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Abstract
In this paper, we introduce and analyze an asymptotic-preserving scheme for Lotka–
Volterra parabolic equations. It is a class of nonlinear and nonlocal stiff equations,
which describes the evolution of a population structured with phenotypic trait. In a
regime of large time scale and small mutations, the population concentrates at a set
of dominant traits. The dynamics of this concentration is described by a constrained
Hamilton–Jacobi equation, which is a system coupling a Hamilton–Jacobi equation
with a Lagrange multiplier determined by a constraint. This coupling makes the equa-
tion nonlocal. Moreover, the constraint does not enjoy much regularity, since it can
have jumps. The scheme we propose is convergent in all the regimes, and enjoys sta-
bility in the long time and small mutations limit. Moreover, we prove that the limiting
scheme converges towards the viscosity solution of the constrained Hamilton–Jacobi
equation, despite the lack of regularity of the constraint. The theoretical analysis of
the schemes is illustrated and complemented with numerical simulations.
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104 V. Calvez et al.

1 Introduction

We are interested in the numerical analysis of a Lotka–Volterra parabolic equation

⎧
⎨

⎩

∂t nε(t, x) − ε�xnε(t, x) = nε(t, x)

ε
R(x, Iε(t)), x ∈ R

d , t ≥ 0

Iε(t) = ∫
Rd ψ(x)nε(t, x)dx, t ≥ 0,

(1)

supplemented with the initial condition nε(t = 0, x) = ninε (x) ∈ L1(Rd), such that
ninε > 0. It is a particular case of models arising in the theory of adaptive evolution [13,
17, 18, 29, 30]. It describes the evolution of a population structured with phenotypic
trait, where nε(t, x) denotes the amount of individuals with trait x ∈ R

d at time t ≥ 0.
The evolution of the population is driven by births and deaths, synthesized in the net
growth rate R. Note that the birth and death rates depend on the phenotypic trait, mean-
ing that some individuals may be advantaged, because they are better adapted. The
function R also depends on Iε, defined in (1), accounting for a weighted representation
of the total population burden on each individual growth rate. Thanks to the weight
ψ , individuals may have different impact on their environment, depending on their
phenotypic trait. Mutations in the model are represented by unbiased random changes
of phenotypes, with the Laplacian term in the left-hand side of (1). The parameter
ε ∈ (0, 1] in (1) is a scaling parameter, so that considering the limit ε → 0 stands for
the study of the population in an asymptotic regime of long time and small mutations.
This is usually referred to as the separation of ecological and evolutionary time scales.

The asymptotic analysis of phenotype-structured population models has been car-
ried out for various situations, we refer for instance to [9, 12, 14, 26, 27, 32, 33]. The
particular case of (1) was studied in [4, 28, 34], and more general mutation operators
than the one in (1) were considered in [4, 5]. Generally speaking, because of the selec-
tion and the dynamics of adaptation, the population density is expected to concentrate
on a set of dominant traits, meaning that it degenerates to a Dirac mass, or a sum of
Dirac masses, located at the dominant trait(s). This can be formally understood by
remarking that when ε → 0, (1) yields n0(t, x)R(x, I0(t)) = 0. As a consequence,
n0 = 0, except where R = 0. In particular, in the asymptotic regime ε → 0, the
solution is expected to enjoy no better than measure regularity, requiring dedicated
analytical methods. The Hopf–Cole transform, a logarithmic transformation of the
unknown, is introduced to circumvent the regularity issues and study the dynamics
of the concentration points. Coming back to (1), the Hopf–Cole transform uε of nε is
introduced

∀ t ≥ 0, ∀ x ∈ R
d , nε(t, x) = e−uε(t,x)/ε, (2)

such that uε satisfies the following problem

⎧
⎨

⎩

∂t uε(t, x) + |∇xuε(t, x)|2 = ε�xuε(t, x) − R(x, Iε(t)), x ∈ R
d , t ≥ 0,

Iε(t) =
∫

Rd
ψ(x)e−uε(t,x)/εdx, t ≥ 0,

(Pε)
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Concentration in Lotka–Volterra parabolic equations: an… 105

with the initial data uε(t = 0, x) = uinε (x) = −ε ln ninε (x). Note that we consider
only well-prepared initial data in (Pε). In other words, the set L1(Rd) of admissible
initial data in (1), is restricted according to the following assumptions, to avoid intial
layer phenomena in the limit ε → 0.

The asymptotic behavior of uε when ε → 0 is studied in [4], under suitable assump-
tions on the parameters. Following [4], we will suppose that there are two constants
ψm , ψM such that

∀ x ∈ R
d , 0 < ψm ≤ ψ(x) ≤ ψM < +∞, and ψ ∈ W 2,∞(Rd). (A1)

It is also assumed that there exist two constants 0 < Im ≤ IM < +∞ satisfying

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (A2)

that R is decreasing with respect to its second variable, and that there exists a constant
K > 0 such that

∀x ∈ R
d , ∀I ∈ R, −K ≤ ∂I R(x, I ) ≤ −1/K < 0, and (A3)

sup
Im/2≤I≤2IM

‖R(·, I )‖W 2,∞(Rd ) ≤ K .

In Sect. 5, we will also use slightly stronger assumptions for R, namely that I 
→
‖R(·, I )‖W 2,∞(Rd ) is bounded on all compact sets of R. The initial data uinε in (Pε) is
chosen such that

e−uinε /ε ∈ L∞(Rd), Im ≤
∫

Rd
ψ(x)e−uinε (x)/εdx ≤ IM . (A4)

Because of assumption (A4), uinε has to be large at infinity. However, in what follows,
a quantitative estimate of this behavior will be needed. Still following [4], we will then
rather suppose that

∃ a, a > 0, ∃ b, b ∈ R, ∀ ε > 0, ∀x ∈ R
d , a|x − x0| + b ≤ uinε (x) ≤ a|x − x0| + b,

(A5)

where the upper bound is introduced for technical reasons, see Sect. 4. Moreover, we
will suppose that uinε enjoys Lipschitz regularity, uniformly with respect to ε > 0. Its
Lipschitz constant is denoted by L0,

∀x, y ∈ R
d , |uinε (x) − uinε (y)| ≤ L0|x − y|, (A6)

and it is chosen large enough so that a ≤ L0, with a defined in (A5). Eventually, a
refined assumption is made on the minimum of uinε , as we suppose that there exist two
constants cinm and cinM such that

cinmε ≤ min uinε ≤ cinMε. (A7)
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106 V. Calvez et al.

Under these assumptions, the following theorem holds

Theorem 1.1 ([4, 8]) Suppose that assumptions (A1)-(A2)-(A3)-(A4)-(A5)-(A6)-
(A7) are satisfied. Let uε be the solution of (Pε) and Iε be defined in (Pε). Suppose
also that (uinε )ε is a sequence of uniformly continuous functions which converges
locally uniformly to vin. Then, (uε)ε converges locally uniformly to a function
v ∈ C([0,+∞[×R

d), and (Iε)ε converges almost everywhere to a function J , such
that J ∈ BV (0, T ) for all T > 0, and that (v, J ) is the unique viscosity solution of
the following equation

⎧
⎨

⎩

∂tv(t, x) + |∇xv(t, x)|2 = −R(x, J (t)), x ∈ R
d , t > 0

min
x∈Rd

v(t, x) = 0 t > 0, (P0)

with initial data vin.

Equation (P0) is a constrained Hamilton–Jacobi equation, with quadratic Hamilto-
nian

∀p ∈ R
d , H(p) = |p|2, (3)

where | · | stands for the Euclidean norm onR
d . Note that J is not defined anymore as a

weighted population size, but that it is now an unknown of the problem. It behaves as a
Lagrange multiplier regarding the constraint min v(t, ·) = 0. Remark also that, when
ε → 0, the limit measure of the solution nε of (1) is supported in the set argmin u.

In Theorem 1.1, uniqueness of the pair (v, J ) holds true in the class of locally
Lipschitz-continuous functions v, and locally BV functions J . On the one side, Lips-
chitz regularity is a natural setting for viscosity solutions ofHamilton–Jacobi equations
[3, 10, 16]. On the other side, the limiting function J may have jump discontinuities
[4, 33, 34], so that BV is the appropriate functional space for well-posedness. The
existence of a solution (v, J ) of (P0) is a consequence of [4], where it is obtained as
the limit of the sequence (uε, Iε)ε of solutions of (Pε), together with locally uniform
Lipschitz and BV estimates, respectively. The uniqueness of the pair (v, J ) has been
adressed in some particular cases in [23, 31, 34], then in [8] in a more general setting
including the problem under study. It is in fact composed of two companion results.
Considering (P0), the following holds

Theorem 1.2 ([8])

(i) Suppose that (v1, J1) and (v2, J2) are two solutions of (P0) in W
1,∞
loc × BVloc with

the same initial data vin. Assume that vin is coercive, thatmin vin = 0, and that R
is uniformly decreasing with respect to its second argument (A3). Then, v1 = v2,
and J1 = J2 almost everywhere.

(ii) Let J ∈ BV (0, T ) be given. Then, the variational solution v of

∂tv(t, x) + |∇xv(t, x)|2 = −R(x, J (t)), t > 0, x ∈ R
d , (4)
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Concentration in Lotka–Volterra parabolic equations: an… 107

with initial data vin, is the unique locally Lipschitz viscosity solution of (4) over
(0, T ] × R

d . Moreover, v is independent of the choice of a representative of J in
BV . Namely, if (4) is considered with two source terms J1 and J2 in BV (0, T )

such that J1 = J2 almost everywhere in (4), then v1 = v2.

Theorem 1.2 suggests the following argument, which will be a key strategy in the
present work. It is possible to consider J being given as a source term in (P0), and
show separately that the solution satisfies the constraint min v(t, ·) = 0, in order to
prove that (v, J ) is the unique viscosity solution of (P0). This enables decoupling the
Hamilton–Jacobi equation from its constraint.

In this paper, we propose and investigate a numerical scheme for (Pε) which enjoys
stability properties when the parameter ε goes to 0. Indeed, because of the definition
of Iε in (Pε), the problem becomes stiff in the small-ε regime. If no specific strategy
was employed, the accuracy of the numerical approximation of (Pε) would hence be
deteriorated in the asymptotic regime. Schemes specifically designed for such singular
problems are called Asymptotic-Preserving (AP). They were introduced for kinetic
equations [21, 24, 25], and their properties are usually summarized by the following
diagram

(Pε)
ε → 0−−−−−−−→ (P0)

h → 0

�
⏐
⏐
⏐
⏐
⏐

�
⏐
⏐
⏐
⏐
⏐
h → 0

(
Shε
) −−−−−−−→

ε → 0

(
Sh0
)

,

that should be understood as follows: an equation (Pε) depending on a parameter
ε > 0 is given, and its solution converges when ε → 0 to the solution of another
equation (P0). The scheme

(
Shε
)
, where all the discretization parameters are included

in the notation h, enjoys the AP property if its solution converges when h > 0 is
fixed and ε → 0, to the solution of the scheme

(
Sh0
)
. Moreover, the solution of the

scheme (Shε ) must converge to the solution of (Pε) when ε > 0 is fixed and h → 0,
and the scheme (Sh0 ) has to be convergent to the solution of problem (P0), when
h → 0. Even if it is in general not true, an AP scheme can also enjoy the stronger
property of beingUniformly Accurate (UA), meaning that its precision is independent
of ε. There is a large literature about AP schemes for various asymptotics of kinetic
equations [15, 22], but, to the best of our knowledge, there are few results in case
the asymptotic problem belongs to the class of Hamilton–Jacobi equations: a scheme
for front propagation in a one-dimensional kinetic linear BGK equation is analyzed in
[20], a scheme for dynamics of concentration in a selection-mutation equation close to
(Pε) but with an integral mutation kernel is proposed, tested but not analyzed in [6], and
a model structured with age but where mutations are not considered is treated in [1]. In
contrast with AP schemes designed for linear kinetic equations, the latter works share
the following features: the nonlinear character of the continuous problem (Pε), and
the need of a specific numerical analysis for the approximation of Hamilton–Jacobi
equations (P0).
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108 V. Calvez et al.

The discretizations of the two problems (Pε) and (P0) raise several challenges. Con-
cerning (Pε), the stiffest term Iε is handled implicitly in the numerical approximation.
It implies stability in the small ε limit, but it requires the resolution of a nonlinear scalar
equation, whose cost is independent of ε. The other terms are discretized according
to the properties expected for the scheme in the limit ε → 0.

Thenumerical analysis of the constrainedHamilton–Jacobi problem (P0) is original,
to the best of our knowledge. We identified two important difficulties: the unbounded
character of the solution on the one hand, and the lack of regularity of J on the other
hand.We propose a finite-difference scheme for (P0), which enjoys partial monotonic-
ity properties. The classical Hamilton–Jacobi side of the problem is handled with a
standard monotonic scheme compatible with the discrete maximum principle [11, 36].
The contribution issued from the constraint comes with a nonlinear scalar problem to
solve. During this step, the monotonicity of R with respect to its second argument is
crucially used to handle the lack of regularity. Thanks to this construction, the scheme
enjoys strong stability properties even if it is nonlocal, nonlinear, and it is used for
unbounded data. The convergence of the scheme is a consequence of these stability
estimates, via compactness arguments. The identification of the limit with the viscosity
solution of (P0) requires more work. It is done using viscosity procedure, following
the framework of [11]. However, as J is only in BV , it lacks the Lipschitz regularity
necessary to handle time-dependency in such proofs. This difficulty is overcomedwith
the introduction of a regularized problem, in which the Hamilton–Jacobi equation is
decoupled from its constraint.

The paper is organized as follows: the scheme for (Pε) is constructed, in Sect. 2, as
well as the scheme for the limit problem (P0). The AP property of the scheme for (Pε)
is proved in Sect. 3. The convergence of the scheme for (P0) is proved in Sect. 4, while
the convergence of the scheme for (Pε) for a given positive ε > 0 is treated in Sect. 5.
Finally, various properties of the schemes are illustrated and discussed via numerical
tests in Sect. 6.

2 Construction of the scheme andmain results

In this section, we present the construction of an AP scheme for (Pε) in dimension
d = 1, and we state its properties. Presenting the results in dimension 1 avoids useless
technical complications in what follows. However, the scheme can be generalized
to any finite dimension, and its properties can be proved as in dimension 1. The
generalization of the scheme in higher dimension is presented in Sect. 6.6.

Let T > 0 be fixed, the number Nt of time steps be given. The time step is defined
as �t = T /Nt , and let tn = n�t for n ∈ [[0, Nt ]]. The trait step is denoted �x > 0,
and the grid is defined with xi = x0 + i�x for a given x0 ∈ R and for all i ∈ Z. For
n ∈ [[0, Nt − 1]] and i ∈ Z, the scheme for (Pε) is given by
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Concentration in Lotka–Volterra parabolic equations: an… 109

⎧
⎪⎪⎨

⎪⎪⎩

un+1
i − uni

�t
+ H

(
uni − uni−1

�x
,
uni+1 − uni

�x

)

= ε
uni+1 − 2uni + uni−1

�x2
− R(xi , I

n+1)

I n+1 = �x
∑

i∈Z
ψ(xi )e−un+1i /ε.

(Sε)

Note that sequences (uni )n,i and (I n+1)n depend on ε, although it is ommitted to
simplify the notation. The scheme is initialized with u0i = uinε (xi ) for all i ∈ Z. The
function H is given by

H(p, q) = max
{
H+(p), H−(q)

}
, (5)

with

H+(p) =
{
p2 if p > 0

0 otherwise,
and H−(q) =

{
q2 if q < 0

0 otherwise.
(6)

Such a choice of discretization for the HamiltonianH defined in (3) makes the scheme
(Sε) enjoy monotonicity properties. It is a classical assumption in numerical schemes
for Hamilton–Jacobi equations, see [11, 36], and discretizations like (5) were for
instance used in [19]. Here, together with the implicit definition of I n+1 in (Sε), it
provides stability properties in the small ε limit. Moreover, we will show that the
monotonicity is conserved when ε → 0. It is a key ingredient of the convergence of
the scheme in the asymptotic regime.

