
A multipoint stress-flux mixed finite element method for the

Stokes-Biot model

Sergio Caucao∗ Tongtong Li† Ivan Yotov†

May 25, 2021

Abstract

In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in
the interaction between a free fluid and a flow in a poroelastic medium. The flows are governed
by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass
conservation, balance of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed for-
mulations in both domains, where the symmetry of the Stokes and poroelastic stress tensors is
imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In turn,
since the transmission conditions become essential, they are imposed weakly, which is done by
introducing the traces of the fluid velocity, structure velocity, and the poroelastic media pressure
on the interface as the associated Lagrange multipliers. The existence and uniqueness of a solution
are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time
formulation with non-matching grids, together with the corresponding stability bounds. In addi-
tion, we develop a new multipoint stress-flux mixed finite element method by involving the vertex
quadrature rule, which allows for local elimination of the stresses, rotations, and Darcy fluxes.
Well-posedness and error analysis with corresponding rates of convergence for the fully-discrete
scheme are complemented by several numerical experiments.

1 Introduction

The interaction of a free fluid with a deformable porous medium, referred to as fluid-poroelastic
structure interaction (FPSI), is a challenging multiphysics problem. It has applications to predicting
and controlling processes arising in gas and oil extraction from naturally or hydraulically fractured
reservoirs, modeling arterial flows, and designing industrial filters, to name a few. For this physical
phenomenon, the free fluid region can be modeled by the Stokes (or Navier–Stokes) equations, while
the flow through the deformable porous medium is modeled by the Biot system of poroelasticity. In
the latter, the volumetric deformation of the elastic porous matrix is complemented with the Darcy
equation that describes the average velocity of the fluid in the pores. The two regions are coupled via
dynamic and kinematic interface conditions, including balance of forces, continuity of normal velocity,
and a no slip or slip with friction tangential velocity condition. The model exhibits features of both
coupled Stokes-Darcy flows and fluid-structure interaction (FSI).
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To the authors’ knowledge, one of the first works in analyzing the Stokes-Biot coupled problem
is [53], where well-posedness for the fully dynamic problem is established by developing an appropriate
variational formulation and using semigroup methods. One of the first numerical studies is presented
in [12], where monolithic and iterative partitioned methods are developed for the solution of the
coupled system. A non-iterative operator splitting scheme with a non-mixed Darcy formulation is
developed in [21]. Finite element methods for mixed Darcy formulations, where the continuity of
normal flux condition becomes essential, are considered in [20] using Nitsche’s coupling and in [8]
using a pressure Lagrange multiplier. More recently, a nonlinear quasi-static Stokes–Biot model for
non-Newtonian fluids is studied in [3]. The authors establish well-posedness of the weak formulation
in Banach space setting, along with stability and convergence of the finite element approximation.
In [25], the fully dynamic coupled Navier-Stokes/Biot system with a pressure-based Darcy formulation
is analyzed. Additional works include optimization-based decoupling method [24], a second order in
time split scheme [44], various discretization methods [13,23,56], dimensionally reduced model for flow
through fractures [22], and coupling with transport [4]. All of the above mentioned works are based
on displacement formulations for the elasticity equation. In a recent work [47], the first mathematical
and numerical study of a stress-displacement mixed elasticity formulation for the Stokes-Biot model
is presented.

The goal of the present paper is to develop a new fully mixed formulation of the quasi-static Stokes-
Biot model, which is based on dual mixed formulations for all three components - Darcy, elasticity,
and Stokes. In particular, we use a velocity-pressure Darcy formulation, a weakly symmetric stress-
displacement-rotation elasticity formulation, and a weakly symmetric stress-velocity-vorticity Stokes
formulation. This formulation exhibits multiple advantages, including local conservation of mass for
the Darcy fluid, local poroelastic and Stokes momentum conservation, and accurate approximations
with continuous normal components across element edges or faces for the Darcy velocity, the poroe-
lastic stress, and the free fluid stress. In addition, dual mixed formulations are known for their
locking-free properties and robustness with respect to the physical parameters, including the regimes
of almost incompressible materials, low poroelastic storativity, and low permeability [45,60].

Our five-field dual mixed Biot formulation is based on the model developed in [45] and studied
further in [7]. It is also considered in [47] for the Stokes-Biot problem. Our analysis also extends
to the strongly symmetric mixed four-field Biot formulation developed in [59]. Our three-field dual
mixed Stokes formulation is based on the models developed in [34, 35]. In particular, we introduce
the stress tensor and subsequently eliminate the pressure unknown, by utilizing the deviatoric stress.
In order to impose the symmetry of the Stokes stress and poroelastic stress tensors, the vorticity and
structure rotation, respectively, are introduced as additional unknowns. The transmission conditions
consisting of mass conservation, conservation of momentum, and the Beavers–Joseph–Saffman slip
with friction condition are imposed weakly via the incorporation of additional Lagrange multipliers:
the traces of the fluid velocity, structure velocity and the poroelastic media pressure on the interface.
The resulting variational system of equations is then ordered so that it shows a twofold saddle point
structure. The well-posedness and uniqueness of both the continuous and semidiscrete continuous-
in-time formulations are proved by employing some classical results for parabolic problems [52, 54]
and monotone operators, and an abstract theory for twofold saddle point problems [1, 33]. In the
discrete problem, for the three components of the model we consider suitable stable mixed finite
element spaces on non-matching grids across the interface, coupled through either conforming or non-
conforming Lagrange multiplier discretizations. We develop stability and error analysis, establishing
rates of convergence to the true solution. The estimates we establish are uniform in the limit of the
storativity coefficient going to zero.

Another main contribution of this paper is the development of a new mixed finite element method for
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the Stokes-Biot model that can be reduced to a positive definite cell-centered pressure-velocities-traces
system. We recall the multipoint flux mixed finite element (MFMFE) method for Darcy flow developed
in [19, 40, 57, 58], where the lowest order Brezzi-Douglas-Marini BDM1 velocity spaces [17, 18, 48] and
piecewise constant pressure are utilized. An alternative formulation based on a broken Raviart-Thomas
velocity space is developed in [43]. The use of the vertex quadrature rule for the velocity bilinear form
localizes the interaction between velocity degrees of freedom around mesh vertices and leads to a block-
diagonal mass matrix. Consequently, the velocity can be locally eliminated, resulting in a cell-centered
pressure system. In turn, the multipoint stress mixed finite element (MSMFE) method for elasticity is
developed in [5,6]. It utilizes stable weakly symmetric elasticity finite element triples with BDM1 stress
spaces [6,10,11,16,30,46]. Similarly to the MFMFE method, an application of the vertex quadrature
rule for the stress and rotation bilinear forms allows for local stress and rotation elimination, resulting
in a cell-centered displacement system. We also refer the reader to the related finite volume multipoint
stress approximation (MPSA) method for elasticity [41,49,50]. Recently, combining the MSMFE and
MFMFE methods, a multipoint stress-flux mixed finite element (MSFMFE) method for the Biot
poroelasticity model is developed in [7]. There, the dual mixed finite element system is reduced to
a cell-centered displacement-pressure system. The reduced system is comparable in cost to the finite
volume method developed in [51].

In this paper we note for the first time that the MSMFE method for elasticity can be applied to the
weakly symmetric stress-velocity-vorticity Stokes formulation from [34, 35] when BDM1-based stable
finite element triples are utilized. With the application of the vertex quadrature rule, the fluid stress
and vorticity can be locally eliminated, resulting in a positive definite cell-centered velocity system.
To the best of our knowledge, this is the first such scheme for Stokes in the literature.

Finally, we combine the MFMFE method for Darcy with the MSMFE methods for elasticity and
Stokes to develop a multipoint stress-flux mixed finite element for the Stokes-Biot system. We analyze
the stability and convergence of the semidiscrete formulation. We further consider the fully discrete
system with backward Euler time discretization and show that the algebraic system on each time step
can be reduced to a positive definite cell-centered pressure-velocities-traces system.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section 2 we introduce the
model problem and in Section 3 we derive a fully-mixed variational formulation, which is written as
a degenerate evolution problem with a twofold saddle point structure. Next, existence, uniqueness
and stability of the solution of the weak formulation are obtained in Section 4. The corresponding
semidiscrete continuous-in-time approximation is introduced and analyzed in Section 5, where the
discrete analogue of the theory used in the continuous case is employed to prove its well-posedness.
Error estimates and rates of convergence are also derived there. In Section 6, the multipoint stress-flux
mixed finite element method is presented and the corresponding rates of convergence are provided,
along with the analysis of the reduced cell-centered system. Finally, numerical experiments illustrating
the accuracy of our mixed finite element method and its applications to coupling surface and subsurface
flows and flow through poroelastic medium with a cavity are reported in Section 7.

We end this section by introducing some definitions and fixing some notations. Let O ⊂ Rn,
n ∈ {2, 3}, denote a domain with Lipschitz boundary. For s ≥ 0 and p ∈ [1,+∞], we denote by Lp(O)
and Ws,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms ‖·‖Lp(O) and ‖·‖Ws,p(O),
respectively. Note that W0,p(O) = Lp(O). If p = 2 we write Hs(O) in place of Ws,2(O), and denote
the corresponding norm by ‖ · ‖Hs(O). Similar notation is used for a section Γ of the boundary of
O. By M and M we will denote the corresponding vectorial and tensorial counterparts of a generic
scalar functional space M. The L2(O) inner product for scalar, vector, or tensor valued functions is
denoted by (·, ·)O. The L2(Γ) inner product or duality pairing is denoted by 〈·, ·〉Γ. For any vector
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field v = (vi)i=1,n, we set the gradient and divergence operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div(v) :=
n∑
j=1

∂vj
∂xj

.

For any tensor fields τ := (τij)i,j=1,n and ζ := (ζij)i,j=1,n, we let div(τ ) be the divergence operator
div acting along the rows of τ , and define the transpose, the trace, the tensor inner product, and the
deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I,

where I is the identity matrix in Rn×n. In addition, we recall the Hilbert space

H(div;O) :=
{

v ∈ L2(O) : div(v) ∈ L2(O)
}
,

equipped with the norm ‖v‖2H(div;O) := ‖v‖2L2(O) + ‖div(v)‖2L2(O). The space of matrix valued func-

tions whose rows belong to H(div;O) will be denoted by H(div;O) and endowed with the norm
‖τ‖2H(div;O) := ‖τ‖2L2(O) + ‖div(τ )‖2L2(O). Finally, given a separable Banach space V endowed with

the norm ‖ · ‖V, we let Lp(0, T ; V) be the space of classes of functions f : (0, T )→ V that are Bochner
measurable and such that ‖f‖Lp(0,T ;V) <∞, with

‖f‖pLp(0,T ;V) :=

∫ T

0
‖f(t)‖pV dt, ‖f‖L∞(0,T ;V) := ess sup

t∈[0,T ]
‖f(t)‖V.

2 The model problem

Let Ω ⊂ Rn, n ∈ {2, 3}, be a Lipschitz domain, which is subdivided into two non-overlapping and
possibly non-connected regions: fluid region Ωf and poroelastic region Ωp. Let Γfp = ∂Ωf ∩ ∂Ωp

denote the (nonempty) interface between these regions and let Γf = ∂Ωf \ Γfp and Γp = ∂Ωp \ Γfp
denote the external parts on the boundary ∂Ω. We denote by nf and np the unit normal vectors that
point outward from ∂Ωf and ∂Ωp, respectively, noting that nf = −np on Γfp. Let (u?, p?) be the
velocity-pressure pair in Ω? with ? ∈ {f, p}, and let ηp be the displacement in Ωp. Let µ > 0 be the
fluid viscosity, let f? be the body force terms, and let q? be external source or sink terms.

We assume that the flow in Ωf is governed by the Stokes equations, which are written in the
following stress-velocity-pressure formulation:

σf = −pf I + 2µ e(uf ), −div(σf ) = ff , div(uf ) = qf in Ωf × (0, T ],

σfnf = 0 on ΓN
f × (0, T ], uf = 0 on ΓD

f × (0, T ],
(2.1)

where σf is the stress tensor, e(uf ) :=
1

2

(
∇uf + (∇uf )t

)
stands for the deformation rate tensor,

Γf = ΓN
f ∪ ΓD

f , and T > 0 is the final time. Next, we adopt the approach from [1, 34], and include as
a new variable the vorticity tensor γf ,

γf :=
1

2

(
∇uf − (∇uf )t

)
.
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In this way, owing to the fact that tr(e(uf )) = div(uf ) = qf , we find that (2.1) can be rewritten,
equivalently, as the set of equations with unknowns σf ,γf and uf , given by

1

2µ
σd
f = ∇uf − γf −

1

n
qf I, −div(σf ) = ff in Ωf × (0, T ],

σf = σt
f , pf = − 1

n
(tr(σf )− 2µ qf ) in Ωf × (0, T ],

σfnf = 0 on ΓN
f × (0, T ], uf = 0 on ΓD

f × (0, T ].

(2.2)

Notice that the fourth equation in (2.2) has allowed us to eliminate the pressure pf from the system
and provides a formula for its approximation through a post-processing procedure. For simplicity we
assume that |ΓN

f | > 0, which will allow us to control σf by σd
f . The case |ΓN

f | = 0 can be handled as
in [34–36] by introducing an additional variable corresponding to the mean value of tr(σf ).

In turn, let σe and σp be the elastic and poroelastic stress tensors, respectively, satisfying

Aσe = e(ηp) and σp := σe − αp pp I in Ωp × (0, T ], (2.3)

where 0 < αp ≤ 1 is the Biot–Willis constant, and A is the symmetric and positive definite compliance
tensor, which in the isotropic case has the form, for all tensors τ ,

A(τ ) :=
1

2µp

(
τ − λp

2µp + nλp
tr(τ ) I

)
, with A−1(τ ) = 2µp τ + λp tr(τ ) I, (2.4)

satisfying

∀ τ ∈ Rn×n,
1

2µmax + nλmax
τ : τ ≤ A(τ ) : τ ≤ 1

2µmin
τ : τ ∀x ∈ Ωp. (2.5)

In this case, σe := λp div(ηp) I + 2µp e(ηp), and 0 < λmin ≤ λp(x) ≤ λmax and 0 < µmin ≤ µp(x) ≤
µmax are the Lamé parameters. The poroelasticity region Ωp is governed by the quasi-static Biot
system [14]:

−div(σp) = fp, µK−1up +∇ pp = 0,
∂

∂t

(
s0 pp + αp div(ηp)

)
+ div(up) = qp in Ωp × (0, T ],

up · np = 0 on ΓN
p × (0, T ], pp = 0 on ΓD

p × (0, T ],

σpnp = 0 on Γ̃N
p × (0, T ], ηp = 0 on Γ̃D

p × (0, T ],
(2.6)

where Γp = ΓN
p ∪ ΓD

p = Γ̃N
p ∪ Γ̃D

p , s0 > 0 is a storativity coefficient and K(x) is the symmetric and
uniformly positive definite rock permeability tensor, satisfying, for some constants 0 < kmin ≤ kmax,

∀w ∈ Rn, kmin w ·w ≤ (Kw) ·w ≤ kmax w ·w ∀x ∈ Ωp. (2.7)

To avoid the issue with restricting the mean value of the pressure, we assume that |ΓD
p | > 0. We

also assume that ΓD
f , ΓD

p , and Γ̃D
p are not adjacent to the interface Γfp, i.e., ∃ s > 0 such that

dist (ΓD
f ,Γfp) ≥ s, dist (ΓD

p ,Γfp) ≥ s, and dist (Γ̃D
p ,Γfp) ≥ s. This assumption is used to simplify the

characterization of the normal trace spaces on Γfp.

Next, we introduce the following transmission conditions on the interface Γfp [8, 12,20,53]:

uf · nf +

(
∂ ηp
∂t

+ up

)
· np = 0, σfnf + σpnp = 0 on Γfp × (0, T ],

σfnf + µαBJS

n−1∑
j=1

√
K−1
j

{(
uf −

∂ ηp
∂t

)
· tf,j

}
tf,j = − ppnf on Γfp × (0, T ],

(2.8)

5



where tf,j , 1 ≤ j ≤ n− 1, is an orthogonal system of unit tangent vectors on Γfp, Kj = (K tf,j) · tf,j ,
and αBJS ≥ 0 is an experimentally determined friction coefficient. The first and second equations in
(2.8) correspond to mass conservation and conservation of momentum on Γfp, respectively, whereas
the third one can be decomposed into its normal and tangential components, as follows:

(σfnf ) · nf = − pp, (σfnf ) · tf,j = −µαBJS
√

K−1
j

(
uf −

∂ ηp
∂t

)
· tf,j on Γfp × (0, T ],

representing balance of normal stress and the Beaver–Joseph–Saffman (BJS) slip with friction condi-
tion, respectively.

Finally, the above system of equations is complemented by the initial condition pp(x, 0) = pp,0(x)
in Ωp. We stress that, similarly to [47], compatible initial data for the rest of the variables can be
constructed from pp,0 in a way that all equations in the system (2.2)–(2.8), except for the unsteady
conservation of mass equation in the first row of (2.6), hold at t = 0. This will be established in
Lemma 4.9 below. We will consider a weak formulation with a time-differentiated elasticity equation
and compatible initial data (σp,0, pp,0).

3 The weak formulation

In this section we proceed analogously to [3, Section 3] (see also [34]) and derive a weak formulation
of the coupled problem given by (2.2), (2.3)–(2.6), and (2.8).

3.1 Preliminaries

For the stress tensor, velocity, and vorticity in the Stokes region, we use the Hilbert spaces, respectively,

Xf :=
{
τ f ∈ H(div; Ωf ) : τ fnf = 0 on ΓN

f

}
, Vf := L2(Ωf ), Qf :=

{
χf ∈ L2(Ωf ) : χt

f = −χf
}
,

endowed with the corresponding norms

‖τ f‖Xf := ‖τ f‖H(div;Ωf ), ‖vf‖Vf
:= ‖vf‖L2(Ωf ), ‖χf‖Qf := ‖χf‖L2(Ωf ).

For the unknowns in the Biot region we introduce the Hilbert spaces:

Xp :=
{
τ p ∈ H(div; Ωp) : τ pnp = 0 on Γ̃N

p

}
, Vs := L2(Ωp), Qp :=

{
χp ∈ L2(Ωp) : χt

p = −χp
}
,

Vp :=
{

vp ∈ H(div; Ωp) : vp · np = 0 on ΓN
p

}
, Wp := L2(Ωp),

endowed with the standard norms

‖τ p‖Xp := ‖τ p‖H(div;Ωp), ‖vs‖Vs := ‖vs‖L2(Ωp), ‖χp‖Qp := ‖χp‖L2(Ωp),

‖vp‖Vp := ‖vp‖H(div;Ωp), ‖wp‖Wp := ‖wp‖L2(Ωp).

Finally, analogously to [3, 8, 31, 34, 47] we need to introduce the Lagrange multiplier spaces Λp :=
(Vp · np|Γfp)′, Λf := (Xf nf |Γfp)′, and Λs := (Xp np|Γfp)′. According to the normal trace theorem,

since vp ∈ Vp ⊂ H(div; Ωp), then vp · np ∈ H−1/2(∂Ωp). It is shown in [31] that, if vp · np = 0 on
∂ Ωp \ Γfp, then vp · np ∈ H−1/2(Γfp). This argument has been modified in [8] for the case vp · np = 0
on ΓN

p and dist (ΓD
p ,Γfp) ≥ s > 0. In particular, it holds that

〈vp · np, ξ〉Γfp ≤ C‖vp‖H(div;Ωp)‖ξ‖H1/2(Γfp), ∀vp ∈ Vp, ξ ∈ H1/2(Γfp). (3.1)
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Similarly,

〈τ ? n?,ψ〉Γfp ≤ C‖τ ?‖H(div;Ω?)‖ψ‖H1/2(Γfp), ∀ τ ? ∈ X?, ψ ∈ H1/2(Γfp), ? ∈ {f, p}. (3.2)

Therefore we can take Λp := H1/2(Γfp), Λf := H1/2(Γfp), and Λs := H1/2(Γfp), endowed with the
norms

‖ξ‖Λp := ‖ξ‖H1/2(Γfp), ‖ψ‖Λf
:= ‖ψ‖H1/2(Γfp), and ‖φ‖Λs := ‖φ‖H1/2(Γfp). (3.3)

3.2 Lagrange multiplier formulation

We now proceed with the derivation of our Lagrange multiplier variational formulation for the coupling
of the Stokes and Biot problems. To this end, and inspired by [3, 35], we begin by introducing the
structure velocity us := ∂t ηp ∈ Vs satisfying us = 0 on Γ̃D

p × (0, T ] (cf. the last equation in (2.6)),
and three Lagrange multipliers modeling the Stokes velocity, structure velocity and Darcy pressure on
the interface, respectively,

ϕ := uf |Γfp ∈ Λf , θ := us|Γfp ∈ Λs, and λ := pp|Γfp ∈ Λp.

