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Abstract

Iterative regularization exploits the implicit bias of an optimization algorithm to
regularize ill-posed problems. Constructing algorithms with such built-in regulariza-
tion mechanisms is a classic challenge in inverse problems but also in modern machine
learning, where it provides both a new perspective on algorithms analysis, and sig-
nificant speed-ups compared to explicit regularization. In this work, we propose and
study the first iterative regularization procedure able to handle biases described by
non smooth and non strongly convex functionals, prominent in low-complexity reg-
ularization. Our approach is based on a primal-dual algorithm of which we analyze
convergence and stability properties, even in the case where the original problem is
unfeasible. The general results are illustrated considering the special case of sparse
recovery with the `1 penalty. Our theoretical results are complemented by experiments
showing the computational benefits of our approach.
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1 Introduction

Parameters of machine learning models are frequently estimated by minimizing the sum of
a data fidelity term and a regularization term: the datafit ensures that the model learns
from the training data while the regularizer enforces good generalization [61]. In this explicit
regularization framework, the regularization strength is controlled by a scalar parameter
balancing the two terms. To tune it, the most popular approach is grid-search: a grid
of values is chosen, for each of which a model is obtained by solving the corresponding
optimization problem [34, Chap. 7]. Amongst these models, the best is then selected as the
one minimizing a given criterion, such as AIC [1], BIC [60] or error on left-out data [21]. The
drawback of this widely used procedure is its cost: it requires solving as many optimization
problems as regularization parameters on the grid.

In the wake of the practical successes of deep learning, there has been a recent surge
of interest for an alternative, namely iterative regularization. Contrary to explicit regu-
larization, it consists in solving a single optimization problem: the regularization is built
into an iterative algorithm, and the regularization strength is controlled by the number of
iterations [37]. Since a single problem is solved, and the algorithm typically stopped before
convergence, iterative regularization can provide great computational speed-ups compared
to explicit regularization. It is closely related to implicit regularization, which refers to the
fact that an algorithm is biased towards certain solutions of the problem it solves [18, 33].
As a seminal example, under-determined least squares have infinitely many solutions, yet
gradient descent initialized at zero converges to the minimal Euclidean norm one [24, Chap.
6]. In a potentially complex loss landscape, this guides the search amongst all solutions to
a specific one, allowing iterative regularization to be developed for the squared norm regu-
larizer [70, 52, 49]. A question arises: for other regularizers, how to find an algorithm with
adequate bias and iterative regularization properties? In the case of strongly convex regular-
izers, iterative regularization has been investigated in two lines of work: the first one is based
on mirror descent [32, 67], which can be viewed as dual gradient descent [40]. The second
one, arising from the imaging community, is called linearized Bregman iterations [11, 71].

However, many regularizers of interest are not strongly convex. This is the case of
so-called low complexity regularizers: following pioneering work on the `1 norm [17, 64],
regularizers such as the nuclear norm [25], group norms [46] or Total Variation [54] have
been extensively used to obtain models exhibiting some notion of sparsity [36]. In the
explicit regularization framework, they have had a tremendous impact on machine learning
[35]. To use them in iterative regularization, some approaches exist, but they either are
tailored to the `1-norm [66], or require tuning additional parameters [71, 72]. Devising a
generic and practical iterative regularization procedure for convex regularizers is thus still
an open problem. In this work,
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• we propose the first implementable iterative regularization procedure applicable to non
smooth, non strongly convex regularizers,

• in the presence of noise, we derive a stopping time varying as the inverse of the noise
level, in accordance with known results for strongly convex regularizers,

• we handle the use of approximate computations and preconditioning in the algorithm,

• we provide a deeper analysis when the regularizer is the `1 norm, and we obtain model
recovery results,

• we validate our approach numerically and provide an open source python package.

The structure of the paper is as follows: we first formalize in Section 2 the problem at
hand and detail the notions of explicit and iterative regularization. In Section 3 we present
the algorithm we use for iterative regularization and the setup under which we analyze it. In
Section 4, we state our main result: stability in the presence of noise and a stopping time for
iterative regularization. Section 5 contains a detailed comparison of our results to existing
approaches. Section 6 is devoted to deeper results in the case of sparse recovery with the `1

norm. In Section 7 we study some cases of iterative regularization where the solution to the
problem does not exist. Experiments in Section 8 demonstrate the validity of the approach.

Notation Let X be a real Hilbert space. For ε ≥ 0, the ε-subdifferential of the function
f at the point x ∈ X is the set ∂εf(x) = {u ∈ X : ∀y ∈ X , f(x) − f(y) ≤ 〈u, x − y〉 + ε};
for ε = 0 we write ∂f(x). For a symmetric positive definite T , ‖x‖2

T := 〈T−1x, x〉. The
T -preconditioned proximal operator of f at x is proxTf (x) = argminx′∈X f(x′) + 1

2
‖x− x′‖2

T .
The set of proper, convex and closed functions on the space X is denoted by Γ0(X ). For
a convex function R, x′ ∈ X and θ ∈ ∂R(x′), the Bregman divergence induced by R with
subgradient θ is defined as Dθ

R(x, x′) = R(x)−R(x′)− 〈θ, x− x′〉. When R is differentiable,
its subdifferential at x′ reduces to {∇R(x′)} and thus, for the Bregman divergence, we omit
the θ superscript. The pointwise multiplication between vectors, or row-wise multiplication
between a vector and a matrix, is denoted �.

2 Background on explicit and iterative regularization

As one motivation for our setting, consider the problem of learning a mapping f between
observations (ai, bi)i∈[n] ∈ Rp × R such that f(ai) = bi. In the case where the hypothesis
space consists of linear functions, this amounts to learning a vector x such that 〈ai, x〉 = bi
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for all i ∈ [n], which, introducing the design matrix A = (a>1 , . . . , a
>
n )> ∈ Rn×p, means to

solve
Ax = b . (1)

Such inverse problems are ubiquitous in machine learning, signal processing and image pro-
cessing. Recent successful analyses of deep learning also consider linear approximations
of kind [30]. It is common that the solution to Eq. (1) is not unique, for example in the
overparametrized setting when p > n, common in machine learning, statistics and signal pro-
cessing. In this situation, amongst all possible solutions, it is popular to favor a particular
one, e.g. considering:

min
x∈X

R(x) s.t. Ax = b , (2)

where the regularizer R (also called penalty, or bias) selects the solutions of interest. In this
work, we are interested in a special type of regularizers, low complexity ones, which force
the solution x to lie on a reduced subset of the space, for instance on a lower dimensional
manifold. Critically, these regularizers are neither smooth, nor strongly convex (see, for
instance, [65, 3, 36]). In Examples 1 to 3, we recall some well-known examples; other notable
examples include the `∞ norm [23], ordered `1 penalties [26] or block-sparse penalties [46, 62].

Example 1 (Sparse regression and classification). When X = Rp, choosing R(·) = ‖·‖1

corresponds to finding the minimal `1-norm solution to a linear system, and in this case
(2) is known as Basis Pursuit [17]. Following the practical success of compressed sensing
[14, 22], `1-based approaches have had a tremendous impact in imaging, signal processing and
machine learning in the last decades (see [35] for a review). Problem (2) also encompasses
classification with the following rewriting: if one searches for the minimal f -valued separator
to a linearly separable dataset (ai, bi), the problem is:

min
x∈Rp

f(x) s.t. (b� A)x � 1n . (3)

Introducing a slack variable u = (b�A)x− 1n, (3) fits in the framework of problem 2 using
x̃ =

(
x, u
)
, R(x̃) = f(x) + ι{·�0}(u), Ã =

(
b� A, − Id

)
and b̃ = 1n.

Example 2 (Low rank matrix completion). In many practical applications, such as recom-
mender systems, one seeks to recover a partially observed matrix B based on the assumption
that its rank is low [25, 13]. A convex approach to this problem is:

min
X∈Rp1×p2

‖X‖∗ s.t. Xij = Bij ∀(i, j) ∈ D , (4)

where ‖·‖∗ is the nuclear norm and D ⊂ [p1]× [p2] is the set of observed entries of the matrix
B. In that case, A is a self adjoint linear operator from Rp1×p2 to Rp1×p2, such that (AX)ij
has value Xij if (i, j) ∈ D and 0 otherwise; the constraints write AX = AB.
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Example 3 (Total Variation). In imaging tasks such as deblurring and denoising, regular-
ization via Total Variation allows to simultaneously preserve edges while removing noise in
flat regions [54]. Given a blurring operator A : X → X , the problem of Total Variation is:

min
X∈Rp1×p2

‖∇X‖2,1 s.t. AX = B . (5)

The above problem can be re-written as:

min
X̃∈R(p1+p2)×p2

Ω(X̃) s.t. ÃX̃ = B̃ , (6)

with X̃ =

(
X
U

)
, Ω(X̃) = ‖U‖2,1, Ã =

(
A 0
∇ − Id

)
and B̃ =

(
B
0

)
. To avoid increasing

the dimension of the problem, one can also consider directly problem (5) and compute the
proximal operator of TV iteratively, in which case it is necessary to handle errors in the prox
as we will in Equation (13) [68].

Solving problem (2) thus allows to restrict the search of a solution to Equation (1) to
a specific simple subset of the ambient space. In practice, however, it is frequent that the
observations are corrupted by noise: the true observations are only available through a noisy
version bδ. To avoid fitting the noise in the data, one should no longer impose the constraint
Ax = bδ and the approach (2) must be modified. Explicit regularization consists in relaxing
the equality constraint into a penalization, and solving a composite optimization problem:

min
x∈X

1

2

∥∥Ax− bδ∥∥2
+ λR(x) , (7)

where the nonnegative scalar λ controls the trade-off between fitting the data and regular-
izing the solution. As mentioned in the introduction, selecting the correct value for λ is
computationally costly.

Alternatively, it is possible to exploit the implicit bias of an optimization algorithm.
As a classical example, it is well-known [24, Chap 6] that iterations of gradient descent on
least-squares,

xk+1 = xk − γA∗(Axk − b) , (8)

converge1 to the solution of (2) with R = 1
2
‖·‖2. When applied to b = bδ, iterative regu-

larization consists in stopping gradient descent iterates before convergence. What controls
the regularization strength in this case is the number of iterations performed [37]. Typically,

1If initialized at 0 and provided γ < 2/ ‖A‖2op.
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when the noise level is of order of magnitude δ, one seeks an implicitly biased algorithm and
a stopping time k(δ) such that the algorithm, applied to bδ, produces iterates (xk) satisfying:

D(xk(δ), x
?) ≤ O(δα) , (9)

where D is some discrepancy measure and x? is a solution of (2) with exact data. As
discussed next, it is the contribution of this paper to provide an algorithm, a stopping time
and guarantees for a generic non-smooth convex regularizer R.

3 Algorithm and assumptions

In this section we present the algorithm we study and the mathematical assumptions we
consider.

3.1 Algorithm

Let X and Y be real Hilbert spaces, A : X → Y a linear and bounded operator, and b ∈ Y .
Generalizing the above discussion, we consider the following minimization problem,

min
x∈X

R(x) + F (x) s.t. Ax = b . (10)

The functions R and F are both assumed to be convex, proper, and lower-semicontinuous.
In addition, F is differentiable. Compared to (2), the splitting between a nonsmooth and a
smooth term allows us to handle the smooth term F using only its gradient.

Let b? ∈ Y denote the exact observation, typically unavailable, and bδ ∈ Y denote the
accessible noisy data. We study a worst-case situation; namely, for some δ ≥ 0, we assume
that

‖bδ − b?‖ ≤ δ . (11)

The algorithm we consider for iterative regularization is a preconditioned and inexact
version of a three steps primal-dual procedure [15, 20, 69] applied to the noisy data bδ.
Given initializations y−1, y0 ∈ Y and x0 ∈ X , consider

ỹk = 2yk − yk−1 ,

xk+1 = prox
T, εk+1

R (xk − T∇F (xk)− TA∗ỹk) ,

yk+1 = yk + Σ
(
Axk+1 − bδ

)
.

