (FSI).
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To the authors’ knowledge, one of the first works in analyzing the Stokes-Biot coupled problem
is [53], where well-posedness for the fully dynamic problem is established by developing an appropriate
variational formulation and using semigroup methods. One of the first numerical studies is presented
in [12], where monolithic and iterative partitioned methods are developed for the solution of the
coupled system. A non-iterative operator splitting scheme with a non-mixed Darcy formulation is
developed in [21]. Finite element methods for mixed Darcy formulations, where the continuity of
normal flux condition becomes essential, are considered in [20] using Nitsche’s coupling and in [§]
using a pressure Lagrange multiplier. More recently, a nonlinear quasi-static Stokes—Biot model for
non-Newtonian fluids is studied in [3]. The authors establish well-posedness of the weak formulation
in Banach space setting, along with stability and convergence of the finite element approximation.
In [25], the fully dynamic coupled Navier-Stokes/Biot system with a pressure-based Darcy formulation
is analyzed. Additional works include optimization-based decoupling method [24], a second order in
time split scheme [44], various discretization methods [13/23,/56], dimensionally reduced model for flow
through fractures [22], and coupling with transport [4]. All of the above mentioned works are based
on displacement formulations for the elasticity equation. In a recent work [47], the first mathematical
and numerical study of a stress-displacement mixed elasticity formulation for the Stokes-Biot model
is presented.

The goal of the present paper is to develop a new fully mixed formulation of the quasi-static Stokes-
Biot model, which is based on dual mixed formulations for all three components - Darcy, elasticity,
and Stokes. In particular, we use a velocity-pressure Darcy formulation, a weakly symmetric stress-
displacement-rotation elasticity formulation, and a weakly symmetric stress-velocity-vorticity Stokes
formulation. This formulation exhibits multiple advantages, including local conservation of mass for
the Darcy fluid, local poroelastic and Stokes momentum conservation, and accurate approximations
with continuous normal components across element edges or faces for the Darcy velocity, the poroe-
lastic stress, and the free fluid stress. In addition, dual mixed formulations are known for their
locking-free properties and robustness with respect to the physical parameters, including the regimes
of almost incompressible materials, low poroelastic storativity, and low permeability [45,/60].

Our five-field dual mixed Biot formulation is based on the model developed in [45] and studied
further in [7]. It is also considered in [47] for the Stokes-Biot problem. Our analysis also extends
to the strongly symmetric mixed four-field Biot formulation developed in [59]. Our three-field dual
mixed Stokes formulation is based on the models developed in [34}35]. In particular, we introduce
the stress tensor and subsequently eliminate the pressure unknown, by utilizing the deviatoric stress.
In order to impose the symmetry of the Stokes stress and poroelastic stress tensors, the vorticity and
structure rotation, respectively, are introduced as additional unknowns. The transmission conditions
consisting of mass conservation, conservation of momentum, and the Beavers—Joseph—Saffman slip
with friction condition are imposed weakly via the incorporation of additional Lagrange multipliers:
the traces of the fluid velocity, structure velocity and the poroelastic media pressure on the interface.
The resulting variational system of equations is then ordered so that it shows a twofold saddle point
structure. The well-posedness and uniqueness of both the continuous and semidiscrete continuous-
in-time formulations are proved by employing some classical results for parabolic problems [52}[54]
and monotone operators, and an abstract theory for twofold saddle point problems [1,133]. In the
discrete problem, for the three components of the model we consider suitable stable mixed finite
element spaces on non-matching grids across the interface, coupled through either conforming or non-
conforming Lagrange multiplier discretizations. We develop stability and error analysis, establishing
rates of convergence to the true solution. The estimates we establish are uniform in the limit of the
storativity coefficient going to zero.

Another main contribution of this paper is the development of a new mixed finite element method for



the Stokes-Biot model that can be reduced to a positive definite cell-centered pressure-velocities-traces
system. We recall the multipoint flux mixed finite element (MFMFE) method for Darcy flow developed
in [19./40,57./58], where the lowest order Brezzi-Douglas-Marini BDM]; velocity spaces [17,/18,48] and
piecewise constant pressure are utilized. An alternative formulation based on a broken Raviart-Thomas
velocity space is developed in [43]. The use of the vertex quadrature rule for the velocity bilinear form
localizes the interaction between velocity degrees of freedom around mesh vertices and leads to a block-
diagonal mass matrix. Consequently, the velocity can be locally eliminated, resulting in a cell-centered
pressure system. In turn, the multipoint stress mixed finite element (MSMFE) method for elasticity is
developed in [5,6]. It utilizes stable weakly symmetric elasticity finite element triples with BDM]; stress
spaces [64,10,/11,(16L30,46]. Similarly to the MFMFE method, an application of the vertex quadrature
rule for the stress and rotation bilinear forms allows for local stress and rotation elimination, resulting
in a cell-centered displacement system. We also refer the reader to the related finite volume multipoint
stress approximation (MPSA) method for elasticity [41,49,50]. Recently, combining the MSMFE and
MFMFE methods, a multipoint stress-flux mixed finite element (MSFMFE) method for the Biot
poroelasticity model is developed in [7]. There, the dual mixed finite element system is reduced to
a cell-centered displacement-pressure system. The reduced system is comparable in cost to the finite
volume method developed in [51].

In this paper we note for the first time that the MSMFE method for elasticity can be applied to the
weakly symmetric stress-velocity-vorticity Stokes formulation from [34,35] when BDM;-based stable
finite element triples are utilized. With the application of the vertex quadrature rule, the fluid stress
and vorticity can be locally eliminated, resulting in a positive definite cell-centered velocity system.
To the best of our knowledge, this is the first such scheme for Stokes in the literature.

Finally, we combine the MFMFE method for Darcy with the MSMFE methods for elasticity and
Stokes to develop a multipoint stress-flux mixed finite element for the Stokes-Biot system. We analyze
the stability and convergence of the semidiscrete formulation. We further consider the fully discrete
system with backward Euler time discretization and show that the algebraic system on each time step
can be reduced to a positive definite cell-centered pressure-velocities-traces system.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section [2| we introduce the
model problem and in Section [3] we derive a fully-mixed variational formulation, which is written as
a degenerate evolution problem with a twofold saddle point structure. Next, existence, uniqueness
and stability of the solution of the weak formulation are obtained in Section The corresponding
semidiscrete continuous-in-time approximation is introduced and analyzed in Section [5] where the
discrete analogue of the theory used in the continuous case is employed to prove its well-posedness.
Error estimates and rates of convergence are also derived there. In Section[6] the multipoint stress-flux
mixed finite element method is presented and the corresponding rates of convergence are provided,
along with the analysis of the reduced cell-centered system. Finally, numerical experiments illustrating
the accuracy of our mixed finite element method and its applications to coupling surface and subsurface
flows and flow through poroelastic medium with a cavity are reported in Section

We end this section by introducing some definitions and fixing some notations. Let O C R",
n € {2,3}, denote a domain with Lipschitz boundary. For s > 0 and p € [1, +o0], we denote by LP(O)
and W*P(0O) the usual Lebesgue and Sobolev spaces endowed with the norms || -[|1,p(0y and || [|ws»(0)s
respectively. Note that WOP(Q) = LP(O). If p = 2 we write H(O) in place of W52(0), and denote
the corresponding norm by || - [lgs(0). Similar notation is used for a section I' of the boundary of
0. By M and M we will denote the corresponding vectorial and tensorial counterparts of a generic
scalar functional space M. The L?(0) inner product for scalar, vector, or tensor valued functions is
denoted by (-,-)o. The L?(T) inner product or duality pairing is denoted by (-, ). For any vector



field v = (vi)i=1n, we set the gradient and divergence operators, as

[ Ov; _ o = du;
Vv = (81/‘j>m-1,n and div(v) := Z a2,

For any tensor fields T := (74;)i j=1,n and ¢ := ((ij)ij=1,n, We let div(7) be the divergence operator
div acting along the rows of 7, and define the transpose, the trace, the tensor inner product, and the
deviatoric tensor, respectively, as

n

n
7't = (Tji)i,jzl,na tr(T) = ZTii, T C = Z TijCijv and Td =T —
1=1 1,7=1

1
—t 1
~tr(r)1L

where I is the identity matrix in R™*". In addition, we recall the Hilbert space
H(div; 0) = {v cL2(0): div(v) LQ(O)},

equipped with the norm HvH%—I(div;(’)) = ]\v[\iQ(O) + Hdiv(v)Hig(O). The space of matrix valued func-
tions whose rows belong to H(div; O) will be denoted by H(div; O) and endowed with the norm
\|T||%H(div;0) = ||T"i2(o) + ||div(7')|]i2(0). Finally, given a separable Banach space V endowed with
the norm || - ||y, we let LP(0,T’; V) be the space of classes of functions f : (0,7) — V that are Bochner
measurable and such that || f|lre,r;v) < o0, with

T
1By = / IF@OIR dt, (| flle oy = esssup | f(1)]lv-
0 te[0,7T

2 The model problem

Let 2 C R™, n € {2,3}, be a Lipschitz domain, which is subdivided into two non-overlapping and
possibly non-connected regions: fluid region 2y and poroelastic region €,. Let I'y, = 0Q N 09,
denote the (nonempty) interface between these regions and let I'y = 9Qy \ T'y, and ') = 09, \ I'yy
denote the external parts on the boundary 9€2. We denote by ny and n,, the unit normal vectors that
point outward from 99 and 0€,, respectively, noting that ny = —n, on I'y,. Let (u,,ps) be the
velocity-pressure pair in ), with x € {f,p}, and let i, be the displacement in €. Let x> 0 be the
fluid viscosity, let f, be the body force terms, and let ¢, be external source or sink terms.

We assume that the flow in Q is governed by the Stokes equations, which are written in the
following stress-velocity-pressure formulation:

of = —pr—|—2ue(uf), —diV(O'f) = fy, diV(qu) =gy in QfX (0,77, 2.1)
omy =0 on F? x (0,T], uf =0 on FfD x (0,77, .

1
where o is the stress tensor, e(uy) = B (Vus + (Vuy)') stands for the deformation rate tensor,

Iy = I‘I}I UTR, and T > 0 is the final time. Next, we adopt the approach from [1,34], and include as
a new variable the vorticity tensor 7,

vr =g (Vay = (Vup)h).

N



In this way, owing to the fact that tr(e(uy)) = div(uy) = ¢y, we find that (2.1)) can be rewritten,
equivalently, as the set of equations with unknowns o, and uy, given by

1 1
ﬁ(r? = Vu]c—'yf—ﬁqfl, —div(ey) = f; in Qf x (0,77,
1 .
o = (7}, pr = (tr(of) —2pqr) in Qf x (0,7, (2.2)

omy =0 on F?x(O,T}, ur =0 on FfDx(O,T].

Notice that the fourth equation in has allowed us to eliminate the pressure p; from the system
and provides a formula for its approximation through a post-processing procedure. For simplicity we
assume that |FI}I] > 0, which will allow us to control o s by O’;lc. The case |FI}I] = 0 can be handled as
in [34-36] by introducing an additional variable corresponding to the mean value of tr(o ).

In turn, let o, and o, be the elastic and poroelastic stress tensors, respectively, satisfying
Ao, =e(n,) and o, :=0.—app I in Q,x (0,7, (2.3)

where 0 < oy, < 1 is the Biot-Willis constant, and A is the symmetric and positive definite compliance
tensor, which in the isotropic case has the form, for all tensors 7,

1 A . _
A(r) == o <T " fn/\p tr(7) I) . with  A7N7) =2p, T+ A tr(T) T, (2.4)
satisfying
1
VT e RV, C—— T:17 < A(T): 7 < ST— T:T Vx€EQ,. (2.5)

In this case, 0. = A div(np) I+2p, e(np), and 0 < Amin < Ap(x) < Amax and 0 < pimin < pp(x) <
Hmax are the Lamé parameters. The poroelasticity region €2, is governed by the quasi-static Biot
system [14]:
. - 0 : : :
—div(oy) =f,, pK 'u,+Vp,=0, ot (s0pp + le("?p)) +div(w) =g in Qx (0,77,

u, -n,=0 on FpNx(O,T], pp =0 on I‘EX(O,T],

opn, =0 on fgx(O,T], n,=0 on f‘pr(O,T],

(2.6)
where I'), = I‘pN U I‘pD = FpN U FpD, so > 0 is a storativity coefficient and K(x) is the symmetric and
uniformly positive definite rock permeability tensor, satisfying, for some constants 0 < kmin < Kmax,

VweR", kpinw-w < (Kw) W < kpaxw-w Vx € Q. (2.7)

To avoid the issue with restricting the mean value of the pressure, we assume that |FpD| > 0. We
also assume that F?, FE, and f? are not adjacent to the interface I'y,, i.e., 3 s > 0 such that
dist (I‘J[c), Lyp) > s, dist (FpD, I'yp) > s, and dist (pr, I'tp) > s. This assumption is used to simplify the
characterization of the normal trace spaces on I'f),.

Next, we introduce the following transmission conditions on the interface I'¢, [8}|12,20,53]:

ot

n—1
- n
oy +posss Y \/K; 1{<‘1f - at”) 'tf,j} trg = —ppny on I'p,x(0,7],
j=1

0
uy-ny+ <np+up> 'n, =0, omy+opn, =0 on Iy x (0,77,
(2.8)

5



where t7;, 1 <j <n—1,is an orthogonal system of unit tangent vectors on I'y,, K; = (Kty;) -ty ,
and agys > 0 is an experimentally determined friction coefficient. The first and second equations in
correspond to mass conservation and conservation of momentum on I't,, respectively, whereas
the third one can be decomposed into its normal and tangential components, as follows:

- on
(omy) ny = —pp, (oymy) tr; = —posss /K <uf - 8;) “tp;oon Ty x (0,7,

representing balance of normal stress and the Beaver—Joseph—Saffman (BJS) slip with friction condi-
tion, respectively.

Finally, the above system of equations is complemented by the initial condition p,(x,0) = ppo(x)
in Q,. We stress that, similarly to [47], compatible initial data for the rest of the variables can be
constructed from p, o in a way that all equations in the system —, except for the unsteady
conservation of mass equation in the first row of , hold at ¢ = 0. This will be established in
Lemma below. We will consider a weak formulation with a time-differentiated elasticity equation
and compatible initial data (o0, Ppo)-

3 The weak formulation

In this section we proceed analogously to [3, Section 3] (see also [34]) and derive a weak formulation
of the coupled problem given by (2.2)), (2.3)—(2.6)), and (2.8).
3.1 Preliminaries
For the stress tensor, velocity, and vorticity in the Stokes region, we use the Hilbert spaces, respectively,
Xf = {Tf S H(div; Qf) Ty = 0 on FI}I}, Vf = LQ(Qf), Qf = {Xf S Lz(Qf) : ch = —Xf},
endowed with the corresponding norms

177l o= 7 sllm@ivie,),  IVellvy = Ivilleaey),  lIxplle, = lIxylliz@y)-
For the unknowns in the Biot region we introduce the Hilbert spaces:

X, 1= {7, € H(divi2,) : 7ymy =0 on TN}, V= L3(Q)), @, i={x, € L3(Q) : X, =~ x|
V, = {vp € H(div;Q,): vp-n, =0 on I‘pN}, W, := L3(Q,),

endowed with the standard norms

170l = ITpllm@ivie,),  [IVsliv, = [IVsllLz,),  Ixplle, = Ixplize,),

Ivpllv, == [Ivplla@ivie,):  lwpllw, = llwpllrz@,)-

Finally, analogously to [3}8,31,134,/47] we need to introduce the Lagrange multiplier spaces A, :=
(Vp-mylr,,), Ay := (Xpnglr,,), and A := (Xpnylr,,)'. According to the normal trace theorem,
since v, € V, € H(div; ), then v, - n, € H/2(9Q,). Tt is shown in [31] that, if v, -n, = 0 on
9y \T,, then v, -n, € H/2%(T';,). This argument has been modified in [8] for the case v, n, =0
on Fgl and dist (I‘E, I'¢p) > s > 0. In particular, it holds that

(vp - np7£>rfp < CHVPHH(diV;Qp)HgHHl/Q(Ffp): VvpeVp, € Hl/Q(Ffp)- (3.1)

6



Similarly,

(Tene, ¥)r,, < Cllmillm@von ¥llazr,,), VTeeXi e HY(Ty,), « € {f,p}. (3.2)

Therefore we can take A, := H/2(T',), Ay := HY/2(T,), and A, := HY2(T,), endowed with the
nOrms

I€lla, = Nelmrzwy,):  1¥la; = [¥llmreer,,), and l@la, = lola2w,)  (33)

3.2 Lagrange multiplier formulation

We now proceed with the derivation of our Lagrange multiplier variational formulation for the coupling
of the Stokes and Biot problems. To this end, and inspired by [3}35], we begin by introducing the
structure velocity us := 9y m,, € V satisfying us = 0 on f? x (0,T] (cf. the last equation in ),
and three Lagrange multipliers modeling the Stokes velocity, structure velocity and Darcy pressure on
the interface, respectively,

¢ = uglr,, €Ay, 0 :=uslr, €As, and A := pylr,, €Ay

The reason for introducing these Lagrange multipliers is twofold. First, uy, us, and p, are all modeled
in the L? space, thus they do not have sufficient regularity for their traces on I' fp to be well defined.
Second, the Lagrange multipliers are utilized to impose weakly the transmission conditions ([2.8)).

