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Praha 8, 18675, Czech Republic.

*Corresponding author(s). E-mail(s):
knobloch@karlin.mff.cuni.cz, ORCID 0000-0003-2709-5882;

Contributing authors: john@wias-berlin.de, ORCID
0000-0002-2711-4409;

Abstract
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1 Introduction

The modeling of physical processes is usually performed on the basis of phys-
ical laws, like conservation laws. The derived model is physically consistent
if its solutions satisfy the respective laws and, in addition, other important
physical properties. Convection–diffusion–reaction equations, which will be
considered in this paper, are the result of modeling conservation of scalar
quantities, like temperature (energy balance) or concentrations (mass bal-
ance). Besides conservation, bounds for the solutions of such equations can be
proved (if the data satisfy certain conditions) that reflect physical properties,
like non-negativity of concentrations or that the temperature is maximal on
the boundary of the body if there are no heat sources and chemical processes
inside the body. Such bounds are called maximum principles, e.g., see [16].
A serious difficulty for computing numerical approximations of solutions of
convection–diffusion–reaction equations is that most proposed discretizations
do not satisfy the discrete counterpart of the maximum principles, so-called
discrete maximum principles (DMPs), and thus they are not physically con-
sistent in this respect. One of the exceptions are algebraically stabilized finite
element schemes, e.g., algebraic flux correction (AFC) schemes, where DMPs
have been proved rigorously. Methods of this type will be studied in this paper.

The theory developed in this paper is motivated by the numerical solution
of the scalar steady-state convection–diffusion–reaction problem

− ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω , (1)

where Ω ⊂ R
d, d ≥ 1, is a bounded domain with a Lipschitz-continuous

boundary ∂Ω that is assumed to be polyhedral (if d ≥ 2). Furthermore, the
diffusion coefficient ε > 0 is a constant and the convection field b ∈ W 1,∞(Ω)d,
the reaction field c ∈ L∞(Ω), the right-hand side g ∈ L2(Ω), and the Dirichlet
boundary data ub ∈ H

1

2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω , (2)

where σ0 is a constant.
In applications, one encounters typically the convection-dominated regime,

i.e., it is ε ≪ L‖b‖0,∞,Ω, where L is a characteristic length scale of the problem

and ‖ · ‖0,∞,Ω denotes the norm in L∞(Ω)d. Then, a characteristic feature
of (weak) solutions of (1) is the appearance of layers, which are thin regions
where the solution possesses a steep gradient. The thickness of layers is usually
(much) below the resolution of the mesh. It is well known that the standard
Galerkin finite element method cannot cope with this situation and one has
to utilize a so-called stabilized discretization, e.g., see [38].

Linear stabilized finite element methods that satisfy DMPs, usually with
restrictions to the type of mesh, like the upwind method from [2], compute
in general very inaccurate results with strongly smeared layers. In order to
compute accurate solutions, a nonlinear method has to be applied, typically
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with parameters that depend on the concrete numerical solution. A nonlinear
upwind method was proposed in [37] and improved in [23]. In [12], a nonlinear
edge stabilization method was proposed, see [11, 13] for related methods, for
which a DMP was proved providing that a certain discretization parameter
is chosen to be sufficiently large and the mesh is of a certain type. However,
already the numerical results presented in [12] show spurious oscillations. Our
own experience from [21] is that the nonlinear problems for sufficiently large
parameters often cannot be solved numerically.

A class of methods that has been developed intensively in recent years is
the class of algebraically stabilized schemes, e.g., see [3, 8, 17, 28–34, 36]. The
origins of this approach can be tracked back to [10, 40]. In these schemes, the
stabilization is performed on the basis of the algebraic system of equations
obtained with the Galerkin finite element method. Then, so-called limiters are
computed, which maintain the conservation property and which restrict the
stabilized discretization mainly to a vicinity of layers to ensure the satisfac-
tion of DMPs without compromising the accuracy. There are several limiters
proposed in the literature, like the so-called Kuzmin [29], BJK [8], or BBK [5]
limiters. Both, the Kuzmin and the BBK limiters were utilized in [4] for defin-
ing a scheme that blends a standard linear stabilized scheme in smooth regions
and a nonlinear stabilized method in a vicinity of layers.

An advantage of algebraically stabilized schemes is that they satisfy a
DMP by construction, often under some assumptions on the mesh, and they
usually provide sharp approximations of layers, cf. the numerical results in,
e.g., [1, 18, 22, 32]. In numerical studies presented in [19], it turned out that
the results with the BJK limiter were usually more accurate than with the
Kuzmin limiter, if the nonlinear problems for the BJK limiter could be solved.
However, solving these problems was often not possible for strongly convection-
dominated cases. Numerical studies in [9] show that using the Kuzmin limiter
leads to solutions with sharper layers compared with the solutions obtained
with the BBK limiter. As a consequence of these experiences, it seems to be
advisable from the point of view of applications to use algebraically stabilized
schemes on the basis of the Kuzmin limiter. The AFC scheme with the Kuzmin
limiter was analyzed in [7], thereby proving the existence of a solution, the
satisfaction of a local DMP, and an error estimate. The local DMP requires
lumping the reaction term and using certain types of meshes, e.g., Delaunay
meshes in two dimensions, analogously as for the methods from [4, 5].

The conservation and stability properties of algebraically stabilized schemes
are given if the added stabilization is a symmetric term. For many schemes,
this term consists of two factors, an artificial diffusion matrix and the matrix
of the limiters, and usually the methods are constructed in such a way that
both factors are symmetric. Only recently, motivated by [3], a more general
approach where only the product is symmetric but not the individual factors
was considered in [27].

The first main goal of this paper is the development of an abstract frame-
work that allows to analyze algebraically stabilized discretizations in a unified
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way. Although our main interest is the numerical solution of problem (1),
many considerations will be more general and then problem (1) and its dis-
cretizations will only serve as a motivation for our assumptions. Hence, this
framework covers a larger class of algebraically stabilized discretizations than
the available analysis.

The second main goal consists in proposing and analyzing a modification
of the Kuzmin limiter such that, if applied in the framework of the algebraic
stabilization of [27], the positive features of the AFC method with the Kuzmin
limiter are preserved on meshes where it works well and, in addition, local and
global DMPs can be proved on arbitrary simplicial meshes. In particular, our
intention was to preserve the upwind character of the AFC method with the
Kuzmin limiter. There are already proposals in this direction in the framework
of AFC methods. In [25], the Kuzmin limiter is replaced in cases where it does
not lead to the validity of the local DMP in a somewhat ad hoc way by a value
that introduces more artificial diffusion. The satisfaction of the local DMP
on arbitrary simplicial meshes could be proved for this approach. Whether or
not the assumption for the existence of a solution of the nonlinear problem is
satisfied with this limiter is not discussed. A combination of the Kuzmin and
the BJK limiters to obtain a limiter of upwind type for which the AFC scheme
satisfies a local DMP on arbitrary simplicial meshes and is linearity preserving
is proposed in [26]. The definition of this limiter is closer to the BJK than to the
Kuzmin limiter. As already mentioned, in [27], a new algebraically stabilized
method was proposed that does not require the symmetry of the limiter. Initial
numerical results for a nonsymmetric modification of the Kuzmin limiter are
presented in [27], but a numerical analysis is missing. The abstract framework
mentioned in the previous paragraph covers in particular the method from [27].

In the present paper, the limiter from [27] is written in a simpler form,
without using internodal fluxes typical for AFC methods. Moreover, a novel
modification is performed that improves the accuracy in some computations
using non-Delaunay meshes. Of course, this modification is performed in such
a way that the resulting method still fits in the abstract analytic framework.
The definition of the new method does not contain any ambiguity, in contrast
to the AFC method with Kuzmin limiter, which is not uniquely defined in some
cases (cf. Remark 8 in [7]). A further advantage of the considered approach
is that, in contrast to the AFC method with Kuzmin limiter, lumping of the
reaction term is no longer necessary for the satisfaction of the DMP, which
enables to obtain sharper layers as we will demonstrate by numerical results.

This paper is organized as follows. Sect. 2 introduces the basic discretiza-
tion of (1) and its algebraic form. An abstract framework for an algebraic
stabilization is presented in Sect. 3. The following section studies the solvabil-
ity and the satisfaction of local and global DMPs for the abstract algebraic
stabilization and Sect. 5 provides an error analysis. In Sect. 6, the AFC scheme
with Kuzmin limiter as an example of algebraic stabilization from Sect. 3 is
presented, its properties are discussed for the discretizations from Sect. 2 and
the definition of the limiter is reformulated. The reformulation is utilized in
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Sect. 7 for proposing a new limiter such that the resulting algebraically sta-
bilized scheme is of upwind type and satisfies DMPs on arbitrary simplicial
meshes. Sect. 8 presents numerical examples which show that the algebraically
stabilized scheme with the new limiter in fact cures the deficiencies of the AFC
scheme with Kuzmin limiter.