In what follows, we will denote, for a given L > 0,

CH (L) = sup
|p|≤L

|(H+)′(p)| + sup
|q|≤L

|(H−)′(q)| = 4L. (7)

Then, the following results hold:

Proposition 2.1 (Convergence of the scheme (Sε)) Suppose that assumptions (A1)-
(A2)-(A3)-(A5)-(A6) are satisfied, and that ε > 0 and T > 0 are fixed. Let� ∈ (0, 1).
There exist IM ′ > 0, and �t0 > 0 such that for all �t < �t0 and �x satisfying

2ε
�t

�x2
+ CH (L0 + T κ)

�t

�x
= �, (CFLε)

with L0 defined in (A6), CH in (7), and

κ = sup
0≤I≤IM ′

‖R(·, I )‖W 2,∞(R), (8)

the scheme (Sε) is well defined. Moreover, there exists a constant C(ε), depending
on T , ‖∂2t uε‖∞,[0,T ]×R, ‖∂kx uε‖∞,[0,T ]×R for k = 1, 2, 3, and

∥
∥∂2x (ψnε)

∥
∥∞,[0,T ]×R

,
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110 V. Calvez et al.

such that for all n ∈ [[0, Nt − 1]],

sup
i∈Z

|un+1
i − uε(tn+1, xi )| ≤ C(ε)(| ln(�t)|�t + �x), (9)

and
∣
∣
∣Iε(tn+1) − I n+1

∣
∣
∣ ≤ C(ε) (| ln(�t)|�t + �x) , (10)

where uε and Iε are defined in (Pε), un+1 = (un+1
i )i∈Z and I n+1 in (Sε), nε in (1) and

ψ in (A1).

Remark 2.1 It is worth remarking that the L∞ norms of derivatives of uε and nε in
Prop. 2.1 are well defined, provided that ψ is smooth enough. Indeed, the bound for
‖∂xuε‖∞,[0,T ]×R is a consequence of the Lipschitz property of uε in x , and comes
from the maximum principle applied to (Pε) derivated with respect to x . Bounds for
higher order derivatives, as well as derivatives of nε, are consequences of Duhamel’s
formula for (1) and (Pε), and of regularizing effects of the Laplacian. As it is not the
purpose of this paper, we omit the details of these properties. One can refer to [16] for
the necessary tools.

The estimate in | ln(�t)|�t in (9) and (10) comes from the quadrature rule in the
approximation of Iε. At first sight, this could be seen as a reduction of order of the
scheme, compared to the order 1 in �t that could be expected. However, because
of (CFLε), one has �x =�t→0 O(

√
�t), so that the order reduction in time has no

impact on the precision of scheme (Sε), when ε > 0 is fixed.

Remark 2.2 The behavior of C(ε) when ε goes to 0 brings serious difficulties.
Indeed, it depends on ‖∂2t uε‖∞,[0,T ]×R, on ‖∂kx uε‖∞,[0,T ]×R for k = 1, 2, 3, and
on ‖∂2x (ψnε)‖∞,[0,T ]×R, see Sect. 5. As it is emphasized in Remark 2.1, these quan-
tities are well-defined when ε > 0 is fixed. However, they are a priori not uniformly
bounded with respect to ε, as nε concentrates as a sum of Dirac masses when ε → 0.
As a consequence, C(ε) may go to +∞ when ε → 0. If estimates (9) and (10) were
equalities, it would mean that the time step �t would have to be refined according to
ε to make (Sε) approximate (Pε) properly. The asymptotic behavior of C(ε) for small
ε does not only come from regularity issues of uε when ε → 0. Indeed, it is strongly
related to the fact that Prop. 2.1 holds for fixed ε > 0 only. In particular, the constant
κ in (CFLε) depends on ε and may go to +∞ when ε goes to 0. To overpass this
difficulty, Prop. 2.1 is supplemented by the two forthcoming propositions, that give
the behavior of (Sε) when ε is small. They suggest that estimates (9) and (10) might
be too loose when ε → 0, and that C(ε) is most likely an excessively large upper
bound for the convergence of scheme (Sε).
The fact that the convergence error of scheme (Sε) depends on ε, and is a priori not
uniformly bounded with respect to ε, means that we do not establish the uniform accu-
racy of scheme (Sε) in Prop. 2.1. However, numerical tests suggest that this property
is true, in appropriate discrete functional spaces. More precisely, the approximation
error (in L∞ norm for u, and discrete L1 norm for I ) of (Sε) is uniformly bounded
with respect to ε, and decreases to 0 when �t → 0. We refer to Sect. 6.5 for details.
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Remark 2.3 Since the scheme (Sε) is a coupled system of two implicit equations,
a nonlinear equation has to be solved to compute (un+1

i )i∈Z and I n+1. The fact that
I n+1 is well-defined is straightforward. Indeed, it is solution of the equation ϕ(I ) = 0,
where

ϕ(I ) = I − �x
∑

i∈Z
ψ(xi )e

−ũn+1
i /εe�t R(xi ,I )/ε, (11)

with

ũn+1
i = uni + ε�t

uni+1 − 2uni + uni−1

�x2
− �t H

(
uni − uni−1

�x
,
uni+1 − uni

�x

)

.

Note that (11) iswell-defined for any I ∈ R if (uni )i∈Z satisfies (A4)-(A5)-(A6)-(A7). It
is worth remarking that since ϕ is a difference between an increasing and a decreasing
function, there exists a unique I n+1 ∈ R such that ϕ(I n+1) = 0. This property is
independent of ε, therefore the scheme (Sε) is well-defined for all ε ∈ (0, 1].

In practice, I n+1 is computed first, using Newton’s method to solve the scalar
nonlinear equationϕ(I ) = 0.Note that, as scheme (Sε) is implicit only in I andnot inu,
the nonlinear equation that has to be solved to compute the iterations of scheme (Sε) is
only in dimension 1. Thiswould not be the case if other terms, as the diffusion, had been
taken implicit. A priori, the resolution of a scalar nonlinear equation with Newton’s
methoddoes not represent a particular difficulty.However, itmust be implementedwith
care, to ensure that it is properly solved for all ε ∈ (0, 1], with constant computational
cost. The solution of equation (11) is uniformly bounded with respect to ε. Indeed, we
prove in Sect. 3 that it is bounded by 2IM when ε is small enough, with IM defined in
(A2), and a bound is given in Sect. 5 for larger ε, see Remark 5.1. However, (11) is very
sensitive to approximations in the arguments of the exponentials, that are dramatically
increased when ε is small. As a consequence, the numerical resolution of (11) can
collapse duringNewton’s iterations. To avoid such a phenomenon, Newton’s iterations
are computed as analytically as possible, and implemented with special care of the
compensations between terms. Namely, as Newton’s method consists in a fixed-point
algorithm for the function I 
→ I − ϕ(I )/ϕ′(I ), we use the reformulation

I − ϕ(I )

ϕ′(I )
=

�x
∑

i∈Z
ψ(xi ) (ε − I�t∂I R(xi , I )) e

−
(
ũn+1
i −�t R(xi ,I )−m

)
/ε

�t�x
∑

i∈Z
ψ(xi )∂I R(xi , I )e

−
(
ũn+1
i −�t R(xi ,I )−m

)
/ε − εem/ε

,

with

m = min
j∈Z

{
ũn+1
j − �t R(x j , I )

}
,
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112 V. Calvez et al.

in the iterations. When it is not enough, ϕ(I ) = 0 with ϕ defined in (11) is replaced
by the equivalent equation ϕ̃(I ) = 0, with

ϕ̃(I ) = ln(I ) − ln(�x) − ln

(
∑

i∈Z
ψ(xi )e

−ũn+1
i /εe�t R(xi ,I )/ε

)

,

that is also solved with Newton’s method, and

I − ϕ̃(I )

ϕ̃′(I )
= I−

(

ε ln(�x) + m + ε ln

(
∑

i∈Z
ψ(xi )e

−
(
ũn+1
i −�t R(xi ,I )−m

)
/ε

)

− ε ln(I )

)

×
I
∑

i∈Z
ψ(xi )e

−
(
ũn+1
i −�t R(xi ,I )−m

)
/ε

∑

i∈Z
ψ(xi )

(

�t I∂I (R(xi , I ) − ε)e
−
(
ũn+1
i −�t R(xi ,I )−m

)
/ε
) .

We refer to [6], and to the codes available at [7], for more details.

Remark 2.4 Since it is defined for indices i ∈ Z, the scheme (Sε) cannot be imple-
mented exactly as it is defined. However, Prop. 2.1 also holds for a truncated version
of the scheme (Sε), in which the sum defining I n+1 is considered on a finite number
of indices. We refer to Sect. 5 for details.

Prop. 2.1 establishes the convergence of scheme (Sε) for fixed ε > 0. In this regime,
the solution of (Pε) is smooth (Remark 2.1), so that the only difficulty of this result
comes from the nonlinearity of scheme (Sε). For fixed ε > 0, stability estimates that
are uniform in the discretization, are obtained thanks to the monotonicity properties
of (Sε). As scheme (Sε) is semi-implicit, the propagation of truncation errors is then
done using the inverse functions theorem, see Sect. 5. The limit of (Sε) when ε → 0,
with fixed discretization parameters is stated in the following proposition:

Proposition 2.2 (Convergence of the scheme (Sε) to the scheme (S0)) Under assump-
tions (A1)-(A2)-(A3)-(A5)-(A6)-(A7), and supposing that �t and �x are fixed, such
that

2ε
�t

�x2
+ CH (L0 + T K )

�t

�x
≤ 1, (CFLε→0)

is satisfied for all ε ∈ (0, 1], where L0 is defined in (A6), K in (A3) and CH in (7).
Let (un+1

i )n,i and (I n+1)n be the ε-dependent sequences defined by (Sε). Then, for all
n ∈ [[0, Nt − 1]] and for all i ∈ Z,

un+1
i −→

ε→0
vn+1
i , I n+1 −→

ε→0
Jn+1
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where the sequences (vn+1
i )n,i and (Jn+1)n satisfy the scheme

⎧
⎪⎪⎨

⎪⎪⎩

vn+1
i − vni

�t
+ H

(
vni − vni−1

�x
,
vni+1 − vni

�x

)

= −R(xi , J
n+1), n ∈ [[0, Nt − 1]], i ∈ Z

min
i∈Z vn+1

i = 0, n ∈ [[0, Nt − 1]],
(S0)

initialized with v0i = vin(xi ), for all i ∈ Z.

Note that Prop. 2.2 also holds for the truncated scheme that is implemented in
practice, as in Remark 2.4. Regarding the well-posedness of (S0), it is a consequence
of Prop. 2.2. Indeed, the convergence of un+1

i and I n+1 when ε → 0 gives the
existence of a solution of the implicit scheme (S0). The fact that (v

n+1
i )i∈Z and Jn+1

are uniquely defined follows from the proof of Prop. 2.2. Discussion about the direct
implementation of (S0) is postponed to Sect. 4.

Let us emphasize on the fact that, there are two different stability conditions in Prop.
2.1 and Prop. 2.2, namely (CFLε) and (CFLε→0). They have similar expressions,
except the κ in (CFLε) that is a K in (CFLε→0), but they play the same role in
both propositions. In fact, they are necessary conditions for scheme (Sε) to enjoy the
monotonicity properties that yields stability estimates. The difference comes from
the fact that Prop. 2.1 is established for fixed ε > 0 and is true for any �t ≤ �t0,
while Prop. 2.2 is true for fixed �t and any ε ≤ ε0. Note that K in (CFLε→0) is also
independent on �t . On the contrary, κ in (CFLε) depends on ε, as the upper bound
IM ′ may grow to +∞ when ε → 0. It is worth noticing that (CFLε) and (CFLε→0)
are compatible, and could have been summarized by the following (more restrictive)
condition

2ε
�t

�x2
+ CH

(

L0 + T max{K , sup
ε∈[ε0,1]

κε}
)

= � ∈ (0, 1),

where the dependency on ε of κ has been explicited for clarity.
Prop. 2.2 is a consequence of themonotonicity of scheme (Sε),which gives uniform-

in-ε-stability estimates for fixed discretization. In particular, it yields that for all n ∈
[[0, Nt − 1]], (I n+1)ε is bounded. Compactness arguments are then used to establish
the convergence. We refer to Sect. 3 for details. The next proposition states that the
solution of the scheme (S0) converges to the solution of the limit equation (P0) when
the discretization parameters go to 0. To this end, we extend the definition of the
scheme (S0), in order to make it coincide at the grid points with a function defined
over [0, T ]×R, and we reformulate it, so that themonotonic component of the scheme
is taken apart. It can be seen as an operator, denoted byM0

s , acting on functions defined
on R. Namely, for all s ∈ (0,�t] and f : R → R, M0

s ( f ) : R → R is defined by

∀x ∈ R, M0
s ( f )(x) = f (x) − s H

(
f (x) − f (x − �x)

�x
,
f (x + �x) − f (x)

�x

)

.

(M0
s )
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Suppose now that the ratio λ = �t/�x is fixed. Let us define (t, x) 
→ v�t (t, x) on
[0, T ] × R, and t 
→ J�t (t) on (0, T ], such that for all n ∈ [[0, Nt − 1]], s ∈ (0,�t],
and x ∈ R,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v�t (tn + s, x) = M0
s (v�t (tn, ·)) (x) − sR (x, J�t (tn + s))

J�t (tn + s) = Jn+1

min
i∈Z v�t (tn+1, xi ) = 0,

(12a)

(12b)

(12c)

and initialized with v�t (0, ·) = vin. The function J�t is piecewise constant, with
Jn+1 defined in (S0). It is easy to remark, that v�t and J�t coincide with the solution
of the scheme (S0) at the grid points

∀n ∈ [[0, Nt ]], ∀i ∈ Z, v�t (tn, xi ) = vni , and ∀n ∈ [[0, Nt − 1]], J�t (tn+1) = Jn+1.

This is due to the fact that the constraint min v�t = 0 is only considered on the grid
points in (12c).

For the sake of simplicity, let us denote

CH = CH (14(L0 + KT ) + 1), (13)

in what follows, where CH is defined in (7), L0 in (A6), and K in (A3).

Proposition 2.3 (Convergence of the scheme (S0)) Suppose that the assumptions of
Theorem 1.1 are satisfied, and that vin satisfies (A5)-(A6)-(A7) for ε = 0. Suppose
that the ratio �t/�x is fixed such that

CH �t

�x
≤ 1, and

�t

�x

√
(L0 + T K )2 + K ≤ 1, (CFL0)

with CH defined in (13), L0 in (A6), and K in (A3). Then for all t ∈ (0, T ] and for
all x ∈ R,

|v�t (t, x) − v(t, x)| −→
�t→0

0,

and the convergence is locally uniform on (0, T ] × R. Moreover, for almost all t ∈
(0, T ],

|J�t (t) − J (t)| −→
�t→0

0,

where v and J are uniquely determined as the viscosity solution of (P0), and with v�t ,
J�t defined by (12).

Remark that condition (CFL0) contains two items. Although they both show linear
relations between �t and �x , they are of very different nature. Indeed, the first one is
a classical stability condition, which yields in particular the monotonicity of scheme
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(M0
s ), with CH in (13) taken a few larger than necessary for technical reasons. On

the other hand, the second condition makes J�t nondecreasing. This is crucial in the
compactness argument used to prove that J�t converges when �t → 0. We refer to
Sect. 4 for details.

