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Abstract

A singularly perturbed convection-diffusion problem, posed on the unit square in R2,
is studied; its solution has both exponential and characteristic boundary layers. The
problem is solved numerically using the local discontinuous Galerkin (LDG) method
on Shishkin meshes. Using tensor-product piecewise polynomials of degree at most
k > 0 in each variable, the error between the LDG solution and the true solution
is proved to converge, uniformly in the singular perturbation parameter, at a rate of
O((N−1 lnN)k+1/2) in an associated energy norm, where N is the number of mesh
intervals in each coordinate direction. (This is the first uniform convergence result
proved for the LDG method applied to a problem with characteristic boundary layers.)
Furthermore, we prove that this order of convergence increases to O((N−1 lnN)k+1)
when one measures the energy-norm difference between the LDG solution and a local
Gauss-Radau projection of the true solution into the finite element space. This uniform
supercloseness property implies an optimal L2 error estimate of order (N−1 lnN)k+1 for
our LDG method. Numerical experiments show the sharpness of our theoretical results.
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1 Introduction

Consider the singularly perturbed convection-diffusion problem

−ε∆u+ a(x, y)ux + b(x, y)u = f(x, y) in Ω = (0, 1)× (0, 1), (1.1a)
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u = 0 on ∂Ω, (1.1b)

where ε > 0 is a small parameter, a, b and f are sufficiently smooth, a ≥ α, b ≥ 0 on Ω.
Here α is a positive constant. Assume that

b− 1

2
ax ≥ β > 0, (x, y) ∈ Ω (1.2)

for some positive constant β. With these assumptions, it is straightforward to use the Lax-
Milgram lemma to show that the problem (1.1) has a unique solution inH1

0 (Ω)∩H2(Ω). Note
that for the small ε > 0, condition (1.2) can always be ensured by a simple transformation
u(x, y) = etxv(x, y) with a suitably chosen positive constant t.

The problem (1.1) is of practical importance; for example, it can be used in modelling the
flow past a surface with a no-slip boundary condition. Thus the numerical analysis of this
problem can help our understanding of the behaviour of numerical methods in the presence
of layers in more complex problems such as the linearised Navier-Stokes equations at high
Reynolds number [17]. Compared to 2D problems whose solutions exhibit only exponential
layers (which are essentially one-dimensional in nature), the solution of problem (1.1) has
a much more complicated analytical structure: a regular exponential boundary layer, two
characteristic (or parabolic) boundary layers and various types of corner layer functions in
the vicinity of the inflow and outflow corners [11, 12, 20].

Standard numerical methods on quasi-uniform meshes do not produce satisfactory nu-
merical approximations for singularly perturbed problems like (1.1) unless the mesh di-
ameter is comparable to the small parameter ε. Consequently layer-adapted meshes, such
as Shishkin meshes, Bakhvalov meshes and their generalisations, have been developed; see
[13] for an overview of these. On these meshes, uniform convergence is often observed [14]
and analysed [1, 2, 9, 15, 16]. Here and subsequently, “uniform” means that the bound on
the error in the numerical solution is independent of the value of the singular perturbation
parameter ε.

1.1 Discontinuous Galerkin methods

The standard Galerkin method is applied to problem (1.1) in [15], while stabilised finite
element methods for the problem — which reduce oscillations in computed solutions — are
considered in several papers, e.g., the streamline diffusion finite element method [2], con-
tinuous interior penalty method [24], local projection stabilization [10] and interior penalty
discontinuous Galerkin method [23]. In these papers uniform convergence and uniform su-
percloseness results are derived, but with the exception of [10], these results are confined to
low-order elements.

The local discontinuous Galerkin (LDG) method is a stabilised finite element method
that was originally proposed for convection-diffusion systems [8]. It is stabilised by adding
only jump terms at element boundaries into the bilinear form. Its weak stability and local
solvability are advantageous when solving problems with singularities (such as layers). Even
on a uniform mesh, the LDG method applied to a singularly perturbed problem does not
produce an oscillatory solution; see the numerical experiments in [7, 22].

For 1D convection-diffusion problems, various uniform convergence results for the LDG
solution were derived in [21, 25]. For 2D convection-diffusion problems that have only

2



exponential boundary layers, when the LDG method is used to compute solutions on layer-
adapted meshes, uniform convergence in an energy norm has been established in [5, 6, 26]
and uniform supercloseness of the LDG solution is proved in the recent paper [4].

1.2 Theoretical difficulties with characteristic layers

Exponential layers are essentially one-dimensional in nature, but characteristic layers are
intrinsically two-dimensional (see, e.g., [20, Section 4.1]) and so are more difficult to anal-
yse and to approximate numerically. Thus, in the numerical analysis literature one can
find many papers that analyse the error when solving a convection-diffusion problem whose
solution has exponential layers, but far fewer papers that perform an error analysis for
the numerical solution of a problem with characteristic layers. Indeed, for discontinuous
Galerkin methods in general, the only papers that derive a uniform error bound for charac-
teristic layers seem to be those of Roos and Zarin, who use a nonsymmetric discontinuous
Galerkin finite element method with interior penalties; see [23] and its references. In a sub-
sequent paper [18] by Roos and Zarin that also uses this method, uniform supercloseness is
proved for a problem with exponential layers, but the authors comment that “We conjecture
that the analysis can be extended to problems with characteristic layers but this requires a
careful study of anisotropic elements in the region where these layers occur.” The message
here is that error analyses that work for exponential layers are not easily modified to work
for characteristic layers.

Returning to the LDG method, despite the positive results for exponential layers that
were described in Section 1.1, we are not aware of any uniform convergence result for
this method applied on a layer-adapted mesh to solve a problem whose solution contains
characteristic layers, even though it is 8 years since the exponential-layer uniform error
analysis of [26] appeared. Our paper will prove uniform convergence of the LDG method for
both exponential and characteristic layers — in fact it goes further by deriving a higher-order
uniform supercloseness result for the error between the true solution and a projection of it
into the finite element space. (It should be noted that uniform supercloseness cannot be
obtained by following the line of analysis in [5, 6, 26], since these papers use a streamline-
diffusion type norm that yields suboptimal estimates; our analysis below is based on a
discrete energy norm that fits naturally with the LDG method.)

1.3 Technical innovations in the analysis

As one can infer from the discussion of Section 1.2, several technical innovations are needed
to obtain a uniform error analysis for a problem such as (1.1) whose solution contains
characteristic boundary layers.

• A fundamental difference between our error analysis and that of [26] (who consider
only exponential layers) is that we use a unified Gauss-Radau projection of the solu-
tion u instead of a combination of standard Lagrange interpolation and Gauss-Radau
projection. This choice enables us to treat the LDG error in the smooth component
of the true solution in an optimal way, and to avoid using inverse inequalities such as
[26, eqs. (4.35) and (4.36)] which lead to suboptimal results.
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• Our analysis does reuse some ideas from [4], which considers only exponential layers,
but an immediate significant difference is that our analysis here requires the crosswind
stabilisation parameter λ2 in the LDG method to be positive, while λ2 = 0 was
permitted in [4]. We also treat in a delicate way the error component T4 in (4.34) that
is associated with the convection term aux of (1.1a), by applying different techniques
in different subregions: when the mesh is coarse in the convective direction, we mainly
employ a superapproximation propery of the local bilinear form, but where the mesh is
fine in the convective direction, we make full use of a crucial stability property — that
the derivative and jump of the error in the finite element space are controlled by the
energy-norm itself plus a term with optimal convergence rate. All of these devices,
working together, yield our uniform supercloseness estimate for the approximation
error in the finite element space.

• The new challenge of characteristic layers means that special attention has to be paid
to the treatment of various solution components on different parts of the domain,
and new bounds have to be established for errors in approximating derivatives in the
crosswind direction; see (3.21c)–(3.21d) of Lemma 3.2 and (3.27) of Lemma 3.3.

• Finally, it should be noted that our analysis includes finite elements with piecewise
polynomials of any positive degree, whereas [23] (the only previous uniform conver-
gence result for a discontinuous Galerkin method applied to a problem with charac-
teristic layers) is for bilinears only.

1.4 Detailed results

Our paper will analyse in detail the convergence behaviour of the LDG method on Shishkin
meshes applied to the problem (1.1). Using piecewise polynomials of degree at most k
(an arbitrary positive integer) in each coordinate variable, we shall prove that on a suitable
Shishkin mesh, the LDG solution converges uniformly to the true solution in the energy norm
induced by the LDG bilinear form at the rate O((N−1 lnN)k+1/2), where N is the number
of mesh intervals in each coordinate direction. We also establish an enhanced energy-norm
uniform convergence rate of O((N−1 lnN)k+1) for the difference between the numerical so-
lution and the local Gauss-Radau projection of the true solution into the finite element
space. This uniform supercloseness property implies that the L2 error between the numer-
ical and true solutions achieves the optimal uniform convergence rate O((N−1 lnN)k+1).
Numerical experiments show the sharpness of all these error bounds.

To obtain these high orders of approximation (recall that k is any positive integer), it is
necessary to assume that the true solution of (1.1) possesses a sufficient degree of regularity;
see Section 2.1. This assumption is reasonable, given enough smoothness and compatibility
of the problem data, but to derive it rigorously would demand a significant amount of extra
analysis.

To make the paper more readable and concise we have considered only Shishkin meshes
in detail, but the entire analysis can be extended to other families of layer-adapted meshes
as we describe in Remark 4.1; see also the numerical results of Section 5.2.

Our paper is organised as follows. In Section 2, we discuss a decomposition of the
solution of (1.1), construct the Shishkin mesh and define the LDG method. Section 3 is
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devoted to the definition and properties of the local Gauss-Radau projection that we use,
followed by a lengthy derivation of bounds on various measures of the error between the
true solution of (1.1) and its Gauss-Radau projection. Then Section 4 is the heart of the
paper, where we carry out uniform convergence and uniform supercloseness analyses of the
error in the LDG solution. In Section 5, we present numerical experiments to demonstrate
the sharpness of our theoretical error bounds. Finally, Section 6 gives some concluding
remarks.

Notation. We use C to denote a generic positive constant that may depend on the data
a, b, f of (1.1), the parameters σ, δ of (2.4), and the degree k of the polynomials in our
finite element space, but is independent of ε and of N (the number of mesh intervals in each
coordinate direction); C can take different values in different places.