2 The convection–diffusion–reaction problem
and its finite element discretization

The weak solution of the convection–diffusion–reaction problem (1) is a func-
tion u ∈ H1(Ω) satisfying the boundary condition u = ub on ∂Ω and the
variational equation

a(u, v) = (g, v) ∀ v ∈ H1
0 (Ω) ,

where
a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) . (3)

As usual, (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. It is well known
that the weak solution of (1) exists and is unique (cf. [15]).

An important property of problem (1) is that, for c ≥ 0 in Ω, its solu-
tions satisfy the maximum principle. The classical maximum principle (cf. [15])
states the following: if u ∈ C2(Ω) ∩C(Ω) solves (1) and the functions b and c
are bounded in Ω, then, for any set G ⊂ Ω, one has the implications

g ≤ 0 in G ⇒ max
G

u ≤ max
∂G

u+ , (4)

g ≥ 0 in G ⇒ min
G

u ≥ min
∂G

u− , (5)

where u+ = max{u, 0}, u− = min{u, 0}. If, in addition, c = 0 in G, then

g ≤ 0 in G ⇒ max
G

u = max
∂G

u , (6)

g ≥ 0 in G ⇒ min
G

u = min
∂G

u . (7)

Analogous statements also hold for the weak solutions, cf. [16].
To define a finite element discretization of problem (1), we consider a sim-

plicial triangulation Th of Ω which is assumed to belong to a regular family
of triangulations in the sense of [14]. Furthermore, we introduce finite element
spaces

Wh = {vh ∈ C(Ω) ; vh|T ∈ P1(T ) ∀T ∈ Th} , Vh = Wh ∩H1
0 (Ω) ,

consisting of continuous piecewise linear functions. The vertices of the trian-
gulation Th will be denoted by x1, . . . , xN and we assume that x1, . . . , xM ∈ Ω
and xM+1, . . . , xN ∈ ∂Ω. Then the usual basis functions ϕ1, . . . , ϕN of Wh are
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defined by the conditions ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the Kro-
necker symbol. Obviously, the functions ϕ1, . . . , ϕM form a basis of Vh. Any
function uh ∈ Wh can be written in a unique way in the form

uh =

N∑

i=1

ui ϕi (8)

and hence it can be identified with the coefficient vector U = (u1, . . . , uN).
Now an approximate solution of problem (1) can be introduced as the

solution of the following finite-dimensional problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

ah(uh, vh) = (g, vh) ∀ vh ∈ Vh , (9)

where ah is a bilinear form approximating the bilinear form a. In particular,
one can use ah = a. Another possibility is to set

ah(uh, vh) = ε (∇uh,∇vh) + (b · ∇uh, vh) +

M∑

i=1

(c, ϕi)ui vi (10)

for any uh ∈ Wh and vh ∈ Vh, i.e., to consider a lumping of the reaction
term (c uh, vh) in a(uh, vh). This may help to satisfy the DMP for problem
(9), cf. Sect. 6. We assume that ah is elliptic on the space Vh, i.e., there is a
constant Ca > 0 such that

ah(vh, vh) ≥ Ca ‖vh‖
2
a ∀ vh ∈ Vh , (11)

where ‖ · ‖a is a norm on the space H1
0 (Ω) but generally only a seminorm on

the space H1(Ω). This guarantees that the discrete problem (9) has a unique
solution. In view of (2), the ellipticity condition (11) holds for both ah = a
and ah defined by (10) with Ca = 1 and

‖v‖2a = ε |v|21,Ω + σ0 ‖v‖
2
0,Ω . (12)

We denote

aij = ah(ϕj , ϕi) , i, j = 1, . . . , N , (13)

gi = (g, ϕi) , i = 1, . . . ,M , (14)

ub
i = ub(xi) , i = M + 1, . . . , N . (15)

Then uh is a solution of the finite-dimensional problem (9) if and only if
the coefficient vector (u1, . . . , uN) corresponding to uh satisfies the algebraic
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problem

N∑

j=1

aij uj = gi , i = 1, . . . ,M ,

ui = ub
i , i = M + 1, . . . , N .

As discussed in the introduction, the above discretizations are not appropri-
ate in the convection-dominated regime and a stabilization has to be applied.
In the next sections, algebraic stabilization techniques will be studied. As
already mentioned, a general framework will be presented and the numerical
solution of convection–diffusion–reaction equations serves just as a motivation
for the assumptions.

3 An abstract framework

In this section we assume that we are given a system of linear algebraic
equations of the form

N∑

j=1

aij uj = gi , i = 1, . . . ,M , (16)

ui = ub
i , i = M + 1, . . . , N , (17)

(with 0 < M < N) corresponding to a discretization of a linear boundary value
problem for which the maximum principle holds. An example is the algebraic
problem derived in the preceding section.

We assume that the row sums of the system matrix are nonnegative, i.e.,

N∑

j=1

aij ≥ 0 , i = 1, . . . ,M , (18)

and that the submatrix (aij)
M
i,j=1 is positive definite, i.e.,

M∑

i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ R
M \ {0} . (19)

For the discretizations from the previous section, the latter property follows
from (11), whereas (18) is a consequence of the nonnegativity of c and the fact

that
∑N

j=1
ϕj = 1.

Since the algebraic problem (16), (17) is assumed to approximate a prob-
lem satisfying the maximum principle, it is natural to require that an analog
of this property also holds in the discrete case, at least locally. Then an impor-
tant physical property of the original problem will be preserved and spurious
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oscillations of the approximate solution will be excluded. To formulate a local
DMP, we have to specify a neighborhood

Si ⊂ {1, . . . , N} \ {i}

of any i ∈ {1, . . . ,M} (i.e., of any interior vertex xi if the geometric inter-
pretation from the previous section is considered). For example, one can
set

Si = {j ∈ {1, . . . , N} \ {i} ; aij 6= 0} , i = 1, . . . ,M . (20)

Then, under the assumptions (18) and (19), the solution of (16), (17) satisfies
the local DMP

gi ≤ 0 ⇒ ui ≤ max
j∈Si

u+
j , gi ≥ 0 ⇒ ui ≥ min

j∈Si

u−
j (21)

(with any i ∈ {1, . . . ,M}) if and only if (cf. [7, Lemma 21])

aij ≤ 0 ∀ i 6= j, i = 1, . . . ,M, j = 1, . . . , N . (22)

Moreover, the stronger local DMP

gi ≤ 0 ⇒ ui ≤ max
j∈Si

uj , gi ≥ 0 ⇒ ui ≥ min
j∈Si

uj (23)

holds (again with any i ∈ {1, . . . ,M}) if and only if the conditions (22) and

N∑

j=1

aij = 0 , i = 1, . . . ,M , (24)

are satisfied (cf. [7, Lemma 22]). For the discretizations from the previous
section, (24) holds if c = 0 in Ω, which is a condition used for proving (6) and
(7), i.e., a counterpart of (23).

In many cases, the condition (22) is violated (like for the discretizations
from the previous section in the convection-dominated regime) and hence the
local DMPs (21) and (23) do not hold. To enforce the DMP, one can add
a sufficient amount of artificial diffusion to (16), e.g., in the following way.
First, the system matrix is extended to a matrix A = (aij)

N
i,j=1, typically using

the matrix corresponding to the underlying discretization in the case when
homogeneous natural boundary conditions are used instead of the Dirichlet
ones (i.e., using (13) if the setting of the previous section is considered). Then
one can define a symmetric artificial diffusion matrix D = (dij)

N
i,j=1 possessing

the entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑

j 6=i

dij . (25)
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The matrix D has zero row and column sums and is positive semidefinite (cf. [7,
Lemma 1]), the matrix A+D has nonpositive off-diagonal entries by construc-
tion and the submatrix (aij + dij)

M
i,j=1 is positive definite. Consequently, the

stabilized algebraic problem

N∑

j=1

(aij + dij)uj = gi , i = 1, . . . ,M , (26)

ui = ub
i , i = M + 1, . . . , N , (27)

is uniquely solvable and its solution satisfies the local DMP (21) with

Si = {j ∈ {1, . . . , N} \ {i} ; aij 6= 0 or aji > 0} , i = 1, . . . ,M . (28)

If the condition (24) holds, then the solution of (26), (27) also satisfies the
stronger local DMP (23), again with Si defined by (28). Moreover, if the above
stabilization is applied to the discretizations from the previous section, then,
for weakly acute triangulations, the approximate solutions converge to the
solution of (1), see [7].