The reason for introducing these Lagrange multipliers is twofold. First, uf , us, and pp are all modeled
in the L2 space, thus they do not have sufficient regularity for their traces on Γfp to be well defined.
Second, the Lagrange multipliers are utilized to impose weakly the transmission conditions (2.8).

To impose the symmetry condition of σp in a weak sense we introduce the rotation operator ρp :=
1

2
(∇ηp − ∇ηt

p). Notice that in the weak formulation we will use its time derivative, that is, the

structure rotation velocity

γp := ∂tρp =
1

2

(
∇us − (∇us)

t
)
∈ Qp.

From the definition of the elastic and poroelastic stress tensors σe,σp (cf. (2.3)) and recalling that
σe is connected to the displacement ηp through the relation A(σe) = e(ηp), we deduce the identities

div(ηp) = tr(e(ηp)) = tr(Aσe) = trA(σp + αp pp I) (3.4)

and
∂tA(σp + αp pp I) = ∇us − γp . (3.5)

Then, similarly to [3, 8, 34, 35], we test the first equation of (2.2), the second equation of (2.6), and
(3.5) with arbitrary τ f ∈ Xf ,vp ∈ Vp, and τ p ∈ Xp, respectively, integrate by parts, utilize the fact
that σd

f : τ f = σd
f : τ d

f , test the third equation of (2.6) with wp ∈ Wp employing (3.4), impose the
remaining equations weakly, and utilize the transmission conditions in (2.8) to obtain the variational
problem,

1

2µ
(σd

f , τ
d
f )Ωf + (uf ,div(τ f ))Ωf + (γf , τ f )Ωf − 〈τ fnf ,ϕ〉Γfp = − 1

n
(qf I, τ f )Ωf ,

− (vf ,div(σf ))Ωf = (ff ,vf )Ωf ,

− (σf ,χf )Ωf = 0,

(∂tA(σp + αp pp I), τ p)Ωp + (us,div(τ p))Ωp + (γp, τ p)Ωp − 〈τ pnp,θ〉Γfp = 0,

− (vs,div(σp))Ωp = (fp,vs)Ωp ,

− (σp,χp)Ωp = 0,
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µ (K−1up,vp)Ωp − (pp,div(vp))Ωp + 〈vp · np, λ〉Γfp = 0, (3.6)

(s0 ∂t pp, wp)Ωp + αp (∂tA(σp + αp pp I), wp I)Ωp + (wp, div(up))Ωp = (qp, wp)Ωp ,

− 〈ϕ · nf + (θ + up) · np, ξ〉Γfp = 0,

〈σfnf ,ψ〉Γfp + µαBJS

n−1∑
j=1

〈√
K−1
j (ϕ− θ) · tf,j ,ψ · tf,j

〉
Γfp

+ 〈ψ · nf , λ〉Γfp = 0,

〈σpnp,φ〉Γfp − µαBJS
n−1∑
j=1

〈√
K−1
j (ϕ− θ) · tf,j ,φ · tf,j

〉
Γfp

+ 〈φ · np, λ〉Γfp = 0.

The last three equations impose weakly the transmission conditions (2.8). In particular, the equation
with test function ξ imposes the mass conservation, the equation with ψ imposes the last equation in
(2.8), which is a combination of balance of normal stress and the BJS condition, while the equation
with φ imposes the conservation of momentum. We emphasize that this is a new formulation. To our
knowledge, this is the first fully dual-mixed formulation for the Stokes-Biot problem.

Remark 3.1 The time differentiated equation in the fourth row of (3.6) allows us to eliminate the
displacement variable ηp and obtain a formulation that uses only us. As part of the analysis we will
construct suitable initial data such that, by integrating in time the fourth equation of (3.6), we can
recover the original equation

(A(σp + αp pp I), τ p)Ωp + (ηp,div(τ p))Ωp + (ρp, τ p)Ωp − 〈τ pnp,ω〉Γfp = 0, (3.7)

where ω := ηp|Γfp.

To simplify the notation, we set the following bilinear forms:

af (σf , τ f ) :=
1

2µ
(σd

f , τ
d
f )Ωf , ap(up,vp) := µ (K−1up,vp)Ωp ,

ae(σp, pp; τ p, wp) := (A(σp + αp pp I), τ p + αpwp I)Ωp ,

bf (τ f ,vf ) := (div(τ f ),vf )Ωf , bs(τ p,vs) := (div(τ p),vs)Ωp ,

bp(vp, wp) := − (div(vp), wp)Ωp , bΓ(vp, ξ) := 〈vp · np, ξ〉Γfp ,

bsk,?(τ ?,χ?) := (τ ?,χ?)Ω? , bn?(τ ?,ψ) := − 〈τ ?n?,ψ〉Γfp , with ? ∈
{
f, p
}
,

(3.8)

and

cBJS(ϕ,θ;ψ,φ) := µαBJS

n−1∑
j=1

〈√
K−1
j (ϕ− θ) · tf,j , (ψ − φ) · tf,j

〉
Γfp

,

cΓ(ψ,φ; ξ) := 〈ψ · nf , ξ〉Γfp + 〈φ · np, ξ〉Γfp .
(3.9)

There are many different ways of ordering the variables in (3.6). For the sake of the subsequent
analysis, we proceed as in [34] and [3], and adopt one leading to an evolution problem in a doubly-mixed
form. Hence, the variational formulation for the system (3.6) reads: Given

ff : [0, T ]→ V′f , fp : [0, T ]→ V′s, qf : [0, T ]→ X′f , qp : [0, T ]→W′
p, pp,0 ∈Wp, σp,0 ∈ Xp,
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find (σf ,up,σp, pp,ϕ,θ, λ,uf ,us,γf ,γp) : [0, T ]→ Xf ×Vp×Xp×Wp×Λf ×Λs×Λp×Vf ×Vs×
Qf ×Qp, such that pp(0) = pp,0, σp(0) = σp,0 and for a.e. t ∈ (0, T ) :

af (σf , τ f ) + ap(up,vp) + ae(∂t σp, ∂t pp; τ p, wp) + (s0 ∂t pp, wp)Ωp

+ bp(vp, pp)− bp(up, wp) + bnf (τ f ,ϕ) + bnp(τ p,θ) + bΓ(vp, λ)

+ bf (τ f ,uf ) + bs(τ p,us) + bsk,f (τ f ,γf ) + bsk,p(τ p,γp) = − 1

n
(qf I, τ f )Ωf + (qp, wp)Ωp , (3.10)

− bnf (σf ,ψ)− bnp(σp,φ)− bΓ(up, ξ) + cBJS(ϕ,θ;ψ,φ) + cΓ(ψ,φ;λ)− cΓ(ϕ,θ; ξ) = 0,

− bf (σf ,vf )− bs(σp,vs)− bsk,f (σf ,χf )− bsk,p(σp,χp) = (ff ,vf )Ωf + (fp,vs)Ωp ,

∀ τ f ∈ Xf ,vp ∈ Vp, τ p ∈ Xp, wp ∈Wp,ψ ∈ Λf ,φ ∈ Λs, ξ ∈ Λp,vf ∈ Vf ,vs ∈ Vs,χf ∈ Qf ,χp ∈ Qp.

Now, we group the spaces and test functions as follows:

X := Xf ×Vp × Xp ×Wp, Y := Λf ×Λs × Λp, Z := Vf ×Vs ×Qf ×Qp,

σ := (σf ,up,σp, pp) ∈ X, ϕ := (ϕ,θ, λ) ∈ Y, u := (uf ,us,γf ,γp) ∈ Z,

τ := (τ f ,vp, τ p, wp) ∈ X, ψ := (ψ,φ, ξ) ∈ Y, v := (vf ,vs,χf ,χp) ∈ Z,

where the spaces X,Y and Z are endowed with the norms, respectively,

‖τ‖X := ‖τ f‖Xf + ‖vp‖Vp + ‖τ p‖Xp + ‖wp‖Wp , ‖ψ‖Y := ‖ψ‖Λf
+ ‖φ‖Λs + ‖ξ‖Λp ,

‖v‖Z := ‖vf‖Vf
+ ‖vs‖Vs + ‖χf‖Qf + ‖χp‖Qp .

Hence, we can write (3.10) in an operator notation as a degenerate evolution problem in a doubly-
mixed form:

∂

∂t
E(σ(t)) +A(σ(t)) + B′1(ϕ(t)) + B′(u(t)) = F(t) in X′,

−B1(σ(t)) + C(ϕ(t)) = 0 in Y′,

−B (σ(t)) = G(t) in Z′,

(3.11)

where, according to (3.8)–(3.9), the operators A : X→ X′,B1 : X→ Y′, C : Y → Y′, and B : X→ Z′,
are defined by

A(σ)(τ ) := af (σf , τ f ) + ap(up,vp) + bp(vp, pp)− bp(up, wp),

B1(τ )(ψ) := bnf (τ f ,ψ) + bnp(τ p,φ) + bΓ(vp, ξ),

C(ϕ)(ψ) := cBJS(ϕ,θ;ψ,φ) + cΓ(ψ,φ;λ)− cΓ(ϕ,θ; ξ),

(3.12)

and
B(τ )(v) := bf (τ f ,vf ) + bs(τ p,vs) + bsk,f (τ f ,χf ) + bsk,p(τ p,χp), (3.13)

whereas the operator E : X→ X′ is given by

E(σ)(τ ) := ae(σp, pp; τ p, wp) + (s0 pp, wp)Ωp , (3.14)

and the functionals F ∈ X′, G ∈ Z′ are defined as

F(τ ) := − 1

n
(qf I, τ f )Ωf + (qp, wp)Ωp and G(v) := (ff ,vf )Ωf + (fp,vs)Ωp . (3.15)
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4 Well-posedness of the model

In this section we establish the solvability of (3.11) (equivalently (3.10)). To that end we first collect
some previous results that will be used in the forthcoming analysis.

4.1 Preliminaries

We begin by recalling the following key result given in [52, Theorem IV.6.1(b)] that will be used to
establish the existence of a solution to (3.11).

Theorem 4.1 Let the linear, symmetric and monotone operator N be given for the real vector space
E to its algebraic dual E∗, and let E′b be the Hilbert space which is the dual of E with the seminorm

|x|b =
(
N x(x)

)1/2
x ∈ E.

Let M⊂ E × E′b be a relation with domain D =
{
x ∈ E : M(x) 6= ∅

}
.

Assume M is monotone and Rg(N + M) = E′b. Then, for each u0 ∈ D and for each f ∈
W1,1(0, T ;E′b), there is a solution u of

d

dt

(
N u(t)

)
+M

(
u(t)

)
3 f(t) a.e. 0 < t < T, (4.1)

with
N u ∈W1,∞(0, T ;E′b), u(t) ∈ D, for all 0 ≤ t ≤ T, and N u(0) = N u0.

In addition, in order to show the range condition of Theorem 4.1 in our context, we will require the
following theorem whose proof can be derived similarly to [33, Theorem 2.2] (see also [1, Theorem 3.13]
for a generalized nonlinear Banach version).

Theorem 4.2 Let X,Y , and Z be Hilbert spaces, and let X ′, Y ′, Z ′ be their respective duals. Let
A : X → X ′, S : Y → Y ′, B1 : X → Y ′, and B : X → Z ′ be linear bounded operators. We also let
B′1 : Y → X ′ and B′ : Z → X ′ be the corresponding adjoints. Finally, we let V be the kernel of B,
that is

V :=
{
τ ∈ X : B(τ )(v) = 0 ∀v ∈ Z

}
.

Assume that

(i) A|V : V → V ′ is elliptic, that is, there exists a constant α > 0 such that

A(τ )(τ ) ≥ α ‖τ‖2X ∀ τ ∈ V.

(ii) S is positive semi-definite on Y , that is,

S(ψ)(ψ) ≥ 0 ∀ψ ∈ Y.

(iii) B1 satisfies an inf-sup condition on V × Y , that is, there exists β1 > 0 such that

sup
0 6=τ∈V

B1(τ )(ψ)

‖τ‖X
≥ β1 ‖ψ‖Y ∀ψ ∈ Y.
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(iv) B satisfies an inf-sup condition on X × Z, that is, there exists β > 0 such that

sup
06=τ∈X

B(τ )(v)

‖τ‖X
≥ β ‖v‖Z ∀v ∈ Z.

Then, for each (F1, F2, G) ∈ X ′ × Y ′ × Z ′ there exists a unique (σ,ϕ,u) ∈ X × Y × Z, such that

A(σ)(τ ) +B′1(ϕ)(τ ) +B′(u)(τ ) = F1(τ ) ∀ τ ∈ X,
B1(σ)(ψ)− S(ϕ)(ψ) = F2(ψ) ∀ψ ∈ Y,
B(σ)(v) = G(v) ∀v ∈ Z.

Moreover, there exists C > 0, depending only on α, β1, β, ‖A‖, ‖S‖, and ‖B1‖ such that

‖(σ,ϕ,u)‖X×Y×Z ≤ C
{
‖F1‖X′ + ‖F2‖Y ′ + ‖G‖Z′

}
.

At this point we recall, for later use, that there exist positive constants c1(Ωf ) and c2(Ωf ), such
that (see, [18, Proposition IV.3.1] and [32, Lemma 2.5], respectively)

c1(Ωf ) ‖τ f,0‖2L2(Ωf ) ≤ ‖τ
d
f‖2L2(Ωf ) + ‖div(τ f )‖2L2(Ωf ) ∀ τ f = τ f,0 + ` I ∈ H(div; Ωf ) (4.2)

and
c2(Ωf ) ‖τ f‖2Xf ≤ ‖τ f,0‖

2
Xf ∀ τ f = τ f,0 + ` I ∈ Xf , (4.3)

where τ f,0 ∈ H0(div; Ωf ) :=
{
τ f ∈ H(div; Ωf ) : (tr(τ f ), 1)Ωf = 0

}
and ` ∈ R. We emphasize that

(4.3) holds since each τ f ∈ Xf satisfies the boundary condition τ fnf = 0 on ΓN
f with |ΓN

f | > 0.

4.2 The resolvent system

Now, we proceed to analyze the solvability of (3.11) (equivalently (3.10)). First, recalling the definition
of the operators A,B1,B, C, and E (cf. (3.12), (3.13) and (3.14)), we note that problem (3.11) can be
written in the form of (4.1) with

E = X×Y × Z, u =

 σ
ϕ

u

 , N =

 E 0 0
0 0 0
0 0 0

 , M =

 A B′1 B′
−B1 C 0
−B 0 0

 , f =

 F
0
G

 .

(4.4)
In addition, the norm induced by the operator E is |τ |2E := s0 ‖wp‖2L2(Ωp) + ‖A1/2(τ p +αpwp I)‖2L2(Ωp),

which is equivalent to ‖τ p‖2L2(Ωp)+‖wp‖2L2(Ωp) since s0 > 0. We denote by Xp,2 and Wp,2 the closures of

the spaces Xp and Wp, respectively, with respect to the norms ‖τ p‖Xp,2 := ‖τ p‖L2(Ωp) and ‖wp‖Wp,2 :=

‖wp‖L2(Ωp). Note that X′p,2 = L2(Ωp) and W′
p,2 = W′

p. Next, denoting X′2,0 := 0 × 0 × X′p,2 ×W′
p,2,

Y′2,0 := 0× 0× 0, and Z′2,0 := 0× 0× 0× 0, the Hilbert space E′b and domain D in Theorem 4.1 for
our context are

E′b := X′2,0 ×Y′2,0 × Z′2,0, D :=
{

(σ,ϕ,u) ∈ X×Y × Z : M(σ,ϕ,u) ∈ E′b
}
. (4.5)

Remark 4.1 The above definition of the space E′b and the corresponding domain D implies that, in
order to apply Theorem 4.1 for our problem (3.11), we need to restrict ff = 0, qf = 0, and fp = 0. To
avoid this restriction we will employ a translation argument [54] to reduce the existence for (3.11) to
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existence for the following initial-value problem: Given initial data (σ̂0, ϕ̂0
, û0) ∈ D and source terms

(f̂p, q̂p) : [0, T ]→ X′p,2×W′
p,2, find (σ̂, ϕ̂, û) ∈ [0, T ]→ X×Y×Z such that (σ̂p(0), p̂p(0)) = (σ̂p,0, p̂p,0)

and, for a.e. t ∈ (0, T ),

∂

∂t
E(σ̂(t)) +A(σ̂(t)) + B′1(ϕ̂(t)) + B′(û(t)) = F̂(t) in X′2,0,

−B1(σ̂(t)) + C(ϕ̂(t)) = 0 in Y′2,0,

−B (σ̂(t)) = 0 in Z′2,0,

(4.6)

where F̂ = (0,0, f̂p, q̂p)
t.

In order to apply Theorem 4.1 for problem (4.6), we need to: (1) establish the required properties of
the operators N andM, (2) prove the range condition Rg(N+M) = E′b, and (3) construct compatible
initial data (σ̂0, ϕ̂0

, û0) ∈ D. We proceed with a sequence of lemmas establishing these results.

Lemma 4.3 The linear operators N and M defined in (4.4) are continuous and monotone. In addi-
tion, N is symmetric.

Proof. First, from the definition of the operators E ,A,B1, C and B (cf. (3.12), (3.13), (3.14)) it is clear
that both N and M (cf. (4.4)) are linear and continuous, using the trace inequalities (3.1)–(3.2) for
the continuity of B1. In turn, N is symmetric since E is. Finally, using (2.7), we have

E(τ )(τ ) = s0‖wp‖2L2(Ωp) + ‖A1/2(τ p + αpwpI)‖2L2(Ωp),

A(τ )(τ ) ≥ 1

2µ
‖τ d

f‖2L2(Ωf ) + µk−1
max‖vp‖2L2(Ωp) ∀ τ ∈ X,

(4.7)

and recalling the definition of the operator C (cf. (3.9), (3.12)), we obtain

C(ψ)(ψ) = µαBJS

n−1∑
j=1

〈√
K−1
j (ψ − φ) · tf,j , (ψ − φ) · tf,j

〉
Γfp

≥ µαBJS√
kmax

|ψ − φ|2BJS , (4.8)

for all ψ = (ψ,φ, ξ) ∈ Y, where |ψ−φ|2BJS :=
∑n−1

j=1 ‖(ψ−φ) ·tf,j‖2L2(Γfp). Thus, combining (4.7) and

(4.8), and the fact that the operators E ,A, C are linear, we deduce the monotonicity of the operators
N and M completing the proof. �

Next, we establish the range condition Rg(N +M) = E′b, which is done by solving the related
resolvent system. In fact, we will show a stronger result by considering a resolvent system where
all source terms in F and G may be non-zero. This stronger result will be used in the translation
argument for proving existence of the original problem (3.11). More precisely, let

X2 := Xf ×Vp × Xp,2 ×Wp,2 ⊃ X

and note that X′2 = X′f ×V′p × X′p,2 ×W′
p,2 ⊂ X′. We consider the following resolvent system:

(E +A)(σ) + B′1(ϕ) + B′(u) = F̂ in X′2,

−B1(σ) + C(ϕ) = 0 in Y′,

−B (σ) = Ĝ in Z′,

(4.9)
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where F̂ ∈ X′2 and Ĝ ∈ Z′ are such that

F̂(τ ) := (f̂σf , τ f )Ωf + (f̂up ,vp)Ωp + (f̂p, τ p)Ωp + (q̂p, wp)Ωp ,

Ĝ(v) := (f̂uf ,vf )Ωf + (f̂us ,vs)Ωp + (f̂γf ,χf )Ωf + (f̂γp ,χp)Ωp .

We next focus on proving that the resolvent system (4.9) is well-posed. We start with the following
preliminary lemma.

Lemma 4.4 Let (σ,ϕ,u) ∈ X×Y × Z be a solution to (4.9). Then, for any positive constant κ, it
satisfies

(E + Ã)(σ) + B′1(ϕ) + B′(u) = F̃ in X′2,

B1(σ)− C(ϕ) = 0 in Y′,

B (σ) = − Ĝ in Z′,

(4.10)

where

Ã(σ)(τ ) := A(σ)(τ ) +κ
{

(div(up),div(vp))Ωp +
(
s0 pp+αp tr

(
A(σp+αp pp I)

)
,div(vp)

)
Ωp

}
, (4.11)

and
F̃(τ ) := F̂(τ ) + κ

(
q̂p,div(vp)

)
Ωp
.

Conversely, if (σ,ϕ,u) ∈ X×Y × Z is a solution to (4.10), then it is also a solution to (4.9).