The usual Sobolev spaces Wm,`(D) and L`(D) will be used, where D is any one-
dimensional interval subset of [0, 1] or any measurable two-dimensional subset of Ω. The
L2(D) norm is denoted by ‖·‖D, the L∞(D) norm by ‖·‖L∞(D), and 〈·, ·〉D denotes the L2(D)

inner product. The subscript D will always be dropped when D = Ω. We set ∂ix∂
j
y := ∂i+j

∂xi∂yj

for all nonnegative integers i and j.

2 Solution decomposition, Shishkin mesh and LDG method

In this section we assemble the basic tools for the construction and analysis of our numerical
method.

2.1 Solution decomposition

Typical solutions u of (1.1) have an exponential layer along the side x = 1 and characteristic
layers along the two sides y = 0 and y = 1; see, e.g., [20, Example 4.2]. A solution may
also have a corner layer at each corner of Ω. In [11, 12] the case of constant a and b is fully
analysed and a decomposition of the solution u into a smooth component plus layers of
various types is constructed, together with bounds on their derivatives of all orders. In [16]
the case of variable a(x, y) with b ≡ 0 is discussed under corner compatibility assumptions
that essentially exclude the corner layers at the inflow corners (0, 0) and (0, 1), and u is again
decomposed into a sum of a smooth component, an exponential boundary layer along x = 1,
two parabolic layers along y = 0 and y = 1, and two corner layers at the outflow corners
(1, 0) and (1, 1), for each of which bounds on certain low-order derivatives are obtained.

It is an open question whether one can decompose the solution u of (1.1) in a similar
way together with bounds on high-order derivatives of each component in the decomposition
(this would extend the work described in the previous paragraph). It seems reasonable that
this is indeed the case, so like [2, Assumption 2.1] and [17, Part III: Section 1.4] we shall
now assume that this decomposition is possible.

Assumption 2.1. Let m be a non-negative integer. Let κ satisfy 0 < κ < 1. Under
suitable smoothness and compatibility conditions on the data, the solution u of (1.1) lies
in the Hölder space Cm+2,κ(Ω) and can be decomposed as u = u0 + u1 + u2 + u12, where
u0 is the smooth component, u1 is the exponential layer, u2 is the sum of the two parabolic
layers, and u12 is the sum of the two outflow corner layers. The derivatives of each of these
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components satisfy the following bounds for all (x, y) ∈ Ω̄ and all nonnegative integers i, j
with i+ j ≤ m+ 2:∣∣∂ix∂jyu0(x, y)

∣∣ ≤ C, (2.3a)∣∣∂ix∂jyu1(x, y)
∣∣ ≤ Cε−ie−α(1−x)/ε, (2.3b)∣∣∂ix∂jyu2(x, y)
∣∣ ≤ Cε−j/2 (e−δy/√ε + e−δ(1−y)/

√
ε
)
, (2.3c)∣∣∂ix∂jyu12(x, y)

∣∣ ≤ Cε−(i+j/2)e−α(1−x)/ε
(
e−δy/

√
ε + e−δ(1−y)/

√
ε
)
, (2.3d)

where C > 0 and δ > 0 are some constants.

Remark 2.1. In the numerical analysis that follows, we shall need m = k in Assump-
tion 2.1, where k is the degree of the piecewise polynomials in our finite element space.

2.2 The Shishkin mesh

We shall use a piecewise uniform Shishkin mesh [13, 20] that is refined near the sides x = 1,
y = 0 and y = 1 of Ω. Define the mesh transition parameters as

τ1 := min

{
1

2
,
σε

α
lnN

}
and τ2 := min

{
1

4
,
σ
√
ε

δ
lnN

}
, (2.4)

where σ > 0 is a user-chosen parameter whose value affects our error estimates; in the error
analysis it will be seen that σ needs to be sufficiently large. Assume in (2.4) that

τ1 =
σε

α
lnN ≤ 1

2
and τ2 =

σ
√
ε

δ
lnN ≤ 1

4
, (2.5)

as is typically the case for (1.1). Note that (2.5) implies a mild assumption
√
ε lnN ≤ C

which will be used frequently in the following analysis. (We remark that the stronger
inequality ε ≤ N−1 is used in [26, eq. (4.35)].)

Let N ≥ 4 be an integer divisible by 4. Our meshes will use N + 1 points in each
coordinate direction. Define the mesh points (xi, yj) for i, j = 0, 1, . . . , N by

xi :=


2(1− τ1)

i

N
for i = 0, 1, ..., N/2,

1− 2τ1

(
1− i

N

)
for i = N/2 + 1, N/2 + 2, ..., N,

yj :=



4τ2
j

N
for j = 0, 1, ..., N/4,

τ2 + 2(1− 2τ2)

(
j

N
− 1

4

)
for j = N/4 + 1, N/4 + 2, ..., 3N/4,

1− 4τ2

(
1− j

N

)
for j = 3N/4 + 1, 3N/4 + 2, ..., N.

(2.6)

The Shishkin mesh ΩN is then constructed by drawing axiparallel lines through the
mesh points (xi, yj), i.e., set ΩN := {Kij}i,j=1,...,N , where each rectangular mesh element
Kij := Ii × Jj := (xi−1, xi)× (yj−1, yj).
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Figure 1 displays the mesh for ε = 10−2, N = 8, σ/α = 4 and σ/δ = 1 in (2.5)
and (2.6); it is uniform and coarse on Ω11 := [0, 1 − τ1] × [τ2, 1 − τ2], but is refined in the
characteristic layer region Ω12 := [0, 1−τ1]×([0, τ2]∪ [1−τ2, 1]), the exponential layer region
Ω21 := [1−τ1, 1]×[τ2, 1−τ2], and the corner layer region Ω22 := [1−τ1, 1]×([0, τ2]∪[1−τ2, 1]).

Set hx,i = xi − xi−1 and hy,j = yj − yj−1 for i, j = 1, 2, . . . , N . Then

hx,i :=

{
2(1−τ1)
N = O(N−1) for i = 1, 2, . . . , N/2,

2τ1
N = O(εN−1 lnN) for i = N/2 + 1, N/2 + 2, . . . , N,

hy,j :=

{
2(1−2τ2)

N = O(N−1) for j = N/4 + 1, . . . , 3N/4,
4τ2
N = O(

√
εN−1 lnN) for j = 1, . . . , N/4 and j = 3N/4 + 1, . . . , N.

(2.7)

These mesh sizes will be used frequently throughout our analysis.

11

12

12

21

22

22

Figure 1: Domain division (left) and Shishkin mesh with N = 8 (right)
.

2.3 The local discontinuous Galerkin (LDG) method

Let k be a fixed positive integer. On any 1-dimensional interval I, let Pk(I) denote the
space of polynomials of degree at most k defined on I. For each mesh element K = Ii× Jj ,
set Qk(K) := Pk(Ii)⊗ Pk(Jj). Then define the discontinuous finite element space

VN =
{
v ∈ L2(Ω): v|K ∈ Qk(K),K ∈ ΩN

}
.

Note that functions in VN are allowed to be discontinuous across element interfaces. For
any v ∈ VN and y ∈ Jj , for i = 0, 1, . . . , N we use v±i,y = limx→x±i

v(x, y) to denote the traces

on vertical element edges; here in particular we set v−0,y = v+
N,y = 0 to avoid treating ∂Ω as a

special case. The jumps on these edges are denoted by [[v]]i,y := v+
i,y−v

−
i,y for i = 0, 1, . . . , N ;

thus [[v]]0,y := v+
0,y and [[v]]N,y := −v−N,y. In a similar fashion, define the traces v±x,j and the

jumps [[v]]x,j on the horizontal element edges for j = 0, 1, . . . , N .

To define the LDG method, rewrite (1.1) as an equivalent first-order system:

−px − qy + aux + bu = f, p = εux, q = εuy
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with the homogeneous boundary condition of (1.1b). Then the final compact form of the
LDG method reads as follows [6]:

Find W = (U,P,Q) ∈ V3
N := VN × VN × VN (U approximates u, while P and Q

approximate p and q respectively) such that

B(W ;z) = 〈f,v〉 ∀z = (v, s, r) ∈ V3
N , (2.8)

where

B(W ;z) := T1(W ;z) + T2(U ;z) + T3(W ;v) + T4(U ;v), (2.9)

with

T1(W ;z) = ε−1[〈P, s〉+ 〈Q, r〉] + 〈(b− ax)U,v〉 ,

T2(U ;z) = 〈U, sx〉+
N∑
j=1

N−1∑
i=1

〈
U−i,y, [[s]]i,y

〉
Jj

+ 〈U, ry〉+
N∑
i=1

N−1∑
j=1

〈
U−x,j , [[r]]x,j

〉
Ii
,

T3(W ;v) = 〈P,vx〉+

N∑
j=1

[
N−1∑
i=0

〈
P+
i,y, [[v]]i,y

〉
Jj
−
〈
P−N,y,v

−
N,y

〉
Jj

]

+ 〈Q,vy〉+

N∑
i=1

N−1∑
j=0

〈
Q+
x,j , [[v]]x,j

〉
Ii
−
〈
Q−x,N ,v

−
x,N

〉
Ii

 ,
T4(U ;v) = −〈aU,vx〉 −

N∑
j=1

N∑
i=1

〈
ai,yU

−
i,y, [[v]]i,y

〉
Jj

+

N∑
j=1

〈
λ1U

−
N,y,v

−
N,y

〉
Jj

+
N∑
i=1

〈
λ2U

−
x,N ,v

−
x,N

〉
Ii
.

In this definition we choose the penalty parameters λ1 and λ2 to satisfy 0 ≤ λ1 ≤ C and
C1ε ≤ λ2 ≤ C for some constants C1 and C; these parameters improve the stability and
accuracy of the numerical scheme. An explanation for the restriction λ2 ≥ C1ε will be given
later, following (4.37).

Define the energy norm 9 · 9E by 9z92
E = B(z;z) for each z = (v, s, r) ∈ V3

N ; that is,

9z92
E = 9z 92

2 +

N∑
j=1

N∑
i=0

1

2

〈
ai,y, [[v]]2i,y

〉
Jj

+
N∑
j=1

〈
λ1, [[v]]2N,y

〉
Jj

+
N∑
i=1

〈
λ2, [[v]]2x,N

〉
Ii
,

where 9 z92
2 := ε−1 ‖s‖2 + ε−1 ‖r‖2 +

∥∥∥∥∥
(
b− 1

2
ax

)1/2

v

∥∥∥∥∥
2

.