To impose the symmetry condition of o, in a weak sense we introduce the rotation operator p,, :=

1
5(V17p — Vn;,). Notice that in the weak formulation we will use its time derivative, that is, the

structure rotation velocity
1
Vp = Opy, = B (VuS — (Vus)t) € Qy.

From the definition of the elastic and poroelastic stress tensors o, o, (cf. (2.3))) and recalling that
o is connected to the displacement 7, through the relation A(o.) = e(n,), we deduce the identities

div(n,) = tr(e(n,)) = tr(Aoe) = trA(o, + apppI) (3.4)

and
O Alop +apppI) = Vus —7,. (3.5)

Then, similarly to [3,8,34,35], we test the first equation of (2.2)), the second equation of (2.6), and
(3.5) with arbitrary 75 € X¢,v, € V,,, and 7, € X,,, respectively, integrate by parts, utilize the fact
that o"]ic STy = a‘} : Tf}, test the third equation of (2.6 with w, € W, employing (3.4)), impose the
remaining equations weakly, and utilize the transmission conditions in (2.8) to obtain the variational
problem,

1 . 1
ﬂ (U??T?)Qf + (ufvdlv(Tf))Qf + (7fa Tf)Qf - <Tfnfa 90>Ffp = n (Qf L Tf)va
— (v, div(oy))a, = (£r, vyi)a,,

- (Uf’xf)Qf = Oa

(8t A(GP + appp I)’ Tp)Qp + (u87div(7—p))ﬂp + (7p77—p)ﬂp - <Tpnp7 0>Ffp =0,

- (VSadiV(UP))Qp = (fP’VS)QP’

- (o-pa Xp)Qp — 0)



H (K_lup»vp)Qp — (Pp, div(vp))a, + (vp - 1y, )\>Ffp =9, (3.6)

(50 O pp, wp)Qp + ap (O A(op + appp 1), wy I)Qp + (wp, div(up))Qp = (qp; wp)va
- <QO : nf + (0+up) : np7£>1"fp = 07

<O'fnf,’(/)>rfp + M QBJs Zl <\/I?((P — 0) . tf,g,’d’ . tf’j>Ff + <’¢J . Ilfv)\>1"fp = 07
j= P
n—1

(opny, ¢>Ffp — HQBJs Zl <\/E(‘P —0)-tp;, - tf7j>Ff + (¢ my, )\>Ffp =0
j= P

The last three equations impose weakly the transmission conditions ([2.8)). In particular, the equation
with test function £ imposes the mass conservation, the equation with ¥ imposes the last equation in
(2.8), which is a combination of balance of normal stress and the BJS condition, while the equation
with ¢ imposes the conservation of momentum. We emphasize that this is a new formulation. To our
knowledge, this is the first fully dual-mixed formulation for the Stokes-Biot problem.

Remark 3.1 The time differentiated equation in the fourth row of allows us to eliminate the
displacement variable m,, and obtain a formulation that uses only us. As part of the analysis we will
construct suitable initial data such that, by integrating in time the fourth equation of , we can
recover the original equation

(A(op + appp I)an)Qp + (np7 diV(Tp))Qp + (pp7 Tp)ﬂp - <Tpnpaw>rfp =0, (3.7)

where w = nylr,, -

To simplify the notation, we set the following bilinear forms:

ag(op,7s) == 5= (05, TF)a,  ap(ap,vp) = p(K lupavp)ﬂpv

2p
ae(Op, pp; Tp, wp) = (A(op +appp 1), 7y + apwy I)Qw
bf(vavf) = (div(Tf)7vf)Qf7 bS(TP7VS) = (diV(Tp)’VS)Qp7 (38)
bp(Vp, wp) 1= — (div(vy), U’p)ﬂpa br(vp, &) == (vp - np7§>rfp )
bsk,*(T*v X*) = (T*a X*)Q*y bn, (T*7¢) = <T*Il*,’¢>pfp , with x € {f?p}a
and .
cais(p, 0:9, @) = pomss Z <\/Kj1(90 —0) -ty (Yv—9)- tf,j> J
= Tty (3.9)
CF("’ba ¢a g) = <¢ : nfa€>1‘fp + <¢ : np7£>1"fp .

There are many different ways of ordering the variables in (3.6)). For the sake of the subsequent
analysis, we proceed as in [34] and [3], and adopt one leading to an evolution problem in a doubly-mixed
form. Hence, the variational formulation for the system (3.6) reads: Given

f;:[0,7] — V}, £,:00,7) >V, qr:[0,T] =X} ¢:[0,T]— W;, Ppo € Wy, op0 €Xp,



find (o, p, 0, Pp, @, 0, A, up, Us, v, Yp) 2 [0,T] — Xp X Vi X Xp X Wy X Ap X Ag X Ap x Vi x Vg x
Qy x Qp, such that p,(0) = pp,o, 0,(0) = 00 and for a.e. t € (0,7):

ap(a,Tr) + ap(up, vp) + ae(0r p, Oy Py Tp, wp) + (50 01 Pp, Wp)a,

+ bp(Vp, pp) — bp(Up, wp) + b (T, p) + b, (75, 6) + br(vp, A)

+ by(Tr,up) + bs(Tp, Us) + bsk f (T, Y f) + bskep(Tp,¥p) = — % (ar L Tg)a; + (g, wp)a,, (3.10)
— bn, (05, 9) = bn, (0, @) — br(up, &) + cais(w, 0;%, @) + cr(th, ; A) — cr(p, 8;€) = 0,
= bylor,vy) = bs(op, vs) = bk f (07, Xf) = bskp(op Xp) = (£, vi)a, + (£, Vs)a,,

VrreXpvy, € Vp,mpeXpwp € Wy h € Ap, 0 € A, € My, vy € Vv € Vi, X € Qp, X, € Q.

Now, we group the spaces and test functions as follows:
X=Xy xVxX, xW,, Y = A xAgx Ay, Z:=VxV;xQp xQp,
g = (of,u,0,p) €X, = (p,0,N) €Y, u:= (usus757,) €%,
T = (15 Tpwp) €X, = (¥,0,8) €Y, v = (v, Ve Xy Xp) €7,
where the spaces X,Y and Z are endowed with the norms, respectively,
I7lx = l7slls, +11vpllv, + Impllx, + lwpllw,,  [1%lly = ¥lla, +l1@lla. + 1€,
I¥llz == lIvillv, +Ivsliv. + lIxsllor + [Ixplle,-

Hence, we can write (3.10) in an operator notation as a degenerate evolution problem in a doubly-
mixed form:

gf(z(t)) A(a(t)) +Bi(¢(t) +B'(u(t)) = F() in X,
—Bl(g(t)) Cle(t)) =0 in Y/, (3.11)
—B(U(t)) = G({) in Z,

where, according to (3.8)—(3.9), the operators A: X - X', B, : X > Y'.C: Y > Y, and B: X — Z/,
are defined by

Ale)(T) == af(or,7f) + ap(up, vp) + by(vp, pp) — bp(up, wp),
Bi(T)(¥) := bn,(Tf,%) + bn, (T, @) + br(vp. &), (3.12)
Cle) () = cris(p, 0:9, @) + cr(Y, d; ) — cr(e, 0:€),

and
B(T)(v) := by(Ty,vy) + bs(Tp, V) + b p (T X 7) + bskep(Tpr X)) (3.13)
whereas the operator £ : X — X' is given by

E(@)(T) = ac(op, Pp; Tp, wp) + (Soppva)ﬂpa (3.14)

and the functionals F € X/, G € Z' are defined as

1
F(r) = — - (qr I,Tf)gf + (gp,wp)o, and G(v) := (ff,vf)gf + (fp, vs)a,- (3.15)



4 Well-posedness of the model

In this section we establish the solvability of (3.11)) (equivalently (3.10))). To that end we first collect
some previous results that will be used in the forthcoming analysis.

4.1 Preliminaries

We begin by recalling the following key result given in [52, Theorem IV.6.1(b)] that will be used to
establish the existence of a solution to (3.11)).

Theorem 4.1 Let the linear, symmetric and monotone operator N be given for the real vector space
E to its algebraic dual E*, and let E; be the Hilbert space which is the dual of E with the seminorm

||y = (Nx(m))l/2 x € FE.

Let M C E x Ej be a relation with domain D = { (x) # @}

Assume M is monotone and Rg(N + M) = l’) Then, for each ug € D and for each f €
WUL(0,T; Ey), there is a solution u of

%(Nu(t)) + M(ut)) 3 f(t) ae 0<t<T, (4.1)
with
Nue Whe(0,T;E}), u(t) €D, forall 0<t<T, and N u(0)=N u.

In addition, in order to show the range condition of Theorem [.1]in our context, we will require the
following theorem whose proof can be derived similarly to [33, Theorem 2.2] (see also |1, Theorem 3.13]
for a generalized nonlinear Banach version).

Theorem 4.2 Let X,Y, and Z be Hilbert spaces, and let X', Y', Z' be their respective duals. Let
A: X —-X',8:Y =Y B : X =Y, and B: X — Z' be linear bounded operators. We also let
By :Y — X" and B : Z — X' be the corresponding adjoints. Finally, we let V be the kernel of B,
that is

Vo= {r €X: B(r)(v)=0 Vve Z}.

Assume that
(i) Aly : V. —= V' is elliptic, that is, there exists a constant o > 0 such that
A(T)(T) > a|r|k VYTeV.
(i) S is positive semi-definite on 'Y, that is,
S@W)(¢) =20 VyeY.

(iii) By satisfies an inf-sup condition on V' x'Y, that is, there exists 51 > 0 such that

sup 2L S 5 1l vy ey,

04TV 71l x
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(iv) B satisfies an inf-sup condition on X X Z, that is, there exists 5 > 0 such that

B
sup B(n)v) > Blvlz VYveZ
o£rex ITlx

Then, for each (Fy, Fo,G) € X' x Y' x Z' there exists a unique (o,p,u) € X XY X Z, such that

A(e)(1) + Bi(p)(T) + B'(w)(1) = Fi(r) VTeX,
(

Bi(o)(¥) = S(e)(#) = B(y) Vyey,
B(o)(v) = G(v) VveZ

Moreover, there exists C' > 0, depending only on «, B1, B, |All,||S]|, and ||B:| such that
I(o, 0w lxxrxz < C{IRIx+ | Fally: + [Gllz }.

At this point we recall, for later use, that there exist positive constants c1(€2;) and c2(€2s), such
that (see, [18, Proposition IV.3.1] and [32, Lemma 2.5], respectively)

(@) 7ol < 1741220, + 1AiV(T ) Ba,) V7r=Tro+ (T H(diviQ)  (42)

and

Q) T4l < ITrollk, V=750 +(IeXy, (4.3)
where 75 € Ho(div; Qy) := {Tf € H(div; Q)+ (tr(ry), 1o, = O} and ¢ € R. We emphasize that
(4.3) holds since each 7; € Xy satisfies the boundary condition 7¢n; = 0 on I’l}l with |F?| > 0.

4.2 The resolvent system

Now, we proceed to analyze the solvability of (3.111 (equivalently (3.10])). First, recalling the definition

of the operators A, By, B,C, and & (cf. (3.12)), (3.13) and (3.14))), we note that problem (3.11]) can be
written in the form of (4.1)) with

o £ 00 A B B F
E=XxYxZ u=|¢ |, N=[0o 00|, M=|-B.¢Cc o |, f=|0
u 0 0 0 -B 0 0 G

(4.4)

In addition, the norm induced by the operator £ is |T|% := s¢ prHig(Qp) + | A2 (7 + apw, I)HEQ(QP),
which is equivalent to ||Tp\|i2(9p) + pr||igmp) since sg > 0. We denote by X, o and W,, 5 the closures of

the spaces X;, and W, respectively, with respect to the norms |7|lx, , == [|7pllL2(q,) and [[wpllw, , ==
[wplli2(q,). Note that X! 5 = L?(€,) and W), = W}, Next, denoting X5, := 0 x 0 x X/ 5 x W/ ,,

Y5,:=0x0x0,and Zj, := 0 x 0 x 0 x 0, the Hilbert space I, and domain D in Theorem [4.1| for
our context are

Ey:=X50x Yy xZyy, D:= {(g,f,g) eEXXYXZ: Mo,p,u)e Eg} (4.5)

Remark 4.1 The above definition of the space E; and the corresponding domain D implies that, in
order to apply Theoremfor our problem (3.11), we need to restrict ff = 0,qy =0, and £, = 0. To
avoid this restriction we will employ a translation argument [54] to reduce the existence for (3.11]) to
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existence for the following initial-value problem: Given initial data (QO,@O,@)) € D and source terms
(/f\p, @p) : [0,T] = X}, , x W), 5, find (g, $,1) € [0,T] - XxY xZ such that (55(0), pp(0)) = (Fp,0, Pp,0)
and, for a.e. t € (0,T),

0 EB(1) + AG(M) + B(@() + B@() = F@) in Xy,
~Bi(&(t)) + C(2(t)) = 0 in Y, (4.6)
—B(a(t)) =0 in  Zyy,

~

where F = (0,0,f,,q,)".

In order to apply Theorem [4.1]for problem (4.6), we need to: (1) establish the required properties of
the operators A" and M, (2) prove the range condition Rg(N +M) = E}, and (3) construct compatible
initial data (&, @O,ﬁo) € D. We proceed with a sequence of lemmas establishing these results.

Lemma 4.3 The linear operators N and M defined in (4.4) are continuous and monotone. In addi-
tion, N is symmetric.

Proof. First, from the definition of the operators £, .4, B1,C and B (cf. (3.12)), (3.13)), (3.14)) it is clear
that both A/ and M (cf. (4.4))) are linear and continuous, using the trace inequalities (3.1)—(3.2) for
the continuity of By. In turn, N is symmetric since £ is. Finally, using (2.7]), we have

E(r)(T) = SOHUJPHi?(Qp) + ||A1/2(Tp + a:vaI)HIQL,Q(QP)7
1 dj2 -1 2 (4.7)
AlT)(z) = 2 175 L2 ;) + 1 Fmax I VpllE2@,) YT €X,

and recalling the definition of the operator C (cf. (3.9), (3.12)), we obtain

C(¥)(®) = Mamsz<\/ lp— ). tf,j,<¢—¢>'tf,j> e

for all ¥ = (¢, ¢,€) € Y, where |9 — P35 := P (b — ) - tf,JHL2 T, Thus, combining (4.7)) and
(4.8), and the fact that the operators &, A, C are hnear we deduce the rnonotonicity of the operators
N and M completing the proof. O

Next, we establish the range condition Rg(N + M) = Ej, which is done by solving the related
resolvent system. In fact, we will show a stronger result by considering a resolvent system where
all source terms in F and G may be non-zero. This stronger result will be used in the translation
argument for proving existence of the original problem . More precisely, let

X :=Xr XV, x X0 X Wy0 DX

and note that X5 = X, x V|, x X| 5 x W), o C X'. We consider the following resolvent system:

E+A)(@)+Bi(p)+Buw) = F in Xb,
—Bi(a) +C(e) = 0 in Y, (4.9)
—B(o) = G in Z,

12



where F € X!, and G € Z are such that
F(r) = (fa'f’ Tf)ﬂf + (fupvvp)ﬂp + (£, Tp)ﬂp + (azmwp)ﬂp )
G(v) = (fuf7vf)ﬂf + (fus7vs)Qp + (f’yfv Xf)Qf + (f’vpa Xp)ﬂp .

We next focus on proving that the resolvent system (4.9)) is well-posed. We start with the following
preliminary lemma.

Lemma 4.4 Let (o,p,u) € X x Y x Z be a solution to (4.9). Then, for any positive constant r, it
satisfies

(E+A)(a)+Bi(p)+Bu) = F in X,
Bi(a) - Cly) = 0 in Y, (4.10)
B(o) = -G in Z,

where

Alo)(1) = A(g)(z)—i—/i{(div(up),div(vp))gp—i-(sopp—i-ozptr(A(ap+apppI)),div(vp))gp}, (4.11)

and
F(1) := F(1) + £ (G, div(vp)),,

Conversely, if (a,¢,u) € X x Y x Z is a solution to (4.10)), then it is also a solution to (4.9).