Proof. Let (σ,ϕ,u) ∈ X × Y × Z be a solution to (4.9). Using that div Vp = Wp, we take τ =
(0, wp) = (0, div(vp)) ∈ X in the first row of (4.9), multiply by a positive constant κ and add that
term to (4.9), to obtain (4.10). Conversely, if (σ,ϕ,u) ∈ X×Y×Z satisfies (4.10) we employ similar
arguments, but now subtracting, to recover (4.9). �

Problem (4.10) has the same structure as the one in Theorem 4.2. Therefore, in what follows we
apply this result to establish the well-posedness of (4.10). To that end, we first observe that the kernel
of the operator B, cf. (3.13), can be written as

V :=
{
τ ∈ X : B(τ )(v) = 0 ∀v ∈ Z

}
= X̃f ×Vp × X̃p ×Wp (4.12)

where
X̃? :=

{
τ ? ∈ X? : τ ? = τ t

? and div(τ ?) = 0 in Ω?

}
, ? ∈ {f, p}.

We next verify the hypotheses of Theorem 4.2. We begin by noting that the operators Ã,B1, C,B, and
E are linear and continuous. Next, we proceed with the ellipticity of the operator E + Ã on V.

Lemma 4.5 Assume that

κ ∈
(

0, 2 min

{
δ1,

δ2

αp

})
with δ1 ∈

(
0,

2

s0

)
and δ2 ∈

(
0,

4µmin
nαp

(
1− s0

2
δ1

))
.

Then, the operator E + Ã is elliptic on V.
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Proof. From the definition of Ã, cf. (4.11), and considering τ ∈ V we get

(E + Ã)(τ )(τ ) =
1

2µ
‖τ d

f‖2L2(Ωf ) + µ‖K−1/2vp‖2L2(Ωp) + s0 ‖wp‖2Wp
+ ‖A1/2(τ p + αpwp I)‖2L2(Ωp)

+ κ ‖div(vp)‖2L2(Ωp) + s0 κ (wp,div(vp))Ωp + αp κ (A1/2(τ p + αpwp I), A1/2(div(vp) I))Ωp .

Hence, using the Cauchy–Schwarz and Young’s inequalities, (2.7), (2.5), and (4.2)–(4.3), we obtain

(E + Ã)(τ )(τ ) ≥ Cd

2µ
‖τ f‖2Xf + µk−1

max‖vp‖2L2(Ωp) + κ

((
1−s0

2
δ1

)
− nαp

4µmin
δ2

)
‖div(vp)‖2L2(Ωp)

+

(
1− αp

2 δ2
κ

)
‖A1/2 (τ p + αpwp I)‖2L2(Ωp) + s0

(
1− κ

2 δ1

)
‖wp‖2Wp

,

where Cd := C1(Ωf )C2(Ωf ). Then, using the stipulated hypotheses on δ1, δ2 and κ, we can define the
positive constants

α1(Ωf ) :=
Cd

2µ
, α2(Ωp) := min

{
µk−1

max, κ

((
1− s0

2
δ1

)
− nαp

4µmin
δ2

)}
,

α3(Ωp) :=
s0

2

(
1− κ

2 δ1

)
, α4(Ωp) := min

{(
1− αp

2 δ2
κ

)
, α3(Ωp)

}
which allow us to obtain

(E + Ã)(τ )(τ ) ≥ α1(Ωf ) ‖τ f‖2Xf + α2(Ωp) ‖vp‖2Vp
+ α3(Ωp) ‖wp‖2Wp

+ α4(Ωp)
(
‖A1/2(τ p + αpwp I)‖2L2(Ωp) + ‖wp‖2Wp

)
.

(4.13)

In turn, from (2.5) and using the triangle inequality, we deduce

‖τ p‖2L2(Ωp) ≤ (2µmax + nλmax)
(
‖A1/2(τ p + αpwp I)‖2L2(Ωp) + ‖A1/2(αpwp I)‖2L2(Ωp)

)
≤ Cp

(
‖A1/2(τ p + αpwp I)‖2L2(Ωp) + ‖wp‖2Wp

)
,

(4.14)

where Cp := (2µmax + nλmax) max
{

1,
nα2

p

2µmin

}
. A combination of (4.13) and (4.14), and the fact that

div(τ p) = 0 in Ωp, implies

(E + Ã)(τ )(τ ) ≥ α(Ωf ,Ωp) ‖τ‖2X ∀ τ ∈ V,

with α(Ωf ,Ωp) := min
{
α1(Ωf ), α2(Ωp), α3(Ωp), α4(Ωp)/Cp

}
, hence E + Ã is elliptic on V. �

Remark 4.2 To maximize the ellipticity constant α(Ωf ,Ωp), we can choose explicitly the parameter
κ by taking the parameters δ1 and δ2 as the middle points of their feasible ranges. More precisely, we
can simply take

δ1 =
1

s0
, δ2 =

µmin
nαp

, κ = min

{
1

s0
,
µmin

nα2
p

}
.

We continue with the verification of the hypotheses of Theorem 4.2.
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Lemma 4.6 There exist positive constants β1 and β, such that

sup
0 6=τ∈V

B1(τ )(ψ)

‖τ‖X
≥ β1 ‖ψ‖Y ∀ψ ∈ Y, (4.15)

and

sup
0 6=τ∈X

B(τ )(v)

‖τ‖X
≥ β ‖v‖Z ∀v ∈ Z. (4.16)

Proof. We begin with the proof of (4.15). Due the diagonal character of operator B1, cf. (3.12), we
need to show individual inf-sup conditions for bnf , bnp , and bΓ. The inf-sup condition for bΓ follows
from a slight adaptation of the argument in [29, Lemma 3.2] to account for the presence of Dirichlet
boundary ΓD

p , using that dist (ΓD
p ,Γfp) ≥ s > 0. The inf-sup conditions for bnf and bnp follow in a

similar way. Since the kernel space V consists of symmetric and divergence-free tensors, the argument
in [29, Lemma 3.2] must be modified to account for that. For example, in Ωf we solve a problem

div(e(vf )) = 0 in Ωf , e(vf ) nf = ξ on Γfp ∪ ΓN
f , vf = 0 on ΓD

f , (4.17)

for given data ξ ∈ H−1/2(Γfp ∪ ΓN
f ) such that ξ = 0 on ΓN

f . We recall that ΓN
f is adjacent to Γfp.

Furthermore, |ΓD
f | > 0, which guarantees the solvability of the problem. We refer to [29, Lemma 3.2]

for further details.

Finally, proceeding as above, using the diagonal character of operator B, cf. (3.13), and employing
the theory developed in [32, Section 2.4.3] to our context, we can deduce (4.16). �

Now, we are in a position to establish that the resolvent system associated to (4.6) is well-posed.

Lemma 4.7 For N ,M and E′b defined in (4.4)–(4.5), it holds that Rg(N +M) = E′b, that is, given
f ∈ E′b, there exists v ∈ D such that (N +M)(v) = f .

Proof. Let us consider F̂ = (0,0, f̂p, q̂p)
t and Ĝ = 0 in (4.9)–(4.10) and κ as in Lemma 4.5. The

well-posedness of (4.10) follows from (4.8), Lemmas 4.5 and 4.6, and a straightforward application of
Theorem 4.2 with A = E + Ã, B1 = B1, S = C, and B = B. Then, employing Lemma 4.4 we conclude
that there exists a unique solution of the resolvent system of (4.6), implying the range condition. �

We are now ready to establish existence for the auxiliary initial value problem (4.6), assuming
compatible initial data.

Lemma 4.8 For each compatible initial data (σ̂0, ϕ̂0
, û0) ∈ D and each (f̂p, q̂p) ∈ W1,1(0, T ;X′p,2) ×

W1,1(0, T ; W′
p,2), the problem (4.6) has a solution (σ̂, ϕ̂, û) : [0, T ]→ X×Y ×Z such that (σ̂p, p̂p) ∈

W1,∞(0, T ;L2(Ωp))×W1,∞(0, T ; Wp) and (σ̂p(0), p̂p(0)) = (σ̂p,0, p̂p,0).

Proof. The assertion of the lemma follows by applying Theorem 4.1 with E,N ,M defined in (4.4),
using Lemmas 4.3 and 4.7. �

We will employ Lemma 4.8 to obtain existence of a solution to our problem (3.11). To that end,
we first construct compatible initial data (σ0,ϕ0

,u0).

Lemma 4.9 Assume that the initial data pp,0 ∈Wp ∩H, where

H :=
{
wp ∈ H1(Ωp) : K∇wp ∈ H1(Ωp), K∇wp · np = 0 on ΓN

p , wp = 0 on ΓD
p

}
. (4.18)
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Then, there exist σ0 := (σf,0,up,0,σp,0, pp,0) ∈ X, ϕ
0

:= (ϕ0,θ0, λ0) ∈ Y, and u0 := (uf,0,us,0,γf,0,
γp,0) ∈ Z such that

A(σ0) + B′1(ϕ
0
) + B′(u0) = F̂0 in X′2,

−B1(σ0) + C(ϕ
0
) = 0 in Y′,

−B (σ0) = G(0) in Z′,

(4.19)

where F̂0 = (qf (0),0, f̂p,0, q̂p,0)t ∈ X′2, with suitable (f̂p,0, q̂p,0) ∈ X′p,2 ×W′
p,2.

Proof. Following the approach from [3, Lemma 4.15], the initial data is constructed by solving a
sequence of well-defined subproblems. We take the following steps.

1. Define up,0 := − 1

µ
K∇pp,0, with pp,0 ∈ H, cf. (4.18). It follows that up,0 ∈ H(div; Ωp) and

µK−1up,0 = −∇pp,0, div(up,0) = − 1

µ
div(K∇pp,0) in Ωp, up,0 · np = 0 on ΓN

p . (4.20)

Next, defining λ0 := pp,0|Γfp ∈ Λp, (4.20) implies

ap(up,0,vp) + bp(vp, pp,0) + bΓ(vp, λ0) = 0 ∀vp ∈ Vp. (4.21)

2. Define (σf,0,ϕ0,uf,0,γf,0) ∈ Xf ×Λf ×Vf ×Qf as the unique solution of the problem

af (σf,0, τ f ) + bnf (τ f ,ϕ0) + bf (τ f ,uf,0) + bsk,f (τ f ,γf,0) = − 1

n
(qf (0) I, τ f )Ωf ,

−bnf (σf,0,ψ) = −µαBJS
n−1∑
j=1

〈√
K−1
j up,0 · tf,j ,ψ · tf,j

〉
Γfp

− 〈ψ · nf , λ0〉Γfp ,

−bf (σf,0,vf )− bsk,f (σf,0,χf ) = (ff (0),vf )Ωf

(4.22)

for all (τ f ,ψ,vf ,χf ) ∈ Xf × Λf ×Vf × Qf . Note that (4.22) is well-posed, since it corresponds to
the weak solution of the Stokes problem in a mixed formulation and its solvability can be shown using
classical Babuška-Brezzi theory. Note also that up,0 and λ0 are data for this problem.

3. Define (σp,0,ω0,ηp,0,ρp,0) ∈ Xp ×Λs ×Vs ×Qp, as the unique solution of the problem

(A(σp,0), τ p)Ωp + bnp(τ p,ω0) + bs(τ p,ηp,0) + bsk,p(τ p,ρp,0) = −(A(αp pp,0 I), τ p)Ωp

−bnp(σp,0,φ) = µαBJS

n−1∑
j=1

〈√
K−1
j up,0 · tf,j ,φ · tf,j

〉
Γfp

− 〈φ · np, λ0〉Γfp

−bs(σp,0,vs)− bsk,p(σp,0,χp) = (fp(0),vs)Ωp ,

(4.23)

for all (τ p,φ,vs,χp) ∈ Xp ×Λs ×Vs × Qp. Problem (4.23) corresponds to the weak solution of the
elasticity problem in a mixed formulation and its solvability can be shown using classical Babuška-
Brezzi theory. Note that pp,0,up,0, and λ0 are data for this problem. Here ηp,0,ρp,0, and ω0 are
auxiliary variables that are not part of the constructed initial data. However, they can be used to
recover the variables ηp,ρp, and ω that satisfy the non-differentiated equation (3.7).

4. Define θ0 ∈ Λs as
θ0 := ϕ0 − up,0 on Γfp, (4.24)

where ϕ0 and up,0 are data obtained in the previous steps. Note that (4.24) implies that the BJS
terms in (4.22) and (4.23) can be rewritten with up,0 ·tf,j = (ϕ0−θ0) ·tf,j and that the ninth equation
in (3.6) holds for the initial data, that is,

− 〈ϕ0 · nf + (θ0 + up,0) · np, ξ〉Γfp = 0 ∀ ξ ∈ Λp. (4.25)
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5. Finally, define (σ̂p,0,us,0,γp,0) ∈ Xp ×Vs ×Qp, as the unique solution of the problem

(A(σ̂p,0), τ p)Ωp + bs(τ p,us,0) + bsk,p(τ p,γp,0) = −bnp(τ p,θ0)

−bs(σ̂p,0,vs)− bsk,p(σ̂p,0,χp) = 0,
(4.26)

for all (τ p,vs,χp) ∈ Xp ×Vs ×Qp. Problem (4.26) corresponds to the weak solution of the elasticity
problem in Ωp with Dirichlet datum θ0 on Γfp.

Combining (4.21), (4.22), the second and third equations in (4.23), (4.25), and the first equation in
(4.26), we obtain (σ0,ϕ0

,u0) ∈ X×Y × Z satisfying (4.19) with

(f̂p,0, τ p)Ωp = −(A(σ̂p,0), τ p)Ωp and (q̂p,0, wp)Ωp = −bp(up,0, wp). (4.27)

The above equations imply

‖f̂p,0‖L2(Ωp) + ‖q̂p,0‖L2(Ωp) ≤ C
(
‖σ̂p,0‖L2(Ωp) + ‖div(up,0)‖L2(Ωp)

)
,

hence (f̂p,0, q̂p,0) ∈ X′p,2 ×W′
p,2, completing the proof. �

4.3 The main result

We are now ready to prove the main result of this section.

Theorem 4.10 For each compatible initial data (σ0,ϕ0
,u0) constructed in Lemma 4.9 and each

ff ∈W1,1(0, T ; V′f ), fp ∈W1,1(0, T ; V′s), qf ∈W1,1(0, T ;X′f ), qp ∈W1,1(0, T ; W′
p),

there exists a unique solution of (3.11), (σ,ϕ,u) : [0, T ] → X × Y × Z, such that (σp, pp) ∈
W1,∞(0, T ;L2(Ωp))×W1,∞(0, T ; Wp) and (σp(0), pp(0)) = (σp,0, pp,0).

Proof. For each fixed time t ∈ [0, T ], Lemma 4.7 implies that there exists a solution to the resolvent sys-
tem (4.9) with F̂ = F(t) and Ĝ = G(t) defined in (3.15). More precisely, there exist (σ̃(t), ϕ̃(t), ũ(t))
such that (

E +A
)
(σ̃(t)) + B′1(ϕ̃(t)) + B′(ũ(t)) = F(t) in X′2,

−B1(σ̃(t)) + C(ϕ̃(t)) = 0 in Y′,

−B (σ̃(t)) = G(t) in Z′.

(4.28)

We look for a solution to (3.11) in the form σ(t) = σ̃(t) + σ̂(t), ϕ(t) = ϕ̃(t) + ϕ̂(t), and u(t) =
ũ(t) + û(t). Subtracting (4.28) from (3.11) leads to the reduced evolution problem

∂tE(σ̂(t)) +A(σ̂(t)) + B′1(ϕ̂(t)) + B′(û(t)) = E(σ̃(t))− ∂tE(σ̃(t)) in X′2,0,

−B1(σ̂(t)) + C(ϕ̂(t)) = 0 in Y′2,0,

−B (σ̂(t)) = 0 in Z′2,0,

(4.29)

with initial condition σ̂(0) = σ0 − σ̃(0), ϕ̂(0) = ϕ
0
− ϕ̃(0), and û(0) = u0 − ũ(0). Subtracting (4.28)

at t = 0 from (4.19) gives

A(σ̂(0)) + B′1(ϕ̂(0)) + B′(û(0)) = E(σ̃(0)) + F̂0 − F(0) in X′2,0,

−B1(σ̂(0)) + C(ϕ̂(0)) = 0 in Y′2,0,

−B (σ̂(0)) = 0 in Z′2,0.

(4.30)
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We emphasize that in (4.30), F̂0−F(0) = (0,0, f̂p,0, q̂p,0−qp(0))t ∈ X′2,0. Thus,M(σ̂(0), ϕ̂(0), û(0)) ∈
E′b, i.e., (σ̂(0), ϕ̂(0), û(0)) ∈ D (cf. (4.5)). Thus, the reduced evolution problem (4.29) is in the form
of (4.6). According to Lemma 4.8, it has a solution, which establishes the existence of a solution to
(3.11) with the stated regularity satisfying (σp(0), pp(0)) = (σp,0, pp,0).

We next show that the solution of (3.11) is unique. Since the problem is linear, it is sufficient to
prove that the problem with zero data has only the zero solution. Taking F = G = 0 in (3.11) and
testing it with the solution (σ,ϕ,u) yields

1

2
∂t

(
‖A1/2 (σp + αp pp I)‖2L2(Ωp) + s0 ‖pp‖2Wp

)
+

1

2µ
‖σd

f‖2L2(Ωf ) + ap(up,up) + C(ϕ)(ϕ) = 0,

which together with (4.14), (2.7) to bound ap (cf. (3.8)), the semi-definite positive property of C (cf.
(4.8)), integrating in time from 0 to t ∈ (0, T ], and using that the initial data is zero, implies

‖σp‖2L2(Ωp) + ‖pp‖2Wp
+

∫ t

0

(
‖σd

f‖2L2(Ωf ) + ‖up‖2L2(Ωp)

)
ds ≤ 0. (4.31)

It follows from (4.31) that σd
f (t) = 0,up(t) = 0,σp(t) = 0, and pp(t) = 0 for all t ∈ (0, T ].

Now, taking τ ∈ V (cf. (4.12)) in the first equation of (3.11) and employing the inf-sup condition
of B1 (cf. (4.15)), with ψ = ϕ = (ϕ,θ, λ) ∈ Y, yields

β̃ ‖ϕ‖Y ≤ sup
0 6=τ∈V

B1(τ )(ϕ)

‖τ‖X
= − sup

0 6=τ∈V

(∂t E +A)(σ)(τ )

‖τ‖X
= 0.

Thus, ϕ(t) = 0,θ(t) = 0, and λ(t) = 0 for all t ∈ (0, T ]. In turn, from the inf-sup condition of B (cf.
(4.16)), with v = u = (uf ,us,γf ,γp) ∈ Z, we get

β ‖u‖Z ≤ sup
0 6=τ∈X

B(τ )(u)

‖τ‖X
= − sup

0 6=τ∈X

(∂t E +A)(σ)(τ ) + B1(τ )(ϕ)

‖τ‖X
= 0.

Therefore, uf (t) = 0,us(t) = 0,γf (t) = 0, and γp(t) = 0 for all t ∈ (0, T ]. Finally, from the third
row in (3.10), we have the identity

bf (σf ,vf ) = 0 ∀vf ∈ Vf .

Taking vf = div(σf ) ∈ Vf , we deduce that div(σf (t)) = 0 for all t ∈ (0, T ], which combined with
the fact that σd

f (t) = 0 for all t ∈ (0, T ], and estimates (4.2)–(4.3) yields σf (t) = 0 for all t ∈ (0, T ].
Then, (3.11) has a unique solution. �

Corollary 4.11 The solution of (3.11) satisfies σf (0) = σf,0,uf (0) = uf,0,γf (0) = γf,0,up(0) =
up,0,ϕ(0) = ϕ0, λ(0) = λ0, and θ(0) = θ0.

Proof. Let σf := σf (0) − σf,0, with a similar definition and notation for the rest of the variables.
Since Theorem 4.1 implies thatM(u) ∈ L∞(0, T ;E′b), we can take t→ 0 in all equations without time
derivatives in (4.29), and therefore also in (3.11). Using that the initial data (σ0,ϕ0

,u0) satisfies the
same equations at t = 0 (cf. (4.19)), and that σp = 0 and pp = 0, we obtain

1

2µ
(σd

f , τ
d
f )Ωf + (uf ,div(τ f ))Ωf + (γf , τ f )Ωf − 〈τ fnf ,ϕ〉Γfp = 0,

µ (K−1up,vp)Ωp +
〈
vp · np, λ

〉
Γfp

= 0,
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− (vf ,div(σf ))Ωf = 0,

− (σf ,χf )Ωf = 0,

−
〈
ϕ · nf +

(
θ + up

)
· np, ξ

〉
Γfp

= 0, (4.32)

〈σfnf ,ψ〉Γfp + µαBJS

n−1∑
j=1

〈√
K−1
j

(
ϕ− θ

)
· tf,j ,ψ · tf,j

〉
Γfp

+
〈
ψ · nf , λ

〉
Γfp

= 0,

− µαBJS
n−1∑
j=1

〈√
K−1
j

(
ϕ− θ

)
· tf,j ,φ · tf,j

〉
Γfp

+
〈
φ · np, λ

〉
Γfp

= 0.