(12)

The first step is an extrapolation on the dual variable; the second one is the update of
the primal variable and involves the proximal-point operator of R and the gradient of F ;
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finally, the third step is the update of the dual variable, which accumulates the residuals
of the constraint Ax = bδ. The operators T : X → X and Σ: Y → Y are linear, positive
and bounded and can be intepreted as preconditioners, or, if proportional to the identity,
as step-sizes. The proximal-point operator of R is allowed to be computed inexactly with
error εk+1 ≥ 0, recovering the exact case for εk+1 = 0. The notation prox

T, εk+1

R is intended
in terms of ε-subdifferential, namely

xk+1 = prox
T, εk+1

R (xk − T∇F (xk)− TA∗ỹk)
⇐⇒ −T−1 (xk+1 − xk)−∇F (xk)− A∗ỹk ∈ ∂εk+1

R(xk+1) .
(13)

To interpret algorithm (12) as an instance of the approach in [20, 69], it is useful to cast the
update of the dual variable y as a proximal step:

yk+1 = argmin
y∈Y

{
〈bδ − Axk+1, y〉+

1

2
‖y − yk‖2

Σ

}
= argmin

y∈Y

{
〈bδ, y〉+

1

2
‖y − [yk + ΣAxk+1]‖2

Σ

}
= proxΣ

〈bδ,·〉 (yk + ΣAxk+1) .

(14)

The above algorithm is cheap in terms of computations per iteration. Indeed, it only requires
one (inexact) evaluation of the proximal operator of the non-smooth function R, one evalua-
tion of the gradient of the smooth function F and one matrix-vector multiplication for A and
A∗. Its memory cost is also minimal, as only one primal and two dual variables need to be
stored. The prox of R can be computed exactly for many penalties of interest (see [19, 41]).
Through εk, our framework also handles the case where the optimization problem defined
by the proximal operator is numerically computed, in an approximate fashion, through an
iterative inner-routine (see [2, 55, 6]).

3.2 Assumptions

We first make the following general assumptions on functions and operators involved in the
problem.

Assumption 4 (General hypothesis). X and Y are Hilbert spaces and A : X → Y is
linear and bounded. The functions R and F belong to Γ0(X ), meaning that they are proper,
convex and lower-semicontinuous. Additionally, F is Fréchet-differentiable with L-Lipschitz
continuous gradient on X .
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In order to introduce the next assumptions on the problem and the existence of an
exact solution, we first define the set of primal solutions, the set of dual solutions, and the
Lagrangian functional with respect to the exact datum b?:

P? := argmin
x∈X

{R(x) + F (x) : Ax = b?} , (15)

D? := argmin
y∈Y

{[R + F ]∗ (−A∗y) + 〈b?, y〉} , (16)

L?(x, y) := R(x) + F (x) + 〈y, Ax− b?〉 . (17)

We also denote by S? the set of saddle-points of L?; namely, (x̄, ȳ) ∈ S? if and only if
L?(x̄, y) − L?(x, ȳ) ≤ 0 for every (x, y) ∈ X × Y . We write Pδ, Dδ, Lδ and Sδ for their
respective counterparts when b? is replaced by bδ. We refer to the corresponding problems
and quantities as the exact and noisy ones, respectively. In the rest of the paper we will
assume that one only has access to the noisy quantities: hence our focus is on the iterative
algorithm designed to solve the noisy problem Pδ, having in mind that the problem of interest
is the exact one P?. We make the following assumptions on the existence of solution to the
exact problem. Notice that, on the other hand, we do not require the existence of solutions
(or even feasibility) for the noisy one.

Assumption 5 (Existence of exact solution). There exists a saddle -
point for the Lagrangian L? (S? 6= ∅); namely, a pair (x?, y?) ∈ X × Y such that, for every
(x, y) ∈ X × Y,

L?(x?, y)− L?(x, y?) ≤ 0 .

Remark 6. Under Assumption 4, the following statements are equivalent:

• (x?, y?) ∈ S?; namely, it is a saddle-point for the Lagrangian L?;

• x? and y? satisfy the following optimality conditions:{
−A∗y? −∇F (x?) ∈ ∂R(x?) ,

Ax? = b? .
(18)

Moreover, either one of these properties implies that x? is a primal solution and y? is a
dual solution; namely, S? ⊆ P? ×D?. Under usual qualification conditions [7, Thm. 26.2],
the converse is also true: if x? ∈ P? and y? ∈ D?, then (x?, y?) is a saddle-point; namely,
S? = P? ×D?.

As far as the parameters of the algorithm are concerned, we make the following assump-
tions on the preconditioners T and Σ.
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Assumption 7. The operator T : X → X is linear, bounded, self-adjoint and positive
with spectrum lower and upper bounded by τm > 0 and τM respectively. The same holds for
Σ : Y → Y with lower and upper bounds σm > 0 and σM .

Assumption 8. Define the quantity ω := 1 − τM(L + σM ‖A‖2). The parameters τM and
σM are chosen so that ω ≥ 0.

Assumption 9. For 0 < ξ < 1 and η > 1, let θ := ξ − τM(ξL + σM ‖A‖2) and ρ :=
σm(η − 1) − σMξη. The parameters τM , σm, σM and the constants ξ, η are chosen so that
θ ≥ 0 and ρ > 0.

Notice that Assumption 9 is stronger than Assumption 8. We consider them separately
because some of our results hold only for Assumption 9, while for other it is sufficient
Assumption 8. Anyway, for every value of L ≥ 0 and ‖A‖, it is always possible to choose the
algorithm parameters τM , σm, σM , ξ and η so that Assumption 9 (and so Assumption 8) is
fulfilled. Choosing ξ = 1/4 and η = 3/2, for instance, amounts to require σM < (4/3)σm and
τM ≤ (L+ 4σM ‖A‖2)−1. For simplicity, the two preconditioners can be taken diagonal or as
T = τ Id and Σ = σ Id, where Id is the identity operator while τ and σ are positive parameters
representing the primal and dual stepsizes of the algorithm. In this case τm = τM = τ ,
σm = σM = σ and Assumption 9 naturally simplifies to τ ≤ ξ(ξL + σ ‖A‖2)−1 for some
0 < ξ < 1. For example, if F = 0 and thus L = 0, one recovers the classical step-size
condition for the algorithm of [16], that is στ ‖A‖2 < 1.

In the framework introduced above, we now show that Algorithm (12) is well-suited to
iterative regularization, by studying its convergence and stability properties.

4 Convergence, stability and early-stopping bounds

In this section, we present the main results of the paper. First, we start with a generalization
of a well-known result about convergence of primal-dual algorithms. We include it since it
highlights the implicit bias of our algorithm in the case of exact data and exact computations
(bδ = b? and εk = 0). Indeed, we prove convergence to a solution of problem P?, namely,
amongst all solutions to Ax = b?, Algorithm (12) converges to one with minimal regularizer
value.

Assume that Assumptions 4 and 5 hold. Let (xk, yk) be the sequence generated by
iterations (12) applied to bδ = b? under Assumptions 7 and 8. Let also εk = 0 for every
k ∈ N. Then (xk, yk) weakly converges to a pair in S?. In particular, (xk) weakly converges
to a point in P?.

Section 4 is a first step towards an iterative regularization procedure: it shows that
in the absence of noise, iterations (12) converge to a solution of interest. The proof, in
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Appendix B.1, is a generalization of the results in [20] to our case. The case with precondi-
tioning, but F = 0, is treated in [50]; while the case of F 6= 0 but without the preconditioning
can be found in [20, 69].

The next step is to show that when only bδ is available, one can approximate the exact
solution by early stopping the iterations (12) with noisy data. To this end, we prove stability
results in terms of Lagrangian gap and feasibility, that allow to derive a stopping time
depending on the noise level δ. Before stating our main result (Theorem 11), we first highlight
why the Lagrangian gap and the feasibility are adequate quantities to measure convergence
of the primal variable. In the next lemma we show that, if they are both zero, the primal
variable is a solution of P?.

Let (x?, y?) ∈ S? and (x, y) ∈ X × Y such that L?(x, y?) − L?(x?, y) = 0 and Ax = b?.
Then (x, y?) ∈ S?. We call the quantity L?(x, y?)−L?(x?, y) Lagrangian gap, as it is always
non negative since (x?, y?) is a saddle point. More specifically, it is equal to the Bregamn
divergence D−A

∗y?
R+F (x, x?), as we detail in the proof (Appendix B.2). The latter has been often

used as an optimality measure in this context, see e.s. [10]. However, we emphasize that,
contrarily to the α-strongly convex case (where D−A

∗y∗
R+F (x, x?) ≥ α

2
‖x− x?‖2), a vanishing

Lagrangian gap is not enough for the primal variable to be a solution of the primal problem.
For example, for R(·) = ‖·‖1 and F (·) = 0, the quantity L?(x, y?) − L?(x?, y) vanishes
whenever x and x? have the same support and sign (or simply when x = 0), while the primal
variable x can still be arbitrarily far away from x? (see Figure 1).

Remark 10 (Comparison with duality gap). Another quantity that is often considered as
optimality measure for primal-dual algorithms is

sup
v∈B2

L?(x, v)− inf
u∈B1

L?(u, y),

where B1 ⊆ X and B2 ⊆ Y are two bounded sets containing a primal-dual solution, see for
example [16]. We note that such a bound can be easily derived from our convergence bounds
in the exact setting. As discussed in [16], the choice B1 and B2 is tricky while our bound is
more easily readable in our linearly constrained setting.

In the next result, we prove a stability bound for the iterates applied to the noisy problem,
in terms of the optimality metric discussed above.

Theorem 11. Let Assumptions 4 and 5 hold and (x?, y?) ∈ S? be a saddle-point of the
exact problem. Let (xk, yk) be generated by (12) under Assumptions 7 and 8 with inexact
data bδ such that

∥∥bδ − b?∥∥ ≤ δ and order-δ bounded error in the proximal operator, that is

|εk| ≤ C0δ for all k ∈ N. Denote by (x̂k, ŷk) the averaged iterates ( 1
k

∑k
j=1 xj,

1
k

∑k
j=1 yj).

Then there exist constants C1, C2, C3 and C4 such that, for every k ∈ N,

L?(x̂k, y?)− L?(x?, ŷk) ≤
C1

k
+ C2δ + C3δ

3/2k1/2 + C4δ
2k . (19)
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Iteration k

10−1

10−6

10−11

D−A
∗y?

||·||1 (xk, x
?)

||xk − x?||
||Axk − b||

Figure 1: When R + F is not strongly convex, the Bregman divergence alone is not enough
to provide useful convergence rates. Here for R = ‖ · ‖1, F = 0, D−A

∗y?
R (xk, x

?) vanishes
quickly, while the iterates xk of (12) are still far from their limit x? (synthetic noiseless data,
exact prox).

Let also Assumption 9 hold. Then there exist constants C5, C6, C7, C8 and C9 such that, for
every k ∈ N,

‖Ax̂k − b?‖2 ≤ C5

k
+ C6δ + C7δ

3/2k1/2 + C8δ
2k + C9δ

2 . (20)

The proof is given in Appendix B.3, where the reader can find also the explicit expression
for all the constants involved in the bounds. Note that the bounds (19) and (20) are composed
of two kinds of terms. The first kind, related to optimization, is of the form O(1/k) and
vanishes with the iteration counter, as it is related to the convergence of the algorithm to
the exact solution. The second kind, involving δ, is related to stability and is due to the
unavailability of b?. In particular, when δ > 0, the terms in k make the bound increase with
the iteration counter.

The main consequence of Theorem 11 is an early stopping procedure that allows to obtain
upper-bounds on both Lagrangian gap and feasibility.

Corollary 12. Under the assumptions of Theorem 11, setting k = C̃/δ for some constant
C̃ > 0, there exist constants C and C ′ such that

L?(x̂k, y?)− L?(x?, ŷk) ≤ Cδ ,

‖Ax̂k − b?‖2 ≤ C ′δ + C6δ
2 .

This result, combined with Section 4, shows that the exact solution can be approximated
by the averaged iterates generated by algorithm (12) on the noisy data, even if the true
data is unavailable, by stopping at an appropriate iteration. Assuming δ ≤ 1, the level of
approximation between the early-stopped iterate and the exact solution is then proportional
to the noise level δ, both for the Lagrangian gap and the feasibility. We provide further
comments and comparisons with existing results in the next section. We add one remark
first.
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Remark 13 (Early stopping in absence of noisy solution). We have shown that Algorithm
(12), with appropriate early-stopping strategies, provides a good approximation of the exact
solution, even if the noiseless datum is unavailable. Ill-posedness of the problem may be due
to instability or non existence of the noisy solution. Our bounds in Theorem 11 apply to
both these situations. If the problem is ill-posed from the stability point of view, the noiseless
and noisy solutions are far apart, and the bounds in Theorem 11 imply that early-stopping
ensures a computationally efficient way to find a stable solution. If the noisy problem does
not have a solution, the averaged primal iterates generated by Algorithm (12) may diverge
(see the example in Appendix B.4). In this case, early-stopping is thus not only efficient
to get a solution stable to noise, but indeed necessary to prevent unbounded behaviours. In
this situation, it is thus mandatory to perform early-stopping, and this confirms that it is
unavoidable to have a stability bound going to +∞ with the number of iterations. For more
results related to the unfeasible case, see also Section 7.