The linear system of equations (2.8) has a unique solution W because the associated ho-
mogeneous problem (i.e., with f = 0) has 9W9E = 0 and hence W = (0, 0, 0).
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3 The Gauss-Radau projection and its associated error

3.1 Definition and properties of the Gauss-Radau projection

We define three two-dimensional local Gauss-Radau projectors Π−,Π+
x ,Π

+
y into VN . For

each z ∈ H2(ΩN ), define Π−z ∈ VN by the conditions:∫
Kij

(Π−z)v dx dy =

∫
Kij

zv dx dy ∀v ∈ Qk−1(Kij),∫
Jj

(Π−z)−i,yv dy =

∫
Jj

z−i,yv dy ∀v ∈ Pk−1(Jj),∫
Ii

(Π−z)−x,jv dx =

∫
Ii

z−x,jv dx ∀v ∈ Pk−1(Ii),

(Π−z)(x−i , y
−
j ) = z(x−i , y

−
j )

for all elements Kij = Ii × Jj = (xi−1, xi) × (yj−1, yj) in ΩN , where z−i,y and z−x,j are the
edge traces defined in Section 2.3.

For each z ∈ H1(ΩN ), define Π+
x z ∈ VN by∫

Kij

(Π+
x z)v dx dy =

∫
Kij

zv dx dy ∀v ∈ Pk−1(Ii)⊗ Pk(Jj), (3.10a)∫
Jj

(Π+
x z)

+
i−1,yv dy =

∫
Jj

z+
i−1,yv dy ∀v ∈ Pk(Jj) (3.10b)

for all Kij ∈ ΩN . Analogously, for each z ∈ H1(ΩN ), define Π+
y z ∈ VN by∫

Kij

(Π+
y z)v dx dy =

∫
Kij

zv dx dy ∀v ∈ Pk(Ii)⊗ Pk−1(Jj), (3.11a)∫
Ii

(Π+
y z)

+
x,j−1v dx =

∫
Ii

z+
x,j−1v dx ∀v ∈ Pk(Ii) (3.11b)

for all Kij ∈ ΩN .
Then

Π− = π−x ⊗ π−y , Π+
x = π+

x ⊗ πy, Π+
y = πx ⊗ π+

y , (3.12)

where π, π−x and π−y are the one-dimensional local L2 projector and the one-dimensional
Gauss-Radau projectors in the x- and y-directions respectively that are defined in [3, Sec-
tion 3.1].

Let Π ∈ {Π−,Π+
x ,Π

+
y }. The following stability inequalities on each Kij can be deduced

directly from the above definitions (see, e.g., [5, proof of Lemma 5]):

‖Πz‖L∞(Kij) ≤ C ‖z‖L∞(Kij) , (3.13a)∥∥Π+
x z
∥∥
Kij
≤ C

[
‖z‖Kij

+ h
1/2
x,i

∥∥∥z+
i−1,y

∥∥∥
Jj

]
, (3.13b)∥∥Π+

y z
∥∥
Kij
≤ C

[
‖z‖Kij

+ h
1/2
y,j

∥∥∥z+
x,j−1

∥∥∥
Ii

]
. (3.13c)

One also has the anisotropic approximation property ([5, Lemma 3], [26, Lemma 4.3]):

‖z −Πz‖L`(Kij) ≤ C
[
hk+1
x,i

∥∥∥∂k+1
x z

∥∥∥
L`(Kij)

+ hk+1
y,j

∥∥∥∂k+1
y z

∥∥∥
L`(Kij)

]
for ` = 2,∞. (3.14)
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3.2 Gauss-Radau projection error of the true solution

Set w := (u, p, q) and Πw := (Π−u,Π+
x p,Π

+
y q). The error in the Gauss-Radau projection

of w is
η = (ηu, ηp, ηq) := (u−Π−u, p−Π+

x p, q −Π+
y q) = w −Πw.

To estimate η we make the following assumptions.

Assumption 3.1.

(i) Assumption 2.1 is valid for m = k.

(ii) Choose σ ≥ k + 1 in (2.4).

In the next two lemmas we derive bounds on the components of η.

Lemma 3.1. [Bounds on ηu] There exists a constant C > 0 such that

‖ηu‖ ≤ C
[
N−(k+1) + ε1/4(N−1 lnN)k+1

]
, (3.15a)

‖ηu‖Ω21∪Ω22
≤ Cε1/2(N−1 lnN)k+1, (3.15b) N∑

j=1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2

≤ C
[
N−(k+1) + ε1/4(N−1 lnN)k+1

]
for i = 1, ..., N, (3.15c)

(
N∑
i=1

∥∥∥(ηu)−x,N

∥∥∥2

Ii

)1/2

≤ C
[
N−(k+1) + ε1/2(N−1 lnN)k+1

]
, (3.15d)

 N∑
i=1

N∑
j=1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2

≤ C(N−1 lnN)k+1/2, (3.15e)

 N∑
j=1

N∑
i=0

〈
1, [[ηu]]2i,y

〉
Jj

1/2

≤ C(N−1 lnN)k+1/2. (3.15f)

Proof. Recall the decomposition of u in Assumption 2.1. For each component uz of u, set
ηuz := uz −Π−uz. Then ηu = ηu0 + ηu1 + ηu2 + ηu12 .

Proof of (3.15a) and (3.15b): By using (3.14), (2.3a) and the measure of each subregion
Ωij , one obtains easily

‖ηu0‖Ω11
≤ CN−(k+1), ‖ηu0‖Ω12

≤ Cε1/4N−(k+1)(lnN)1/2,

‖ηu0‖Ω21
≤ Cε1/2N−(k+1)(lnN)1/2, ‖ηu0‖Ω22

≤ Cε3/4N−(k+1) lnN.

For the exponential layer component u1, the L∞-stability property (3.13a) and (2.3b)
yield

‖ηu1‖L∞(Kij) ≤ C ‖u1‖L∞(Kij) ≤ Ce
−α(1−xi)/ε ≤ Ce−ατ1/ε ≤ CN−σ (3.16)

for each Kij ∈ Ω11 ∪ Ω12. Hence

‖ηu1‖Ω11∪Ω12
≤ ‖ηu1‖L∞(Ω11∪Ω12) ≤ CN

−σ.

10



If Kij ∈ Ω21 ∪ Ω22, from (3.14) with ` = 2 and (2.3b) one has

‖ηu1‖
2
Ω21∪Ω22

≤ C
∑

Kij∈Ω21∪Ω22

[
h

2(k+1)
x,i

∥∥∥∂k+1
x u1

∥∥∥2

Kij

+ h
2(k+1)
y,j

∥∥∥∂k+1
y u1

∥∥∥2

Kij

]
≤ C(N−1 lnN)2(k+1)

∑
Kij∈Ω21∪Ω22

∥∥∥e−α(1−x)/ε
∥∥∥2

Kij

≤ Cε(N−1 lnN)2(k+1).

For the characteristic layer component u2, use (3.13a) and (2.3c) to get

‖ηu2‖L∞(Kij) ≤ C ‖u2‖L∞(Kij) ≤ C
(
e−δyj−1/

√
ε + e−δ(1−yj)/

√
ε
)
≤ Ce−δτ2/

√
ε ≤ CN−σ

for each Kij ∈ Ω11 ∪ Ω21. This bound implies that

‖ηu2‖Ω11
≤ CN−σ and ‖ηu2‖Ω21

≤ Cτ1/2
1 N−σ ≤ Cε1/2N−σ(lnN)1/2.

If Kij ∈ Ω12 ∪ Ω22, we use (3.14) with ` = 2 and (2.3c), obtaining

‖ηu2‖
2
Ω12
≤ C

∑
Kij∈Ω12

[
h

2(k+1)
x,i

∥∥∥∂k+1
x u2

∥∥∥2

Kij

+ h
2(k+1)
y,j

∥∥∥∂k+1
y u2

∥∥∥2

Kij

]
≤ C(N−1 lnN)2(k+1)

∑
Kij∈Ω12

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Kij

≤ Cε1/2(N−1 lnN)2(k+1).

Similarly,

‖ηu2‖
2
Ω22
≤ C(N−1 lnN)2(k+1)

∑
Kij∈Ω22

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Kij

≤ Cτ1ε
1/2(N−1 lnN)2(k+1) = Cε3/2N−2(k+1)(lnN)2k+3.

For the corner layer component u12, the L∞-stability bound (3.13a) and (2.3c) give

‖ηu12‖L∞(Kij) ≤ C ‖u12‖L∞(Kij) ≤ Ce
−α(1−xi)/ε

(
e−δyj−1/

√
ε + e−δ(1−yj)/

√
ε
)

for each Kij ∈ Ω11 ∪ Ω12 ∪ Ω21, which implies

‖ηu12‖Ω11
≤ CN−2σ, ‖ηu12‖Ω12

≤ Cτ1/2
2 N−σ, ‖ηu12‖Ω21

≤ Cτ1/2
1 N−σ.

If Kij ∈ Ω22, then using (3.14) with ` = 2 and (2.3d) we get

‖ηu12‖
2
Ω22
≤ C

∑
Kij∈Ω22

[
h

2(k+1)
x,i

∥∥∥∂k+1
x u12

∥∥∥2

Kij

+ h
2(k+1)
y,j

∥∥∥∂k+1
y u12

∥∥∥2

Kij

]
≤ C(N−1 lnN)2(k+1)

∑
Kij∈Ω22

∥∥∥e−α(1−x)/ε
(
e−δy/

√
ε + e−δ(1−y)/

√
ε
)∥∥∥2

Kij

≤ Cε3/2(N−1 lnN)2(k+1).
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But τ1 = O(ε lnN), τ2 = O(
√
ε lnN) ≤ C and σ ≥ k+ 1, so one can combine the above

estimates to get (3.15a) and (3.15b).

Proof of (3.15c) and (3.15d): Fix i ∈ {1, . . . , N}. Recalling (3.12), one has (ηu)−i,y =

ui,y − π−y ui,y. Assumption 2.1 implies that ui,y(y) = Si,y(y) + Ei,y(y) where∣∣∣∣djSi,y(y)

dyj

∣∣∣∣ ≤ C and

∣∣∣∣djEi,y(y)

dyj

∣∣∣∣ ≤ Cε−j/2 (e−δy/√ε + e−δ(1−y)/
√
ε
)

for 0 ≤ j ≤ k + 1.