However, the amount of artificial diffusion added in (26) is usually too
large and leads to an excessive smearing of layers if it is applied to stabi-
lize discretizations of (1) in the convection-dominated regime. To suppress the
smearing, the artificial diffusion should be added mainly in regions where the
solution changes abruptly and hence it should depend on the unknown approx-
imate solution U = (u1, . . . , uN). This motivates us to introduce a general
artificial diffusion matrix B(U) = (bij(U))

N
i,j=1 having analogous properties as

the matrix D, i.e., for any U ∈ R
N , we assume that

bij(U) = bji(U) , i, j = 1, . . . , N , (29)

bij(U) ≤ 0, i, j = 1, . . . , N , i 6= j , (30)

N∑

j=1

bij(U) = 0 , i = 1, . . . , N . (31)

Like above, we introduce local index sets Si such that

{j ∈ {1, . . . , N} \ {i} ; aij 6= 0} ⊂ Si ⊂ {1, . . . , N} \ {i} , i = 1, . . . ,M ,
(32)

and, for any U ∈ RN ,

bij(U) = 0 ∀ j 6∈ Si ∪ {i}, i = 1, . . . ,M . (33)

Let us mention that if the algebraic problem (16), (17) corresponds to a finite
element discretization based on piecewise linear functions as in the preceding
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section, one can usually use index sets

Si = {j ∈ {1, . . . , N} \ {i} ; xi and xj are end points of the same edge} ,
(34)

i = 1, . . . ,M , where x1, . . . , xN are the vertices of the underlying simplicial
triangulation, numbered as in the preceding section.

Now, we consider the nonlinear algebraic problem

N∑

j=1

(aij + bij(U))uj = gi , i = 1, . . . ,M , (35)

ui = ub
i , i = M + 1, . . . , N . (36)

Note that, in view of (31) and (33), system (35) can be written in the form

N∑

j=1

aij uj +
∑

j∈Si

bij(U) (uj − ui) = gi , i = 1, . . . ,M . (37)

In view of (29) and (30), one obtains the important property (cf. [7, Lemma 1])

N∑

i,j=1

vi bij(U) (vj − vi) = −
1

2

N∑

i,j=1

bij(U) (vj − vi)
2 ≥ 0 ∀ U,V ∈ R

N .

(38)
Thus, due to (31), the matrix B(U) is positive semidefinite for any U ∈ RN .

4 Analysis of the abstract nonlinear algebraic
problem

The aim of this section is to investigate the solvability and the validity of the
DMP for the nonlinear algebraic problem (35), (36). These investigations will
generalize the results obtained in [7, 9, 25].

To prove the solvability of the system (35), (36), we make the following
assumption.

Assumption (A1): For any i ∈ {1, . . . ,M} and any j ∈ {1, . . . , N}, the
function bij(U)(uj − ui) is a continuous function of U = (u1, . . . , uN ) ∈ RN

and, for any i ∈ {1, . . . ,M} and any j ∈ {M + 1, . . . , N}, the function bij(U)
is a bounded function of U ∈ RN .

Theorem 1 Let (19) and (29)–(31) hold and let Assumption (A1) be satisfied. Then
there exists a solution of the nonlinear problem (35), (36).



On algebraically stabilized schemes. . . 11

Proof The proof follows the lines of the proof of Theorem 3 in [7]. We denote by

Ṽ ≡ (v1, . . . , vM ) the elements of the space R
M and, if vi with i ∈ {M + 1, . . . , N}

occurs, we assume that vi = ubi . To any Ṽ ∈ R
M , we assign V := (v1, . . . , vN ). Let

us define the operator T : RM → R
M by

(T Ṽ)i =

N∑

j=1

aij vj +

N∑

j=1

bij(V) (vj − vi)− gi , i = 1, . . . ,M .

Then U is a solution of the nonlinear problem (35), (36) if and only if T Ũ = 0. The
operator T is continuous and, in view of (19) and (38), there exist constants C1,
C2 > 0 such that (cf. [7, Theorem 3] for details)

(T Ṽ, Ṽ) ≥ C1 ‖Ṽ‖2 − C2 ∀ Ṽ ∈ R
M ,

where (·, ·) is the usual inner product in R
M and ‖ · ‖ the corresponding (Euclidean)

norm. Then, for any Ṽ ∈ R
M satisfying ‖Ṽ‖ =

√
2C2/C1, one has (T Ṽ, Ṽ) > 0 and

hence it follows from Brouwer’s fixed-point theorem (see [39, p. 164, Lemma 1.4])

that there exists Ũ ∈ R
M such that T Ũ = 0. �

Remark 1 For proving the solvability of (35), (36), it would be sufficient to assume
that the functions bij(U)uj are continuous. However, since bij(U) should depend on
local variations of U with respect to ui, the assumed continuity of bij(U)(uj − ui) is
more useful. The functions bij(U) themselves are often not continuous, cf. Remark 7.

Remark 2 The solution of (35), (36) is unique if B(U)U is Lipschitz–continuous with
a sufficiently small constant. As pointed out in [35], this condition can be further
refined by introducing a positive semidefinite matrix D, e.g., the one defined in (25),
and investigating the Lipschitz continuity of (B(U) − D)U. Since, in view of (19),
there is C > 0 such that

C ‖V‖ ≤ ‖(A+ D)V‖ ∀ V ∈ R
N , vM+1 = · · · = vN = 0 ,

(‖·‖ is again the Euclidean norm on R
M ), the smallness assumption on the Lipschitz

constant can be expressed by the inequality

‖(B(U)− D)U− (B(V)− D)V‖ < ‖(A+ D)(U−V)‖
∀ U 6= V ∈ R

N with (uM+1, . . . , uN ) = (vM+1, . . . , vN ) . (39)

Then, if U 6= U are two solutions of (35), (36), one has

[(A+ B(U))U]i = [(A+ B(U))U]i, i = 1, . . . ,M ,

and (39) leads to a contradiction. Nevertheless, the inequality (39) is often not
satisfied and then the uniqueness of the nonlinear problem (35), (36) is open.

Now let us investigate the validity of DMPs for problem (35), (36). To this
end, one has to relate the properties of the artificial diffusion matrix B(U) to
the matrix A. This can be done in various ways and we shall use the following
assumption that generalizes the one used in [25].

Assumption (A2): Consider any U = (u1, . . . , uN ) ∈ RN and any i ∈
{1, . . . ,M}. If ui is a strict local extremum of U with respect to Si from (32),
(33), i.e.,

ui > uj ∀ j ∈ Si or ui < uj ∀ j ∈ Si ,
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then
aij + bij(U) ≤ 0 ∀ j ∈ Si .

Remark 3 In contrast to linear problems, it is only assumed that off-diagonal entries
of the matrix A+B(U) are nonpositive in rows corresponding to indices where strict
local extrema of U appear. If B does not depend on U, then Assumption (A2) implies
that the first M rows of A+B have nonpositive off-diagonal entries, which is a neces-
sary and sufficient condition for the validity of the local DMP under our assumptions
on A and B.

Theorem 2 Let (18), (19), and (29)–(33) hold and let Assumption (A2) be satisfied.
Then any solution U = (u1, . . . , uN ) ∈ R

N of (35) satisfies the local DMP (21) for
all i = 1, . . . ,M . If condition (24) holds, then the stronger local DMP (23) is also
valid.

Proof The proof is basically the same as in [25]. Since it is short, we repeat it for
completeness. Let U = (u1, . . . , uN ) ∈ R

N satisfy (35). Consider any i ∈ {1, . . . ,M}
and let gi ≤ 0. Denoting Ai =

∑N
j=1 aij , it follows from (37) that

Ai ui +
∑

j∈Si

[aij + bij(U)] (uj − ui) = gi . (40)

If Ai > 0, we want to prove the first implication in (21) for which it suffices to consider
ui > 0 since otherwise the implication trivially holds. If Ai = 0, an arbitrary sign of
ui is considered. Let us assume that ui > uj for all j ∈ Si. Then Assumption (A2)
implies that each term of the sum in (40) is nonnegative. If Ai = 0, then there is
j ∈ Si such that aij < 0 since aii > 0 (see (19)). This together with (30) implies
that the sum in (40) is positive. If Ai > 0, then Ai ui > 0. Thus, in both cases, the
left-hand side of (40) is positive, which is a contradiction. Therefore, there is j ∈ Si

such that ui ≤ uj , which proves the first implication in (23) and hence also in (21).
The statements for gi ≥ 0 follow in an analogous way. �

Our next aim will be to show that, under the above assumptions, also a
global DMP is satisfied. First we prove the following general form of the DMP,
which generalizes a result proved in [9].

Theorem 3 Let (18), (19), and (29)–(33) hold and let Assumptions (A1) and (A2)
be satisfied. Consider any nonempty set R ⊂ {1, . . . ,M} and denote

P := R ∪
⋃

i∈R

Si , Q := P \ R . (41)

Assume that Q 6= ∅. Then any solution U = (u1, . . . , uN ) ∈ R
N of (35) satisfies the

DMP

gi ≤ 0 ∀ i ∈ R ⇒ max
i∈P

ui ≤ max
i∈Q

u+i , (42)
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gi ≥ 0 ∀ i ∈ R ⇒ min
i∈P

ui ≥ min
i∈Q

u−i . (43)

If, in addition,
N∑

j=1

aij = 0 ∀ i ∈ R , (44)

then

gi ≤ 0 ∀ i ∈ R ⇒ max
i∈P

ui = max
i∈Q

ui , (45)

gi ≥ 0 ∀ i ∈ R ⇒ min
i∈P

ui = min
i∈Q

ui . (46)

Proof The proof is based on the technique used in [24, Theorems 5.1 and 5.2]. Let
U = (u1, . . . , uN ) satisfy (35) and let gi ≤ 0 for all i ∈ R. We denote

ãij := aij + bij(U) , i = 1, . . . ,M, j = 1, . . . , N .