Taking (τ f ,vp,vf ,χf , ξ,ψ,φ) = (σf ,up,uf ,γf , λ,ϕ,θ) and combining the equations results in

‖σd
f‖2L2(Ωf ) + ‖up‖2L2(Ωp) + |ϕ− θ|2BJS ≤ 0 , (4.33)

implying σd
f = 0,up = 0, and (ϕ − θ) · tf,j = 0. The inf-sup conditions (4.15)–(4.16), together with

(4.32), imply that uf = 0,γf = 0,ϕ = 0, and λ = 0. Then (4.33) yields θ · tf,j = 0. In turn, the

fifth equation in (4.32) implies that
〈
θ · np, ξ

〉
Γfp

= 0 for all ξ ∈ H1/2(Γfp). Note that np may be

discontinuous on Γfp, thus θ · np ∈ L2(Γfp). Since H1/2(Γfp) is dense in L2(Γfp), then θ · np = 0, and
we conclude that θ = 0. In addition, taking vf = div(σf ) ∈ Vf in the third equation of (4.32) we
deduce that div(σf ) = 0, which, combined with (4.2)–(4.3), yields σf = 0, completing the proof. �

Remark 4.3 As we noted in Remark 3.1, the fourth equation in (3.6) can be used to recover the
non-differentiated equation (3.7). In particular, recalling the initial data construction (4.23), let

∀ t ∈ [0, T ], ηp(t) = ηp,0 +

∫ t

0
us(s) ds, ρp(t) = ρp,0 +

∫ t

0
γp(s) ds, ω(t) = ω0 +

∫ t

0
θ(s) ds.

Then (3.7) follows from integrating the fourth equation in (3.6) from 0 to t ∈ (0, T ] and using the first
equation in (4.23).

We end this section with a stability bound for the solution of (3.11). We will use the inf-sup
condition

‖pp‖Wp + ‖λ‖Λp ≤ c sup
0 6=vp∈Vp

bp(vp, pp) + bΓ(vp, λ)

‖vp‖Vp

, (4.34)

which follows from a slight adaptation of [36, Lemma 3.3].

Theorem 4.12 For the solution of (3.11), assuming sufficient regularity of the data, there exists a
positive constant C independent of s0 such that

‖σf‖L∞(0,T ;Xf ) + ‖σf‖L2(0,T ;Xf ) + ‖up‖L∞(0,T ;L2(Ωp)) + ‖up‖L2(0,T ;Vp) + |ϕ− θ|L∞(0,T ;BJS)

+ |ϕ− θ|L2(0,T ;BJS) + ‖λ‖L∞(0,T ;Λp) + ‖ϕ‖L2(0,T ;Y) + ‖u‖L2(0,T ;Z) + ‖A1/2(σp)‖L∞(0,T ;L2(Ωp))

+ ‖div(σp)‖L∞(0,T ;L2(Ωp)) + ‖div(σp)‖L2(0,T ;L2(Ωp)) + ‖pp‖L∞(0,T ;Wp) + ‖pp‖L2(0,T ;Wp)

+ ‖∂tA1/2(σp + αpppI)‖L2(0,T ;L2(Ωp)) +
√
s0‖∂t pp‖L2(0,T ;Wp) (4.35)

≤ C
(
‖ff‖H1(0,T ;V′

f ) + ‖fp‖H1(0,T ;V′
s)

+ ‖qf‖H1(0,T ;X′
f ) + ‖qp‖H1(0,T ;W′

p)

+ (1 +
√
s0)‖pp,0‖Wp + ‖K∇pp,0‖H1(Ωp)

)
.

19



Proof. We begin by choosing (τ ,ψ,v) = (σ,ϕ,u) in (3.10) to get

1

2
∂t

(
‖A1/2(σp + αp pp I)‖2L2(Ωp) + s0 ‖pp‖2Wp

)
+

1

2µ
‖σd

f‖2L2(Ωf ) + ap(up,up) + cBJS(ϕ,θ;ϕ,θ)

= − 1

n
(qf I,σf )Ωf + (qp, pp)Ωp + (ff ,uf )Ωf + (fp,us)Ωp . (4.36)

Next, we integrate (4.36) from 0 to t ∈ (0, T ], use the coercivity bounds (4.7)–(4.8), and apply the
Cauchy–Schwarz and Young’s inequalities, to find

‖A1/2(σp + αp pp I)(t)‖2L2(Ωp) + s0‖pp(t)‖2Wp
+

∫ t

0

(
‖σd

f‖2L2(Ωf ) + ‖up‖2L2(Ωp) + |ϕ− θ|2BJS
)
ds

≤ C

(∫ t

0

(
‖ff‖2V′

f
+ ‖fp‖2V′

s
+ ‖qf‖2X′

f
+ ‖qp‖2W′

p

)
ds+ ‖A1/2(σp(0) + αp pp(0)I)‖2L2(Ωp) (4.37)

+ s0 ‖pp(0)‖2Wp

)
+ δ

∫ t

0

(
‖σf‖2Xf + ‖pp‖2Wp

+ ‖uf‖2Vf
+ ‖us‖2Vs

)
ds,

where δ > 0 will be suitably chosen. In addition, (4.34) and the first equation in (3.10), yields

‖pp‖Wp + ‖λ‖Λp ≤ c sup
06=vp∈Vp

bp(vp, pp) + bΓ(vp, λ)

‖vp‖Vp

= −c sup
06=vp∈Vp

ap(up,vp)

‖vp‖Vp

≤ C ‖up‖L2(Ωp).

(4.38)
Taking τ ∈ V (cf. (4.12)) in the first equation of (3.11), using the continuity of the operators E and
A in Lemma 4.3, and the inf-sup condition of B1 for ϕ ∈ Y (cf. (4.15)), we deduce

β1 ‖ϕ‖Y ≤ sup
0 6=τ∈V

B1(τ )(ϕ)

‖τ‖X
= − sup

0 6=τ∈V

(∂t E +A)(σ)(τ )− F(τ )

‖τ‖X

≤ C
(
‖σf‖Xf + ‖up‖Vp + ‖∂tA1/2(σp + αpppI)‖L2(Ωp) +

√
s0‖∂t pp‖Wp + ‖qf‖X′

f
+ ‖qp‖W′

p

)
.

(4.39)
In turn, from the first equation in (3.11), applying the inf-sup condition of B (cf. (4.16)) for u =
(uf ,us,γf ,γp) ∈ Z, and (4.39), we obtain

β ‖u‖Z ≤ sup
0 6=τ∈X

B(τ )(u)

‖τ‖X
= − sup

06=τ∈X

(∂t E +A)(σ)(τ ) + B1(τ )(ϕ)− F(τ )

‖τ‖X

≤ C
(
‖σf‖Xf + ‖up‖Vp + ‖∂tA1/2(σp + αpppI)‖L2(Ωp) +

√
s0‖∂t pp‖Wp + ‖qf‖X′

f
+ ‖qp‖W′

p

)
.

(4.40)

In addition, taking wp = div(up), vf = div(σf ), and vs = div(σp) in the first and third equations
of (3.10), we get

‖div(σf )‖L2(Ωf ) ≤ ‖ff‖V′
f
, ‖div(σp)‖L2(Ωp) ≤ ‖fp‖V′

s
,

‖div(up)‖L2(Ωp) ≤ C
(
‖∂tA1/2(σp + αpppI)‖L2(Ωp) +

√
s0‖∂t pp‖Wp + ‖qp‖W′

p

)
.

(4.41)
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Then, combining (4.37)–(4.41), using (4.2)–(4.3), and choosing δ small enough, we obtain

‖A1/2(σp + αpppI)(t)‖2L2(Ωp) + s0‖pp(t)‖2Wp

+

∫ t

0

(
‖σf‖2Xf + ‖up‖2Vp

+ ‖div(σp)‖2L2(Ωp) + ‖pp‖2Wp
+ |ϕ− θ|2BJS + ‖ϕ‖2Y + ‖u‖2Z

)
ds

≤ C

(∫ t

0

(
‖ff‖2V′

f
+ ‖fp‖2V′

s
+ ‖qf‖2X′

f
+ ‖qp‖2W′

p

)
ds+ ‖A1/2(σp(0) + αp pp(0)I)‖2L2(Ωp)

+ s0 ‖pp(0)‖2Wp
+

∫ t

0

(
‖∂tA1/2(σp + αpppI)‖2L2(Ωp) + s0‖∂t pp‖2Wp

)
ds

)
.

(4.42)

Finally, in order to bound the last two terms in (4.42), we test (3.10) with τ = (∂t σf ,up, ∂t σp, ∂t pp)
∈ X, ψ = (ϕ,θ, ∂t λ) ∈ Y, v = (uf ,us,γf ,γp) ∈ Z and differentiate in time the rows in (3.10)
associated to vp,ψ,φ,vf ,vs,χf and χp, to deduce

1

2
∂t

( 1

2µ
‖σd

f‖2L2(Ωf ) + ap(up,up) + cBJS(ϕ,θ;ϕ,θ)
)

+ ‖∂tA1/2(σp + αp pp I)‖2L2(Ωp) + s0 ‖∂t pp‖2Wp

=
1

n
(qf I, ∂t σf )Ωf + (qp, ∂t pp)Ωp + (∂t ff ,uf )Ωf + (∂t fp,us)Ωp ,

which together with the identities∫ t

0
(qf I, ∂t σf )Ωf = (qf I,σf )Ωf

∣∣∣t
0
−
∫ t

0
(∂t qf I,σf )Ωf ,∫ t

0
(qp, ∂t pp)Ωp = (qp, pp)Ωp

∣∣∣t
0
−
∫ t

0
(∂t qp, pp)Ωp ,

and the positive semi-definite property of C (cf. (4.8)), yields

‖σd
f (t)‖2L2(Ωf ) + ‖up(t)‖2L2(Ωp) + |ϕ(t)− θ(t)|2BJS +

∫ t

0

(
‖∂tA1/2(σp + αpppI)‖2L2(Ωp) + s0‖∂tpp‖2Wp

)
ds

≤ C

(∫ t

0

(
‖∂t ff‖2V′

f
+ ‖∂t fp‖2V′

s
+ ‖∂t qf‖2L2(Ωf ) + ‖∂t qp‖2W′

p

)
ds+ ‖qf (t)‖2X′

f
+ ‖qp(t)‖2W′

p

+ ‖qf (0)‖2X′
f

+ ‖qp(0)‖2W′
p

+ ‖σf (0)‖2Xf + ‖up(0)‖2L2(Ωp) + ‖pp(0)‖2Wp
+ |ϕ(0)− θ(0)|2BJS

)
(4.43)

+ δ1

(
‖σf (t)‖2Xf + ‖pp(t)‖2Wp

)
+ δ2

∫ t

0

(
‖σf‖2L2(Ωf ) + ‖pp‖2Wp

+ ‖uf‖2Vf
+ ‖us‖2Vs

)
ds.

Using (4.38) and the first two inequalities in (4.41), and choosing δ1 small enough, we derive from
(4.43) and (4.2)–(4.3) that

‖σf (t)‖2Xf + ‖up(t)‖2L2(Ωp) + ‖div(σp(t))‖2L2(Ωp) + |ϕ(t)− θ(t)|2BJS + ‖pp(t)‖2Wp
+ ‖λ(t)‖2Λp

+

∫ t

0

(
‖∂tA1/2(σp + αpppI)‖2L2(Ωp) + s0‖∂t pp‖2Wp

)
ds

≤ C

(∫ t

0

(
‖∂t ff‖2V′

f
+ ‖∂t fp‖2V′

s
+ ‖∂t qf‖2L2(Ωf ) + ‖∂tqp‖2W′

p

)
ds+ ‖ff (t)‖2V′

f
+ ‖fp(t)‖2V′

s
(4.44)
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+ ‖qf (t)‖2X′
f

+ ‖qp(t)‖2W′
p

+ ‖qf (0)‖2X′
f

+ ‖qp(0)‖2W′
p

+ ‖σf (0)‖2Xf + ‖up(0)‖2L2(Ωp) + ‖pp(0)‖2Wp

+ |ϕ(0)− θ(0)|2BJS

)
+ δ2

∫ t

0

(
‖σf‖2Xf + ‖pp‖2Wp

+ ‖uf‖2Vf
+ ‖us‖2Vs

)
ds.

We next bound the initial data terms in (4.42) and (4.44). Recalling from Corollary 4.11 that
(σ(0),ϕ(0),θ(0)) = (σ0,ϕ0,θ0), using the stability of the continuous initial data problems (4.20)–
(4.23) and the steady-state version of the arguments leading to (4.42), we obtain

‖σf (0)‖2Xf + ‖up(0)‖2L2(Ωp) + ‖A1/2(σp(0))‖2L2(Ωp) + ‖pp(0)‖2Wp
+ |ϕ(0)− θ(0)|2BJS

≤ C
(
‖pp,0‖2Wp

+ ‖K∇pp,0‖2H1(Ωp) + ‖ff (0)‖2V′
f

+ ‖fp(0)‖2V′
s

+ ‖qf (0)‖2X′
f

)
,

(4.45)

Therefore, combining (4.42) with (4.44) and (4.45), choosing δ2 small enough, and using the estimate
(cf. (4.14)):

‖A1/2(σp(t))‖L2(Ωp) ≤ C
(
‖A1/2(σp + αp pp I)(t)‖L2(Ωp) + ‖pp(t)‖Wp

)
, (4.46)

and the Sobolev embedding of H1(0, T ) into L∞(0, T ), we conclude (4.35). �

5 Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (3.11).
We analyze its solvability by employing the strategy developed in Section 4. In addition, we derive
error estimates with rates of convergence.

Let T fh and T ph be shape-regular and quasi-uniform affine finite element partitions of Ωf and Ωp,
respectively. The two partitions may be non-matching along the interface Γfp. For the discretization,
we consider the following conforming finite element spaces:

Xfh ×Vfh ×Qfh ⊂ Xf ×Vf ×Qf , Xph ×Vsh ×Qph ⊂ Xp ×Vs ×Qp, Vph ×Wph ⊂ Vp ×Wp.

We take (Xfh,Vfh,Qfh) and (Xph,Vsh,Qph) to be any stable finite element spaces for mixed elasticity
with weakly imposed stress symmetry, such as the Amara–Thomas [2], PEERS [9], Stenberg [55],
Arnold–Falk–Winther [10, 11], or Cockburn–Gopalakrishnan–Guzman [27] families of spaces. We
choose (Vph,Wph) to be any stable mixed finite element Darcy spaces, such as the Raviart–Thomas
or Brezzi-Douglas-Marini spaces [18]. For the Lagrange multipliers (Λfh,Λsh,Λph) we consider the
following two options of discrete spaces.

(S1) Conforming spaces:
Λfh ⊂ Λf , Λsh ⊂ Λs, Λph ⊂ Λp , (5.1)

equipped with H1/2-norms as in (3.3). If the normal traces of the spaces Xfh, Xph, or Vph

contain piecewise polynomials in Pk on simplices or Qk on cubes with k ≥ 1, where Pk denotes
polynomials of total degree k and Qk stands for polynomials of degree k in each variable, we take
the Lagrange multiplier spaces to be continuous piecewise polynomials in Pk or Qk on the traces
of the corresponding subdomain grids. In the case of k = 0, we take the Lagrange multiplier
spaces to be continuous piecewise polynomials in P1 or Q1 on grids obtained by coarsening by
two the traces of the subdomain grids.
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(S2) Non-conforming spaces:

Λfh := Xfhnf |Γfp , Λsh := Xphnp|Γfp , Λph := Vph · np|Γfp , (5.2)

which consist of discontinuous piecewise polynomials and are equipped with L2-norms.

It is also possible to mix conforming and non-conforming choices, but we will focus on (S1) and (S2)
for simplicity of the presentation.

Remark 5.1 We note that, since H1/2(Γfp) is dense in L2(Γfp), the last three equations in the contin-
uous weak formulation (3.6) hold for test functions in L2(Γfp), assuming that the solution is smooth
enough. In particular, these equations hold for ξh ∈ Λph, ψh ∈ Λfh, and φh ∈ Λsh in both the
conforming case (S1) and the non-conforming case (S2).

Now, we group the spaces similarly to the continuous case:

Xh := Xfh ×Vph × Xph ×Wph, Yh := Λfh ×Λsh × Λph, Zh := Vfh ×Vsh ×Qfh ×Qph,

σh := (σfh,uph,σph, pph) ∈ Xh, ϕ
h

:= (ϕh,θh, λh) ∈ Yh, uh := (ufh,ush,γfh,γph) ∈ Zh,

τ h := (τ fh,vph, τ ph, wph) ∈ Xh, ψ
h

:= (ψh,φh, ξh) ∈ Yh, vh := (vfh,vsh,χfh,χph) ∈ Zh.

The spaces Xh and Zh are endowed with the same norms as their continuous counterparts. For Yh

we consider the norm ‖ψ
h
‖Yh

:= ‖ψh‖Λfh
+ ‖φh‖Λsh

+ ‖ξh‖Λph , where

‖ξh‖Λph :=

{
‖ξh‖Λp for conforming subspaces (S1) (cf. (3.3)) ,

‖ξh‖L2(Γfp) for non-conforming subspaces (S2) .
(5.3)

Analogous notation is used for ‖ψh‖Λfh
and ‖φh‖Λsh

.

The continuity of all operators in the discrete case follows from their continuity in the continuous
case (cf. Lemma 4.3), with the exception of B1 (cf. (3.12)) in the case of non-conforming Lagrange
multipliers (S2). In this case it follows for each fixed h from the discrete trace-inverse inequality for
piecewise polynomial functions, ‖ϕ‖L2(Γ) ≤ Ch−1/2‖ϕ‖L2(O), where Γ ⊂ ∂O. In particular,

bnf (τ f ,ψ) ≤ C‖τ f‖L2(Γfp)‖ψ‖L2(Γfp) ≤ Ch−1/2‖τ f‖L2(Ωf )‖ψ‖L2(Γfp), (5.4)

with similar bounds for bnp(τ p,φ) and bΓ(vp, ξ).

We next discuss the discrete inf-sup conditions that are satisfied by the finite element spaces. Let

X̃h :=
{
τ h ∈ Xh : τ fhnf = 0 and τ phnp = 0 on Γfp

}
. (5.5)

In addition, define the discrete kernel of the operator B as

Vh :=
{
τ h ∈ Xh : B(τ h)(vh) = 0 ∀vh ∈ Zh

}
= X̃fh ×Vph × X̃ph ×Wph, (5.6)

where

X̃?h :=
{
τ ?h ∈ X?h : (τ ?h, ξ?h)Ω? = 0 ∀ ξ?h ∈ Q?h and div(τ ?h) = 0 in Ω?

}
, ? ∈ {f, p}.

In the above, div(τ ?h) = 0 follows from div(Xfh) = Vfh and div(Xph) = Vsh, which is true for all
stable elasticity spaces.
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Lemma 5.1 There exist positive constants β̃ and β̃1 such that

sup
0 6=τh∈X̃h

B(τ h)(vh)

‖τ h‖X
≥ β̃ ‖vh‖Z ∀vh ∈ Zh, (5.7)

sup
0 6=τh∈Vh

B1(τ h)(ψ
h
)

‖τ h‖X
≥ β̃1 ‖ψh‖Yh

∀ψ
h
∈ Yh. (5.8)

Proof. We begin with the proof of (5.7). We recall that the space Xh consists of stresses and velocities
with zero normal traces on the Neumann boundaries, while the space X̃h involves further restriction
on Γfp. The inf-sup condition (5.7) without restricting the normal stress or velocity on the subdomain
boundary follows from the stability of the elasticity and Darcy finite element spaces. The restricted
inf-sup condition (5.7) can be shown using the argument in [5, Theorem 4.2].

We continue with the proof of (5.8). Similarly to the continuous case, due the diagonal character
of operator B1 (cf. (3.12)), we need to show individual inf-sup conditions for bnf , bnp , and bΓ. We
first focus on bΓ. For the conforming case (S1) (cf. (5.1)), the proof of (5.8) can be derived from a
slight adaptation of [29, Lemma 4.4] (see also [34, Section 5.3] for the case k = 0), whereas from [3,
Section 5.1] we obtain the proof for the non-conforming version (S2) (cf. (5.2)). We next consider
the inf-sup condition (5.8) for bnf , with argument for bnp being similar. The proof utilizes a suitable
interpolant of τ f := e(vf ), the solution to the auxiliary problem (4.17). Due to the stability of the

spaces (Xfh,Vfh,Qfh) (cf. (5.7)), there exists an interpolant Π̃f
h : H1(Ωf )→ Xfh satisfying

bf (Π̃f
hτ f − τ f ,vfh) = 0 ∀vfh ∈ Vfh, bsk,f (Π̃f

hτ f − τ f ,χfh) = 0 ∀χfh ∈ Qfh,

〈(Π̃f
hτ f − τ f )nf , τ fhnf 〉Γfp∪ΓNf

= 0 ∀ τ fh ∈ Xfh.
(5.9)

The interpolant Π̃f
hτ f is defined as the elliptic projection of τ f satisfying Neumann boundary condition

on Γfp∪ΓNf [42, (3.11)–(3.15)]. Due to (5.9), it holds that Π̃f
hτ f ∈ X̃fh. With this interpolant, the proof

of (5.8) for bΓ discussed above can be easily modified for bnf , see [29, Lemma 4.4] and [34, Section 5.3]
for (S1) and [3, Section 5.1] for (S2). �

Remark 5.2 The stability analysis requires only a discrete inf-sup condition for B in Xh × Zh. The
more restrictive inf-sup condition (5.7) is used in the error analysis in order to simplify the proof.