Set ηSi,y := Si,y − π−y Si,y and ηEi,y := Ei,y − π−y Ei,y. By calculations similar to those used
earlier in the proof, we get

N∑
j=1

∥∥ηSi,y

∥∥2

Jj
≤ CN−2(k+1),

3N/4∑
j=N/4+1

∥∥ηEi,y

∥∥2

Jj
≤ CN−2σ,

N/4∑
j=1

∥∥ηEi,y

∥∥2

Jj
≤ C

N/4∑
j=1

(N−1 lnN)2(k+1)
∥∥∥e−δy/√ε + e−δ(1−y)/

√
ε
∥∥∥2

Jj
≤ Cε1/2(N−1 lnN)2(k+1),

and likewise for the term
∑N

j=3N/4+1

∥∥ηEi,y

∥∥2

Jj
. Then (3.15c) follows from the above esti-

mates and a triangle inequality.

One can prove (3.15d) by a similar argument.

Proof of (3.15e): It follows from (3.15c) and
√
ε lnN ≤ C that

N∑
i=1

N∑
j=1

∥∥∥(ηu)−i,y

∥∥∥2

Jj
≤ CN

[
N−2(k+1) + ε1/2(N−1 lnN)2(k+1)

]
≤ C(N−1 lnN)2k+1.

Proof of (3.15f): Using (3.14) with ` =∞ and (2.3a), we have

N∑
j=1

N∑
i=1

hy,j ‖ηu0‖
2
L∞(Kij) ≤ C

N∑
j=1

N∑
i=1

hy,jN
−2(k+1) ≤ CN−(2k+1). (3.17)

Next, by (3.16) and the L∞-approximation property (3.14) with ` =∞ we see that

‖ηu1‖L∞(Kij) ≤

{
CN−σ if Kij ∈ Ω11 ∪ Ω12,

C(N−1 lnN)k+1e−α(1−xi)/ε if Kij ∈ Ω21 ∪ Ω22.

Hence

N∑
j=1

N∑
i=1

hy,j ‖ηu1‖
2
L∞(Kij) =

N∑
j=1

N/2∑
i=1

hy,j ‖ηu1‖
2
L∞(Kij) +

N∑
j=1

N∑
i=N/2+1

hy,j ‖ηu1‖
2
L∞(Kij)

≤ C
N∑
j=1

N/2∑
i=1

hy,jN
−2σ + C

N∑
i=N/2+1

(N−1 lnN)2(k+1)e−2α(1−xi)/ε

≤ CN−2σ+1 + C(N−1 lnN)2k+1, (3.18)
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since
∑N

j=1 hy,j = 1, the definition (2.7) gives hx,N/2+1 = · · · = hx,N = O(εN−1 lnN) so∑N
i=N/2+1 e

−2α(1−xi)/ε is a geometric series, and the well-known formula for the sum of such
a series yields

N∑
i=N/2+1

e−2α(1−xi)/ε ≤ 1

1− e−2αhx,N/ε
≤ C(N−1 lnN)−1

because 1− e−2αhx,N/ε = O(N−1 lnN). Similarly, one has

N∑
i=1

3N/4∑
j=N/4+1

hy,j ‖ηu2‖
2
L∞(Kij) ≤ CN

−2σ+1,

N∑
i=1

N/4∑
j=1

hy,j ‖ηu2‖
2
L∞(Kij) ≤ C

N∑
i=1

N/4∑
j=1

hy,j(N
−1 lnN)2(k+1)

(
e−2δyj−1/

√
ε + e−2δ(1−yj)/

√
ε
)

≤ Cτ2(N−1 lnN)2k+1,

and

N∑
i=1

N∑
j=3N/4+1

hy,j ‖ηu2‖
2
L∞(Kij) ≤ Cτ2(N−1 lnN)2k+1.

From these bounds it follows that

N∑
i=1

N∑
j=1

hy,j ‖ηu2‖
2
L∞(Kij) ≤ C

[
N−2σ+1 + (ε1/2 lnN)(N−1 lnN)2k+1

]
. (3.19)

A similar calculation yields

N∑
i=1

N∑
j=1

hy,j ‖ηu12‖
2
L∞(Kij) ≤ C

[
N−2σ+1 + ε1/2(N−1 lnN)2k+1

]
. (3.20)

Now (3.15f) follows from (3.17)–(3.20), σ ≥ k + 1,
√
ε lnN ≤ C and

N∑
j=1

N∑
i=0

〈
1, [[ηu]]2i,y

〉
Jj
≤ 2

N∑
j=1

N∑
i=1

(∥∥∥(ηu)+
i−1,y

∥∥∥2

Jj
+
∥∥∥(ηu)−i,y

∥∥∥2

Jj

)
≤ C

N∑
j=1

N∑
i=1

hy,j ‖ηu‖2L∞(Kij) .

Remark 3.1. The above proof of Lemma 3.1 remains valid if m = k − 1 in Assump-
tion 3.1, but to prove Lemma 3.2 we shall need m = k in this assumption.

Lemma 3.2. [Bounds on ηp and ηq] There exists a constant C > 0 such that

ε−1/2 ‖ηp‖ ≤ C(N−1 lnN)k+1, (3.21a)
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 N∑
j=1

∥∥∥(ηp)
−
N,y

∥∥∥2

Jj

1/2

≤ C(N−1 lnN)k+1, (3.21b)

(
N∑
i=1

∥∥∥(ηq)
−
x,N

∥∥∥2

Ii

)1/2

≤ Cε1/2(N−1 lnN)k+1, (3.21c)

ε−1/2 ‖ηq‖ ≤ C
[
N−σ + ε1/4(N−1 lnN)k+1

]
. (3.21d)

Proof.
Proof of (3.21a): From Assumption 3.1 (i.e., Assumption 2.1 with m = k) it follows that
p = εux = εu0,x + εu1,x + εu2,x + εu12,x := p0 + p1 + p2 + p12, where∣∣∂ix∂jyp0(x, y)

∣∣ ≤ Cε, (3.22a)∣∣∂ix∂jyp1(x, y)
∣∣ ≤ Cε−ie−α(1−x)/ε, (3.22b)∣∣∂ix∂jyp2(x, y)
∣∣ ≤ Cε1−j/2

(
e−δy/

√
ε + e−δ(1−y)/

√
ε
)
, (3.22c)∣∣∂ix∂jyp12(x, y)

∣∣ ≤ Cε−(i+j/2)e−α(1−x)/ε
(
e−δy/

√
ε + e−δ(1−y)/

√
ε
)

(3.22d)

for all (x, y) ∈ Ω̄ and all nonnegative integers i, j with i+ j ≤ k + 1. Set ηpz := pz −Π+
x pz

for each pz ∈ {p0, p1, p2, p12}.
It is easy to see from (3.14) and (3.22a) that ‖ηp0‖ ≤ CεN−(k+1).

For Kij ∈ Ω11 ∪ Ω12, we use (3.22b) and the L2-stability property (3.13b) to obtain

‖ηp1‖
2
Kij
≤ C

(
‖p1‖2Kij

+ hx,i

∥∥∥(p1)+
i−1,y

∥∥∥2

Jj

)
≤ Chy,j

(∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
+ hx,ie

−2α(1−xi−1)/ε

)
≤ Chy,j

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
,

because x 7→ e−α(1−x)/ε is a monotonically increasing function. Hence

‖ηp1‖
2
Ω11∪Ω12

≤
N∑
j=1

N/2∑
i=1

hy,j

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
≤ Cεe−2α(1−xN/2)/ε ≤ CεN−2σ.

For Kij ∈ Ω21 ∪ Ω22, (3.22b) and the L2-approximation property (3.14) yield

‖ηp1‖
2
Kij
≤ C

[
h

2(k+1)
x,i

∥∥∥∂k+1
x p1

∥∥∥2

Kij

+ h
2(k+1)
y,j

∥∥∥∂k+1
y p1

∥∥∥2

Kij

]
≤ Chy,j(N−1 lnN)2(k+1)

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
,

which leads to

‖ηp1‖
2
Ω21∪Ω22

≤ C(N−1 lnN)2(k+1)
N∑
j=1

N∑
i=N/2+1

hy,j

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
≤ Cε(N−1 lnN)2(k+1).
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In a similar manner, one uses (3.13b) and (3.22c) to get

‖ηp2‖
2
Kij
≤ C

(
‖p2‖2Kij

+ hx,i

∥∥∥(p2)+
i−1,y

∥∥∥2

Jj

)
≤ Cε2

(∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Kij

+ hx,i

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Jj

)
≤ Cε2hx,i

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Jj

for each Kij ∈ ΩN . One can hence obtain the bounds

‖ηp2‖
2
Ω11∪Ω21

≤ Cε2
N∑
i=1

3N/4∑
j=N/4+1

hx,i

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Jj
≤ Cε5/2N−2σ,

‖ηp2‖
2
Ω12∪Ω22

≤ Cε2
N∑
i=1

N/4∑
j=1

+

N∑
j=3N/4+1

hx,i(N
−1 lnN)2(k+1)

∥∥∥e−δy/√ε + e−δ(1−y)/
√
ε
∥∥∥2

Jj

≤ Cε5/2(N−1 lnN)2(k+1).

For the corner layer component ηp12 , one gets likewise

‖ηp12‖
2
Ω11
≤ Cε3/2N−4σ, ‖ηp12‖

2
Ω12
≤ Cε3/2N−2σ,

‖ηp12‖
2
Ω21
≤ Cε3/2N−2σ, ‖ηp12‖

2
Ω22
≤ Cε3/2(N−1 lnN)2(k+1).

This completes the proof of (3.21a).

Proof of (3.21b): Using (3.22), the L∞-stability property (3.13a) and the L∞-approximation
property (3.14) with ` =∞, for j = 1, . . . , N we get

‖ηp0‖L∞(KNj) ≤ CεN
−(k+1), ‖ηp1‖L∞(KNj) ≤ C(N−1 lnN)k+1,

‖ηp2‖L∞(KNj) ≤ CεN
−σ + Cε(N−1 lnN)k+1, ‖ηp12‖L∞(KNj) ≤ CN

−σ + C(N−1 lnN)k+1.

Then (3.21b) follows using σ ≥ k + 1.

Proof of (3.21c): Define the decomposition q = εuy = εu0,y + εu1,y + εu2,y + εu12,y :=
q0 + q1 + q2 + q12, where∣∣∂ix∂jyq0(x, y)

∣∣ ≤ Cε, (3.23a)∣∣∂ix∂jyq1(x, y)
∣∣ ≤ Cε1−ie−α(1−x)/ε, (3.23b)∣∣∂ix∂jyq2(x, y)
∣∣ ≤ Cε1/2−j/2(e−δy/

√
ε + e−δ(1−y)/

√
ε), (3.23c)∣∣∂ix∂jyq12(x, y)

∣∣ ≤ Cε1/2−(i+j/2)e−α(1−x)/ε(e−δy/
√
ε + e−δ(1−y)/

√
ε) (3.23d)

for all (x, y) ∈ Ω̄ and all nonnegative integers i, j with i+ j ≤ k + 1. Set ηqz := qz − Π+
y qz

for each qz ∈ {q0, q1, q2, q12}.
One proves (3.21c) similarly to (3.21b), replacing p by q everywhere and observing that

(3.23b)–(3.23d) each gain a factor of at least ε1/2 compared with (3.22b)–(3.22d).
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Proof of (3.21d): We again use the decomposition q = q0 + q1 + q2 + q12 and the bounds
(3.23). First, it is easy to get ‖ηq0‖ ≤ CεN−(k+1) from (3.14) and (3.23a).