Then, according to (31)–(33), (18), (38), (19) and (35), one has

∑

j∈P

ãij =

N∑

j=1

aij ≥ 0 ∀ i ∈ R , (47)

M∑

i,j=1

vi ãij vj ≥
M∑

i,j=1

vi aij vj > 0 ∀ (v1, . . . , vM ) ∈ R
M \ {0} , (48)

∑

j∈P

ãij uj = gi ∀ i ∈ R . (49)

Denote
s = max{ui ; i ∈ P} , J = {i ∈ P ; ui = s} .

It suffices to consider the case J 6= P since otherwise the validity of (42) and (45) is
obvious. First, let us show that

ãij ≤ 0 ∀ i ∈ J ∩R, j ∈ P \ J . (50)

Let i ∈ J ∩ R and j ∈ Si \ J . For any k ∈ N, define the vector Uk = (uk1 , . . . , u
k
N )

with uki = ui + 1/k and ukl = ul for l 6= i. Then uki is a strict local maximum of Uk

with respect to Si and hence, in view of Assumption (A2),

(aij + bij(U
k)) (uki − ukj ) ≤ 0 .

Since Uk → U for k → ∞, Assumption (A1) implies that

(aij + bij(U)) (ui − uj) ≤ 0 .

As ui−uj > 0, it follows that aij+bij(U) ≤ 0. For j 6∈ Si∪{i}, one has aij+bij(U) =
0, which completes the proof of (50).

Now we want to prove that the relations (47)–(50) imply (42) and (45). If (44)
does not hold, it suffices to consider s > 0 since otherwise (42) trivially holds. Let us
assume that (45) does not hold, which implies that J ⊂ R. We shall prove that then

∃ k ∈ J : µk :=
∑

j∈J

ãkj > 0 . (51)
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Assume that (51) is not satisfied. Then, applying (47) and (50), one derives for any
i ∈ J

0 ≥
∑

j∈J

ãij ≥ −
∑

j∈P\J

ãij ≥ 0 ,

which gives ∑

j∈J

ãij = 0 ∀ i ∈ J .

Thus, the matrix (ãij)i,j∈J is singular, which contradicts (48). Therefore, (51) holds
and hence, denoting r = max{ui ; i ∈ P \ J} , one obtains using (49) and (50)

s µk =
∑

j∈J

ãkj uj = gk −
∑

j∈P\J

ãkj uj ≤ r
∑

j∈P\J

(−ãkj) . (52)

If (44) holds, then, in view of (47), the right-hand side of (52) equals rµk. Hence,
s ≤ r, which is a contradiction to the definition of J . If (44) does not hold, then it
is assumed that s > 0 and hence, in view of (50), the inequality (52) implies that
r > 0. Thus, in view of (47), the right-hand side of (52) is bounded by rµk, which
again implies that s ≤ r. Therefore (45) and hence also (42) hold.

The implications (43) and (46) can be proved analogously. �

Remark 4 Note that P may contain also indices from the set {M + 1, . . . , N}. The
assumption Q 6= ∅ is always satisfied if (44) holds since otherwise, due to (47),
the matrix (ãij)i,j∈R would be singular, which is not possible in view of (48). If U
satisfies (35) with gi ≤ 0 for all i ∈ R and maxi∈P ui > 0, then it was shown in
the above proof that J 6⊂ R, which again implies that Q 6= ∅. The same holds if U
satisfies (35) with gi ≥ 0 for all i ∈ R and mini∈P ui < 0.

Setting R = {1, . . . ,M} in Theorem 3, one obtains the following global
DMP.

Corollary 1 Let (18), (19), and (29)–(33) hold and let Assumptions (A1) and (A2)
be satisfied. Then any solution U = (u1, . . . , uN ) ∈ R

N of (35) satisfies the global
DMP

gi ≤ 0 , i = 1, . . . ,M ⇒ max
i=1,...,N

ui ≤ max
i=M+1,...,N

u+i , (53)

gi ≥ 0 , i = 1, . . . ,M ⇒ min
i=1,...,N

ui ≥ min
i=M+1,...,N

u−i . (54)

If, in addition, the condition (24) holds, then

gi ≤ 0 , i = 1, . . . ,M ⇒ max
i=1,...,N

ui = max
i=M+1,...,N

ui , (55)

gi ≥ 0 , i = 1, . . . ,M ⇒ min
i=1,...,N

ui = min
i=M+1,...,N

ui . (56)

Finally, let us return to the convection–diffusion–reaction problem (1) and
assume that the algebraic problem (16), (17) is defined by (13)–(15) with ah
given by (3) or (10). Recall that a vector U = (u1, . . . , uN ) can be identified
with a function uh ∈ Wh via (8). Then, for index sets Si defined by (34),
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Theorem 3 implies that finite element functions uh ∈ Wh corresponding to
U ∈ RN obeying to (35) satisfy an analog of the continuous maximum principle
(4)–(7).

Theorem 4 Let the assumptions stated in Sect. 1 be satisfied and let the algebraic
problem (16), (17) be defined by (13)–(15) with ah given by (3) or (10). Let the index
sets Si be given by (34). Consider a matrix B(U) ∈ R

N×N depending on U ∈ R
N and

satisfying (29)–(31), (33), and Assumptions (A1) and (A2). Consider any nonempty
set Gh ⊂ Th and define

Gh =
⋃

T∈Gh

T .

Let U ∈ R
N be a solution of (35) and let uh ∈ Wh be the corresponding finite element

function given by (8). Then one has the DMP

g ≤ 0 in Gh ⇒ max
Gh

uh ≤ max
∂Gh

u+h , (57)

g ≥ 0 in Gh ⇒ min
Gh

uh ≥ min
∂Gh

u−h . (58)

If, in addition, c = 0 in Gh, then

g ≤ 0 in Gh ⇒ max
Gh

uh = max
∂Gh

uh , (59)

g ≥ 0 in Gh ⇒ min
Gh

uh = min
∂Gh

uh . (60)

Proof Set

R := {i ∈ {1, . . . ,M} ; xi ∈ intGh} , P ′ := {i ∈ {1, . . . , N} ; xi ∈ Gh} ,
where intGh denotes the interior of Gh. Since ui = uh(xi) for any i ∈ P ′ and uh is
piecewise linear, one has

max
Gh

uh = max
i∈P ′

ui , min
Gh

uh = min
i∈P ′

ui . (61)

If R = ∅, then xi ∈ ∂Gh for any i ∈ P ′ and (61) immediately implies the validity of
the right-hand sides in the implications (57)–(60). Thus, assume that R 6= ∅. Let P
and Q be defined by (41). Then, in view of the definition of Si, one has P ⊂ P ′ and
Q 6= ∅. If g ≤ 0 in Gh, then gi ≤ 0 for any i ∈ R and hence

max
i∈P

ui ≤ max
i∈Q

u+i ≤ max
∂Gh

u+h

according to (42). If i ∈ P ′ \ P , then xi ∈ ∂Gh and hence

ui = uh(xi) ≤ max
∂Gh

uh ≤ max
∂Gh

u+h .

Consequently, (57) holds due to (61). The implications (58)–(60) follow analogously.

Note that if c = 0 in Gh, then (44) holds since
∑N

j=1 ϕj = 1. �

Remark 5 It might be surprising that the local DMP proved in Theorem 2 was not
employed for proving the global DMP and instead a much more complicated proof
was considered in Theorem 3. However, the global DMP cannot be obtained as a
consequence of the local DMPs as the following example shows. Let u1, . . . , u16 be
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Fig. 1 Local DMP does not imply a global DMP

values at the vertices of the triangulation depicted in Fig. 1 numbered as in Sect. 2.
Let u1 = · · · = u4 = 1 (values at the black interior vertices) and u5 = · · · = u16 = 0
(values at the white boundary vertices). Let the index sets Si be given by (34). Then
the local DMP

ui ≤ max
j∈Si

uj , i = 1, . . . , 4 ,

is satisfied but the corresponding global DMP (the right-hand sides of the implica-
tions (53) and (55) with M = 4 and N = 16) does not hold.

5 An error estimate

In the previous section, we analyzed the nonlinear algebraic problem (35), (36)
on its own, without relating it to some discretization (except for Theorem 4).
If the algebraic problem originates from a discretization of the convection–
diffusion–reaction problem (1), then a natural question is how well its solution
approximates the solution u of (1). This question will be briefly addressed in
this section.