Contrary to Prop. 2.1, Prop. 2.3 does not give any convergence rate for scheme (S0).
This comes from the lack of regularity of the viscosity solution v and J of (P0). Indeed,
J ∈ BV (0, T ), while v enjoys Lipschitz regularity in [0, T ] × R. This property is
a consequence of the definition of v as the variational solution of (P0), but it is also
obtained in Sect. 4, where v is shown to be a limit of Lipschitz functions. According to
this observation, one can come back to Prop. 2.1, and remark that no uniform bound
in ε is to be expected for C(ε), even if the estimates of the proof of Prop. 2.1 were
made sharper.

Even though it is defined for all index i ∈ Z, the scheme (S0) can be implemented on
a truncated domain, that is reduced at each time step, but with no more approximation.
Hence, Prop. 2.3 holds for the scheme that is implemented in practice.

As for Prop. 2.1 and Prop. 2.2, themonotonicity of scheme (S0) is a crucial property.
Indeed, it provides uniform-in-the-discretization-stability estimates that yield the con-
vergence of v�t and J�t when�t → 0, through compactness arguments. The delicate
part of the proof of Prop. 2.3 is the identification of the limits of v�t and J�t with the
viscosity solution of (P0), as J�t lacks the Lipschitz regularity required for standard
viscosity procedures. This issue is overcomed with an appropriate regularization of
J�t , that we plug as source term in a side regularized problem. The viscosity procedure
is done with the regularized problem, decoupled from its constraint. The conclusion
is a consequence of the uniqueness of the viscosity solution of (P0) (Theorem 1.2).
Detailed proof of Prop. 2.3 is in Sect. 4.

3 Convergence of (S") to the limiting scheme (S0)

In this section, we prove that (Sε) enjoys stability properties with respect to ε ∈ (0, 1],
thus Prop. 2.2 follows. Prop. 2.2 states that, when ε goes to 0 with fixed discretiza-
tion parameters, the solution of (Sε) converges to the solution of (S0). It relies on a
convenient reformulation of the scheme (Sε), for all n ∈ [[0, Nt − 1]] and for all i ∈ Z

⎧
⎪⎨

⎪⎩

un+1
i = Mε

�t

(
un
)

i − �t R(xi , I
n+1)

I n+1 = �x
∑

i∈Z
ψ(xi )e

−un+1
i /ε,

(14a)

(14b)

where un = (uni )i∈Z, and Mε
�t (u

n) ∈ R
Z is defined for all i ∈ Z by

Mε
�t

(
un
)

i = uni + ε�t
uni+1 − 2uni + uni−1

�x2
− �t H

(
uni − uni−1

�x
,
uni+1 − uni

�x

)

.

(15)
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As it has been announced in Sect. 2, the scheme (Sε) enjoys monotonicity proper-
ties. More precisely, it is a consequence of the first step (15). Indeed, the following
properties hold (see [11], Prop. 3.1, p. 8):

Lemma 3.1 Let u = (ui )i∈Z and v = (vi )i∈Z ∈ R
Z, and Mε

�t defined as in (15). Let
L > 0, and suppose that 2ε�t/�x2 + �tCH (L)/�x ≤ 1, with CH (L) defined in
(7). Then the following results hold true

• If there exists i ∈ Z such that, |ui − ui±1| ≤ L�x, |vi − vi±1| ≤ L�x, and
∀ j ∈ [[i − 1, i + 1]], u j ≤ v j , then Mε

�t (u)i ≤ Mε
�t (v)i .

• If for all i ∈ Z, |ui−ui−1| ≤ L�x, then for all i ∈ Z,
∣
∣Mε

�t (u)i − Mε
�t (u)i−1

∣
∣ ≤

L�x .
• If u − v = (ui − vi )i∈Z ∈ 
∞(Z), and if, for all i ∈ Z, |ui − ui−1| ≤

L�x, and |vi − vi−1| ≤ L�x, then Mε
�t (u) − Mε

�t (v) ∈ 
∞(Z) and∥
∥Mε

�t (u) − Mε
�t (v)

∥
∥∞ ≤ ‖u − v‖∞.

Proof This lemma is an immediate consequence of the fact that H defined in (5) is
nondecreasing in its first variable, and nonincreasing in its second. Then, for fixed
i ∈ Z, Mε

�t (u
n)i defined in (15) is a nondecreasing function of uni−1, u

n
i and uni+1,

thanks to (CFLε). This yields immediately the first point of the Lemma. To obtain the
other results, remark that for any c ∈ R, and for all i ∈ Z,

Mε
�t (u

n + c)i = Mε
�t (u

n)i + c,

and use the preservation of inequalities to uni ≤ uni−1 + L�x , uni ≥ uni−1 − L�x ,
uni ≤ vni + ‖u − v‖∞, and uni ≥ vni − ‖u − v‖∞. ��

Using this lemma and the reformulation (14) of the scheme (Sε), stability properties
of the scheme (Sε) when ε goes to 0 are proved. The following lemma is stated:

Lemma 3.2 Suppose that assumptions (A1)-(A2)-(A3)-(A5)-(A6)-(A7) hold true, and
that �t and �x are fixed such that the inequality (CFLε→0) is satisfied. Then, there
exists an ε0 > 0, depending only on the constants arising in the assumptions and on
�x and �t , such that for all ε ∈ (0, ε0), the sequence (uni )n,i defined by the scheme
(Sε) satisfies:

(i) Uniform Lipschitz continuity in trait: For all n ∈ [[0, Nt ]], there exists a constant
Ln = L0 + n�t K ≤ L0 + T K , with L0 defined in (A6) and K in (A3), such that
the sequence un = (uni )i∈Z enjoys Ln-Lipschitz property:

∀i ∈ Z,

∣
∣
∣
∣

uni+1 − uni
�x

∣
∣
∣
∣ ≤ Ln .

(ii) Uniform bound from below for un: For all n ∈ [[0, Nt ]], there exists bn ∈ R, such
that bn ≥ bNt

= b − T H(a, a) − T K , and that for all i ∈ Z,

uni ≥ a|xi − x0| + bn,

where a and b have been defined in (A5), H in (5), K in (A3), and T is the fixed
final time.
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(iii) Uniform bounds for (I n)n∈[[1,Nt ]]: For all n ∈ [[0, Nt − 1]],

Im/2 ≤ I n+1 ≤ 2IM .

(iv) Estimate for min un: There exist cm and cM such that for all n ∈ [[0, Nt ]],

cmε ≤ min
i∈Z uni ≤ cMε,

and cm ≤ cinm and cM ≥ cinM depend only on the constants defined in the assump-
tions and on �x and �t .

The proof of Lemma 3.2 is done by induction, using Lemma 3.1. We refer to to
Appendix A for details. This technical lemma provides the necessary tools to prove
the convergence of the sequences defined by the scheme (Sε) to the sequences defined
by the scheme (S0):

Proof of Prop. 2.2 As for the proof of Lemma 3.2, we proceed by induction. Thanks
to the assumptions, there exists a sequence (v0i )i∈Z such that u0i −→

ε→0
v0i for all i ∈ Z.

We suppose that it is true for a given n ∈ [[0, Nt − 1]] and we prove that there exist
(vn+1

i )i∈Z and Jn+1 ∈ R such that

∀i ∈ Z, un+1
i −→

ε→0
vn+1
i , and I n+1 −→

ε→0
Jn+1.

First of all, (uni )i∈Z enjoys the Lipschitz property (i) of Lemma 3.2, and (CFLε→0)
holds. These properties are uniform with respect to ε small enough, thus the conver-
gence of the first step (15) of the scheme (Sε) follows immediately

∀i ∈ Z, Mε
�t (u

n)i −→
ε→0

M0
�t (v

n)i = vni − �t H

(
vni − vni−1

�x
,
vni+1 − vni

�x

)

.

Moreover, Lemma 3.2 gives that (I n+1)ε∈(0,ε0) is uniformly bounded with respect to
ε, so that I n+1 −→ Jn+1 when ε → 0, up to an extraction. It provides an extraction
of (un+1

i )ε∈(0,ε0) such that

∀i ∈ Z, un+1
i −→

ε→0
vn+1
i = M0

�t (v
n)i − �t R(xi , J

n+1),

and such that mini∈Z vn+1
i = 0, thanks to the point (iv) of Lemma 3.2. Hence,

(vn+1
i )i∈Z satisfies the scheme (S0).
To conclude theproof, onehas to prove that all extractions of (I n+1)ε∈(0,ε0) converge

to the same limit.Weproceed by contradiction, supposing that there are two extractions
which converge respectively to Jn+1

a and Jn+1
b , with Jn+1

a < Jn+1
b . As previously, it

provides two extractions of (un+1
i )ε∈(0,ε0) which converges respectively to vn+1

i,a and
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vn+1
i,b when ε → 0, where

⎧
⎪⎨

⎪⎩

∀i ∈ Z, vn+1
i,a = M0

�t (v
n)i − �t R

(
xi , J

n+1
a

)
and min

i∈Z vn+1
i,a = 0,

∀i ∈ Z, vn+1
i,b = M0

�t (v
n)i − �t R

(
xi , J

n+1
b

)
and min

i∈Z vn+1
i,b = 0,

and as R is decreasing with respect to its second variable (A3),

∀i ∈ Z, vn+1
i,a − vn+1

i,b = �t
(
R
(
xi , J

n+1
i,b

)
− R

(
xi , J

n+1
i,a

))
< 0.

Eventually,we remark that (vn+1
i,b )i∈Z is increasing enough at infinity, since the inequal-

ity (ii) of Lemma 3.2 is uniform with respect to ε when ε → 0. As a consequence,

∃ j ∈ Z, vn+1
j,b = min

i∈Z vn+1
i,b = 0.

But the previous inequality then gives that vn+1
j,a < 0, which contradicts with the fact

that mini∈Z vn+1
i,a = 0.

4 Convergence of the limiting scheme (S0)

As in Sect. 3, stability estimates for the scheme (S0) are obtained using the convenient
reformulation (12) of the scheme (S0), in which the monotonic component of the
scheme (M0

s ) is taken apart. We start by recalling useful properties of the monotonic
scheme (M0

s ) (see [11]):

Lemma 4.1 Let s ∈ (0,�t] andM0
s defined as in (M0

s ). Let L > 0, and suppose that
�tCH (L) ≤ �x, with CH (L) defined in (7). Then the following results hold true

(i) If f (x), f (x±�x), g(x) and g(x±�x) are such that f (x) ≤ g(x), f (x±�x) ≤
g(x ± �x), and

∣
∣
∣
∣
f (x) − f (x ± �x)

�x

∣
∣
∣
∣ ≤ L,

∣
∣
∣
∣
g(x) − g(x ± �x)

�x

∣
∣
∣
∣ ≤ L,

then M0
s ( f )(x) ≤ M0

s (g)(x).
(ii) In particular, if f and g are two L-Lipschitz functions such that, f ≤ g, then

M0
s ( f ) ≤ M0

s (g). Moreover, both M0
s ( f ) and M0

s (g) are L-Lipschitz continu-
ous.

In particular, using the notations and assumptions of Lemma 4.1, if f : R 
→ R is
a L-Lipschitz function such that ∀i ∈ Z, f (xi ) ≥ 0, then ∀i ∈ Z, M0

s ( f )(xi ) ≥ 0.
Moreover, if

∃(a, a) ∈ [0, L]2, ∃(b, b) ∈ R
2, ∀x ∈ R, a|x − x0| + b ≤ f (x) ≤ a|x − x0| + b,
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then

∀x ∈ R, a|x − x0| + b − sH(a, a) ≤ M0
s ( f )(x) ≤ a|x − x0| + b.

Using these notations, we prove the following lemma, which establishes stability
properties of the scheme (S0), as well as the fact that J�t is nondecreasing.

Lemma 4.2 Suppose that the assumptions of Prop. 2.3 are satisfied, and that v�t and
J�t are defined in (12). The following results hold:

(i) Uniform Lipschitz continuity in trait: for all t ∈ [0, T ], there exists a constant
Lt = L0 + t K ≤ LT , with L0 defined in (A6) and K in (A3), such that v�t (t, ·)
is Lt -Lipschitz continuous.

(ii) Uniform Lipschitz continuity in finite time: for all x ∈ R, v�t (·, x) is (L2
T + K )

Lipschitz continuous on [0, T ], where LT is defined in (i) and K in (A3).
(iii) Uniform bounds for v�t : for all t ∈ [0, T ], there exist bt , bt ∈ R such that

bt = b − t H(a, a) − t K and bt = b + t K , such that

∀x ∈ R, a|x − x0| + bt ≤ v�t (t, x) ≤ a|x − x0| + bt .

where a, a, b and b are defined in (A5), H in (5), and K in (A3).
(iv) Uniform bounds for J�t : ∀t ∈ (0, T ], Im ≤ J�t (t) ≤ IM .

(v) Monotonicity of J�t : J�t is nondecreasing on (0, T ].
This lemma is similar to the stability properties stated in Sect. 3, but it is important to

notice that all the constants are independent of the discretization. Its proof is postponed
to Appendix B. Moreover, the result (v) only holds for the limit scheme (S0).

Lemma 4.2 gives hints for the implementation of (S0) independently of (Sε). Indeed
thanks to the properties above, and to (A2)-(A3),

[Im, IM ] � J 
→ min
i∈Z

{

vni − �t H

(
vni − vni−1

�x
,
vni+1 − vni

�x

)

− �t R(xi , J )

}

, (16)

is increasing, takes a negative value at Im , a positive one at IM , and it is equal to 0 at
Jn+1. One can also notice that it is continuous, as the minimum in (16) is taken on
a finite number of indices, thanks to Lemma 4.2-(iii) and (A3). Even with no further
result on the regularity of R, and hence on (16), Jn+1 can be approximated, for instance
by dichotomy. In practice, an approximated Newton’s method works, and it is more
efficient in terms of computational time.

The next step consists in establishing the convergence of v�t and J�t defined in
(12) when �t and �x go to 0 with �t/�x fixed. The following results hold

Lemma 4.3 Suppose that the assumptions of Prop. 2.3 are satisfied, and that v�t , J�t

are defined by (12). Then,

(i) Convergence of (v�t )�t>0: there exists v0 ∈ C0([0, T ] × R), such that

∀(t, x) ∈ [0, T ] × R, v�t (t, x) −→
�t→0

v0(t, x) up to a subsequence,
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and with min v0(t, ·) = 0, for all t ∈ [0, T ]. Moreover, the convergence is locally
uniform on [0, T ] × R.

(ii) Convergence of (J�t )�t>0: there exists J0 ∈ BV (0, T ), lower semi-continuous,
such that

for almost all t ∈ (0, T ], J�t (t) −→
�t→0

J0(t) up to a subsequence.

Moreover, J0 is nondecreasing, and ∀t ∈ (0, T ], Im ≤ J0(t) ≤ IM .

Proof Thanks to Lemma 4.2, the family (v�t )�t>0 is composed of Lipschitz functions,
having the same Lipschitz constant. Considering R > 0, one can notice that since v�t

enjoys Lipschitz-in-time regularity

‖v�t‖L∞([0,T ]×[−R,R]) ≤ (L2
T + K )T + ‖vin‖L∞([−R,R]),

hence the family (v�t ) satisfies the hypothesis ofAscoli’s theorem for (t, x) ∈ [0, T ]×
[−R, R]. Then, there exists a function v0 ∈ C0([0, T ]×R) such that v�t −→�t→0 v0
uniformly on [0, T ]×[−R, R].Moreover, (v�t )�t is a sequence of uniformly coercive
and Lipschitz functions, such that

∀n ∈ [[0, Nt ]], min
i∈Z v�t (tn, xi ) = 0.

Hence, there exists a constant c such that for all t ∈ [0, T ],

|min v�t (t, ·)| ≤ c(�t + �x),

and min v0(t, ·) = 0 is a consequence of the local uniform convergence of (v�t )�t to
v0. This proves (i).

The second point (ii) is a consequence of Helly’s selection theorem. Indeed, Lemma
4.2-(iv)-(v) states that (J�t )�t>0 is a sequence of uniformly bounded BV functions
with uniformly bounded total variation. Hence, there exists a BV function J̃0 such
that

J�t −→
�t→0

J̃0, pointwise in (0, T ] up to a subsequence.

