Correction: Random reordering in SOR-type methods

Peter Oswald ${ }^{1}$. Weiqi Zhou ${ }^{2}$

Received: 29 March 2023 / Accepted: 29 March 2023 / Published online: 11 August 2023
© Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

My joint paper (Numerische Mathematik 135:1207-1220, 2017. https://doi.org/10. 1007/s00211-016-0829-7) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coordinate permutations. These errors are corrected. The main results of Oswald and Zhou (Numerische Mathematik 135:1207-1220, 2017. https://doi.org/10.1007/s00211-016-0829-7) about the convergence behavior of so-called shuffled and preshuffled SOR iterations are not affected.

Keywords SOR method • Kaczmarz method • Random ordering • Triangular truncation • Convergence estimates

Mathematics Subject Classification 65F10 • 15A60
Correction to: Numer. Math. (2017) 135:1207-1220
https://doi.org/10.1007/s00211-016-0829-7

1 Introduction

In [1], the influence of random equation ordering in a linear system $B y=b$ on deriving upper bounds for the convergence speed of the classical successive over-relaxation (SOR) method

$$
\begin{equation*}
y^{(k+1)}=y^{(k)}+\omega(D+\omega L)^{-1}\left(b-B y^{(k)}\right), \quad k=0,1, \ldots, \tag{1}
\end{equation*}
$$

[^0]was studied. For simplicity, it is assumed that the system is consistent with solution y and that B is a complex $n \times n$ Hermitian positive semi-definite matrix with positive diagonal part D and strictly lower triangular part L. Two strategies of involving permutations of the system were considered. For the so-called shuffled SOR iteration, in each step the SOR update formula (1) is applied to a uniformly at random and independently chosen permutation of the linear system, while for the preshuffled SOR iteration the iteration (1) is performed for $k=0,1, \ldots$ after a single permutation of the system at the beginning. To study the convergence properties of such iterations, 2-norm estimates involving the lower triangular part L_{σ} of the permuted matrix $B_{\sigma}=P_{\sigma} B P_{\sigma}^{*}$ played a crucial role, where P_{σ} denotes the permutation matrix associated with the permutation σ acting according to $\left(P_{\sigma} y\right)_{i}=y_{\sigma_{i}}, i=1, \ldots, n$.

The necessary properties were formulated as Theorem 2 and 3 in [1]. Unfortunately, the proof of Theorem 2 uses a wrong formula for $P_{\sigma}^{*} L_{\sigma} L_{\sigma}^{*} P_{\sigma}$. This was pointed out by T. Yilmaz in [2]. In the next section, a proof of Theorem 2 based on the correct formula is provided, including a slight improvement of the involved constants.

Even though the proof of Theorem 3 in [1] is correct, we use the opportunity to give new estimates for the absolute constant in the inequality

$$
\begin{equation*}
\inf _{\sigma}\left\|L_{\sigma}\right\| \leq C\|B\| . \tag{2}
\end{equation*}
$$

For the class of all Hermitean matrices (not necessarily positive-definite) we show that taking $C=245$ is feasible which considerably improves the value $C=C_{2}=2905$ stated in [1]. For positive semi-definite B, one can even take $C=122,3$. These bounds are consequences of recent quantitative improvements of the Anderson paving conjecture and will be shown in Sect. 3. The derivation in [1] that (2) holds for positive semi-definite B with unit diagonal with the smaller value $C=C_{1}=32,42$ is based on an flawed application of earlier results on the size of one-sided pavings and thus is not correct. It remains an interesting open question to find more precise bounds for the constant C in (2). For the class of positive semi-definite B with unit diagonal I conjecture that $C=2 / \pi$ is the best possible choice.

2 Correct statement and proof of Theorem 2 from [1]

Theorem 2 in [1] concerns the 2-norm estimate of the matrix

$$
\begin{equation*}
E:=\frac{1}{n!} \sum_{\sigma} P_{\sigma}^{*} L_{\sigma} L_{\sigma}^{*} P_{\sigma} \tag{3}
\end{equation*}
$$

which plays a cruical role in the estimates of the expected squared error of the shuffled SOR iteration, see Theorem 4 a) there. As was mentioned above, its proof uses a wrong formula for the entries of $P_{\sigma}^{*} L_{\sigma} L_{\sigma}^{*} P_{\sigma}$. The correct formula [2] is

$$
\begin{equation*}
\left(P_{\sigma}^{*} L_{\sigma} L_{\sigma}^{*} P_{\sigma}\right)_{s, t}=\sum_{k=1}^{\min \left(\sigma_{s}^{-1}, \sigma_{t}^{-1}\right)-1} H_{s, \sigma_{k}} H_{\sigma_{k}, t}, \tag{4}
\end{equation*}
$$

where $H_{i, j}$ are the entries of the Hermitean matrix $H=B-D$, the non-diagonal part of B, and σ^{-1} is the permutation inverse to σ.