Let us assume that the algebraic problem (16), (17) corresponds to the
variational problem (9) satisfying (11), i.e., it is defined by (13)–(15). Let
uh ∈ Wh correspond to the solution U ∈ RN of the nonlinear algebraic problem
(35), (36) via (8). Our aim is to estimate the error u− uh. To this end, it is of
advantage to write the nonlinear algebraic problem in a variational form. We
denote

bh(w; z, v) =

N∑

i,j=1

bij(w) z(xj) v(xi) ∀ w, z, v ∈ C(Ω) ,

with bij(w) := bij({w(xi)}
N
i=1). Then the nonlinear algebraic problem (35),

(36) is equivalent to the following variational problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

ah(uh, vh) + bh(uh; uh, vh) = (g, vh) ∀ vh ∈ Vh .

In view of (29)–(31), for any w ∈ C(Ω), the mapping bh(w; ·, ·) is a non-
negative symmetric bilinear form on C(Ω) × C(Ω) and hence the functional
(bh(w; ·, ·))

1/2 is a seminorm on C(Ω). Thus, for estimating the error u− uh,
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it is natural to use a solution-dependent norm on Vh defined by

‖vh‖h :=
(
Ca ‖vh‖

2
a + bh(uh; vh, vh)

)1/2

, vh ∈ Vh ,

where Ca and ‖ · ‖a are the same as in (11). Note that ‖ · ‖h may be only a
seminorm on Wh and that it is not defined on the space H1(Ω). Assuming
that u ∈ C(Ω) and using the techniques of [7], one obtains the estimate

‖u− uh‖h ≤ C1/2
a ‖u− ihu‖a + sup

vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h

+ (bh(uh; ihu, ihu))
1/2 , (62)

where ih : C(Ω) → Wh is the usual Lagrange interpolation operator. The last
term on the right-hand side represents an estimate of the consistency error
originating from the algebraic stabilization.

In what follows, we shall assume that either ah = a or ah is defined by (10)
so that one can use the norm ‖ · ‖a given by (12) and consider Ca = 1. For
simplicity, we shall assume that σ0 > 0 and refer to [7] for the case σ0 = 0.
Assuming that u ∈ H2(Ω), standard interpolation estimates (cf. [14]) give

‖u− ihu‖a ≤ C (ε+ σ0 h
2)1/2 h |u|2,Ω . (63)

Moreover, it was shown in [7] that one has

sup
vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
≤ C (ε+ σ−1

0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω})
1/2 h ‖u‖2,Ω .

(64)
To estimate the last term in (62), we assume that (33) holds with Si defined
in (34) for all i = 1, . . . , N . Then it follows using (38) and (31) that

bh(uh; ihu, ihu) = −
1

2

N∑

i=1

∑

j∈Si

bij(uh) [u(xi)− u(xj)]
2

≤
∑

T∈Th

∑

xi,xj∈T

|bij(uh)| [u(xi)− u(xj)]
2

≤
∑

T∈Th

∑

xi,xj∈T

|bij(uh)| ‖xi − xj‖
2‖(∇ihu)|T ‖

2 ,

where ‖ · ‖ is the Euclidean norm on Rd. Thus, using the shape regularity of
Th and denoting

Ah(uh) = max
i,j=1,...,N, i6=j

(
|bij(uh)| ‖xi − xj‖

2−d
)
,
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one has
bh(uh; ihu, ihu) ≤ C Ah(uh) |ihu|

2
1,Ω .

The behavior ofAh(uh) with respect to h depends on how the artificial diffusion
matrix is constructed. Often (e.g., in the next two sections), one has

|bij(uh)| ≤ max{|aij |, |aji|} ∀ i 6= j . (65)

Then (cf. the proofs of [7, Lemma 16] and [9, Lemma 2])

|bij(uh)| ≤ C (ε+ ‖b‖0,∞,Ω h+ ‖c‖0,∞,Ω h2) ‖xi − xj‖
d−2 ∀ i 6= j ,

and hence

bh(uh; ihu, ihu) ≤ C (ε+ ‖b‖0,∞,Ω h+ ‖c‖0,∞,Ω h2) |ihu|
2
1,Ω . (66)

Finally, substituting the estimates (63), (64), and (66) in (62), one obtains the
estimate

‖u− uh‖h ≤ C (ε+ σ−1
0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω}+ σ0h

2)1/2 h ‖u‖2,Ω

+ C (ε+ ‖b‖0,∞,Ω h+ ‖c‖0,∞,Ω h2)1/2 |ihu|1,Ω . (67)

Note that, in all the above estimates, the constant C is independent of h and
the data of problem (1).

As one can see, the estimate (67) implies the convergence order 1/2 in
the convection-dominated case and no convergence in the diffusion-dominated
case. It was demonstrated in [7] that this result is sharp under the above
assumptions on the artificial diffusion matrix. However, for particular defi-
nitions of bij and/or particular types of triangulations, a better convergence
behavior can be observed numerically and in a few special cases also proved.
We refer to [7], [8], and [9] for a refined analysis and various numerical results.

6 Algebraic flux correction

In this section we present an example of the nonlinear algebraic problem (35),
(36) based on algebraic flux correction (AFC).

A detailed derivation of an AFC scheme for problem (16), (17) can be
found, e.g., in [7]. The idea is to add the term (DU)i to both sides of (16)
(so that, on the left-hand side, one has the same matrix as in the stabilized
problem (26)) and then, on the right-hand side, to use the identity

(DU)i =

N∑

j=1

fij with fij = dij (uj − ui)
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and to limit those anti-diffusive fluxes fij that would otherwise cause spurious
oscillations. The limiting is achieved by multiplying the fluxes by solution
dependent limiters αij ∈ [0, 1]. This leads to the nonlinear algebraic problem

N∑

j=1

aij uj +

N∑

j=1

(1 − αij(U)) dij (uj − ui) = gi , i = 1, . . . ,M , (68)

ui = ub
i , i = M + 1, . . . , N . (69)

It is assumed that
αij = αji , i, j = 1, . . . , N , (70)

and that, for any i, j ∈ {1, . . . , N}, the function αij(U)(uj−ui) is a continuous
function of U ∈ R

N . A theoretical analysis of the AFC scheme (68), (69)
concerning the solvability, local DMP and error estimation can be found in [7].

The symmetry condition (70) is particularly important for several reasons.
First, it guarantees that the resulting method is conservative. Second, it implies
that the matrix corresponding to the term arising from the AFC is positive
semidefinite. This shows that this term really enhances the stability of the
method and enables to estimate the error of the approximate solution, see [7].
Finally, it was demonstrated in [6] that, without the symmetry condition (70),
the nonlinear algebraic problem (68), (69) is not solvable in general.

In view of the equivalence between (35) and (37), it is obvious that (68)
can be written in the form (35) with

bij(U) = (1− αij(U)) dij ∀ i 6= j , bii(U) = −
∑

j 6=i

bij(U) . (71)

This matrix (bij(U))
N
i,j=1 satisfies the assumptions (29)–(31) and (33) with Si

defined by (28).
Of course, the properties of the AFC scheme (68), (69) significantly

depend on the choice of the limiters αij . Here we present the Kuzmin lim-
iter proposed in [29] which was thoroughly investigated in [7] and can be
considered as a standard limiter for algebraic stabilizations of steady-state
convection–diffusion–reaction equations.

To define the limiter of [29], one first computes, for i = 1, . . . ,M ,

P+
i =

N∑

j=1
aji ≤ aij

f+
ij , P−

i =

N∑

j=1
aji ≤ aij

f−
ij , Q+

i = −

N∑

j=1

f−
ij , Q−

i = −

N∑

j=1

f+
ij ,

(72)
where fij = dij (uj − ui), f

+
ij = max{0, fij}, and f−

ij = min{0, fij}. Then, one
defines

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min

{
1,

Q−
i

P−
i

}
, i = 1, . . . ,M . (73)
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If P+
i or P−

i vanishes, one sets R+
i = 1 or R−

i = 1, respectively. For i =
M + 1, . . . , N , one defines R+

i = R−
i = 1. Furthermore, one sets

α̃ij =





R+
i if fij > 0 ,
1 if fij = 0 ,
R−

i if fij < 0 ,
i, j = 1, . . . , N . (74)

Finally, one defines

αij = αji = α̃ij if aji ≤ aij , i, j = 1, . . . , N . (75)

It was proved in [7] that the AFC scheme (68), (69) with the above limiter
satisfies the local DMP (21) with Si defined by (20) provided that

aij + aji ≤ 0 ∀ i, j = 1, . . . , N , i 6= j , i ≤ M or j ≤ M . (76)

The local DMP (23) holds under the additional condition (24). In [25], it was
proved that the assumption (76) can be weakened to

min{aij , aji} ≤ 0 ∀ i = 1, . . . ,M , j = 1, . . . , N , i 6= j . (77)

Then the local DMP (21) holds with Si defined by (28) and, if (24) is satisfied,
then again also the local DMP (23) is valid.