Moreover, J̃0 is nondecreasing, and Im ≤ J̃0 ≤ IM , since these properties hold for
all J�t . Considering a lower semi-continuous function J0 such that J0 = J̃0 almost
everywhere in (0, T ] yields the result. ��
Remark 4.1 In what follows, the mention �t → 0 will always refer to a subsequence
for which the convergences of Lemma 4.3 hold true.

Note that, although it is not defined by the scheme, a value for J�t (0) is needed in
what follows, because of the compactness argument used below. When it is necessary,
we define J�t (0) = J 1. This choice consists in extending continuously J�t at 0, but
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it has no meaning from the point of view of the constraint of the scheme. However, it
is well-suited to the fact that J�t is bounded and nondecreasing.

To complete the proof of Prop. 2.3, it remains to identify v0 = v and J0 = J almost
everywhere, where (v, J ) is the viscosity solution of (P0). However, J0 enjoys onlyBV
regularity, and in particular it is not expected to be continuous (we refer toSect. 6,where
numerical tests show that J0 can have jumps). As a consequence, general convergence
results of numerical schemes for Hamilton–Jacobi equations such as [11] cannot be
applied directly. To the best of our knowledge, there is no general framework for finite-
differences numerical schemes for Hamilton–Jacobi equation when the Hamiltonian
is not continuous in time. In what follows, we propose a proof of the convergence of
the scheme (S0) to the viscosity solution of (P0). The key ingredient of the proof is
an appropriate regularization of J�t and J0, used in [2], and also in [8] for the study
of the uniqueness of viscosity solution of constrained Hamilton–Jacobi equation. For
k > 0 and �t ≥ 0, let us define

∀t ∈ [0, T ], J k�t (t) = inf
s∈[0,T ](J�t (s) + k|t − s|). (17)

The following results hold true

Lemma 4.4 Suppose that the assumptions of Prop. 2.3 are satisfied. Let J k�t and J k0
defined by (17). Then,

(i) For all �t ≥ 0, and for all k > 0, Im ≤ J k�t ≤ IM , and Jk�t is a nondecreasing
function on [0, T ].

(ii) For fixed �t ≥ 0, and for all t ∈ [0, T ], J k�t (t) ↗ J�t (t) when k → +∞.
(iii) For fixed �t ≥ 0, J k�t is a k-Lipschitz function on [0, T ].
(iv) For fixed k > 0, ‖J k�t − J k0 ‖∞ −→

�t→0
0.

Proof Weonly detail the proof of (iii). Let k > 0 be fixed. FromLemma 4.3, J�t (t) →
J0(t) almost everywhere in [0, T ] when �t → 0. We first remark that

J k�t (t) −→
�t→0

J k0 (t) a. e. in [0, T ]. (18)

Indeed, let us consider t ∈ [0, T ] such that J�t (t) →�t→0 J0(t). Since (J k�t (t))�t>0
is a bounded sequence, it admits a converging subsequence, once again denoted by
(J k�t (t))�t>0. Let us denote by 
 its limit. Since

∀s ∈ [0, T ], J k�t (t) ≤ J�t (s) + k|t − s|,

then letting �t → 0 in the previous inequality yields

∀s ∈ [0, T ], 
 ≤ J0(s) + k|t − s|,

so that 
 ≤ J k0 (t). Moreover, as J k�t (t) is defined as an infimum,

∀n ∈ N
∗, ∃s∗

n ∈ [0, T ], J�t (s
∗
n ) + k|t − s∗

n | − 1

n
≤ J k�t (t).
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Since (s∗
n )n≥1 converges (up to an extraction) to s∗ ∈ [0, T ] when n → +∞, taking

the lim inf in the previous inequality gives

J0(s
∗) + k|t − s∗| ≤ 
,

because J0 is lower semi-continuous.As a consequence J k0 (t) ≤ 
. The only adherence
value of (J k�t (t))�t>0 is then J k0 (t), which yields (18). To conclude, the uniform
convergence in (iii) is a consequence of the convergence almost everywhere of a
family of Lipschitz functions defined on a compact domain. ��
Remark 4.2 The uniform convergence in Lemma 4.4-(iii) does not generally hold true
in the limit k → ∞. This result will only be used for fixed k > 0.

Now that J k�t and J k0 are defined, we consider them as a source term respectively
in the scheme and in the equation. Namely, let us define vk the viscosity solution of
the Hamilton–Jacobi equation

∂tv
k + |∇xv

k |2 = −R(x, J k0 ), x ∈ R, t > 0, (19)

with initial data vin. Thanks to the Lipschitz properties of the right-hand side of (19), vk

exists, is uniquely determined, and enjoys Lipschitz-regularity properties. Moreover,
the following lemma establishes that, because of the construction of J k0 , v

k converges
when k → +∞ to the viscosity solution of (19) with J0 instead of J k0 . Similarly, let
us define vk�t by

vk�t (tn + s, x) = M0
s (v

k
�t (tn, ·))(x) − s R(x, J k�t (tn + s)), (20)

for all n ∈ [[0, Nt − 1]], s ∈ (0,�t], and x ∈ R, with M0
s defined in (M0

s ), and
initialized with vk�t (0, ·) = vin. The properties of vk and vk�t are summarized in the
following lemma:

Lemma 4.5 Suppose that the assumptions of Prop. 2.3 are satisfied. Let k > 0, vk and
vk�t defined by (19) and (20). Then, vk and vk�t enjoy the following properties

(i) Uniform Lipschitz continuity in trait: for all t ∈ [0, T ], vk(t, ·) and vk�t (t, ·) are
LT -Lipschitz continuous, with LT defined in Lemma 4.2-(i).

(ii) Uniform Lipschitz continuity in finite time: for all x ∈ R, vk(·, x) and vk�t (·, x) are
(L2

T + K )-Lipschitz continuous on [0, T ], where LT is defined in Lemma 4.2-(i),
and K in (A3).

(iii) Uniform bounds for vk: for all (t, x) ∈ [0, T ] × R,

b − KT ≤ vk(t, x) ≤ a|x − x0| + b + T K ,

where K , b, b, and a are defined in (A3) and (A5).
(iv) Uniform bounds for vk�t : for all (t, x) ∈ [0, T ],

a|x − x0| + bt ≤ vk�t (t, x) ≤ a|x − x0| + bt , (21)
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where a, bt , a and bt are defined in (A5) and in Lemma 4.2-(iii).
(v) Monotonicity of the approximation: vk ↗ v∞ when k → +∞, pointwise in

[0, T ] × R, where v∞ is the viscosity solution of

∂tv
∞ + |∇xv

∞|2 = −R(x, J0), x ∈ R, t ∈ (0, T ], (22)

initialized with vin.
(vi) Monotonicity of the approximation: vk�t ≤ v�t , where v�t is defined in (12).

Proof Concerning the properties of vk , the points (i) and (ii) are natural properties of
viscosity solution of (19), while (iii) is a consequence of the comparison principle.
Point (v) is proved in [8]. As this property may seem surprising after Remark 4.2,
let us recall here the idea of the proof. It is based on the definition of variational
solutions of Hamilton–Jacobi equations, which coincide with viscosity solutions when
the Hamiltonian is convex, as for a quadratic Hamiltonian such as (3). According to
this definition, the viscosity solution vk of (19) is also defined by

vk(t, x) = inf{
γ ∈ AC(0, t)

γ (t) = x

}

{∫ t

0
L (γ̇ (s)) − R

(
γ (s), J k0 (s)

)
ds + vin (γ (0))

}

,

where AC(0, t) denotes the space of absolutely continuous functions on (0, t), and
L : R

d → R is the Legendre transform of the Hamiltonian H. It is defined for all
v ∈ R

d by

L(v) = sup
p∈Rd

{p · v − H(p)} .

Remark that with the quadratic Hamiltonian (3), L(v) = |v|2. Point (v) is then a
consequence of Lemma 4.4-(ii) and of (A3), as it states that for all t ∈ [0, T ], J k0 (t) ↗
J0(t) when k → ∞. Note that compactness estimates on the minimizing curves γ are
also necessary to pass to the limit in the variational formulation of vk . It is in fact the
more delicate point of the proof, and we refer to [8] for the details.

Concerning vk�t , since we suppose that (CFL0) is satisfied, the proofs of the first
points of Lemma 4.2 can be applied. This yields immediately (i)-(ii) and (iv). The last
point of the Lemma is a consequence of the monotonicity of the scheme (Lemma 4.1),
and is done by induction. Indeed, the inequality (vi) holds true at t = 0. Moreover,
v�t and vk�t enjoy the Lipschitz properties of Lemmas 4.2-(i)-(ii) and 4.5-(i)-(ii), and
(CFL0) is satisfied. As a consequence, the first step (M0

s ) of the reformulation of the
scheme (S0) is monotonic. Hence, if vk�t (tn, ·) ≤ v�t (tn, ·), one hasM0

s (v
k
�t (tn, ·)) ≤

M0
s (v�t (tn, ·)) for all s ∈ (0,�t). Eventually, we use Lemma 4.4 and the fact that R

is noincreasing in its second variable to conclude that vk�t (tn + s, ·) ≤ v�t (tn + s, ·)
for all s ∈ (0,�t]. ��

Note that, contrary to the non-regular problems (P0) and (S0), there is no constraint
neither on min vk(t, ·), nor on mini∈Z vk�t (tn+1, xi ).
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Now that the problem is regularized, we can use viscosity procedures to show that
scheme (S0) converges to the viscosity solutionof (P0). Following the ideas developped
in [11], let us define an auxiliary function

ψ(t, x, τ, ξ) = vk(t, x) − vk�t (τ, ξ) − (x − ξ)2

2�x1/2
− (t − τ)2

2�t1/2
−
(
σ + 4C2HαeT

)
t

− α
et

2
(x2 + ξ2) − α

T − t
(23)

for all (t, x, τ, ξ) ∈ [0, T [×R × [0, T ] × R. Here, α ∈ (0, 1), and σ is positive and
will be determined later. The functions vk and vk�t are defined in (19) and (20), Then,
ψ satisfies the following properties.

Lemma 4.6 Suppose that the assumptions of Prop. 2.3 hold, and that ψ is defined by
(23). Then

• For all α, and σ positive, ψ admits a global maximum. It is reached at
(t∗, x∗, τ ∗, ξ∗) ∈ [0, T [×R × [0, T ] × R.

• There exists σ = σ(�t, k) with σ(�t, k) →�t→0 0 (when k > 0 is fixed), and
�t0 > 0, such that for all α ∈ (0, 1) and for all�t < �t0, t∗ ≤ 2(L2

T +K )�t1/2,
where K and LT are defined in (A3) and Lemma 4.2-(i).

Proof The first point of the Lemma is immediate, thanks to Lemma 4.5-(iv)-(iii). The
idea of the proof of the second point is very similar to what is done in [11], where
monotonic schemes for bounded solutions of Hamilton–Jacobi equations are studied.
However, it is worth noticing that, in our framework the boundedness hypothesis is
lacking, since it would contradict with the definition of Iε in (Pε). Moreover, the proof
we propose spies the influence of the regularizations J k0 and J k�t of J0 and J�t through
the parameter k. Indeed, it is necessary to come back to the non-regularized problem.
Details of the proof of Lemma 4.6 are postponed to Appendix C. ��

We are now able to gather all these preliminary results to prove Prop. 2.3:

Proof of Prop. 2.3 Consider a choice of σ = σ(�t, k) as in Lemma 4.6. Then, the
function ψ defined in (23) reaches its maximum at (t∗, x∗, τ ∗, ξ∗), therefore

∀(t, x) ∈ [0, T [×R, ψ(t, x, t, x) ≤ ψ(t∗, x∗, τ ∗, ξ∗),

hence, for all α ∈ (0, 1),

vk(t, x) − vk�t (t, x) −
(
σ(�t, k) + 4C2HαeT

)
t − αet x2 − α

T − t

≤ vk(t∗, x∗) − vk�t (τ
∗, ξ∗) − (x∗ − ξ∗)2

2�x1/2
− (t∗ − τ ∗)2

2�t1/2

−
(
σ(�t, k) + 4C2HαeT

)
t∗

−α
et

∗

2
(x∗2 + ξ∗2) − α

T − t∗
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≤ vk(t∗, x∗) − vk�t (τ
∗, ξ∗),

and the latter yields

vk(t, x) − vk�t (t, x) ≤ σ(�t, k)t + 4C2
HαeT t + αet x2 + α

T − t
+ |vk(t∗, x∗) − vk(0, x∗)|

+ |vk(0, x∗) − vk�t (0, x
∗)| + |vk�t (0, x

∗) − vk�t (0, ξ
∗)| + |vk�t (0, ξ

∗) − vk�t (τ
∗, ξ∗)|.

The Lipschitz regularity of vk and vk�t , and the fact that they both are initialized by
vin then give the following estimate

vk(t, x) − vk�t (t, x) ≤ σ(�t, k)t + 4C2HαeT t + αet x2 + α

T − t

+ LT |x∗ − ξ∗| + (L2
T + K )(t∗ + τ ∗),

thanks to Lemma 4.5-(i)-(ii). Let us start by letting α → 0 in the previous inequality,
to get

vk(t, x) − vk�t (t, x) ≤ σ(�t, k)t + C�t1/2,

where C > 0 can be determined using the fact that (x∗, ξ∗) ∈ R
2 satisfy (46), that

the ratio �t/�x is fixed, and that t∗ ≤ 2(L2
T + K )�t1/2. Thanks to (46), τ ∗ ≤

4(L2
T + K )�t1/2 also holds. It is worth noticing that since vk and vk�t are continuous,

this inequality also holds if t = T . Then, Lemma 4.5-(vi) yields

vk(t, x) ≤ v�t (t, x) + σ(�t, k)t + C�t1/2,

Still considering a fixed k > 0, let now �t → 0. As σ(�t, k) →�t→0 0, and v�t

converges pointwise to v0 (see Lemma 4.3-(i)),

vk(t, x) ≤ v0(t, x).

We conclude by noticing that this inequality is true for all (t, x) ∈ [0, T ]×R. Finally,
we let k → +∞, to get the following inequality

v∞ ≤ v0.

Now, we have to prove the reverse inequality. The proof is very similar to what was
done previously, but some modifications are necessary. We list here the modifications
that are to be done in the steps of the proof:

• In Lemma 4.3-(ii), an upper semi-continuous representative should be opted for
(J0 instead of J0, say). Note that J0 = J0 almost everywhere.

• The functions J�t andJ0 should be regularized fromabove insteadof (17).Namely,
for k > 0 and �t > 0, let us define

∀t ∈ [0, T ], Jk0(t) = sup
s∈[0,T ]

(J0(s) − k|t − s|) ,
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Jk�t (t) = sup
s∈[0,T ]

(J�t (s) − k|t − s|) .

Most of the properties of Lemma 4.4 still hold true, except that for fixed �t ≥ 0
and for all t ∈ [0, T ], Jk�t (t) ↘ J�t (t) as k → +∞. Similarly, (iii) has to be
replaced by

for fixed k > 0, ‖Jk�t − Jk0‖∞ −→
�t→0

0.

• The viscosity solution wk of the following Hamilton–Jacobi equation should be
defined accordingly

∂tw
k + |∇xw

k |2 = −R(x, Jk0), x ∈ R, t > 0,

initialized with vin. The properties of Lemma 4.5 are still true, except (22). We
have instead: wk ↘ w∞ when k → +∞ pointwise in [0, T ] × R, where w∞ is
the viscosity solution of

∂tw
∞ + |∇xw

∞|2 = −R(x, J0), x ∈ R, t ∈ [0, T ], (24)

initialized with vin.
• The regularized scheme associated to Jk�t should be defined as well, namely

wk
�t (tn + s) = M0

s (w
k
�t (tn, ·))(x) − s R(x, Jk�t (tn + s)), (25)

for all n ∈ [[0, Nt − 1]], s ∈ (0,�t] and x ∈ R, with M0
s defined in (M0

s ), and
initialized with vin. The properties of Lemma 4.5 are still true, except (vi) that has
to be replaced by wk

�t ≥ v�t .
• Lemma 4.6 should also be adapted. Instead of ψ , let us define

�(t, x, τ, ξ) = wk(t, x) − wk
�t (τ, ξ) + (x − ξ)2

2�x1/2
+ (t − τ)2

2�t1/2
+ (σ + 4C2HαeT )t

+ α
et

2
(x2 + ξ2) + α

T − t
.