5 Comparison with existing results

The idea of exploiting the implicit regularization properties of optimization algorithms has
been studied, often under the name of iterative regularization, in the fields of inverse problems
[24], image restoration [10], and more recently machine learning [70]. Existing methods can
be divided into two classes, depending on whether or not strong convexity of the regularizer
is assumed. In the following we compare known results with ours.

5.1 Strongly convex regularizer

We begin noting that, to the best of our knowledge, our method is the only one to handle
the smooth term F in the regularizer using only its gradient. We next provide an overview
of the algorithms proposed for iterative regularization.

• Gradient descent, stochastic or accelerated. The study of implicit regularization prop-
erties of gradient descent, known in the inverse problem community as Landweber
method, goes back to the 50’s [24, Chap. 6]. Accelerated versions of gradient descent,
first proposed by Nesterov in [44], have been also studied in inverse problems [45].
Approaches related to the heavy-ball method [51] have also been considered in inverse
problems under the name of ν-method, see [24]. Generalizations towards p norms with
p > 1 have been considered [59, 9], while more general choices are not as studied.
Interestingly, there is a rich literature in the non-convex setting for nonlinear inverse
problems [37]. These ideas have been extended to machine learning considering regu-
larizing properties of gradient descent [70], and its stochastic and accelerated versions
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[42, 53, 49].

• Linearized Bregman iterations and mirror descent. Interest in regularizers beyond the
Euclidean norm, in particular non strongly convex ones, has been mainly motivated
by imaging applications and Total Variation regularization. Following the pioneering
work of [47, 38], a series of methods have been designed for iterative regularization with
general convex regularizers (see [10] and references therein). If R is α-strongly convex,
the iterative algorithm to exploit is mirror descent [43, 63], which has been popularized
in the inverse/imaging problems community under the name of “Linearized Bregman
iterations” [71, 72]:{

xk+1 = argminx∈X D
pk
R−α

2
‖·‖2(x, xk) + 〈x,A∗(Axk − b)〉+ 1

2α
‖x− xk‖2 ,

pk+1 = pk − 1
α

(xk+1 − xk)− A∗(Axk − b) .
(21)

It has been shown that this algorithm, in combination with a discrepancy type stopping
rule, regularizes ill-posed problems [11].

• Accelerated dual gradient descent. From a different perspective, the stability and regu-
larization properties of the accelerated variant of Linearized Bregman iterations have
been studied in [40]. In the latter, mirror descent is interpreted as gradient descent
applied to the dual; this connection, without acceleration, can also be found in [71].

• Diagonal approaches. All the aforementioned techniques are tailored to the use of a
quadratic datafitting term. They cannot be applied when the nature of the noise differs,
calling for another loss. In that case, diagonal approaches offer an alternative, applying
an optimization algorithm to successive approximations of the original problem [5].
Convergence rates and stability of diagonal approaches for inverse problems have been
considered in [29] and in [12] for the accelerated case.

5.2 Non strongly convex regularizers

If the regularizer is only convex, as we consider, Linearized Bregman iterations cannot be
applied and one must resort to one of the following.

• Bregman iteration and ADMM. The main algorithm in this case is ADMM [8], which
has been studied in the imaging community under the name of Bregman iterations.
Starting from x0 = 0 and p0 = 0, its updates read{

xk+1 ∈ argminx∈X D
pk
R (x, xk) + 1

2
‖Ax− b‖2 ,

pk+1 = pk − A∗(Axk+1 − b) .
(22)
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The algorithm converges to the solution of (2); its regularization properties can be
found in [10]. It has been extended to nonlinear inverse problems in [4]. However, this
method is impractical, since the minimization step in x cannot be performed exactly.

• Bregmanized Operator Splitting and linearized/preconditioned ADMM.
These variants of Bregman iterations and ADMM rely on preconditioning to avoid
the resolution of a difficult optimization problem at each iteration. They have been
used empirically as regularizing procedures in inverse and imaging problems [74, 73].
While convergence results are known, we are not aware of any theoretical quantitative
stability result.

• Specific algorithms for sparse recovery and compressed sensing. In the specific context
of sparse recovery, [48] and [66] have devised specific optimization procedures. These
do not generalize to regularizers beyond `1, nor do they allow to handle F .

• Exact regularization (F = 0). Exact regularization [28, 71, 57] refers to solving

min
x

R(x) +
α

2
‖x‖2 s.t. Ax = b , (23)

and to showing that there exists a value of α such that this new problem and (10) have
the same minimizer. Then, known iterative regularization algorithms for the strongly
convex case can be applied. The main drawback is that the existence of such a value
of α is not guaranteed in general, it is problem specific, and cannot be determined
in advance; hence it becomes a value to be tuned, which in turn is costly. When the
regularizer is given by the `1-norm, this approach is also related to the one of sparse
Kaczmarz method proposed in [58].

As clear from the above discussion, to the best of our knowledge, there previously did not
exist an implementable iterative regularization procedure able to handle any non strongly
convex regularizer. Our proposed method fills this gap, and can be applied to the many
instances of non smooth non strongly convex regularizers.

6 The special case of sparse recovery with `1-norm

In this section, we strengthen the results of Section 4 in the case of sparse recovery. The
choice R(·) = ‖·‖1 has had a tremendous impact on sparse model estimation [27]. Below,
we specialize our results to this case, obtaining bounds not only in terms of Lagrangian gap
and feasibility, but directly on the distance between the iterates and the true model. The
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main result of the section, Theorem 16 is a corollary of our results and a lemma in [31] which
allows to control the distance between a point and a solution in terms of the feasibility and
the langrangian gap. Therefore, in the next subsection, we first recall some results in [31],
while the new result is in Section 6.2.

6.1 Sparse recovery and compressed sensing

We set X = `2(N;R), R(·) = ‖·‖1 and F (·) = 0. The support of x ∈ X is supp(x) := {i ∈
N : xi 6= 0} and | · | denotes the cardinality of a set. The Bregman divergence induced by
‖·‖1 is simply denoted by D. We first recall some notions from [31].

Fix a primal-dual solution (x?, y?) ∈ S?. Let the extended support be Γ := {i ∈ N :
| (A∗y?)i | = 1} and the saturation gap be m := sup {| (A∗y?)i | : | (A∗y?)i | < 1}. Then Γ is
finite, and m < 1. Moreover, for every x ∈ X , with ΓC := N \ Γ,

D−A
∗y?(x, x?) ≥ (1−m)

∑
i∈ΓC

|xi|. (24)

For completeness, the proof is reported in Appendix C.1. As D−A
∗y?(x?, x?) = 0 and m < 1,

the (finite) set Γ can be considered as an extended support, as Equation (24) shows that x?

is zero on the indices of ΓC .
More generally, if for some x ∈ X we have D−A

∗y?(x, x?) = 0, then x = 0 (and so x
coincides with x?) on ΓC . On the other hand, as mentioned above, D−A

∗y?(x, x?) = 0 does
not ensure any similarity between the two vectors on Γ, the finite subset of indices where
the components of x? may be non-zero (see Figure 1).

To obtain sparse recovery results, we rely on compressed sensing assumptions on the design
operator A and on the exact primal solution x?. Based on Assumption 14, Lemma 15 will
allow us to bound ‖x− x?‖ by a combination of the feasibility and the Lagrangian gap.

Assumption 14 (Compressed sensing). For some s ∈ N,

1. there exists a s-sparse solution x? to Eq. (1); namely, Ax? = b? with | supp(x?)| ≤ s;

2. there exist constants θs, θs,s and θs,2s such that

a) for every x ∈ X with | supp(x)| ≤ s,

(1− θs) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + θs) ‖x‖2 ;
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b) for every x, x′ ∈ X with | supp(x)| ≤ s, | supp(x′)| ≤ s (resp. | supp(x′)| ≤ 2s)
and supp(x) ∩ supp(x′) = ∅,

|〈Ax,Ax′〉| ≤ θs,s ‖x‖ ‖x′‖ .

(resp. |〈Ax,Ax′〉| ≤ θs,2s ‖x‖ ‖x′‖).

c) θs + θs,s + θs,2s < 1.

Lemma 15 ([31], Prop. 5.3). Suppose Assumption 14 holds. Then:

• The vector x? is the unique primal solution of Problem (2) with R(·) = ‖·‖1; namely,

argmin
x∈X

{‖x‖1 : Ax = b?} = {x?} . (25)

• There exists a dual solution y? ∈ Y such that

‖y?‖ ≤ Ws :=

√
s√

1− θs
θs,s

1− θs − θs,2s
and m ≤Ms :=

θs,s
1− θs − θs,2s

< 1,

where m is the saturation gap (Section 6.1) related to y?.

• Let XS := span {ei : i ∈ supp(x?)} and by iS : XS → X the identity embedding.
Then AS := A ◦ iS is injective with∥∥A−1

S
∥∥ ≤ Qs :=

1√
1− θs

. (26)

• For every x ∈ X ,

‖x− x?‖ ≤ Qs ‖Ax− b?‖ +
1 +Qs ‖A‖

1−Ms

D−A
∗y? (x, x?) . (27)

The previous results applied to Tykhonov regularization with `1 norm (Lasso), allow to derive
explicit regularization results, which we recall in Appendix C.2. In an a similar fashion, we
use these facts for our proposed iterative regularization method instead.
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6.2 Sparse recovery with iterative regularization

Combining Theorem 11 with Assumption 14 and the inequality in (27), we get the following
theorem for sparse recovery with `1-norm. In this setting, we are able to get an upper bound
for the distance between the iterates and the exact solution.

Theorem 16. Suppose that Assumption 14 holds. Let x? ∈ X be the unique primal solution
of the exact problem

min
x∈X
{‖x‖1 : Ax = b?} ,

and y? ∈ Y the dual solution given by Lemma 15. Moreover, under Assumptions 7 to 9, let
(x̂k, ŷk) be the sequence of averaged iterates generated by the primal-dual algorithm 12 when
applied to the inexact problem

min
x∈X

{
‖x‖1 : Ax = bδ

}
.

Then we have that, for every k ∈ N,

‖x̂k − x?‖ ≤ Qs ‖Ax̂k − b?‖ +
1 +Qs ‖A‖

1−Ms

D−A
∗y? (x̂k, x

?)

≤ Qs

√
C4

k
+ C5δ + C6δ2 + C7δ2k +

1 +Qs ‖A‖
1−Ms

[
C1

k
+ C2δ + C3δ

2k

]
(28)

Remark 17 (Dependence on initialization). Notice that the bound (28) depends on the
initialization z0, through V (z?−z0) in the Ci’s, see Appendix B.3. Yet, using the initialization
z0 = 0, we can bound the term V (z? − z0) by quantities that do not involve the unknown
solution z?:

V (z0 − z?) =
1

2τ
‖x?‖2 +

1

2σ
‖y?‖2

(26) ≤ ‖ASx
?‖2

2τQ2
s

+
W 2
s

2σ

=
‖b?‖2

2τQ2
s

+
W 2
s

2σ

≤
2
∥∥b? − bδ∥∥2

+ 2
∥∥bδ∥∥2

2τQ2
s

+
W 2
s

2σ

≤
δ2 +

∥∥bδ∥∥2

τQ2
s

+
W 2
s

2σ
.

(29)
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For comparison with Tykhonov explicit regularization, we recall a result from [31] (see Corol-
lary 31 in the Appendix for the precise statement). Under Assumption 14 and for α > 0,
let

xα ∈ argmin
x∈X

{∥∥Ax− bδ∥∥2
+ α ‖x‖1

}
. (30)

Then, defining D := (1 +Qs ‖A‖) / (1−Ms),

‖xα − x?‖ ≤
(
QsWs +DW 2

s /4
)
α + (Qs +DWs) δ +D

δ2

α
.

In particular, in the case of Tykhonov regularization, the upper bound does not depend on
the magnitude of the exact or noisy data. On the other hand, from (28) and (29) we do not
get a bound independent from the magnitude of bδ. However, in general, the exact solution
of Tykhonov problem is not available in closed form and must be approximated numerically
by some iterative algorithm; the main examples are forward-backward (also called ISTA in
this context) or accelerated forward-backward (FISTA). When these methods are applied to
Tykhonov problem, the distance between the iterate and the solution depends indeed on the
initialization and on the magnitude of the data, as for the proposed primal-dual algorithm.