P

Proof. Let (o,p,u) € X xY x Z be a solution to . Using that divV, = W, we take T =
(0, wp) = (O,di\T(vp)) € X in the first row of , multiply by a positive constant x and add that
term to , to obtain (4.10). Conversely, if (o, ¢,u) € X x Y x Z satisfies we employ similar
arguments, but now subtracting, to recover . U

Problem (4.10) has the same structure as the one in Theorem Therefore, in what follows we
apply this result to establish the well-posedness of (4.10). To that end, we first observe that the kernel
of the operator B, cf. (3.13)), can be written as

V = {Iex: B(r)(v) =0 vVez} = Xy xV, x X, x W, (4.12)

where

X, = {T*GX*Z T.=7. and div(r,)=0 in Q*}, * e {f,p}

We next verify the hypotheses of Theorem We begin by noting that the operators JZ~,51, C,B, and
& are linear and continuous. Next, we proceed with the ellipticity of the operator £ + A on V.

Lemma 4.5 Assume that

K € (0, 2 min {51, 52}) with 01 € <0, > and 69 € <O7 H (1 _ % 51)> .
Qy S0 n oy 2

Then, the operator £ + A is elliptic on V.
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Proof. From the definition of A, cf. (4.11)), and considering T € V we get

1 _
E+ D) = 5 [0y + 1K Ragq,) + 50 [y, + 14Y2(y + oy Dl

+ #||div(vp) ”%P(QP) + s0 K (wp, div(vp))a, + ap K (A1/2(Tp + apwpl), Al/Q(diV(Vp) D)o

»
Hence, using the Cauchy—Schwarz and Young’s inequalities, (2.7)), (2.5, and (4.2])—(4.3)), we obtain

Cq _ S0 no )
€+ A > 5 Il + kil volEag,) + ((1—261) s 62) ldiv(vy) I,

4 min

a K
+ (1 - 2—§2 ﬁ) HA1/2 (Tp + apwy I)”%ﬁ(gp) + S0 (1 - 251) pr”%\’p’

where Cyq := C1(€Qf) C2(§2f). Then, using the stipulated hypotheses on d1, d2 and &, we can define the
positive constants

C : _ s na
a1 (Qy) = ﬁ, a2(€,) := min {yk‘méx,/i <(1 - —051) am 1.0 52)},

as(§p) = %0 (1 - 2;) ; as(fdp) :=min { <1 - % fi) 7043(917)}

which allow us to obtain

(€ +A)(@)(x) = ar(Q) [771%, +a2() IVel¥, + as() luwplliy,

) ) ) (4.13)
+ as(®y) (I14Y2(rp + apwy DliEag, + sl )
In turn, from (2.5)) and using the triangle inequality, we deduce
||Tp“ﬂ%2(ﬂp) < (2 panax + 7 Amax) (HAl/Q(Tp +apwp ) H]%Z(Qp) + HAl/Q(O‘p Wp I)HI%Q(QP)) (4.14)

< Gy (1142 (mp + apup Dl + iy, )

2
'I’LOép

where Cp := (2 ftmax + 7 Amax) Mmax {1, 5

}. A combination of (4.13) and (4.14]), and the fact that

min

div(r,) = 0 in €, implies
(E+A)(D)(1) 2 a(Qp. ) |zl YT eV,

with a(Qy, Q) == min {1 (Qf), 22(Qp), a3(yp), () /Cp }, hence € + A is elliptic on V. O

Remark 4.2 To mazimize the ellipticity constant a(2¢,€2,), we can choose explicitly the parameter
Kk by taking the parameters 1 and 6o as the middle points of their feasible ranges. More precisely, we

can simply take
1 Hmin . 1 Hmin
0 =—, 0§ = , K=min{ —, 5 (-
S0 n oy so nag

We continue with the verification of the hypotheses of Theorem [4.2]
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Lemma 4.6 There exist positive constants 51 and 3, such that

sup D) g vy vw ey, (4.15)
0#AT€EV HIHX - -

and

sup Blr)lv) > Blvllz VYveZ (4.16)
o£rex ||ITlIx

Proof. We begin with the proof of (4.15)). Due the diagonal character of operator By, cf. (3.12)), we
need to show individual inf-sup conditions for by, e bn,, and br. The inf-sup condition for br follows
from a slight adaptation of the argument in [29, Lemma 3.2] to account for the presence of Dirichlet

boundary Pz]? , using that dist (FE,F fp) = s > 0. The inf-sup conditions for by ; and by, follow in a

similar way. Since the kernel space V consists of symmetric and divergence-free tensors, the argument
in [29, Lemma 3.2] must be modified to account for that. For example, in €2¢ we solve a problem

div(e(vy)) =0 in Qf, e(vy)ny=§ on FprF?I, vi=0 on T?, (4.17)

for given data & € H_l/Q(Ffp U F?I) such that & = 0 on F?. We recall that F? is adjacent to I'f,,.

Furthermore, \FfD\ > 0, which guarantees the solvability of the problem. We refer to |29, Lemma 3.2]
for further details.

Finally, proceeding as above, using the diagonal character of operator B, cf. (3.13)), and employing
the theory developed in [32, Section 2.4.3] to our context, we can deduce (4.16)). O

Now, we are in a position to establish that the resolvent system associated to (4.6]) is well-posed.

Lemma 4.7 For N, M and E; defined in (4.4)-(4.5)), it holds that Rg(N + M) = E;, that is, given
[ € Ej, there exists v € D such that (N + M)(v) = f.

Proof. Let us consider F = (O,O,/f:p,(’jp)t and G = 0 in f and x as in Lemma M The
well-posedness of follows from , Lemmas and and a straightforward application of
Theorem with A =& + .Z, By =B1,5 =C, and B = B. Then, employing Lemma we conclude
that there exists a unique solution of the resolvent system of , implying the range condition. [

We are now ready to establish existence for the auxiliary initial value problem (4.6)), assuming
compatible initial data.

Lemma 4.8 For each compatible initial data (8¢, @, Uy) € D and each (/fp,(’jp) € WLI(O,T;X;’Q) X
Whi(0, T W, o), the problem (4.6) has a solution (@,®,1) : [0,T] = X x Y x Z such that (7, D) €
WHee(0, T3 L%(92p)) x WH(0, T3 W,) and (65(0), 5p(0)) = (5,0, Pp.o)-

Proof. The assertion of the lemma follows by applying Theorem with E, N, M defined in ,
using Lemmas and [£.7] O

We will employ Lemma to obtain existence of a solution to our problem (3.11]). To that end,
we first construct compatible initial data (o, ¢, up).

Lemma 4.9 Assume that the initial data ppo € W, N H, where

H o= {w, e H'(Q): KVuw,cH(Q), KVw, n,=0onT}, w,=0on r;?}. (4.18)
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Then, there exist g := (0,0, Up,0, Tp,0,Ppo) € X, P, = (0,00, 20) €Y, and 1y := (uyp, Us0,770
Ypo) € Z such that

Algy) +Bi(g,) + B (ag) = Fo  in X,
—Bi(gg) +C(e,) =0 in Y, (4.19)
—B(gy) = G(0) in Z,

where Fo = (q7(0), O,/fpp, dp0)" € X}, with suitable (?p,o,gp,o) € X}, o x W 5.

Proof. Following the approach from [3, Lemma 4.15], the initial data is constructed by solving a
sequence of well-defined subproblems. We take the following steps.

1
1. Define up := —; KVpp0, with p,o € H, cf. (4.18)). It follows that u, o € H(div;,) and

1
,uK_lup,o =—Vppo, div(upg) = 2 div(KVppo) in €, u,o-n,=0 on I‘pN. (4.20)
Next, defining Ao := ppolr;, € Ap, (4.20) implies
ap(Up,0, Vp) + bp(Vp, Ppo) + br(vp, Ao) =0 Vv € V), (4.21)

2. Define (o1, @9, uf70,’yf’0) € Xy x Ay x Vy x Qy as the unique solution of the problem

1
_E (qf(0> I> Tf)ﬂf7

n—1
—bn,(0f,0,¥) = —papss Z <\/Eup70 “trg, - tf,j> — (¢ - ny, )‘0>Ffp ’ (4.22)
j=1

Cip

af(o50,Ty) + by (T, o) +bp(Tr,up0) + sk f (T, Y5 0) =

—by(or0,vy) = bsir(ar0,x5) = (££(0), vy)a,

for all (77,9, vy, xy) € Xy x Ay x Vy x Qy. Note that (4.22) is well-posed, since it corresponds to
the weak solution of the Stokes problem in a mixed formulation and its solvability can be shown using
classical Babuska-Brezzi theory. Note also that u, o and Ao are data for this problem.

3. Define (0,0, w0, 7,05 Ppo) € Xp X As X Vi X Qp, as the unique solution of the problem

(A(op0), Tp)ﬂp + bnp(Tpa wo) + bs(Tp, 77p,0) + bskep(Tps Pp,o) = —(A(apppol), Tp)Qp

n—1
—bn, (05,0, ) = pomss Z <\/ Kj_lup,() “trj, @ tf7j> — (¢ -ny, )‘0>Ffp (4.23)
i=1 r

fp
_bs(o'p,Ov Vs) - bsk,p(a'p,Oa Xp) = (fp(0)7 Vs)QP7

for all (75, d,vs,x,) € Xp X As X Vg x Qp. Problem corresponds to the weak solution of the
elasticity problem in a mixed formulation and its solvability can be shown using classical Babuska-
Brezzi theory. Note that p,o,up0, and Ag are data for this problem. Here n,,p, o, and wq are
auxiliary variables that are not part of the constructed initial data. However, they can be used to
recover the variables 17, p,,, and w that satisfy the non-differentiated equation .

4. Define 0 € A; as
0y == pg—upo on Iy, (4.24)

where ¢y and u, are data obtained in the previous steps. Note that (4.24) implies that the BJS
terms in (4.22)) and (4.23)) can be rewritten with u, -ty ; = (¢g—60)-ts; and that the ninth equation
in (3.6 holds for the initial data, that is,

— (o -5+ (6o +upp) - np,f)rfp =0 VEeA,. (4.25)
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5. Finally, define (0,0, 1s,0,7,0) € Xp X Vs x Qp, as the unique solution of the problem

(A(ap,0)7 Tp)Qp + bS(Tm US,O) + bsk,p(7p>7p,0) = _bnp (Tpa o) (4.26)

_bs(a'p,Oa Vs) - bsk,p(ap,()a Xp) =0,

for all (7, vs, x,) € X x Vs x Qp. Problem (4.26)) corresponds to the weak solution of the elasticity
problem in €2, with Dirichlet datum 6y on I'y),.

Combining (4.21)), (4.22]), the second and third equations in (4.23)), (4.25)), and the first equation in
(4.26)), we obtain (go,fo,go) € X x Y x Z satisfying (4.19) with

(£.0, )0, = _(A(ap,o)va)Qp and  (gp0, wp)a, = —bp(upo, wp). (4.27)

The above equations imply

15,0l

12, + 1@olliz,) < C (18pollLz,) + 1div(u,o)llizq,)) »

hence (fpp, dpo) € X 2 X Wp o, completing the proof. O

4.3 The main result

We are now ready to prove the main result of this section.

Theorem 4.10 For each compatible initial data (0, ¢,,g) constructed in Lemma and each
fr € WH'(0,T5 V), £, € WHH(0,T5VY), qp € WHY(0,T5X)), e Wh(0,T; W)),

there exists a unique solution of (3.11), (a,¢,u) : [0,T] — X x Y x Z, such that (op,pp) €

W2 (0, T;1L7(€,)) x WH(0,T; W) and (075(0),p(0)) = (05,0, Ppo)-

Proof. For each fixed time ¢ € LO, 7], Lemma implies that there exists a solution to the resolvent sys-
tem with F = F(¢) and G = G(t) defined in (3.15]). More precisely, there exist (& (t), p(t), u(t))
such that a

(€ +A)E0) +By@1) + B@W) = F(#H) in X,

~Bi(&(t) + C(B(t) -0 n Y, (4.28)
—B(é(t)) = G() in Z.

We look for a solution to in the form o(t) = a(t) + a(t), ¢(t) = @(t) + @(t), and u(t) =
u(t) + u(t). Subtracting (4.28] from (3-11) leads to the reduced evolution problem

&ef(é(t))+A(Q(t))+Bi(£(t))+l3'(2(t)) — EE(1) - AEE(D) I Xby,
~Bi(8(1)) + C@(1)) = 0 in Yi, o (4.29)
~B(&(1)) = 0 i Zh,

with initial condition &(0) = oy — (0), $(0) = ¢, — ¢(0), and U(0) = u, —u(0). Subtracting (4.28)
at t =0 from (4.19) gives

A(E(0)) + Bi(@(0) + B(T(0)) = £(@(0)+Fo—F(0) in Xy,
— B1(&(0)) + C(2(0)) =0 in Y, (4.30)
—B(a(0)) =0 in Z'2,o-



We emphasize that in (4.30), Fo—F(0) = (0,0,?p,o, Gp0—qp(0))" € X4 5. Thus, M(&(0),$(0),u(0)) €
E;, ie., (6(0),(0),u(0)) € D (cf. ({4.5)). Thus, the reduced evolution problem ([4.29) is in the form
of (4.6). According to Lemma it has a solution, which establishes the existence of a solution to
(3.11) with the stated regularity satisfying (o7(0),pp(0)) = (6°p,0, Pp,0)-

We next show that the solution of (3.11]) is unique. Since the problem is linear, it is sufficient to
prove that the problem with zero data has only the zero solution. Taking F = G = 0 in (3.11) and
testing it with the solution (&, ¢, u) yields

1 1
5 21 (HA1/2 (op + appp I)HHZ}(QP) + S0 pr”%vp> + 20 ||0';i”||1%2(ﬂf) + ap(up, up) +C(@)(p) = 0,

which together with (4.14), (2.7) to bound a, (cf. (3.8)), the semi-definite positive property of C (cf.
(4.8])), integrating in time from 0 to ¢ € (0,7, and using that the initial data is zero, implies

t
I 20,y + ool + | (199120, + Iuplaga,)) ds <0, (4.31)

It follows from (|4.31]) that o'(}(t) =0,u,(t) =0,0,(t) =0, and p,(t) = 0 for all ¢t € (0,T].
Now, taking 7 € V (cf. (4.12)) in the first equation of (3.11]) and employing the inf-sup condition
of By (cf. |4.15)), with ¥ = ¢ = (9,0, ) € Y, yields
Bi(z)(¢) (0. €+ A)(a)(T)

Bllely £ sup ———— = — sup =0.
o£rev  lITllx 0£TEV Izllx

Thus, ¢(t) = 0,0(t) = 0, and A(t) = 0 for all t € (0,7]. In turn, from the inf-sup condition of B (cf.
{.16)), with v = u = (uy,us,v¢,7,) € Z, we get
B(z)(uw) (0:€ + A)(@)(1) + Bi(z)(¥)

Bllullz < sup ———— = — sup — 0.
0#TeX Tllx 0#£TEX |7(lx

Therefore, uy(t) = 0,us(t) = 0,74(t) = 0, and 7,(t) = 0 for all ¢ € (0,7]. Finally, from the third
row in (3.10)), we have the identity

bf(a'f,Vf) =0 VVf € Vf.

Taking vy = div(of) € V¢, we deduce that div(o¢(t)) = 0 for all ¢ € (0,T], which combined with
the fact that a?(t) =0 for all ¢ € (0,77, and estimates (4.2)—(4.3)) yields of(t) = 0 for all ¢t € (0,T7].
Then, (3.11)) has a unique solution. O

Corollary 4.11 The solution of (3.11)) satisfies o(0) = a0, ur(0) = uyo,v£(0) = 750, u,(0) =
Up.0, QO(O) = Pos )\(0) = )\[), and 9(0) = 00.