Finally, we will utilize the following inf-sup condition: there exists a constant c > 0 such that

‖pph‖Wp + ‖λh‖Λph ≤ c sup
0 6=vph∈Vph

bp(vph, pph) + bΓ(vph, λh)

‖vph‖Vp

, (5.10)

whose proof for the conforming case (5.1) follows from a slight adaptation of [36, Lemma 5.1], whereas
the non-conforming case (5.2) can be found in [3, Section 5.1].

The semidiscrete continuous-in-time approximation to (3.11) reads: find (σh,ϕh,uh) : [0, T ] →
Xh ×Yh × Zh such that for all (τ h,ψh,vh) ∈ Xh ×Yh × Zh, and for a.e. t ∈ (0, T ),

∂

∂t
E(σh)(τ h) +A(σh)(τ h) + B1(τ h)(ϕ

h
) + B(τ h)(uh) = F(τ h),

−B1(σh)(ψ
h
) + C(ϕ

h
)(ψ

h
) = 0,

−B (σh)(vh) = G(vh).

(5.11)
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We next discuss the choice of compatible discrete initial data (σh,0,ϕh,0,uh,0), whose construction

is based on a modification of the step-by-step procedure for the continuous initial data.

1. Define θh,0 := PΛs
h (θ0), where PΛs

h : Λs → Λsh is the classical L2-projection operator, satisfying,
for all φ ∈ L2(Γfp), 〈

φ− PΛs
h (φ),φh

〉
Γfp

= 0 ∀φh ∈ Λsh .

2. Define (σfh,0,ϕh,0,ufh,0,γfh,0) ∈ Xfh×Λfh×Vfh×Qfh and (uph,0, pph,0, λh,0) ∈ Vph×Wph×Λph
by solving a coupled Stokes-Darcy problem:

af (σfh,0, τ fh) + bnf (τ fh,ϕh,0) + bf (τ fh,ufh,0) + bsk,f (τ fh,γfh,0)

= af (σf,0, τ fh) + bnf (τ fh,ϕ0) + bf (τ fh,uf,0) + bsk,f (τ fh,γf,0) = − 1

n
(qf (0) I, τ fh)Ωf ,

− bnf (σfh,0,ψh) + µαBJS

n−1∑
j=1

〈√
K−1
j (ϕh,0 − θh,0) · tf,j ,ψh · tf,j

〉
Γfp

+ 〈ψh · nf , λh,0〉Γfp

= −bnf (σf,0,ψh) + µαBJS

n−1∑
j=1

〈√
K−1
j (ϕ0 − θ0) · tf,j ,ψh · tf,j

〉
Γfp

+ 〈ψh · nf , λ0〉Γfp = 0,

− bf (σfh,0,vfh)− bsk,f (σfh,0,χfh) = −bf (σf,0,vfh)− bsk,f (σf,0,χfh) = (ff (0),vfh)Ωf , (5.12)

ap(uph,0,vph) + bp(vph, pph,0) + bΓ(vph, λh,0) = ap(up,0,vph) + bp(vph, pp,0) + bΓ(vph, λ0) = 0 ,

− bp(uph,0, wph) = −bp(up,0, wph) = −µ−1(div(K∇pp,0), wph)Ωp ,

−
〈
ϕh,0 · nf + (θh,0 + uph,0) · np, ξh

〉
Γfp

= −〈ϕ0 · nf + (θ0 + up,0) · np, ξh〉Γfp = 0,

for all (τ fh,ψh,vfh,χfh) ∈ Xfh × Λfh × Vfh × Qfh and (vph, wph, ξh) ∈ Vph ×Wph × Λph. Note
that (5.12) is well-posed as a direct application of Theorem 4.2. Note also that θh,0 is data for this
problem.

3. Define (σph,0,ωh,0,ηph,0,ρph,0) ∈ Xph ×Λsh ×Vsh ×Qph, as the unique solution of the problem

(A(σph,0), τ ph)Ωp + bnp(τ ph,ωh,0) + bs(τ ph,ηph,0) + bsk,p(τ ph,ρph,0) + (A(αp pph,0 I), τ ph)Ωp

= (A(σp,0), τ ph)Ωp + bnp(τ ph,ω0) + bs(τ ph,ηp,0) + bsk,p(τ ph,ρp,0) + (A(αp pp,0 I), τ ph)Ωp = 0,

− bnp(σph,0,φh) + µαBJS

n−1∑
j=1

〈√
K−1
j (ϕh,0 − θh,0) · tf,j ,φh · tf,j

〉
Γfp

+ 〈φh · np, λh,0〉Γfp (5.13)

= −bnp(σp,0,φh) + µαBJS

n−1∑
j=1

〈√
K−1
j (ϕ0 − θ0) · tf,j ,φh · tf,j

〉
Γfp

+ 〈φh · np, λ0〉Γfp = 0,

− bs(σph,0,vsh)− bsk,p(σph,0,χph) = −bs(σp,0,vsh)− bsk,p(σp,0,χph) = (fp(0),vsh)Ωp ,

for all (τ ph,φh,vsh,χph) ∈ Xph × Λsh × Vsh × Qph. Note that the well-posedness of (5.13) follows
from the classical Babuška-Brezzi theory. Note also that pph,0,ϕh,0,θh,0, and λh,0 are data for this
problem.

4. Finally, define (σ̂ph,0,ush,0,γph,0) ∈ Xph ×Vsh ×Qph, as the unique solution of the problem

(A(σ̂ph,0), τ ph)Ωp + bs(τ ph,ush,0) + bsk,p(τ ph,γph,0) = −bnp(τ ph,θh,0) ,

−bs(σ̂ph,0,vsh)− bsk,p(σ̂ph,0,χph) = 0 ,
(5.14)
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for all (τ ph,vsh,χph) ∈ Xph ×Vsh ×Qph. Problem (5.14) is well-posed as a direct application of the
classical Babuška-Brezzi theory. Note that θh,0 is data for this problem.

We then define σh,0 = (σfh,0,uph,0,σph,0, pph,0) ∈ Xh,ϕh,0 = (ϕh,0,θh,0, λh,0) ∈ Yh, and uh,0 =

(ufh,0,ush,0,γfh,0,γph,0) ∈ Zh. This construction guarantees that the discrete initial data is compat-
ible in the sense of Lemma 4.9:

A(σh,0)(τ h) + B1(τ h)(ϕ
h,0

) + B(τ h)(uh,0) = F̂h,0(τ h) ∀ τ h ∈ Xh,

−B1(σh,0)(ψ
h
) + C(ϕ

h,0
)(ψ

h
) = 0 ∀ψ

h
∈ Yh,

−B (σh,0)(vh) = G0(vh) ∀vh ∈ Zh,

(5.15)

where F̂h,0 = (qf (0),0, f̂ph,0, q̂ph,0)t ∈ X′2 and G0 = G(0) ∈ Z′, with f̂ph,0 ∈ X′p,2 and q̂ph,0 ∈ W′
p,2

suitable data. Furthermore, it provides compatible initial data for the non-differentiated elasticity
variables (ηph,0,ρph,0,ωh,0) in the sense of the first equation in (4.23) (cf. (5.13)).

5.1 Existence and uniqueness of a solution

Now, we establish the well-posedness of problem (5.11) and the corresponding stability bound.

Theorem 5.2 For each compatible initial data (σh,0,ϕh,0,uh,0) satisfying (5.15) and

ff ∈W1,1(0, T ; V′f ), fp ∈W1,1(0, T ; V′s), qf ∈W1,1(0, T ;X′f ), qp ∈W1,1(0, T ; W′
p) ,

there exists a unique solution of (5.11), (σh,ϕh,uh) : [0, T ] → Xh ×Yh × Zh such that (σph, pph) ∈
W1,∞(0, T ;Xph)×W1,∞(0, T ; Wph), and (σh(0),ϕ

h
(0),ufh(0),γfh(0)) = (σh,0,ϕh,0,ufh,0,γfh,0). More-

over, assuming sufficient regularity of the data, there exists a positive constant C independent of h
and s0, such that

‖σfh‖L∞(0,T ;Xf ) + ‖σfh‖L2(0,T ;Xf ) + ‖uph‖L∞(0,T ;L2(Ωp)) + ‖uph‖L2(0,T ;Vp) + |ϕh − θh|L∞(0,T ;BJS)

+ |ϕh − θh|L2(0,T ;BJS) + ‖λh‖L∞(0,T ;Λph) + ‖ϕ
h
‖L2(0,T ;Yh) + ‖uh‖L2(0,T ;Z) + ‖A1/2(σph)‖L∞(0,T ;L2(Ωp))

+ ‖div(σph)‖L∞(0,T ;L2(Ωp)) + ‖div(σph)‖L2(0,T ;L2(Ωp)) + ‖pph‖L∞(0,T ;Wp) + ‖pph‖L2(0,T ;Wp)

+ ‖∂tA1/2(σph + αppphI)‖L2(0,T ;L2(Ωp)) +
√
s0‖∂t pph‖L2(0,T ;Wp) (5.16)

≤ C
(
‖ff‖H1(0,T ;V′

f ) + ‖fp‖H1(0,T ;V′
s)

+ ‖qf‖H1(0,T ;X′
f ) + ‖qp‖H1(0,T ;W′

p)

+ (1 +
√
s0)‖pp,0‖Wp + ‖K∇pp,0‖H1(Ωp)

)
.

Proof. From the fact that Xh ⊂ X, Zh ⊂ Z, and div(Xfh) = Vfh, div(Xph) = Vsh, div(Vph) =
Wph, considering (σh,0,ϕh,0,uh,0) satisfying (5.15), and employing the continuity and monotonicity

properties of the operators N and M (cf. Lemma 4.3 and (5.4)), as well as the discrete inf-sup
conditions (5.7), (5.8), and (5.10), the proof is identical to the proofs of Theorems 4.10 and 4.12, and
Corollary 4.11. We note that the proof of Corollary 4.11 works in the discrete case due to the choice
of the discrete initial data as the elliptic projection of the continuous initial data (cf. (5.12)–(5.14)).
�
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Remark 5.3 As in the continuous case, we can recover the non-differentiated elasticity variables

ηph(t) = ηph,0 +

∫ t

0
ush(s) ds, ρph(t) = ρph,0 +

∫ t

0
γph(s) ds, ωh(t) = ωh,0 +

∫ t

0
θh(s) ds ,

for each t ∈ [0, T ]. Then (3.7) holds discretely, which follows from integrating the equation associated
to τ ph in (5.11) from 0 to t ∈ (0, T ] and using the first equation in (5.13) (cf. (4.23)).

5.2 Error analysis

We proceed with establishing rates of convergence. To that end, let us set V ∈
{

Wp,Vf ,Vs,Qf ,Qp

}
,

Λ ∈
{
Λf ,Λs,Λp

}
and let Vh,Λh be the discrete counterparts. Let PV

h : V→ Vh and PΛ
h : Λ→ Λh be

the L2-projection operators, satisfying

(u− PV
h (u), vh)Ω? = 0 ∀ vh ∈ Vh,

〈ϕ− PΛ
h (ϕ), ψh〉Γfp = 0 ∀ψh ∈ Λh,

(5.17)

where ? ∈ {f, p}, u ∈
{
pp,uf ,us,γf ,γp

}
, ϕ ∈

{
ϕ,θ, λ

}
, and vh, ψh are the corresponding discrete

test functions. We have the approximation properties [26]:

‖u− PV
h (u)‖L2(Ω?) ≤ Chsu+1 ‖u‖Hsu+1(Ω?),

‖ϕ− PΛ
h (ϕ)‖Λh ≤ Chsϕ+r ‖ϕ‖Hsϕ+1(Γfp),

(5.18)

where su ∈
{
spp , suf , sus , sγf , sγp

}
and sϕ ∈

{
sϕ, sθ, sλ

}
are the degrees of polynomials in the spaces

Vh and Λh, respectively, and (cf. (5.3)),

‖ϕ‖Λh :=

{
‖ϕ‖H1/2(Γfp), with r = 1/2 in (5.18) for conforming spaces (S1),

‖ϕ‖L2(Γfp), with r = 1 in (5.18) for non-conforming spaces (S2).

Next, denote X ∈
{
Xf ,Xp,Vp

}
, σ ∈

{
σf ,σp,up

}
∈ X and let Xh and τh be their discrete counter-

parts. For the case (S2) when the discrete Lagrange multiplier spaces are chosen as in (5.2), (5.17)
implies

〈ϕ− PΛ
h (ϕ), τhn?〉Γfp = 0 ∀ τh ∈ Xh, (5.19)

where ? ∈ {f, p}. We note that (5.19) does not hold for the case (S1).

Let IX
h : X ∩H1(Ω?)→ Xh be the mixed finite element projection operator [18] satisfying

(div(IX
h (σ)), wh)Ω? = (div(σ), wh)Ω? ∀wh ∈Wh,〈

IX
h (σ)n?, τhn?

〉
Γfp

= 〈σn?, τhn?〉Γfp ∀ τh ∈ Xh,
(5.20)

and
‖σ − IX

h (σ)‖L2(Ω?) ≤ C hsσ+1‖σ‖Hsσ+1(Ω?),

‖div(σ − IX
h (σ))‖L2(Ω?) ≤ C hsσ+1‖div(σ)‖Hsσ+1(Ω?),

(5.21)

where wh ∈
{
vfh,vsh, wph

}
, Wh ∈

{
Vf ,Vs,Wp

}
, and sσ ∈

{
sσf , sσp , sup

}
– the degrees of polyno-

mials in the spaces Xh.

Now, let (σf ,up,σp, pp,ϕ,θ, λ,uf ,us,γf ,γp) and (σfh,uph,σph, pph,ϕh,θh, λh,ufh,ush,γfh,γph)
be the solutions of (3.11) and (5.11), respectively. We introduce the error terms as the differences
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of these two solutions and decompose them into approximation and discretization errors using the
interpolation operators:

eσ := σ − σh = (σ − IX
h (σ)) + (IX

h (σ)− σh) := eIσ + ehσ, σ ∈
{
σf ,σp,up

}
,

eϕ := ϕ− ϕh = (ϕ− PΛ
h (ϕ)) + (PΛ

h (ϕ)− ϕh) := eIϕ + ehϕ, ϕ ∈
{
ϕ,θ, λ

}
,

eu := u− uh = (u− PV
h (u)) + (PV

h (u)− uh) := eIu + ehu, u ∈
{
pp,uf ,us,γf ,γp

}
.

(5.22)

Then, we set the errors

eσ := (eσf , eup , eσp , epp), eϕ := (eϕ, eθ, eλ), and eu := (euf , eus , eγf , eγp).

We next form the error system by subtracting the discrete problem (5.11) from the continuous one
(3.11). Using that Xh ⊂ X and Zh ⊂ Z, as well as Remark 5.1, we obtain

(∂t E +A)(eσ)(τ h) + B1(τ h)(eϕ) + B(τ h)(eu) = 0 ∀ τ h ∈ Xh,

−B1(eσ)(ψ
h
) + C(eϕ)(ψ

h
) = 0 ∀ψ

h
∈ Yh,

−B(eσ)(vh) = 0 ∀vh ∈ Zh.

(5.23)

We now establish the main result of this section.

Theorem 5.3 For the solutions of the continuous and discrete problems (3.11) and (5.11), respec-
tively, assuming sufficient regularity of the true solution according to (5.18) and (5.21), there exists a
positive constant C independent of h and s0, such that

‖eσf ‖L∞(0,T ;Xf ) + ‖eσf ‖L2(0,T ;Xf ) + ‖eup‖L∞(0,T ;L2(Ωp)) + ‖eup‖L2(0,T ;Vp) + |eϕ − eθ|L∞(0,T ;BJS)

+ |eϕ − eθ|L2(0,T ;BJS) + ‖eλ‖L∞(0,T ;Λph) + ‖eϕ‖L2(0,T ;Yh) + ‖eu‖L2(0,T ;Z) + ‖A1/2(eσp)‖L∞(0,T ;L2(Ωp))

+ ‖div(eσp)‖L∞(0,T ;L2(Ωp)) + ‖div(eσp)‖L2(0,T ;L2(Ωp)) + ‖epp‖L∞(0,T ;Wp) + ‖epp‖L2(0,T ;Wp)

+ ‖∂tA1/2(eσp + αpeppI)‖L2(0,T ;L2(Ωp)) +
√
s0‖∂t epp‖L2(0,T ;Wp)

≤ C
√

exp(T )
(
hsσ+1 + hsϕ+r + hsu+1

)
, (5.24)

where sσ = min{sσf , sup , sσp , spp}, sϕ = min{sϕ, sθ, sλ}, su = min{suf , sus , sγf , sγp}, and r is
defined in (5.18).

Proof. We present in detail the proof for the conforming case (S1). The proof in the non-conforming
case (S2) is simpler, since several error terms are zero. We explain the differences at the end of the
proof.

We proceed as in Theorem 4.12. Taking (τ h,ψh,vh) = (ehσ, e
h
ϕ, e

h
u) in (5.23), we obtain

1

2
∂t

(
ae(e

h
σp , e

h
pp ; e

h
σp , e

h
pp) + s0 (ehpp , e

h
pp)Ωp

)
+ af (ehσf , e

h
σf

) + ap(e
h
up , e

h
up) + cBJS(e

h
ϕ, e

h
θ; ehϕ, e

h
θ)

= − af (eIσf , e
h
σf

)− ap(eIup , e
h
up)− ae(∂t e

I
σp , ∂t e

I
pp ; e

h
σp , e

h
pp)− C(e

I
ϕ)(ehϕ)

− bnf (ehσf , e
I
ϕ)− bnp(ehσp , e

I
θ)− bΓ(ehup , e

I
λ) + bnf (eIσf , e

h
ϕ) + bnp(e

I
σp , e

h
θ) + bΓ(eIup , e

h
λ) (5.25)

− bsk,f (ehσf , e
I
γf

)− bsk,p(ehσp , e
I
γp

) + bsk,f (eIσf , e
h
γf

) + bsk,p(e
I
σp , e

h
γp

),
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where, the right-hand side of (5.25) has been simplified, since the projection properties (5.17) and
(5.20), and the fact that div(ehup) ∈ Wph, div(ehσf ) ∈ Vfh, and div(ehσp) ∈ Vsh, imply that the
following terms are zero:

s0(∂t e
I
pp , e

h
pp), bp(e

h
up , e

I
pp), bp(e

I
up , e

h
pp), bf (ehσf , e

I
uf

), bf (eIσf , e
h
uf

), bs(e
h
σp , e

I
us), bs(e

I
σp , e

h
us). (5.26)

In turn, from the equations in (5.23) corresponding to test functions vfh, vsh, and wph, using the
projection properties (5.20), we find that

bf (ehσf ,vfh) = 0 ∀vfh ∈ Vfh, bs(e
h
σp ,vsh) = 0 ∀vsh ∈ Vsh,

bp(e
h
up , wph) = ae(∂t e

h
σp , ∂t e

h
pp ; 0, wph) + ae(∂t e

I
σp , ∂t e

I
pp ; 0, wph) + (s0 ∂t e

h
pp , wph)Ωp ∀wph ∈Wph.

Therefore div(ehσ?) = 0 in Ω?, with ? ∈ {f, p}, and using (4.2)–(4.3) we deduce

‖(ehσf )d‖2L2(Ωf ) ≥ C ‖ehσf ‖
2
Xf , ‖div(ehσp)‖L2(Ωp) = 0 ,

‖div(ehup)‖L2(Ωp) ≤ C
(
‖∂tA1/2(eIσp + αp eIppI)‖L2(Ωp)

+ ‖∂tA1/2(ehσp + αp ehppI)‖L2(Ωp) +
√
s0 ‖∂t ehpp‖Wp

)
.