7 Unfeasible case: convergence and stability with re-

spect to a normal solution

In this section, we consider the case where the ideal problem is not feasible, i.e. the linear
equationAx = b? does not have a solution. We show that to provide convergence and stability
results for Equation (12) it is enough to assume that the normal equation A∗Ax = A∗b?

has a solution. Indeed, this is the classical setting in ill-posed inverse problems [24], but
rarely considered in the context of iterative regularization beyond Hilbertian norms. This
generalization is especially relevant for infinite dimensional problems.

In the first part of this section we focus on convergence and we refer to a generic data
b ∈ Y on which the algorithm is run, as the presented results can be applied both to the
exact and the inexact data. We denote the set of primal solutions with data b simply as P ,
the one of dual solutions as D, the Lagrangian as L and the set of saddle-points as S. Let
(xk, yk) be the sequence generated by the primal-dual algorithm in Equation (12) with data
b. First we have the following result, showing that every weak cluster point of the averaged
iterates is a saddle-point. Therefore, if there are no saddle-points, the iterates must diverge.

Corollary 18. Let Assumption 4 hold. Let (xk, yk) be the sequence generated by Equa-
tion (12) with data b under Assumption 7, Assumption 8 and summable error ((εk) ∈ `1).
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Denote by (x̂k, ŷk) the averaged iterates. Then, every weak cluster point of (x̂k, ŷk) belongs to
S. In particular, if S = ∅, then the primal-dual sequence (x̂k, ŷk) diverges: ‖(x̂k, ŷk)‖ → +∞.

The proof can be found in Appendix D.1. The above result ensures that every weak cluster
point of the averaged sequence belongs to S (and so to P × D by Remark 6). Moreover, if
there are no primal solutions (P = ∅), then P × D = ∅, S = ∅ and so the joint sequence
(x̂k, ŷk) diverges. Yet we are mainly interested in the primal variable, which may still converge
while ‖(x̂k, ŷk)‖ → +∞. In the sequel, we show sufficient conditions for the averaged primal
iterates to converge even when P = ∅. For this purpose, we introduce the feasible set and
the normal feasible set as

C := {x ∈ X : Ax = b} and C̃ := {x ∈ X : A∗Ax = A∗b} . (31)

It is clear that C ⊆ C̃. Moreover, C 6= ∅ implies that C̃ = C. Indeed, let u ∈ C̃ and pick any
x ∈ C. Then A∗Au = A∗b, Ax = b and u− x ∈ N(A∗A) = N(A). Thus Au = Ax = b; and
so u ∈ C.
In addition to the normal feasible set, define also the normal primal problem, its dual, and
the normal Lagrangian as

P̃ := argmin
x∈X

{R(x) + F (x) : A∗Ax = A∗b} , (32)

D̃ := argmin
v∈X

{[R + F ]∗ (−A∗Av) + 〈A∗b, v〉} , (33)

L̃(x, v) := R(x) + F (x) + 〈v, A∗Ax− A∗b〉. (34)

From C 6= ∅ =⇒ C̃ = C, we have C 6= ∅ =⇒ P̃ = P . But it may happen that C = ∅ and
C̃ 6= ∅; and, consequently, that there are no primal solutions (P = ∅) but there are normal
primal solutions (P̃ 6= ∅). Thus in the next results, considering the case P = ∅ and P̃ 6= ∅,
we show convergence and stability with respect to a normal solution. More precisely,

• in Theorem 20, we show sufficient conditions to get convergence of the averaged primal
sequence to a point in P̃ even though P = ∅;

• in Theorem 21, we get stability and early-stopping results analogous to the ones in
Theorem 11 but with respect to any normal solution.

For simplicity, in the remainder of this section we include neither the preconditioning nor
the error in the proximal-operator, setting T = τ Id, Σ = σ Id and εk = 0 for every k ∈ N.
Then our algorithm can be written as: given x0, y−1 and setting y0 = y−1 + σ(Ax0 − b), for
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every k ∈ N, 
ỹk = 2yk − yk−1 ,

xk+1 = proxτR(xk − τ∇F (xk)− τA∗ỹk) ,

yk+1 = yk + σ (Axk+1 − b) .

(35)

Assume that C̃ 6= ∅. Let xb ∈ C̃ (meaning that A∗Axb = A∗b) and let S := (A∗A)
1
2 . The

normal problem (32) then can be rewritten as:

P̃ = argmin
x∈X

{
R(x) + F (x) : Sx = Sxb

}
. (36)

Indeed, N(S) = N(S∗S) = N(A∗A) and A∗Ax = A∗b = A∗Axb ⇔ x−xb ∈ N(A∗A) = N(S).
In Lemma 19, we show that, under mild conditions, the primal variable generated by the

algorithm, when applied to problem P , is an instance of the same procedure but applied to
the normal problem P̃ in the form (36).

Lemma 19. Let Assumption 4 hold. Assume that C̃ 6= ∅. Let (xk) be the primal sequence
generated by algorithm (35); namely, with T = τ Id, Σ = σ Id, εk = 0 for every k ∈ N and
y0 = y−1 + σ(Ax0 − b). Then, there exists a primal sequence (uk) generated by the same
procedure but applied to problem P̃ (as stated in (36)) such that xk = uk for every k ∈ N.

The proof can be found in Appendix D.2. We are now ready to state the two main results
of this section. The first one shows weak convergence of the averaged primal iterate of the
algorithm, when applied to P , to a solution of the normal problem P̃ .

Theorem 20. Let Assumption 4 hold. Assume that P̃ (as stated in 32) admits a saddle-
point; namely, that there exists a pair (x̃, ṽ) ∈ X × X such that{

−A∗Aṽ ∈ ∂R(x̃) +∇F (x̃) ,

A∗Ax̃ = A∗b .
(37)

Let (xk, yk) be the sequence generated by Equation (35), namely with initialization y0 =
y−1 + σ(Ax0 − b), and under Assumption 8. Denote by (x̂k) the averaged primal iterates.
Then there exists x̃∞ ∈ P̃ such that x̂k ⇀ x̃∞. Moreover, if P = ∅, then ŷk diverges.

The proof can be found in Appendix D.3. Since we assume that the normal problem
has a saddle point, a priori we could apply the primal-dual algorithm directly to the normal
problem P̃ and therefore with A∗A in place of A. To fix the ideas, consider the final dimen-
sional setting, in which A ∈ Rn×d. If d > n, as is usual in compressed sensing, working with
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the matrix A∗A can be disadvantageous.
Two questions remain open from our previous analysis, that we leave as future work. Con-
sider for simplicity the case F = 0. From the definition of the primal iterates in the proposed
algorithm and the properties of the prox operator, we know that, if the domain of R is
bounded, then the primal iterates remain bounded. Suppose that the normal equation has
solutions, namely C̃ 6= ∅. If the domain of R does not intersect C̃, we expect - but we could
not prove - that the primal iterates of the algorithm converge to an element in

argmin
x∈dom(F )

inf
y∈C̃
‖x− y‖ .

On the other hand, now suppose - for instance - that the function R has full domain. We
have seen that if the normal problem admits a saddle-point, then the averaged primal se-
quence converges to an element in P̃ (see Theorem 20). We expect that, on the contrary, the
absence of solution for the primal normal problem (for instance, if C̃ = ∅) implies divergence
of the primal iterates. This is the case of the example discussed in Remark 13, but we could
not prove it in general.

To conclude this section, we show a stability result for the iterates generated by the al-
gorithm on the noisy data with respect to any saddle-point of the exact normal problem.
For this theorem we come back to the separated notation b? for the exact data and bδ for the
noisy one, while we keep the symbol tilde for normal problems and solutions; for instance,
P̃? will denote the exact normal primal problem, as stated for instance in Equation (32) but
with data b?.

Theorem 21. Let Assumption 4 hold and suppose that there exists a pair (x̃, ṽ) ∈ X × X
such that {

−A∗Aṽ ∈ ∂R(x̃) +∇F (x̃) ,

A∗Ax̃ = A∗b?
(38)

(namely, a saddle-point for the normal exact problem P̃?). Let bδ ∈ Y be a noisy data such
that

∥∥bδ − b?∥∥ ≤ δ for some δ ≥ 0. Moreover, suppose that C̃δ 6= ∅; namely, that there exists

xδ ∈ X such that A∗Axδ = A∗bδ. Let Assumption 8 and Assumption 9 hold and (xk, yk) be
the sequence generated by the algorithm Equation (35) on the noisy data bδ; namely, for the
initialization y0 = y−1 + σ(Ax0 − bδ),

ỹk = 2yk − yk−1 ,

xk+1 = proxτR(xk − τ∇F (xk)− τA∗ỹk) ,

yk+1 = yk + σ
(
Axk+1 − bδ

)
.
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Denote by (x̂k) the averaged primal iterates. Then,

D−A
∗Aṽ(x̂k, x̃) ≤ C1

k
+ C2δ + C4δ

2k

and

‖A∗Ax̂k − A∗b?‖2 ≤ ‖S‖
[
C5

k
+ C6δ + C8δ

2k + C9δ
2

]
,

where the constants involved in the bounds are specified in the proof.

The proof can be found in Appendix D.4.

Remark 22. We think that the assumption C̃δ 6= ∅ is a technical byproduct of our analysis
(we need to assume it to use Lemma 19), but not necessary in order to get the results in
Theorem 21.

Example 23. It is easy to find an example explaining the meaning and the importance
of the previous result. Consider the following setting in X = R2. Let the inexact linear
system Ax = bδ identify a line on the plane and let R : R2 → R be a convex and lower-
semicontinuous function that is an exponential when restricted to the inexact constraint Cδ.
Then, C̃δ = Cδ 6= ∅ but P̃δ = Pδ = ∅. In particular we are in a case of severe instability: the
averaged primal iterates (x̂k), generated by the algorithm when applied to problem Pδ = ∅,
may diverge. Now consider the two following scenarios.

• Let the exact linear system Ax = b? identify a line in R2 (parallel to Cδ) and let
R : R2 → R be coercive on the exact constraint C?. Then the primal exact problem
admits minimizers (P? 6= ∅), while the noisy one does not have solutions even if it
is feasible. In this setting, the assumptions of Theorem 11 hold and thus our early-
stopping bounds guarantee an efficient way to find a stable solution.

• Now suppose that the exact linear system Ax = b? does not admit solutions (b? /∈ R(A))
and let the exact normal system A∗Ax = A∗b? identify a line in R2. Moreover, similarly
to the previous example, let R : R2 → R be coercive on the exact normal constraint
C̃?. The primal exact problem does not admit feasible points and so neither minimizers
(P? = ∅). Then, in this case, the assumptions in Theorem 11 are not verified. On the
other hand, the exact normal problem has solutions (P̃? = ∅) and C̃δ 6= ∅, so we still
can apply Theorem 21 to get an a similar early-stopping result, but with respect to any
exact normal solution.

8 Experiments

A high quality Python package implementing our iterative regularization approach, with
reproducible experiments, is available at https://lcsl.github.io/iterreg.
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8.1 Sparse recovery with the `1 norm

First we illustrate numerically the results of Section 6 (R(·) = ‖·‖1, F = 0) on both real
data and simulations. The simulated data is generated as bδ = b? + ε = Ax̄+ ε. The design
matrix A has Gaussian entries with a Toeplitz correlation structure (correlation between
columns i and j is ρ|i−j| for ρ ∈ [0, 1[; as ρ approaches 1, the problem becomes more and
more difficult). The noise vector ε has i.i.d. Gaussian entries, with standard deviation scaled
to control the signal-to-noise ratio (SNR), defined as ‖Ax̄‖ / ‖ε‖. The true parameter vector
x̄ has 10 % non zero entries set to 1 ; note that the noiseless solution x? is not necessarily x̄ –
in particular the `0 and `1 solutions tend to differ if the feature correlation parameter ρ is too
high or if the sparsity of x̄ is not low enough. In Algorithm (12), unless specified otherwise,
we use exact prox (εk = 0), as well as scalar preconditioners T = τ Id and Σ = σ Id.

The explicit, Tykhonov regularization competitor in this case is the Lasso.