If the AFC scheme (68), (69) is applied to the algebraic problem (16),
(17) defined by (13)–(15) with ah given by (10), then, as discussed in [7], the
validity of (76) is guaranteed if the triangulation Th is weakly acute, i.e., if the
angles between facets of Th do not exceed π/2. In the two-dimensional case,
(76) holds if and (in principle) only if Th is a Delaunay triangulation, i.e., the
sum of any pair of angles opposite a common edge is smaller than, or equal
to, π (the note ‘in principle’ is added because angles opposite interior edges
having both end points on the boundary of Ω can be arbitrary). The condition
(77) may be satisfied also for non-Delaunay triangulations, particularly, in the
convection-dominated case, since the convection matrix is skew-symmetric.
However, in general, the validity of a DMP cannot be guaranteed for non-
Delaunay triangulations. Moreover, if the lumped bilinear form (10) is replaced
by the original bilinear form (3), then the validity of the conditions (76) or
(77) may be lost since some off-diagonal entries of the matrix corresponding
to the reaction term from (3) are positive.

It was shown in [25] that the DMP generally does not hold if condition
(77) is not satisfied. This is due to the condition aji ≤ aij used in (75) to
symmetrize the factors α̃ij . It suffices to study this condition for i ≤ M or
j ≤ M since αij with i, j ∈ {M+1, . . . , N} does not occur in (68). Then, if the
discretizations from Sect. 2 are considered, the symmetry of the bilinear forms
corresponding to the diffusion and reaction terms implies that the condition
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aji < aij is equivalent to the inequality

(b · ∇ϕj , ϕi) > 0 .

As it was discussed in [25], in many cases (depending on b and the geometry of
the triangulation), this inequality means that the vertex xi lies in the upwind
direction with respect to the vertex xj . Consequently, the use of the inequality
aji < aij in the definition of the above limiter causes that αij = αji is defined
using quantities computed at the upwind vertex of the edge with end points
xi, xj . It turns out that this feature has a positive influence on the quality of
the approximate solutions and on the convergence of the iterative process for
solving the nonlinear problem (68), (69).

In order to obtain a method satisfying the DMP on arbitrary meshes and
preserving the upwind feature described above, modifications of αij = αji were
considered in [25, 26] if min{aij, aji} > 0. In the present paper, we shall achieve
this goal by changing the definition of the matrix B(U) in (71). First, however,
we shall derive an equivalent form of the above limiter under the assumption
(77). Note that, without this assumption, the application of the limiter does
not make much sense since the main goal of the AFC, i.e., the validity of the
DMP, is not achieved in general. Moreover, if (77) does not hold, the AFC
scheme is not uniquely defined because the symmetrization (75) is ambiguous
if aij = aji. If (77) holds, this ambiguity does not influence the resulting
method since dij = 0 for aij = aji and hence the respective αij = αji does not
occur in the nonlinear problem (68), (69) and can be defined arbitrarily.

Thus, let us assume that (77) holds. Then, for any i ∈ {1, . . . ,M} and
j ∈ {1, . . . , N} with i 6= j, one has the equivalence

aji ≤ aij and dij 6= 0 ⇔ aij > 0 .

Moreover, if aij > 0, then dij = −aij . Therefore, it follows from (72) that

P+
i =

N∑

j=1
aij > 0

aij (ui − uj)
+ , P−

i =

N∑

j=1
aij > 0

aij (ui − uj)
− . (78)

Furthermore, we shall rewrite the formulas forQ±
i and α̃ij . For this, the validity

of (77) will not be needed. Since, for any real number a, its positive and
negative parts satisfy −a− = (−a)+ and −a+ = (−a)−, one has

Q+
i =

N∑

j=1

|dij | (uj − ui)
+ , Q−

i =

N∑

j=1

|dij | (uj − ui)
− . (79)
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If dij 6= 0, then

α̃ij =





R+
i if ui > uj ,
1 if ui = uj ,
R−

i if ui < uj .
(80)

If dij = 0, then (80) generally gives another value than (74) but since αij is
multiplied by dij in (68), the use of (80) does not change the AFC scheme.
Thus, if the condition (77) is satisfied, then defining the limiter αij in the
AFC scheme (68), (69) by (78), (79), (73), (80), and (75) is equivalent to using
(72)–(75).

7 A new algebraically stabilized scheme

As discussed in the preceding section, the symmetrization (75) of the limiter
causes that the DMP does not hold for the AFC scheme (68), (69) in general.
In this section we modify the AFC scheme in such a way that the symmetry
of the limiter will not be needed and the DMP will be always satisfied.

To make the formulas clearer, we denote

βij = 1− αij . (81)

As we know, the AFC scheme (68), (69) can be written in the form (35), (36)
with the artificial diffusion matrix B(U) = (bij(U))

N
i,j=1 given in (71). In view

of (25) and (70), one observes that the off-diagonal entries of this matrix satisfy

bij(U) = −βij(U)max{aij , 0, aji} = −max{βij(U) aij , 0, βji(U) aji} .

This motivates us to define the artificial diffusion matrix by

bij(U) = −max{βij(U) aij , 0, βji(U) aji} , i, j = 1, . . . , N , i 6= j , (82)

bii(U) = −

N∑

j=1
j 6=i

bij(U) , i = 1, . . . , N . (83)

Obviously, this matrix (bij(U))
N
i,j=1 again satisfies the assumptions (29)–(31)

and (33) with Si defined by (28). Note however that, in contrast to (71), the
formula (82) leads to a symmetric matrix B(U) also if the limiters αij are not
symmetric. This enables us to get rid of the symmetry condition (70).

Thus, we shall consider the algebraic problem (35), (36) with the artificial
diffusion matrix given by (82) and (83) and with any functions βij satisfying,
for any i, j ∈ {1, . . . , N},

βij : RN → [0, 1] , (84)

if aij > 0, then βij(U)(uj − ui) is a continuous function of U ∈ RN . (85)
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No other assumptions on βij will be made in the general case.
First let us state an existence result.

Theorem 5 Let (19) hold and let the matrix (bij(U))Ni,j=1 be defined by (82) and
(83) with functions βij satisfying (84) and (85) for any i, j ∈ {1, . . . , N}. Then
Assumption (A1) is satisfied and the nonlinear algebraic problem (35), (36) has a
solution.

Proof In view of Theorem 1, it suffices to verify the validity of Assumption (A1).
Consider any i, j ∈ {1, . . . , N} with i 6= j. Due to (84), it is obvious that bij(U) is

bounded on R
N and it remains to show the continuity of Φ(U) := bij(U)(uj−ui). Due

to the definition of bij(U), this is particularly easy if aij ≤ 0 or aji ≤ 0 since Φ(U) ≡ 0
if both aij and aji are nonpositive and otherwise the continuity of Φ(U) immediately

follows from (85). Thus, let aij > 0 and aji > 0. Choose any Ū = (ū1, . . . , ūN ) ∈ R
N

and let us show that Φ is continuous at the point Ū. If ūi = ūj , then Φ(Ū) = 0 and
the continuity at Ū follows from the estimates

|Φ(U)− Φ(Ū)| = |Φ(U)| ≤ C |ui − uj | ≤ C
√
2 ‖U− Ū‖ , (86)

where ‖·‖ is the Euclidean norm on R
N . Thus, let ūi 6= ūj . Without loss of generality,

one can assume that ūi > ūj . Then, if U ∈ R
N satisfies ‖U − Ū‖ ≤ 1

2
|ūi − ūj |, one

has ui > uj and hence

Φ(U) = max{βij(U) (ui − uj)aij , βji(U) (ui − uj) aji} .
Since the maximum of two continuous functions is continuous, it follows from (85)
that Φ is continuous in a neighborhood of Ū, which completes the proof. �

If the functions βij form a symmetric matrix and αij satisfy (81), then the
matrix B(U) defined by (82), (83) satisfies (71) and method (35), (36) can be
written in the form (68), (69). Hence, in this case, the AFC scheme is recovered.

Another interesting observation can be made if condition (77) is satisfied.
Consider any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} with i 6= j. Then, if aij > 0,
one has aji ≤ 0 and hence bij(U) = −βij(U) aij = βij(U) dij . Similarly, if
aji > 0, then aij ≤ 0 and hence bij(U) = −βji(U) aji = βji(U) dij . If both
aij ≤ 0 and aji ≤ 0, then bij(U) = 0 and dij = 0. Thus, one concludes that

bij(U) =

{
βij(U) dij if aji ≤ aij ,
βji(U) dij otherwise ,

for i = 1, . . . ,M and j = 1, . . . , N with i 6= j. Thus, if (77) holds, then the
definition (82) implicitly comprises the favorable upwind feature discussed in
the preceding section and the method (35), (36) can be again written in the
form of the AFC scheme (68), (69). Moreover, if one sets

βij = 1− α̃ij , (87)

then one obtains the AFC scheme (68), (69) with limiters αij defined by (75).
Consequently, if the condition (77) holds, then the AFC scheme (68), (69) with
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limiters αij defined by (72)–(75) is equivalent to the system (35), (36) with
B(U) defined by (82), (83), and (87) with α̃ij given by (78), (79), (73), and
(80). Therefore, this new method preserves the advantages of the AFC scheme
from the preceding section which are available under condition (77). However,
in contrast to the method from the preceding section, we shall see that the
new method satisfies the DMP also if condition (77) is not satisfied.