For Kij ∈ Ω11 ∪ Ω12, we use the L2-stability bound (3.13c) to get

‖ηq1‖
2
Kij
≤ C

(
‖q1‖2Kij

+ hy,j

∥∥∥(q1)+
x,j−1

∥∥∥2

Ii

)
≤ Cε2hy,j

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
.

This implies

‖ηq1‖
2
Ω11∪Ω12

≤ Cε2
N∑
j=1

N/2∑
i=1

hy,j

∥∥∥e−α(1−x)/ε
∥∥∥2

Ii
≤ Cε3e−2α(1−xN/2)/ε ≤ Cε3N−2σ.

The L2-approximation property (3.14) with ` = 2 and (3.23b) yield

‖ηq1‖
2
Ω21∪Ω22

≤
∑

Kij∈Ω21∪Ω22

Cε2(N−1 lnN)2(k+1)
∥∥∥e−α(1−x)/ε

∥∥∥2

Kij

≤ Cε3(N−1 lnN)2(k+1).

For ηq2 we are unable to imitate the analysis of ηq1 because the function y 7→ e−δy/
√
ε +

e−δ(1−y)/
√
ε is not monotone. Instead we invoke the L∞-stability bound (3.13a), getting

‖ηq2‖L∞(Kij) ≤ C ‖q2‖L∞(Kij) ≤ Cε
1/2(e−δyj−1/

√
ε + e−δ(1−yj)/

√
ε) ≤ Cε1/2N−σ

for each Kij ∈ Ω11 ∪ Ω21. Hence

‖ηq2‖Ω11∪Ω21
≤ ‖ηq2‖L∞(Ω11∪Ω21) ≤ Cε

1/2N−σ.

The L2-approximation property (3.14) with ` = 2 and (3.23c) yield

‖ηq2‖
2
Ω12∪Ω22

≤
∑

Kij∈Ω12∪Ω22

Cε(N−1 lnN)2(k+1)
∥∥∥e−δy/√ε + e−δ(1−y)/

√
ε
∥∥∥2

Kij

≤ Cε3/2(N−1 lnN)2(k+1).

Similarly, one has

‖ηq12‖
2
Ω11∪Ω21∪Ω12

≤ CεN−2σ, ‖ηq12‖
2
Ω22
≤ Cε5/2(N−1 lnN)2(k+1).

Adding these bounds, one gets (3.21d).

3.3 A superapproximation result

For each element Kij ∈ ΩN and each v ∈ VN , define the two local bilinear forms

D1
ij(ηu; v) := 〈ηu, vx〉Kij

−
〈

(ηu)−i,y, v
−
i,y

〉
Jj

+
〈

(ηu)−i−1,y, v
+
i−1,y

〉
Jj
, (3.24a)

D2
ij(ηu; v) := 〈ηu, vy〉Kij

−
〈

(ηu)−x,j , v
−
x,j

〉
Ii

+
〈

(ηu)−x,j−1, v
+
x,j−1

〉
Ii
, (3.24b)

where we set (ηu)−0,y = (ηu)−x,0 = 0.
The next lemma presents a superapproximation result for these operators that we will

need in our error analysis. While σ ≥ k+ 1 sufficed for our previous analysis, we shall need
σ ≥ k + 2 here.
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Lemma 3.3. Choose σ ≥ k+2. Assume that ε1/4 lnN ≤ C2 for some fixed constant C2.
Then there exists a constant C > 0 such that sup

s∈VN

∑
Kij∈Ω11∪Ω12

(
D1
ij(ηu; s)

‖s‖Kij

)2
1/2

≤ C(N−1 lnN)k+1, (3.25)

 sup
s∈VN

∑
Kij∈Ω21∪Ω22

(
D1
ij(ηu; s)

‖s‖Kij

)2
1/2

≤ Cε−1/2(N−1 lnN)k+1, (3.26)

 sup
s∈VN

∑
Kij∈ΩN

(
D2
ij(ηu; s)

‖s‖Kij

)2
1/2

≤ Cε−1/4(N−1 lnN)k+1. (3.27)

Proof. We shall use the following stability and approximation properties ([4, (4.15b)], [26,
Lemma 4.8]):

|D1
ij(ηz; s)| ≤ C

√
hy,j
hx,i
‖z‖L∞(Kij) ‖s‖Kij

, (3.28a)

|D1
ij(ηz; s)| ≤ Ch−1

x,i

[
hk+2
x,i

∥∥∥∂k+2
x z

∥∥∥
Kij

+ hk+2
y,j

∥∥∥∂k+2
y z

∥∥∥
Kij

]
‖s‖Kij

(3.28b)

for any function z ∈ Hk+2(Ω), ηz := z −Π−z, all s ∈ VN and 1 ≤ i, j ≤ N .
For the smooth component u0, we use (3.28b) and Assumption 3.1 to get

|D1
ij(ηu0 ; s)| ≤ C

√
hy,j
hx,i

[
hk+2
x,i + hk+2

y,j

]
‖s‖Kij

≤ C

√
hy,j
hx,i

N−(k+2) ‖s‖Kij
∀Kij ∈ ΩN .

Substituting the mesh sizes of (2.7) into this inequality, we get

∑
Kij∈D

(
D1
ij(ηu0 ; s)

‖s‖Kij

)2

≤


CN−2(k+1) if D = Ω11,

Cτ2N
−2(k+1) if D = Ω12,

Cε−1N−2(k+1) if D = Ω21,

Cε−1/2N−2(k+1) if D = Ω22.

(3.29)

For the exponential layer component u1, from (3.28) and (2.3b) one has

|D1
ij(ηu1 ; s)| ≤

C
√

hy,j
hx,i

e−α(1−xi)/ε ‖s‖Kij
if Kij ∈ Ω11 ∪ Ω12,

Ch−1
x,i (N

−1 lnN)k+2
∥∥e−α(1−x)/ε

∥∥
Kij
‖s‖Kij

if Kij ∈ Ω21 ∪ Ω22.

Again using the mesh sizes of (2.7), we deduce that

∑
Kij∈D

(
D1
ij(ηu1 ; s)

‖s‖Kij

)2

≤


CN−2σ+2 if D = Ω11,

Cτ2N
−2σ+2 if D = Ω12,

Cε−1(N−1 lnN)2(k+1) if D = Ω21,

Cε−1/2(lnN)(N−1 lnN)2(k+1) if D = Ω22.

(3.30)
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For the characteristic boundary layer component, from (3.28) and (2.3c) one has

|D1
ij(ηu2 ; s)|

≤

C
√

hy,j
hx,i

(
e−δyj−1/

√
ε + e−δ(1−yj)/

√
ε
)
‖s‖Kij

if Kij ∈ Ω11 ∪ Ω21,

Ch−1
x,i (N

−1 lnN)k+2
∥∥∥e−δy/√ε + e−δ(1−y)/

√
ε
∥∥∥
Kij

‖s‖Kij
if Kij ∈ Ω12 ∪ Ω22,

whence

∑
Kij∈D

(
D1
ij(ηu2 ; s)

‖s‖Kij

)2

≤


CN−2σ+2 if D = Ω11,

Cε1/2(lnN)2(N−1 lnN)2(k+1) if D = Ω12,

Cε−1N−2σ+2 if D = Ω21,

Cε−1/2(lnN)(N−1 lnN)2(k+1) if D = Ω22.

(3.31)

For the corner layer component, we have

|D1
ij(ηu12 ; s)| ≤ C

√
hy,j
hx,i

e−α(1−xi)/ε
(
e−δyj−1/

√
ε + e−δ(1−yj)/

√
ε
)
‖s‖Kij

if Kij ∈ Ω11 ∪ Ω21 ∪ Ω12,

|D1
ij(ηu12 ; s)| ≤ Ch−1

x,i (N
−1 lnN)k+2

∥∥∥e−α(1−x)/ε(e−δy/
√
ε + e−δ(1−y)/

√
ε)
∥∥∥
Kij

‖s‖Kij

if Kij ∈ Ω22,

which lead to

∑
Kij∈D

(
D1
ij(ηu12 ; s)

‖s‖Kij

)2

≤


CN−4σ+2 if D = Ω11,

Cτ2N
−2σ+2 if D = Ω12,

Cε−1N−2σ+2 if D = Ω21,

Cε−1/2(N−1 lnN)2(k+1) if D = Ω22.

(3.32)

The bounds (3.29)–(3.32) and the hypotheses σ ≥ k+ 2 and ε1/4 lnN ≤ C2 yield (3.25) and
(3.26).

For D2
ij the analysis proceeds in an analogous manner; in layer regions the inverse factor

h−1
x,i that appeared above when N/2+1 ≤ i ≤ N is replaced by the less severe inverse factor

h−1
y,j when 1 ≤ j ≤ N/4 and 3N/4 + 1 ≤ j ≤ N , which yields some improvements in the

bounds. We list the conclusions below:

∑
Kij∈D

(
D2
ij(ηu0 ; s)

‖s‖Kij

)2

≤


CN−2(k+1) if D = Ω11,

Cε−1/2N−2(k+1) if D = Ω12,

Cτ1N
−2(k+1) if D = Ω21,

Cε1/2N−2(k+1) if D = Ω22,

∑
Kij∈D

(
D2
ij(ηu1 ; s)

‖s‖Kij

)2

≤


CN−2σ+2 if D = Ω11,

Cε−1/2N−2σ+2 if D = Ω12,

Cε(lnN)2(N−1 lnN)2(k+1) if D = Ω21,

Cε1/2(lnN)(N−1 lnN)2(k+1) if D = Ω22,
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∑
Kij∈D

(
D2
ij(ηu2 ; s)

‖s‖Kij

)2

≤


CN−2σ+2 if D = Ω11,

Cε−1/2(N−1 lnN)2(k+1) if D = Ω12,

CεN−2σ+2 lnN if D = Ω21,

Cε1/2(lnN)(N−1 lnN)2(k+1) if D = Ω22,

∑
Kij∈D

(
D2
ij(ηu12 ; s)

‖s‖Kij

)2

≤


CN−4σ+2 if D = Ω11,

Cε−1/2N−2σ+2 if D = Ω12,

CεN−2σ+2 lnN if D = Ω21,

Cε1/2(N−1 lnN)2(k+1) if D = Ω22.