Datadriven choice of stepsize σ. A key distinction between iterative and Tykhonov
regularization is that our iterative approach produces discrete iterates, while the Tykhonov
path can be discretized with arbitrary precision. Hence, our algorithm could converge too
fast to the noisy solution, preventing us from finding a good early stopped iterate. Fortu-
nately, it is possible to act on the dual stepsize σ so that the iterates remain sparse in the
beginning (in the same way as, for the Lasso, the solutions are sparse for large regularization
strength λ). On Figure 2 we illustrate multiple choices for σ, keeping στ equal to 0.99/ ‖A‖2:
σ ∈ {τ, τ/100, 1/‖A∗bδ‖∞, τ/10000}. The order of magnitude σ = 1/‖A∗bδ‖∞ is reversed en-
gineered from the first iterations of (12) with x0 = 0, y−1 = y0 = 0, yielding y1 = −σbδ and
ensuring that x2 = proxτ‖·‖1 (2τσA∗bδ) remains sparse enough.
The performance of iterative regularization is measured by the F1 score between the sup-
port of the iterates and the support of the true parameters, x̄. As visible on Figure 2, the
higher σ, the faster the primal iterates xk become dense, thus overestimating the support
of x̄. From the figure, one can see that the datadriven choice of σ provides a good balance
between quality of the regularization (it reaches the highest F1 score) and convergence speed
(optimal score reached after 15 iterations only).

Comparison with the Lasso on simulations. In this experiment, we compare the
support recovery performance to that of the Lasso. In order to have a ground truth available,
we use a simulated setup. The data for this experiment has 1000 samples and 2000 features.
The performance of iterative and Tykhonov regularization is evaluated with the F1 score
for support estimation, and normalized mean squared error on left out data (250 additional
samples) for prediction, ‖bδ, test − Atest‖2/‖bδ, test‖2. We study two scenarios: an “easy” one
(SNR = 5, low feature correlation factor ρ = 0.2) and a more challenging one (SNR =
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Figure 2: To maintain sparsity in the early iterates, it is important to set σ correctly: if it
is too big, the iterates are dense too quickly (blue curve); if it is too low, convergence is too
slow (red). Our datadriven choice behaves well: the iterates sparsity increases steadily, and
they reach the highest F1 score. (n, d, ρ) = (200, 500, 0.2), ‖Ax̄‖ / ‖ε‖ = 10.

3, ρ = 0.8). On Figure 3, one can see that the estimation and prediction performances
are comparable between iterative regularization and explicit regularization, illustrating the
numerical guarantees of Section 6.

Timing comparison with the Lasso on real data. Finally, we benchmark our approach
on real data, where the true support is unknown and the best model must be selected by
cross validation

In Figure 4, we compare the quality of solutions obtained by iterative regularization and
explicit regularization. The dataset for this experiment is rcv1 from the LIBSVM package2,
for which (n, d) = (20,242, 19,959). In order to select the best regularization strength for
each approach (iteration or value of λ), we use the prediction mean squared error with 4-fold
cross validation: the data (A, bδ) is split in 4 folds and each method is run 4 times on 3 folds,
while the MSE is computed on the remaining, unseen fold (dashed colored lines). The MSE
is then averaged across folds (thick black line), and the best iteration/λ is determined by its
minimum. Note that this approach does not rely on the knowledge of the true parameters x̄
and is thus the one we advocate to use to determine the optimal stopping time in practice.

To solve the Lasso, we use the state-of-the-art solver celer [39], based on coordinate
descent, an active set strategy and Anderson acceleration. Extensive validation in [39] showed
that this algorithm was currently the fastest one available to solve the Lasso. Warm-start is

2https://github.com/mathurinm/libsvmdata
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Figure 3: Comparison of estimation and prediction performances of iterative and Tykhonov
regularization for sparse recovery. Left: feature correlation factor ρ = 0.2, SNR = 5. Right:
correlation factor ρ = 0.8, SNR = 3. In both scenarios, iterative regularization attains
performances similar to explicit regularization, but in a few iterations.

used along the path: the solution for the previous λ is used as initialization for the next one.
With all these improvements over a basic forward-backward solver, the time to compute the
best solution (the path up to the best λ, if it were known in advance) is 125 seconds. This
is because 69 Lasso problems must be solved (the optimal λ is the 69-th on the grid), each
one being increasingly difficult as λ decreases.

On the contrary, iterative regularization finds its optimal solution along the optimization
path in 2.5 s. The cost of each iteration is O(nd), making the algorithm very fast. One can
see that in terms of prediction error on left-out data (4-fold cross validation being used to
determine both the best λ for the Lasso and the best early stopping for our approach), both
methods reach a similar performance, with a best average MSE around 0.2. In addition,
using our proposed datadriven stepsize, we obtain a sparser solution than the Lasso: ours
has 1,583 non zeros entries, while the optimal Lasso one has 2,820.

8.2 Preconditioning

In this experiment we highlight the usefulness of a preconditioning. We consider two diagonal
preconditioners, following [50]: T = θ diag(||A:1||2, . . . , ||A:d||2) and Σ = 1

θ
diag(‖A1:‖0 , . . . , ‖An:‖0) =

d
θ

Id. The scaling factor θ is set to get σ as in the datadriven choice detailed above. This

choice of T and Σ satisfies τMσM ≤ 1/ ‖A‖2 [50, Lemma 2]. The design matrix A is gener-
ated as in Section 8.1, but each column is then scaled by a uniform random number between
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Figure 5: Benefit of preconditioning for sparse recovery on an unnormalized simulated
dataset. (nd) = (500, 1000).

1 and 5, resulting in different column norms and thus in T being different from a scalar
matrix. On Figure 5, one an see that using coordinate-wise stepsizes through the use of T
in the update of the primal variable, is beneficial for iterative regularization as a higher F1
score is reached.

8.3 Low rank matrix completion

In this experiment we highlight the versatility of our approach, considering the matrix com-
pletion setting of Example 2. The goal is to recover a low-rank matrix from the noisy
observation of a subset of its entries. Both Hilbert spaces X and Y are taken equal to Rd×d,
and we use upper case letters X and B to denote the primal variable and the observations.
The true matrix to recover is chosen as B? = UV > where U, V ∈ Rd×5 have i.i.d. normal
entries. In order to get meaningful values for δ, we scale B? so that it has a norm equal to 20.
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Figure 6: Semiconvergence of iterates for the low rank matrix completion problem, in di-
mension 200 × 200 (left) and 500 × 500 (right). The iterates first get close to the noiseless
solution, before converging to the noisy solution.

Finally, for a range of values of δ, various Bδ are obtained by adding scaled random Gaus-
sian noise to the observed entries of B? We choose to hide 80 % of entries of Bδ, uniformly
sampled. The matrix A corresponds to the masking operator; we have ‖A‖2 = 1 and thus
use σ = τ = 0.99. We tune the parameter σ similarly to the `1 case, taking σ = 1/

∥∥A∗Bδ
∥∥

2
.

Figure 6 highlights the semiconvergence behavior exploited by iterative regularization: the
iterates produced by (12) first get closer to the noiseless solution, before converging to the
noisy solution. Early-stopping the iterate at a correct iteration is thus beneficial.

9 Conclusion

In this work, we have considered the problem of designing iterative regularization algorithms
for bias described by a wide class of convex functionals. We proposed and study an iterative
regularization method based on a primal-dual approach of which we characterize convergence
and especially stability in the presence of noisy data. This latter results allow to derive and
early stopping procedure and corresponding error bounds, comparable with those obtainable
with variational regularization techniques. Empirical results complement and confirm our
theoretical findings, showing that iterative regularization can be at the same time accurate
and efficient.

A number of research directions remains unexplored. For example it would be interesting
to consider stochastic gradient approaches, that often results in further efficiency improve-
ment. It would also be interesting to extend the considered model to account for other form
of noise/errors, including data models in machine learning, but also considering other, pos-
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sibly non convex, penalties. Finally, it would be interesting to consider nonlinear models,
and in particular compositional models such as those defining neural networks.
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A Preliminary lemmas

Lemma 24 ([56, Lemma 2]). Assume that (uj) is a non-negative sequence, (Sj) is a non-
decreasing sequence with S0 ≥ u2

0 and λ ≥ 0 such that, for every j ∈ N,

u2
j ≤ Sj + λ

j∑
i=1

ui . (39)

Then, for every j ∈ N,

uj ≤
λj

2
+

√
Sj +

(
λj

2

)2

. (40)

Lemma 25 (Descent lemma, [7, Thm 18.15 (iii)]). Let f : X → R be Fréchet differentiable
with L-Lipschitz continuous gradient. Then, for every x and y ∈ X ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 . (41)

Lemma 26. Let Z denote X or Y and U denote T or Σ accordingly. Let f ∈ Γ0(Z) and
ε ≥ 0. It follows easily from the definition of the ε-subdifferential that if a, b ∈ Z satisfy

U−1 (a− b) ∈ ∂εf(b) , (42)

then, for every c ∈ Z,

f(b)− f(c) +
1

2
‖b− c‖2

U −
1

2
‖a− b‖2

U +
1

2
‖b− a‖2

U ≤ ε . (43)

A.1 Primal-dual estimates

Lemma 27 (One step estimate). Let Assumption 4 hold. Let (xk, yk) be the sequence gen-
erated by iterations (12) under Assumption 7. Then, for any z = (x, y) ∈ X × Y and for
any k ∈ N, with V (z) := 1

2
‖x‖2

T + 1
2
‖y‖2

Σ,

V (zk+1 − z)− V (zk − z) +
1− τML

2τM
‖xk+1 − xk‖2 +

1

2
‖yk+1 − yk‖2

Σ

+
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
+ 〈yk+1 − ỹk, A (x− xk+1)〉 ≤ εk+1 .

(44)

Proof. Let (x, y) ∈ X × Y . Applying Lemma 26 to the definition of xk+1 yields

1

2
‖xk+1 − x‖2

T −
1

2
‖xk − x‖2

T +
1

2
‖xk+1 − xk‖2

T + [R(xk+1)−R(x)]

+ 〈ỹk, A (xk+1 − x)〉+ 〈∇F (xk), xk+1 − x〉 ≤ εk+1 .
(45)
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For the dual update, similarly,

1

2
‖yk+1 − y‖2

Σ −
1

2
‖yk − y‖2

Σ +
1

2
‖yk+1 − yk‖2

Σ + 〈yk+1 − y, bδ − Axk+1〉 ≤ 0 . (46)

Recall that z := (x, y) and the definition of V . Sum Equations (45) and (46):

V (zk+1 − z)− V (zk − z) + V (zk+1 − zk) + [R (xk+1)−R(x)]

+ 〈ỹk, A (xk+1 − x)〉+ 〈yk+1 − y, bδ − Axk+1〉+ 〈∇F (xk), xk+1 − x〉 ≤ εk+1 .
(47)

From the Lemma 25,

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 ,

while from the convexity of F ,

F (xk) + 〈∇F (xk), x− xk〉 ≤ F (x) .

Summing the last two equations, one obtains the 3 points descent lemma:

F (xk+1) ≤ F (x) + 〈∇F (xk), xk+1 − x〉+
L

2
‖xk+1 − xk‖2 . (48)

Summing Equations (47) and (48),

V (zk+1 − z)− V (zk − z) + V (zk+1 − zk)
+ [R + F ] (xk+1)− [R + F ] (x) + 〈ỹk, A (xk+1 − x)〉+ 〈yk+1 − y, bδ − Axk+1〉

≤ L

2
‖xk+1 − xk‖2 + εk+1 .

Now compute

[R + F ] (xk+1)− [R + F ] (x) + 〈ỹk, A (xk+1 − x)〉+ 〈yk+1 − y, bδ − Axk+1〉
=
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
− 〈y, Axk+1 − bδ〉+ 〈yk+1, Ax− bδ〉

+ 〈ỹk, A (xk+1 − x)〉+ 〈yk+1 − y, bδ − Axk+1〉
=
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
− 〈yk+1 − y, bδ〉 − 〈y, Axk+1〉+ 〈yk+1, Ax〉

+ 〈ỹk, Axk+1〉 − 〈ỹk, Ax〉+ 〈yk+1 − y, bδ〉 − 〈yk+1 − y, Axk+1〉
=
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
− 〈y, Axk+1〉+ 〈yk+1, Ax〉+ 〈ỹk, Axk+1〉 − 〈ỹk, Ax〉 − 〈yk+1, Axk+1〉+ 〈y, Axk+1〉

=
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
+ 〈yk+1 − ỹk, A (x− xk+1)〉 .
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Notice that
1

2τM
‖xk+1 − xk‖2 ≤ 1

2
‖xk+1 − xk‖2

T . (49)

Finally,

V (zk+1 − z)− V (zk − z) +
1− τML

2τM
‖xk+1 − xk‖2 +

1

2
‖yk+1 − yk‖2

Σ

+
[
Lδ(xk+1, y)− Lδ(x, yk+1)

]
+ 〈yk+1 − ỹk, A (x− xk+1)〉 ≤ εk+1 .

