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Abstract
Themethod of fundamental solutions has beenmainly applied towave scattering prob-
lems in bounded domains and to our knowledge there have not been works addressing
density results for general shapes, or addressing the calculation of the complex reso-
nance frequencies that occur in exterior problems. We prove density and convergence
of the fundamental solutions approximation in the context of wave scattering prob-
lems, with and without a priori knowledge of the frequency, which is of particular
importance to detect resonance frequencies for trapping domains. We also present
several numerical results that illustrate the good performance of the method in the
calculation of complex resonance frequencies for trapping and non trapping domains
in 2D and 3D.

Mathematics Subject Classification 65N35 · 65N80 · 35J05

1 Introduction

Problems of scattering of time-harmonic acoustic waves by obstacles have a lot of
physical applications. Probably some of the most effective numerical methods for
the solution of these problems belong to the class of boundary integral equations
methods,where the solution is represented in terms of boundary layers defined on some
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hypersurface S. These methods provide solutions satisfying the partial differential
equation in the whole (unbounded) region where the wave propagation occurs and
reduce the problem to the solution of integral equations defined on S. Moreover,
the radiation condition at infinity is also satisfied, provided a convenient fundamental
solution is chosen. However, this kind ofmethods suffer from the existence of irregular
frequencies that correspond to characteristic wave numbers associated to an interior
eigenvalue problem. For these spurious eigenfrequencies the integral equation looses
uniqueness of solution and thus, the linear system obtained from the discretization of
the integral equation is extremely ill-conditioned.

Several techniques have been addressed to tackle the problem of irregular frequen-
cies in boundary integral methods. For instance, approaches using representations by
a mixed potential, involving single layer and double layer potentials [11, 24] revealed
to provide a unique solution for all wavenumbers. Another possibility is to use the
combined Helmholtz interior integral equation formulation [12, 26, 27], where some
interior points are placed allowing to define additional equations in order to produce
the constraints needed to have a unique solution of the integral equation.

In this work we will study the application of the method of fundamental solu-
tions (MFS) for the solution of scattering problems. The MFS has been widely used
for solving to interior problems [2, 4, 5, 8, 10, 13, 18, 29] and its application to a
radiation problem was considered in [15]. However, we are not aware of previous
works addressing density results for general shapes, or considering the solution of the
resonance problem with unbounded regions.

The resonance frequencies or scattering resonances are generalized eigenfrequen-
cies or bound states for which the energy can scatter to infinity. It can be proven that
they are complex numbers with negative imaginary part, where essentially, the real
part of the resonance frequency defines the rate of oscillation associated to the bound
state while the imaginary part determines the rate of decay.

The distribution of the resonances in the complex plane has a strong connectionwith
the geometry of the scatterer. In particular, the study of the billiard flow defined by the
propagation of a straight line with perfect reflection at the boundary allows to classify
the domains as trapping or non trapping, depending wether there exists trajectories of
the billiard flow that never escape to infinity. The resonances of non trapping domains
move away from the real axis whenwe consider resonance frequencies with increasing
real part, while for trapping domains it is always possible to find some resonance
frequencies arbitrarily close to the real axis, provided we take a range of frequencies
with sufficiently large real part [3, 6, 7, 16, 19–21, 23, 25]. In Sect. 6, we will present
some numerical results for the location of the resonance frequencies of some trapping
and non trapping domains.

The paper is organized as follows. In Sect. 2 we introduce the scattering problem
and a numerical approach to this problem using the method of fundamental solutions
is described in Sect. 3. We devote Sect. 4 to address density and convergence results
supporting the application of the method in the context of scattering problems. In
Sect. 5 we introduce the resonance problem and present some classical results for the
distribution of the resonance frequencies in the complex plane for trapping and non
trapping domains. Section6 presents some numerical tests and simulations for 2D and
3D trapping and non trapping domains and finally, Sect. 7 contains some conclusions.

