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Abstract
This paper deals with the equation −Δu + μu = f on high-dimensional spaces Rm ,
where the right-hand side f (x) = F(T x) is composed of a separable function F
with an integrable Fourier transform on a space of a dimension n > m and a linear
mapping given by a matrix T of full rank and μ ≥ 0 is a constant. For example,
the right-hand side can explicitly depend on differences xi − x j of components of x .
Following our publication (Yserentant in Numer Math 146:219–238, 2020), we show
that the solution of this equation can be expanded into sums of functions of the same
structure and develop in this framework an equally simple and fast iterative method for
its computation. The method is based on the observation that in almost all cases and
for large problem classes the expression ‖T t y‖2 deviates on the unit sphere ‖y‖ = 1
the less from its mean value the higher the dimensionm is, a concentration of measure
effect. The higher the dimension m, the faster the iteration converges.

Mathematics Subject Classification 41A46 · 41A63 · 65D40 · 65N12

1 Introduction

The numerical solution of partial differential equations in high space dimensions is a
difficult and challenging task. Methods such as finite elements, which work perfectly
in two or three dimensions, are not suitable for solving such problems because the
effort grows exponentially with the dimension. Random walk based techniques only
provide solution values at selected points. Sparse grid methods are best suited for
problems in still moderate dimensions. Tensor-based methods [2, 11, 12] stand out
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778 H. Yserentant

in this area. They are not subject to such limitations and perform surprisingly well
in a large number of cases. Tensor-based methods exploit less the regularity of the
solutions rather than their structure. Consider the equation

− Δu + μu = f (1.1)

onRm for high dimensionsm, whereμ > 0 is a given constant. Provided the right-hand
side f of the equation (1.1) possesses an integrable Fourier transform,

u(x) =
(

1√
2π

)m∫
1

‖ω‖2 + μ
f̂ (ω) e iω·x dω (1.2)

is a solution of this equation, and the only solution that tends uniformly to zero as x
goes to infinity. If the right-hand side f of the equation is a tensor product

f (x) =
∏
i

φi (xi ) (1.3)

of functions, say from the three-dimensional space to the real numbers, or a sum of
such tensor products, the same holds for the Fourier transform of f . If one replaces
the corresponding term in the high-dimensional integral (1.2) by an approximation

1

‖ω‖2 + μ
≈

∑
k

ak e
−βk

(‖ω‖2+μ
)
=

∑
k

ak e
−βkμ

∏
i

e−βk‖ωi‖2 (1.4)

based on an appropriate approximation of 1/r by a sum of exponential functions, the
integral then collapses to a sum of products of lower-dimensional integrals. That is,
the solution can be approximated by a sum of such tensor products whose number
is independent of the space dimension. The computational effort no longer increases
exponentially, but only linearly with the space dimension.

However, the right-hand side of the equation does not always have such a simple
structure and cannot always be well represented by tensors of low rank. A prominent
example is quantummechanics. The potential in the Schrödinger equation depends on
the distances between the particles considered. Therefore, it is desirable to approximate
the solutions of this equation by functions that explicitly depend on the position of the
particles relative to eachother.As abuildingblock inmore comprehensive calculations,
this can require the solution of equations of the form (1.1) with right-hand sides that
are composed of terms such as

f (x) =
( ∏

i

φi (xi )

)( ∏
i< j

φi j (xi − x j )

)
. (1.5)

The question is whether such structures transfer to the solution and whether in such
a context arising iterates stay in this class. The present work deals with this problem.
We present a conceptually simple iterative method that preserves such structures and
takes advantage of the high dimensions.
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An iterative method for the solution of Laplace-like equations… 779

First we embed the problem as in our former paper [19] into a higher dimensional
space introducing, for example, some or all differences xi − x j , i < j , in addition to
the components xi of the vector x ∈ R

m as additional variables. We assume that the
right-hand side of the equation (1.1) is of the form f (x) = F(T x), where T is a matrix
of full rank that maps the vectors in Rm to vectors in an Rn of a still higher dimension
and F : Rn → R is a function that possesses an integrable Fourier transform and as
such is continuous. The solution of the equation (1.1) is then the trace u(x) = U (T x)
of the then equally continuous function

U (y) =
(

1√
2π

)n∫ 1

‖T tω‖2 + μ
F̂(ω) e iω·y dω, (1.6)

which is, in a corresponding sense, the solution of a degenerate elliptic equation