For the convenience of the reader, we first summarize the definition of
βij in the new method. We shall make a slight change in (79) and replace
|dij | = max{aij , 0, aji} by

qij = max{|aij |, aji} , (88)

which is larger or equal to |dij |. This heuristic modification may improve the
accuracy and convergence behavior in the diffusion-dominated case when the
method is applied to the discretizations from Sect. 2 and non-Delaunay meshes
are used, see the discussion in Sect. 8. One could also consider the symmetric
variant max{|aij|, |aji|} which often leads to very similar results as (88), how-
ever, in a few cases, we observed that (88) is more convenient from the point
of view of both the quality of the solution and the convergence of the solver
used to solve the nonlinear discrete problem. Thus, the final definition of βij

is as follows. For any i ∈ {1, . . . ,M}, set

P+
i =

N∑

j=1
aij > 0

aij (ui − uj)
+ , P−

i =

N∑

j=1
aij > 0

aij (ui − uj)
− , (89)

Q+
i =

N∑

j=1

qij (uj − ui)
+ , Q−

i =

N∑

j=1

qij (uj − ui)
− , (90)

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min

{
1,

Q−
i

P−
i

}
, (91)

where qij is defined by (88). Furthermore, set

R+
i = 1 , R−

i = 1 , i = M + 1, . . . , N . (92)

Then define

βij =





1−R+
i if ui > uj ,

0 if ui = uj ,
1−R−

i if ui < uj ,
i, j = 1, . . . , N . (93)

Remark 6 If P+
i = 0, then R+

i can be defined arbitrarily (and the same holds for

P−
i and R−

i ). Indeed, P+
i is used only for defining βij with j such that ui > uj .



On algebraically stabilized schemes. . . 25

Then, if P+
i = 0, one has aij ≤ 0 and hence the matrix B(U) defined by (82), (83)

does not depend on these βij .

In view of Theorem 5, the following lemma implies that the problem (35),
(36) with the artificial diffusion matrix defined by (82), (83) and (89)–(93) is
solvable.

Lemma 1 The functions βij defined by (89)–(93) satisfy the assumption (85) for
all i, j ∈ {1, . . . , N}.

Proof Consider any i, j ∈ {1, . . . , N} such that i 6= j and aij > 0 and any Ū =

(ū1, . . . , ūN ) ∈ R
N . Like in the proof of Theorem 5, we want to show that Φ(U) :=

βij(U)(uj − ui) is continuous at the point Ū. If ūi = ūj , the continuity follows again
from (86). If ūi > ūj , one again uses the fact that ui > uj for U in a ball B around
Ū. Thus, for U ∈ B, one has

Φ(U) = (1−R+
i (U)) (uj − ui).

Since both P+
i and Q+

i are continuous and P+
i is positive in B, the function Φ is

continuous in B and hence also at Ū. If ūi < ūj , one proceeds analogously. �

Remark 7 It is easy to show that βij(U) = βij(αU) for any U ∈ R
N and any α 6= 0.

This implies that βij itself is not continuous since otherwise one would conclude that

βij(U) = 0 for any U ∈ R
N due to the fact that βij(0) = 0.

Now let us investigate the validity of Assumption (A2).

Theorem 6 Let the matrix (bij(U))Ni,j=1 be defined by (82), (83) and (89)–(93).
Then Assumption (A2) holds with Si defined in (28).

Proof Consider any U = (u1, . . . , uN ) ∈ R
N , i ∈ {1, . . . ,M}, and j ∈ Si. Let ui be

a strict local extremum of U with respect to Si. We want to prove that

aij + bij(U) ≤ 0 . (94)

If aij ≤ 0, then (94) holds since bij(U) ≤ 0. Thus, let aij > 0. If ui > uk for any

k ∈ Si, then P+
i ≥ aij (ui − uj)

+ > 0, Q+
i = 0 and hence βij = 1 − R+

i = 1.

Similarly, if ui < uk for any k ∈ Si, then P−
i ≤ aij (ui − uj)

− < 0, Q−
i = 0 and

hence βij = 1−R−
i = 1. Thus, bij(U) ≤ −aij , which proves (94). �

Theorems 5 and 6 show that, assuming the validity of (18) and (19), solu-
tions of the nonlinear algebraic problem (35), (36) with the artificial diffusion
matrix defined by (82), (83) and (89)–(93) satisfy all the versions of the DMP
formulated in Theorems 2 and 3 and Corollary 1, without any additional
assumptions on the matrix A. Therefore, if this new method is applied to the
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algebraic problem (16), (17) defined by (13)–(15), the DMPs hold for both
definitions (3) and (10) of the bilinear form and for any triangulation Th.
Moreover, since bij defined by (82) satisfies (65), the finite element function
uh corresponding to the solution of (35), (36) satisfies the error estimate (67).

Remark 8 If (89) is replaced by the original definition of P±
i from (72), then the

algebraically stabilized scheme introduced in this section is not well defined. Indeed,
in this case, P±

i may vanish also if aij > 0 so that the corresponding βij (which
may be not well defined) is needed for computing the matrix B(U) defined by (82),
(83) (cf. also Remark 6). Moreover, one can show that, independently of how R±

i are
defined in these cases, the continuity assumption (85) is not satisfied in general.

Remark 9 As we already mentioned, a special case of the nonlinear algebraic problem
(35), (36) with the artificial diffusion matrix defined by (82) and (83) is the AFC
scheme from Sect. 6. Another example of a method having this structure is the
nonlinear stabilization based on a graph-theoretic approach described in [3]. Here,
the artificial diffusion matrix B(U) is given by

(B(U)V)i =
∑

j∈Si∪{i}

νij(U) lij vj ∀ V ∈ R
N , i = 1, . . . , N ,

where Si is defined by (34), lij := 2 δij − 1 is the graph-theoretic Laplacian, and νij
is the artificial diffusion given by

νij(U) = max{αi(U)aij , 0, αj(U)aji} ∀ i 6= j , νii(U) =
∑

j∈Si

νij(U) ,

with a shock detector αi(U) ∈ [0, 1]. Thus, the artificial diffusion matrix satisfies (82)
and (83) with βij = αi for i, j = 1, . . . , N .

8 Numerical results

In the remaining part of the paper we shall refer to the system (35), (36) with
the artificial diffusion matrix defined by (82), (83) and (89)–(93) as to the
Monotone Upwind-type Algebraically Stabilized (MUAS) method. The AFC
scheme with the Kuzmin limiter formulated in Sect. 6 will be simply called
AFC scheme in the following. Our aim will now be to compare the AFC scheme
with the MUAS method numerically for the finite element discretizations of
(1) presented in Sect. 2. If not stated otherwise, the bilinear form (3) will be
considered in the discrete problem.

Under condition (77), the only difference between the MUAS method and
the AFC scheme consists in the definition of Q±

i , cf. (90) and (79). Our
numerical experiments show that the difference between the results of the
two methods is very small in this case. Since numerical results for the AFC
scheme under condition (77) have been reported in many other papers, we
shall concentrate on cases where condition (77) is not satisfied.

As discussed in Sect. 6, condition (77) may be violated if the triangulation
Th is not of Delaunay type or if the reaction coefficient c is sufficiently large in
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Fig. 2 Types of triangulations considered in numerical experiments
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Fig. 3 Approximate solutions of Example 1 computed on a triangulation of the type shown
on the left of Fig. 2: AFC method (left), AFC method with lumping (middle), MUAS method
(right)

comparison with ε and ‖b‖. We shall start with a reaction-dominated problem
formulated in the following example.

Example 1 (Reaction-dominated problem) Problem (1) is considered with Ω =
(0, 1)2, ε = 10−8, b = (0.004, 0.012)T , c = g = 1, and ub = 0.

A natural question is why not to set simply b = 0 in Example 1. However,
this would lead to a symmetric matrix (aij)

N
i,j=1 and since the AFC scheme

is not uniquely defined if aij = aji > 0 for some indices i 6= j, it would be
difficult to interpret the results. Note also that since c and g are constant in
Example 1, equation (1) can be reformulated into a form with vanishing right-
hand side. Indeed, if u solves (1), then (u− 1) solves (1) with g replaced by 0
and ub = −1. Then the maximum principles (4), (5) with G = Ω imply that
(u − 1) ∈ [−1, 0] and hence u ∈ [0, 1] in Ω. The solution of (1) satisfies u ≈ 1
away from layers which are located around the boundary of Ω.