Proof. Let oy := 07(0) — 00, with a similar definition and notation for the rest of the variables.
Since Theorem [4.1{implies that M (u) € L>(0,T; E}), we can take t — 0 in all equations without time
derivatives in (4.29), and therefore also in (3.11)). Using that the initial data (g, ¢, uy) satisfies the
same equations at t = 0 (cf. (4.19)), and that &), = 0 and p, = 0, we obtain

1

25 @h TP, + (@ divir o, + (757, — (rmy Pr, =0,

% (K_lﬁm Vp)Qp + <Vp ) np7x>pfp =0,
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— (Vf,diV(Ef))Qf =0,
- (Efaxlf)ﬂf = 07
(@04 (0+1) 1y, &) =0, (4.32)

(@, d)p, +/chJsZ<F ?-90) tf,j,¢'tf,j>r + (¥ -np X, =0,

fp
— L QBJs VK <P 0 t,‘a¢‘t,‘> + (¢ -np, A =0
Z< ) 1 £ r. < p >Ffp
Taking (T7,vp, vy, Xf, 60, @) = (Ef,ﬁp,ﬁf,if,x, ®,0) and combining the equations results in
154122 6, + T2 ) + 1 — Bl < 0. (433)

implying E;lc =0,u,=0,and (p—0) -t t; = 0. The inf-sup conditions 7, together with
, imply that uy = 0,7, = 0, = 0, and A = 0. Then yields 6 - ty; = 0. In turn, the
fifth equation in implies that <§- np,§>rfp = 0 for all ¢ € HI/Q(Ffp). Note that n, may be
discontinuous on T'f,, thus 8 - n, € L*(T'y,). Since HY/2(T'y,) is dense in L2(Tf,), then 8 - n, = 0, and
we conclude that @ = 0. In addition, taking vy = div(gf) € V; in the third equation of we
deduce that div(c ) = 0, which, combined with 7, yields @y = 0, completing the proof. O

Remark 4.3 As we noted in Remark the fourth equation in (3.6) can be used to recover the
non-differentiated equation (3.7). In particular, recalling the initial data construction (4.23)), let

Vte[0,T], m,(t)=mn,0 +/0 us(s)ds, p,(t) = pyo —i—/o Yp(s)ds, w(t) =wo —i—/o 0(s)ds

Then (3.7) follows from integrating the fourth equation in (3.6) from 0 tot € (0,T] and using the first
equation in (4.23)).

We end this section with a stability bound for the solution of (3.11). We will use the inf-sup
condition

b b A
prHWp_‘_H)\HAp <c¢ sup P(vapp)+ F(Vpa )

: (4.34)
04v,EV, Ivpllv,

which follows from a slight adaptation of |36, Lemma 3.3].

Theorem 4.12 For the solution of (3.11), assuming sufficient regularity of the data, there exists a
positive constant C' independent of sg such that

||Uf||L°°(0,T;Xf) + ||Uf||L2(O,T;Xf) + [[upllLee0,mm2(0,)) + 1pllzo,mv,) + 19 — OlLe(0,7:81s)
+ @ — Oli2orms) + ML= 0.0, + I@llr20.r:v) + 12072y + [AY2(0) L 0.7:02(0,)
+ [[div(ep) ||l 0,r:L2(0,)) + [[div(op)|lLz0,r12(0,)) + IPpllLe0.1w,) + [PpllL20.7:w,)
+ 110 Al/Q("p +apppl)llL2012(2,)) + V50ll9: PollLzo.1:w,) (4.35)

<C <||ff||H1(O,T;V}) + fpllmr o,z + llar e o, + lgpllar o.r:wy)

(1 VEDlmpollw, + Kol

19



Proof. We begin by choosing (7,%,v) = (g, ¥,u) in - to get

1
*8 (||A1/2(0'p +appp )||1L2 ) T 50 ”PpHWp) + 20 ||‘7(}H]%2(Qf) + ap(up, up) + cass(p, 0; ¢, 0)
1
= —(arLog)ay + (appp)e, + (£ up)a, + (B, us)o,. (4.36)

Next, we integrate (4.36]) from 0 to ¢ € (0,7, use the coercivity bounds (4.7)—(4.8]), and apply the
Cauchy—Schwarz and Young’s inequalities, to find

t
|42 (e + a0y D220, ) + s0llpp(®) Ry, + /0 (IloF2(0) + M, + Lo — s ) s

t
< c( /0 (71, + 16,3, + llasli3, + laplih, ) ds + 142(0,(0) + ap py(OD) [22(q,,  (437)

t
¥ 50||pp<o>|%vp> 5 [ (o, + Il + g I, + i, ) ds.

where 0 > 0 will be suitably chosen. In addition, (4.34]) and the first equation in (3.10)), yields

by (v ~+ br(vy, A ap(u,, v
IPpllw, + [Ma, < ¢ sup p(Vopp) e (Ve ) sup oWy, Vp) C llupll2(q,)-
0#vpEV) HVPHVP 0#vpEV) HVPHVP

(4.38)
Taking 7 € V (cf. (4.12))) in the first equation of (3.11f), using the continuity of the operators £ and
A in Lemma and the inf-sup condition of By for ¢ € Y (cf. (4.15)), we deduce

B p—
Bilelly < sup M = — sup (0 €+ A)a)(r) - F(r)
oxrev  [ITlx 04TEV 7][x

< C (llosllx, + Ipllv,, + 100 A2 (@ + auppDleae,) + V50t ppllw, + llaglhe, + llapllwy )
(4.39)

In turn, from the first equation in (3.11)), applying the inf-sup condition of B (cf. (4.16)) for u =
(uy,us,v5,7,) € Z, and (4.39), we obtain

Blullz < sup SDW oo (0 €+ A)(e)(T) + Bi(z)(p) — F(T)
ujjz < o£rex  |ITlx 04TEX 7%

< C (Il + Ipliv, + 10 412y + oDl + V5310 ol + sl + laplhwg
(4.40)
In addition, taking w, = div(u,), vy = div(os), and vy = div(o,) in the first and third equations

of (3.10]), we get

ldiviop)lla@y) < IElvy  Idivioy)lem,) < Iflv,.
(4.41)
Idiv(wp)lliz(a,) < C (105 AY2 (e + apppl) 20, + V50l pollw, + llaplw, ) -
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Then, combining (4.37)—(4.41)), using (4.2)—(4.3)), and choosing § small enough, we obtain

1A% (p + apppl) (D) F2(q,) + s0llpa (D),

t
+ /0 (lo s, + iy, + 1divioy) e, + lppliy, + o — 635 + ll3 + lul) ds

t (4.42)
<C ( (18513, + 18R + a2, + ) ds + 14Y2(0,00) + O

+ 50 ||pp(0)||%vp + / (Hat AI/Q(Up"'O‘ppp )H]L2 +50||atpp||w ) )

Finally, in order to bound the last two terms in (4.42), we test (3.10) with T = (0; ¢, 1y, 0; 0p, 01 pp)
€X, Y =(p,0,0\) €Y, v = (up,us,77, € Z and differentiate in time the rows in (3.10)
associated to vy, ¥, @, vy, v, x ¢ and X, to deduce

1

1
5 2 (ﬁ ||0'?||]%2(Qf) + ap(up, up) + cess(p, 0; ¢, )) + |0 AI/Q(UP +appp )HL? ) T 50 ||atpp”wp
1

= (¢rLovos)a, + (ap, O ppla, + (Ocfr,up)a, + (0 fp, us)a,,

which together with the identities
t . ¢
0 0

t t
Qp 0 _/0 (815 qpapp)Qp)

and the positive semi-definite property of C (cf. (4.8))), yields

t
/0 (ap, Ot Pp), = (4p, Pp)

t
lo} O 2@, + 10Oz, + 1o — 80555 + /0 (10:4"2(o, + app) |22, ) + s0llOpyliRy, ) ds

t
<c ( /0 (101 £71%, + 19: 113, + 100 a2, + 100 gyl ) s + llas ()12, + llap(®)liy

+ lar O, + l9(0)[Ry, + lo s ()%, + up(0) 120, + POy, + l#(0) —9(0)|§Js> (4.43)

t
+ 5 (oI, + I2p®li, ) + 0 /0 (Il s122(0, + Ippli3e, + gl + sl ) ds.

Using (4.38) and the first two inequalities in (4.41]), and choosing ¢; small enough, we derive from

and (£3)(£3) that

lop(®)1, + [up 220, + 1div(@p(0) 220, + 19(E) = 00)Ess + [2p(0) [, + IADI,

t
+ [ (10420, + 0D, + sl o, ) ds
i 2 2 2 2 2 2
< ([ (108518, + 100813, + 10 arl o,y + 10na Ry ) ds + IRy, + U601, (444
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+ lar @i, + lan(®) 13w, + lar ()%, + lap(O)Rv, + o)1, + [p(O)lIE(q,) + POy,

t
+ Je(0) - e<o>|§;,s) 5 /0 (o512, + Iplidy, + sl + sl ) ds.

We next bound the initial data terms in (4.42) and (4.44). Recalling from Corollary 4.111 that
(a(0),4(0),0(0)) = (o, o, o), using the stability of the continuous initial data problems (4.20])—
(4.23) and the steady-state version of the arguments leading to (4.42]), we obtain

lo ()13, + (012, + IAY2(@,(0)) 22 ) + [2p(O) Iy, + (0) — B(0) 35

(4.45)
< € (IpwolRy, + IKppolhsq,) + IO, + 1501, + lar O3, )

Therefore, combining (4.42) with (4.44) and (4.45)), choosing d2 small enough, and using the estimate
(cf. (E12)):

1Ay (t)llze,) < € (1420 + appy D®)l2(0,) + ImpDlw, ) (4.46)
and the Sobolev embedding of H!(0,T) into L°°(0,T), we conclude (4.35)). O

5 Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (3.11]).
We analyze its solvability by employing the strategy developed in Section [d In addition, we derive
error estimates with rates of convergence.

Let 7;Lf and 7} be shape-regular and quasi-uniform affine finite element partitions of Q; and Q,,
respectively. The two partitions may be non-matching along the interface I'y,. For the discretization,
we consider the following conforming finite element spaces:

thXthXthCXfXVfXQf, XphXVShXQphCXpXVSXQp, VphXthCVpXWp.

We take (Xsn, Vi, Qpp) and (X, Vg, Qpp) to be any stable finite element spaces for mixed elasticity
with weakly imposed stress symmetry, such as the Amara-Thomas [2], PEERS [9], Stenberg [55],
Arnold-Falk-Winther [10,[11], or Cockburn—-Gopalakrishnan—-Guzman [27] families of spaces. We
choose (Vpn, Wp) to be any stable mixed finite element Darcy spaces, such as the Raviart-Thomas
or Brezzi-Douglas-Marini spaces [18]. For the Lagrange multipliers (A ¢y, Agp, App) we consider the
following two options of discrete spaces.

(S1) Conforming spaces:
Afh C Af, Ash C As, Aph C Ap, (5.1)

equipped with HY/2-norms as in . If the normal traces of the spaces Xyp,, Xpp, or Vi
contain piecewise polynomials in P on simplices or Q on cubes with k > 1, where Py, denotes
polynomials of total degree k and Q. stands for polynomials of degree k in each variable, we take
the Lagrange multiplier spaces to be continuous piecewise polynomials in P or Qg on the traces
of the corresponding subdomain grids. In the case of £ = 0, we take the Lagrange multiplier
spaces to be continuous piecewise polynomials in P; or Qq on grids obtained by coarsening by
two the traces of the subdomain grids.
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(S2) Non-conforming spaces:

Afh = thnf|pfp, Ay, = Xphnp|Ffpa Aph = Vph : np|pfp , (5.2)
which consist of discontinuous piecewise polynomials and are equipped with L?-norms.

It is also possible to mix conforming and non-conforming choices, but we will focus on (S1) and (S2)
for simplicity of the presentation.

Remark 5.1 We note that, since H1/2(Ffp) is dense in L2(T's,), the last three equations in the contin-
uous weak formulation hold for test functions in LQ(Ffp), assuming that the solution is smooth
enough. In particular, these equations hold for &, € Apn, ¥y € Ay, and @), € Agy in both the
conforming case (S1) and the non-conforming case (S2).

Now, we group the spaces similarly to the continuous case:
Xy = th X Vph X Xph X th, Y, = Afh X Ash X Aph7 Z = th X Vsh X th X Qph’
gy = (o-f/‘wuphuo-pfupph) S Xha fh = (()Dhual’w)\h) S th u; = (ufhvushvﬁyfhvﬁyph) S Zh7
Th 2= (T fhs Vph, Tphs Wpn) € Xpy P, 1= (Y, &, 8n) € Yi, Vi, 1= (Vins Voh, Xghs Xph) € Zn-

The spaces Xy, and Zj, are endowed with the same norms as their continuous counterparts. For Y},
we consider the norm ||, Iy, = [[¥4lla;, + [ @nlla,, + I€nlla,,, where

&l [€rla, for conforming subspaces (S1) (cf. (3.3))),
Enlla,, ==

5.3
1€nllL2(r,,) for non-conforming subspaces (S2). (5:3)

Analogous notation is used for |4 [|a,, and ||¢@la,,-

The continuity of all operators in the discrete case follows from their continuity in the continuous
case (cf. Lemma [4.3)), with the exception of By (cf. (3.12)) in the case of non-conforming Lagrange
multipliers (S2). In this case it follows for each fixed h from the discrete trace-inverse inequality for
piecewise polynomial functions, [[¢||i2r) < Ch*1/2||g0HL2(O), where I' C 00. In particular,

bu, (71,9) < Cllrsllier,,) l®law,,) < Ch V2T sz ¢ e, (5.4)

with similar bounds for by, (7,, @) and br(vy,§).

We next discuss the discrete inf-sup conditions that are satisfied by the finite element spaces. Let
X, = {Ih €Xp: Tmnp=0 and Tpn,=0 on Ffp}. (5.5)

In addition, define the discrete kernel of the operator B as
V), = {Ih €Xy,: Blr)(v,) =0 Yv,e zh} = K % Vi x Xpi X Wi, (5.6)

where

X, = {T*h eXun: (Tam&n)a, =0 V&, €Qu, and div(7y,) =0 in Q*}, * e {f,p}.

In the above, div(7,;) = 0 follows from div(Xy,) = Vg, and div(X,),) = V,, which is true for all
stable elasticity spaces.
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Lemma 5.1 There exist positive constants B and El such that

sup DIWL) S Zy 0 vy, €z, (5.7)
o Tl
Bi(T -
sup M > Bl lly, Yo, € Y (5.8)

04T, €V}, |Tnllx

Proof. We begin with the proof of . We recall that the space X}, consists of stresses and velocities
with zero normal traces on the Neumann boundaries, while the space X}, involves further restriction
on I'¢p. The inf-sup condition (5.7)) without restricting the normal stress or velocity on the subdomain
boundary follows from the stability of the elasticity and Darcy finite element spaces. The restricted
inf-sup condition ([5.7)) can be shown using the argument in |5, Theorem 4.2].

We continue with the proof of . Similarly to the continuous case, due the diagonal character
of operator B (cf. ), we need to show individual inf-sup conditions for by, bn,, and br. We
first focus on bp. For the conforming case (S1) (cf. (5.1))), the proof of can be derived from a
slight adaptation of [29, Lemma 4.4] (see also [34, Section 5.3] for the case k = 0), whereas from [3|
Section 5.1] we obtain the proof for the non-conforming version (S2) (cf. (5.2)). We next consider
the inf-sup condition for by, with argument for by, being similar. The proof utilizes a suitable
interpolant of 7; := e(vy), the solution to the auxiliary problem . Due to the stability of the

spaces (X¢n, Vin, Qpp) (cf. (5.7)), there exists an interpolant ﬁ£ : HY (Qf) — Xy, satisfying

bp(lfry —Tr,vin) =0 Vv € Vi, baop(iry — 75 x5) =0 Vg € Qp, (5.9
(s — o)y, Tyn0g)rp,ury =0 VT pn € Xy '

The interpolant 1:I£7' 1 is defined as the elliptic projection of 7 satisfying Neumann boundary condition
on FprI‘;V [42, (3.11)-(3.15)]. Due to (5.9), it holds that 1:I£Tf € Sth- With this interpolant, the proof
of for br discussed above can be easily modified for by, see [29, Lemma 4.4] and [34, Section 5.3]
for (S1) and [3} Section 5.1] for (S2). O

Remark 5.2 The stability analysis requires only a discrete inf-sup condition for B in Xy X Zp. The
more restrictive inf-sup condition (5.7)) is used in the error analysis in order to simplify the proof.

Finally, we will utilize the following inf-sup condition: there exists a constant ¢ > 0 such that

b Vophs Pph + br(Vpn, An
[pprllw, + [ Anlla,, < ¢ sup p(Vohs Pph) (Vphs An)
O#VPhEVph HVPhHVP

, (5.10)

whose proof for the conforming case (5.1)) follows from a slight adaptation of [36, Lemma 5.1], whereas
the non-conforming case (5.2)) can be found in [3| Section 5.1].

The semidiscrete continuous-in-time approximation to (3.11) reads: find (gh’fh’ u,) : [0,7] —
Xy, x Y}, x Zy, such that for all (Ih,gh,gh) € Xy x Yy x Zp, and for a.e. t € (0,7T),

if(ah)(m) + A(ay)(Th) + Bi(y)(e,) + B(Ty)(u,) = F(zp),
—Bi(a,)(®,) +Cle,)(¥,) = 0, (5.11)
— B () (vs) = G(vp).
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We next discuss the choice of compatible discrete initial data (g, ¢, P o u;,), whose construction
is based on a modification of the step-by-step procedure for the continuous initial data.