123



Wave scattering problems in exterior... 377

2 Wave scattering problems

We consider the time-harmonic scattering problem in the range of resonance frequen-
cies. Let � ⊂ R

D be a bounded domain, in dimension D = 2 or 3, also called an
obstacle, which scatters an acoustic incident plane wave, for instance, of the form

uinc(x) = eikx ·d , (2.1)

where d ∈ R
D with |d| = 1 determines the direction of propagation of the incident

acoustic wave. The obstacle � might be a simply connected shape or the union of
several simply connected shapes. In that case we take � = �1 ∪ ... ∪ �C where C
stands for the number of simply connected components. We will also use a similar
notation for the boundary and its parts:

� = ∂� = ∂�1 ∪ ... ∪ ∂�C = �1 ∪ ... ∪ �C . (2.2)

For a given wavenumber κ ∈ R, the scattered wave u satisfies the Helmholtz
equation, and we consider the exterior problem

⎧
⎨

⎩

�u + κ2u = 0 in RD\�̄
Bu = −Buinc on �

∂r u − iκu = o(r (1−D)/2) when r = |x | → ∞
(2.3)

where the last condition is the Sommerfeld radiation condition.
The boundary condition is defined by an operator B which might be the trace

operator, in the case of a Dirichlet boundary condition, or the normal derivative in the
case of a Neumann boundary condition.

It is well known that this problem is well posed (e.g. [14]) and that the behavior of
the scattered wave can be described by the asymptotic relation

u(x) = eikr

r (D−1)/2
u∞(x̂) + o

(
1

r

)

(2.4)

where x̂ = x
|x | and u∞ is the far field pattern, an analytic function with complex

values, defined on the unitary circle/sphere S = {x ∈ R
D : |x | = 1}.

3 Method of fundamental solutions

We will make use of the fundamental solution for the Helmholtz operator, which is
given by the Hankel function in 2D,

�(r) = i

4
H (1)
0 (κr) with H (1)

0 = J0 + iY0, (3.1)
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with r = |x |, and in 3D is given by

�(r) = exp(iκr)

4πr
. (3.2)

In both cases, these fundamental solutions verify the Sommerfeld radiation condition.
Thus, with any y ∈ �, the point sources, which are shifted fundamental solutions

φy(·) = �(· − y) verify

{
�φy + κ2φy = 0 in RD\�̄

∂rφy − iκφy = o(r (1−D)/2) when r = |x | → ∞ (3.3)

and the only remaining condition to be satisfied in (2.3) is the boundary condition. It
is then natural to consider a combination of point sources y1, . . . , yM ∈ �,

ũ =
M∑

m=0

αmφym (3.4)

such thatBũ = −Buinc on a set of collocation points x1, ..., xN ∈ �, usually taking
N ≥ M .

With the method of fundamental solutions this leads to the linear system

[B�(|xn − ym |)] [αm] =
[
−Buinc(xn)

]
, (3.5)

and by the well posedness of the direct problem, we may control the approximation
error by the difference on the boundary.

However, when N = M andB is the identity, the matrix might be the transpose of
the one we have for an associated interior problem.

More precisely suppose that we consider an open subset ω such that ω̄ ⊂ �, and
then take its boundary γ = ∂ω to be the artificial set where the point sources are to
be located (in the case of multiple components, γ = γ1 ∪ ... ∪ γC ).

Now for the Dirichlet problem we have the MFS system

[�(|xn − ym |)] [αm] =
[
−uinc(xn)

]
. (3.6)

But when the MFS is applied to the associated interior problem

{
�u + κ2u = 0 in ω

u = −uinc on γ
(3.7)

this leads to the system [�(|yn − xm |)] [am] = [−uinc(yn)
]
, and the matrix is exactly

the transposed one.
However in the interior problem there are eigenfrequencies associated to the domain

ω and these frequencies may influence the results.
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Wave scattering problems in exterior... 379

In fact, suppose that −κ2 is a Laplace-Dirichlet eigenvalue, then the matrix is not
invertible or extremely ill-conditioned for the interior problem, but this should not be
the case for the exterior problem, where only complex eigenfrequencies exist.

We may try to reduce the dimension of the artificial domain ω such that the eigen-
values become higher in modulus than κ2, but this will lead to poor results in the MFS
since γ will not be sufficiently close to � to perform a good approximation of uinc.

4 Density and convergence results

In this section we prove density and convergence results supporting the application of
the method of fundamental solutions to solve scattering problems in exterior domains.
In the first result we assume that the source set for the MFS is γ , the boundary of a
bounded open set ω such that ω̄ ⊂ � which is the most typical setting for the MFS. In
this case, we will also assume that −κ2 is not a Laplace-Dirichlet eigenvalue for the
domain ω which implies well posedness of the interior problem defined in ω.