To see (4), recall that

$$
\left(L_{\sigma}\right)_{i, k}=\left\{\begin{array}{ll}
H_{\sigma_{i}, \sigma_{k}}, & k<i, \\
0, & k \geq i,
\end{array} \quad\left(L_{\sigma}^{*}\right)_{k, j}=\left(L_{\sigma}\right)_{j, k}^{*}= \begin{cases}H_{\sigma_{k}, \sigma_{j}}, & k<j, \\
0, & k \geq j .\end{cases}\right.
$$

Consequently,

$$
\left(L_{\sigma} L_{\sigma}^{*}\right)_{i, j}=\sum_{k=1}^{\min (i, j)-1} H_{\sigma_{i}, \sigma_{k}} H_{\sigma_{k}, \sigma_{j}}
$$

and, by setting $i=\sigma_{s}^{-1}, j=\sigma_{t}^{-1}$, we arrive at (4).
Based on (4), we next derive a formula for E in terms of the Hermitean positivedefinite matrix H^{2}, namely,

$$
\begin{equation*}
E=\frac{1}{3} H^{2}+\frac{1}{6} D_{H^{2}}, \tag{5}
\end{equation*}
$$

where $D_{H^{2}}$ is the diagonal part of H^{2}. Indeed, from (3) and (4) we have

$$
\begin{aligned}
n!\cdot E_{s, t} & =\sum_{\sigma} \sum_{k=1}^{\min \left(\sigma_{s}^{-1}, \sigma_{t}^{-1}\right)-1} H_{s, \sigma_{k}} H_{\sigma_{k}, t} \\
& =\sum_{m=1}^{n} H_{s, m} H_{m, t} \cdot n_{m ; s, t},
\end{aligned}
$$

where $n_{m ; s, t}$ stands for the cardinality of the set of all permutations σ such that, for some $k<\min \left(\sigma_{s}^{-1}, \sigma_{t}^{-1}\right)$, we have $\sigma_{k}=m$. Equivalently, this is the cardinality of the set of all σ such that $\sigma_{m}^{-1}<\min \left(\sigma_{s}^{-1}, \sigma_{t}^{-1}\right)$. It is not hard to see that these cardinalities equal

$$
n_{m ; s, s}=\frac{1}{2} n!, \quad m \neq s, \quad n_{m ; s, t}=\frac{1}{3} n!, \quad m \neq s \neq t \neq m .
$$

Indeed, for the case $m \neq t=s$, any σ in the associated set is obtained by first choosing two indices k, i with $k<i$ from $\{1, \ldots, n\}$ and setting $\sigma_{m}^{-1}=k, \sigma_{s}^{-1}=i$ (this is possible in $n(n-1) / 2$ different ways) and then independently assigning the remaining $n-2$ indices arbitrarily (this is possible in ($n-2$)! different ways). A similar reasoning applies to the case $m \neq s \neq t \neq m$, where one starts with a subset of 3 different indices k, i, j with $k<i<j$, sets

$$
\sigma_{m}^{-1}=k, \quad \sigma_{s}^{-1}=i, \quad \sigma_{t}^{-1}=j
$$

or alternatively

$$
\sigma_{m}^{-1}=k, \quad \sigma_{t}^{-1}=i, \quad \sigma_{s}^{-1}=j
$$

(altogether $n(n-1)(n-2) / 3$ different possibilities) and assigns the remaining $n-3$ indices arbitrarily $((n-3)$! different possibilities). For index constellations, where $m=s$ or $m=t$, one obviously has $n_{m ; s, t}=0$. With this, we arrive for $s=t$ at

$$
E_{s, s}=\frac{1}{2} \sum_{m \neq s} H_{s, m} H_{m, s}=\frac{1}{2} \sum_{m=1}^{n} H_{s, m} H_{m, s}=\frac{1}{2}\left(H^{2}\right)_{s, s},
$$

since $H_{m, m}=0$. Similarly, for $s \neq t$ we have

$$
E_{s, t}=\frac{1}{3} \sum_{m \neq s, m \neq t} H_{s, m} H_{m, t}=\frac{1}{3}\left(H^{2}\right)_{s, t} .
$$