Lemma 28 (First cumulating estimate). Let Assumption 4 hold. Let (xk, yk) be the sequence
generated by iterations (12) under Assumption 7. Define ω := 1− τM(L+ σM ‖A‖2). Then,
for any (x, y) ∈ X × Y and for any k ∈ N,

1−τMσM‖A‖2
2τM

‖xk − x‖2 +
1

2
‖yk − y‖2

Σ +
k∑
j=1

[
Lδ(xj, y)− Lδ(x, yj)

]
+

ω

2τM

k∑
j=1

‖xj − xj−1‖2

≤ V (z0 − z) +
k∑
j=1

εj.

(50)

Proof. We start from the inequality in Lemma 27, switching the index from k to j. Recall
that ỹj := 2yj − yj−1, to get

V (zj+1 − z)− V (zj − z) +
1− τML

2τM
‖xj+1 − xj‖2 +

1

2
‖yj+1 − yj‖2

Σ

+
[
Lδ(xj+1, y)− Lδ(x, yj+1)

]
≤ εj+1 − 〈yj+1 − (2yj − yj−1) , A (x− xj+1)〉
= εj+1 − 〈yj+1 − yj, A (x− xj+1)〉+ 〈yj − yj−1, A (x− xj+1)〉
= εj+1 − 〈yj+1 − yj, A (x− xj+1)〉+ 〈yj − yj−1, A (x− xj)〉+ 〈yj − yj−1, A (xj − xj+1)〉 .

Now focus on the term

〈yj − yj−1, A (xj − xj+1)〉 = 〈Σ 1
2 Σ−

1
2 (yj − yj−1) , A (xj − xj+1)〉

= 〈Σ− 1
2 (yj − yj−1) ,Σ

1
2A (xj − xj+1)〉

≤
∥∥∥Σ−

1
2 (yj − yj−1)

∥∥∥∥∥∥Σ
1
2A (xj − xj+1)

∥∥∥
≤ 1

2

∥∥∥Σ−
1
2 (yj − yj−1)

∥∥∥2

+
1

2

∥∥∥Σ
1
2A (xj − xj+1)

∥∥∥2

≤ 1

2
‖yj − yj−1‖2

Σ +
σM ‖A‖2

2
‖xj+1 − xj‖2 ,

(51)
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where we used Cauchy-Schwarz and Young inequalities. Then, using the definition of ω :=
1− τM(L+ σM ‖A‖2), we have

V (zj+1 − z)− V (zj − z) + [L(xj+1, y)− L(x, yj+1)]

+
ω

2τM
‖xj+1 − xj‖2 +

1

2
‖yj+1 − yj‖2

Σ −
1

2
‖yj − yj−1‖2

Σ

≤ εj+1 − 〈yj+1 − yj, A (x− xj+1)〉+ 〈yj − yj−1, A (x− xj)〉 .

(52)

Imposing y−1 = y0, summing-up Equation (52) from j = 0 to j = k − 1:

V (zk − z)− V (z0 − z) +
k−1∑
j=0

[
Lδ(xj+1, y)− Lδ(x, yj+1)

]
+

ω

2τM

k−1∑
j=0

‖xj+1 − xj‖2

+
1

2
‖yk − yk−1‖2

Σ

≤
k−1∑
j=0

εj+1 − 〈yk − yk−1, A (x− xk)〉

≤ 1

2
‖yk − yk−1‖2

Σ +
σM ‖A‖2

2
‖xk − x‖2 +

k∑
j=1

εj ,

where in the last inequality we used again Cauchy-Schwarz and Young inequalities as before.
Reordering, we obtain the claim.

Lemma 29 (Second cumulative estimate). Let Assumption 4 hold. Let (xk, yk) be the se-
quence generated by iterations (12) under Assumption 7. Given ξ > 0 and η > 0, define
θ := ξ − τM(ξL+ σM ‖A‖2) and ρ := σm(η − 1)− σMξη. Then, for any z = (x, y) ∈ X × Y
and for any k ∈ N,

V (zk − z) +
θ

2τMξ

k∑
j=1

‖xj − xj−1‖2 +
ρ

2η

k∑
j=1

‖Axj − Ax‖2 +
k∑
j=1

[
Lδ(xj, y)− Lδ(x, yj)

]
≤ V (z0 − z) +

k∑
j=1

εj +
σm (η − 1) k

2

∥∥Ax− bδ∥∥2
.

(53)

Proof. In a similar fashion as in the previous proof, we start again from the main inequality
in Lemma 27, switching the index from k to j. Since ỹj = yj +(yj−yj−1) = yj +Σ(Axj− bδ)
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and yj+1 − yj = Σ(Axj+1 − bδ), we get

V (zj+1 − z)− V (zj − z) +
1− τML

2τM
‖xj+1 − xj‖2 +

1

2

∥∥Σ
(
Axj+1 − bδ

)∥∥2

Σ

+
[
Lδ(xj+1, x)− Lδ(x, yj+1)

]
≤ εj+1 + 〈yj+1 − yj − Σ

(
Axj − bδ

)
, Axj+1 − Ax〉

= εj+1 + 〈ΣA (xj+1 − xj) , Axj+1 − Ax〉 .

Now estimate

1

2

∥∥Σ
(
Axj+1 − bδ

)∥∥2

Σ
=

1

2
〈Σ
(
Axj+1 − bδ

)
, Axj+1 − bδ〉

≥ σm
2

∥∥Axj+1 − bδ
∥∥2

=
σm
2
‖Axj+1 − Ax‖2 +

σm
2

∥∥Ax− bδ∥∥2
+ σm〈Axj+1 − Ax,Ax− bδ〉 .

So,

V (zj+1 − z)− V (zj − z) +
1− τML

2τM
‖xj+1 − xj‖2 +

σm
2
‖Axj+1 − Ax‖2

+
[
Lδ(xj+1, y)− Lδ(x, yj+1)

]
≤ εj+1 + 〈ΣA (xj+1 − xj) , Axj+1 − Ax〉+ σm〈Axj+1 − Ax, bδ − Ax〉 −

σm
2

∥∥Ax− bδ∥∥2

≤ εj+1 +
σM ‖A‖2

2ξ
‖xj+1 − xj‖2 +

ξσM
2
‖Axj+1 − Ax‖2 − σm

2

∥∥Ax− bδ∥∥2

+
σm
2η
‖Axj+1 − Ax‖2 +

σmη

2

∥∥Ax− bδ∥∥2
.

In the last inequality we used three times Cauchy-Schwarz inequality and twice Young in-
equality with parameters ξ > 0 and η > 0. Then, reordering and recalling the definitions of
θ := ξ − τM(ξL+ σM ‖A‖2), we obtain

V (zj+1 − z)− V (zj − z) +
θ

2τMξ
‖xj+1 − xj‖2 +

σm(η − 1)− σMξη
2η

‖Axj+1 − Ax‖2

+
[
Lδ(xj+1, y)− Lδ (x, yj+1)

]
≤ εj+1 +

σm (η − 1)

2

∥∥Ax− bδ∥∥2
.
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Summing-up the latter from j = 0 to j = k − 1, we get

V (zk − z)− V (z0 − z) +
θ

2τMξ

k−1∑
j=0

‖xj+1 − xj‖2 +
σm(η − 1)− σMξη

2η

k−1∑
j=0

‖Axj+1 − Ax‖2

+
k−1∑
j=0

[
Lδ(xj+1, y)− Lδ(x, yj+1)

]
≤

k−1∑
j=0

εj+1 +
σm (η − 1) k

2

∥∥Ax− bδ∥∥2
.

By trivial manipulations, we get the claim.

B Proofs of main results

B.1 Proof of Section 4

Assume that Assumptions 4 and 5 hold. Let (xk, yk) be the sequence generated by iterations
(12) applied to bδ = b? under Assumptions 7 and 8. Let also εk = 0 for every k ∈ N. Then
(xk, yk) weakly converges to a pair in S?. In particular, (xk) weakly converges to a point in
P?.
Proof. Up to a change of initialization and offset of index, the steps of algorithm (12) when
εk = 0 correspond to{

yk+1 = yk + Σ (Axk − b?)
xk+1 = proxTR(xk − T∇F (xk)− TA∗(2yk+1 − yk)) .

(54)

We now show that the previous iterations correspond to Algorithm 3.2 in [20], setting σ =
τ = 1 and applying it in the metrics defined by the preconditioning operators; namely, in
the primal and dual spaces (X , 〈T−1·, ·〉) and (Y , 〈Σ·, ·〉) - respectively. Comparing problem
(15) with (1) in [20], their notation in our setting reads as F = F, G = R, H = ι{b?} and
K = A. The Fenchel conjugate of H in (Y , 〈Σ·, ·〉) is

H?(y) = sup
z∈Y

{
〈Σz, y〉 − ι{b?}(z)

}
= 〈Σb?, y〉 (55)

and its proximal-point operator, again in (Y , 〈Σ·, ·〉), is

proxH?(y) = argmin
z∈Y

{
〈Σb?, z〉+

1

2
〈Σ(z − y), z − y〉

}
= y − b? . (56)

The gradient of F in (X , 〈T−1·, ·〉) is denoted by ∇TF (x) and satisfies, for x and v in X ,

〈T−1∇TF (x), v〉 = 〈∇F (x), v〉 .
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It is easy to see that one has ∇TF (x) = T∇F (x).
The adjoint operator of K : (X , 〈T−1·, ·〉)→ (Y , 〈Σ·, ·〉) satisfies, for every (x, y) ∈ X ×Y ,

〈T−1K∗y, x〉 = 〈ΣKx, y〉 = 〈ΣAx, y〉 = 〈x,A∗Σy〉 , (57)

implying that T−1K∗ = A∗Σ and so that K∗ = TA∗Σ. Then Algorithm 3.2 in [20] (with
σ = τ = 1, ρk = 1 for every k ∈ N and no errors involved) is:{

ȳk+1 = proxH?(ȳk +Kx̄k)

x̄k+1 = proxR(x̄k −∇TF (x̄k)−K∗(2ȳk+1 − ȳk)) ,

and becomes, applied to our setting in the spaces (X , 〈T−1·, ·〉) and (Y , 〈Σ·, ·〉),{
ȳk+1 = ȳk + Ax̄k − b?
x̄k+1 = argminx∈X

{
R(x) + 1

2
‖x− [x̄k − T∇F (x̄k)− TA∗Σ(2ȳk+1 − ȳk)]‖2

T−1

}
.

Define the variable z̄k = Σȳk and multiply the first line by Σ. Then,{
z̄k+1 = z̄k + Σ (Ax̄k − b?)
x̄k+1 = proxTR (x̄k − T∇F (x̄k)− TA∗(2z̄k+1 − z̄k)) .

Comparing the previous with (54), we get that they are indeed the same algorithm. To
conclude, we want to use Theorem 3.1 in [20], that ensures the weak convergence of the
sequence generated by the algorithm to a saddle-point. It remains to check that, under our
assumptions, the hypothesis of the above result are indeed satisfied; namely, that

1− ‖K‖2 − LT
2
≥ 0 , (58)

where ‖K‖ represents the operator norm of K : (X , 〈T−1·, ·〉)→ (Y , 〈Σ·, ·〉) and LT is the
Lipschitz constant of ∇TF . Notice that

‖K‖2 = sup
x∈X

〈ΣAx,Ax〉
〈T−1x, x〉 ≤ σMτM ‖A‖2 .

Moreover, LT ≤ τML. Indeed, for every x and x′ ∈ X ,

‖∇TF (x′)−∇TF (x)‖ = ‖T∇F (x′)− T∇F (x)‖ ≤ τM ‖∇F (x′)−∇F (x)‖ .

Then, by Assumption 8 and the previous considerations,

0 ≤ 1− τM(L+ σM ‖A‖2) ≤ 1− LT − ‖K‖2 ≤ 1− LT
2
− ‖K‖2 .

In particular, (58) is satisfied and we the claim is proved.
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B.2 Proof of Section 4

Let (x?, y?) ∈ S? and (x, y) ∈ X ×Y such that L?(x, y?)−L?(x?, y) = 0 and Ax = b?. Then
(x, y?) ∈ S?.