Theorem 1 Let κ ∈ C, ω̄ ⊂ � and consider γ = ∂ω. Assume that −κ2 is not a
Laplace-Dirichlet eigenvalue for the domain ω. Then

Sγ = span
{
φy : y ∈ γ

}
(4.1)

is dense in H1/2(�).

Proof Given any ψ ∈ H−1/2(�), we define the boundary single layer potential

u(y) = 〈φy, ψ
〉

H1/2(�)×H−1/2(�)
=
∫

�

�(|y − x |)ψ(x)dsx (4.2)

and assume that u(y) = 0 for all y ∈ γ. By proving that ψ ≡ 0 the completeness
follows from the orthogonality in dual Banach spaces, recalling that H1/2(�) is the
dual space of H−1/2(�), using L2(�) as pivot space.

Since −κ2 is not an eigenvalue associated to ω, the function u verifies the well
posed interior problem

{
�u + κ2u = 0 in ω

u = 0 on γ
(4.3)

and we conclude that u ≡ 0 in ω. Since the function u is analytic in � (in fact, it
is only singular on �) it is extended by zero to the boundary. Since the single layer
potential is continuous through � we have u = 0 on � (e.g. [14]) and both inner and
outer traces are null on �. This implies that u also verifies the homogeneous exterior
problem

⎧
⎨

⎩

�u + κ2u = 0 in RD\�̄
u = 0 on �

∂r u − iκu = o(r (1−D)/2) when r = |x | → ∞
(4.4)
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which is well posed and the unique solution is zero. Thus we conclude that ψ =
[∂νu] = 0. 	

We can drop the hypothesis in Theorem 1 that −κ2 is not a Laplace-Dirichlet eigen-
value for the domain ω under an additional assumption that can be defined through
the following definition.

Definition 1 We say that a set Sκ ⊂ ω̄ is a density source set for the MFS if the
problem

⎧
⎨

⎩

�u + κ2u = 0 in ω

u = 0 on γ

u = 0 in Sκ

(4.5)

has a unique solution defined in ω̄, u ≡ 0.

And immediately we have the following result.

Corollary 1 Let Sκ be a density source set for the MFS. Then

SSκ = span
{
φy : y ∈ Sκ

}
(4.6)

is dense in H1/2(�).

Proof The proof follows the same steps as the proof of Theorem 1 andwe can conclude
that u ≡ 0 in ω because Sκ is a density source set for the MFS. In this case we do not
need to ensure that −κ2 is not an eigenvalue. 	


Now, we prove the following

Lemma 1 Given z, w ∈ R
D\ {0} we have
∣
∣
∣
∣
z

|z| − w

|w|
∣
∣
∣
∣ ≤

|z − w|√|z||w|
Proof We have

|z − w|2 = |z|2 + |w|2 − 2z · w ⇒ −2z · w = |z − w|2 − |z|2 − |w|2 .

On the other hand,

∣
∣
∣
∣
z

|z| − w

|w|
∣
∣
∣
∣

2

= |z|2
|z|2 + |w|2

|w|2 − 2z · w

|z||w|
= 2 − 2z · w

|z||w| = 2|z||w| + |z − w|2 − |z|2 − |w|2
|z||w|

= |z − w|2 − (|z| − |w|)2
|z||w| ≤ |z − w|2

|z||w|
and the conclusion follows. 	


123



Wave scattering problems in exterior... 381

Given a curve γ , we build a family of sets of points �M ⊂ γ defined by

�1 = {x1} , for some x1 ∈ γ

and

�M = �M−1 ∪ {y : y ∈ γ \�M−1} , M = 2, 3, ...

and say that a family �M is dense in γ if

∀ε>0∃M∈N∀x∈γ ∃y∈�M : |y − x | < ε.

Theorem 2 (Convergence with fundamental solutions) Let ω̄ ⊂ � and γ = ∂ω.

Assume that −κ2 is not a Laplace-Dirichlet eigenvalue for the domain ω. Consider a
family of sets of points

�M = {y1, · · · , yM } ⊂ γ

which is dense in γ. Then, for any given ε > 0 and any g ∈ H1/2(�), there exists
M ∈ N, such that the error of

vM (x) :=
M∑

j=1

α j�(|x − y j |), y j ∈ �M (4.7)

is bounded by ε, that is,

||g − vM ||H1/2(�) < ε. (4.8)

Proof From the density result (Theorem 1), given g ∈ H1/2(�) we have an approxi-
mation uM ∈ Sγ ,

uM (x) =
M∑

j=1

α j�(|x − s j |) (4.9)

such that ||u − uM ||H1/2(�) < ε
2 , for some s1, ..., sM ∈ γ and some α1, ..., αM ∈ C.