(5.27)

Then, applying the ellipticity and continuity bounds of the bilinear forms involved in (5.25) (cf.
Lemma 4.3) and the Cauchy–Schwarz and Young’s inequalities, in combination with (5.27), we get

∂t

(
‖A1/2(ehσp + αpe

h
ppI)‖2L2(Ωp) + s0‖ehpp‖

2
Wp

)
+ ‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ ‖div(ehσp)‖
2
L2(Ωp) + |ehϕ − ehθ|2BJS

≤ C
(
‖eIσf ‖

2
Xf + ‖eIup‖

2
Vp

+ ‖eIσp‖
2
Xp + |eIϕ − eIθ|2BJS + ‖eIϕ‖2Yh

+ ‖eIγf ‖
2
Qf + ‖eIγp‖

2
Qp

+ ‖∂tA1/2 (eIσp + αp eIppI)‖2L2(Ωp) + ‖A1/2 (ehσp + αp ehppI)‖2L2(Ωp)

+ ‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) + s0‖∂t ehpp‖
2
Wp

)
+ δ1

(
‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ |ehϕ − ehθ|2BJS
)

+ δ2

(
‖ehσp‖

2
L2(Ωp) + ‖ehϕ‖2Yh

+ ‖ehγf ‖
2
Qf + ‖ehγp‖

2
Qp

)
,

where for the bound on bnp(e
h
σp , e

I
θ) we used the trace inequality (3.2) and the fact that div(ehσp) = 0.

Next, integrating from 0 to t ∈ (0, T ], using (4.14) to control the term ‖ehσp‖
2
L2(Ωp), and choosing δ1

small enough, we find that

‖A1/2(ehσp + αpe
h
ppI)(t)‖2L2(Ωp) + s0‖ehpp(t)‖

2
Wp

+

∫ t

0

(
‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ ‖div(ehσp)‖
2
L2(Ωp) + |ehϕ − ehθ|2BJS

)
ds

≤ C

(∫ t

0

(
‖eIσf ‖

2
Xf + ‖eIup‖

2
Vp

+ |eIϕ − eIθ|2BJS + ‖eIϕ‖2Yh
+ ‖eIγf ‖

2
Qf + ‖eIγp‖

2
Qp + ‖eIσp‖

2
Xp

)
ds

+

∫ t

0

(
‖∂tA1/2 (eIσp + αp eIppI)‖2L2(Ωp) + ‖A1/2 (ehσp + αp ehppI)‖2L2(Ωp)

)
ds (5.28)

+

∫ t

0

(
‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) + s0‖∂t ehpp‖

2
Wp

)
ds+ ‖A1/2(ehσp + αp ehpp I)(0)‖2L2(Ωp)

+ s0‖ehpp(0)‖2Wp

)
+ δ2

∫ t

0

(
‖ehpp‖

2
Wp

+ ‖ehϕ‖2Yh
+ ‖ehγf ‖

2
Qf + ‖ehγp‖

2
Qp

)
ds .
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On the other hand, taking τ h = (τ fh,vph, τ ph, 0) ∈ Vh (cf. (5.6)) in the first equation of (5.23),
we obtain

B1(τ h)(ehϕ) = − (∂t E +A)(eσ)(τ h)− B1(τ h)(eIϕ) ,

In the above, thanks to the projection properties (5.17), the following terms are zero: bp(vph, e
I
pp),

bf (τ fh, e
I
uf

), and bs(τ ph, e
I
us). Then the discrete inf-sup condition of B1 (cf. (5.8)) for ehϕ =

(ehϕ, e
h
θ, e

h
λ) ∈ Yh gives

‖ehϕ‖Yh
≤ C

(
‖eIσf ‖Xf + ‖eIup‖Vp + ‖eIϕ‖Yh

+ ‖eIγf ‖
2
Qf + ‖eIγp‖

2
Qp + ‖∂tA1/2 (eIσp + αp eIppI)‖L2(Ωp)

+ ‖ehσf ‖Xf + ‖ehup‖Vp + ‖ehγf ‖
2
Qf + ‖ehγp‖

2
Qp + ‖∂tA1/2 (ehσp + αp ehppI)‖L2(Ωp) + ‖ehpp‖Wp

)
. (5.29)

In turn, to bound ‖ehu‖Z, we test (5.23) with τ h = (τ fh,0, τ ph, 0) ∈ X̃h (cf. (5.5)), to find that

B(τ h)(ehu) = −
(
af (eσf , τ fh) + ae(∂t eσp , ∂t epp ; τ ph, 0) + B(τ h)(eIu)

)
.

In the above, the terms bf (τ fh, e
I
uf

) and bs(τ ph, e
I
us) are zero, due to the projection property (5.17).

Then, the discrete inf-sup condition of B (cf. (5.7)) for ehu ∈ Zh, yields

‖ehu‖Z ≤ C
(
‖eIσf ‖Xf + ‖∂tA1/2 (eIσp + αp eIppI)‖L2(Ωp) + ‖eIγf ‖Qf + ‖eIγp‖Qp

+ ‖ehσf ‖Xf + ‖∂tA1/2 (ehσp + αp ehppI)‖L2(Ωp)

)
.

(5.30)

Finally, to bound ‖ehpp‖Wp , we test (5.23) with τ h = (τ fh,vph, τ ph, 0) ∈ Xh to get

bp(vph, e
h
pp) + bΓ(vph, e

h
λ) = −

(
ap(eup ,vph) + bp(vph, e

I
pp) + bΓ(vph, e

I
λ)
)
.

Note that bp(vph, e
I
pp) = 0 due to the projection property (5.17), thus the discrete inf-sup condition

(5.10) gives

‖ehpp‖Wp + ‖ehλ‖Λph ≤ C
(
‖eIup‖L2(Ωp) + ‖eIλ‖Λph + ‖ehup‖L2(Ωp)

)
. (5.31)

Combining (5.28) with (5.29), (5.30), and (5.31), choosing δ2 small enough, and employing the Gron-

wall’s inequality to deal with the term

∫ t

0
‖A1/2 (ehσp + αp ehppI)‖2L2(Ωp) ds, we obtain

‖A1/2(ehσp + αp ehppI)(t)‖2L2(Ωp) + s0 ‖ehpp(t)‖
2
Wp

+

∫ t

0

(
‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ ‖div(ehσp)‖
2
L2(Ωp) + ‖ehpp‖

2
Wp

+ |ehϕ − ehθ|2BJS + ‖ehϕ‖2Yh
+ ‖ehu‖2Z

)
ds

≤ C exp(T )

(∫ t

0

(
‖eIσ‖2X + ‖eIϕ‖2Yh

+ ‖eIu‖2Z + |eIϕ − eIθ|2BJS + ‖∂tA1/2 (eIσp + αp eIpp I)‖2L2(Ωp)

)
ds

+

∫ t

0

(
‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) + s0‖∂t ehpp‖

2
Wp

)
ds (5.32)

+ ‖A1/2(ehσp + αp ehppI)(0)‖2L2(Ωp) + s0‖ehpp(0)‖2Wp

)
.
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Now, in order to bound

∫ t

0

(
‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) + s0‖∂t ehpp‖

2
Wp

)
ds on the right-hand

side of (5.32), we test (5.23) with τ h = (∂te
h
σf
, ehup , ∂te

h
σp , ∂te

h
pp), ψh = (ehϕ, e

h
θ, ∂te

h
λ), and vh =

(ehuf , e
h
us , e

h
γf
, ehγp), differentiate in time the rows in (5.23) associated to vph,ψh,φh,vfh,vsh,χfh,χph,

and employ the projections properties (5.17)–(5.20) to eliminate some of the terms (cf. (5.26)),
obtaining

1

2
∂t

( 1

2µ
‖(ehσf )d‖2L2(Ωf ) + ap(e

h
up , e

h
up) + cBJS(e

h
ϕ, e

h
θ; ehϕ, e

h
θ)
)

+ ‖∂tA1/2(ehσp+αpe
h
ppI)‖2L2(Ωp) + s0‖∂tehpp‖

2
Wp

= − af (eIσf , ∂t e
h
σf

)− ap(∂t eIup , e
h
up)− ae(∂t e

I
σp , ∂t e

I
pp ; ∂t e

h
σp , ∂t e

h
pp)− cBJS(∂t e

I
ϕ, ∂t e

I
θ; ehϕ, e

h
θ)

+ cΓ(ehϕ, e
h
θ; ∂t e

I
λ)− cΓ(eIϕ, e

I
θ; ∂t e

h
λ)− bnf (∂t e

h
σf
, eIϕ)− bnp(∂t ehσp , e

I
θ)− bΓ(ehup , ∂t e

I
λ) (5.33)

+ bnf (∂t e
I
σf
, ehϕ) + bnp(∂t e

I
σp , e

h
θ) + bΓ(eIup , ∂t e

h
λ)− bsk,f (∂t e

h
σf
, eIγf )− bsk,p(∂t ehσp , e

I
γp

)

+ bsk,f (∂t e
I
σf
, ehγf ) + bsk,p(∂t e

I
σp , e

h
γp

) .

Then, integrating (5.33) from 0 to t ∈ (0, T ], using the identities∫ t

0
af (eIσf , ∂t e

h
σf

) ds = af (eIσf , e
h
σf

)
∣∣∣t
0
−
∫ t

0
af (∂t e

I
σf
, ehσf ) ds ,∫ t

0
bn?(∂t e

h
σ? , e

I
◦) ds = bn?(e

h
σ? , e

I
◦)
∣∣∣t
0
−
∫ t

0
bn?(e

h
σ? , ∂t e

I
◦) ds , ? ∈ {f, p}, ◦ ∈ {ϕ,θ} ,∫ t

0
bsk,?(∂t e

h
σ? , e

I
γ?

) ds = bsk,?(e
h
σ? , e

I
γ?

)
∣∣∣t
0
−
∫ t

0
bsk,?(e

h
σ? , ∂t e

I
γ?

) ds ,∫ t

0

〈
eI� · nf , ∂t ehλ

〉
Γfp

ds =
〈
eI� · nf , ehλ

〉
Γfp

∣∣∣t
0
−
∫ t

0

〈
∂t e

I
� · nf , ehλ

〉
Γfp

ds , � ∈ {ϕ,θ,up},

(5.34)

and applying the ellipticity and continuity bounds of the bilinear forms involved (cf. Lemma 4.3), the
Cauchy-Schwarz and Young’s inequalities, and the fact that div(ehσ?) = 0 in Ω? with ? ∈ {f, p} (cf.
(5.27)), we obtain

‖ehσf (t)‖2Xf + ‖ehup(t)‖
2
L2(Ωp) + ‖div(ehσp(t))‖

2
L2(Ωp) + |(ehϕ − ehθ)(t)|2BJS

+

∫ t

0

(
‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) + s0‖∂t ehpp‖

2
Wp

)
ds

≤ C

(
‖eIσf (t)‖2L2(Ωf ) + ‖eIup(t)‖

2
Vp

+ ‖eIσp(t)‖
2
L2(Ωp) + ‖eIϕ(t)‖2Λfh

+ ‖eIθ(t)‖2Λsh
+ ‖eIγf (t)‖2Qf

+ ‖eIγp(t)‖
2
Qp +

∫ t

0

(
‖∂t eIσf ‖

2
Xf + ‖∂t eIup‖

2
Vp

+ |∂t (eIϕ − eIθ)|2BJS + ‖eIθ‖2Λsh
+ ‖∂t eIϕ‖2Yh

+ ‖∂t eIγf ‖
2
Qf + ‖∂t eIγp‖

2
Qp + ‖∂tA1/2 (eIσp + αp eIppI)‖2L2(Ωp) + ‖∂t eIσp‖

2
Xp

)
ds

+ ‖eIσf (0)‖2L2(Ωf ) + ‖eIup(0)‖2Vp
+ ‖eIϕ(0)‖2Λfh

+ ‖eIθ(0)‖2Λsh
+ ‖eIγf (0)‖2Qf

)
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+ δ3

(
‖ehσf (t)‖2Xf + ‖ehσp(t)‖

2
L2(Ωp) + ‖ehλ(t)‖2Λph +

∫ t

0

(
‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ |ehϕ − ehθ|2BJS
)
ds

+

∫ t

0

(
‖ehϕ‖2Yh

+ ‖ehu‖2Z
)
ds

)
+

1

2

∫ t

0
‖∂tA1/2 (ehσp + αp ehppI)‖2L2(Ωp) ds

+ C
(
‖ehσf (0)‖2Xf + ‖ehup(0)‖2L2(Ωp) + ‖ehσp(0)‖2Xp + |(ehϕ − ehθ)(0)|2BJS + ‖ehλ(0)‖2Λph

)
. (5.35)

We note that ‖ehσp(t)‖
2
L2(Ωp) + ‖ehλ(t)‖2Λph can be bounded by using (4.14) and (5.31), whereas all the

other terms with δ3 can be bounded by the left hand side of (5.32). Thus, combining (5.32) with
(5.31) and (5.35), using algebraic manipulations, and choosing δ3 small enough, we get

‖ehσf (t)‖2Xf + ‖ehup(t)‖
2
L2(Ωp) + |(ehϕ − ehθ)(t)|2BJS + ‖ehλ(t)‖2Λph + ‖A1/2(ehσp + αp ehpp I)(t)‖2L2(Ωp)

+ ‖div(ehσp(t))‖
2
L2(Ωp) + ‖ehpp(t)‖

2
Wp

+

∫ t

0

(
‖ehσf ‖

2
Xf + ‖ehup‖

2
Vp

+ |ehϕ − ehθ|2BJS + ‖ehϕ‖2Yh

+ ‖ehu‖2Z + ‖div(ehσp)‖
2
L2(Ωp) + ‖ehpp‖

2
Wp

+ ‖∂tA1/2 (ehσp + αp ehpp I)‖2L2(Ωp) + s0‖∂t ehpp‖
2
Wp

)
ds

≤ C exp(T )

(
‖eIσf (t)‖2L2(Ωf ) + ‖eIup(t)‖

2
Vp

+ ‖eIσp(t)‖
2
L2(Ωp) + ‖eIϕ(t)‖2Λfh

+ ‖eIθ(t)‖2Λsh

+ ‖eIγf (t)‖2Qf + ‖eIγp(t)‖
2
Qp +

∫ t

0

(
‖eIσ‖2X + ‖eIϕ‖2Yh

+ ‖eIu‖2Z + |eIϕ − eIθ|2BJS + ‖∂t eIσ‖2X
)
ds

+

∫ t

0

(
‖∂t eIϕ‖2Yh

+ |∂t (eIϕ − eIθ)|2BJS + ‖∂t eIγf ‖
2
Qf + ‖∂t eIγp‖

2
Qp

)
ds+ ‖eIσf (0)‖2L2(Ωf )

+ ‖eIup(0)‖2Vp
+ ‖eIϕ(0)‖2Λfh

+ ‖eIθ(0)‖2Λsh
+ ‖eIγf (0)‖2Qf + ‖ehσf (0)‖2Xf + ‖ehup(0)‖2L2(Ωp)

+ ‖ehσp(0)‖2Xp + (1 + s0)‖ehpp(0)‖2Wp
+ |(ehϕ − ehθ)(0)|2BJS + ‖ehλ(0)‖2Λph

)
. (5.36)

Finally, we establish a bound on the initial data terms above. In fact, proceeding as in (4.45),
recalling from Corollary 4.11 and Theorem 5.2 that (σ(0),ϕ(0)) = (σ0,ϕ0

) and (σh(0),ϕ
h
(0)) =

(σh,0,ϕh,0), using similar arguments to (5.32) in combination with the error system derived from

(5.12)–(5.13), we deduce

‖ehσf (0)‖2Xf + ‖ehup(0)‖2Vp
+ ‖A1/2 (ehσp(0))‖2L2(Ωp) + ‖div(ehσp(0))‖2L2(Ωp) + ‖ehpp(0)‖2Wp

+ |(ehϕ − ehθ)(0)|2BJS + ‖ehλ(0)‖2Λph ≤ C
(
‖eIσ0

‖2X + ‖eIϕ̃
0
‖2Yh

+ ‖eIũ0
‖2Z
)
,

(5.37)

where σ0 = (σf,0,up,0,σp,0, pp,0), ϕ̃
0

= (ϕ0,ω0, λ0) and ũ0 = (uf,0,ηp,0,γf,0,ρp,0), and eIσ0
, eIϕ̃

0

, eIũ0

denote their corresponding approximation errors. Thus, using the error decomposition (5.22) in com-
bination with (5.36)–(5.37), the triangle inequality, (4.14) and the approximation properties (5.18) and
(5.21), we obtain (5.24) with a positive constant C depending on parameters µ, λp, µp, αp, kmin, kmax, αBJS,
and the extra regularity assumptions for σ,ϕ, and u whose expressions are obtained from the right-
hands side of (5.18) and (5.21). This completes the proof in the conforming case (S1).

The proof in the non-conforming case (S2) follows by using similar arguments. We exploit the
projection property (5.19) to conclude that some terms in (5.25) are zero, namely bnf (ehσf , e

I
ϕ),

32



bnp(e
h
σp , e

I
θ), and bΓ(ehup , e

I
λ), as well as terms appearing in the operator C (cf. (3.9)):

〈
ehϕ · nf , eIλ

〉
Γfp

,〈
eIϕ · nf , ehλ

〉
Γfp

,
〈
ehθ · np, eIλ

〉
Γfp

, and
〈
eIθ · np, ehλ

〉
Γfp

. In addition, in the non-conforming version of

(5.29) the terms ‖eIλ‖Λph , ‖eIϕ‖Λfh
, and ‖eIθ‖Λsh

do not appear, since the bilinear forms bΓ(vph, e
I
λ),

bnf (τ fh, e
I
ϕ), and bnp(τ ph, e

I
θ) are zero by a direct application of the projection property (5.19). �

6 A multipoint stress-flux mixed finite element method

In this section, inspired by previous works on the multipoint flux mixed finite element method for
Darcy flow [19,40,57,58] and the multipoint stress mixed finite element method for elasticity [5–7], we
present a vertex quadrature rule that allows for local elimination of the stresses, rotations, and Darcy
fluxes, leading to a positive-definite cell-centered pressure-velocities-traces system. We emphasize that,
to the best of our knowledge, this is the first time such method is developed for the Stokes equations.
To that end, the finite element spaces to be considered for both (Xfh,Vfh,Qfh) and (Xph,Vsh,Qph)
are the triple BDM1 − P0 − P1, which have been shown to be stable for mixed elasticity with weak
stress symmetry in [15,16,30], whereas (Vph,Wph) is chosen to be BDM1−P0 [17], and the Lagrange
multiplier spaces (Λfh,Λsh,Λph) are either P1 −P1 −P1 or Pdc

1 −Pdc
1 −Pdc

1 satisfying (S1) or (S2)
(cf. (5.1), (5.2)), respectively, where Pdc

1 denotes the piecewise linear discontinuous finite element
space and Pdc

1 is its corresponding vector version.

6.1 A quadrature rule setting

Let S? denote the space of elementwise continuous functions on T ?h . For any pair of tensor or vector
valued functions ϕ and ψ with elements in S?, we define the vertex quadrature rule as in [58] (see
also [5, 7]):

(ϕ,ψ)Q,Ω? :=
∑
E∈T ?h

(ϕ,ψ)Q,E =
∑
E∈T ?h

|E|
s

s∑
i=1

ϕ(ri) · ψ(ri), (6.1)

where ? ∈ {f, p}, s = 3 on triangles and s = 4 on tetrahedra, ri, i = 1, . . . , s, are the vertices of the
element E, and · denotes the inner product for both vectors and tensors.

We will apply the quadrature rule for the bilinear forms af , ap, ae and bsk,?, which will be denoted
by ahf , ahp , ahe and bhsk,?, respectively. These bilinear forms involve the stress spaces Xfh and Xph,
the vorticity space Qfh and rotation space Qph, and the Darcy velocity space Vph. The BDM1

spaces have for degrees of freedom s − 1 normal components on each element edge (face), which can
be associated with the vertices of the edge (face). At any element vertex ri, the value of a tensor
or vector function is uniquely determined by its normal components at the associated two edges or
three faces. Also, the vorticity space Qfh and the rotation space Qph are vertex-based. Therefore
the application of the vertex quadrature rule (6.1) for the bilinear forms involving the above spaces
results in coupling only the degrees of freedom associated with a mesh vertex, which allows for local
elimination of these variables. Next, we state a preliminary lemma to be used later on, which has
been proved in [7, Lemma 3.1] and [5, Lemma 2.2].

Lemma 6.1 There exist positive constants C0 and C1 independent of h, such that for any linear
uniformly bounded and positive-definite operator L, there hold

(L(ϕ), ϕ)Q,Ω? ≥ C0 ‖ϕ‖2Ω? , (L(ϕ), ψ)Q,Ω? ≤ C1 ‖ϕ‖Ω?‖ψ‖Ω? , ∀ϕ,ψ ∈ S?, ? ∈ {f, p}.

