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Abstract

My joint paper (Numerische Mathematik 135:1207-1220, 2017. https://doi.org/10.
1007/s00211-016-0829-7) with W. Zhou contains two errors which concern the deriva-
tion of some auxiliary norm estimates of the lower triangular projection for positive
semi-definite Hermitean matrices in dependence on coordinate permutations. These
errors are corrected. The main results of Oswald and Zhou (Numerische Mathe-
matik 135:1207-1220, 2017. https://doi.org/10.1007/s00211-016-0829-7) about the
convergence behavior of so-called shuffled and preshuffled SOR iterations are not
affected.
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1 Introduction
In [1], the influence of random equation ordering in a linear system By = b on deriving
upper bounds for the convergence speed of the classical successive over-relaxation

(SOR) method

YD = y® LoD+ oL b - BY®),  k=o0,1,..., (1)

The original article can be found online at https://doi.org/10.1007/s00211-016-0829-7.
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was studied. For simplicity, it is assumed that the system is consistent with solution y
and that B is a complex n x n Hermitian positive semi-definite matrix with positive
diagonal part D and strictly lower triangular part L. Two strategies of involving per-
mutations of the system were considered. For the so-called shuffled SOR iteration, in
each step the SOR update formula (1) is applied to a uniformly at random and indepen-
dently chosen permutation of the linear system, while for the preshuffled SOR iteration
the iteration (1) is performed for k = 0, 1, ... after a single permutation of the system
at the beginning. To study the convergence properties of such iterations, 2-norm esti-
mates involving the lower triangular part L, of the permuted matrix B, = P;BP)
played a crucial role, where P, denotes the permutation matrix associated with the
permutation o acting according to (Psy); = yg;, 1 = 1,...,n.

The necessary properties were formulated as Theorem 2 and 3 in [1]. Unfortunately,
the proof of Theorem 2 uses a wrong formula for P} L, L’ P,. This was pointed out
by T. Yilmaz in [2]. In the next section, a proof of Theorem 2 based on the correct
formula is provided, including a slight improvement of the involved constants.

Even though the proof of Theorem 3 in [1] is correct, we use the opportunity to
give new estimates for the absolute constant in the inequality

inf ||Lo|| = C|IB]. @

For the class of all Hermitean matrices (not necessarily positive-definite) we show that
taking C = 245 is feasible which considerably improves the value C = C; = 2905
stated in [1]. For positive semi-definite B, one can even take C = 122,3. These
bounds are consequences of recent quantitative improvements of the Anderson paving
conjecture and will be shown in Sect. 3. The derivation in [1] that (2) holds for positive
semi-definite B with unit diagonal with the smaller value C = C| = 32,42 is based
on an flawed application of earlier results on the size of one-sided pavings and thus
is not correct. It remains an interesting open question to find more precise bounds for
the constant C in (2). For the class of positive semi-definite B with unit diagonal I
conjecture that C = 2/m is the best possible choice.

2 Correct statement and proof of Theorem 2 from [1]

Theorem 2 in [1] concerns the 2-norm estimate of the matrix
1
E:= mZP;L(,L;P(,, (3)
T o

which plays a cruical role in the estimates of the expected squared error of the shuffled
SOR iteration, see Theorem 4 a) there. As was mentioned above, its proof uses a wrong
formula for the entries of P} L, L P,. The correct formula [2] is

min(ar;1 ,crfl)—l
(PLoLiPo)si= Y, HoogHou, &

k=1
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where H; ; are the entries of the Hermitean matrix H = B — D, the non-diagonal part
of B, and o ~! is the permutation inverse to o
To see (4), recall that

_ Hm’g, k<l, * _ * HO'k,O"s k<j7
(La)i,k - {O, K k >, (Lo-)k,j - (La)j,k - 0, ! k > ]

Consequently,

min(i, j)—1

(LGL;)i,j = Z HO‘,‘,O'kHUk,Uj
k=1

and, by setting i = os_l, j= 0,_1, we arrive at (4).
Based on (4), we next derive a formula for E in terms of the Hermitean positive-
definite matrix H2, namely,