Consider now

A =
M∑

j=1

|α j |, F = max
r∈[r0,r1]

|∂r�(r)| and G = max
r∈[r0,r1]

|∇∂r�(r)|,

where

r0 = min
x∈�,y∈γ

|x − y|, r1 = max
x∈�,y∈γ

|x − y|,
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noticing that F and G are bounded, because r0 = dist(�, γ ) > 0.
Given any δ > 0 and sufficiently large M, we have points in �M sufficiently close

to each of the source points s j since �M is dense in γ. Therefore,

|�(|x − s j |) − �(|x − y j |)| ≤ ||∂r�||∞|y j − s j | < Fδ.

Using Lemma 1 we have

∣
∣
∣
∣
x − y j
|x − y j | − x − s j

|x − s j |
∣
∣
∣
∣ ≤

∣
∣y j − s j

∣
∣

r0

and thus,

∣
∣∇�(|x − s j |) − ∇�(|x − y j |)

∣
∣ =

∣
∣
∣
∣
x − s j
|x − s j | ∂r�(|x − s j |) − x − y j

|x − y j | ∂r�(|x − y j |)
∣
∣
∣
∣

=
∣
∣
∣
∣
x − s j
|x − s j |

(
∂r�(|x − s j |) − ∂r�(|x − y j |)

)

−
(

x − y j
|x − y j | − x − s j

|x − s j |
)

∂r�(|x − y j |)
∣
∣
∣
∣

≤ ∣
∣∂r�(|x − s j |) − ∂r�(|x − y j |)

∣
∣

+|y j − s j |
r0

|∂r�(|x − y j |)|

≤ ||∇∂r�||∞|y j − s j | + ||∂r�||∞
r0

|y j − s j |

=
(

||∇∂r�||∞ + ||∂r�||∞
r0

)

|y j − s j | <

(

G + F

r0

)

δ.

Thus, by taking vM (x) =∑M
j=1 α j�(x − y j ) we get

|uM (x) − vM (x)| =
∣
∣
∣
∣
∣
∣

M∑

j=1

α j
(
�(|x − s j |) − �(|x − y j |)

)

∣
∣
∣
∣
∣
∣
<

M∑

j=1

|α j |Fδ = FAδ.

and

|∇uM (x) − ∇vM (x)| =
∣
∣
∣
∣
∣
∣

M∑

j=1

α j
(∇�(|x − s j |) − ∇�(|x − y j |)

)

∣
∣
∣
∣
∣
∣

<

M∑

j=1

|α j |
(

G + F

r0

)

δ =
(

G + F

r0

)

Aδ.

Since δ is arbitrarily small, the approximation vM is close enough to uM such that
||uM − vM ||H1/2(�) < ε

2 . The result follows from
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||u − vM ||H1/2(�) ≤ ||u − uM ||H1/2(�) + ||uM − vM ||H1/2(�) < ε.

	

Remark 1 It is important to notice that the source points in�M must be arbitrarily close
to the source points s1, ..., sM because the coefficients α1, ..., αM might be arbitrarily
large. In fact there is no bound for these coefficients, as this might be linked to an
inversion of a compact operator.

This problem is linked to the inversion of the single layer potential Lγ , since

(Lγ ψ)(x) =
∫

γ

�(|x − y|)ψ(y)dsy = g(x) with x ∈ �.

It is well known thatLγ : L2(�) → L2(�) is a compact operator, and its inversion can
only be achieved with regularization techniques, such as the Tikhonov regularization.

Corollary 2 The same convergence result holds by taking source points in such a way
that when M → ∞, the set of source points is dense in a density source set for the
MFS, with no restriction on κ .

Proof It follows the same steps of the proof of Theorem 2, using Corollary 1 instead
of Theorem 1. 	