1. Define 6}, := P,fs (6p), where P,ixs : Ay — Ay, is the classical L2-projection operator, satisfying,
for all ¢ € L2(T'y,),

(6= PM(@).n) =0 Yy €A

Lsp

2. Define (O’fh70, Ph,0 Ufh0; ’th70) S th X Afh Xth Xth and (uphyo,pph,o, /\h,O) S Vph prh XAph
by solving a coupled Stokes-Darcy problem:

af(on,0sTrn) + ooy (T rn Pro) + 0 (T n Upn0) + bsk (T £1y Y fh0)
1

= ag(01,0, Tsn) + buy (Tsn o) + b (T gy Wp0) + bsie (T, Vo) = = (s (O) L, T4n)ey,

n—1

= bn; (0 fn,0,%p) + parss Z <\/Kj_1(90h,0 = 0n0) -ty tf,j> + (@0, Anolp,
j=1 Tsp

n—1

= —bn,(050,%p) + passs Z <\/ Kj_l(S"o —00) -ty .y tf,j> + (¥ nyp,d0)p, =0,

j=1 Lty
— (0 11,0, Vin) = bsi £ (T 1,0, Xgn) = —bp(0 10, Vin) = bsio £ (1,0, Xpn) = (££(0), Vi), (5.12)
ap(Wph,0, Vph) + bp(Vphs Pph,0) + 00 (Vpns Ano) = ap(p,0, Vpn) + bp(Vph, Dpo) + br(Vpn, Ao) = 0,
— bp(Wpn,0, Wpn) = —bp(Up,0, wpn) = _H_l(diV(KVpp,O),wph)Qw

— (@no 1y + (Ono + Upno) - np7§h>rfp = — (o -0y + (6o +upo) -np, &)y, =0,

for all (Tfh,’(/)h,th,th) S th X Afh X th X th and (vph,wph,ﬁh) < Vph X th X Aph. Note
that (5.12) is well-posed as a direct application of Theorem Note also that 6}, o is data for this
problem.

3. Define (0 pn,0, Wh,0, Mpn.0s Ppho) € Xph X Agn X Vg X Qpp, as the unique solution of the problem

(A(O'ph,o)v Tph)Qp + bn, (Tph’ wh,0) + bs (Tph7 77ph,0) + bsk,p(Tphv pph,o) + (A(O‘p Pph,0 I), Tph)flp

= (A(0p0), Tph)a, + by, (Tpn, wo) + bs(Tphs My o) + bk p(Tphs Ppo) + (Al Ppo ), Tpn)a, =0,

n—1
— bn, (Oph0, Pp) + 1 omss Z < V K ' (¢1,0 = 0n0) - trj, dn - tf,j> +(Pn-1p, Ano)p,  (5:13)
Tsp

j=1

n—1
= —bn, (Up,07 @) + 11 azgs Kfl(‘Po —69) - trj @n -ty +(én Ny, )‘0>r =0,
J fp

j=1 Lyp

— 0s(0ph,0, Vi) = Dskp(Oph,0s Xpn) = —0s(07p,0, Vsr) = bskp(0p,0, Xpn) = (£(0), Visn)a,,

for all (7pn, @p, Vs Xpn) € Xpn X Asp X Vg X Qpp. Note that the well-posedness of (5.13)) follows
from the classical Babuska-Brezzi theory. Note also that ppn.o, @50, On0, and Ap are data for this
problem.

4. Finally, define (& pn,0, Wsh,0, Yph,0) € Xph X Vgn X Qpp, as the unique solution of the problem
(A(a'ph,O)’ Tph)ﬂp + bS(Tphu ush,O) + bsk,p(Tphu ’th,O) = _bnp (Tpha eh,O) P ( 4)
9.1

_bs(a\'ph,Oa Vsh) - bsk,p(&ph,(]: Xph) = 07
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for all (Tpn, Vsn, Xph) € Xpn X Vg, X Qpp. Problem (5.14)) is well-posed as a direct application of the
classical Babuska-Brezzi theory. Note that 6}, o is data for this problem.

We then define o,y = (0 11,0, Upn,0: Tpn,0: Ppn,0) € Xns @, o = (Ph0,On,0:An0) € Yp, and w5 =

(Wfh,00 Wsh,0,Y £1,00 Yph,0) € Zn- This construction guarantees that the discrete initial data is compat-
ible in the sense of Lemma [£.9

Al@no)(Th) + Bu(Tr) (), o) + B(Tr) () = Fio(ty) Y1, € X,
—Bi(an0)(®),) +Clp, ) (¥,) =0 Vi, € Y, (5.15)
—B(ap0)(vh) = Go(vy) Vv, €Zy,

where Fyo = (¢7(0),0,E51,0, Gno)' € X and Go = G(0) € Z', with f,0 € X, and Gono € W),
suitable data. Furthermore, it provides compatible initial data for the non-differentiated elasticity
variables (1,5, 0, Ppr.0> Wh,o) in the sense of the first equation in (4.23)) (cf. (5.13))).

5.1 Existence and uniqueness of a solution

Now, we establish the well-posedness of problem (5.11]) and the corresponding stability bound.

Theorem 5.2 For each compatible initial data (@}, @, ,, o) satisfying (5.15) and
fr e WH'(0,T5 V), £, € WHH(0,T5VY), qp € WHY(0,T5X)), g € WHH(0,T; W),

there exists a unique solution of (5.11)), (gh,fh,gh) [0, 7] = Xy x Yy, X Zy, such that (oph, ppn) €
WA (0,73 Kyn) X W (0,75 W), and (04,(0), 2, 0), 07(0),774(0) = (€4,0,2, o 010, Vo) More-
over, assuming sufficient reqularity of the data, there exists a positive constant C independent of h
and sqg, such that
o rullLe o) + o rnllizorx,) + 1pnllie oz @) + wpnllizorv,) + 1en — Onlie o)
+ 15 — Onlrzorsss) + Ml omin,m + 1€, 2003 + 1 lli2omz) + 1472 (0pm) e o.r12(0,))
+ [[div(opn) e 0. r12(0,)) + 1diviepm)llLzorL2@,) + [1PphllLeorw,) + IPprllz07:w,)

+ 100 A2 (pn + apppn) 20120, + V50110 Ponllz0.w,) (5.16)
<C (HffHHl(O,T;V}) ol o,z5vy) + llap e o,rixy) + ldplla o,r:wy)

+ (14 v/50)llppollw, + HKVpp,oHHlmp))'

Proof. From the fact that X;, C X, Z; C Z, and div(Xyy,) = Vyyp,, div(Xp,) = Vi, div(Vyp,) =
Wy, considering (g, o, P o’ u,, ) satisfying , and employing the continuity and monotonicity
properties of the operators N’ and M (cf. Lemma and ), as well as the discrete inf-sup
conditions , , and , the proof is identical to the proofs of Theorems and and
Corollary We note that the proof of Corollary works in the discrete case due to the choice
of the discrete initial data as the elliptic projection of the continuous initial data (cf. f).
O
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Remark 5.3 As in the continuous case, we can recover the non-differentiated elasticity variables

t

t t
Mon() = Thono + /0 () ds,  po(t) = Py + /0 on(s) s, wn(t) = wio + /0 01 (s) ds

for each t € [0,T]. Then (3.7)) holds discretely, which follows from integrating the equation associated
to Tpp in (5.11) from 0 to t € (0,T] and using the first equation in (5.13) (cf. (4.23)).

5.2 Error analysis

We proceed with establishing rates of convergence. To that end, let us set V € {Wp, V¢, Vs, Qy, (@p},
Ae {Af, Ag, Ap} and let V,, Ay, be the discrete counterparts. Let P,y :V — V;, and P,f : A — Ay be
the L2-projection operators, satisfying

(u— P,Y(u),vh)g* =0 Vvh € Vh,

(5.17)
(o = PMe), Yn)r;, = 0 Voo € Ay,

where x € {f,p}, u € {pp,u]c,us,'yf,'yp}, ¢ € {¢,0,)\}, and vp,, ¢y, are the corresponding discrete
test functions. We have the approximation properties [26]:

lu=BY (W20, < Ch* ulponn o),
. (5.18)
H‘p - Ph (‘p)HAh S Chs¢+r ||SOHHS‘P+1(Ffp)’

where s, € {spp, Sups Sugs Syps sfyp} and s, € {sw se, s,\} are the degrees of polynomials in the spaces
V5, and Ay, respectively, and (cf. (5.3))),

1/2 , with r = 1/2 in ([5.18)) for conforming spaces (S1),
Pllm (Ffp)
lella, =
" 2 , with » = 1 in (5.18)) for non-conforming spaces (S2).
PlL (Ffp)

Next, denote X € {Xf, X, Vp}, o€ {a'f, op, up} € X and let X and 7, be their discrete counter-
parts. For the case (S2) when the discrete Lagrange multiplier spaces are chosen as in (5.2)), (5.17])
implies

(o — PMe), mni)r,, = 0 V7, € Xy, (5.19)
where * € {f,p}. We note that (5.19) does not hold for the case (S1).

Let I : X "HY() — X, be the mixed finite element projection operator [18] satisfying

(div(Iff(a)),wh)Q* = (div(a),wh)g* th € Wh,
(5.20)
<I}}L((J)n*v7'hn*>rfp = <Jn*,7'hn*>rfp V1, € Xp,

and . )
lo = I (0)l2,) < CR*HH|o|lmso 10,y

(5.21)
[div(o — I (0)) L2, < C Rt |div(o)||ms+1(q,),

where wy, € {th,vsh,wph}, W, € {Vf,VS,Wp}, and s, € {sgf,sgp,sup} — the degrees of polyno-
mials in the spaces Xj,.

NOW7 let (Ufa up7 a-pappa P, 07 )\7 uf7 Us, 7]"7 ﬂYp) and (O-fha uph7 o-phvpphu Phs 0h7 )‘h7 ufh7 Ugh, 7fh7 7ph)
be the solutions of (3.11]) and (5.11)), respectively. We introduce the error terms as the differences
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of these two solutions and decompose them into approximation and discretization errors using the
interpolation operators:

e =0 —op = (0= L;(0) + (I;(0) —on) = ez +ef, o€ {ofopu},
e, = ¢ —on = (¢ = P (9) + (P(p) —wn) = el +el, ¢ {p, A} (5.22)
ew = u—up = (u— Py (u)+ (P (u) —up) = e +el, ue{pupu,vs,7,}
Then, we set the errors
ez = (€5, €u,,€0,,€p,); e, = (ep,€9,€e)), and ey := (euf,eus,e,yf,e,yp).

We next form the error system by subtracting the discrete problem ([5.11)) from the continuous one
(3.11). Using that X;, C X and Zj, C Z, as well as Remark we obtain

(0: €+ A)lea)(Ty) + Bi(zy)(eg) + B(zp)(en) = 0 V), € Xy,
—Bi(ea)(®,) +Clep)(¥,) = 0 V¢, €Yy, (5.23)
— Blea)(vy) = 0 Vv, €%,

We now establish the main result of this section.

Theorem 5.3 For the solutions of the continuous and discrete problems (3.11)) and (5.11)), respec-
tively, assuming sufficient reqularity of the true solution according to (5.18)) and (5.21)), there exists a
positive constant C' independent of h and sg, such that

leo;llLe(o.rxs) + lleas lLzo,rx,) + lew,llLeorrz9,) + lew, lL2o,r;v,) + [ee — €olr=(0.181s)
+ ey — ealiz(o.r818) + lexllLe(o.n,) + legllizo.rv,) + lleullzorz) + 1472 (o, Lo, ri2(@,)
+ [[div(eq,)llLe(0,7.L2(0,)) + [[div(es, )20, m.L2(0,)) + l€p, lLe07w,) + [lep,llL20.7:w,)
+1[10; A2 (e, + apep,Dlli2or2(2,) + VS0l O ep,llzo.mw,)

< C+/exp(T) (hsﬁl o h%“), (5.24)

where sg = Min{sq, Su,, S0, Sp,}s Sp = Min{sy, g, 81}, sSu = min{suf,sus,s,yf,sfyp}, and 7 s

defined in (5.18]).

Proof. We present in detail the proof for the conforming case (S1). The proof in the non-conforming
case (S2) is simpler, since several error terms are zero. We explain the differences at the end of the
proof.

We proceed as in Theorem Taking (7,9, ,vy) = (eg,ef:,, el) in (5.23), we obtain

1
5815 (ae(eh aegp;egpv pp)+50( h’ gp) )+af( Z'fv af)+ap( h ) ﬁp)‘FCBJS(eZaez?eZ’ez)
= _af( oo Z'f) _a’p(eflpaeﬁp) _ae(ate ate ) a'pae]’;p) _C(elg)(e;)
— bng(eg,,e}) = bn, (€5, €p) —br(el,,e}) + bnj(eg,,el) + b, (e5, . €f) +br(ey,.e})  (5.25)

h h h
- bskf( o f{/f)_bsk,p(eo-pv T )+bskf( g’f? 'yf)+ bSk,p( gp Y )
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where, the right-hand side of ([5.25) has been simplified, since the projection properties (5.17)) and
(5.20)), and the fact that div(eﬁp) € Wy, div(e’;f) € Vyp, and div(egp) € Vg, imply that the

following terms are zero:

(atepp7 pp) bp(eﬁ,ﬂe{op)? bp(eI ) pp) bf( o uf) bf( o ﬁf) bs(e];p7e1[ls)7 bs(egpveﬁs)' (526)

In turn, from the equations in (5.23|) corresponding to test functions vy, v, and wpyp, using the
projection properties ([5.20]), we find that

bf(e?,f,v]ch) =0 Vv, €Vy, bs(egp,vsh) =0 Vvg € Vg,
bp(eﬁp, wpp) = ae(é?te 8te 30, wpn) + ae(ate , O eép; 0, wpr) + (S0 O egp,wph)gp Y wpr, € W,
Therefore div(el ) = 0 in Q, with x» € {f,p}, and using (£.2)-([£.3) we deduce
I(e5 )2,y = Clleg, Ik, ldiv(el )i, =0,
Jdiv(el )z, < € (10 AY2(eh, + apel, Dz, (5.27)
+ 10, AV (el + ap e T2, + V5010, Iw, )

Then, applying the ellipticity and continuity bounds of the bilinear forms involved in ([5.25) (cf.
Lemma and the Cauchy—Schwarz and Young’s inequalities, in combination with ([5.27)), we get

h h h h h : h h h
0r (I14172(el, + apel, DlEa(q, ) + sollel IR, ) + lleh, I, + lek, I3, + ldiviel, )Ezq,, + el — ehliss

I 1 I 1 1 I 1 I
<C (IIeng?gf + llew, I3, + llez, 1%, + lep — ealass + llegly, + lles I3, + ey, II3,

1 I h h
+ 100 AY2 (el +apel D)[Za ) + AV (e +apel D)[Zaq,
h h h
+ 110, A2 (el + el DIz, + soll ey Iy, )
h h h h h h h h
+ 31 (llel, I, + lleb, I, + el — eblZss ) + 02 (llel, I22a,) + ||e£||%(h + lleh, I, + lleh 13, ).

where for the bound on by, (e f; ,eb) we used the trace inequality (3.2)) and the fact that div (el ,)=0.

Next, integrating from 0 to ¢ € (0,77, using ) to control the term ][eap|]L2 Q) and Choosmg 01
small enough, we find that

|AY2(e5, + apel, D)D), + sollef, DIy,

t
+ /0 (Iteh, 13, + llek, I, + Idiv(eh )3, + leb — ebliss) ds
t
<c ( /0 (lek, 1, + llek, I3, + lef, — ehliss + lep %, + lled I3, + e, I3, +liek, 1%, ) ds
t
+ [ (1047 (&L, + oyl D, + 1142 (eh, + apel, D, ) ds (5.28)
t
- / (119 4172 (el + ap ey DlEa(q, ) + s0lldr el IRy, ) ds + [ AY/2(eh, + ap el DO,
h 2 !
+ sollel, )[Ry, | +0: /0 (e I3y, + llel I, + liek I3, + i€k 113, ) ds.
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On the other hand, taking 7;, = (T fn, Vph, Tph,0) € Vy, (cf. (5.6))) in the first equation of ([5.23)),

we obtain

Bi(T)(ep) = — (8:€ + A)(ex)(Th) — Bi(Ty)(e}).,

In the above, thanks to the projection properties (5.17), the following terms are zero: by(vpp, ezlyp),

bf(Tfh,e{Jf), and bS(Tph,e{lS). Then the discrete inf-sup condition of By (cf. (5.8)) for e

h oh oh ~
(e, e, ey) € Y), gives

h
L

h I I I I I I I
legllv, < C(Heaflle +lled, v, + leglly, +llef 13, +llef I3, + 1. A (eq, + apep, Dllz(a,)

+ lleg, llx, + llet, v, + 1€y 1B, + 1€y 1§, + 110: A2 (e, + apep Dizq,) + HeZpHWp> - (5.29)
In turn, to bound ||lel||z, we test (5.23) with 7, = (71,0, Tps,0) € X, (cf. (5.5)), to find that
B(r,)(eh) = — (af(eaf,Tfh) + ae(0r €0, O €, Tpn, 0) + B(Ih)(ei))-

In the above, the terms by (7 ss, e{lf) and bs(Tph, 91[15) are zero, due to the projection property (|5.17)).
Then, the discrete inf-sup condition of B (cf. (5.7))) for eﬁ € Zy, yields

lebllz < € (leh, I, + 19 A (e, + el Diluaga,) + e, llo, + ll, o, .
h h '
+ et 1z, + 110, AY2 (el + apel, Dliza,)) -
Finally, to bound Heszwp, we test (5.23)) with 7, = (7 ¢, Vph, Tph, 0) € X}, to get

bp(Vph, eg}olp) + br (vph, eli) = - (ap(eupv Vph) + bp(Vph; eép) + br(vph, eg\)).