This establishes the formula (5).
Note that, up to this point, the calculations hold for any Hermitean B. Since H^{2} and its diagonal part $D_{H^{2}}$ are automatically positive semi-definite, we thus get

$$
\|E\| \leq \frac{1}{3}\left\|H^{2}\right\|+\frac{1}{6}\left\|D_{H^{2}}\right\| \leq \frac{1}{2}\left\|H^{2}\right\| .
$$

Since $\|H\| \leq\|B\|+\|D\| \leq 2\|B\|$ for any B we also have

$$
\|E\| \leq \frac{1}{2}\|H\|^{2} \leq 2\|B\|^{2}
$$

for all Hermitean B.
If the Hermitean B is positive semi-definite, then $H=B-D$ has norm $\|H\| \leq\|B\|$ since

$$
-\|B\|\|x\|^{2} \leq-(D x, x) \leq(H x, x) \leq(B x, x) \leq\|B\|\|x\|^{2} .
$$

Thus, in this case $\|E\| \leq \frac{1}{2}\|B\|^{2}$. If, in addition, B has unit diagonal (i.e., $D=I$) then slightly more precise bounds are possible. Indeed, then

$$
\left.\left\|H^{2}\right\|=\lambda_{\max }\left(H^{2}\right)=\max \left(\left(\lambda_{\max }(B)-1\right)^{2}, \lambda_{\min }(B)-1\right)^{2}\right) \leq \max \left((\|B\|-1)^{2}, 1\right)
$$

In summary, we have proved the following replacement of Theorem 2 from [1].
Theorem Let B be an arbitrary Hermitean matrix, and $H=B-D$ its non-diagonal part. Then the matrix E defined in (3) satisfies

$$
\|E\| \leq \frac{1}{2}\|H\|^{2} \leq 2\|B\|^{2}
$$

If, in addition, B is positive semi-definite then

$$
\|E\| \leq \frac{1}{2}\|B\|^{2} .
$$

Compared to the statement of Theorem 2 in [1], the constants in these estimates are reduced by a factor of two which also leads to better constants in Theorem 4a) in [1].

3 New constants in Theorem 3 from [1]

The proof of Theorem 3 in [1], i.e., the proof of (2) with a constant C independent of the size of B, is essentially based on the existence of so-called (k, ϵ)-pavings for Hermitean matrices with zero (or small) diagonal part such as $H=B-D$. We use a consequence of a recent refinement [3] of the original proof of the Anderson paving conjecture. If one carefully follows the proof of Theorem 1.1 in [3, Section 5.2] specialized to the pair $[H,-H$] (in particular, if one uses the more precise bound at the end of the proof of Theorem 5.6 there) then one sees that for any $\epsilon \in(0,1)$ there exists a (k, ϵ)-paving of H if $4 k^{-1 / 2}+2 k^{-1} \leq \epsilon$. Equivalently, for any $k \geq 20$ there exists a $\left(k, \epsilon_{k}\right)$-paving for H with

$$
\epsilon_{k}:=4 k^{-1 / 2}+2 k^{-1}<1 .
$$

It was shown in the proof of Theorem 3 and in the remarks following it in [1] that this implies the estimate (2) with the constant

$$
C=\min _{k \geq 20} \frac{k-1}{1-\epsilon_{k}}<122,3
$$

(the minimum is achieved for $k=43$). Since $\|H\| \leq 2\|B\|$ for general Hermitean B and $\|H\| \leq\|B\|$ for positive semi-definite B, this yields the respective statements about the constant C in (2) in Sect. 1.

References

1. Oswald, P., Zhou, W.: Random reordering in SOR-type methods. Numerische Mathematik 135, 12071220 (2017). https://doi.org/10.1007/s00211-016-0829-7
2. Yilmaz, T.: Triangular Truncation Under Permutation in SOR-Type Methods. BSc Thesis, Department of Mathematics/Computer Science, University of Cologne (2023)
3. Ravichandran, M., Srivastava, N.: Asymptotically optimal multi-paving. Int. Math. Res. Not. 14, 1090810940 (2021). https://doi.org/10.1093/imrn/rnz111

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The original article can be found online at https://doi.org/10.1007/s00211-016-0829-7.

 Peter Oswald
 agp.oswald@gmail.com
 Weiqi Zhou
 weiqizhou@mathematik.uni-marburg.de
 1 Institute for Numerical Simulation, University of Bonn, Bonn, Germany
 2 FB Mathematics and Informatics, Philipps-University Marburg, Marburg, Germany