In brief, by Theorem 2 we conclude the method of fundamental solutions is con-
vergent, provided−κ2 is not a Laplace-Dirichlet eigenvalue for the domain ω. We can
also prove convergence of the method without any assumption on the frequency κ, by
Corollary 2, but in that case we must ensure that the set of source points is chosen in
such a way that it is dense in a density source set for the MFS. One possibility is to
take Sκ ≡ ω̄ which is (trivially) a density source set for the MFS. In that case, we shall
locate the source points uniformly distributed in ω̄ in such a way that for any ε > 0
and any point ȳ ∈ ω̄ there exists a (sufficiently large) M and a source point yp such
that |ȳ − yp| < ε.

Another possibility would be to take the source points in a density source set for the
MFS that do not coincide with ω̄. We could think that by taking a few extra points zk ,
for instance randomly chosen in ω, this could force the solution to be null, but this is
not the case, as the eigenfunctions may present nodal sets. Thus, these eigenfunctions
would also verify u(zk) = 0 and this would not imply u ≡ 0 in ω. Therefore, the set
of the points zk chosen in this way might not be a density source set for the MFS. The
same problem would occur using extra inner contours such as γ , as these contours
might match a nodal set. Indeed, it is straightforward to see that for some choices
of ω, we can verify that for any point ȳ ∈ ω, there is an eigenfunction u of ω such
that ȳ is on a nodal line of u. For instance taking ω to be a disk, we know that some
of the eigenvalues of ω have multiplicity two. This means that the dimension of the
eigenspace is two andwehave two linearly independent eigenfunctions associatedwith
the same eigenvalue. In that case, we can tune the coefficients of a linear combination
of these two eigenfunctions in order to build an eigenfunction that vanishes at the
point ȳ. We can expect to be able to use the same type of construction for an arbitrary
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384 C. J. S. Alves, P. R. S. Antunes

region ω, provided some of the Dirichlet eigenvalues of ω are not simple. However,
generically with respect to the domain, all the eigenvalues are simple in the sense that
for any given planar domain there exists a small deformation of its boundary for which
the eigenvalue of the deformed domain is simple (eg. [1, 22, 28]).

Typically we fix the range of frequencies for which we study solutions of the
scattering problem. In that case, there is a finite number of eigenvalues of ω in that
range of frequencies. In practice, we expect that a set S of sufficiently many random
points uniformly distributed in ω can be used as a density source set for the MFS, in
the sense that we expect that there is not an eigenfunction associated to an eigenvalue
in that range of frequencies that vanish at all the points in S.

5 Resonance problem

Although there are no real resonance frequencies for the exterior acoustic problem
with the Sommerfeld radiation condition, these frequencies exist in the complex form.
However, in the complex case, the asymptotic condition must be extended, to include
the asymptotic behavior of the fundamental solutions. For instance, in the 3D case, a
solution given by the single layer potential verifies

u(x) =
∫

�

�(|x − y|)ψ(y)dsy = exp(−κI r)O

(
1

r

)

where κ = κR + iκI .
Thus, the Sommerfeld radiation is modified to include this asymptotic behavior,

and the exterior problem is formulated for any κ ∈ C

⎧
⎨

⎩

�u + κ2u = 0 in RD\�̄
Bu = −Buinc on �

∂r u − iκu = e−κI r o(r (1−D)/2) when r = |x | → ∞
(5.1)

We will look for the resonance frequencies κ ∈ C for which the problem (5.1) does
not have an unique solution. In particular, we shall determine the frequencies κ for
which the problem

⎧
⎨

⎩

�u + κ2u = 0 in RD\�̄
Bu = 0 on �

∂r u − iκu = e−κI r o(r (1−D)/2) when r = |x | → ∞
(5.2)

has a nontrivial solution.

5.1 Trapping and non trapping domains

We start by introducing some definitions which allow to classify each domain as
trapping or non trapping.
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Fig. 1 Examples of two trapping domains and a non trapping domain (respectively)

Definition 2 (Geometric optics reflection) Given a pair (x0, v0) where x0 ∈ R
D\� is

a point and v0 ∈ SD−1 is a unitary vector, we will consider the half line ρ+
(x0,v) =

{x0 + tv0 : t ≥ 0}. If ∂� ∩ ρ+
(x0,v) �= ∅, we consider the reflection point

x1 ∈ ∂� ∩ ρ+
(x0,v) : |x0 − x1| = min

y∈∂�∩ρ+
(x0,v)

|x0 − y|.