Then, Lemma 4.6 still holds true, but with a minimum instead of a maximum.
• As it has been done in the first part of this proof, we obtain eventually w∞ ≥ v0.

To conclude, remark that v∞ and w∞ are respectively viscosity solution of (22)
and (24), that are recalled here

∂tv
∞ + |∂xv∞|2 = −R(x, J0), ∂tw

∞ + |∂xw∞|2 = −R(x, J0),

both initialized with vin, and with the source terms being such that J0 = J0 a.e.
Thanks to Theorem 1.2-(ii), it implies that v∞ = w∞ a.e. Then, the equality

v0 = v∞ = w∞,
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comes immediately from v∞ ≤ v0 ≤ w∞, and because all these functions are contin-
uous. Indeed, one can notice that the Lipschitz constants of Lemma 4.5 do not depend
on k or�t . Hence, v0 enjoys the same Lipschitz regularity as vk�t , and is, in particular,
continuous.

The next step consists in identifying v0 and J0 to the viscosity solution v of (P0),
and to the associated constraint J . It is a consequence ofmin v0 = 0, proved in Lemma
4.3-(i) and of Theorem 1.2, meaning that

v0 = v, and J0 = J0 = J a.e.

Indeed, thanks to the assumptions made on the problem, v is also continuous (see [4]),
so the equality v0 = v is true pointwise in (t, x) ∈ [0, T ] × R.

To conclude, remark that the only limit of the subsequences (v�t ) and J�t , defined
in Lemma 4.3 are v and J . The restriction up to a subsequence stated in Remark 4.1
can then be removed, and Prop. 2.3 is proved. ��

5 Convergence of the scheme (S")

In this section, we fix ε > 0, and we prove that (Sε) approximates properly (Pε) when
the discretization parameters �t and �x go to 0. We start with a technical lemma,
which states properties of the sequences (I n+1)n∈[[0,Nt−1]] and (un+1)n∈[[0,Nt−1]], with
un+1 = (un+1

i )i∈Z, defined by the scheme (Sε).

Lemma 5.1 Suppose that the assumptions (A1)-(A2)-(A3)-(A4)-(A5)-(A6) are satis-
fied, and that ε > 0 is fixed. There exist �x0 > 0, and IM ′ > 0, depending on ε,
and on the constants arising in the assumptions, such that if �t and �x < �x0, are
fixed such that (CFLε) holds, the scheme (Sε) is well-defined. Moreover, the sequence
(uni )n,i defined by the scheme (Sε) satisfies:

(i) For all n ∈ [[0, Nt ]], there exists a constant λn = L0 + n�tκ ≤ L0 + T κ = λNt ,
with L0 defined in (A6) and κ in (8), such that the sequence (uni )i∈Z enjoys λn-
Lipschitz property

∀i ∈ Z,

∣
∣
∣
∣

uni − uni−1

�x

∣
∣
∣
∣ ≤ λn .

(ii) For all n ∈ [[0, Nt ]], there exists β
n

∈ R, with β
n

≥ β
Nt

= b − T H(a, a) −
T ‖R(·, 0)‖∞, and βn ≤ βNt

= b + aNt�x0 + T κ , such that for all i ∈ Z,

a|xi − x0| + β
n

≤ uni ≤ a|xi − x0| + βn,

where a and b have been defined in (A5), κ in (8) and T is the fixed final time.
(iii) For all n ∈ [[0, Nt − 1]], 0 ≤ I n+1 ≤ IM ′ .

Note that, at first sight, this lemma is similar to Lemma 3.2. However, it holds
here for a fixed ε > 0, and it states uniform estimates in �t and �x < �x0 such that
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(CFLε) is satisfied. On the contrary, Lemma 3.2 states uniform estimates in ε ∈ (0, ε0),
where ε0 > 0 depends on the assumptions, and on �t and �x . Lemma 5.1 is proved
in Appendix D.

In what follows, IM ′ is chosen large enough, such that

∀t ∈ [0, T ], 0 < Iε(t) + 1 ≤ IM ′ , (26)

where Iε is defined in (Pε). We refer to [4] for the existence of such a bound.

Remark 5.1 It is worth noticing that �x0 and IM ′ are determined once for all and do
not depend on n ∈ [[0, Nt ]]. Indeed, coming back to the definition of β

Nt
, one can

remark that they can be fixed independently of the induction. However, they depend
on ε, which is fixed here. Their asymptotic behavior when ε → 0 is not satisfactory,
since �x0 may vanish, and IM ′ grows to infinity, when ε → 0, as β

Nt
might be

negative. We refer to Lemma 3.2 for a bound of I n+1 independent of ε, with fixed �t
and �x . Indeed, this bound is valid for small ε, and the bound for I n+1 outside of the
asymptotic regime comes from (55).

Going on with the proof of the convergence of scheme (Sε), its implicit character
has to be dealt with. To this end, let us define,

DIM ′ =
{

u = (ui )i∈Z ∈ R
Z, u > u, �x

∑

i∈Z
ψ(xi )e

−ui /ε < IM ′

}

, (27)

where

u = (ui
)

i∈Z =
(
a|xi − x0| + β

Nt

)

i∈Z ,

and IM ′ are defined in Lemma 5.1. Define then SIM ′ : DIM ′ → R
Z, such that

∀u = (ui )i∈Z ∈ DIM ′ , ∀i ∈ Z, SIM ′ (u)i = ui + �t R

(

xi ,�x
∑

i∈Z
ψ(xi )e

−ui /ε

)

.

(28)

Since I 
→ R(x, I ) is smooth for all x ∈ R, one can notice that SIM ′ ∈ C1 (DIM ′
)
.

But a stronger result holds:

Lemma 5.2 Let �t > 0 and ε > 0. Suppose that �t K IM ′ < ε, with IM ′ defined in
Lemma 5.1, and K in (A3). Then, SIM ′ : DIM ′ → SIM ′

(DIM ′
)
is invertible. Moreover,

its inverse enjoys Lispschitz regularity: for all u, v ∈ SIM ′
(DIM ′

)
such that u − v ∈


∞(Z), S−1
IM ′ (u) − S−1

IM ′ (v) ∈ 
∞(Z) and

∥
∥
∥S−1

IM ′ (u) − S−1
IM ′ (v)

∥
∥
∥∞ ≤ 1

1 − �t K IM ′/ε
‖u − v‖∞.
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As this Lemma is an elementary consequence of the implicit function theorem, its
proof is not detailed here. These technical lemmas and Lemma 3.1 yield Prop. 2.1.

Proof of Prop. 2.1 Scheme (Sε) can be rewritten using Lemma 5.1, and notations (15)–
(28). Indeed, for all n ∈ [[0, Nt − 1]], un+1 = (un+1

i )i∈Z ∈ DIM ′ ∩ SIM ′
(DIM ′

)
, and

it is defined by induction with

SIM ′ (u
n+1) = Mε

�t (u
n).

Considering uε and Iε defined as the solution of (Pε), the consistency error En+1
i of

the scheme (Sε) at (tn+1, xi ), with n ∈ [[0, Nt − 1]] and i ∈ Z, is defined by

En+1
i = uε(tn+1, xi ) − Mε

�t

(
uε(tn, x j

)

j∈Z)i + �t R (xi , Iε(tn+1)) ,

and there exists a constantC dependingonlyon‖∂2t uε‖∞,[0,T ]×R, and‖∂kx uε‖∞,[0,T ]×R

for k = 1, 2, 3, such that

∀n ∈ [[0, Nt − 1]], ∀i ∈ Z,

∣
∣
∣En+1

i

∣
∣
∣ ≤ C�t(�t + �x). (29)

Note that the consistency error is defined here with the exact value Iε(tn+1) in R, and
not its approximation with a quadrature of the integral. However, apart from the finite-
differences approximations of the derivatives, the scheme (Sε) is constructed with a
quadrature rule for the approximation of Iε. Its precision can be estimated, thanks to
Lemma 5.1. At first, define a truncated version of Iε(t), on a domain [x0−X , x0+X ],
by

IXε (t) =
∫

|x−x0|≤X
ψ(x)e−uε(t,x)/εdx . (30)

Hence, X is determined such that, for all t ∈ [0, T ],

∣
∣
∣Iε(t) − IXε (t)

∣
∣
∣ ≤ �t, and

∣
∣
∣
∣
∣
∣
∣
∣

�x
∑

i∈Z
|xi−x0|>X

ψ(xi )e
−uε(t,xi )/ε

∣
∣
∣
∣
∣
∣
∣
∣

≤ �t . (31)

Note that X can be chosen once for all, and independently of ε, remarking that, for
all t ∈ [0, T ], uε(t, ·) is increasing at infinity. Indeed, thanks to [4], the following
estimate holds

∀t ∈ [0, T ], ∀x ∈ R, uε(t, x) ≥ a|x − x0| + bNt
. (32)

where we used the notations of Lemma 3.2. Of course, such a choice makesX depend
on �t . Explicit computations using Lemma 5.1-(ii) and (32), yield

X =
�t→0

O(− ln(�t)), (33)
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where we consider that ε > 0 is fixed. Note that X is such that for all t ∈ [0, T ],
∣
∣
∣
∣
∣
∣
∣
∣

IXε (t) − �x
∑

i∈Z
|xi−x0|≤X

ψ(xi )e
−uε(t,xi )/ε

∣
∣
∣
∣
∣
∣
∣
∣

≤ K
(
X�x2 + �x�t

)
. (34)

Indeed, the approximation of the integral can be considered as if it were done with a
trapezoidal rule, up to an error of order�t (addinghalf the sumof the twofirst neglected
terms, which are of size �t). The error estimate of the trapezoidal rule yields that K
depends on the second derivative of ψ exp(−uε(t, ·)/ε), which is uniformly bounded
with respect to t ∈ [0, T ]. Suppose now that the ratio in (CFLε) is fixed. Then, �x is
uniquely determined for any given �t > 0, and

�x =
�t→0

O(
√

�t).

Hence, thanks to (26)–(31)–(33) and (34), there exists �t0 > 0 such that for all
�t < �t0 and for all t ∈ [0, T ], (u(t, xi ))i∈Z ∈ DIM ′ . Remark now that, for all
n ∈ [[0, Nt − 1]], and for all i ∈ Z,

SIM ′
(
uε(tn+1, x j ) j∈Z

)

i = Mε
�t

(
uε(tn, x j ) j∈Z

)

i + En+1
i − �t R (xi , Iε(tn+1))

+ �t R
(
xi , I

X
ε (tn+1)

)

− �t R
(
xi , I

X
ε (tn+1)

)
+ �t R

⎛

⎝xi ,�x
∑

i∈Z,|xi−x0|≤X
ψ(xi )e

−uε(t,xi )/ε

⎞

⎠

− �t R

⎛

⎝xi ,�x
∑

i∈Z,|xi−x0|≤X
ψ(xi )e

−uε(t,xi )/ε

⎞

⎠

+ �t R

⎛

⎝xi ,�x
∑

j∈Z
ψ(x j )e

−uε(tn+1,x j )/ε

⎞

⎠

∈ SIM ′
(DIM ′

)
,

hence, using Lemma 5.2, and (A3), we have for all �t such that �t K IM ′ < ε,

(

1 − �t K IM ′

ε

)

‖uε(tn+1, x j ) j∈Z − un+1‖∞ ≤ ∥∥Mε
�t

(
uε(tn, x j ) j∈Z

)− Mε
�t

(
un
)∥
∥∞ + ∥∥En+1

∥
∥∞

+ �t K
∣
∣Iε(tn+1) − IXε (tn+1)

∣
∣

+ �t K

∣
∣
∣
∣
∣
∣
IXε (tn+1) − �x

∑

i∈Z,|xi−x0|≤X
ψ(xi )e

−uε(t,xi )/ε

∣
∣
∣
∣
∣
∣

+ �t K

∣
∣
∣
∣
∣
∣
�x

∑

i∈Z,|xi−x0|>X
ψ(xi )e

−uε(t,xi )/ε

∣
∣
∣
∣
∣
∣
.
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As a consequence, if the ratio in (CFLε) is fixed, (29)–(31) yield that there exists
�t0 > 0, such that for all �t < �t0,

(

1 − �t K IM ′

ε

)

‖uε(tn+1, x j ) j∈Z − un+1‖∞ ≤ ∥∥uε(tn, x j ) j∈Z − un
∥
∥∞

+ C�t(�t + �x) + 2K�t2 + �t KK (| ln(�t)|�t + �x�t) .

where Lemma 3.1 has also been used. Then, there exists a constant, denoted C(ε),
such that, for all n ∈ [[0, Nt − 1]],

(

1 − �t K IM ′

ε

)

‖uε(tn+1, x j ) j∈Z − un+1‖∞ ≤ ∥∥uε(tn, x j ) j∈Z − un
∥
∥∞

+C(ε)�t(�t + �x + | ln(�t)|�t).

As u0i = uε(0, xi ) for all i ∈ Z, the previous inequality yields that for all n ∈ [[0, Nt ]],
uε(tn, x j ) j∈Z − un ∈ 
∞(Z). The first estimate of Prop. 2.1 follows immediately.
Eventually, one can notice that

DIM ′ � u = (ui )i∈Z 
→ �x
∑

i∈Z
ψ(xi )e

−ui /ε,

enjoys IM ′/ε-Lipschitz regularity. This yields the second estimate of Prop. 2.1. ��
Remark 5.2 Let us end with a remark about the implementation of (Sε). Its implicit
character has been discussed in Sect. 2, but another difficulty arises when coding it.
Indeed, (Sε) is defined for all indices i ∈ Z, meaning that, in practice, the expressions
have to be truncated. However, because of I n+1, the expression of the scheme (Sε) is
nonlocal, in the sense that the whole distribution in trait (uni )i∈Z is needed to compute
every singleun+1

i for i ∈ Z.When implemented, the scheme (Sε) uses an approximated
value of I n+1, with the truncation defined as previously.

In addition, considering the scheme (Sε) on a truncated domain raises questions
about boundary conditions that are to be considered. Indeed, because of (15), the (uni ),
for |i | ≤ N + 1, are needed to compute Mε

�t (u
n)i , for |i | ≤ N . In practice, un−N−1

and unN+1 can be approximated, we refer to Sect. 6 for more details. Yet, to avoid more
approximations, one can also define a truncation of Mε

�t

Mε
�t,N : R

2(N+1)+1 → R
2N+1,

such that

∀u = (u j ) j∈Z ∈ R
Z, ∀|i | ≤ N , Mε

�t,N

(
(u j )| j |≤N+1

)

i = Mε
�t (u)i .

Roughly speaking, this consists in avoiding the question of the boundary, by reducing
the trait domain at each time step of the scheme. Note that Mε

�t,N enjoys the same
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monotonicity properties asMε
�t , and in particular the last point of Lemma 3.1 can be

easily adapted. Similarly, SIM ′ defined in (28) can be defined on a truncated domain,
Lemmas 5.1 and 5.2 still hold, and Prop. 2.1 is true in the truncated setting.