LU + μU = F . (1.7)

This equation replaces the original equation (1.1). Its solution (1.6) is approximated
by the iterates arising from a polynomially accelerated version of the basic method

Uk+1 = Uk − (−Δ + μ)−1(LUk + μUk − F). (1.8)

The calculation of these iterates requires the solution of equations of the form (1.1), that
is, the calculation of integrals of the form (1.2), now not over Rm , but over the higher
dimensional Rn . The symbol ‖T tω‖2 of the operator L is a homogeneous second-
order polynomial in ω. For separable right-hand sides F as above, the calculation of
these integrals thus reduces to the calculation of products of lower, in the extreme case
one-dimensional integrals.

The reason for the usually astonishingly good approximation properties of these
iterates is the directional behavior of the term ‖T tω‖2, more precisely the fact that the
euclidean norm of the vectors T tη ∈ R

m for vectors η on the unit sphere Sn−1 of the
R
n takes an almost constant value outside a very small set whose size decreases rapidly

with increasing dimensions, a typical concentration of measure effect. To capture this
phenomenon quantitatively, we introduce the probability measure

P(M) = 1

nνn

∫
M∩Sn−1

dη (1.9)

on the Borel subsets M of the R
n , where νn is the volume of the unit ball and nνn

thus is the area of the unit sphere. If M is a subset of the unit sphere, P(M) is equal to
the ratio of the area of M to the area of the unit sphere. If M is a sector, that is, if M
contains with a vector ω also its scalar multiples, P(M)measures the opening angle of
M . In the following we assume that the mean value of the expression ‖T tη‖2 over the
unit sphere, or in other words its expected value with respect to the given probability
measure, takes the value one. This is only a matter of the scaling of the variables in the
higher dimensional space and does not represent a restriction. The decisive quantity
is the variance of the expression ‖T tη‖2, considered as a random variable on the unit
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780 H. Yserentant

sphere. Since the values ‖T tη‖2 are, except for rather extreme cases, approximately
normally distributed in higher dimensions, the knowledge of the variance makes it
possible to capture the distribution of these values sufficiently well. The concentration
of measure effect is reflected in the fact that the variances almost always tend to zero
as the dimensions increase.

For a given ρ < 1, let S be the sector that consists of the points ω for which the
expression ‖T tω‖2 differs from ‖ω‖2 by ρ‖ω‖2 or less. If the Fourier transform of
the right-hand side of the equation (1.7) vanishes at all ω outside this set, the same
holds for the Fourier transform of its solution (1.6) and the Fourier transforms of the
iterates Uk . Under this condition, the iteration error decreases at least like

‖U −Uk‖ ≤ ρk‖U‖ (1.10)

with respect to a broad range of Fourier-based norms. Provided the values ‖T tη‖2 are
approximately normally distributed with expected value E = 1 and small variance
V , the measure (1.9) of the sector S is almost one as soon as ρ exceeds the standard
deviation σ = √

V by more than a moderate factor. The sector S then fills almost
the entire frequency space. This is admittedly an idealized situation and the actual
convergence behavior is more complicated, but this example characterizes pretty well
what one can expect. The higher the dimensions and the smaller the variance, the faster
the iterates approach the solution.

The rest of this paper is organized as follows. Section2 sets the framework and is
devoted to the representation of the solutions of the equation (1.1) as traces of higher
dimensional functions (1.6) for right-hand sides that are themselves traces of functions
with an integrable Fourier transform. In comparison with the proof in [19], we give a
more direct proof of this representation. In addition, we introduce two scales of norms
with respect to which we later estimate the iteration error.

In a sense, the following two sections form the core of the present work. They deal
with the distribution of the values‖T tη‖2 on the unit sphere. Section3 treats the general
case. We first show that the expected value E and the variance V of the expression
‖T tη‖2, considered as a random variable, can be expressed in terms of the singular
values of the matrix T . Using this representation, we show that for randommatrices T
with assigned expected value E = 1 the expected value of the corresponding variances
V not only tends to zero as the dimensionm goes to infinity, but also that these variances
cluster themore around their expected value the largerm is. Sampling large numbers of
these variances supports these theoretical findings. We also study a class of matrices T
that are associated with interaction graphs. These matrices correspond to the case that
some or all coordinate differences are introduced as additional variables and formed
the original motivation for this work. The expected values E that are assigned to these
matrices always take the value one and the corresponding variances V can be expressed
directly in terms of the vertex degrees and the dimensions. Numerical experiments for
standard classes of random graphs show that the variances tend to zero with high
probability as the number of the vertices increases. As mentioned, the knowledge
of the expected value and the variance assigned to a given matrix T is of central
importance since the distribution of the values ‖T tη‖2 is usually not much different
from the corresponding normal distribution. This can be checked experimentally by
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An iterative method for the solution of Laplace-like equations… 781

sampling these values for a large number of points η that are uniformly distributed on
the unit sphere.