The perfect reflection is a pair (x1, v1)where x1 is the point of reflexion and v1 defines
the reflected direction, ie., v1 belongs to the plane defined by v0 and the surface normal
and makes the same angle with respect of normal direction as the incident direction
defined by v0.

We can define a map

R : (
(
R

D\�
)

∪ {∞} , SD−1) → (
(
R

D\�
)

∪ {∞} , SD−1)

(x0, v0)
R�−→
{

(x1, v1) i f ∂� ∩ ρ+
(x0,v) �= ∅,

(∞, v0) otherwise
(5.3)

(∞, v) �−→ (∞, v).

and iterate themapR startingwith x0 ∈ (RD\�̄) and v0 ∈ SD−1. This process defines
a sequence (xn, vn) with (xn, vn) = R(xn−1, vn−1), n = 1, 2, ....

Definition 3 We say that � is non trapping if the sequence (xn, vn) finishes at a fixed
point, ie., ∃n0 ∈ N such that (xn, vn) = (∞, vn0), ∀n ≥ n0. Otherwise, we say that
the domain is trapping (in this case, the sequence may oscillate between two values
(x1, v) and (x2,−v), as is illustrated in Fig. 1).

5.2 Distribution of the resonance frequencies

Now we will recall some classical results about the location of the resonance frequen-
cies, depending on the geometry of the domain. In particular, they show that there is
a clear difference between the distribution of resonance frequencies of trapping and
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386 C. J. S. Alves, P. R. S. Antunes

non trapping domains. The following result states that the resonance frequencies of
a non trapping domain move away from the real axis, when their real parts increase
(see [7]).

Theorem 3 Let � ⊂ R
3 be a non trapping bounded domain with analytic boundary.

Then, there exists c > 0 such that any resonance frequency μ satisfies

Re(μ) ≤ −c |μ| 13 . (5.4)

Moreover we have the following result [19].

Theorem 4 Let � ⊂ R
3 be a non trapping domain. Then, for any α < 0, the set

{z : 0 > Im(z) ≥ α}

has, at most, a finite number of resonance frequencies.

In the opposite case, for the trapping case it is an open problem to prove/disprove
the following conjecture (cf. [19, 21]).

Conjecture 1 (Lax-Phillips) Let � ⊂ R
3 be a trapping domain. Then, there exists

α < 0, such that the set

{z : 0 > Im(z) ≥ α}

has an infinite number of resonance frequencies.

The previous conjecture was already proved by Ikawa [16], in the particular case
of a domain composed by two (or more) disjoint and convex domains.

In chapter 5 we will present some simulations for the distribution of the resonance
frequencies of trapping and non trapping domains.

5.3 Numerical calculation of the resonances using theMFS

Again, we propose to consider the MFS with an auxiliary set of source points
y1, ..., yM ∈ �M , a family of points which is dense in γ = ∂ω and some random
points w1, ..., wR ∈ ω.

With the collocation points x1, ..., xN ∈ � this leads to the matrix

M(κ) =
⎡

⎢
⎢
⎢
⎣

�(|x1 − y1|) · · · �(|x1 − yM |) �(|x1 − w1|) · · · �(|x1 − wR |)
...

. . .
...

...
. . .

...

�(|xN − y1|) · · · �(|xN − yM |) �(|xN − w1|) · · · �(|xN − wR |)

⎤

⎥
⎥
⎥
⎦

(5.5)

which is a square matrix if N = M + R.
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To obtain the resonance frequencies we might look for the κ ∈ C such that
det(M(κ)) = 0. However, due to ill conditioning of the matrix M, a more con-
venient approach is to use Betcke-Trefethen technique (cf. [9]). We consider a few
random points z1, ..., zP ∈ R

D\�̄ and define the four-block matrix

A(κ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�(|x1 − y1|) · · · �(|x1 − yM |)
...

. . .
...

�(|xN − y1|) · · · �(|xN − yM |)

�(|x1 − w1|) · · · �(|x1 − wR |)
...

. . .
...

�(|xN − w1|) · · · �(|xN − wR |)
�(|z1 − y1|) · · · �(|z1 − yM |)

...
. . .

...

�(|zP − y1|) · · · �(|zP − yM |)

�(|z1 − w1|) · · · �(|z1 − wR |)
...

. . .
...