6 Numerical tests

In this section, we highlight and discuss the properties of the schemes (Sε) and (S0)
using numerical tests. Unless other choices are specified, wewill consider the schemes
in dimension 1, with ψ(x) ≡ 1 in (A1) and the initial data

uin(x) = vin(x) = min
(
(x − β)2, (x − α)2 + δ

)

√
1 + x2

, (35)

with α = 2, β = −0.2 and δ = 1. This choice is adapted from [34] to satisfy the
hypotheses (A4)-(A5)-(A6)-(A7). We will also consider the function

R(x, I ) = e−I x2

1 + x2
− I , (36)

which satisfies (A2) and (A3). All the tests are done with final time T = 1. In most
cases, and if the discretization is not specified, we consider �t = 5 · 10−4 and �x =
5 · 10−2, such that (CFLε)-(CFLε→0)-(CFL0) are satisfied for all ε ∈ (0, 1]. First,
the implementation of the schemes is done according to Remark 5.2. Namely, the
iterations of the schemes are computed on a larger trait domain, that is reduced at each
time iteration to avoid approximations at the boundary.

The implementation of the schemes has been done using Matlab, the code is avail-
able at [7], where scripts for all the figures presented below are also provided. Note
also that the solution of scheme (Sε) will be denoted uε

�t and I ε
�t in what follows. This

choice is made to simplify the notations, and to be similar to v�t and J�t defined in
scheme (S0).

6.1 Behavior of scheme (S") when " → 0

The behavior of scheme (Sε) when ε → 0 is illustrated in Fig. 1, where uε
�t and I ε

�t ,
computed with (Sε), are displayed for a series of ε. The limits v�t and J�t computed
with (S0) are displayed on the same graph. As shown in Prop. 2.2, one can observe that
the solution of scheme (Sε) converges to the solution of scheme (S0) when ε → 0. It
is also worth remarking that the solution uε

�t of the problem (Sε) is smooth, and so
is I ε

�t when ε > 0. Lipschitz singularities for uε
�t , and discontinuities for I

ε
�t , appear

in the limit ε → 0. One can notice that I ε
�t is not necessarily increasing when ε > 0.

Moreover, the convergence seems to be faster for uε
�t than for I ε

�t .
More precisely, the convergence rate for uε

�t and I
ε
�t is numerically studied in Fig. 2.

First of all, Lemma 3.2-(iv) yields that the minimum of the approximation of uε
�t with

(Sε) is of order ε. This can indeed be observed on the left-hand side of Fig. 2, where
the minimum of uε

�t is plotted in logarithmic scale as a function of ε. As expected, we
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Fig. 1 uε
�t (left) and I ε�t (right) computed with (Sε) for a series of ε, and v�t and J�t computed with (S0).

Parameters: T = 1, �x = 5 · 10−2, �t = 5 · 10−4, uin defined in (35), and R in (36)

Fig. 2 Convergence of the solution of (Pε) to the solution of (P0). Left: u
ε
�t to v�t in L∞ norm, and

min uε
�t to 0 as functions of ε (logarithmic scale). Right: I ε�t to J�t in L1 and L∞ norms, as functions of

ε (logarithmic scale). Parameters: T = 1, �x = 5 · 10−2, �t = 5 · 10−4, uin defined in (35), and R in (36)

observe a line which has slope 1. This figure presents, on the same graph, a numerical
study of the convergence rate of the solution uε

�t of (Sε) to the solution v�t of (S0)
when ε → 0. The L∞ norm of uε

�t (T , ·)− v�t (T , ·) is displayed in logarithmic scale
as a function of ε. This test suggests that the convergence of the solution uε of (Pε)
to the solution v of (P0) is of order 1 in ε. Similarly, the convergence rate of I ε

�t
to J�t is studied in the right-hand side of Fig. 2, in discrete L1(0, T ) and L∞(0, T )

norms. Once again, the rate of convergence seems to be 1. However, we observe a
discrepancy between the two tests in the regime ε ≥ 10−4 which is the order of the
time step. The order of convergence is recovered in the regime ε ≤ 10−4, essentially
because this convergence test is done for given�t and�x , fixing the dimension of the
problem. We conclude from this observation that L1 is more appropriate to capture
the AP property due to the occurrence of true discontinuities of J�t . This behavior
means a lack of uniform accuracy in L∞ norm, and we refer to Sect. 6.5 for more
details. Coming back to the continuous problems (Pε) and (P0), this suggests that the
convergence of Iε to J when ε → 0 might be true in L1(0, T ), but not in L∞(0, T ).

6.2 Behavior of scheme (S0)

We now discuss the behavior of scheme (S0), regarding the lack of regularity of the
solution of (P0). Indeed, v enjoys Lipschitz regularity, while J ∈ BV (0, T ) can,
in particular, have jumps. This behavior is highlighted in Fig. 3, where the left-hand
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Fig. 3 Scheme (S0). Left: v�t computed with (S0) for a series of times. Right: argminx v�t and J�t as
functions of t . Parameters: T = 1, �x = 5 · 10−2, �t = 5 · 10−4, uin defined in (35), and R in (36)

side displays the solution v�t of (S0) for some fixed times, as functions of x . We
emphasize the lack of diffusing effects, as shown by the C1 discontinuity of the solution
v�t , which seems to be maintained as time grows. It is also interesting to notice that
the function J�t has true numerical jumps, where the solution varies considerably
in a single time step, due to the implicit character of the scheme. Moreover, coming
back to problem (P0), the selection makes the dominant trait, i.e. x̄(t) such that of
v(t, x̄(t)) = min v(t, ·), evolve in time. Left-hand side of Fig. 3 exhibits a case with a
jump from the left local minimum to the right one. This is confirmed on the right-hand
side of Fig. 3, where x̄�t and J�t are displayed as functions of t . One can notice that
the jumps occur simultaneously, which was to be expected since J�t is a constraint
that makes min v equal to 0. Moreover, J�t is nondecreasing on [0, T ], as it has been
proved in Lemma 4.2-(v).

6.3 Truncated scheme

As it has already been emphasized in Remark 5.2, the schemes (Sε) and (S0) are
nonlocal, meaning that the whole distribution in trait at time tn is needed to compute
any single point at time tn+1. We proposed a way to restrict the schemes to a finite
grid, by considering a larger trait domain at the initialization and removing points
of the domain at each time iterations. The propositions of Sect. 2 hold true with this
approximation, provided that the considered trait domain is large enough so that (31)
is satisfied. Thanks to this strategy, no approximation is required at the boundary.
However, it is costly in terms of computational time, since 2Nt points in x are to
be added to the initial grid. This drawback can be dealt with in dimension 1, but
the cost increases with the dimension. Moreover, this stategy leads to complications
when considering initial data which do not exactly satisfy (A5)-(A6). Indeed, it would
be natural to consider Gaussian distributions for the initial data of (1), so that uinε is
quadratic. However, such distributions do not enjoy uniform Lipschitz property.When
implemented, the conditions (CFLε)-(CFLε→0)-(CFL0) then have to be considered
with the Lispschitz constant which is valid on the larger grid. It makes these stability
conditions always more restrictive, as each point added in time makes the Lipschitz
constant increase.
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Fig. 4 Comparison between scheme (Sε) and its version with approximations at boundaries, as function of
ε (logarithmic scale). Left: L∞ norm in x of the difference between the uε computed with the two schemes
at final time. Right: difference between the two Iε in L1(0, T ) norm. Parameters: T = 1, �x = 5 · 10−2,
�t = 5 · 10−4, uin defined in (35), and R in (36)

To avoid this difficulty, we propose a truncated version of the schemes (Sε)-(S0).
This consists in, once again, considering a truncated trait space (xi )i∈[[1,Nx ]], such that
(31) is satisfied. However, this trait space is of constant size in all the time iterations.
Since they are needed, the values at x0 and xNx+1 are approximated. For all n ∈
[[0, Nt ]], we propose the following approximation in (Sε)-(S0)

un0 = 4un1 − 6un2 + 4un3 − un4
unNx+1 = 4unNx

− 6unNx−1 + 4unNx−2 − unNx−3,
(37)

which consists in extrapolating (uni )i∈[[1,Nx ]] by a polynomial, whose derivatives coin-
cide with the discrete derivatives of (uni )i∈[[1,Nx ]]. Namely, for the left point, we define

P(y) = un1 + un2 − un1
�x

y + un1 − 2un2 + un3
�x2

y2 + (un2 − 2un3 + un4) − (un1 − 2un2 + un3)

�x3
y3,

is such that P(0), P ′(0), P ′′(0) and P(3)(0) coincide with the first discrete derivatives
of (uni )i that can be computed, and it satisfies P(−�x) = un0. A similar explanation
holds for the right boundary.

This approximation is tested in Fig. 4, where results of scheme (Sε) without and
with the approximation at the boundary are compared. The left-hand side displays the
L∞ norm in x of the difference of uε

�t computed with the two versions of the scheme
at time T , while the difference between the two I ε

�t in L1(0, T ) norm is presented on
the right-hand side. In both cases, the results are presented as functions of ε. Observe
that the difference between (Sε) and its version with approximations at boundaries is
never greater than the discretization error. Moreover, this difference goes to 0 when
ε → 0, likely because the error due to the truncation in the quadrature step (34) is
vanishing, combined with the fact that the characteristics lines are exiting the domain
at ε = 0. Thanks to the stability of (Sε), this validates numerically the approximation
at boundary for (S0) as well.
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Fig. 5 Comparison between scheme (S0) and analytic solution. Left: v. Right: J . Parameters: T = 1,
�x = 5 · 10−2, �t = 5 · 10−4, vin defined in (38), and R in (39)

As they are less expensive in terms of computational time, and since their results
are very close to the results of schemes (Sε)-(S0), in what follows we will use the
corresponding schemes including the approximations (37) at the boundaries.

6.4 Accuracy of (S0)

Using its version with approximations at boundaries, we test the accuracy of (S0)
with parameters which does not satisfy exactly the hypotheses (A2)-(A3)-(A5)-(A6).
Indeed, we consider

vin = min
(
x2, (x − α)2 + δ

)
, (38)

with α = 2, δ = 1, and

R(x, I ) = x − I . (39)

The solution of (P0) is analytically known using these parameters, see [34]. Moreover,
this explicit solution do not enjoy more regularity than what is expected. Indeed, v

enjoys Lispschitz regularity but is not C1, and J jumps at t = 1/2. The results of
scheme (S0) are displayed in Fig. 5 together with the analytic solution. The agreement
is visually very good, including the discontinuity of J which is captured at the correct
time point.

Although Prop. 2.3 states the convergence of (S0) to the solution of (P0) when �t
and �x go to 0 with �t/�x fixed, it does not give any convergence rate. Indeed, the
lack of regularity of the solutions of (P0) makes this problem difficult to address theo-
retically. To bypass this issue, we proposed a proof based on compactness arguments
and on an appropriate regularization of J . However, quantitative estimates cannot be
expected using such arguments. We propose a numerical study of the rate of conver-
gence of (P0) in Fig. 6. For this numerical test, we compare the functions v�t and J�t

computed with (S0), to the solution v and J of (P0) analytically computed in [34].
As in Prop. 2.3, we fix �t/�x and we make �t go to 0. The comparison is done in
L∞ for v�t (T , ·)− v(T , ·), while J�t − J is estimated in L1(0, T ) norm. The error is
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Fig. 6 Convergence rate of scheme (S0). Left: ‖v�t (T , ·) − v(T , ·)‖∞ as a function of �t , with �t/�x
fixed (logarithmic scale). Right: ‖J�t − J‖L1(0,T ) as a function of �t , with �t/�x fixed (logarithmic

scale). Parameters: T = 1, �t/�x = 5 · 10−2, vin defined in (38), and R in (39)

displayed in logarithmic scale. Remark that the numerical convergence rate of scheme
(S0) is 1, both for v�t and J�t .

The numerical order of convergence highlighted in Fig. 6 must be considered with
care. Indeed, even in the simpler case of a non-constrained Hamilton–Jacobi equation,
the expected convergence rate of a monotonous scheme such as the one we are consid-

ering here is proved to be O
(√

�t + √
�x
)
(see [11]). According to [35], Sect. 2.1,

this order of convergence is optimal, even for smooth solutions. Thus, there may be
other examples for which the order of convergence of (S0) is smaller than 1.

The numerical investigation of the order of convergence of scheme (S0) raises the
delicate question of the design of higher order schemes for (P0). The strategy we use
strongly relies on monotonicity properties of the scheme, both in v and J . Regarding
v, it is worth noticing that monotonous schemes for Hamilton–Jacobi equations cannot
be of order greater than 1 ( [35], Sect. 2.1). Higher order finite-differences schemes
for non-constrained Hamilton–Jacobi equations are constructed using monotonous
schemes as building blocks, we refer to [35] for details. However, a non-monotonous
scheme for v would upset the monotonicity properties used for J , so that the regular-
ization vk�t of v�t defined in (20) would not satisfy Lemma 4.5-(vi), and that the proof
of the convergence of the scheme would break. In addition, Lemma 4.3 establishes the
convergence of v�t and J�t using compactness arguments. The design of higher-order
schemes for (P0) would require quantitative error estimates for these convergences.

6.5 Uniform accuracy of (S")

In this section, the uniform accuracy of the scheme (Sε), in its version with approxima-
tions at boundaries, is tested. Prop. 2.1 establishes that, for all ε > 0, (Sε) converges
with rate C(ε) (| ln(�t)|�t + �x), with �t and �x satisfying (CFLε), and where
C(ε) depends on uin, T , and ε. As it is emphasized in Remark 2.2, this proposi-
tion does not give any clue on the order of the scheme uniformly in ε, since C(ε)

is expected to go to +∞ when ε → 0. However, thanks to the stability properties
of scheme (Sε) stated in Prop. 2.2, a better behavior can be suspected. The uniform
accuracy of scheme (Sε) is tested by computing the results of (Sε) for a series of ε and
�x . The solution of the corresponding scheme will be denoted uε

�x in what follows.
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Fig. 7 Uniform accuracy of (Sε). Left: ‖uε
�x (T , ·) − uε

�x ref
(T , ·)‖L∞ for a series of �x and as functions

of ε (logarithmic scale). Right: ‖I ε�x − I ε�x ref
‖L1(0,T ) for a series of�x and as functions of ε (logarithmic

scale). Parameters: T = 1, λ = 5 · 10−2, uin defined in (35), and R in (36)

Once �x is given, �t is fixed by �t = λmin(�x,�x2/ε), with λ such that (CFLε)
and (CFLε→0) hold. These u�x

ε are then compared to a reference solution. However,
contrary to the previous section, no analytic solution of (Pε) is known, to the best of our
knowledge, so that the reference solution has to be itself an approximation. A �x ref
is introduced, smaller than all the �x previously considered, and uε

�x ref
is computed

for all the ε considered. The L∞ norm of u�x ref (T , ·)ε − uε
�x (T , ·) is then computed

for all ε and �x considered, and they are presented as functions of ε, on the left-hand
side of Fig. 7 in logarithmic scale. Similarly, the right-hand side of Fig. 7 displays the
L1(0, T ) norm of I ε

�x − I ε
�x ref

, as functions of ε in logarithmic scale. Remark that, in
both cases, these error curves are stratified, meaning that the approximation error in
scheme (Sε) is uniformly bounded with respect to ε when the discretization is fixed.