Note that by (vpn, el‘gp) = 0 due to the projection property ([5.17)), thus the discrete inf-sup condition
(-10) gives

h
el I, + el < (el ey + lekliag, + el e ). (5.31)
Combining ([5.28]) with (5.29)), (5.30)), and (5.31)), choosing d2 small enough, and employing the Gron-
¢

- . . 12 (. hoTy)12 :
wall’s inequality to deal with the term /0 |AY (eg, + ape, Dli2q ) ds, we obtain

|42 (e, + ap e D(D)F2(q,) + 50 llep, (IR,

t
h h . h h h h h h
+ /0 (el I, + lleh, I3, + lidiv(eh )liZa(q,) + e, I, + e — eblds + eI, + llek ) ds
t
< C exp(T) ( /0 (llegll% + leg 3, + llekli% + ef, — ehlss + 12: A2 (eh, + apeh, DlZa(q, ) ds
t
h h h
+ /0 (190 472 (e, + ap ey Do, + sollh ey I3y, ) s (5.32)

+ (A2 (el + ap el 1(0) 220, + 50||e2p<0>!%vp>-
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t
Now, in order to bound / (Hat Al/2 (eﬁ + eh I)Hiz q,) 1 sollo: eZPH%V > ds on the right-hand
0

side of (5.32)), we test (5.23) with 7, = (Btet,f, up , Oel 8tegp), Y, = (etp,ee,ate)\) and v, =
(ehf,eﬁs,ef;f, “ ), dlfferentlate in time the rows in associated 0 Viph, Yy @hs Vihs Vshs X fhs Xpho
and employ the projections properties - to eliminate some of the terms (cf. (5.26))),

obtaining

1 Lo hovdp2 bk b h..h _h
205,105 B2y + aplel, €l,) + coss(e o el ef)

+[10:AY (el +ayel D[22, ) + solldeel [13y,

= —ay(e ,,f,ate ) — (8teu, up)—ae(ate 8te ;0 el 8tezp)—cBJs(ate;,ate{g;eg,eg)
+cr(eh,e9;(9te/\)—cF(e;,ee;ateli) (8te0f, 90)— np(ategp,e{,)—bp(eﬁ ,8te§) (5.33)

+ buy (Dreg, ep) + bn, (Bre; . €f) +br(ey,, O eX) — bu r(req e ) = bup(Orey, e )
+ bsk f(atea'fv ) +bSk,P(at ecr ) .}; )
Then, integrating ([5.33|) from 0 to ¢ € (0,7, using the identities

t t t
/0 af(eg'fﬁate’;'f)ds = af(e£f7eg'f)’ _A af(at f7 Z’f)ds

t

t t
/ bn* (at eZ*, eg) ds = bn* (eﬁ*,eg) - / bn* (eg*v 815 eg) ds , X € {fﬂ p}v SRS {907 0} )
0 0

’ (5.34)

t

t
—/ b (el Oyl ) ds,
0

t

t
/ botc (O eﬁ*,efy*)ds = bsk,*(ef;*,e.[,*) 0
0

t
/ <e£~nf,8te§>r ds = <e<{-nf,e’i>F
0 fp fp

and applying the ellipticity and continuity bounds of the bilinear forms involved (cf. Lemma, the
Cauchy-Schwarz and Young’s inequalities, and the fact that div(eg*) =0 in Q, with x € {f,p} (cf.
(5.27))), we obtain

t
—/ <6te£-nf,e§> ds, o €{p,0,u,},
0 Lyp

0

el (O11%, + llel, (1) 220, + lldiviel, ()22, + l(els — ef)(®)Ess

t
+ /0 (Il AY/2 (el + ap el DIz, + solldr €, Iy, ) ds
<c (neéf(t)r\ig(gf) + el O3, + lled, D122, + leLOlI,, + leb B3, + llel D13,

t
+ llef, ), +/0 (Ilﬁt eg,|I%, + 10 el I, + 10 (e — eg)[5ss + lleplla,, + 10r el I3,

I I I I I
+l10ved 13, + loved I3, + 10 AY2 (eh + ap el DlZaq,) + 0rel, I3, ) ds

+ leg, (OE2(q,) + llew, O3, + lleg(0)A,, +lleg(0)liA,, + ||ef,f(0)lléf>
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t
+ 6 (ne,’;f(m&f +llef, (1220, + llk@)13, + /0 (el 1%, + llek, I, + lels — ehl2ss ) ds
¢ 1/2 h h 2
= [ (Iebli, +lhl) as / 0y AY2 (el + ap el T[22, ds

+ (el )12, + llek, O)12a, + el 012, + I(els — ) O) s + [OIZ,, ) - (5:35)

We note that Hegp (t)HiQ(QP) + ||e’/{(t)\|iph can be bounded by using (4.14) and (5.31]), whereas all the
other terms with d3 can be bounded by the left hand side of (5.32)). Thus, combining (5.32)) with
(5.31) and (5.35]), using algebraic manipulations, and choosing d3 small enough, we get

h

leg., ()11, + llew, (DlE2(q,) + (e —eB)(Dzss + IR (DR, + 14" (e5, + apey, DD (g,

t
. h h h h h h h
+ lldiviel, (1) 122, + Ik (1), + /0 (el 12, + et 13, + lels — ebliss + e,

h . h h h
+ llellZ + lldiv(eq, )iz, + e, IRy, + 10 A (e, +apep, DIz, + soll0 ep,,\l%vp> ds

I I 1 I 1
< € exp(T) (Heaf ()220, + ek, IR, + lled, D220, + LM, + b O3,
I 2 I 2 ! 12 12 12 I 12 12
ek, ()18, + ek, O, + | (lebl+ eI, + lleblfs + lef = eblEss + oneb ) ds

t
+ /0 (10: €41, + 101 (el — eh)lBss + 191 €] I3, + 01 ed |13, ) ds + llek, (0)IEx(q,)

+ llen, 0%, + leg(OIa,, + lea(0)l[A,, + llef, (0)13, + lleg ()l + llet, 0z,
+ lleg, ()11, + (1 + s0)llep, (0)y, + I(eg — e5)(0)[555 + HeSL(O)II%,,h)‘ (5.36)

Finally, we establish a bound on the initial data terms above. In fact, proceeding as in (4.45)),

recalling from Corollary and Theor that (a(0),(0)) = (g9,¢,) and (g,(0),¢,(0)) =
p-32)

(o 10 Py, 0) using similar arguments to (5.32) in combination with the error system derived from

E12) 13, we deduce

2 1/2 ( h 2 N 2 R 2
e ()11, + ek, ()1, + [4Y2 (el (0)Z2(q, ) + Idiviel, (02, + ek (), -
5.37
h h 2 h 2 I 2 I 2 I 2
+ Itely — eB)(O)Bss + €03, < € (lleky I + ek 1%, + llely 1)

where Oy = (O-f,Oa Up.0, Up,Oapp,O) QDO (‘1007 wo, )‘0) and u by = (Uf 05 Mp,0: 7,05 Pp, 0) and ea-07 ;0’ eéo
denote their corresponding approximation errors. Thus, using the error decomposition ([5.22)) in com-
bination with (5.36])—(5.37)), the triangle inequality, (4.14)) and the approximation properties ([5.18)) and
(5.21)), we obtain ([5.24)) with a positive constant C' depending on parameters i, Ap, fip, 0p, Kmin; Kmax, O3S,
and the extra regularity assumptions for o, ¢, and u whose expressions are obtained from the right-
hands side of ((5.18)) and (5.21]). This completes the proof in the conforming case (S1).

The proof in the non-conforming case (S2) follows by using similar arguments. We exploit the
projection property (5.19) to conclude that some terms in ([5.25) are zero, namely by f(eh eI‘P),

a'f’
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bn (eg ,eb), and br (e e{\), as well as terms appearing in the operator C (cf. (3.9))): <e nf,eA> r,,’
p

P
1 h I h ses :
<eLp . nf’eA>Ffp’ <e0 -1y, e)\>1,fp, and <e0 n,, e)\>rf . In addition, in the non-conforming version of

(5.29)) the terms ||e{\||APh, He{PHAfh, and |le}|a,, do not appear, since the bilinear forms br (v, el),
b (T e{P), and by, (Tpn, el)) are zero by a direct application of the projection property (5.19). O

6 A multipoint stress-flux mixed finite element method

In this section, inspired by previous works on the multipoint flux mixed finite element method for
Darcy flow [19,40,/57,/58] and the multipoint stress mixed finite element method for elasticity [5-7], we
present a vertex quadrature rule that allows for local elimination of the stresses, rotations, and Darcy
fluxes, leading to a positive-definite cell-centered pressure-velocities-traces system. We emphasize that,
to the best of our knowledge, this is the first time such method is developed for the Stokes equations.
To that end, the finite element spaces to be considered for both (X¢4, Vh, Qp) and (Xph, Ver, Qpn)
are the triple BDM; — Py — P;, which have been shown to be stable for mixed elasticity with weak
stress symmetry in [15/16,[30], whereas (V 4, W) is chosen to be BDM; —Pg |17], and the Lagrange
multiplier spaces (A ¢p,, Agp, App) are either Py — Py — Py or P{¢ — P{c — Pc satisfying (S1) or (S2)
(cf. , ), respectively, where P‘fc denotes the piecewise linear discontinuous finite element
space and Pﬁlc is its corresponding vector version.

6.1 A quadrature rule setting

Let S, denote the space of elementwise continuous functions on 7,*. For any pair of tensor or vector
valued functions ¢ and 1 with elements in S, we define the vertex quadrature rule as in [58] (see

also [5,[7]):
E
(0o = Y (o = > 5] Z (r:) - (rs) (6.1)
EeT; EeT;
where x € {f,p}, s = 3 on triangles and s = 4 on tetrahedra, r;, i = 1,...,s, are the vertices of the

element F, and - denotes the inner product for both vectors and tensors.

We will apply the quadrature rule for the bilinear forms ay, ap, a. and by +, which will be denoted
by a}}, ag, al and bgk ,» respectively. These bilinear forms involve the stress spaces Xy, and X,
the vorticity space th and rotation space Q,4, and the Darcy velocity space V,,. The BDM;
spaces have for degrees of freedom s — 1 normal components on each element edge (face), which can
be associated with the vertices of the edge (face). At any element vertex r;, the value of a tensor
or vector function is uniquely determined by its normal components at the associated two edges or
three faces. Also, the vorticity space Qyj, and the rotation space Qp are vertex-based. Therefore
the application of the vertex quadrature rule for the bilinear forms involving the above spaces
results in coupling only the degrees of freedom associated with a mesh vertex, which allows for local
elimination of these variables. Next, we state a preliminary lemma to be used later on, which has
been proved in |7, Lemma 3.1] and [5, Lemma 2.2].

Lemma 6.1 There exist positive constants Co and Cy independent of h, such that for any linear
uniformly bounded and positive-definite operator L, there hold

(L(p)9)ea. = Colleld,, (L(v)¥)ae. < Cilvllallvle., Yoo €S xe{fp}

Consequently, the bilinear form (L(p),)g.q, is an inner product in L*(Qy) and (L(go),tp)gé* is a

norm equivalent to ||¢||q, -
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The semidiscrete coupled multipoint stress-flux mixed finite element method for (3.11)) reads: Find
(@h, ;1) 1 [0,T] = Xp, x Yy, X Zp, such that for all (7,%,,v),) € X, x Y, X Zp, and for a.e.
t e (0,7),

0

ot Enlap)(Th) + Anlap)(Th) + Bi(Ty)(@,) + Br(Ty)(u,) = F(zy),
—Bi(e)(¥,) +C(e,)(%,) =0, (6.2)
— Bu(a) (V) = G(vy),

where
Anlay)(xy) = a}(o pn, T ) + ap(Wph, Vin) + bp(Vph, Pph) — bp(Wpn, wpn),

(T1) = al(opn, Pohs Tons Wpn) + (S0 Ppns Wpn )0,
(Vi) = bp(Tfn, Vin) + bs(Tph, Visn) + bgk,f(Tfha Xrn) + bgk,p(TPI‘H Xph)-

We next discuss the discrete inf-sup conditions. We recall the space ﬁh defined in (5.5). We also
define the discrete kernel of the operator By, as

V), = {Ih €Xp: Bu(ry)(vy) =0 Vv e Zh} = Xpp X Vi X Xph X Wi, (6.3)

where

~

X*h = {T*h S X*h : (T*hag*h)QJZ* =0 vE*h € Q*h and diV(T*h) =0 in Q*}v * € {fap}a
emphasizing the difference from the discrete kernel of B defined in (5.6]).

Lemma 6.2 There exist positive constants B and 31, such that

sup IR S 3y vy, e 7, (6.4)
oo De,  lzallx
Bi(T —
sup M > Bl lly, Yo, € Y (6.5)

oz, ev,  I1Tallx

Proof. The proof of (6.4]) follows from a slight adaptation of the argument in [5, Theorem 4.2]. The
proof of (6.5)) is similar to the proof of (5.8)). The main difference is replacing the interpolant satisfying
(5.9) by an interpolant f[£ : H' (Qf) — Xy, satisfying
bf(ﬂg'rf —T# Vi) =0 Vvy, € Vi, bng(ﬂﬁ'rf —75Xm) =0 Vxsn € Q,
<(ﬁ£7'f - Tf)nfvahnf>rfpur;V =0 Vs eXpp,
whose existence follows from the inf-sup condition for By, (6.4]). O
We can establish the following well-posedness result.

Theorem 6.3 For each compatible initial data (a9, ¢, ,»Upo) satisfying (5.15) and

fr e WHL(0,T5V)), £, € WHH(0, T3 VL), qp € WHH0,T5X)), g, € WHH(0,T; W)),

there exists a unique solution of (6.2), (gh,fh,gh) 2 10,T] = Xy x Yy, x Zy, such that (o ph, pph) €
WLOO(OaT;Xph)XWLOO(OaT;th)f and (gh(o)afh(o)vufh(0)77fh(0)) = (gh,07£h707ufh,077fh70)' More-
over, assuming sufficient reqularity of the data, a stability bound as in (5.16|) also holds.

Proof. The theorem follows from similar arguments to the proof of Theorem in conjunction with
Lemmas [6.1] and [6.2 O
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6.2 Error analysis

Now, we obtain the error estimates and theoretical rates of convergence for the multipoint stress-flux
mixed scheme (6.2). To that end, for each oy, T¢n € Xgn, Upn, Vpu € Vpn, Ophy Tph € Xph, Dphs
Wpn € Wpp, Xfh € Q¢n, and Xph € Qpn, we denote the quadrature errors by

5f(0fh77'fh) = af("'fhﬂ'fh) - a?(dfh, Tfh),

Op(Uph, Vpr) = ap(Upn, Vpn) — GZ(upm Vih)s (6.6)
de (a'pprpha T phs wph) ae(a'phapph; Tph wph) - CLZ (Uphvpph; T phs wph)7
5sk *(X*ha T*h) bsk,*(X*fm T*h) - bgk,*(X*ha T*h)a * € {fap}

Next, for the operator A (cf. (2.4))) we will say that A € W}r’poo if A e Whe(E) for all E € T/
h

and || Al|y1.00(5) is uniformly bounded independently of h. Similar notation holds for K~'. In the
next lemma we establish bounds on the quadrature errors. The proof follows from a slight adaptation
of |5, Lemma 5.2] to our context (see also [7,58]).