�(|zP − w1|) · · · �(|zP − wR |)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.6)

Then, we calculate the QR decomposition of matrix A(κ),

A(κ) =
(

Q�(κ)

QRD\�(κ)

)

R(κ)

and study the evolution of smallest singular value of the matrix Q�(κ), that we denote
by σ1(Q�(κ)). The approximations of the resonance frequencies are the values κ for
which σ1(Q�(κ)) ≈ 0.

6 Numerical experiments

We start by considering the case of the unitary disk and the source points are placed
on a circumference centered at the origin and radius equal to 0.8, taking N = M = 50
and R = 0, that is, considering just point sources on γ (and not in ω). Figure2
show the plot of the map κ �→ log(| det(M(κ))|). We mark with dashed red lines
the eigenfrequencies of the interior Dirichlet eigenvalue problem defined in ω. As
expected from our previous discussion, the matrix M(κ) is singular, when κ coincides
with one of those eigenfrequencies.

Next, we test the approach that we described in previous section, by studying the
evolution of σ1(A(κ)).We show an illustrative example for κ in an interval containing
the second Dirichlet eigenfrequency of the interior eigenvalue problem in ω. We will
consider three different situations that are illustrated in the first row of plots of Fig. 3.
In both cases we take 100 collocation points on � (marked with ◦), 10 random points
in R

2\�̄ (marked with ∗) and 50 source points marked with •. In the first case (left
plot) all the source points are located on γ, in the second case we take 40 source points
on γ and 10 on an axis of symmetry of the disk (center plot) and finally in the last case
we take 40 source points on γ and 10 random points in ω. The second row of pictures
show the corresponding graphs of σ1(A(κ)). The second eigenfrequency of the interior
problem in ω is marked with a dashed red line. We can observe that in the first two
cases, the plot presents an oscillation close to this spurious eigenfrequency. Since our
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Fig. 2 Plot of the map
κ �→ log(| det(M(κ))|), for
κ ∈ [1, 10]. The
eigenfrequencies of the interior
problem defined in ω are marked
with dashed red lines

Fig. 3 Three choices of the source points and the corresponding plots of σ1(A(κ)). In the first two cases
we have an oscillation due to the existence of a spurious eigenfrequency

numerical algorithm for the calculation of the resonances depend on the study of the
evolution of σ1(A(κ)), these oscillations can lead to difficulties, especially if for the
range of frequencies κ considered we have σ1(A(κ)) close to zero. In the last case, the
oscillation has disappeared. Note that in the second case, the source points placed in
ω are located on a nodal line of the eigenfunction. Thus, this choice is not effective to
remove the effect of the spurious eigenfrequency and we need to consider a healthier
choice of the points, for instance placing them randomly in ω, as was considered in
the last case.

Next, we consider a slight perturbation of the source points plotted in the middle
picture of Fig. 3. Instead of placing points on the line defined by y = 0, we define the
second component of the points to be obtained as realizations of a random variable
Y = 10−6Z , where Z follows a standard normal distribution, as shown in the middle
picture of Fig. 4. The oscillation due to the existence of a spurious eigenfrequency that
was shown in Fig. 3 is not observed at this scale with this perturbed location of the
source points.
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Fig. 4 Plot of the location of the source points (left picture); zoom of the region close to the line y = 0,
showing the source points close to the line define by y = 0 (middle picture); plot of σ1(A(κ)) (right plot).
The oscillation due to the existence of a spurious eigenfrequency that was shown in Fig. 3 is not observed
at this scale with this perturbed location of the source points

Fig. 5 Convergence and conditioning results for three resonance frequencies of the unit disk

Next, we test the convergence of the numerical method in the case of the unit disk
with the setting of points presented in Fig. 5-left. We took P = 10 random points
z1, ..., z10 ∈ R

2\� marked with the symbol �, R = 10 interior source points gener-
ated with a Halton distribution marked with •, M source points on a circumference
centered at the origin and radius equal to 0.7, represented with the symbol • and
will denote by NT the total number of source points. Finally, we took 2NT collocation
points on the boundary that are markedwith ◦.Wewill show some convergence results
for three resonance frequencies

z1 = −0.419274604094181 − 0.577399524117206i
z2 = −3.83244286765062 − 0.354904706219262i
z3 = −1.31684116739175 − 0.836104483291729i .