1 5, 1
E=§H +6DH2’ %)
where Dy is the diagonal part of H 2 Indeed, from (3) and (4) we have

min(o; 0,7 —1

I Esr = 5,0 oy,
n t Z Z Hg g Ho t
o k=1

n
= E Hs,mHm,t NMmss,ts

m=1

where n,.s ; stands for the cardinality of the set of all permutations ¢ such that, for
some k < min (a;l , crt_l ), we have o, = m. Equivalently, this is the cardinality of the
setofall o such thato, ! < min(o;~!, a[_l ). Itis not hard to see that these cardinalities
equal

1
Rmss,s = En!, m#£s, st = gn!, m#£s £t #£Em.

Indeed, for the case m # ¢ = s, any o in the associated set is obtained by first choosing
two indices k, i with k < i from {1, ..., n} and setting a,;l = k, as_l = i (this is
possible in n(n — 1) /2 different ways) and then independently assigning the remaining
n—2 indices arbitrarily (this is possible in (n —2)! different ways). A similar reasoning
applies to the case m # s # t # m, where one starts with a subset of 3 different
indices k, i, j withk < i < j, sets

-1 _ -1 _ . -1 _ .
o, =k, o, =i, o =],

or alternatively
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(altogether n(n — 1)(n — 2)/3 different possibilities) and assigns the remaining n — 3
indices arbitrarily ((n — 3)! different possibilities). For index constellations, where
m = s or m = t, one obviously has n,,.; ; = 0. With this, we arrive for s = ¢ at

1 1 & 1
Es,s = E Z Hs,mHm,s = E Z Hs,mHm,s = E(HZ)S,S’

m#s m=1

since Hy, ,, = 0. Similarly, for s # ¢ we have

1 1
Es,t = g Z Hs,mHm,t = g(Hz)s,b
m#s,m#t

This establishes the formula (5).
Note that, up to this point, the calculations hold for any Hermitean B. Since H?
and its diagonal part Dy are automatically positive semi-definite, we thus get

VEI < S1H2 + 21D < 2182
=3 6! HM =175 :
Since |H|| < ||B|| + |D]| < 2||B|| for any B we also have
1
IE| < §||H||2 <2|B|?

for all Hermitean B.
If the Hermitean B is positive semi-definite, then H = B— D hasnorm | H|| < || B||
since

—IIBIlllx|I> < —(Dx, x) < (Hx,x) < (Bx, x) < [|B||Ix]*.

Thus, in this case |E|| < %]B]|. If, in addition, B has unit diagonal (i.e., D = I)
then slightly more precise bounds are possible. Indeed, then

IH?|| = Amax(H*) = max((Amax(B) — 1)?, Amin(B) — 1)?) < max((||B| — 1)%, 1).

In summary, we have proved the following replacement of Theorem 2 from [1].

Theorem Let B be an arbitrary Hermitean matrix, and H = B — D its non-diagonal
part. Then the matrix E defined in (3) satisfies

1
IEIl < SIHI? < 2118
If, in addition, B is positive semi-definite then

1
IE| < §||B||2.
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Compared to the statement of Theorem 2 in [1], the constants in these estimates are
reduced by a factor of two which also leads to better constants in Theorem 4 a) in [1].

3 New constants in Theorem 3 from [1]

The proof of Theorem 3 in [1], i.e., the proof of (2) with a constant C independent
of the size of B, is essentially based on the existence of so-called (k, €)-pavings for
Hermitean matrices with zero (or small) diagonal part such as H = B — D. We
use a consequence of a recent refinement [3] of the original proof of the Anderson
paving conjecture. If one carefully follows the proof of Theorem 1.1 in [3, Section
5.2] specialized to the pair [H, — H] (in particular, if one uses the more precise bound
at the end of the proof of Theorem 5.6 there) then one sees that for any € € (0, 1)
there exists a (k, €)-paving of H if 4k~1/? 4 2k~ < e. Equivalently, for any k > 20
there exists a (k, €;)-paving for H with

e =4k V? 42kt < 1.

It was shown in the proof of Theorem 3 and in the remarks following it in [1] that this
implies the estimate (2) with the constant

C = min < 122,3

k>20 1 — €

(the minimum is achieved for k = 43). Since |H| < 2||B|| for general Hermitean
B and |H|| < ||B|| for positive semi-definite B, this yields the respective statements
about the constant C in (2) in Sect. 1.
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