These observations are supported by the results for orthogonal projections from a
higher onto a lower dimensional space presented in Sect. 4, a casewhich is accessible to
a complete analysis and that for this reason serves us as amodel problem. These results
are based on a precise knowledge of the corresponding probability distributions and
are related to the random projection theorem and the Johnson-Lindenstrauss lemma
[18]. This section is based in some parts on results from our former papers [19] and
[20], which are taken up here and are adapted to the present situation.

In Sect. 5wefinally return to the higher-dimensional counterpart (1.7) of the original
equation (1.1) and study the convergence behavior of the polynomially accelerated
version of the iteration (1.8) for its solution. Special attention is given to the limit
case μ = 0 of the Laplace equation. The section ends with a brief review of an
approximation of the form (1.4) by sums of Gauss functions.

2 Solutions as traces of higher-dimensional functions

In this paper we are mainly concerned with functions U : Rn → R, n a potentially
high dimension, that possess the then unique representation

U (y) =
(

1√
2π

)n∫
Û (ω) e iω·y dω (2.1)

in terms of an integrable function Û , their Fourier transform. Such functions are
uniformly continuous by the Riemann-Lebesgue theorem and vanish at infinity. The
space B0(R

n) of these functions becomes a Banach space under the norm

‖U‖ =
(

1√
2π

)n∫
|Û (ω)| dω. (2.2)

Let T be an arbitrary (n × m)-matrix of full rank m < n and let

u : Rm → R : x → U (T x) (2.3)

be the trace of a function inU ∈ B0(R
n). Since the functions inB0(R

n) are uniformly
continuous, the same also applies to the traces of these functions. Since there is a
constant c with ‖x‖ ≤ c ‖T x‖ for all x ∈ R

m , the trace functions (2.3) vanish
at infinity as U itself. The next lemma gives a criterion for the existence of partial
derivatives of the trace functions, where we use the common multi-index notation.

Lemma 2.1 Let U : Rn → R be a function in B0(R
n) and let the functions

ω → (i T tω)βÛ (ω), β ≤ α, (2.4)

123



782 H. Yserentant

be integrable. Then the trace function (2.3) possesses the partial derivative

(Dαu)(x) =
(

1√
2π

)n∫
(i T tω)αÛ (ω) e iω·T x dω, (2.5)

which is, like u, itself uniformly continuous and vanishes at infinity.

Proof Let ek ∈ R
m be the vector with the components ek | j = δk j . To begin with, we

examine the limit behavior of the difference quotient

u(x + hek) − u(x)

h
=

(
1√
2π

)n∫ e i hω·T ek − 1

h
Û (ω) e iω·T x dω

of the trace function as h goes to zero. Because of

∣∣∣∣ e
i ht − 1

h

∣∣∣∣ ≤ | t |, lim
h→0

e i ht − 1

h
= i t,

and under the condition that the function ω → ω · T ek Û (ω) is integrable, it tends to

(Dku)(x) =
(

1√
2π

)n∫
iω · T ek Û (ω) e iω·T x dω

as follows from the dominated convergence theorem. Because of ω · T ek = T tω · ek ,
this proves (2.5) for partial derivatives of order one. For partial derivatives of higher
order, the proposition follows by induction. 
�
Let D(L ) be the space of the functions U ∈ B0(R

n) with finite (semi)-norm

|U |T =
(

1√
2π

)n∫
‖T tω‖2 |Û (ω)| dω. (2.6)

Because of |(T tω)β | ≤ 1 + ‖T tω‖2 for all multi-indices β of order two or less, the
traces of the functions in this space are twice continuously differentiable byLemma2.1.
Let L : D(L ) → B0(R

n) be the pseudo-differential operator given by

(LU )(y) =
(

1√
2π

)n∫
‖T tω‖2 Û (ω) e iω·y dω. (2.7)