Combining these four inequalities with
√
ε lnN ≤ C and σ ≥ k + 2, one gets (3.27).

Remark 3.2. The hypothesis ε1/4 lnN ≤ C2 of Lemma 3.3 was also used in [23,
Theorem 4]. If one removes it from Lemma 3.3, then one can still use the assumption of
Section 2.2 that ε1/2 lnN ≤ C, which yields a slightly weaker version of this lemma where
an additional factor (lnN)1/2 appears in (3.25).

4 Error analysis

The error in the LDG solution is e = (eu, ep, eq) := (u− U, p− P, q −Q), so

e = w −W = (w −Πw)− (W −Πw) = η − ξ, (4.33)

where we define

ξ = (ξu, ξp, ξq) := (U −Π−u, P −Π+
x p,Q−Π+

y q) ∈ V3
N .

The true solution w = (u, p, q) satisfies the weak formulation (2.8), so one has the
Galerkin orthogonality property B(w−W ;z) = 0 ∀z ∈ V3

N . Taking z = ξ in this equation
and recalling the definition of 9 · 9E and (4.33), one gets

9ξ92
E = B(ξ; ξ) = B(η; ξ) = T1(η; ξ) + T2(ηu; ξ) + T3(η; ξu) + T4(ηu; ξu), (4.34)

where the terms Ti (i = 1, 2, 3, 4) are defined as in (2.9). To estimate ξ we shall bound each
of these Ti.

4.1 Bounds on the term Ti for i = 1, 2, 3

First, using a Cauchy-Schwarz inequality and the definition of 9 · 9E , one has

|T1(η; ξ)| =
∣∣ε−1[〈ηp, ξp〉+ 〈ηq, ξq〉] + 〈(b− ax)ηu, ξu〉

∣∣
≤ (ε−1/2 ‖ηp‖+ ε−1/2 ‖ηq‖+ C ‖ηu‖) 9 ξ 9E . (4.35)

Next, one can rewrite the term T2 as

T2(ηu; ξ) =
∑

Kij∈ΩN

D1
ij(ηu; ξp) +

∑
Kij∈ΩN

D2
ij(ηu; ξq),
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where D1
ij and D2

ij were defined in (3.24). Since the terms ε−1/2 ‖ξp‖ and ε−1/2 ‖ξq‖ appear
in 9ξ9E , one gets easily

|T2(ηu; ξ)| ≤ ε1/2

 ∑
Kij∈ΩN

(
D1
ij(ηu; ξp)

‖ξp‖Kij

)2

+
∑

Kij∈ΩN

(
D2
ij(ηu; ξq)

‖ξq‖Kij

)2
1/2

9 ξ 9E . (4.36)

In T3, the definitions (3.10) and (3.11) of the Gauss-Radau projection imply that

T3(η; ξu) = −
N∑
j=1

〈
(ηp)

−
N,y, (ξu)−N,y

〉
Jj
−

N∑
i=1

〈
(ηq)

−
x,N , (ξu)−x,N

〉
Ii
.

Hence, using a Cauchy-Schwarz inequality and the form of the boundary jump term in the
energy norm, one has

|T3(η; ξu)| ≤ C

 N∑
j=1

∥∥∥(ηp)
−
N,y

∥∥∥2

Jj

1/2 N∑
j=1

〈
λ1 +

1

2
aN,y, [[ξu]]2N,y

〉
Jj

1/2

+ λ
−1/2
2

(
N∑
i=1

∥∥∥(ηq)
−
x,N

∥∥∥2

Ii

)1/2( N∑
i=1

〈
λ2, [[ξu]]2x,N

〉
Ii

)1/2

≤ C


 N∑
j=1

∥∥∥(ηp)
−
N,y

∥∥∥2

Jj

1/2

+ λ
−1/2
2

(
N∑
i=1

∥∥∥(ηq)
−
x,N

∥∥∥2

Ii

)1/2
 9 ξ 9E . (4.37)

Note that here we need λ2 > 0; we assumed λ2 ≥ C1ε in Section 2.3 with the intention of
invoking (3.21c) to handle the λ2 term in (4.37).

4.2 Bounds on the components of T4(ηu; ξu)

The term T4(ηu; ξu) is much more difficult to handle than T1, T2 or T3. We imitate [4,
Section 4] by decomposing T4 into 5 components, viz., T4(ηu; ξu) =

∑5
i=1 T4i(ηu; ξu), where

we set aij := a(xi, yj) and define

T41(ηu; ξu) := −
N∑
j=1

N/2∑
i=1

aijD1
ij(ηu; ξu),

T42(ηu; ξu) := −
N∑
j=1

N/2∑
i=1

[
〈(a− aij)ηu, (ξu)x〉Kij

−
〈

(ai,y − aij)(ηu)−i,y, (ξu)−i,y

〉
Jj

+
〈

(ai−1,y − aij)(ηu)−i−1,y, (ξu)+
i−1,y

〉
Jj

]
,

T43(ηu; ξu) := −
N∑
j=1

N∑
i=N/2+1

〈aηu, (ξu)x〉Kij
−

N∑
j=1

N∑
i=N/2+1

〈
ai,y(ηu)−i,y, [[ξu]]i,y

〉
Jj
,
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T44(ηu; ξu) := −
N∑
j=1

aN/2,j
〈
(η−u )N/2,y, (ξ

+
u )N/2,y

〉
Jj
,

T45(ηu; ξu) :=

N∑
j=1

〈
λ1(ηu)−N,y, (ξu)−N,y

〉
Jj

+

N∑
i=1

〈
λ2(ηu)−x,N , (ξu)−x,N

〉
Ii
.

Note that in T42 we use (ηu)−0,y = 0, as defined in Section 3.3.
By a Cauchy-Schwarz inequality we get

|T41(ηu; ξu)| ≤ C

 ∑
Kij∈Ω11∪Ω12

(
D1
ij(ηu; ξu)

‖ξu‖Kij

)2
1/2

9 ξ 9E . (4.38)

From [19, Theorem 4.76] and a scaling argument, one has the following anisotropic
inverse and trace inequalities:

‖vx‖Kij
≤ Ch−1

x,i ‖v‖Kij
and

∥∥∥v−i,y∥∥∥
Jj

+
∥∥∥v+

i−1,y

∥∥∥
Jj
≤ Ch−1/2

x,i ‖v‖Kij
for all v ∈ VN ,

where C > 0 is independent of v and of the mesh element Kij . Hence a Cauchy-Schwarz
inequality and a− aij = O(N−1) for (x, y) ∈ Kij yield

|T42(ηu; ξu)| ≤ C
N∑
j=1

N/2∑
i=1

N−1

[
h−1
x,i ‖ηu‖Kij

+ h
−1/2
x,i

(∥∥∥(ηu)−i−1,y

∥∥∥
Jj

+
∥∥∥(ηu)−i,y

∥∥∥
Jj

)]
‖ξu‖Kij

≤ C

 N∑
j=1

N/2∑
i=1

(
‖ηu‖2Kij

+N−1
∥∥∥(ηu)−i,y

∥∥∥2

Jj

)1/2

9 ξ 9E . (4.39)

The term T43(ηu; ξu) is bounded by

|T43(ηu; ξu)| ≤ C ‖ηu‖Ω21∪Ω22
‖(ξu)x‖Ω21∪Ω22

+ C

 N∑
j=1

∥∥∥(ηu)−N,y

∥∥∥2

Jj

1/2 N∑
j=1

‖[[ξu]]N,y‖2Jj

1/2

+ C

 N∑
j=1

N−1∑
i=N/2+1

hx,i+1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2 N∑
j=1

N−1∑
i=N/2+1

h−1
x,i+1 ‖[[ξu]]i,y‖2Jj

1/2

≤ C

 N∑
j=1

∥∥∥(ηu)−N,y

∥∥∥2

Jj

1/2

9 ξ 9E +C

‖ηu‖2Ω21∪Ω22
+

N∑
j=1

N−1∑
i=N/2+1

hx,i+1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2

×

‖(ξu)x‖2Ω21∪Ω22
+

N∑
j=1

N−1∑
i=N/2+1

h−1
x,i+1 ‖[[ξu]]i,y‖2Jj

1/2

≤ C

 N∑
j=1

∥∥∥(ηu)−N,y

∥∥∥2

Jj

1/2

9 ξ 9E +Cε−1/2

‖ηu‖2Ω21∪Ω22
+

N∑
j=1

N−1∑
i=N/2+1

hx,i+1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2
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×

ε−1 ‖ηp‖2 + 9ξ 92
E +ε sup

s∈VN

∑
Kij∈Ω21∪Ω22

(
D1
ij(ηu; s)

‖s‖Kij

)2
1/2

, (4.40)

where we used the following inequalities from [4, proof of Lemma 3.4]:

‖(ξu)x‖Kij
≤ Cε−1

(
‖ηp‖Kij

+ ‖ξp‖Kij

)
+
C|D1

ij(ηu; s1)|
‖s1‖Kij

,

h−1
x,i ‖[[ξu]]i−1,y‖2Jj ≤ C

ε−2
(
‖ηp‖2Kij

+ ‖ξp‖2Kij

)
+ ‖(ξu)x‖2Kij

+

(
|D1

ij(ηu; s2)|
‖s2‖Kij

)2


for two particular functions s1, s2 ∈ VN that are chosen to have certain properties.
Using this pair of inequalities again in a similar manner, we get

|T44(ηu; ξu)| ≤ C

 N∑
j=1

∥∥∥(ηu)−N/2,y

∥∥∥2

Jj

1/2 N∑
j=1

∥∥∥(ξu)+
N/2,y

∥∥∥2

Jj

1/2

(4.41)

≤ C
√
τ1

ε

 N∑
j=1

∥∥∥(ηu)−N/2,y

∥∥∥2

Jj

1/2ε−1 ‖ηp‖2 + 9ξ 92
E +ε sup

s∈VN

∑
Kij∈Ω21∪Ω22

(
D1
ij(ηu; s)

‖s‖Kij

)2
1/2

,

where we also used the case i = N/2 of the inequality

N∑
j=1

∥∥∥(ξu)+
i,y

∥∥∥2

Jj
≤ Cτ1

[
N∑
j=1

N∑
`=i+1

‖(ξu)x‖2K`j
+

N∑
j=1

N−1∑
`=i+1

h−1
x,`+1 ‖[[ξu]]`,y‖2Jj

]
+ 3

N∑
j=1

‖[[ξu]]N,y‖2Jj

that was derived in [4, proof of Lemma 3.5].
Finally, a Cauchy-Schwarz inequality yields

|T45(ηu; ξu)| ≤ C

(
N∑
j=1

∥∥∥(ηu)−N,y

∥∥∥2

Jj
+

N∑
i=1

∥∥∥(ηu)−x,N

∥∥∥2

Ii

)1/2

9 ξ9E (4.42)

because 0 ≤ λ1 ≤ C and 0 < λ2 ≤ C.