Consequently, the bilinear form (L(ϕ), ϕ)Q,Ω? is an inner product in L2(Ω?) and (L(ϕ), ϕ)
1/2
Q,Ω?

is a
norm equivalent to ‖ϕ‖Ω?.
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The semidiscrete coupled multipoint stress-flux mixed finite element method for (3.11) reads: Find
(σh,ϕh,uh) : [0, T ] → Xh × Yh × Zh such that for all (τ h,ψh,vh) ∈ Xh × Yh × Zh, and for a.e.
t ∈ (0, T ),

∂

∂t
Eh(σh)(τ h) +Ah(σh)(τ h) + B1(τ h)(ϕ

h
) + Bh(τ h)(uh) = F(τ h),

−B1(σh)(ψ
h
) + C(ϕ

h
)(ψ

h
) = 0,

−Bh(σh)(vh) = G(vh),

(6.2)

where
Ah(σh)(τ h) := ahf (σfh, τ fh) + ahp(uph,vph) + bp(vph, pph)− bp(uph, wph),

Eh(σh)(τ h) := ahe (σph, pph; τ ph, wph) + (s0 pph, wph)Ωp ,

Bh(τ h)(vh) := bf (τ fh,vfh) + bs(τ ph,vsh) + bhsk,f (τ fh,χfh) + bhsk,p(τ ph,χph).

We next discuss the discrete inf-sup conditions. We recall the space X̃h defined in (5.5). We also
define the discrete kernel of the operator Bh as

V̂h :=
{
τ h ∈ Xh : Bh(τ h)(vh) = 0 ∀vh ∈ Zh

}
= X̂fh ×Vph × X̂ph ×Wph, (6.3)

where

X̂?h :=
{
τ ?h ∈ X?h : (τ ?h, ξ?h)Q,Ω? = 0 ∀ ξ?h ∈ Q?h and div(τ ?h) = 0 in Ω?

}
, ? ∈ {f, p},

emphasizing the difference from the discrete kernel of B defined in (5.6).

Lemma 6.2 There exist positive constants β̂ and β̂1, such that

sup
06=τh∈X̃h

Bh(τ h)(vh)

‖τ h‖X
≥ β̂ ‖vh‖Z ∀vh ∈ Zh, (6.4)

sup
0 6=τh∈V̂h

B1(τ h)(ψ
h
)

‖τ h‖X
≥ β̂1 ‖ψh‖Yh

∀ψ
h
∈ Yh. (6.5)

Proof. The proof of (6.4) follows from a slight adaptation of the argument in [5, Theorem 4.2]. The
proof of (6.5) is similar to the proof of (5.8). The main difference is replacing the interpolant satisfying

(5.9) by an interpolant Π̂f
h : H1(Ωf )→ Xfh satisfying

bf (Π̂f
hτ f − τ f ,vfh) = 0 ∀vfh ∈ Vfh, bhsk,f (Π̂f

hτ f − τ f ,χfh) = 0 ∀χfh ∈ Qfh,

〈(Π̂f
hτ f − τ f )nf , τ fhnf 〉Γfp∪ΓNf

= 0 ∀ τ fh ∈ Xfh,

whose existence follows from the inf-sup condition for Bh (6.4). �

We can establish the following well-posedness result.

Theorem 6.3 For each compatible initial data (σh,0,ϕh,0,uh,0) satisfying (5.15) and

ff ∈W1,1(0, T ; V′f ), fp ∈W1,1(0, T ; V′s), qf ∈W1,1(0, T ;X′f ), qp ∈W1,1(0, T ; W′
p),

there exists a unique solution of (6.2), (σh,ϕh,uh) : [0, T ] → Xh ×Yh × Zh such that (σph, pph) ∈
W1,∞(0, T ;Xph)×W1,∞(0, T ; Wph), and (σh(0),ϕ

h
(0),ufh(0),γfh(0)) = (σh,0,ϕh,0,ufh,0,γfh,0). More-

over, assuming sufficient regularity of the data, a stability bound as in (5.16) also holds.

Proof. The theorem follows from similar arguments to the proof of Theorem 5.2, in conjunction with
Lemmas 6.1 and 6.2. �
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6.2 Error analysis

Now, we obtain the error estimates and theoretical rates of convergence for the multipoint stress-flux
mixed scheme (6.2). To that end, for each σfh, τ fh ∈ Xfh, uph, vph ∈ Vph, σph, τ ph ∈ Xph, pph,
wph ∈Wph, χfh ∈ Qfh, and χph ∈ Qph, we denote the quadrature errors by

δf (σfh, τ fh) = af (σfh, τ fh)− ahf (σfh, τ fh),

δp(uph,vph) = ap(uph,vph)− ahp(uph,vph),

δe(σph, pph; τ ph, wph) = ae(σph, pph; τ ph, wph)− ahe (σph, pph; τ ph, wph),

δsk,?(χ?h, τ ?h) = bsk,?(χ?h, τ ?h)− bhsk,?(χ?h, τ ?h), ? ∈ {f, p}.

(6.6)

Next, for the operator A (cf. (2.4)) we will say that A ∈ W1,∞
T ph

if A ∈ W1,∞(E) for all E ∈ T ph
and ‖A‖W1,∞(E) is uniformly bounded independently of h. Similar notation holds for K−1. In the
next lemma we establish bounds on the quadrature errors. The proof follows from a slight adaptation
of [5, Lemma 5.2] to our context (see also [7, 58]).

Lemma 6.4 If K−1 ∈ W1,∞
T ph

and A ∈ W1,∞
T ph

, then there is a constant C > 0 independent of h such

that

|δf (σfh, τ fh)| ≤ C
∑
E∈T fh

h ‖σfh‖H1(E) ‖τ fh‖L2(E),

|δp(uph,vph)| ≤ C
∑
E∈T ph

h ‖K−1‖W1,∞(E) ‖uph‖H1(E) ‖vph‖L2(E),

|δe(σph, pph; τ ph, wph)| ≤ C
∑
E∈T ph

h ‖A‖W1,∞(E)‖(σph, pph)‖H1(E)×L2(E)‖(τ ph, wph)‖L2(E)×L2(E),

|δsk,?(τ ?h,χ?h)| ≤ C
∑
E∈T ?h

h ‖τ ?h‖L2(E) ‖χ?h‖H1(E), ? ∈ {f, p},

|δsk,?(τ ?h,χ?h)| ≤ C
∑
E∈T ?h

h ‖τ ?h‖H1(E) ‖χ?h‖L2(E), ? ∈ {f, p},

for all σfh, τ fh ∈ Xfh, uph,vph ∈ Vph, σph, τ ph ∈ Xph, pph, wph ∈Wph, χfh ∈ Qfh, χph ∈ Qph.

We are ready to establish the convergence of the multipoint stress-flux mixed finite element method.

Theorem 6.5 For the solutions of the continuous and semidiscrete problems (3.11) and (6.2), respec-
tively, assuming sufficient regularity of the true solution according to (5.18) and (5.21), there exists a
positive constant C independent of h and s0, such that

‖eσf ‖L∞(0,T ;Xf ) + ‖eσf ‖L2(0,T ;Xf ) + ‖eup‖L∞(0,T ;L2(Ωp)) + ‖eup‖L2(0,T ;Vp) + |eϕ − eθ|L∞(0,T ;BJS)

+ |eϕ − eθ|L2(0,T ;BJS) + ‖eλ‖L∞(0,T ;Λph) + ‖eϕ‖L2(0,T ;Yh) + ‖eu‖L2(0,T ;Z) + ‖A1/2(eσp)‖L∞(0,T ;L2(Ωp))

+ ‖div(eσp)‖L∞(0,T ;L2(Ωp)) + ‖epp‖L∞(0,T ;Wp) + ‖div(eσp)‖L2(0,T ;L2(Ωp)) + ‖epp‖L2(0,T ;Wp)

+ ‖∂tA1/2(eσp + αpeppI)‖L2(0,T ;L2(Ωp)) +
√
s0‖∂t epp‖L2(0,T ;Wp)

≤ C
(
h+ h1+r

)
, (6.7)

where r is defined in (5.18).
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Proof. To obtain the error equations, we subtract the multipoint stress-flux mixed finite element
formulation (6.2) from the continuous one (3.11). Using the error decomposition (5.22) and applying
some algebraic manipulations, we obtain the error system:(

∂t Eh +Ah
)
(ehσ)(τ h) + B1(τ h)(ehϕ) + Bh(τ h)(ehu)

= −
(
∂t E +A

)
(eIσ)(τ h)− B1(τ h)(eIϕ)− B(τ h)(eIu)− δfep(Ih(σ), Ph(u))(τ h),

−B1(ehσ)(ψ
h
) + C(ehϕ)(ψ

h
) = B1(eIσ)(ψ

h
)− C(eIϕ)(ψ

h
)

−Bh(ehσ)(vh) = B(eIσ)(vh) + δfp(Ih(σ))(vh) ,

(6.8)

for all (τ h,ψh,vh) ∈ Xh ×Yh × Zh, where

δfep(Ih(σ), Ph(u))(τ h) := − δf (I
Xf
h (σf ), τ fh)− δe(I

Xp
h (σp), pp; τ ph, wph)

− δp(I
Vp

h (up),vph)− δsk,f (τ fh, P
Qf
h (γf ))− δsk,p(τ ph, P

Qp
h (γp))

and
δfp(Ih(σ))(vh) := δsk,f (I

Xf
h (σf ),χfh) + δsk,p(I

Xp
h (σp),χph) .

Notice that the error system (6.8) is similar to (5.23), except for the additional quadrature error terms.
The rest of the proof follows from the arguments in the proof of (5.24), using Lemmas 6.1, 6.2 and
6.4, and utilizing the continuity bounds of the interpolation operators IX?

h , I
vp
h , PQ?

h [5, Lemma 5.1]:

‖IX?h (τ ?h)‖H1(E) ≤ C ‖τ ?h‖H1(E) ∀ τ ?h ∈ H1(E) , ? ∈ {f, p} ,

‖PQ?
h (χ?h)‖H1(E) ≤ C ‖χ?h‖H1(E) ∀χ?h ∈ H1(E) ,

‖IVp

h (vph)‖H1(E) ≤ C ‖vph‖H1(E) ∀vph ∈ H1(E) .

We omit further details, and refer to [5, 7, 58] for more details on the error analysis of the multipoint
flux and multipoint stress mixed finite element methods on simplicial grids. �

6.3 Reduction to a cell-centered pressure-velocities-traces system

In this section we focus on the fully discrete problem associated to (6.2) (cf. (3.11), (5.11)), and
describe how to obtain a reduced cell-centered system for the algebraic problem at each time step. For
the time discretization we employ the backward Euler method. Let ∆t be the time step, T = M ∆t,
tm = m∆t, m = 0, . . . ,M . Let dt u

m := (∆t)−1(um − um−1) be the first order (backward) discrete
time derivative, where um := u(tm). Then the fully discrete model reads: given (σ0

h,ϕ
0
h
,u0

h) =
(σh,0,ϕh,0,uh,0) satisfying (5.15), find (σmh ,ϕ

m
h
,umh ) ∈ Xh ×Yh × Zh, m = 1, . . . ,M , such that for

all (τ h,ψh,vh) ∈ Xh ×Yh × Zh,

dt Eh(σmh )(τ h) +Ah(σmh )(τ h) + B1(τ h)(ϕm
h

) + Bh(τ h)(umh ) = F(τ h) ,

−B1(σmh )(ψ
h
) + C(ϕm

h
)(ψ

h
) = 0 ,

−Bh(σmh )(vh) = G(vh) .

(6.9)

Remark 6.1 The well-posedness and error estimate associated to the fully discrete problem (6.9)
can be derived employing similar arguments to Theorems 6.3 and 6.5 in combination with the theory
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developed in [8, Sections 6 and 9]. In particular, we note that at each time step the well-posedness of
the fully discrete problem (6.9), with m = 1, . . . ,M , follows from similar arguments to the proof of
Lemma 4.7.

Notice that the first row in (6.9) can be rewritten equivalently as(
(∆t)−1Eh +Ah

)
(σmh )(τ h) + B1(τ h)(ϕm

h
) + Bh(τ h)(umh ) = F(τ h) + (∆t)−1Eh(σm−1

h )(τ h) . (6.10)

Let us associate with the operators in (6.9)–(6.10) matrices denoted in the same way. We then have

(
(∆t)−1 Eh +Ah

)
=


Aσfσf 0 0 0

0 Aupup 0 At
uppp

0 0 Aσpσp At
σppp

0 −Auppp Aσppp Apppp

 , Bh =


Aσfuf 0 0 0

0 0 Aσpus 0

Aσfγf 0 0 0

0 0 Aσpγp 0

 ,

B1 =

 Aσfϕ 0 0 0

0 0 Aσpθ 0

0 Aupλ 0 0

 , C =

 Aϕϕ At
ϕθ At

ϕλ

Aϕθ Aθθ At
θλ

−Aϕλ −Aθλ 0

 ,

with

Aσfσf ∼ a
h
f (·, ·), Aupup ∼ ahp(·, ·), Aσpσp ∼ (∆t)−1 ahe (·, 0; ·, 0), Aσppp ∼ (∆t)−1ahe (·, 0; 0, ·),

Apppp ∼ (∆t)−1ahe (0, ·; 0, ·) + (∆t)−1(s0 ·, ·)Ωp , Auppp ∼ bp(·, ·), Aσfϕ ∼ bnf (·, ·), Aupλ ∼ bΓ(·, ·),

Aσpθ ∼ bnp(·, ·), Aϕϕ ∼ cBJS(·,0; ·,0), Aϕθ ∼ cBJS(·,0; 0, ·), Aθθ ∼ cBJS(0, ·; 0, ·), Aϕλ ∼ cΓ(·,0; ·),

Aθλ ∼ cΓ(0, ·; ·), Aσfuf ∼ bf (·, ·), Aσfγf ∼ b
h
sk,f (·, ·), Aσpus ∼ bs(·, ·), Aσpγp ∼ b

h
sk,p(·, ·),

where the notation A ∼ a means that the matrix A is associated with the bilinear form a. Denoting
the algebraic vectors corresponding to the variables σmh , ϕm

h
, and umh in the same way, we can then

write the system (6.9) in a matrix-vector form as (∆t)−1 Eh +Ah Bt
1 Bt

h

−B1 C 0
−Bh 0 0

 σmh
ϕm
h

umh

 =

 F + (∆t)−1Eh(σm−1
h )

0
G

 . (6.11)

As we noted in Section 6.1, due to the the use of the vertex quadrature rule, the degrees of freedom
(DOFs) of the Stokes stress σmfh, Darcy velocity umph and poroelastic stress tensor σmph associated with
a mesh vertex become decoupled from the rest of the DOFs. As a result, the assembled mass matrices
have a block-diagonal structure with one block per mesh vertex. The dimension of each block equals
the number of DOFs associated with the vertex. These matrices can then be easily inverted with
local computations. Inverting each local block in Aupup allows for expressing the Darcy velocity DOFs
associated with a vertex in terms of the Darcy pressure pmph at the centers of the elements that share
the vertex, as well as the trace unknown λmh on neighboring edges (faces) for vertices on Γfp. Similarly,
inverting each local block in Aσfσf allows for expressing the Stokes stress DOFs associated with a
vertex in terms of neighboring Stokes velocity umfh, vorticity γmfh, and trace ϕmh . Finally, inverting
each local block in Aσpσp allows for expressing the poroelastic stress DOFs associated with a vertex
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in terms of neighboring Darcy pressure pmph, structure velocity umsh, structure rotation γmph, and trace
θmh . Then we have

umph = −A−1
upupA

t
uppp p

m
ph −A−1

upupA
t
upλ

λmh ,

σmfh = −A−1
σfσf

At
σfϕ

ϕmh −A−1
σfσf

At
σfuf

umfh −A−1
σfσf

At
σfγf

γmfh,

σmph = −A−1
σpσpA

t
σppp p

m
ph −A−1

σpσpA
t
σpθ

θmh −A−1
σpσpA

t
σpus umsh −A−1

σpσpA
t
σpγp

γmph.

(6.12)

The reduced matrix associated to (6.11) in terms of (pmph,ϕ
m
h ,θ

m
h , λ

m
h ,u

m
fh,u

m
sh,γ

m
fh,γ

m
ph) is given by

Appσppp +Appuppp 0 −Appσpθ Appupλ 0 −Appσpus 0 −Appσpγp
0 Aϕϕ+Aϕσfϕ At

ϕθ At
ϕλ Aufσfϕ 0 Aγfσfϕ 0

At
ppσpθ

Aϕθ Aθθ+Aθσpθ At
θλ 0 Ausσpθ 0 Aγpσpθ

At
ppupλ

−Aϕλ −Aθλ Aλupλ 0 0 0 0

0 At
ufσfϕ

0 0 Aufσfuf 0 Aufσfγf 0

At
ppσpus 0 At

usσpθ
0 0 Ausσpus 0 Ausσpγp

0 At
γfσfϕ

0 0 At
ufσfγf

0 Aγfσfγf 0

At
ppσpγp

0 At
γpσpθ

0 0 At
usσpγp

0 Aγpσpγp


(6.13)

where

Appσppp = Apppp −AσpppA−1
σpσpA

t
σppp , Appuppp = AupppA

−1
upupA

t
uppp , Appσpθ = AσpppA

−1
σpσpA

t
σpθ,

Appupλ = AupppA
−1
upupA

t
upλ, Appσpus = AσpppA

−1
σpσpA

t
σpus , Appσpγp = AσpppA

−1
σpσpA

t
σpγp

,

Aϕσfϕ = AσfϕA
−1
σfσf

At
σfϕ

, Aθσpθ = AσpθA
−1
σpσpA

t
σpθ,

Aλupλ = AupλA
−1
upupA

t
upλ, Aufσfϕ = AσfϕA

−1
σfσf

At
σfuf

, Aufσfuf = AσfufA
−1
σfσf

At
σfuf

, (6.14)

Aufσfγf = AσfufA
−1
σfσf

At
σfγf

, Ausσpθ = AσpθA
−1
σpσpA

t
σpus , Ausσpus = AσpusA

−1
σpσpA

t
σpus ,

Ausσpγp = AσpusA
−1
σpσpA

t
σpγp

, Aγpσpγp = AσpγpA
−1
σpσpA

t
σpγp

, Aγpσpθ = AσpθA
−1
σpσpA

t
σpγp

,

Aγfσfγf = AσfγfA
−1
σfσf

At
σfγf

, Aγfσfϕ = AσfϕA
−1
σfσf

At
σfγf

.

Furthermore, due to the vertex quadrature rule, the vorticity and structure rotation DOFs correspond-
ing to each vertex of the grid become decoupled from the rest of the DOFs, leading to block-diagonal
matrices Aγfσfγf and Aγpσpγp . Recalling the matrix definitions in (6.14), each block is symmetric

and positive definite and thus locally invertible, due the positive definiteness of A−1
σfσf

and A−1
σpσp and

the inf-sup condition (5.7). We then have

γmfh = −A−1
γfσfγf

Aγfσfϕϕ
m
h −A−1

γfσfγf
At

ufσfγf
umfh,

γmph = −A−1
γpσpγp

At
ppσpγp

pmph −A−1
γpσpγp

Aγpσpθ θ
m
h −A−1

γpσpγp
At

usσpγp
umsh,

(6.15)

and using some algebraic manipulation, we obtain the reduced problem A~pmh = ~F, with vector solution
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~pmh := (pmph,ϕ
m
h ,θ

m
h , λ

m
h ,u

m
fh,u

m
sh) and matrix

A =



Ãppσppp +Appuppp 0 −Ãppσpθ Appupλ 0 −Ãppσpus
0 Ãϕσfϕ+Aϕϕ At

ϕθ At
ϕλ Ãufσfϕ 0

Ãt
ppσpθ

Aϕθ Ãθσpθ+Aθθ At
θλ 0 Ãusσpθ

At
ppupλ

−Aϕλ −Aθλ Aλupλ 0 0

0 Ãt
ufσfϕ

0 0 Ãufσfuf 0

Ãt
ppσpus 0 Ãt

usσpθ
0 0 Ãusσpus


(6.16)

where

Ãppσppp = Appσppp +AppσpγpA
−1
γpσpγp

At
ppσpγp

, Ãppσpθ = Appσpθ −ApσpθA−1
γpσpγp

At
γpσpθ

,

Ãppσpus = Appσpus −AppσpγpA
−1
γpσpγp

At
usσpγp

, Ãϕσfϕ = Aϕσfϕ −AγfσfϕA
−1
γfσfγf

At
γfσfϕ

,

Ãufσfϕ = Aufσfϕ −AγfσfϕA
−1
γfσfγf

At
ufσfγf

, Ãθσpθ = Aθσpθ −AγpσpθA
−1
γpσpγp

At
γpσpθ

, (6.17)

Ãusσpθ = Ausσpθ −AγpσpθA
−1
γpσpγp

At
usσpγp

, Ãufσfuf = Aufσfuf −AufσfγfA
−1
γfσfγf

At
ufσfγf

,

Ãusσpus = Ausσpus −AusσpγpA
−1
γpσpγp

At
usσpγp

,

and the right hand side vector ~F has been obtained by transforming the right-hand side in (6.9)
accordingly to the procedure above. Note that, after solving the problem with matrix (6.16), we can
recover umph,σ

m
fh,σ

m
ph and γmfh,γ

m
ph through the formulae (6.12) and (6.15), respectively, thus obtaining

the full solution to (6.9).