For the functions U ∈ D(L ) and their traces (2.3), by Lemma 2.1

− (Δu)(x) = (LU )(T x) (2.8)

holds.With corresponding right-hand sides, the solutions of the equation (1.1) are thus
the traces of the solutions U ∈ D(L ) of the pseudo-differential equation

LU + μU = F . (2.9)
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Theorem 2.1 Let F : Rn → R be a function with integrable Fourier transform, let
f (x) = F(T x), and let μ be a positive constant. Then the trace (2.3) of the function

U (y) =
(

1√
2π

)n∫ 1

‖T tω‖2 + μ
F̂(ω) e iω·y dω (2.10)

is twice continuously differentiable and the only solution of the equation

− Δu + μu = f (2.11)

whose values tend uniformly to zero as ‖x‖ goes to infinity. Provided the function

ω → 1

‖T tω‖2 F̂(ω) (2.12)

is integrable, the same holds in the limit case μ = 0.

Proof That the trace u is a classical solution of the equation (2.11) follows from the
remarks above, and that u vanishes at infinity by the already discussed reasons from the
Riemann-Lebesgue theorem. The maximum principle ensures that no further solution
of the equation (2.11) exists that vanishes at infinity. 
�

From now on, the equation (2.9) will replace the original equation (2.11). Our aim
is to compute its solution (2.10) iteratively by polynomial accelerated versions of the
basic iteration (1.8). The convergence properties of this iteration depend decisively on
the directional behavior of the values ‖T tω‖2, which will be studied in the next two
sections, before we return to the equation and its iterative solution.

Before we continue with these considerations and turn our attention to the direc-
tional behavior of these values, we introduce the norms with respect to which we will
show convergence. The starting point is the radial-angular decomposition

∫
Rn

f (x) dx =
∫
Sn−1

( ∫ ∞

0
f (rη)rn−1 dr

)
dη (2.13)

of the integrals of functions in L1(R
n) into an inner radial and an outer angular part.

Inserting the characteristic function of the unit ball, one recognizes that the area of
the n-dimensional unit sphere Sn−1 is nνn , with νn the volume of the unit ball. If f
is rotationally symmetric, f (rη) = f (re) holds for every η ∈ Sn−1 and every fixed,
arbitrarily given unit vector e. In this case, (2.13) simplifies to

∫
f (x) dx = nνn

∫ ∞

0
f (re)rn−1 dr . (2.14)

The norms split into two groups, both of which depend on a smoothness parameter.
The norms in the first group possess the radial-angular representation

‖U‖s = 1

nνn

∫
Sn−1

(
nνn

∫ ∞

0
|Û (rη)| rs+n−1 dr

)
dη (2.15)
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784 H. Yserentant

and take in cartesian coordinates the more familiar form

‖U‖s =
∫
Rn

|Û (ω)|‖ω‖s dω. (2.16)

The spectral Barron spacesBs = Bs(R
n), s ≥ 0, consist of the functionsU with finite

norms ‖U‖t for 0 ≤ t ≤ s. Since all these norms scale differently, we do not combine
them to an entity but treat them separately. One should be aware that these norms
are quite strong. For integer values s, functions U ∈ Bs possess continuous partial
derivatives up to order s, which are bounded by the norms ‖U‖k , k ≤ s, and vanish at
infinity. Barron spaces play a prominent role in the analysis of neural networks and in
high-dimensional approximation theory in general; see for example [15].

The norms in the second group are a mixture between an L1-based norm, in radial
direction, and an L2-based norm for the angular part and are given by

|||U |||2s = 1

nνn

∫
Sn−1

(
nνn

∫ ∞

0
|Û (rη)| rs+n−1 dr

)2

dη. (2.17)

If the norm |||U |||s of U is finite, then also the norm ‖U‖s and
‖U‖s ≤ |||U |||s (2.18)

holds. This follows from theCauchy-Schwarz inequality. Both norms scale in the same
way. By (2.14), they coincide for radially symmetric functions.

The following lemma is needed to bring these two norms into connection with
Theorem 2.1 and the solution (2.10) of the equation (2.9).

Lemma 2.2 Let m ≥ 3 and m ≥ 5, respectively. Then the surface integrals

1

nνn

∫
Sn−1

1

‖T tη‖2 dη,
1

nνn

∫
Sn−1

1

‖T tη‖4 dη (2.19)

take finite values, despite the singular integrands.