4.3 Uniform convergence and uniform supercloseness

We now state and prove the main result of the paper.

Theorem 4.1. Assume that ε1/4 lnN ≤ C, that Assumption 2.1 is valid for m = k, and
that σ ≥ k + 2 in (2.4). Let w = (u, p, q) = (u, εux, εuy) be the solution of problem (1.1).
Let W = (U,P,Q) ∈ V3

N be the numerical solution of the LDG method (2.8). Then there
exists a constant C > 0 for which the following bounds hold true. One has the energy-norm
error estimate

9w −W9E ≤ C(N−1 lnN)k+1/2 (4.43)
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and the superclose property

9Πw −W9E ≤ C(N−1 lnN)k+1, (4.44)

where Πw = (Π−u,Π+
x p,Π

+
y q) ∈ V3

N is the local Gauss-Radau projection of w defined in
Section 3.2. In particular, (4.44) implies the optimal-order L2 error estimate

9w −W92 ≤ C(N−1 lnN)k+1. (4.45)

Proof. Combining (4.35)–(4.42), we get the bound

|B(η; ξ)| ≤ C

{
ε−1/2 ‖ηp‖+ ε−1/2 ‖ηq‖+ ‖ηu‖+ ε−1/2 ‖ηu‖Ω21∪Ω22

+

(
N∑
j=1

∥∥∥(ηu)−N,y

∥∥∥2

Jj

)1/2

+

(
N∑
i=1

∥∥∥(ηu)−x,N

∥∥∥2

Ii

)1/2

+

√
τ1

ε

(
N∑
j=1

∥∥∥(ηu)−N/2,y

∥∥∥2

Jj

)1/2

+ ε−1/2

 N∑
j=1

N−1∑
i=N/2+1

hx,i+1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2

+N−1/2

(
N∑
j=1

N∑
i=1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

)1/2

+

 N∑
j=1

∥∥∥(ηp)
−
N,y

∥∥∥2

Jj

1/2

+ λ
−1/2
2

(
N∑
i=1

∥∥∥(ηq)
−
x,N

∥∥∥2

Ii

)1/2

+

 ∑
Kij∈Ω11∪Ω12

(
D1
ij(ηu; ξu)

‖ξu‖Kij

)2
1/2

+ε1/2

 ∑
Kij∈ΩN

(
D1
ij(ηu; ξp)

‖ξp‖Kij

)2

+
∑

Kij∈ΩN

(
D2
ij(ηu; ξq)

‖ξq‖Kij

)2
1/2


×

ε−1/2 ‖ηp‖+ 9ξ 9E +ε1/2

 sup
s∈VN

∑
Kij∈Ω21∪Ω22

(
D1
ij(ηu; s)

‖s‖Kij

)2
1/2

 . (4.46)

Invoking (3.15c), one has

ε−1/2

 N∑
j=1

N−1∑
i=N/2+1

hx,i+1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

1/2

≤
√
τ1

ε
max

1≤i≤N

(
N∑
j=1

∥∥∥(ηu)−i,y

∥∥∥2

Jj

)1/2

≤ C(lnN)1/2
[
N−(k+1) + ε1/4(N−1 lnN)k+1

]
≤ C(N−1 lnN)k+1,

since ε1/4(lnN)1/2 ≤ ε1/4 lnN ≤ C by hypothesis. Substituting this inequality, λ2 ≥ C1ε,
σ ≥ k + 2 and the results of Lemmas 3.1, 3.2 and 3.3 into (4.46), we obtain

|B(η; ξ)| ≤ C(N−1 lnN)k+1
[
9ξ 9E +(N−1 lnN)k+1

]
.

Thus from (4.34) it follows that 9ξ92
E ≤ C(N−1 lnN)2(k+1) + 1

2 9 ξ92
E , whence

9ξ9E ≤ C(N−1 lnN)k+1, (4.47)
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which proves (4.44).

The energy-norm error estimate (4.43) and L2 error estimate (4.45) now follow imme-
diately from (4.47) and Lemmas 3.1 and 3.2 since w −W = η − ξ.

Remark 4.1 (Extension to other layer-adapted meshes). We can extend our analysis
to other types of layer-adapted meshes such as those of Bakhvalov-Shishkin type (BS-mesh)
and Bakhvalov type (B-mesh). To achieve this, one needs properties analogous to those
proved in Lemmas 3.1, 3.2 and 3.3, which can be derived if one has

max
1≤i,j≤N

{hx,i, hy,j} ≤ CN−1 and max

{[
ψ1

(
1

2

)]σ
,

[
ψ2

(
1

4

)]σ}
≤ CN−(k+2),

where the ψi (i = 1, 2) are the mesh-characterizing functions (see [13, Section 2.1]) in each
coordinate direction. These two inequalities can be ensured for the B-mesh by choosing a
sufficiently large σ, but for the BS-mesh our analysis needs to assume

√
ε ≤ N−1 to derive

the first inequality. The numerical results in Section 5.3 show that the condition
√
ε ≤ N−1

is not artificial; only when it is satisfied does the BS-mesh attain the optimal convergence
rates for 9w −W92 and 9Πw −W9E.

See [4, Remark 4.4] for more details of this extension.

5 Numerical experiments

In this section, we present some numerical results for the LDG method applied to the
following problem:

−ε∆u+ (1 + x)(1 + y)ux +

(
3

2
+ y

)
u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where the right-hand side f is chosen such that

u(x, y) =

(
sin

πx

2
− e−(1−x)/ε − e−1/ε

1− e−1/ε

)(
1 + y4

) (1− e−y/
√
ε
)(

1− e−(1−y)/
√
ε
)

(
1− e−1/(2

√
ε)
)2

is the true solution. Obviously this solution satisfies Assumption 2.1 for any non-negative
integer m.

In all our computations we take σ = k + 2, α = 1 and δ = 1.4 in (2.5) and choose the
penalty parameters λ1 = 0 and λ2 = ε in the LDG method. The discrete linear systems are
solved using LU decomposition, i.e., a direct linear solver. All integrals are evaluated using
the 5-point Gauss-Legendre quadrature rule.

We compute the three errors

9w −W92, 9Πw −W 9E and 9w −W 9E . (5.1)

Below, EN is used to denote each of these errors when N elements are used in each coordi-
nate direction.
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On the Shishkin mesh our theoretical bounds are of the form 9error9 ≤ C(N−1 lnN)rS ,
so we estimate rS by computing the numerical convergence rate

rS,N :=
log(EN/E2N )

log
(
2 lnN/ ln(2N)

)
for various values of N . On the other types of layer-adapted meshes (see Section 5.2) where
one would expect 9error9 ≤ CN−r2 , we estimate r2 in the standard way by computing the
numerical convergence rate r2,N := log(EN/E2N )/ log 2.

In Section 5.1, we compute all three errors of (5.1) on Shishkin meshes to confirm the
sharpness of Theorem 4.1. In Section 5.2, we test the uniform convergence and superclose-
ness of the LDG method on the BS-mesh and B-mesh. In Section 5.3, we investigate the
effect of the condition

√
ε ≤ N−1 on the convergence rates of the LDG method on the

BS-mesh (recall Remark 4.1).

5.1 Uniform convergence and supercloseness

For k = 2 and N = 64, Figure 2 displays the numerical solution and the pointwise error
U − u computed by the LDG method on a Shishkin mesh for ε = 10−4 and ε = 10−8.
One sees that the LDG method produces quite good results — the layers are sharp and no
obvious oscillations appear anywhere in the domain.

For ε = 10−8, in Table 1 we list the three errors of (5.1) for k = 0, 1, 2, 3 and various
values of N . One observes that the energy-norm error 9w−W9E in the true solution con-
verges at a rate of O((N−1 lnN)k+1/2), while the L2 error 9w−W92 and the energy-norm
error 9Πw −W9E in the Gauss-Radau projection of the true solution both converge at
a rate of O((N−1 lnN)k+1). These results agree exactly with the rates predicted in The-
orem 4.1. These rates include the piecewise-constant case k = 0, although our theoretical
analysis doesn’t cover this variant of the LDG.

To test the the robustness of these errors with respect to the singular perturbation
parameter ε, we fix k = 2 and N = 128 then test ε = 10−4, 10−5, . . . , 10−10. Table 2 shows
that all three LDG solution errors of (5.1) are robust as ε → 0, which agrees with our
theory.

5.2 Two other layer-adapted meshes

In this subsection we test the numerical convergence rates of the LDG method on the other
layer-adapted meshes mentioned in Remark 4.1, viz., the BS-mesh and B-mesh. Now the
mesh points (xi, yj) for i, j = 0, 1, . . . , N are defined by

xi :=


2(1− τ1)

i

N
for i = 0, 1, ..., N/2,

1− σε

α
ϕ1

(
1− i

N

)
for i = N/2 + 1, N/2 + 2, ..., N,
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(a)

(b)

(c)

(d)

Figure 2: (a) numerical solution U for ε = 10−4, (b) numerical solution U for ε = 10−8, (c)
pointwise error U − u for ε = 10−4, (d) pointwise error U − u for ε = 10−8.

yj :=



σ
√
ε

δ
ϕ2

(
j

N

)
for j = 0, 1, ..., N/4,

τ2 + 2(1− 2τ2)

(
j

N
− 1

4

)
for j = N/4 + 1, N/4 + 2, ..., 3N/4,

1− σ
√
ε

δ
ϕ2

(
1− j

N

)
for j = 3N/4 + 1, 3N/4 + 2, ..., N,

where the mesh-generating function (ϕ1, ϕ2) is given by

(
ϕ1(t), ϕ2(t)

)
=

{(
− ln(1− 2(1−N−1)t),− ln(1− 4(1−N−1)t)

)
for the BS-mesh,(

− ln(1− 2(1− ε)t),− ln(1− 4(1−
√
ε)t)

)
for the B-mesh.

