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Abstract
My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.
1007/s00211-016-0829-7)withW.Zhoucontains twoerrorswhich concern thederiva-
tion of some auxiliary norm estimates of the lower triangular projection for positive
semi-definite Hermitean matrices in dependence on coordinate permutations. These
errors are corrected. The main results of Oswald and Zhou (Numerische Mathe-
matik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7) about the
convergence behavior of so-called shuffled and preshuffled SOR iterations are not
affected.
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1 Introduction

In [1], the influence of random equation ordering in a linear system By = b on deriving
upper bounds for the convergence speed of the classical successive over-relaxation
(SOR) method

y(k+1) = y(k) + ω(D + ωL)−1(b − By(k)), k = 0, 1, . . . , (1)

The original article can be found online at https://doi.org/10.1007/s00211-016-0829-7.
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was studied. For simplicity, it is assumed that the system is consistent with solution y
and that B is a complex n × n Hermitian positive semi-definite matrix with positive
diagonal part D and strictly lower triangular part L . Two strategies of involving per-
mutations of the system were considered. For the so-called shuffled SOR iteration, in
each step the SOR update formula (1) is applied to a uniformly at random and indepen-
dently chosen permutation of the linear system, while for the preshuffled SOR iteration
the iteration (1) is performed for k = 0, 1, . . . after a single permutation of the system
at the beginning. To study the convergence properties of such iterations, 2-norm esti-
mates involving the lower triangular part Lσ of the permuted matrix Bσ = Pσ BP∗

σ

played a crucial role, where Pσ denotes the permutation matrix associated with the
permutation σ acting according to (Pσ y)i = yσi , i = 1, . . . , n.

The necessary properties were formulated as Theorem 2 and 3 in [1]. Unfortunately,
the proof of Theorem 2 uses a wrong formula for P∗

σ Lσ L∗
σ Pσ . This was pointed out

by T. Yilmaz in [2]. In the next section, a proof of Theorem 2 based on the correct
formula is provided, including a slight improvement of the involved constants.

Even though the proof of Theorem 3 in [1] is correct, we use the opportunity to
give new estimates for the absolute constant in the inequality

inf
σ

‖Lσ ‖ ≤ C‖B‖. (2)

For the class of all Hermitean matrices (not necessarily positive-definite) we show that
taking C = 245 is feasible which considerably improves the value C = C2 = 2905
stated in [1]. For positive semi-definite B, one can even take C = 122,3. These
bounds are consequences of recent quantitative improvements of the Anderson paving
conjecture and will be shown in Sect. 3. The derivation in [1] that (2) holds for positive
semi-definite B with unit diagonal with the smaller value C = C1 = 32,42 is based
on an flawed application of earlier results on the size of one-sided pavings and thus
is not correct. It remains an interesting open question to find more precise bounds for
the constant C in (2). For the class of positive semi-definite B with unit diagonal I
conjecture that C = 2/π is the best possible choice.

2 Correct statement and proof of Theorem 2 from [1]

Theorem 2 in [1] concerns the 2-norm estimate of the matrix

E := 1

n!
∑

σ

P∗
σ Lσ L

∗
σ Pσ , (3)

which plays a cruical role in the estimates of the expected squared error of the shuffled
SOR iteration, see Theorem 4 a) there. Aswasmentioned above, its proof uses a wrong
formula for the entries of P∗

σ Lσ L∗
σ Pσ . The correct formula [2] is

(P∗
σ Lσ L

∗
σ Pσ )s,t =

min(σ−1
s ,σ−1

t )−1∑

k=1

Hs,σk Hσk ,t , (4)
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where Hi, j are the entries of the Hermitean matrix H = B− D, the non-diagonal part
of B, and σ−1 is the permutation inverse to σ .

To see (4), recall that

(Lσ )i,k =
{
Hσi ,σk , k < i,
0, k ≥ i,

(L∗
σ )k, j = (Lσ )∗j,k =

{
Hσk ,σ j , k < j,
0, k ≥ j .

Consequently,

(Lσ L
∗
σ )i, j =

min(i, j)−1∑

k=1

Hσi ,σk Hσk ,σ j

and, by setting i = σ−1
s , j = σ−1

t , we arrive at (4).
Based on (4), we next derive a formula for E in terms of the Hermitean positive-

definite matrix H2, namely,

E = 1

3
H2 + 1

6
DH2 , (5)

where DH2 is the diagonal part of H2. Indeed, from (3) and (4) we have

n! · Es,t =
∑

σ

min(σ−1
s ,σ−1

t )−1∑

k=1

Hs,σk Hσk ,t

=
n∑

m=1

Hs,mHm,t · nm;s,t ,

where nm;s,t stands for the cardinality of the set of all permutations σ such that, for
some k < min(σ−1

s , σ−1
t ), we have σk = m. Equivalently, this is the cardinality of the

set of all σ such that σ−1
m < min(σ−1

s , σ−1
t ). It is not hard to see that these cardinalities

equal

nm;s,s = 1

2
n!, m �= s, nm;s,t = 1

3
n!, m �= s �= t �= m.