Proof Let Σ0 be the (m × m)-diagonal matrix with the singular values of T on its
diagonal. A variable transform and the Fubini-Tonelli theorem then lead to

∫
Rn

1

‖T tω‖2 e−‖ω‖2dω =
∫
Rm

1

‖Σ0ω1‖2 e
−‖ω1‖2dω1

∫
Rn−m

e−‖ω2‖2dω2.

Because the first of the two integrals on the right-hand side of this identity is finite for
dimensions m ≥ 3 and the second without such a constraint, the integral

∫
Rn

1

‖T tω‖2 e−‖ω‖2dω = 1

nνn

∫
Sn−1

1

‖T tη‖2 dη
∫ ∞

0

1

r2
e−r2rn−1 dr

takes a finite value. The same then also holds for the integral over the unit sphere on
the right-hand side of the equation. For dimensions m ≥ 5, the second of the two
integrals in (2.19) can be treated in the same way. 
�
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For a given function F with integrable Fourier transform, the function

Û (ω) = 1

‖T tω‖2 F̂(ω) (2.20)

possesses the radial-angular representation

Û (rη) = 1

‖T tη‖2
F̂(rη)

r2
. (2.21)

If the function φ : Sn−1 → R given by

φ(η) = nνn

∫ ∞

0

∣∣∣∣ F̂(rη)

r2

∣∣∣∣ rn−1 dr (2.22)

is bounded and the dimension m is three or higher, the function (2.20) is integrable by
Lemma 2.2 and Fourier transform of a function U ∈ B0(R

n) with finite norm ‖U‖0.
For dimensionsm greater than four, it suffices that φ is square integrable. For the other
norms introduced above, one can argue in a similar way.

3 Amoment-based analysis

The purpose of this and the next section is to study how much the pseudo-differential
operator (2.7) differs from the negative Laplace operator, that is, how much

χ(ω) = ‖T tω‖2 (3.1)

deviates on the unit sphere Sn−1 of theRn from the constant one. The expression (3.1)
is a homogeneous function of second order in the variable ω. To study its angular
distribution, we make use of the already introduced probability measure

P(M) = 1

nνn

∫
M∩Sn−1

dη (3.2)

on the Borel subsets M of the R
n . The direct calculation of the expected values of

the given and other homogeneous functions as surface integrals is complicated. We
therefore reduce the calculation of such quantities to the calculation of simpler volume
integrals. Our main tool is the radial-angular decomposition (2.13).

Lemma 3.1 Let x → ‖x‖2� W (x) be rotationally symmetric and integrable. Then

1

nνn

∫
Sn−1

χ(η) dη = C(�)

∫
Rn

χ(x)W (x) dx (3.3)

123



786 H. Yserentant

holds for all functions χ that are positively homogeneous of degree 2� ≥ 0, where the
constant C(�) is given by the expression

1

C(�)
= nνn

∫ ∞

0
W (re)r2�+n−1 dr (3.4)

and e is an arbitrarily given unit vector.

Proof As by assumption χ(rη) = r2�χ(η) and W (rη) = W (re) holds for η ∈ Sn−1

and r > 0, the decomposition (2.13) leads to

∫
Rn

χ(x)W (x) dx =
∫
Sn−1

χ(η)

(∫ ∞

0
r2� W (re)rn−1 dr

)
dη,

yielding the proposition after some rearrangement. 
�

The choice of the function W can be adapted to the needs. For example, it can be the
characteristic function of the unit ball or the normed Gauss function

W (x) =
(

1√
π

)n

exp
( − ‖x‖2), (3.5)

which breaks down into a product of univariate functions. Another almost trivial, but
often very useful observation concerns coordinate changes.

Lemma 3.2 Under the assumptions from the previous lemma,

∫
Rn

χ(x)W (x) dx =
∫
Rn

χ(Qx)W (x) dx (3.6)

holds for all orthogonal (n × n)-matrices Q.

Proof The transformation theorem for multivariate integrals leads to

∫
Rn

χ(x)W (x) dx =
∫
Rn

χ(Qx)W (Qx)|detQ| dx .