Lemma 6.6 The cell-centered finite difference system for the pressure-velocities-traces problem (6.16)
is positive definite.

Proof. Consider a vector ~qt = (wt
ph ψ

t
h φ

t
h ξ

t
h vt

fh vt
sh) 6= ~0. Employing the matrices in (6.14) and

(6.17) and some algebraic manipulations, we obtain

~qt A~q = wt
ph

(
Apppp −AσpppA−1

σpσpA
t
σppp

)
wph + wt

phAppσpγpA
−1
γpσpγp

At
ppσpγp

wph

+
(
At

uppp wph +At
upλ ξh

)t
A−1

upup

(
At

uppp wph +At
upλ ξh

)
+ (ψt

h φ
t
h)

(
Aϕϕ At

ϕθ

Aϕθ Aθθ

)(
ψh
φh

)
+ (ψt

h vt
fh)

(
Ãϕσfϕ Ãufσfϕ

Ãt
ufσfϕ

Ãufσfuf

)(
ψh
vfh

)
+ (φt

h vt
sh)

(
Ãθσpθ Ãusσpθ

Ãt
usσpθ

Ãusσpus

)(
φh
vsh

)
.

(6.18)
Now, we focus on analyzing the six terms in the right-hand side of (6.18). The first term is non-
negative due to [39, Theorem 7.7.6] and the fact that the matrix Apppp −AσpppA−1

σpσpA
t
σppp is a Schur

complement of the matrix (
Aσpσp At

σppp

Aσppp Apppp

)
,

which is positive semi-definite as a consequence of the ellipticity property of the operator ae (cf. (3.8)
and (4.7)). The second term is nonnegative, since the matrix Aγpσpγp is positive definite, as noted in

(6.15). The third term is positive for (wt
ph ξ

t
h) 6= ~0, due to the positive-definiteness of A−1

upup and the
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inf-sup condition (5.10). The fourth term is non-negative since the operator C (cf. (4.8)) is positive
semi-definite. The matrices in the last two terms are Schur complements of the matrices

Af :=

 Aϕσfϕ Aufσfϕ Aγfσfϕ
At

ufσfϕ
Aufσfuf Aufσfγf

At
γfσfϕ

At
ufσfγf

Aγfσfγf

 and Ap :=

 Aθσpθ Ausσpθ Aγpσpθ
At

usσpθ
Ausσpus Ausσpγp

At
γpσpθ

At
usσpγp

Aγpσpγp

 ,

respectively, which are positive definite. In particular, for ~vt
f = (ψt

h vt
fh χ

t
fh) 6= ~0 and ~vt

p =

(φt
h vt

sh χ
t
ph) 6= ~0, we have

~vt
fAf~vf =

(
At
σfϕ

ψh +At
σfuf

vfh +At
σfγf

χfh
)t
A−1
σfσf

(
At
σfϕ

ψh +At
σfuf

vfh +At
σfγf

χfh
)
> 0,

~vt
pAp~vp =

(
At
σpθ φh +At

σpus vsh +At
σpγp

χph
)t
A−1
σpσp

(
At
σpθ φh +At

σpus vsh +At
σpγp

χph
)
> 0,

due to the positive-definiteness of A−1
σfσf

and A−1
σpσp , along with the combined inf-sup condition for

Bh(τ h)(vh) + B1(τ h)(ψ
h
). The latter follows from the inf-sup conditions (6.4) and (6.5), using that

(6.5) holds in the kernel of Bh. Then, applying again [39, Theorem 7.7.6], we conclude that the last
two terms in (6.18) are positive for (ψt

h vt
fh) 6= ~0 and (φt

h vt
sh) 6= ~0. Therefore ~qt A~q > 0 for all

~q 6= ~0, implying that the matrix A from (6.16) is positive definite. �

Remark 6.2 The solution of the reduced system with the matrix A from (6.16) results in significant
computational savings compared to the original system (6.11). In particular, five of the eleven variables
have been eliminated. Three of the remaining variables are Lagrange multipliers that appear only on
the interface Γfp. The other three are the cell-centered velocities and Darcy pressure, with only n
DOFs per element in the Stokes region and n + 1 DOFs per element in the Biot region, which are
the smallest possible number of DOFs for the sub-problems. Furthermore, since the reduced system is
positive definite, efficient iterative solvers such as GMRES can be utilized for its solution.

7 Numerical results

In this section we present numerical results that illustrate the behavior of the fully discrete multipoint
stress-flux mixed finite element method (6.9). Our implementation is in two dimensions and it is based
on FreeFem++ [38], in conjunction with the direct linear solver UMFPACK [28]. For spatial discretization,
we use the (BDM1 − P0 − P1) spaces for Stokes, the (BDM1 − P0 − P1) − (BDM1 − P0) spaces for
Biot, and either (P1 − P1 − P1) or Pdc

1 − Pdc
1 − Pdc

1 for the Lagrange multipliers. We present three
examples. Example 1 is used to corroborate the rates of convergence. Example 2 is a simulation of
the coupling of surface and subsurface hydrological systems, focusing on the qualitative behavior of
the solution. Example 3 illustrates an application to flow in a poroelastic medium with an irregularly
shaped cavity, using physically realistic parameters.

7.1 Example 1: convergence test

In this test we study the convergence rates for the space discretization using an analytical solution.
The domain is Ω = Ωf ∪ Ωp, where Ωf = (0, 1) × (0, 1) and Ωp = (0, 1) × (−1, 0). In particular, the
upper half is associated with the Stokes flow, while the lower half represents the flow in the poroelastic
structure governed by the Biot system, see Figure 7.1 (left). The interface conditions are enforced
along the interface Γfp. The parameters and analytical solution are given in Figure 7.1 (right). The
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µ = 1, αp = 1, λp = 1, µp = 1, s0 = 1, K = I, αBJS = 1,

uf = π cos(π t)

(
−3x+ cos(y)

y + 1

)
,

pf = exp(t) sin(π x) cos
(π y

2

)
+ 2π cos(π t),

pp = exp(t) sin(π x) cos
(π y

2

)
,

up = − 1

µ
K∇pp, ηp = sin(π t)

(
−3x+ cos(y)

y + 1

)
.

Figure 7.1: Example 1, domain and coarsest mesh level (left), parameters and analytical solution
(right).

solution is designed to satisfy the interface conditions (2.8). The right hand side functions ff , qf , fp and
qp are computed from (2.2)–(2.6) using the true solution. The model problem is then complemented
with the appropriate boundary conditions, which are described in Figure 7.1 (left), and initial data.
Notice that the boundary conditions for σf ,uf ,up,σp, and ηp (cf. (2.2)–(2.6)) are not homogeneous
and therefore the right-hand side of the resulting system must be modified accordingly. The total
simulation time for this example is T = 0.01 and the time step is ∆t = 10−3. The time step is
sufficiently small, so that the time discretization error does not affect the convergence rates.

Tables 7.1 and 7.2 show the convergence history for a sequence of quasi-uniform mesh refinements
with non-matching grids along the interface employing conforming and non-conforming spaces for the
Lagrange multipliers (cf. (5.1)–(5.2)), respectively. In the tables, hf and hp denote the mesh sizes
in Ωf and Ωp, respectively, while the mesh sizes for their traces on Γfp are htf and htp, satisfying
htf = 5

8 htp. We note that the Stokes pressure and the displacement at time tm are recovered by
the post-processed formulae pmf = − 1

n(tr(σmf ) − 2µ qmf ) (cf. (2.2)) and ηmp = ηm−1
p + ∆tums (cf.

Remark 5.3), respectively. The results illustrate that spatial rates of convergence O(h), as provided
by Theorem 6.5, are attained for all subdomain variables in their natural norms. The Lagrange
multiplier variables, which are approximated in P1 − P1 − P1 and Pdc

1 − Pdc
1 − Pdc

1 , exhibit rates of
convergence O(h3/2) and O(h2) in the H1/2 and L2-norms on Γfp, respectively, which is consistent
with the order of approximation.

7.2 Example 2: coupled surface and subsurface flows

In this example, we simulate coupling of surface and subsurface flows, which could be used to describe
the interaction between a river and an aquifer. We consider the domain Ω = (0, 2) × (−1, 1). We
associate the upper half with the river flow modeled by Stokes equations, while the lower half represents
the flow in the aquifer governed by the Biot system. The appropriate interface conditions are enforced
along the interface y = 0. In this example we focus on the qualitative behavior of the solution and
use unit physical parameters:

µ = 1, αp = 1, λp = 1, µp = 1, s0 = 1, K = I, αBJS = 1.

The body forces terms and external source are set to zero, as well as the initial conditions. The flow
is driven through a parabolic fluid velocity on the left boundary of the fluid region with boundary
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‖eσf ‖`2(0,T ;Xf ) ‖euf ‖`2(0,T ;Vf ) ‖eγf ‖`2(0,T ;Qf ) ‖epf ‖`2(0,T ;L2(Ωf ))

hf error rate error rate error rate error rate

0.1964 2.2E-02 – 2.7E-02 – 2.4E-03 – 6.3E-03 –
0.0997 1.2E-02 0.95 1.4E-02 1.00 9.3E-04 1.41 3.1E-03 1.05
0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.11 1.6E-03 0.93
0.0250 2.9E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07
0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15
0.0072 7.1E-04 1.08 8.4E-04 1.10 4.7E-05 1.09 2.0E-04 1.02

‖eσp‖`∞(0,T ;Xp) ‖eus‖`2(0,T ;Vs) ‖eγp‖`2(0,T ;Qp) ‖eup‖`2(0,T ;Vp) ‖epp‖`∞(0,T ;Wp)

hp error rate error rate error rate error rate error rate

0.2828 2.7E-01 – 4.3E-02 – 3.4E-02 – 1.0E-01 – 7.5E-02 –
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.38 5.2E-02 1.27 3.8E-02 1.25
0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93
0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22
0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.68 5.9E-03 1.08 4.7E-03 1.07
0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14

‖eηp‖`2(0,T ;L2(Ωp)) ‖eϕ‖`2(0,T ;Λf ) ‖eθ‖`2(0,T ;Λs)) ‖eλ‖`2(0,T ;Λp)

error rate htf error rate htp error rate error rate

2.7E-04 – 1/8 1.6E-03 – 1/5 1.6E-02 – 6.9E-03 –
1.4E-04 1.23 1/16 3.7E-04 2.11 1/10 5.7E-03 1.49 2.5E-03 1.49
6.7E-05 0.96 1/32 1.3E-04 1.45 1/20 1.2E-03 2.31 8.5E-04 1.52
3.4E-05 1.19 1/64 4.6E-05 1.54 1/40 3.4E-04 1.76 3.0E-04 1.50
1.7E-05 1.07 1/128 1.2E-05 1.96 1/80 1.1E-04 1.62 1.1E-04 1.50
8.4E-06 1.15 1/256 3.6E-06 1.70 1/160 2.2E-05 2.34 3.7E-05 1.54

Table 7.1: Example 1, errors and convergence rates with P1 −P1 − P1 Lagrange multipliers.

conditions specified as follows:

uf = (−40y(y − 1) 0)t on Γf,left,

uf = 0 on Γf,top,

σfnf = 0 on Γf,right,

pp = 0 and σpnp = 0 on Γp,bottom,

up · np = 0 and us = 0 on Γp,left ∪ Γp,right.

The simulation is run for a total time T = 3 with a time step ∆t = 0.06. The computed solution
is presented in Figure 7.2. From the velocity plot (top left), we see that the flow in the Stokes
region is moving primarily from left to right, driven by the parabolic inflow condition, with some of
the fluid percolating downward into the poroelastic medium due to the zero pressure at the bottom,
which simulates gravity. The mass conservation uf · nf +

(
∂tηp + up

)
· np = 0 on the interface with

np = (0, 1)t indicates the continuity of the second components of the fluid velocity and Darcy velocity
when the displacement becomes steady, which is observed from the color plot of the vertical velocity.
The stress plots (top middle and right) illustrate the ability of our fully mixed formulation to compute
accurate H(div) stresses in both the fluid and poroelastic regions, without the need for numerical
differentiation. In addition, the conservation of momentum σfnf + σpnp = 0 and balance of normal
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‖eσf ‖`2(0,T ;Xf ) ‖euf ‖`2(0,T ;Vf ) ‖eγf ‖`2(0,T ;Qf ) ‖epf ‖`2(0,T ;L2(Ωf ))

hf error rate error rate error rate error rate

0.1964 2.2E-02 – 2.7E-02 – 2.4E-03 – 6.1E-03 –
0.0997 1.2E-02 0.94 1.4E-02 1.00 9.7E-04 1.31 3.1E-03 1.02
0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.16 1.6E-03 0.92
0.0250 2.8E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07
0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15
0.0072 7.1E-04 1.08 8.4E-04 1.09 4.7E-05 1.09 2.0E-04 1.02

‖eσp‖`∞(0,T ;Xp) ‖eus‖`2(0,T ;Vs) ‖eγp‖`2(0,T ;Qp) ‖eup‖`2(0,T ;Vp) ‖epp‖`∞(0,T ;Wp)

hp error rate error rate error rate error rate error rate

0.2828 2.7E-01 – 4.3E-02 – 3.4E-02 – 1.0E-01 – 7.5E-02 –
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.39 5.2E-02 1.26 3.8E-02 1.25
0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93
0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22
0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.67 5.9E-03 1.08 4.7E-03 1.07
0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14

‖eηp‖`2(0,T ;L2(Ωp)) ‖eϕ‖`2(0,T ;L2(Γfp)) ‖eθ‖`2(0,T ;L2(Γfp)) ‖eλ‖`2(0,T ;L2(Γfp))

error rate htf error rate htp error rate error rate

2.7E-04 – 1/8 4.1E-04 – 1/5 7.9E-03 – 1.1E-03 –
1.4E-04 1.23 1/16 2.0E-04 1.04 1/10 2.9E-03 1.46 3.1E-04 1.87
6.7E-05 0.96 1/32 2.4E-05 3.07 1/20 5.7E-04 2.34 7.7E-05 2.01
3.4E-05 1.19 1/64 6.4E-06 1.89 1/40 1.5E-04 1.89 1.9E-05 2.00
1.7E-05 1.07 1/128 1.6E-06 1.97 1/80 3.8E-05 2.01 4.9E-06 1.98
8.4E-06 1.15 1/256 4.0E-07 2.02 1/160 9.0E-06 2.09 1.2E-06 2.09

Table 7.2: Example 1, errors and convergence rates with Pdc
1 −Pdc

1 − Pdc
1 Lagrange multipliers.

stress (σfnf ) · nf = −pp imply that σf,12 = σp,12, σf,22 = σp,22 and −σf,22 = pp on the interface.
These conditions are verified from the top middle and right color plots, as well as the bottom left
plot. Furthermore, the arrows in the stress plots are formed by the second columns of the stresses,
whose traces on the interface are σfnf and −σpnp, respectively. For visualization purpose, the Stokes
stress is scaled by a factor of 1/5 compared to the poroelastic stress, due to large difference in their
magnitudes away from the interface. Nevertheless, the continuity of the vector field across the interface
is evident, consistent with the conservation of momentum condition σfnf + σpnp = 0. The overall
qualitative behavior of the computed stresses is consistent with the specified boundary and interface
conditions. In particular, we observe large fluid stress along the top boundary due to the no slip
condition, as well as along the interface due to the slip with friction condition. The singularity near
the lower left corner of the Stokes region is due to the mismatch in boundary conditions between the
fluid and poroelastic regions. Finally, the last plot shows that the inflow from the Stokes region causes
deformation of the poroelastic medium.

7.3 Example 3: irregularly shaped fluid-filled cavity

This example features highly irregularly shaped cavity motivated by modeling flow through vuggy or
naturally fractured reservoirs or aquifers. It uses physical units and realistic parameter values taken
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Figure 7.2: Example 2, computed solution at T = 3. Top left: velocities ufh and uph (arrows), ufh,2
and uph,2 (color). Top middle and right: negative stresses −(σfh,12,σfh,22)t and −(σph,12,σph,22)t

(arrows); middle: −σfh,12 and −σph,12 (color); right: −σfh,22 and −σph,22 (color). Bottom left:
negative Stokes stress −σfh,22 and Darcy pressure pph. Bottom right: displacement ηph (arrows) and
its magnitude (color).

from the reservoir engineering literature [37]:

µ = 10−6 kPa s, αp = 1, λp = 5/18× 107 kPa, µp = 5/12× 107 kPa,

s0 = 6.89× 10−2 kPa−1, K = 10−8 × I m2, αBJS = 1.

We emphasize that the problem features very small permeability and storativity, as well as large
Lamé parameters. These are parameter regimes that are known to lead locking in modeling of the
Biot system of poroelasticity [45,60]. The domain is Ω = (0, 1)× (0, 1), with a large fluid-filled cavity
in the interior. The body forces and external sources are set to zero. The flow is driven from left to
right via a pressure drop of 1 kPa, with boundary conditions specified as follows:

σfnf · nf = 1000, uf · tf = 0 on Γf,right,

pp = 1001 on Γp,left, pp = 1000 on Γp,right and up · np = 0 on Γp,top ∪ Γp,bottom,

σp np = −αp pp np on Γp,left ∪ Γp,right and us = 0 on Γp,top ∪ Γp,bottom.

The total simulation time is T = 10 s with a time step of size ∆t = 0.05 s. To avoid inconsistency
between the initial and boundary conditions for pp, we start with pp = 1000 on Γp,left and gradually
increase it to reach pp = 1001 at t = 0.5 s. Similar adjustment is done for σpnp.

The simulation results at the final time T = 10 s are shown in Figure 7.3. In the top plots, we present
the Darcy pressure and Darcy velocity vector, the displacement vector with its magnitude, and the
first row of the poroelastic stress with its magnitude. Since the pressure variation is small relative to
its value, for visualization purpose we plot its difference from the reference pressure, pp − 1000. The
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Darcy velocity and the pressure drop are largest in the region between the left inflow boundary and the
cavity. The displacement is largest around the cavity, due to the large fluid velocity within the cavity
and the slip with friction interface condition. The poroelastic stress exhibits singularities near some of
the sharp tips of the cavity. The bottom plots show the fluid pressure and velocity vector, the velocity
vector with its magnitude, and the first row of the fluid stress with its magnitude. Similarly to the
Darcy pressure, we plot pf − 1000. A channel-like flow profile is clearly visible within the cavity, with
the largest velocity along a central path away from the cavity walls. The fluid pressure is decreasing
from left to right along the central path of the cavity. Consistent with the poroelastic stress, the fluid
stress near the tips of the cavity is relatively larger. We emphasize that, despite the locking regime
of the parameters, the computed solution is free of locking and spurious oscillations. This example
illustrates the ability of our method to handle computationally challenging problems with physically
realistic parameters in poroelastic locking regimes.

Figure 7.3: Example 3, computed solution at T = 10 s. Top left: Darcy velocity (arrows) and pressure
(color). Top middle: displacement (arrows) and its magnitude (color). Top right: first row of the
poroelastic stress tensor (arrows) and its magnitude (color). Bottom left: Stokes velocity (arrows) and
pressure (color). Bottom middle: Stokes velocity (arrows) and its magnitude (color). Bottom right:
first row of the Stokes stress (arrows) and its magnitude (color).
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8 Conclusions

In this paper we present and analyze the first, to the best of our knowledge, fully dual mixed for-
mulation of the quasi-static Stokes-Biot model, and its mixed finite element approximation, using a
velocity-pressure Darcy formulation, a weakly symmetric stress-displacement-rotation elasticity formu-
lation, and a weakly symmetric stress-velocity-vorticity Stokes formulation. Essential-type interface
conditions are imposed via suitable Lagrange multipliers. The numerical method features accurate
stresses and Darcy velocity with local mass and momentum conservation. Furthermore, a new mul-
tipoint stress-flux mixed finite element method is developed that allows for local elimination of the
Darcy velocity, the fluid and poroelastic stresses, the vorticity, and the rotation, resulting in a reduced
positive definite cell-centered pressure-velocities-traces system. The theoretical results are comple-
mented by a series of numerical experiments that illustrate the convergence rates for all variables in
their natural norms, as well as the ability of the method to simulate physically realistic problems
motivated by applications to coupled surface-subsurface flows and flows in fractured poroelastic media
with parameter values in locking regimes.
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