Figure 5 shows the absolute error of the numerical approximations for the three
resonance frequencies, as a function of NT . The right plot of the same figure shows
the condition number of the matrices A(zi ), i = 1, 2, 3, as a function of NT . The
method allows to achieve a double precision accuracy but the condition number grows
exponentially.

Next, we apply the numerical method in an example of a non trapping 2D domain
whose boundary can be parameterized by

∂� =
{(

1 + 1

4
cos(3t)

)

(cos(t), sin(t)) : t ∈ [0, 2π [
}

.
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Fig. 6 The points considered in a non trapping 2d domain (left plot) and the distribution of the resonance
frequencies

Fig. 7 Plots of the real and imaginary parts of the functions u∗ of a 2D non trapping obstacle, for three
resonance frequencies κ1 = −0.3990505 − 1.8223030i , κ2 = 1.29547456 − 1.5835340i and κ3 =
18.5238690 − 3.5908771i

The left plot of Fig. 6 shows the points considered for the calculation of the resonance
frequencies, whose distribution in the complex plane is presented in the right plot of
the same figure. We can observe that there is a resonance free region close to the real
axis and the imaginary parts of the resonance frequencies move away from the real
axis.

Figure 7 shows the plots of the real and imaginary parts of the function u∗ := u

e−iκI r

for three resonance frequencies κ1 = −0.3990505−1.8223030i , κ2 = 1.29547456−
1.5835340i and κ3 = 18.5238690 − 3.5908771i .

Next, we consider a 2D trapping domain shown in left plot of Fig. 8. In the right
plot of the same Figure we represent the resonance frequencies. In this case, since we
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Fig. 8 The points considered in a 2D trapping obstacle (left plot) and the distribution of the resonance
frequencies which suggest that for any ε > 0,wemay have some resonance frequencies verifying Im(κ) >

−ε.

Fig. 9 Plots of |u∗| for two resonance frequencies κ1 = 1.7679092 − 0.1077933i and κ2 = 1.7935326 −
1.0533207i . The resonance frequencies have approximately the same real part, but κ1 is much closer to the
real axis than κ2. The function u∗ associated to κ1 is localized in the trapping region

have a trapping obstacle, we can observe that some frequencies approach the real axis.
Indeed, the results suggest that for any arbitrarily small value ε > 0, there are always
some resonance frequencies verifying Im(κ) > −ε, as illustrated in the right plot of
Fig. 8.

Figure 9 shows the plot of |u∗| for two resonance frequencies κ1 = 1.7679092 −
0.1077933i and κ2 = 1.7935326−1.0533207i of the 2D trapping obstacle represented
in the left plot of Fig. 8. The resonance frequencies have approximately the same real
part but κ1 is close to the real axis, while the κ2 is not so close. We can observe that in
the first case, the function u∗ is localized in the trapping region, while in the second
the function u∗ is not localized.

Next, we test the numerical method in two examples of 3D obstacles. In the first
example we consider the 3D unitary ball and consider the points represented in the
left plot of Fig. 10. In the right plot of the same figure we plot the distribution of the
approximate resonance frequencies togetherwith the exact values, directly obtained by
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Fig. 10 The points for the numerical method in the case of the unitary 3D ball (left plot) and the distribution
of the resonance frequencies. We plot the approximate resonance frequencies and also the corresponding
exact values

Fig. 11 Plot of the absolute errors of three resonance frequencies, as a function of the number of MFS
source points, NT (left plot) and plot of the condition numbers of the matrix A

calculating zeros of Hankel functions. Figure11 shows convergence and conditioning
results for three resonance frequencies

z1 = −i
z2 = 1.75438095978372 − 1.83890732268696i
z3 = 8.23269945907359 − 3.1089162336491i .

Finally, we consider an example of a 3D trapping domain for which we consider
the points plotted in Fig. 12. The resonance frequencies are represented in the right
plot of the same figure. Again we can find some resonance frequencies approaching
the real axis.
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Fig. 12 Points for the numerical method in the case of 3D trapping domain (left plot) and the distribution
of the resonance frequencies in the complex plane. Some of them approach the real axis

7 Conclusions

We proved density and convergence results supporting the application of the method
of fundamental solutions for solving wave scattering problems in exterior domains.
Several numerical simulations illustrate the good performance of the method in the
calculation of resonance frequencies in trapping and non trapping domains in 2D and
3D.
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