The numerical tests above suggest that scheme (Sε) enjoys uniform accuracy with
respect to ε in L∞ norm for uε

�x (T , ·) and in L1(0, T ) norm for I ε
�x . However, the lack

of regularity of the solutions of (Pε) strongly influences the accuracy of the numerical
resolution. To emphasize on this fact, remark that the uniform accuracy of (Sε) is not
true for I ε

�x in L∞(0, T ) nor in the total variation seminorm, denoted T V (0, T ) in
what follows. Indeed, the L∞(0, T ) norm and T V (0, T ) seminorm of I ε

�x − I ε
�x ref

,
as functions of ε in logarithmic scale are displayed in Fig. 8. Contrary to Fig. 7, the
error curves are not stratified, and one can remark that

sup
ε

∥
∥I ε

�x − I ε
�x ref

∥
∥
L∞(0,T )

�
�x→0

0, and sup
ε

∥
∥I ε

�x − I ε
�x ref

∥
∥
T V (0,T )

�
�x→0

0,

meaning that (Sε) does not enjoy uniform accuracy for I ε
�x in L∞ norm and T V

seminorm. The fact that these norms are poorly adapted to the study of the conver-
gence of I�x

ε can be understood considering the jumps. For small ε, Iε is close to
the discontinuous function J , so that the jumps are visually well approximated. The
comparison between I�x

ε and I�x ref
ε is also good at first sight, but jumps may not be

exactly simultaneous, making the difference I�x
ε − I�x ref

ε have a thin peak around the
jump. Such a peak is small in L1 norm, but not in L∞ or T V .
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Fig. 8 Uniform accuracy test for Iε computed with (Sε): ‖I�x
ε − I

�x ref
ε ‖ for a series of �x and as

functions of ε (logarithmic scale). Left: L∞(0, T ) norm. Right: T V (0, T ) seminorm. Parameters: T = 1,
λ = 5 · 10−2, uin defined in (35), and R in (36)

6.6 Extension to higher dimensions

Problems (Pε) and (P0) are well-posed in any finite dimension d, but dimension 1
was chosen for the presentation and the study of schemes (Sε) and (S0) in this paper.
However, schemes (Sε)-(S0) can be generalized to any dimension, and all the results
of this paper still hold when d ∈ N

∗, the proofs being done exactly the same way but
with heavier notations due to multi-indices.

We detail here the adaptation of schemes (Sε) and (S0) in dimension d = 2, and
we provide some numerical tests to highlight the asymptotic-preserving property. The
generalization to any dimension is straightforward. As in Sect. 2, define T , Nt and �t
for the time discretization. Two trait steps are now needed, denoted �x and �y in
what follows, and two trait grids are defined, namely xi = x0 + i�x (i ∈ Z), and
y j = y0 + y j�y ( j ∈ Z), where x0, y0 ∈ R are given. Let n ∈ [[0, Nt − 1]], and
i, j ∈ Z. The schemes are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
i, j − uni, j

�t
+H

(
uni, j − uni−1, j

�x
,
uni+1, j − uni, j

�x

)

+ H

(
uni, j − uni, j−1

�y
,
uni, j+1 − uni, j

�y

)

= ε
uni+1, j − 2uni, j + uni−1, j

�x2
+ ε

uni, j+1 − 2uni, j + uni, j−1

�y2
− R

(
xi , y j , I

n+1)

I n+1 = �x�y
∑

(i, j)∈Z2

ψ(xi , y j )e
−un+1

i, j /ε
,

(Sd=2
ε )

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vn+1
i, j − vni, j

�t
+H

(
vni, j − vni−1, j

�x
,
vni+1, j − vni, j

�x

)

+ H

(
vni, j − vni, j−1

�y
,
vni, j+1 − vni, j

�y

)

= −R
(
xi , y j , I

n+1)

min
(i, j)∈Z2

vn+1
i, j = 0,

(Sd=2
0 )

where H is defined in (5). They both can be implemented on a truncated domain,
with or without approximations at boundaries, as presented above. The following tests
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Fig. 9 Test with d = 2. Top left: uinε . Top right: uε
�t computed with (Sd=2

ε ) and ε = 10−2. Bottom left:

uε
�t computed with (Sd=2

ε ) and ε = 10−4. Bottom right: v�t computed with (Sd=2
0 ). Parameters: T = 1,

�t = 5 · 10−4, �x = �y = 5 · 10−2, uinε and vin defined in (40), and R in (41)

use the version with approximation at boundaries and grids of constant size. Denoting
X = (x, y) ∈ R

2, we consider uin, vin adapted from (35),

uin(X) = vin(X) = min
(|X − β|2, |X − α|2 + δ

)

√
1 + |X |2 , (40)

with α = (2, 2), β = (−0.2,−0.2) and δ = 1. Similarly to (36), we define

R(X , I ) = e−I |X |2
1 + |X |2 − I . (41)

Note that in both cases, | · | stands for the Euclidean norm on R
2. Figure9 displays

level lines of uinε defined in (40), of uε
�t computed with (Sd=2

ε ) for ε = 10−2 and
ε = 10−4, and of v�t computed with (Sd=2

0 ). When ε is small, uε
�t is similar to v�t .

Moreover, one can notice that the minimum of uinε has jumped from the bottom left
local minimum to the top right one. Figure10 highlights the stability of the component
I ε
�t in (Sd=2

ε ) when ε → 0. Indeed, it goes to the component J�t of (Sd=2
0 ), and has

discontinuities in the asymptotic regime. More generally, all the properties discussed
in dimension 1 are still statisfied.
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Fig. 10 Test with d = 2: I ε�t computed with (Sd=2
ε ) for a series of ε, and J�t computed with (Sd=2

0 ).

Parameters: T = 1, �t = 5 · 10−4, �x = �y = 5 · 10−2, uinε and vin defined in (40), and R in (41)

Conclusion

In this paper,weproposed and analyzed an asymptotic-preserving scheme for parabolic
Lotka–Volterra equations (Pε), whichmodel the evolution of a population density. The
scheme (Sε) we proposed is converging for fixed ε > 0, and enjoys stability properties
in the asymptotics. Moreover, the limiting scheme (S0) is converging towards the
unique viscosity solution of the constrained Hamilton–Jacobi equation (P0), which
describes the asymptotic regime.

The key ingredients for the construction of the asymptotic-preserving scheme are
the monotonicity and the implicit treatment of the constraint. Thanks to these proper-
ties, the convergence of the scheme (Sε) is proved, and so is its asymptotic behavior in
the vanishing ε limit. The convergence of the limit scheme is based on compactness
arguments, and once again on the monotonicity of the scheme. It is indeed a usual
property required for non-diffusive schemes for Hamilton–Jacobi equations. How-
ever, because of the lack of regularity of the Lagrange multiplier associated with the
non-negativity constraint, the scheme has to be regularized to prove its convergence.
Eventually, the properties of the schemes have been discussed through numerical tests.
Both (Sε) and (S0) can also be generalized to any dimension. Moreover, numerical
tests suggest that (Sε) enjoys uniform accuracy in appropriate discrete function spaces,
meaning that its precision is independent of ε.

A natural continuation of this work would be the study of an asymptotic-preserving
scheme for integral Lotka–Volterra equations. This question will be adressed in a
future work.
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A Proof of Lemma 3.2

In this appendix, we prove Lemma 3.2. We proceed by induction. Thanks to the
assumptions, the initial data u0 = (u0i )i∈Z satisfies the properties (i)-(ii) and (iv) of
Lemma 3.2. Let us suppose that the items (i)-(ii)-(iv) of Lemma 3.2 hold true for a
given n ∈ [[0, Nt − 1]], and prove that un+1 = (un+1

i )i∈Z enjoys these properties,
while I n+1 satisfies (iii).

• First of all, we recall that I n+1 is well defined for all ε ∈ (0, 1], see Remark 2.3.
We now prove that, if ε ≤ ε0, then I n+1 ≥ Im/2. For a given j ∈ Z, the following
inequality holds

I − �x
∑

i∈Z
ψ(xi )e

−Mε
�t (u

n)i /εe�t R(xi ,I )/ε ≤ I − �xψme
−Mε

�t (u
n) j /εe�t R(x j ,I )/ε,

where we used (A1). An upper bound for Mε
�t (u

n) j is obtained thanks to the
positivity of H and to (i)

Mε
�t

(
un
)

j = unj + ε
�t

�x

unj+1 − 2unj + unj−1

�x
− �t H

(
unj − unj−1

�x
,
unj+1 − unj

�x

)

≤ unj + 2ε
�t

�x
Ln,

using the upper bound L0 + T K of Ln , and with the choice of j such that unj =
mini∈Z uni , property (iv) provides

Mε
�t

(
un
)

j ≤ ε

(

cM + 2
L0 + T K

CH (L0 + T K )

)

,

where the estimate independent of �t and �x comes from (CFLε→0). This esti-
mate yields

ϕ(I ) ≤ I − �xψme
−cM−2(L0+T K )/CH (L0+T K )e�t R(x j ,I )/ε,

and the bound from below for I n+1 in (iii) is then obtained by a contradiction
argument. Indeed, sinceϕ is an increasing function, for all I < Im/2, the following
inequality holds true

ϕ(I ) ≤ ϕ(Im/2) ≤ Im
2

− �xψme
−cM−2(L0+T K )/CH (L0+T K )e�t R(x j ,Im/2)/ε,

(42)
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and thanks to the strict monotonicity of R with respect to its second argument,
together with (A2), one can show that R(x j , Im/2) is uniformly positive with
respect to j ∈ Z. Indeed, it writes

R(x j , Im/2) ≥ R(x j , Im) + Im
2K

,

thanks to (A3), and assumption (A2) eventually yields

R(x j , I ) ≥ Im
2K

.

Coming back to (42), one has for all I ≤ Im/2

ϕ(I ) ≤ ϕ(Im/2) ≤ Im
2

− �xψme
−cM−2(L0+T K )/cH (L0+T K )e�t Im/2K ε −→

ε→0
−∞,

hence there exists an ε1 > 0, depending only on Im , ψm , cM , CH , L0, T , K , �t ,
and �x , such that

∀ε ∈ (0, ε1), ∀I ≤ Im/2, ϕ(I ) ≤ −1.

Since I n+1 is defined as the solution of ϕ(I n+1) = 0, the first inequality in (iii)
holds true.

• The bound from below (ii) of (un+1
i )i∈Z, is a consequence of the monotonicity of

the first step of the scheme (Sε). Indeed, if we denote vni = a|xi − x0| + bn , the
scheme (15) applied to vn = (vni )i∈Z gives

Mε
�t

(
vn
)

i =
⎧
⎨

⎩

a|xi − x0| + bn − �t H(a, a) if i �= 0

bn + 2a
ε�t

�x
if i = 0,

since H(a, a) = H(−a,−a). Therefore, Mε
�t (u

n)i ≥ Mε
�t (v

n)i , for all i ∈ Z,
thanks to Lemma 3.1, so that

⎧
⎨

⎩

un+1
i ≥ a|xi − x0| + bn − �t H(a, a) − �t R(xi , I

n+1) if i �= 0

un+1
0 ≥ bn + 2a

ε�t

�x
− �t R(x0, I

n+1).

Since I n+1 ≥ Im/2, and I 
→ R(xi , I ) is decreasing for all i ∈ Z, the choice
bn+1 = bn − �t H(a, a) − �t K yields (ii) thanks to (A3).

• The second inequality in (iv) is a consequence of the bound from below of
(un+1

i )i∈Z, as well as the one for I n+1. Indeed, considering ε ∈ (0, ε1), the defi-
nition of I n+1 yields

Im/2 ≤ I n+1 ≤ �x
∑

i∈Z
ψ(xi )e

−un+1
i /ε,
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and for an integer N ≥ 1, which will be determined later, the following inequality
holds true

Im/2 ≤ �x
∑

|i |<N

ψ(xi ) e
−un+1

i /ε + �x
∑

|i |≥N

ψ(xi ) e
−
(
bNt +a|xi−x0|

)
/ε

,

because of (ii). In both terms, we use (A1), and since xi − x0 = i�x , we have

Im/2 ≤ (2N − 1)�x ψM e
−min

i∈Z un+1
i /ε + 2�x ψM e

−
(
bNt +aN�x

)
/ε
∑

i≥0

e−ai�x/ε.

Therefore, N is chosen such that bNt
+ aN�x ≥ 1. Note that this choice is

independent of n, and that it depends only on the assumptions, and �x . Hence,
the previous inequality can be simplified as

Im/2 ≤ (2N − 1)�x ψM e
−min

i∈Z un+1
i /ε + 2�x ψM e−1/ε

1 − e−a�x/ε ,

and ε2 can be defined, as a function of the parameters arising in the assumptions
and of �x , but independently of n such that

∀ε ∈ (0, ε2),
2 �x ψM e−1/ε

1 − e−a�x/ε ≤ Im/4,

so that for 0 < ε < min(ε1, ε2), the second inequality in (iv) is satisfied, with

cM = max

{

− ln

(
Im

4(2N − 1)�xψM

)

, cinM

}

.

Once again, it is worth noticing that this choice is independent of n.
• The previous results yield the inequality I n+1 ≤ 2IM in (iii). Indeed, thanks to
(iv), uni ≥ cmε for all i ∈ Z, and because of the monotonicity of (15), this implies
that

∀i ∈ Z, Mε
�t

(
un
)

i ≥ cmε.

Moreover the bound from below (ii) satisfied by un+1 = (un+1
i )i∈Z, ensures that

there exists an index k ∈ Z such that un+1
k = mini∈Z un+1

i ≤ cMε. The definition
of un+1

i at line (14a) yields

�t R(xk , I
n+1) = Mε

�t

(
un
)

k − un+1
k ≥ −(cM − cm)ε ≥ �t R(xk , IM ) − (cM − cm)ε,
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where the last inequality has been obtained considering that R(xk, IM ) ≤ 0,
according to (A2). One can conclude similarly as above, using (A3) to write

�t R(xk, I
n+1) ≥ �t R(xk, 2IM ) + �t IM

K
− ε(cM − cm).

Denoting ε3 = �t IM/(K (cM − cm)), the previous inequality states that for all
ε ∈ (0, ε3), R(xk, I n+1) ≥ R(xk, 2IM ). Once again, we emphasize the fact that
ε3 is defined once for all since it depends only on the assumptions and on �t , and
it is independent of n. The second inequality in (iii) follows, since R is decreasing
with respect to I .

• The first inequality in (iv) is a consequence of the previous result. Indeed, thanks
to the definition of I n+1 in (14b) and to (A1), one has

∀i ∈ Z, ψm �x e−un+1
i /ε ≤ �x

∑

i∈Z
ψ(xi )e

−un+1
i /ε = I n+1 ≤ 2IM .

It gives that ∀i ∈ Z, un+1
i ≥ cmε, where cm = min

{
− ln

(
2IM

ψm�x

)
, cinm

}
, depends

only on the constants defined in the assumptions and on �x , and is independent
of n.

• Eventually, Lemma 3.1 yields that Mε
�t (u

n) enjoys Ln-Lipschitz property. The
Ln+1-Lipschitz bound (i) of un+1 is then a consequence of (iii) and (A3).

Eventually, we denote ε0 = min(ε1, ε2, ε3), such that Lemma 3.2 holds.

B Proof of Lemma 4.2

In this appendix, we prove Lemma 4.2. We start by proving (i)-(iii) and (iv) by induc-
tion. Let n ∈ [[0, Nt − 1]]. Suppose that (i)-(iii) are true for v�t (tn, ·), as it is the case
for the initial data vin thanks to (A5)-(A6). Let n ∈ [[0, Nt − 1]] and s ∈ (0,�t]. In
what follows, we show that v�t (tn + s, ·) satisfies (i)-(iii), and that J�t (tn+1) satisfies
(iv):

• Let j realize the minimum of (v�t (tn, xi ))i∈Z. Hence v�t (tn, x j ) = 0 thanks to
(12c), and the definition of H in (5) yields

M�t (v�t (tn, ·)) (x j ) = 0.

Coming back to (12a), we have

−�t R
(
x j , J�t (tn+1)

) = v�t (tn+1, x j ) ≥ 0,

and we obtain that Im ≤ J�t (tn+1) thanks to (A2) and (A3).
• Notice that since (CFL0) is satisfied, the first step (M0

s ) of the scheme (S0) is
monotonic. Hence, Lemma 4.1 gives

∀x ∈ R, a|x − x0| + btn − sH(a, a) ≤ M0
s (v�t (tn, ·)) (x),
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so that v�t (tn + s, x) ≥ a|x − x0| + btn − sH(a, a) − sR(x, J�t (tn + s)). The
monotonicity of R(x, ·) as well as the lower bound for J�t (tn + s) yield

a|x − x0| + btn+s ≤ v�t (tn + s, x),

with btn+s = btn − sH(a, a) − sK , thanks to (A3).
• Since v�t (tn, xi ) ≥ 0 for all i ∈ Z, Lemma 4.1 yields that

∀i ∈ Z, M�t (v�t (tn, ·)) (xi ) ≥ 0.