Indeed, for the casem �= t = s, any σ in the associated set is obtained by first choosing
two indices k, i with k < i from {1, . . . , n} and setting σ−1

m = k, σ−1
s = i (this is

possible in n(n−1)/2 different ways) and then independently assigning the remaining
n−2 indices arbitrarily (this is possible in (n−2)! different ways). A similar reasoning
applies to the case m �= s �= t �= m, where one starts with a subset of 3 different
indices k, i, j with k < i < j , sets

σ−1
m = k, σ−1

s = i, σ−1
t = j,

or alternatively

σ−1
m = k, σ−1

t = i, σ−1
s = j
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(altogether n(n − 1)(n − 2)/3 different possibilities) and assigns the remaining n − 3
indices arbitrarily ((n − 3)! different possibilities). For index constellations, where
m = s or m = t , one obviously has nm;s,t = 0. With this, we arrive for s = t at

Es,s = 1

2

∑

m �=s

Hs,mHm,s = 1

2

n∑

m=1

Hs,mHm,s = 1

2
(H2)s,s,

since Hm,m = 0. Similarly, for s �= t we have

Es,t = 1

3

∑

m �=s,m �=t

Hs,mHm,t = 1

3
(H2)s,t .

This establishes the formula (5).
Note that, up to this point, the calculations hold for any Hermitean B. Since H2

and its diagonal part DH2 are automatically positive semi-definite, we thus get

‖E‖ ≤ 1

3
‖H2‖ + 1

6
‖DH2‖ ≤ 1

2
‖H2‖.

Since ‖H‖ ≤ ‖B‖ + ‖D‖ ≤ 2‖B‖ for any B we also have

‖E‖ ≤ 1

2
‖H‖2 ≤ 2‖B‖2

for all Hermitean B.
If theHermitean B is positive semi-definite, then H = B−D has norm ‖H‖ ≤ ‖B‖

since

−‖B‖‖x‖2 ≤ −(Dx, x) ≤ (Hx, x) ≤ (Bx, x) ≤ ‖B‖‖x‖2.

Thus, in this case ‖E‖ ≤ 1
2‖B‖2. If, in addition, B has unit diagonal (i.e., D = I )

then slightly more precise bounds are possible. Indeed, then

‖H2‖ = λmax(H
2) = max((λmax(B) − 1)2, λmin(B) − 1)2) ≤ max((‖B‖ − 1)2, 1).

In summary, we have proved the following replacement of Theorem 2 from [1].

Theorem Let B be an arbitrary Hermitean matrix, and H = B − D its non-diagonal
part. Then the matrix E defined in (3) satisfies

‖E‖ ≤ 1

2
‖H‖2 ≤ 2‖B‖2.

If, in addition, B is positive semi-definite then

‖E‖ ≤ 1

2
‖B‖2.
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Compared to the statement of Theorem 2 in [1], the constants in these estimates are
reduced by a factor of two which also leads to better constants in Theorem 4 a) in [1].

3 New constants in Theorem 3 from [1]

The proof of Theorem 3 in [1], i.e., the proof of (2) with a constant C independent
of the size of B, is essentially based on the existence of so-called (k, ε)-pavings for
Hermitean matrices with zero (or small) diagonal part such as H = B − D. We
use a consequence of a recent refinement [3] of the original proof of the Anderson
paving conjecture. If one carefully follows the proof of Theorem 1.1 in [3, Section
5.2] specialized to the pair [H ,−H ] (in particular, if one uses the more precise bound
at the end of the proof of Theorem 5.6 there) then one sees that for any ε ∈ (0, 1)
there exists a (k, ε)-paving of H if 4k−1/2 + 2k−1 ≤ ε. Equivalently, for any k ≥ 20
there exists a (k, εk)-paving for H with

εk := 4k−1/2 + 2k−1 < 1.

It was shown in the proof of Theorem 3 and in the remarks following it in [1] that this
implies the estimate (2) with the constant

C = min
k≥20

k − 1

1 − εk
< 122,3

(the minimum is achieved for k = 43). Since ‖H‖ ≤ 2‖B‖ for general Hermitean
B and ‖H‖ ≤ ‖B‖ for positive semi-definite B, this yields the respective statements
about the constant C in (2) in Sect. 1.
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