Lemma 6.4 If K™ ' ¢ W,ﬂ and A € W}ILPOO, then there is a constant C' > 0 independent of h such
h
that

165(asm Ten)|l < C Y Rllogallm sy 1T smllizcs)
EeTy!
16 (Wpn, Vpr)| < C > RIK e ey Ipnllen ) [ VenlLz e,
EeT?
166 (& phs Dpis Tphs wpn)| < C > bl Allwrce )1 (0pn, Pon) i 5y <12 () | (Tphs wpn) 25y <12 ()
EeTP
st (T Xun)| < C D hllTanllize Il ey, * € {£.p},
EeTy
|6Sk,*(T*h7X*h)| <C Z h”T*hHHl(E) ||X*h||]LQ(E')a * € {f’p}7
EeTy

for all o, T pn € Xgn, Wpn, Vph € Vph, Oph, Tph € Xphs Pphs Wph € Won, X € Qrny Xpn € Qpa-
We are ready to establish the convergence of the multipoint stress-flux mixed finite element method.
Theorem 6.5 For the solutions of the continuous and semidiscrete problems (3.11)) and (6.2)), respec-

tively, assuming sufficient regqularity of the true solution according to (5.18) and (5.21)), there exists a
positive constant C' independent of h and sg, such that

leo Lo, + lleo,lL207rx,) + llew, lueo.r1z9,)) + llewllLzo,rv,) + lee — €olL= 0185
+ ley — eolrL2(0,7835) + [€xllL(0,7:a,1) T ll€pllL20,7:v,) + ll€ullLeo.r;z) + ||A1/2(ecrp)||L°°(O,T;L2(Qp))
+ [div(eq,)llL=(0,7.L2(0,)) + [1€p, [[L(0.75w,) + [div(es,)lL20.7L2(0,)) + ll€p,lIL20.7:w,)
+[10; A2 (e, + apep, DIz o,r2(2,) + V0l Ok ep, Iz 0w,

<cC (h + h“") , (6.7)

where r is defined in (5.18]).
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Proof. To obtain the error equations, we subtract the multipoint stress-flux mixed finite element
formulation (|6.2)) from the continuous one (3.11)). Using the error decomposition (5.22)) and applying

some algebraic manipulations, we obtain the error system:
(0 En + An) (el) (1) + Bi(Ty,)(efy) + Br(Ty)(ey)
—(0 €+ A)(ex) (1)) = Bi(ty)(ep,) — B(Ty)(ey) — & sep(In(e), Pa(w))(7),), 65)
—Bi(eg)(¥,) +Clel,)(,) = Bi(eg)(®,) — Clep)(¥,)
— Bu(el)(vy,) = Bleg)(vy) + 8 p(In(@))(vs),

for all (1,,%,,v),) € Xp X Y, X Zp, where

8 ep(In(@), Pa())(x4) i= = 85(L,” (o), 7 1) = 8c(1” (), i Ty W)

Y Q Q
- 5p(Ih P(up), vph) — Osk, £ (T fh, P, f('Yf)) — Osk p(Tphs P, p('Yp))
and . X
drp(In(a))(vy) = Sk,f(Ih ! (Uf)7 th) + Oskp(L, 7 (07p), Xph) .

Notice that the error system is similar to (| , except for the additional quadrature error terms.
The rest of the proof follows from the arguments in the proof of (| -, using Lemmas 6.1} m n 6.2] and
and utilizing the continuity bounds of the interpolation operators [ ff*,],‘;p , PQ [5, Lemma 5.1]:

15 ()l () < Climanllmmy V7w € HY(E), *€{f.p},

1P )l 2y < Clxanllen ) VX € H'(E),

IN

v
12, " Vo)l ) < O lvpnlla ) Y ven € HY(E).
We omit further details, and refer to [5},7,58] for more details on the error analysis of the multipoint

flux and multipoint stress mixed finite element methods on simplicial grids. O

6.3 Reduction to a cell-centered pressure-velocities-traces system

In this section we focus on the fully discrete problem associated to (cf. -, - and
describe how to obtain a reduced cell-centered system for the algebraic problem at each time step. For

the time discretization we employ the backward Euler method. Let At be the time step, T' = M At,
tm = mAt, m = 0,..., M. Let dgu™ := (At)~}(u™ — u™ 1) be the first order (backward) discrete
time derivative, where u™ := wu(t;). Then the fully discrete model reads: given (gg,fz,gg) =
(Qh,vah’oth,o) satisfying (5.15)), find (ap ey uy’) € Xy X Yy, X Zp, m = 1,..., M, such that for
all (Ih’g;ﬁzh) € Xh X Yh X Zh7

di En(ap’)(Th) + An(ap’)(Th) + Bi(Ty)(@)) + Bu(zp)(up') = F(zp),
= Bi(ap)(#,) +C(e)")(¥,) = 0, (6.9)
— Bu(ay)(vh) = G(vp).

Remark 6.1 The well-posedness and error estimate associated to the fully discrete problem
can be derived employing similar arguments to Theorems and [629 in combination with the theory
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developed in (8, Sections 6 and 9]. In particular, we note that at each time step the well-posedness of
the fully discrete problem , with m = 1,..., M, follows from similar arguments to the proof of

Lemma [{.7}
Notice that the first row in can be rewritten equivalently as
(A& + Ap) (@) (Th) + Bi(T) (@) + Bu(Ty) (i) = F(z),) + (AD) ' En(a) ™ )(Ts) . (6.10)

Let us associate with the operators in 1D matrices denoted in the same way. We then have

Ao, 0 0o 0 Agja, 0 00
0 Aga, 0 A 0 0 Agu, 0
(A1) & + Ap) = - Wl B, = - :
0 0 Apo, Ab Agryy 0 0 0
0 —Aup Aoy Anp 0 0 Agy 0
Apjg 0 0 0 App AL, AL,
Bi=| 0 0 Age 0|, c=| A e 4y, |.
0 Agy 0 0 —Agy —Agr 0

with
Agjop ~ df(0)s Aupu, ~ ap(), Aoy, ~ (AT al(5,0;-,0), Ag,p, ~ (A1) al(-,0;0,-),
Ap,py ~ (A1) aZ(0,550,-) + (A (50 )0 Auypy ~ b5y Aoy ~ bas (), Aupn ~ br(-,-),
Ag,o ~ bn, (+7), App ~ cais(+,0;-,0), Agg ~ cass(+,0;0,-), Ags ~ cpss(0,+0,-), Apr ~ cr(-,0;),
Agx ~ cr(0,+54), Agpup ~bi()s Agpyy ~ i () Aoyu, ~ bs(), Agyy, ~ i, (),

where the notation A ~ a means that the matrix A is associated with the bilinear form a. Denoting
the algebraic vectors corresponding to the variables a7}", e and uj’ in the same way, we can then
write the system in a matrix-vector form as

(At)"1 &+ A Bp B, Iy F + (A) " & (ap™)
—B cC 0 ey = 0 . (6.11)
—B;y, 0 O uy’ G

As we noted in Section due to the the use of the vertex quadrature rule, the degrees of freedom
(DOFs) of the Stokes stress U;”h, Darcy velocity ) and poroelastic stress tensor ook associated with
a mesh vertex become decoupled from the rest of the DOFs. As a result, the assembled mass matrices
have a block-diagonal structure with one block per mesh vertex. The dimension of each block equals
the number of DOFs associated with the vertex. These matrices can then be easily inverted with
local computations. Inverting each local block in Ay, allows for expressing the Darcy velocity DOF's
associated with a vertex in terms of the Darcy pressure pg}l at the centers of the elements that share
the vertex, as well as the trace unknown A}* on neighboring edges (faces) for vertices on I'f,. Similarly,
inverting each local block in Ay, allows for expressing the Stokes stress DOFs associated with a
vertex in terms of neighboring Stokes velocity u}”h, vorticity 'y’]?h, and trace ¢}'. Finally, inverting
each local block in Ag, s, allows for expressing the poroelastic stress DOFs associated with a vertex
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in terms of neighboring Darcy pressure Ppp,» structure velocity u’} , structure rotation Yph and trace
0}'. Then we have

m _ _ A—1 t m _ A—1 t m

Upn = Aupup Auppp Pph Aupup Aup/\ h>
mo -1 t m -1 t m -1 t m

Tfn =~ A"'fo'on'f‘P L Aa'fo'fA"'fuf Yrn = AUfoAGfo Tsho (6.12)
m -1 t m -1 t m -1 t m -1 t m

Oph = — Aa'po'pAa'pPp Pph — Aa'pa'pAO'pe Oh o Aapa'pAa'pus Ysh — Ao'pa'pAUp’Yp Vph-

The reduced matrix associated to (6.11)) in terms of (p;’}l, en,on AT ufj, uﬁ,’y%,’yg}’b) is given by

Appoppp + Appuppp 0 _Appapﬂ AppupA 0 _Appopus 0 _Appopvp
0 ALP‘P—FALPGW Afpo Afp)\ Aufaf‘p 0 A,yfafso 0
A;p,,pg A Ago+Ags,0  Aby 0 Au,o,0 0 Ay 5,0
AL —Apn —Aoxn  Axar 0 0 0 0
0 Aflfafg, 0 0 Aufafuf 0 Aufc,f,yf 0
A;papus 0 AEIS a'p9 0 0 Aus OpUs 0 Au5 TpYp
0 Afyfaﬂp 0 0 Aflfaf.yf 0 A7faf7f 0
A 0 AL 0 0 Agn 0 Ao
(6.13)
where
A =A —A AL At A =A A7l oAt A 0=Ay , AZL Al
PpOpPp PpPp OpPp* opop  oppp? PpUpPp UpPp“ upup uppp? PpOp pPp*topopitop0)
Appup)\ = AupppA,:plupAtlp)\y Appo'pus = AO'pppA;;a'pAg'puy Appo'p’Yp = AappPA;;GpAgP7p7
A(PO'f(p = AO’fSOA;;o'fAfo(p? A00p0 = AGpHA;;apAg-pev
Anupr = AunAglu, Ay Augose = Ao pola o Ay ups Aupopuy = AopupAg o A,y (6.14)
Ausopry = Ao jugAgto A s Auoyd = Aoy0laia, A v Ausoyus = Aoyu Ao e, A us
Ausa'p'yp = Aa'pusA;;g-pAg-p-yp’ A'ypap'yp = AO'p’ypA;;o-pAg'p'ypv A’ypape = AUPOA;;UpAg'p’Yp’
A'Yf"f“/f = A‘Tf‘YfAC_’}Ungf’Yf’ A‘Yf‘7f<P = AUf"OA;;afA:;f”/f'

Furthermore, due to the vertex quadrature rule, the vorticity and structure rotation DOF's correspond-
ing to each vertex of the grid become decoupled from the rest of the DOFs, leading to block-diagonal
matrices Ay Jrr and A.ypap.yp. Recalling the matrix definitions in (6.14)), each block is symmetric
and positive definite and thus locally invertible, due the positive definiteness of A;}G ; and A;;Gp and
the inf-sup condition (5.7)). We then have
_ —1 -1
T = —A Avyoppo Pl — A AL u'py,

YOV VO FY T TUfO Y
(6.15)

m _ _ A—1 t m _ A—1 m _ pA—1 t m
Yph = A’Ypo'p’YpAppa'p’Yp Pph A7p0p7pA7p0P9 ah A’Ypa'p’)’pAusa'p"/p Wop»

and using some algebraic manipulation, we obtain the reduced problem Ap}" = f‘, with vector solution

38



Py = (pZ}L, YN DR uf, u’} ) and matrix

Apyoupy + Appasp, 0 —Apope Apyuy 0 —Ap,opu,
0 AgosotAee Al Apy Ausorp 0
A A e Ao Apo,0+A00 A, 0 Auyo,0 6.16)
A;pupA —Apx —Agx Axupa 0 0
0 gtlf@fw 0 0 Auosu 0
Ao 0 Ao 0 0 Auou,

where

x N -1 t A _ _ -1 t
Appo'ppp - Appo'ppp + Appa'p’YpA'ypa'p'ypAppa'p7p’ Appo'pe - Appo'pe APUPOA'ypap'ypAﬂypapev

1 _ -1 t _ B -1 t
APP"P“S B APP"P“S B APPUP’YPA’VPUp’YpAusUp"/p’ A<PUf<P - A‘»Wf‘P A7f6f90A7fo'f7fA7fa'f‘P’

A = -1 t A — -1 t
AufO'f<P - AufO'f"P - A’YfG'f‘PA7fa-f'yfAcha'f’yf7 AHUPO = AOUPB - A7PUP0A'YpUp7pA'YpUp9’ (617)

1 _ _ -1 t A _ N -1 t
AuSO'pg - Auso'pe A’)‘pdpeA’ypo'p’ypAuso'p'yp’ Allfd’fllf - AUfO'fLIf Aufo’YfA’YfO'f’YfAUfO'f’)’f’
1 _ -1 t

Auscrpus - Ausapus - Ausa'p'ypA7pa-p—yp usopY,?

and the right hand side vector F has been obtained by transforming the right-hand side in
accordingly to the procedure above. Note that, after solving the problem with matrix (6.16|), we can
recover uy; , o'f,, o, and ', vy, through the formulae (6.12)) and (6.15]), respectively, thus obtaining
the full solution to .

Lemma 6.6 The cell-centered finite difference system for the pressure-velocities-traces problem (6.16|)
s positive definite.

Proof. Consider a vector ' = (wy, v}, b, & Vi Vi) # 0. Employing the matrices in (6.14) and
(6.17) and some algebraic manipulations, we obtain

N I _ -1 gt t -1 t
dAq = Wph (Apppp AUPPPAUpUpAapPp)wph + wphAPp”P'VpA’Ypa'p’YpAppap"/pwph

t -1 A At ¢h
(A 4 A4y2 ) A, (A, 0+ A &) + 05 1) (370 o0 ) (0

() Vi) ( Loore  Luese ) (& )+ v ( Loor0 Auieye ) (&),

uro e usofuy th uso,0 Ausapus Vsh
(6.18)

Now, we focus on analyzing the six terms in the right-hand side of (6.18). The first term is non-
negative due to [39, Theorem 7.7.6] and the fact that the matrix A ,, — Ag,p, A Ay p, is a Schur

opOp
complement of the matrix
t
< AUPO'P Ao'ppp )
)
A"'ppp Apppp

which is positive semi-definite as a consequence of the ellipticity property of the operator a. (cf. (3.8)
and (4.7)). The second term is nonnegative, since the matrix Aﬂyp,,p,yp is positive definite, as noted in

(6.15). The third term is positive for (w}, &) # 0, due to the positive-definiteness of Ayl and the

u
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inf-sup condition (5.10). The fourth term is non-negative since the operator C (cf. (4.8))) is positive
semi-definite. The matrices in the last two terms are Schur complements of the matrices

Agao'fcp Aufa'fga A’yfa'fcp AGJPO Ausa'pﬂ A7p0p0
t t
Af = Aufa-an AUfoUf Aufajryf and Ap = Ausopg Ausapus Ausa'p'yp s
t t t t
A—yfvfso AUfo'Yf A‘Yff’f“/f Avpape Auwmp A‘Ypap’Yp
respectively, which are positive definite. In particular, for \7} = (¢} V}h chh) # 0 and v, =

(D) Vi X;h) # 0, we have

- - toa—
ViApvp = (Ao ¥+ A, Vin + Afyf—yf X ) Aa;af (A o ¥+ Ao, Vin + Afyﬂf Xjn) > 0,

—

- to4—
VZAPVP = (Ag'pe &n + Az'pus Vsh + Azt:rp’yp Xph) AO’;UP (AEJ'I,G P+ Azt:rpus Vsh + Ag'p'yp Xph) >0,

due to the positive-definiteness of Azl . and A;;Up, along with the combined inf-sup condition for
Bh(th)(vy) + Bi(7y) (9, ). The latter follows from the inf-sup conditions (6.4) and (6.5)), using that
(6.5) holds in the kernel of Bj. Then, applying again [39, Theorem 7.7.6], we conclude that the last

two terms in (6.18) are positive for (), v}h) # 0 and (¢}, vi,) # 0. Therefore GA g > 0 for all
q # 0, implying that the matrix A from (6.16)) is positive definite. O

Remark 6.2 The solution of the reduced system with the matrix A from results in significant
computational savings compared to the original system . In particular, five of the eleven variables
have been eliminated. Three of the remaining variables are Lagrange multipliers that appear only on
the interface I'y,. The other three are the cell-centered velocities and Darcy pressure, with only n
DOFs per element in the Stokes region and n + 1 DOFs per element in the Biot region, which are
the smallest possible number of DOFs for the sub-problems. Furthermore, since the reduced system is
positive definite, efficient iterative solvers such as GMRES can be utilized for its solution.

7 Numerical results

In this section we present numerical results that illustrate the behavior of the fully discrete multipoint
stress-flux mixed finite element method . Our implementation is in two dimensions and it is based
on FreeFem++ [38], in conjunction with the direct linear solver UMFPACK [28]. For spatial discretization,
we use the (BDM; — Py — P;) spaces for Stokes, the (BDM; — Py — P;) — (BDM; — Py) spaces for
Biot, and either (P; — Py — Py) or P§¢ — Pd¢ — P{¢ for the Lagrange multipliers. We present three
examples. Example 1 is used to corroborate the rates of convergence. Example 2 is a simulation of
the coupling of surface and subsurface hydrological systems, focusing on the qualitative behavior of
the solution. Example 3 illustrates an application to flow in a poroelastic medium with an irregularly
shaped cavity, using physically realistic parameters.