Proof. For simplicity, denote J := R+F . First notice that, for our problem, the Lagrangian
gap is equal to the Bregman divergence. Indeed, using −A∗y? ∈ ∂J(x?) and Ax? = b?:

L?(x, y?)− L?(x?, y) = J(x)− J(x?) + 〈y?, Ax− b?〉 − 〈y, Ax? − b?〉
= J(x)− J(x?) + 〈A∗y?, x− x?〉 = D−A

∗y?
J (x, x?) , (59)

We then show that if v ∈ ∂J(x?) and Dv
J(x, x?) = 0, then v ∈ ∂J(x). Indeed, J(x)−J(x?)−

〈v, x− x?〉 = 0 and so, for all x′ ∈ X ,

J(x′) ≥ J(x?) + 〈v, x′ − x?〉 = J(x)− 〈v, x− x?〉+ 〈v, x′ − x?〉 = J(x) + 〈v, x′ − x〉 . (60)

Section 4 follows by taking v = −A∗b?.

B.3 Proof of Theorem 11

Theorem 11. Let Assumptions 4 and 5 hold and (x?, y?) ∈ S? be a saddle-point of the
exact problem. Let (xk, yk) be generated by (12) under Assumptions 7 and 8 with inexact
data bδ such that

∥∥bδ − b?∥∥ ≤ δ and order-δ bounded error in the proximal operator, that is

|εk| ≤ C0δ for all k ∈ N. Denote by (x̂k, ŷk) the averaged iterates ( 1
k

∑k
j=1 xj,

1
k

∑k
j=1 yj).

Then there exist constants C1, C2, C3 and C4 such that, for every k ∈ N,

L?(x̂k, y?)− L?(x?, ŷk) ≤
C1

k
+ C2δ + C3δ

3/2k1/2 + C4δ
2k . (19)

Let also Assumption 9 hold. Then there exist constants C5, C6, C7, C8 and C9 such that, for
every k ∈ N,

‖Ax̂k − b?‖2 ≤ C5

k
+ C6δ + C7δ

3/2k1/2 + C8δ
2k + C9δ

2 . (20)

Proof. Recall that we denote z = (x, y) ∈ X × Y a primal-dual pair, and define

V (z) :=
1

2
‖x‖2

T +
1

2
‖y‖2

Σ . (61)
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Use Lemma 28 at x = x? and y = y?, to get

1−τMσM‖A‖2
2τM

‖xk − x?‖2 + 1
2
‖yk − y?‖2

Σ +
k∑
j=1

[Lδ(xj, y?)− Lδ(x?, yj)] + ω
2τM

k∑
j=1

‖xj − xj−1‖2

≤ V (z0 − z?) +
k∑
j=1

εj .

(62)

Notice that

Lδ(xj, y?)− Lδ(x?, yj) = L?(xj, y?)− L?(x?, yj) + 〈yj − y?, bδ − b?〉 . (63)

Then,

1−τMσM‖A‖2
2τM

‖xk − x?‖2 +
1

2
‖yk − y?‖2

Σ +
k∑
j=1

[L?(xj, y?)− L?(x?, yj)] + ω
2τM

k∑
j=1

‖xj − xj−1‖2

≤ V (z0 − z?) +
k∑
j=1

εj + δ
k∑
j=1

‖yj − y?‖ .

(64)

Recall that L?(x, y?) − L?(x?, y) ≥ 0 for every (x, y) ∈ X × Y . Moreover, ω ≥ 0 by
Assumption 8 and so 1− τMσM ‖A‖2 ≥ 0. Then, for every j ∈ N, we have that

‖yj − y?‖2
Σ ≤ 2V (z0 − z?) + 2

j∑
i=1

εi + 2δ

j∑
i=1

‖yi − y?‖ (65)

and so

‖yj − y?‖2 ≤ 2σM

[
V (z0 − z?) +

j∑
i=1

εi

]
+ 2δσM

j∑
i=1

‖yi − y?‖ . (66)

Apply Lemma 24 to Equation (66) with uj = ‖yj − y?‖, Sj = 2σM

[
V (z0 − z?) +

∑j
i=1 εi

]
and λ = 2δσM . We get, for 1 ≤ j ≤ k,

‖yj − y?‖ ≤ δσMj +

√√√√2σM

[
V (z0 − z?) +

j∑
i=1

εi

]
+ (δσMj)

2

≤ 2δσMk +

√√√√2σM

[
V (z0 − z?) +

k∑
i=1

εi

]
.

(67)
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Insert the latter in Equation (64), to obtain

k∑
j=1

[L?(xj, y?)− L?(x?, yj)]

≤ V (z0 − z?) +
k∑
j=1

εj + δ

k∑
j=1

2δσMk +

√√√√2σM

[
V (z0 − z?) +

k∑
i=1

εi

]
= V (z0 − z?) +

k∑
j=1

εj + δk

√√√√2σM

[
V (z0 − z?) +

k∑
i=1

εi

]
+ 2δ2σMk

2

≤ V (z0 − z?) + C0kδ + δk
(√

2σMV (z0 − z?) +
√

2σMC0kδ
)

+ 2δ2σMk
2 ,

where the last line uses
√
a+ b ≤ √a+

√
b. By Jensen’s inequality, we get the first claim.

For the second result, apply Lemma 29 at x = x? and y = y?:

V (zk − z?) +
θ

2τMξ

k∑
j=1

‖xj − xj−1‖2 +
ρ

2η

k∑
j=1

‖Axj − Ax?‖2 +
k∑
j=1

[
Lδ(xj, y?)− Lδ(x?, yj)

]
≤ V (z0 − z?) +

k∑
j=1

εj +
σm (η − 1) k

2

∥∥Ax? − bδ∥∥2
.

(68)

Using Equations (63) and (67), we have

V (zk − z?) +
θ

2τMξ

k∑
j=1

‖xj − xj−1‖2 +
ρ

2η

k∑
j=1

‖Axj − b?‖2 +
k∑
j=1

[L?(xj, y?)− L?(x?, yj)]

≤ V (z0 − z?) +
k∑
j=1

εj +
k∑
j=1

〈yj − y?, b? − bδ〉+
σm (η − 1) k

2

∥∥b? − bδ∥∥2

≤ V (z0 − z?) +
k∑
j=1

εj + δ

k∑
j=1

‖yj − y?‖+
σm (η − 1) k

2
δ2

≤ V (z0 − z?) +
k∑
j=1

εj + 2σMδ
2k2 + δk

√√√√2σM

[
V (z0 − z?) +

k∑
i=1

εi

]
+
σm (η − 1) k

2
δ2 .

(69)
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Recall that θ ≥ 0 and that L?(x, y?)− L?(x?, y) ≥ 0 for every (x, y) ∈ X × Y . By Jensen’s
inequality, rearranging the terms and using

∑k
i=1 εi ≤ C0kδ, we get the claim. The exact

values of the constants of Theorem 11 are therefore:

C1 = V (z0 − z?) ,

C2 = C0 +
√

2σMV (z0 − z?) ,

C3 =
√

2σMC0 ,

C4 = 2σM ,

C5 =
2η

ρ
C1 ,

C6 =
2η

ρ
C2 ,

C7 =
2η

ρ
C3 ,

C8 =
2η

ρ
C4 ,

C9 =
ησm(η − 1)

ρ
,

(70)

B.4 Example of divergence in absence of noisy solution (see Re-
mark 13)

We present an example in which the primal exact problem has solution, but the noisy one
does not and the averaged primal iterates generated by Algorithm (12) indeed diverge. First
note that, if the function R has bounded domain, the primal iterates remain bounded. So,
to exhibit a case of divergence of the primal iterates, we consider a function R with full
domain: set R(·) = 1

2
‖·‖2 (and F = 0). The exact problem is then

min
x∈X

1

2
‖x‖2 s.t. Ax = b? . (71)

Now consider a noisy datum bδ such that Ax = bδ does not have a solution. If the associated
normal equation, namely A∗Ax = A∗bδ is feasible, in Section 7 we prove not only boundedness
of the iterates but also convergence to a normal solution. On the contrary, to get divergence
of the iterates, here we consider a classic scenario in which the perturbation of the exact data
generates an unfeasible constraint, even for the associated normal equation. We recall that
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this may happen only in the infinite dimensional setting, as when R(A) is finite dimensional,
it is also closed and a solution to the normal equation always exists. As a prototype of
ill-posed problem, let X = Y = `2 and A be defined by, for every x ∈ `2 and for every i ∈ N,

(Ax)i = aixi ,

where, for every i ∈ N, ai ∈ (0,M) for a fixed constant M > 0 and infi∈N ai = 0. Note
that A : `2 → `2 is well-defined, linear, continuous, self-adjoint and compact. Let b? in the
range of A and denote by x? the unique solution to P? defined in Equation (71); namely,
(x?)i := (b?)i/ai for every i ∈ N. In particular, the (b?)i are such that x? belongs to `2. Let
also bδ ∈ `2 with ‖bδ − b?‖ ≤ δ, but such that the noisy equation does not have a normal
solution. Defining, for every i ∈ N,

(xδ)i := (bδ)i/ai, (72)

the previous means that xδ does not belong to `2. For an explicit example, consider ai =

1/i, (b?)i = 1/i2 and (bδ)i = (b?)i + C/i, with C = δ/
√∑+∞

j=1 1/j2.

Apply the algorithm with step-sizes σ > 0 and τ > 0 such that στ < 1/ ‖A‖2 and notice
that it implies, for every i ∈ N, στ < 1/(ai)2. As ai > 0 for every i ∈ N, the coordinates of
the averaged sequence (x̂ik) are convergent to a solution of the following (one-dimensional)
optimization problem:

P i := argmin
xi∈R

{
1

2
(xi)2 : aixi = (bδ)i

}
=

{
(bδ)i

ai

}
.

Hence, for the primal-dual algorithm, if xδ /∈ `2, then (x̂k) diverges. Indeed, by contradiction,
suppose that (x̂k) is bounded. As it is bounded and converges coordinate-wise to xδ, then it
weakly converges to xδ. But this is not possible since xδ is not in `2.
Note that the problem considered in this example can be treated by Landweber method and
it is well-known that also the iterates generated by this method, while being different from
the ones of primal-dual algorithm, diverge.

C Sparse recovery

C.1 Proof of Section 6.1

Fix a primal-dual solution (x?, y?) ∈ S?. Let the extended support be Γ := {i ∈ N :
| (A∗y?)i | = 1} and the saturation gap be m := sup {| (A∗y?)i | : | (A∗y?)i | < 1}. Then Γ is
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finite, and m < 1. Moreover, for every x ∈ X , with ΓC := N \ Γ,

D−A
∗y?(x, x?) ≥ (1−m)

∑
i∈ΓC

|xi|. (24)

Proof. Recall that x?, y? is a primal-dual solution, hence −A∗y? ∈ ∂ ‖x?‖1. For every i ∈ N
we have that [∂ ‖·‖1]i (x

?) ⊆ [−1, 1] and so | (A∗y?)i | ≤ 1. Recall that ΓC := N \ Γ. As A∗y?

belongs to X = `2(N;R), we have ∑
i∈N
| (A∗y?)i |2 < +∞. (73)

Indeed, m ≤ 1 by definition and from Equation (73) the coefficients | (A∗y?)i | converge to 0
(and so they can not accumulate at 1). We have also that

D−A
∗y?(x, x?) =

∑
i∈N

[|xi| − |x?i |+ (A∗y?)i (xi − x?i )]

=
∑
i∈N

[|xi|+ (A∗y?)i xi]

≥
∑
i∈Γ

|xi| − | (A∗y?)i |︸ ︷︷ ︸
=1

|xi|

+
∑
i∈ΓC

|xi| − | (A∗y?)i |︸ ︷︷ ︸
≤m

|xi|


≥ (1−m)

∑
i∈ΓC

|xi|.

C.2 Tykhonov regularization: Lasso

For Tykhonov regularisation, the results in terms of Bregman divergence and feasibility are
the following.

Lemma 30 ([31], Lemma 3.5). Let Ax? = b?, −A∗y? ∈ ∂ ‖·‖1 (x?) and, for α > 0,

xα ∈ argmin
x∈X

{∥∥Ax− bδ∥∥2
+ α ‖x‖1

}
. (74)

Then it holds that

‖Axα − b?‖ ≤ δ + α ‖y?‖ and D−A
∗y?(xα, x

?) ≤ (δ + α ‖y?‖ /2)2

α
.
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The previous bounds, combined with Assumption 14 and the last inequality in Lemma 15,
lead naturally to the following corollary.

Corollary 31 ([31], Theorem 5.6). Suppose Assumption 14 holds. Then, for xα defined as
in Lemma 30 and C := α/δ,

‖Axα − b?‖ ≤ (1 + CWs) δ and

‖xα − x?‖ ≤ Qs (1 + CWs) δ +
1 +Qs ‖A‖

1−Ms

(1 + CWs/2)2

C
δ.