Tables 3 and 4 show that for both these meshes the three errors of (5.1) converge at rates
of O(N−(k+1)), O(N−(k+1)) and O(N−(k+1/2)) respectively. Furthermore, the robustness of
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these errors with respect to ε is demonstrated by Tables 5 and 6 where k = 2 and N = 128.

Table 1: Shishkin mesh

N 9w −W92 rate 9Πw −W9E rate 9w −W9E rate

P0 4 5.3536e-01 – 7.9351e-01 – 1.3312e+00 –
8 3.5217e-01 1.4558 5.9786e-01 0.9841 1.1198e+00 0.6010
16 2.2387e-01 1.1174 4.1177e-01 0.9197 9.0791e-01 0.5174
32 1.3930e-01 1.0093 2.7262e-01 0.8774 7.2416e-01 0.4811
64 8.4617e-02 0.9759 1.7412e-01 0.8777 5.6927e-01 0.4711
128 5.0108e-02 0.9721 1.0728e-01 0.8985 4.4091e-01 0.4740
256 2.8977e-02 0.9787 6.3918e-02 0.9254 3.3674e-01 0.4817

P1 4 1.3850e-01 – 2.0298e-01 – 3.8324e-01 –
8 8.0738e-02 1.8760 1.3090e-01 1.5249 2.5007e-01 1.4840
16 4.0740e-02 1.6870 7.0952e-02 1.5105 1.4509e-01 1.3426
32 1.7817e-02 1.7596 3.3128e-02 1.6205 7.6860e-02 1.3518
64 6.9845e-03 1.8333 1.3712e-02 1.7268 3.8200e-02 1.3687
128 2.5214e-03 1.8903 5.1503e-03 1.8168 1.7999e-02 1.3962
256 8.5645e-04 1.9295 1.7939e-03 1.8846 8.0968e-03 1.4275

P2 4 4.3661e-02 – 6.8852e-02 – 1.2545e-01 –
8 2.2194e-02 2.3520 3.6989e-02 2.1598 6.9999e-02 2.0280
16 7.9497e-03 2.5321 1.4701e-02 2.2756 2.8911e-02 2.1809
32 2.2294e-03 2.7051 4.6012e-03 2.4715 9.8296e-03 2.2954
64 5.2857e-04 2.8177 1.1956e-03 2.6383 2.9669e-03 2.3450
128 1.1159e-04 2.8857 2.6906e-04 2.7671 8.2314e-04 2.3788
256 2.1761e-05 2.9211 5.4376e-05 2.8573 2.1323e-04 2.4137

P3 4 1.4625e-02 – 2.3754e-02 – 4.3459e-02 –
8 6.1231e-03 3.0263 1.0418e-02 2.8649 1.9649e-02 2.7593
16 1.5761e-03 3.3471 3.0020e-03 3.0688 5.7651e-03 3.0242
32 2.8816e-04 3.6153 6.2676e-04 3.3329 1.2680e-03 3.2220
64 4.1807e-05 3.7791 1.0209e-04 3.5525 2.3327e-04 3.3143
128 5.2232e-06 3.8589 1.3776e-05 3.7160 3.8117e-05 3.3609
256 5.9333e-07 3.8868 1.6310e-06 3.8129 5.6677e-06 3.4057

5.3 Assumption
√
ε ≤ N−1 on the convergence rates

In Remark 4.1 an additional assumption
√
ε ≤ N−1 was needed for the BS-mesh. To

investigate whether this condition affects the numerical convergence rates, we fix k = 1
(so σ = 3) and test N = 60, 80, ..., 220. The numerical convergence rates are computed
by r2,N1 := log(EN1/EN2)/ log(N2/N1). We choose

√
ε = 0.02, 0.01, 0.0025 so that our

assumption in (2.5) that
√
ε ≤ δ(4σ lnN)−1 = 1.4(12 lnN)−1 is always satisfied, but the

three different regimes
√
ε > N−1,

√
ε ≈ N−1 and

√
ε < N−1 are tested; see Figure 3.

The numerical results on the BS-mesh in Table 7 are quite revealing. When
√
ε =

0.02 > N−1, there is almost no convergence for the first two errors of (5.1), but when√
ε = 0.0025 < N−1, optimal convergence rates are clearly seen for all three errors in (5.1).

In the intermediate case
√
ε = 0.01, we see that the convergence rate of the first two errors

of (5.1) is optimal when
√
ε = 0.01 ≤ N−1 but then decreases sharply when this condition

is violated. The energy-norm error 9w −W9E seems to be less sensitive to the relative
sizes of ε and N−1, perhaps because the boundary jump of the error dominates the whole
energy-error. Our conclusion is that the condition

√
ε ≤ N−1 is necessary both theoretically
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Table 2: Robustness: Shishkin mesh.

ε 9w −W92 9Πw −W9E 9w −W9E

10−4 2.3131e-04 3.2951e-04 8.2653e-04
10−5 1.5557e-04 2.8749e-04 8.2341e-04
10−6 1.2578e-04 2.7446e-04 8.2315e-04
10−7 1.1513e-04 2.7036e-04 8.2313e-04
10−8 1.1159e-04 2.6906e-04 8.2314e-04
10−9 1.1044e-04 2.6874e-04 8.2317e-04
10−10 1.1007e-04 2.6982e-04 8.2100e-04

Table 3: Bakhvalov-type mesh.

N 9w −W92 rate 9Πw −W9E rate 9w −W9E rate

P1 4 1.4205e-01 – 2.6525e-01 – 3.9844e-01 –
8 4.1333e-02 1.7810 6.0664e-02 2.1284 1.4973e-01 1.4120
16 1.1469e-02 1.8496 1.5490e-02 1.9695 5.6414e-02 1.4082
32 3.0832e-03 1.8953 3.9969e-03 1.9544 2.0875e-02 1.4343
64 8.0743e-04 1.9330 1.0201e-03 1.9702 7.5866e-03 1.4603
128 2.0782e-04 1.9580 2.5811e-04 1.9826 2.7233e-03 1.4781
256 5.3026e-05 1.9705 6.5095e-05 1.9874 9.7055e-04 1.4885

P2 4 6.0231e-02 – 1.0894e-01 – 1.4710e-01 –
8 7.4372e-03 3.0177 1.1629e-02 3.2278 2.5974e-02 2.5017
16 9.8442e-04 2.9174 1.4508e-03 3.0027 4.8192e-03 2.4302
32 1.3178e-04 2.9012 1.8653e-04 2.9594 8.8924e-04 2.4382
64 1.7377e-05 2.9228 2.3824e-05 2.9689 1.6148e-04 2.4612
128 2.2664e-06 2.9387 3.0268e-06 2.9766 2.8978e-05 2.4784
256 2.9464e-07 2.9434 3.8870e-07 2.9611 5.1793e-06 2.4841

and in practice to obtain optimal convergence rates on the BS-mesh.
On the Shishkin and B-meshes, further numerical experiments (not presented here) show

that the numerical convergence rates are unaffected by whether or not
√
ε ≤ N−1.

Remark 5.1. Recall that our error analysis (in particular, the derivation of (4.37))
needed the lower bound λ2 ≥ C1ε on the penalty parameter λ2. Numerical tests show
that whether one imposes this condition or one takes λ2 = 0 makes little difference to the
numerical errors and rates of convergence in the three errors of (5.1). Thus it seems likely
that the condition λ2 ≥ C1ε is merely an artifact of our analysis, but its implementation is
easy and does not harm the accuracy of the numerical results.

6 Concluding remarks

In this paper we examined the LDG method on a Shishkin mesh, using tensor-product piece-
wise polynomials of degree k > 0, for a singularly perturbed convection-diffusion problem
on the unit square in R2 whose solution exhibits characteristic and exponential boundary
layers. We obtained a O((N−1 lnN)k+1/2) energy-norm bound, uniformly in the singular
perturbation parameter, for the error between the computed solution and the true solution.
Furthermore, we derived a O((N−1 lnN)k+1) supercloseness bound for the energy-norm
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Table 4: Bakhvalov-Shishkin mesh.

N 9w −W92 rate 9Πw −W9E rate 9w −W9E rate

P1 4 1.0089e-01 – 1.2825e-01 – 2.8827e-01 –
8 3.4055e-02 1.5669 4.4547e-02 1.5256 1.2773e-01 1.1744
16 1.0344e-02 1.7191 1.3467e-02 1.7259 5.2037e-02 1.2954
32 2.9197e-03 1.8249 3.7360e-03 1.8499 2.0032e-02 1.3772
64 7.8481e-04 1.8954 9.8633e-04 1.9214 7.4294e-03 1.4310
128 2.0479e-04 1.9382 2.5378e-04 1.9585 2.6946e-03 1.4631
256 5.2629e-05 1.9602 6.4539e-05 1.9753 9.6539e-04 1.4809

P2 4 2.1897e-02 – 3.2863e-02 – 6.9537e-02 –
8 4.6249e-03 2.2432 6.8197e-03 2.2687 1.8666e-02 1.8974
16 7.7361e-04 2.5797 1.1144e-03 2.6134 4.1143e-03 2.1817
32 1.1449e-04 2.7563 1.6005e-04 2.7997 8.2215e-04 2.3232
64 1.5820e-05 2.8555 2.1531e-05 2.8940 1.5526e-04 2.4047
128 2.1107e-06 2.9059 2.8010e-06 2.9424 2.8410e-05 2.4502
256 2.7838e-07 2.9226 3.7039e-07 2.9188 5.1142e-06 2.4738

Table 5: Robustness: Bakhvalov-type mesh.

ε 9w −W92 9Πw −W9E 9w −W9E

10−4 6.6843e-06 5.8786e-06 2.8893e-05
10−5 4.8148e-06 4.5978e-06 2.9044e-05
10−6 3.4535e-06 3.7717e-06 2.9019e-05
10−7 2.6507e-06 3.2808e-06 2.8891e-05
10−8 2.2664e-06 3.0268e-06 2.8978e-05
10−9 2.1128e-06 2.9056e-06 2.8976e-05
10−10 2.1110e-06 4.4365e-06 2.8483e-05

difference between the computed solution and a local Gauss-Radau projection of the true
solution into the finite element space. As a consequence of this supercloseness property, one
obtains an optimal O(N−(k+1)) convergence rate for the L2 error of the computed solution.
These results are based on a large number of technical estimates of the approximations
from the finite element space of various solution components on different subregions of the
domain. Numerical experiments show that our theoretical results are sharp.
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