We will present results obtained on a uniform triangulation of the type
depicted on the left of Fig. 2 containing 21 × 21 vertices. Then the matrix
(aij)

N
i,j=1 defined by (13) with ah = a has only nonnegative entries and con-

dition (77) is not satisfied. The AFC scheme does not satisfy the DMP and
provides a nonphysical solution, see Fig. 3 (left). As discussed in Sect. 6, a
possible remedy is to define the bilinear form ah by (10), i.e., to consider a
lumping of the reaction term. This provides a physically consistent approxi-
mate solution but may lead to a smearing of the layers, see Fig. 3 (middle).
On the other hand, applying the MUAS method, one obtains a very accurate
solution with sharp layers, see Fig. 3 (right).
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Fig. 4 Approximate solutions of Example 2 computed on a triangulation of the type shown
in the middle of Fig. 2: AFC method (left), MUAS method (right)

Example 2 (Convection-dominated problem) Problem (1) is considered with Ω =
(0, 1)2, ε = 10−2, b = (cos(−π/3), sin(−π/3))T , c = g = 0, and

ub(x, y) =

{
0 for x = 1 or y = 0,
1 else.

To satisfy the assumptions on problem (1), the discontinuous function ub can be
replaced by a smooth function such that the approximate solutions do not change
for the triangulation considered in the numerical experiments.

This example will be used to demonstrate that the AFC scheme can lead to
physically inconsistent solutions also in the convection-dominated case. To this
end, one has to use a triangulation which is not of Delaunay type. We again
consider a triangulation containing 21×21 vertices which is now obtained from
a triangulation of the type depicted on the right in Fig. 2 by shifting interior
nodes to the right by half of the horizontal mesh width on each even horizontal
mesh line. This gives a triangulation of the type shown in the middle of Fig. 2
for which condition (77) is again not satisfied. Like in Fig. 3, the results will
be visualized using a uniform square mesh having the same number of vertices
(and hence also the same horizontal mesh lines) as the mentioned triangulation.

According to the maximum principles (6), (7), the solution of (1) with the
data specified in Example 2 satisfies u ∈ [0, 1] in Ω. Fig. 4 (left) shows that
this property is not preserved by the AFC scheme for which the approximate
solution contains a significant overshoot along the line y = 0. On the other
hand, the MUAS method provides a qualitatively correct approximate solution
respecting the DMP, see Fig. 4 (right).

Example 3 (Diffusion-dominated problem) Problem (1) is considered with Ω =
(0, 1)2, ε = 10, b = (3, 2)T , c = 1, ub = 0, and the right-hand side g chosen so that

u(x, y) = 100 x2 (1− x)2 y (1− y) (1− 2y)

is the solution of (1).

In [7], this example was considered on triangulations constructed similarly
as the one in the middle of Fig. 2; the difference was that the shift of the
respective interior nodes was only the tenth of the horizontal mesh width. It
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was observed that the convergence orders of the AFC scheme with respect to
various norms tend to zero if fine meshes are used. This behavior is even more
pronounced on meshes of the type shown in the middle of Fig. 2 (where the
shift of the nodes is the half of the horizontal mesh width), see Table 1. In the
tables, the value of ne represents the number of edges along one horizontal
mesh line (thus, ne = 6 for the meshes in Fig. 2). Note that a lumping of the
reaction term has no significant influence on the results in this case. On the
other hand, applying the MUAS method, one observes a convergence in all the
norms, see Table 2. This behavior is connected with the fact that the definition
of Q±

i was changed from (79) to (90). If the original definition (79) is used in
the MUAS method, then the accuracy deteriorates and the convergence orders
tend to zero on fine meshes, see Table 3. Nevertheless, the convergence may
fail also for the MUAS method when too distorted meshes are considered. An
example is given in Table 4, where the results were computed on triangulations
obtained from those of the type depicted on the right in Fig. 2 by shifting
the respective interior nodes by eight tenths of the horizontal mesh width.
However, also in this case the results are more accurate than in case of the
AFC scheme.

A possible explanation of the observed deteriorations of convergence orders
is the loss of the linearity preservation when using certain non-Delaunay
meshes. Let us recall that the scheme (35) is called linearity preserving if B(U)
vanishes for any vector U representing a linear function in Ω. Under further
assumptions, this property enables to prove improved error estimates, see, e.g.,
[9]. It can be verified, that, in case of Table 2, the MUAS method is linearity
preserving, which is not true for the schemes used to compute the results in
Tables 1, 3, and 4. This could also explain why the replacement of (90) by (79)
leads to the deterioration of the results since the absolute values of Q±

i given
by (79) are smaller or equal to those given by (90) and hence the linearity
preservation is more likely to hold if (90) is used.

Table 1 Errors and convergence orders of approximate solutions of
Example 3 computed using the AFC scheme on triangulations of the type
shown in the middle of Fig. 2

ne ‖u− uh‖0,Ω order |u− uh|1,Ω order ‖u− uh‖h order

16 5.636e−2 0.22 6.741e−1 0.41 2.626e+0 0.24
32 5.384e−2 0.07 5.908e−1 0.19 2.437e+0 0.11
64 5.332e−2 0.01 5.661e−1 0.06 2.380e+0 0.03

128 5.321e−2 0.00 5.593e−1 0.02 2.363e+0 0.01
256 5.319e−2 0.00 5.575e−1 0.00 2.358e+0 0.00
512 5.320e−2 0.00 5.570e−1 0.00 2.356e+0 0.00

1024 5.321e−2 0.00 5.568e−1 0.00 2.356e+0 0.00

Remark 10 Comprehensive numerical studies of the MUAS method and, in par-
ticular, comparisons with the AFC schemes with Kuzmin limiter and with BJK
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Table 2 Errors and convergence orders of approximate solutions of
Example 3 computed using the MUAS method on triangulations of the
type shown in the middle of Fig. 2

ne ‖u− uh‖0,Ω order |u− uh|1,Ω order ‖u− uh‖h order

16 2.206e−2 1.60 4.847e−1 0.86 1.581e+0 0.88
32 6.967e−3 1.66 2.505e−1 0.95 8.038e−1 0.98
64 2.249e−3 1.63 1.263e−1 0.99 4.034e−1 0.99

128 7.770e−4 1.53 6.287e−2 1.01 2.003e−1 1.01
256 2.471e−4 1.65 3.115e−2 1.01 9.904e−2 1.02
512 7.108e−5 1.80 1.544e−2 1.01 4.901e−2 1.02

1024 1.915e−5 1.89 7.677e−3 1.01 2.433e−2 1.01

Table 3 Errors and convergence orders of approximate solutions of
Example 3 computed using the MUAS method with Q

±

i defined by (79)
instead of (90). The used triangulations are of the type shown in the
middle of Fig. 2

ne ‖u− uh‖0,Ω order |u− uh|1,Ω order ‖u− uh‖h order

16 7.677e−2 0.42 7.526e−1 0.40 3.019e+0 0.28
32 6.399e−2 0.26 6.382e−1 0.24 2.657e+0 0.18
64 5.806e−2 0.14 5.903e−1 0.11 2.488e+0 0.09

128 5.543e−2 0.07 5.711e−1 0.05 2.415e+0 0.04
256 5.426e−2 0.03 5.632e−1 0.02 2.383e+0 0.02
512 5.372e−2 0.01 5.598e−1 0.01 2.369e+0 0.01

1024 5.346e−2 0.01 5.582e−1 0.00 2.362e+0 0.00

Table 4 Errors and convergence orders of approximate solutions of
Example 3 computed using the MUAS method on triangulations of the
type depicted in the middle of Fig. 2 obtained by shifting the respective
interior nodes by eight tenths of the horizontal mesh width

ne ‖u− uh‖0,Ω order |u− uh|1,Ω order ‖u− uh‖h order

16 4.589e−2 1.08 6.405e−1 0.70 2.303e+0 0.72
32 2.528e−2 0.86 3.834e−1 0.74 1.326e+0 0.80
64 1.714e−2 0.56 2.442e−1 0.65 8.316e−1 0.67

128 1.347e−2 0.35 1.758e−1 0.47 5.948e−1 0.48
256 1.178e−2 0.19 1.468e−1 0.26 4.956e−1 0.26
512 1.100e−2 0.10 1.355e−1 0.12 4.576e−1 0.12

1024 1.062e−2 0.05 1.311e−1 0.05 4.428e−1 0.05

limiter can be found in [20]. In this paper, the behavior of these methods on adap-
tively refined meshes, with conforming closure or with hanging vertices, is studied.
The assessment focuses on the satisfaction of the global DMP, the accuracy of the
numerical solutions, and the efficiency of the solver for the arising nonlinear problems.
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