Consider then k ∈ Z such that

v�t (tn+1, xk) = min
i∈Z v�t (tn+1, xi ) = 0.

Note that such a k exists, thanks to the previous step of the proof. We obtain

�t R (xk, J�t (tn+1)) = M�t (v�t (tn, ·)) (xk) ≥ 0,

thanks to (12a). The inequality J�t (tn+1) ≤ IM is then a consequence of assump-
tions (A2) and (A3). The bounds for J�t in (iv) follow, since it is constant on
(tn, tn+1].

• Once again, the monotonicity of the first step (M0
s ) of scheme (S0), yields

∀x ∈ R,M0
s (v�t (tn, ·)) (x) ≤ a|x − x0| + btn ,

so that property (iii) is proved with btn+s = btn + sK , thanks to (A3).
• Similarly, v�t (tn + s, ·) is Ltn+s-Lipschitz continuous thanks to Lemma 4.1 and
(A3).

The Lipschitz-in-time property (ii) is a consequence of (i). We now show that
J�t (tn+1) ≥ J�t (tn). Recalling that J�t is constant on (0,�t] and that it is not
defined at t = 0, we then suppose that n ∈ [[1, Nt − 1]]. Considering an index j such
that v�t (tn, x j ) = mini∈Z v�t (tn, xi ) = 0, (12a) yield

R(x j , J�t (tn+1)) ≤ 0,

as previously. Let us now consider the previous step of the scheme, at the same index
j . As this part of the proof only uses points of the grid, we use rather the formulation
(S0) for the sake of simplicity. We have,

⎧
⎪⎪⎨

⎪⎪⎩

vnj − vn−1
j

�t
+ H

(
vn−1
j − vn−1

j−1

�x
,
vn−1
j+1 − vn−1

j

�x

)

+ R(x j , J
n) = 0

vnj = min
i∈Z vni = 0.

(43)
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Since all the vn−1
i for i ∈ Z are nonnegative, one has

vn−1
j − vn−1

j−1

�x
≤ vn−1

j

�x
, and

vn−1
j+1 − vn−1

j

�x
≥ −vn−1

j

�x
.

Moreover, because H is increasing with respect to its first variable and decreasing
with respect to the second one, the following inequality holds

H

(
vn−1
j − vn−1

j−1

�x
,
vn−1
j+1 − vn−1

j

�x

)

≤ H

(
vn−1
j

�x
,
−vn−1

j

�x

)

=
(

vn−1
j

�x

)2

,

where the last equality comes from the expression of H , see (5). Once injected in (43),
we obtain

R(x j , J
n) ≥ vn−1

j

�t

(

1 − �t

�x2
vn−1
j

)

,

and the right hand side of this inequality is positive. Indeed, thanks to the Lipschitz-
in-time property (ii), we have

∣
∣
∣
∣
∣

vnj − vn−1
j

�t

∣
∣
∣
∣
∣
= vn−1

j

�t
≤ L2

T + K ,

and the condition (CFL0) yields the result. To conclude, let us remark that

R
(
x j , J�t (tn+1)

) ≤ 0 ≤ R
(
x j , J

n) = R
(
x j , J�t (tn)

)
, (44)

and use the fact that R is decreasing with respect to its second variable. The mono-
tonicity of J�t in (v) follows immediately since it is constant on the interval (tn, tn+1].

Let us emphasize the fact that the above proof strongly relies on considerations
on the minimum of (vnj ) j . This bears similarities with [34], where the relation
R(x(t), J (t)) = 0, with x(t) = argmin v(t, ·), is used to study J . In the discrete
setting, (44) is the equivalent of this relation.

C Proof of Lemma 4.6

In this appendix, we prove the second point of Lemma 4.6.
Step (i). Since ψ(t∗, x∗, τ ∗, ξ∗) ≥ ψ(t∗, 0, τ ∗, 0), we have

α
et

∗

2
(x∗2 + ξ∗2) ≤ vk�t (τ

∗, 0) − vk�t (τ
∗, ξ∗) + vk(t∗, x∗) − vk(t∗, 0).
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Then, Lemma 4.5-(i) gives

α
et

∗

2
max

{|x∗|, |ξ∗|}2 ≤ LT |ξ∗| + LT |x∗|,

which yields

αet
∗
max

{|ξ∗|, |x∗|} ≤ 4LT . (45)

Step (ii). We proceed as in the previous step. Comparing the values of ψ at
(t∗, x∗, τ ∗, ξ∗) and (t∗, x∗, τ ∗, x∗), we obtain

(x∗ − ξ∗)2

2�x1/2
≤ vk�t (τ

∗, x∗) − vk�t (τ
∗, ξ∗) + α

et
∗

2
(x∗2 − ξ∗2),

and Lemma 4.5-(i) and (45) give

|t∗ − τ ∗| ≤ 2(L2
T + K )�t1/2, |x∗ − ξ∗| ≤ 10LT�x1/2. (46)

Note that the bound for |τ ∗−t∗| is obtained similarly, starting fromψ(t∗, x∗, τ ∗, ξ∗) ≥
ψ(t∗, x∗, t∗, ξ∗) and using Lemma 4.5-(ii).
Step (iii). We aim to show that t∗ ≤ 2(L2

T +K )�t1/2, provided that σ is appropriately
chosen.We argue by contradiction, and suppose that t∗ > 2(L2

T +K )�t1/2. It implies
that τ ∗ > 0, thanks to (46). Let us start by considering

(t, x) 
→ ψ(t, x, τ ∗, ξ∗) = vk(t, x) − ϕ(t, x),

on [0, T [×R, with

ϕ(t, x) = vk�t (τ
∗, ξ∗) +

(
σ + 4C2HαeT

)
t + (x − ξ∗)2

2�x1/2

+ (t − τ ∗)2

2�t1/2
+ α

et

2
(x2 + ξ∗2) + α

T − t
.

It admits a maximum, precisely at (t∗, x∗), with t∗ ∈ (0, T ). Since vk is the viscosity
solution of (19), we deduce

∂tϕ(t∗, x∗) + H (∇xϕ(t∗, x∗)
)+ R(x∗, J k0 (t∗)) ≤ 0,

that is

σ + 4C2HαeT + t∗ − τ ∗

�t1/2
+ α

et
∗

2
(x∗2 + ξ∗2) + α

(T − t∗)2

+ H
(
x∗ − ξ∗

�x1/2
+ αet

∗
x∗
)

+ R(x∗, J k0 (t∗)) ≤ 0, (47)
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where H is defined in (3). Next, let us consider

(τ, ξ) 
→ ψ(t∗, x∗, τ, ξ),

on [0, T ] × R. As previously, it admits a maximum, precisely at (τ ∗, ξ∗), so that for
all (τ, ξ) ∈ [0, T ] × R

vk�t (τ, ξ) ≥ w(τ, ξ) + k∗, (48)

with

w(τ, ξ) = − (x∗ − ξ)2

2�x1/2
− (t∗ − τ)2

2�t1/2
− α

et
∗

2
ξ2,

k∗ = vk�t (τ
∗, ξ∗) + (x∗ − ξ∗)2

2�x1/2
+ (t∗ − τ ∗)2

2�t1/2
+ α

et
∗

2
ξ∗2.

Remark that τ ∗ = tn∗ + s∗ with n∗ ∈ [[0, Nt − 1]] and s∗ ∈ (0,�t]. The previous
inequality yields

vk�t (tn∗, ξ∗) ≥ w(tn∗, ξ∗) + k∗. (49)

The next step consists in applying the scheme (20) to this inequality. To do so, one
has to make sure that

|w(tn∗, ξ∗ ± �x) − w(tn∗, ξ∗)| ≤ (14LT + 1)�x, (50)

so that (CFL0) ensures that scheme (M0
s ) enjoys monotonicity. From the expression

of w(τ, ξ), we have

∣
∣
∣
∣
w(tn∗ , ξ∗) − w(tn∗ , ξ∗ ± �x)

�x

∣
∣
∣
∣ ≤ αet

∗ |ξ∗| + �x1/2

2
+ |x∗ − ξ∗|

�x1/2
+ α

eT

2
�x .

Hence, if �x is chosen small enough, (50) holds, thanks to (45) and (46). Since
the ratio �t/�x is fixed, this condition on �x implies that the result holds for all
�t ≤ �t0, for some �t0 > 0. Since (CFL0) is satisfied, the first step of the scheme
(M0

s ) is monotonic and can hence be applied to the inequality (48), using (49). As
Ms∗ commutes with constants, it gives

Ms∗(v
k
�t (tn∗ , ·))(ξ∗) − s∗R(ξ∗, J k�t (tn∗ + s∗)) ≥ Ms∗(w(tn∗ , ·))(ξ∗)

+k∗ − s∗R(ξ∗, J k�t (tn∗ + s∗)),

that is

vk�t (τ
∗, ξ∗) ≥ w(tn∗ , ξ∗) − s∗H
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(
w(tn∗ , ξ∗) − w(tn∗ , ξ∗ − �x)

�x
,
w(tn∗ , ξ∗ + �x) − w(tn∗, ξ∗)

�x

)

+ k∗ − s∗R(ξ∗, J k�t (τ
∗)).

The latter yields counterpart of (47)

0 ≤ H

(
x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ + �x1/2

2
+ α

et
∗

2
�x,

x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ − �x1/2

2
− α

et
∗

2
�x

)

+ R(ξ∗, J k�t (τ
∗)) + t∗ − τ ∗ + s∗/2

�t1/2
. (51)

Inequalities (47) and (51) are now gathered, so that

σ + 4C2
HαeT + t∗ − τ ∗

�t1/2
+ α

et
∗

2
(x∗2 + ξ∗2) + α

(T − t∗)2
+ H

(
x∗ − ξ∗

�x1/2
+ αet

∗
x∗
)

+ R(x∗, J k0 (t∗))

≤H

(
x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ + �x1/2

2
+ α

et
∗

2
�x,

x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ − �x1/2

2
− α

et
∗

2
�x

)

+ R(ξ∗, J k�t (τ
∗)) + t∗ − τ ∗

�t1/2
+ s∗/2

�t1/2
,

and hence

σ + 4C2HαeT + α
et

∗

2
(x∗2 + ξ∗2) + H

(
x∗ − ξ∗

�x1/2
+ αet

∗
x∗, x

∗ − ξ∗

�x1/2
+ αet

∗
x∗
)

− H

(
x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ + �x1/2

2
+ α

et
∗

2
�x,

x∗ − ξ∗

�x1/2
− αet

∗
ξ∗ − �x1/2

2
− α

et
∗

2
�x

)

≤ R(ξ∗, J k�t (τ
∗)) − R(x∗, J k0 (t∗)) + �t1/2

2
, (52)

since H defined in (3) and the numerical Hamiltonian satisfy H(p, p) = H(p) for
any p ∈ R. An upper bound for the right hand side is obtained from (A3), and from
the k-Lipschitz regularity of J k0 in Lemma 4.4

R(ξ∗, J k�t (τ
∗)) − R(x∗, J k0 (t∗)) ≤ K |ξ∗ − x∗| + K‖J k�t − J k0 ‖∞ + Kk|t∗ − τ ∗|,

that can, once again, be estimated using (46) and the fact that the ratio�t/�x is fixed.
On the other hand, the Lipschitz property of H gives a lower bound for the left hand
side of (52). Indeed, all the arguments of the functions H in the inequality are bounded
in absolute value by 14LT + 1. It yields

σ + 4C2HαeT + α
et

∗

2
(x∗2 + ξ∗2) − 2CH

(

αet
∗
(|x∗| + |ξ∗|) + �x1/2

2
+ α

eT

2
�x

)

≤ C(k)
(
�t1/2 + �x1/2 + ‖J k�t − J k0 ‖∞

)
,
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where C(k) is a constant depending on k, and on the parameters K and LT . We remark
now that the left-hand side of the inequality is bounded from below independently of
|x∗| and |ξ∗|. Hence, as x 
→ x2 − 4CH x is minimal at x = 2CH , and as its minimum
is equal to −4C2H ,

σ ≤ σ + 4C2HαeT − 4C2Hαet
∗ ≤ C(k)

(
�t1/2 + �x1/2 + ‖J k0 − J k�t‖∞

)
+ αCH eT�x,

and σ = σ(�t, k) is defined so that the previous inequality cannot hold, and that
σ(�t, k) →�t→0 0 when k is fixed, as does the right hand side of the inequality.
Because of ‖J k0 − J k�t‖∞, there is no indication for the speed of the convergence
σ(�t, k) →�t→0 0 when k is fixed. Indeed, Lemma 4.4-(iii) is obtained by using a
compactness argument, which does not give a quantitative estimate.

D Proof of Lemma 5.1

In this appendix, we prove Lemma 5.1. The proof is done by induction. The initial
data u0 = (u0i )i∈Z enjoys the properties of Lemma (5.1). Let ε > 0 be fixed, and let us
suppose that the items (i)-(ii) are satified by un = (uni )i∈Z for a given n ∈ [[0, Nt −1]],
and prove that I n+1 and un+1 = (un+1

i )i∈Z are well defined, and satisfy (i)-(ii)-(iii).
First of all, let us remark that I n+1 is solution of �(I ) = 0, with

�(I ) = I − �x
∑

i∈Z
ψ(xi )e

−Mε
�x (u

n)i /εe�t R(xi ,I )/ε, (53)

where Mε
�x is defined in (14). Thanks to the first point of Lemma 3.1, and because

of (CFLε),

∀i ∈ Z, Mε
�t (u

n)i ≥ a|xi − x0| + β
n

− �t H(a, a) ≥ a|xi − x0| + β
Nt

, (54)

so that the sum in (53) is well-defined for all I ∈ R. Indeed, for fixed I ∈ R, x 
→
R(x, I ) is bounded, thanks to the remark after (A3), and the coercivity of Mε

�t (u
n)

makes the series in (53) convergent. Since � is a difference between an increasing
and a decreasing function, there exists a unique I n+1 ∈ R such that �(I n+1) = 0.
Therefore, un+1 is uniquely determined too. Moreover, the inequality �(I ) ≤ I
immediately yields that I n+1 ≥ 0. As R(x, ·) is decreasing for all x ,

∀i ∈ Z, un+1
i ≥ Mε

�t (u
n)i − �t R(xi , 0),

which gives the lower estimate in (ii), with β
n+1

= β
n
−�t H(a, a)−�t‖R(·, 0)‖∞.

Let us suppose that I > IM , with IM defined in (A2). A bound from below for I ,
comes from

�− = �x
∑

i∈Z
ψ(xi )e

−Mε
�x (u

n)i /εe�t R(xi ,I )/ε ≤ �xψM

∑

i∈Z
e−Mε

�x (u
n)i /ε,
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where we also used (A1). Now, remark thatMε
�t (u

n)i ≥ a|xi − x0|+β
Nt

, and hence

�− ≤ 2ψMe
−β

Nt
/ε

�x
∑

i∈N
e−ai�x/ε.

As a consequence, if I > IM ,

�(I ) ≥ I − 2ψMe
−β

Nt
/ε

�x
1

1 − e−a�x/ε
−→

�x→0
I − 2ε

a
ψMe

−β
Nt

/ε
. (55)

Hence, there exists �x0 > 0 and IM ′ > 0 such that for all �x ≤ �x0, �(IM ′) > 0.
Since � is increasing, I n+1 ≤ IM ′ . Eventually, Lemma 3.1 yields (i), and

∀i ∈ Z, Mε
�t (u

n)i ≤ a|xi − x0| + βn + 2εa
�t

�x
,

where (CFLε) gives (ii).
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