7.1 Example 1: convergence test

In this test we study the convergence rates for the space discretization using an analytical solution.
The domain is Q = Qf U Q,, where Qf = (0,1) x (0,1) and ©, = (0,1) x (—1,0). In particular, the
upper half is associated with the Stokes flow, while the lower half represents the flow in the poroelastic
structure governed by the Biot system, see Figure (left). The interface conditions are enforced
along the interface I'g,. The parameters and analytical solution are given in Figure (right). The
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rD
PR

™
A p=1, ap=1 N=1 =1, sg=1, K=I aggs=1,
uy =7 cos(mt) < —3xy++(:(1)s(y) > ,

pr = exp(t) sin(mx) cos (%) + 27 cos(mt),

pp = exp(t) sin(m x) cos (%) ,

1

u, = —;KVpp, n, = sin(m t) ( —3z + cos(y) ) .

y+1

Figure 7.1: Example 1, domain and coarsest mesh level (left), parameters and analytical solution
(right).

solution is designed to satisfy the interface conditions . The right hand side functions £y, gy, f, and
gp are computed from f using the true solution. The model problem is then complemented
with the appropriate boundary conditions, which are described in Figure (left), and initial data.
Notice that the boundary conditions for o f,uy,u,, o, and 7, (cf. 7) are not homogeneous
and therefore the right-hand side of the resulting system must be modified accordingly. The total
simulation time for this example is " = 0.01 and the time step is At = 1073. The time step is
sufficiently small, so that the time discretization error does not affect the convergence rates.

Tables [7.1] and [7.2] show the convergence history for a sequence of quasi-uniform mesh refinements
with non-matching grids along the interface employing conforming and non-conforming spaces for the
Lagrange multipliers (cf. 7), respectively. In the tables, hy and h, denote the mesh sizes
in ¢ and €, respectively, while the mesh sizes for their traces on I'y, are h;y and hy,, satisfying
hip = %htp. We note that the Stokes pressure and the displacement at time t,, are recovered by
the post-processed formulae pf' = —%(tr(a’?) —2pq§') (cf. [2-2)) and n, = n;”_l + Atul® (cf.
Remark , respectively. The results illustrate that spatial rates of convergence O(h), as provided
by Theorem [6.5] are attained for all subdomain variables in their natural norms. The Lagrange
multiplier variables, which are approximated in P; — P; — P; and P‘liC — P‘liC — P‘lic7 exhibit rates of
convergence O(h*?) and O(h?) in the H'/? and L2norms on I'y,, respectively, which is consistent
with the order of approximation.

7.2 Example 2: coupled surface and subsurface flows

In this example, we simulate coupling of surface and subsurface flows, which could be used to describe
the interaction between a river and an aquifer. We consider the domain 2 = (0,2) x (—1,1). We
associate the upper half with the river flow modeled by Stokes equations, while the lower half represents
the flow in the aquifer governed by the Biot system. The appropriate interface conditions are enforced
along the interface y = 0. In this example we focus on the qualitative behavior of the solution and
use unit physical parameters:

=1, op,=1, A=1, pp=1 sp=1, K=1I, ags=1

The body forces terms and external source are set to zero, as well as the initial conditions. The flow
is driven through a parabolic fluid velocity on the left boundary of the fluid region with boundary
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leosllezorx;) | lewslleorvy) | llev leoras | leplleorize
h f error rate error rate error rate error rate
0.1964 || 2.2E-02 - 2.7E-02 - 2.4E-03 - 6.3E-03 —
0.0997 || 1.2E-02 0.95 | 1.4E-02 1.00 | 9.3E-04 1.41 | 3.1E-03 1.05
0.0487 || 5.7E-03 0.99 | 6.8E-03 0.99 | 4.2E-04 1.11 | 1.6E-03 0.93
0.0250 || 2.9E-03 1.04 | 3.4E-03 1.04 | 2.0E-04 1.13 | 7.8E-04 1.07
0.0136 || 1.4E-03 1.14 | 1.7E-03 1.15 | 9.4E-05 1.23 | 3.9E-04 1.15
0.0072 || 7.1E-04 1.08 | 8.4E-04 1.10 | 4.7E-05 1.09 | 2.0E-04 1.02

leo, lle=o.rx,) | llewlleorv,) | ey, leora,) | lewleorv,) | lep,lleorw,)
hp error rate error rate error rate error rate error rate
0.2828 || 2.7E-01 — 4.3E-02 — 3.4E-02 — 1.0E-01 - 7.5E-02 —
0.1646 || 1.4E-01 1.27 | 2.2E-02 1.23 | 9.4E-03 2.38 | 5.2E-02 1.27 | 3.8E-02 1.25
0.0779 || 6.7E-02 0.97 | 1.1E-02 0.96 | 2.2E-03 1.96 | 2.5E-02 1.00 | 1.9E-02 0.93
0.0434 || 3.4E-02 1.17 | 54E-03 1.19 | 5.8E-04 2.25 | 1.2E-02 1.24 | 94E-03 1.22
0.0227 || 1.7E-02 1.06 | 2.7E-03 1.07 | 2.0E-04 1.68 | 5.9E-03 1.08 | 4.7E-03 1.07
0.0124 || 8.4E-03 1.15 | 1.4E-03 1.15 | 81E-05 1.48 | 2.9E-03 1.15 | 2.4E-03 1.14

llen, lle20,112(0)) legllezo,m:a ) leolleoriay) | llexlleora,)
error rate hif error  rate hip error  rate | error  rate
2.7E-04 - 1/8 1.6E-03 - 1/5 1.6E-02 - | 6.9E-03 -

1.4E-04 1.23 1/16 || 3.7E-04 2.11 || 1/10 || 5.7E-03 1.49 | 2.5E-03 1.49
6.7E-05 0.96 1/32 || 1.3E-04 1.45 || 1/20 || 1.2E-03 2.31 | 8.5E-04 1.52
3.4E-05 1.19 1/64 || 4.6E-05 1.54 || 1/40 || 34E-04 1.76 | 3.0E-04 1.50
1.7E-05 1.07 1/128 || 1.2E-05 1.96 | 1/80 | 1.1E-04 1.62 | 1.1E-04 1.50
8.4E-06 1.15 1/256 || 3.6E-06 1.70 | 1/160 || 2.2E-05 2.34 | 3.7TE-05 1.54

Table 7.1: Example 1, errors and convergence rates with Py — P; — Py Lagrange multipliers.

conditions specified as follows:

u; = (—40y(y — 1) 0)° on [gieres
ur=0 on I'giop,
omy=0 on I'yrignt,
pp=0 and opn,=0 on I'ypottom,

u,-n,=0 and us=0 on I'yr UL ight

The simulation is run for a total time T" = 3 with a time step At = 0.06. The computed solution
is presented in Figure From the velocity plot (top left), we see that the flow in the Stokes
region is moving primarily from left to right, driven by the parabolic inflow condition, with some of
the fluid percolating downward into the poroelastic medium due to the zero pressure at the bottom,
which simulates gravity. The mass conservation uy - ny + (aﬂ”[p + up) -n, = 0 on the interface with
n, = (0,1)" indicates the continuity of the second components of the fluid velocity and Darcy velocity
when the displacement becomes steady, which is observed from the color plot of the vertical velocity.
The stress plots (top middle and right) illustrate the ability of our fully mixed formulation to compute
accurate H(div) stresses in both the fluid and poroelastic regions, without the need for numerical
differentiation. In addition, the conservation of momentum o fn; + o,n, = 0 and balance of normal
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leosllezorx;) | lewslleorvy) | llev leoras | leplleorize
h f error rate error rate error rate error rate
0.1964 || 2.2E-02 - 2.7E-02 - 2.4E-03 - 6.1E-03 -
0.0997 || 1.2E-02 0.94 | 1.4E-02 1.00 | 9.7E-04 1.31 | 3.1E-03 1.02
0.0487 || 5.7E-03 0.99 | 6.8E-03 0.99 | 4.2E-04 1.16 | 1.6E-03 0.92
0.0250 || 2.8E-03 1.04 | 3.4E-03 1.04 | 2.0E-04 1.13 | 7.8E-04 1.07
0.0136 || 1.4E-03 1.14 | 1.7E-03 1.15 | 9.4E-05 1.23 | 3.9E-04 1.15
0.0072 || 7.1E-04 1.08 | 8.4E-04 1.09 | 4.7E-05 1.09 | 2.0E-04 1.02

leo, lle=o.rx,) | llewlleorv,) | ey, leora,) | lewleorv,) | lep,lleorw,)
hp error rate error rate error rate error rate error rate
0.2828 || 2.7E-01 — 4.3E-02 — 3.4E-02 — 1.0E-01 - 7.5E-02 —
0.1646 || 1.4E-01 1.27 | 2.2E-02 1.23 | 9.4E-03 2.39 | 5.2E-02 1.26 | 3.8E-02 1.25
0.0779 || 6.7E-02 0.97 | 1.1E-02 0.96 | 2.2E-03 1.96 | 2.5E-02 1.00 | 1.9E-02 0.93
0.0434 || 3.4E-02 1.17 | 54E-03 1.19 | 5.8E-04 2.25 | 1.2E-02 1.24 | 94E-03 1.22
0.0227 || 1.7E-02 1.06 | 2.7E-03 1.07 | 2.0E-04 1.67 | 5.9E-03 1.08 | 4.7E-03 1.07
0.0124 || 8.4E-03 1.15 | 1.4E-03 1.15 | 81E-05 1.48 | 2.9E-03 1.15 | 2.4E-03 1.14

||ean£2(0,T;L2(Qp)) ”ecpHeQ(o,T;L?(rfp)) H99||62(07T;L2(Ffp)) He/\”z?(o,T;L?(rfp))
error rate hif error rate hip error rate error rate
2.7E-04 - 1/8 4.1E-04 — 1/5 7.9E-03 — 1.1E-03 -

1.4E-04 1.23 1/16 || 2.0E-04 1.04 1/10 || 2.9E-03 1.46 3.1E-04 1.87
6.7E-05 0.96 1/32 || 2.4E-05 3.07 1/20 || 5.7E-04 2.34 7.7E-05 2.01
3.4E-05 1.19 1/64 || 6.4E-06 1.89 1/40 || 1.5E-04 1.89 1.9E-05 2.00
1.7E-05 1.07 1/128 || 1.6E-06 1.97 1/80 || 3.8E-05 2.01 4.9E-06 1.98
8.4E-06 1.15 1/256 || 4.0E-07 2.02 1/160 || 9.0E-06 2.09 1.2E-06 2.09

Table 7.2: Example 1, errors and convergence rates with Pilc — P‘l1C — P?C Lagrange multipliers.

stress (oyny) -ny = —p, imply that o 12 = 0p 12, 022 = Op22 and —o 22 = p, on the interface.
These conditions are verified from the top middle and right color plots, as well as the bottom left
plot. Furthermore, the arrows in the stress plots are formed by the second columns of the stresses,
whose traces on the interface are o yny and —on,, respectively. For visualization purpose, the Stokes
stress is scaled by a factor of 1/5 compared to the poroelastic stress, due to large difference in their
magnitudes away from the interface. Nevertheless, the continuity of the vector field across the interface
is evident, consistent with the conservation of momentum condition o yny + o,n, = 0. The overall
qualitative behavior of the computed stresses is consistent with the specified boundary and interface
conditions. In particular, we observe large fluid stress along the top boundary due to the no slip
condition, as well as along the interface due to the slip with friction condition. The singularity near
the lower left corner of the Stokes region is due to the mismatch in boundary conditions between the
fluid and poroelastic regions. Finally, the last plot shows that the inflow from the Stokes region causes
deformation of the poroelastic medium.

7.3 Example 3: irregularly shaped fluid-filled cavity

This example features highly irregularly shaped cavity motivated by modeling flow through vuggy or
naturally fractured reservoirs or aquifers. It uses physical units and realistic parameter values taken
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Figure 7.2: Example 2, computed solution at 7" = 3. Top left: velocities us, and u,, (arrows), ugp 2
and w2 (color). Top middle and right: negative stresses —(o 12,0 fh22)" and —(opn12, Opn,22)"
(arrows); middle: —ofp 12 and —opp 12 (color); right: —o 490 and —opp 22 (color). Bottom left:

negative Stokes stress —o s 22 and Darcy pressure py,. Bottom right: displacement 7, (arrows) and
its magnitude (color).
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etaph Magnitude

& bl
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from the reservoir engineering literature :
p=10"%kPas, «,=1, X\, =5/18x 107 kPa, p,=5/12 x 107 kPa,
So=6.89x10"2kPa"!, K=103%xIm2 oapy=1.

We emphasize that the problem features very small permeability and storativity, as well as large
Lamé parameters. These are parameter regimes that are known to lead locking in modeling of the

Biot system of poroelasticity [45/60]. The domain is Q = (0,1) x (0,1), with a large fluid-filled cavity
in the interior. The body forces and external sources are set to zero. The flow is driven from left to
right via a pressure drop of 1 kPa, with boundary conditions specified as follows:

omy-ny=1000, uy-t;=0 on I'jf,ign,
Pp = 1001 on Fp,lefta Pp = 1000 on Fp,right and Uy, Ny = 0 on Fp,top U 1—‘p,bottoma
opny = —apppyn, on Lper UL, igne and us =0 on  I'yop U pottom-

The total simulation time is T = 10s with a time step of size At = 0.05s. To avoid inconsistency
between the initial and boundary conditions for p,, we start with p, = 1000 on Iy, j.f; and gradually
increase it to reach p, = 1001 at ¢ = 0.5s. Similar adjustment is done for o,n,,.

The simulation results at the final time 7' = 10's are shown in Figure[7.3] In the top plots, we present
the Darcy pressure and Darcy velocity vector, the displacement vector with its magnitude, and the
first row of the poroelastic stress with its magnitude. Since the pressure variation is small relative to
its value, for visualization purpose we plot its difference from the reference pressure, p, — 1000. The
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Darcy velocity and the pressure drop are largest in the region between the left inflow boundary and the
cavity. The displacement is largest around the cavity, due to the large fluid velocity within the cavity
and the slip with friction interface condition. The poroelastic stress exhibits singularities near some of
the sharp tips of the cavity. The bottom plots show the fluid pressure and velocity vector, the velocity
vector with its magnitude, and the first row of the fluid stress with its magnitude. Similarly to the
Darcy pressure, we plot py —1000. A channel-like flow profile is clearly visible within the cavity, with
the largest velocity along a central path away from the cavity walls. The fluid pressure is decreasing
from left to right along the central path of the cavity. Consistent with the poroelastic stress, the fluid
stress near the tips of the cavity is relatively larger. We emphasize that, despite the locking regime
of the parameters, the computed solution is free of locking and spurious oscillations. This example
illustrates the ability of our method to handle computationally challenging problems with physically
realistic parameters in poroelastic locking regimes.

pph uph etaph Magnitude sigph1 Magnitude
9.8e-06 0‘-4 0‘-6 9.9e-01 8‘56‘3-07 1.1e-01 85607  6e-5 000012 000018 24e-04 5.00+02 800 1500 2.56+03
- = — - O — | D

ufh Magnifude sigfh1 Magnitude
pfh uth 999.999999588 1000.000010000
41606 000025  50e-04 51e05 7.1e-01 00e+000.1 02 03 04 05 06 77801

| | - | .

Figure 7.3: Example 3, computed solution at 7' = 10s. Top left: Darcy velocity (arrows) and pressure
(color). Top middle: displacement (arrows) and its magnitude (color). Top right: first row of the
poroelastic stress tensor (arrows) and its magnitude (color). Bottom left: Stokes velocity (arrows) and
pressure (color). Bottom middle: Stokes velocity (arrows) and its magnitude (color). Bottom right:
first row of the Stokes stress (arrows) and its magnitude (color).
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8 Conclusions

In this paper we present and analyze the first, to the best of our knowledge, fully dual mixed for-
mulation of the quasi-static Stokes-Biot model, and its mixed finite element approximation, using a
velocity-pressure Darcy formulation, a weakly symmetric stress-displacement-rotation elasticity formu-
lation, and a weakly symmetric stress-velocity-vorticity Stokes formulation. Essential-type interface
conditions are imposed via suitable Lagrange multipliers. The numerical method features accurate
stresses and Darcy velocity with local mass and momentum conservation. Furthermore, a new mul-
tipoint stress-flux mixed finite element method is developed that allows for local elimination of the
Darcy velocity, the fluid and poroelastic stresses, the vorticity, and the rotation, resulting in a reduced
positive definite cell-centered pressure-velocities-traces system. The theoretical results are comple-
mented by a series of numerical experiments that illustrate the convergence rates for all variables in
their natural norms, as well as the ability of the method to simulate physically realistic problems
motivated by applications to coupled surface-subsurface flows and flows in fractured poroelastic media
with parameter values in locking regimes.
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