D Proofs of Section 7

D.1 Proof of Corollary 18

Corollary 18. Let Assumption 4 hold. Let (xk, yk) be the sequence generated by Equa-
tion (12) with data b under Assumption 7, Assumption 8 and summable error ((εk) ∈ `1).
Denote by (x̂k, ŷk) the averaged iterates. Then, every weak cluster point of (x̂k, ŷk) belongs to
S. In particular, if S = ∅, then the primal-dual sequence (x̂k, ŷk) diverges: ‖(x̂k, ŷk)‖ → +∞.

Proof. From Lemma 28, for any (x, y) ∈ X × Y and for any k ∈ N, we have

1− τMσM ‖A‖2

2τM
‖xk − x‖2 +

1

2σ
‖yk − y‖2

Σ +
k∑
j=1

[L(xj, y)− L(x, yj)] +
ω

2τM

k∑
j=1

‖xj − xj−1‖2

≤ V (z0 − z) +
k∑
j=1

εj,

(75)

where ω := 1− τM(L+ σM ‖A‖2) ≥ 0 by Assumption 8. Using Jensen’s inequality, we get

L(x̂k, y)− L(x, ŷk) ≤
1

k

[
V (z0 − z) +

+∞∑
j=1

εj

]
. (76)

Let (x∞, y∞) be a weak cluster point of (x̂k, ŷk); namely, there exists a subsequence (x̂kj , ŷkj) ⊆
(x̂k, ŷk) such that (x̂kj , ŷkj) ⇀ (x∞, y∞). By weak lower-semicontinuity of R and F , for every
(x, y) ∈ X × Y ,

L(x∞, y)− L(x, y∞) ≤ lim inf
j
L(x̂kj , y)− L(x, ŷkj) ≤ lim inf

j

1

kj

[
V (z0 − z) +

+∞∑
j=1

εj

]
= 0.

(77)
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Thus (x∞, y∞) is a saddle-point for the Lagrangian.
Now suppose that the set of saddle-points of L is empty. Assume also, for contradiction,
that (x̂k, ŷk) does not diverge. Then we can extract a bounded subsequence, that conse-
quently admits a weakly converging subsequence. But then, the limit is a saddle-point,
which contradicts the assumption.

D.2 Proof of Lemma 19

Lemma 19. Let Assumption 4 hold. Assume that C̃ 6= ∅. Let (xk) be the primal sequence
generated by algorithm (35); namely, with T = τ Id, Σ = σ Id, εk = 0 for every k ∈ N and
y0 = y−1 + σ(Ax0 − b). Then, there exists a primal sequence (uk) generated by the same
procedure but applied to problem P̃ (as stated in (36)) such that xk = uk for every k ∈ N.

Proof. As C̃ 6= ∅, there exists xb ∈ X such that A∗Axb = A∗b. First consider the algorithm
in (35). Note that, for every k ∈ N, ỹk = yk + σ (Axk − b) and multiply the last step by A∗.
We get, for every k ∈ N,

xk+1 = proxτR(xk − τ∇F (xk)− τA∗yk − στA∗A(xk − xb))
A∗yk+1 = A∗yk + σA∗A(xk+1 − xb).

Recall that S := (A∗A)
1
2 and introduce pk := A∗yk. Then the primal sequence (xk) is

equivalently defined by the following recursion: given x0 and p0 = A∗y0, for every k ∈ N,

xk+1 = proxτR(xk − τ∇F (xk)− τpk − στS2(xk − xb))
pk+1 = pk + σS2(xk+1 − xb).

(78)

As A∗y−1 belongs to R(A∗) and R(A∗) = R(S) [24, Prop 2.18], there exists v−1 such that
Sv−1 = A∗y−1. Now consider the primal-dual algorithm applied to problem (36) starting at
u0 = x0, v−1 and v0 = v−1 + σ(Su0 − Sxb). It reads as: for every k ∈ N,

ṽk = 2vk − vk−1

uk+1 = proxτR(uk − τ∇F (uk)− τSṽk)
vk+1 = vk + σ(Suk+1 − Sxb).

Then, noticing that ṽk = vk + σ
(
Suk − Sxb

)
and multiplying the last step by S,

uk+1 = proxτR(uk − τ∇F (uk)− τSvk − στS2(uk − xb))
Svk+1 = Svk + σS2(uk+1 − xb) .
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Define the change of variable qk := Svk, so that q−1 = Sv−1 = A∗y−1 and

q0 = Sv0 = S
(
v−1 + σ(Su0 − Sxb)

)
= A∗(y−1 + σ(Ax0 − b)) = A∗y0 = p0.

Then the primal sequence (uk) is alternatively defined by the following recursion: for every
k ∈ N,

uk+1 = proxτR(uk − τ∇F (uk)− τqk − στS2(uk − xb))
qk+1 = qk + σS2(uk+1 − xb) .

(79)

Comparing Equation (78) with Equation (79), with (u0, q0) = (x0, p0), we get the claim.

D.3 Proof of Theorem 20

Theorem 20. Let Assumption 4 hold. Assume that P̃ (as stated in 32) admits a saddle-
point; namely, that there exists a pair (x̃, ṽ) ∈ X × X such that{

−A∗Aṽ ∈ ∂R(x̃) +∇F (x̃) ,

A∗Ax̃ = A∗b .
(37)

Let (xk, yk) be the sequence generated by Equation (35), namely with initialization y0 =
y−1 + σ(Ax0 − b), and under Assumption 8. Denote by (x̂k) the averaged primal iterates.
Then there exists x̃∞ ∈ P̃ such that x̂k ⇀ x̃∞. Moreover, if P = ∅, then ŷk diverges.

Proof. From Lemma 19, we know that the sequence (x̂k) generated by Equation (35) co-
incides with the primal iterate of a sequence (ûk, v̂k) generated by the same algorithm on

problem (36). Notice that ‖S‖ = ‖(A∗A)
1
2‖ = ‖A‖ and so, if Assumption 8 holds, the

analogue also holds for problem (36): namely, 1 − τ(L + σ ‖S‖2) ≥ 0. The same is true
for Assumption 5. Indeed, defining v̄ = Sṽ, −Sv̄ = −A∗Aṽ ∈ ∂R(x̃) +∇F (x̃). Moreover,
we have seen already that A∗Ax = A∗b if and only if Sx = Sxb, where xb is any vector in
X such that A∗Axb = A∗b. Then, Sx̃ = Sxb and (x̃, v̄) is a saddle-point for (36). So, by
Section 4, we know that the averaged primal-dual sequence (ûk, v̂k) weakly converges to a
saddle-point for (36). In particular, there exists x̃∞ ∈ P̃ such that ûk ⇀ x̃∞ and so the
same holds for (x̂k). For the second claim, by assumption we have that P = ∅, which implies
that S = ∅. All the assumptions of Corollary 18 are verified, so (x̂k, ŷk) diverges. As (x̂k) is
weakly convergent and so bounded, we conclude that (ŷk) has to diverge.
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D.4 Proof of Theorem 21

Theorem 21. Let Assumption 4 hold and suppose that there exists a pair (x̃, ṽ) ∈ X × X
such that {

−A∗Aṽ ∈ ∂R(x̃) +∇F (x̃) ,

A∗Ax̃ = A∗b?
(38)

(namely, a saddle-point for the normal exact problem P̃?). Let bδ ∈ Y be a noisy data such
that

∥∥bδ − b?∥∥ ≤ δ for some δ ≥ 0. Moreover, suppose that C̃δ 6= ∅; namely, that there exists

xδ ∈ X such that A∗Axδ = A∗bδ. Let Assumption 8 and Assumption 9 hold and (xk, yk) be
the sequence generated by the algorithm Equation (35) on the noisy data bδ; namely, for the
initialization y0 = y−1 + σ(Ax0 − bδ),

ỹk = 2yk − yk−1 ,

xk+1 = proxτR(xk − τ∇F (xk)− τA∗ỹk) ,

yk+1 = yk + σ
(
Axk+1 − bδ

)
.

Denote by (x̂k) the averaged primal iterates. Then,

D−A
∗Aṽ(x̂k, x̃) ≤ C1

k
+ C2δ + C4δ

2k

and

‖A∗Ax̂k − A∗b?‖2 ≤ ‖S‖
[
C5

k
+ C6δ + C8δ

2k + C9δ
2

]
,

where the constants involved in the bounds are specified in the proof.

Proof. From the assumption C̃δ 6= ∅ and Lemma 19, we know that the sequence (x̂k) coincides
with the primal iterate of a sequence (ûk, v̂k) generated by the same algorithm on problem

P̃δ = argmin
x∈X

{
R(x) + F (x) : Sx = Sxδ

}
, (80)

where xδ is any vector in X such that A∗Axδ = A∗bδ. As in the proof of the previous theorem,
notice that ‖S‖ = ‖A‖ and so, as Assumption 8 and Assumption 9 hold by hypothesis, the
analogue also holds for problem (80): namely, 1− τ(L+σ ‖S‖2) ≥ 0, ξ− τ(ξL+σ ‖S‖2) ≥ 0
and σ(η − 1)− σξη > 0. The same is true for Assumption 5. Indeed, define v̄ = Sṽ. Then,
from Equation (38), −Sv̄ = −A∗Aṽ ∈ ∂R(x̃) +∇F (x̃) and (x̃, v̄) is a saddle-point for

P̃? = argmin
x∈X

{R(x) + F (x) : Sx = Sx̃} . (81)
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In particular, we can apply Theorem 11 for (ûk, v̂k) - averaged primal-dual sequence generated
on the noisy problem in (80) - with respect to (x̃, v̄) - saddle-point for the exact problem in
(81) - to get that

D−Sv̄(ûk, x̃) ≤ C1

k
+ C2δ̃ + C4(δ̃)2k

and

‖Sûk − Sx̃‖2 ≤ C5

k
+ C6δ̃ + C8(δ̃)2k + C9(δ̃)2.

The constants in the previous bounds are the same as in (70) with z0 = (u0, v0), z? = (x̃, v̄),
C3 = C7 = 0 (because C0 = 0 as we suppose εk = 0 for every k ∈ N), σm = σM = σ and

δ̃ := ‖Sxδ − Sx̃‖.
From Lemma 19, we recall also that u0 = x0 and v0 = v−1 + σ(Su0− Sxδ), where v−1 is any
element in X such that Sv−1 = A∗y−1 (v−1 exists due to R(A∗) = R(S)). Now it remains to
show that δ̃ ≤ δ. Denote by (µi, fi, gi)i∈N ⊆ R+ × X × Y the singular value decomposition
of the operator A. First, notice that S2(xδ − x̃) = A∗(bδ − b?) and so that, for every i ∈ N,

µ2
i 〈xδ − x̃, fi〉 = µi〈bδ − b?, gi〉.

Then, for every i ∈ N such that µi 6= 0, µi〈xδ − x̃, fi〉 = 〈bδ − b?, gi〉 and so

δ̃2 = ‖Sxδ − Sx̃‖2 =
∑
i∈N

(
µi〈xδ − x̃, fi〉

)2
=
∑
µi 6=0

(
µi〈xδ − x̃, fi〉

)2

=
∑
µi 6=0

(
〈bδ − b?, gi〉

)2 ≤
∑
i∈N

(
〈bδ − b?, gi〉

)2
= ‖bδ − b?‖2 ≤ δ2.

We conclude the claim simply by noticing that

D−A
∗Aṽ(x̂k, x̃) = D−Sv̄(ûk, x̃)

and
‖A∗Ax̂k − A∗b?‖ =

∥∥S2ûk − S2x̃
∥∥ ≤ ‖S‖ ‖Sûk − Sx̃‖ .

E A dual view on the implicit bias of gradient descent

on least squares

Here we provide an interesting view on why the “implicit” bias of gradient descent on least
squares is not so implicit. Recall that these iterations,

xk+1 = xk − γA∗(Axk − b) , (82)
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converge, for γ < 2/ ‖A‖2
op, to the minimal Euclidean norm solution of Ax = b:

min
x∈X

1

2
‖x‖2 s.t. Ax = b , (83)

provided that Problem (83) is feasible and x0 = 0.
It turns out that the iterations (82) correspond, up to multiplication by −A∗, to the

iterates of gradient descent to the dual of (83), namely:

min
y∈Y

1

2
‖A∗y‖2 + 〈b, y〉 , and yk+1 = yk − γ(AA∗yk + b) . (84)

By setting xk+1 = −A∗yk+1 one recovers the iterates of gradient descent on least squares
(82). Therefore the “implicit bias” of gradient descent on least squares is not so implicit: its
iterates xk are dual to iterates yk on Problem (84), which is itself the dual of Problem (83)
in which the bias appears explicitly.
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