Because W (Qx) = W (x) and detQ = ±1, the proposition follows. 
�

The expected value and the variance of the function (3.1), the central moments

E = 1

nνn

∫
Sn−1

‖T tη‖2 dη, V = 1

nνn

∫
Sn−1

(‖T tη‖2 − E
)2 dη, (3.7)

are of fundamental importance for our considerations.
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Lemma 3.3 The expected value and the variance of the function (3.1) depend only on
the singular values σ1, . . . , σm of the matrix T . In terms of the power sums

A1 =
m∑
i=1

σ 2
i , A2 =

m∑
i=1

σ 4
i (3.8)

of order one and two of the squares of the singular values, they read as follows

E = A1

n
, V = 2n A2 − 2A2

1

n2(n + 2)
. (3.9)

Proof Inserting the matrix Q from the singular value decomposition T = QΣ Q̃t of
the matrix T , Lemmas 3.1 and 3.2 lead to the representation

1

nνn

∫
Sn−1

(‖T tη‖2)k dη = C(k)
∫
Rn

( m∑
i=1

σ 2
i x

2
i

)k

W (x) dx

of the moment of order k as a homogeneous symmetric polynomial in the σ 2
i . With

the functionW from (3.5), the volume integral on the right-hand side splits into a sum
of products of one-dimensional integrals. Using

∫ ∞

0
t je−t2 dt = 1

2
Γ

(
j + 1

2

)
, νn = 2

n

πn/2

Γ (n/2)
,

this integral and the constant C(k) can be calculated in principle. For the first two
moments, this is easily possible. For moments of order three and higher, one can take
advantage of the fact that the symmetric polynomials are polynomials in the power
sums of the σ 2

i ; see [17], or [16] for a more recent treatment. 
�

In terms of the normalized singular values ηi = σi/
√
n, the expected value and the

variance (3.7) and (3.9), respectively, can be written as follows

E =
m∑
i=1

η2i , V = 2n

n + 2

m∑
i=1

η4i − 2

n + 2

( m∑
i=1

η2i

)2

. (3.10)

We are interested in matrices T for which the expected value E is one, that is, for
which the vector η composed of the normalized singular values ηi lies on the unit
sphere of the Rm . The variances V then possess the representation

V = 2n

n + 2
X(η) − 2

n + 2
, X(η) =

m∑
i=1

η4i . (3.11)
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788 H. Yserentant

The function X attains the minimum value 1/m and the maximum value one on the
unit sphere of the Rm . The variances (3.11) therefore extend over the interval

n − m

n + 2

2

m
≤ V <

2n − 2

n + 2
(3.12)

and can be arbitrarily close to the value two for large n. The spectral norms of the
given matrices T t , their maximum singular values σi , spread over the interval

√
n

m
≤ ‖T t‖ <

√
n. (3.13)

However, the variances are most likely of the order O(1/m).

Lemma 3.4 Let the vectors η composed of the normalized singular values ηi be uni-
formly distributed on the part of the unit sphere consisting of points with strictly
positive components. Then the expected value and the variance of X are

E(X) = 3

m + 2
, V(X) = 24m − 24

(m + 2)2(m + 4)(m + 6)
. (3.14)

Proof For symmetry reasons and because the intersections of lower-dimensional sub-
spaceswith the unit sphere havemeasure zero, we can allow points η that are uniformly
distributed on the whole unit sphere. The expected value and the variance of the func-
tion X , treated as a random variable, are therefore

E(X) = 1

mνm

∫
Sm−1

X(η) dη, V(X) = 1

mνm

∫
Sm−1

(
X(η) − E(X)

)2 dη
and can be calculated along the lines given by Lemma 3.1. 
�
It is instructive to express the variance (3.11) in terms of the random variable

X̃(η) = m + 2

3
X(η), (3.15)

which is rescaled to the expected value E(X̃) = 1. Its variance

V(X̃) = 8

3

m − 1

(m + 4)(m + 6)
(3.16)

tends to zero as m goes to infinity. This not only means that the expected value

V ∗ = 2n

n + 2

3

m + 2
− 2

n + 2
(3.17)

of the variances V tends to zero as the dimension m increases, but also that the
variances cluster themore around their expected value the largerm is. This observation
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is supported by simple, easily reproducible experiments. Uniformly distributed points
on the unit sphere Sm−1 can be generated from vectors in R

m with components that
are subject to the standard normal distribution. Such vectors then follow themselves
the standard normal distribution in the m-dimensional space. Scaling them to length
one gives the desired uniformly distributed points on the unit sphere. This allows one
to sample the random variable X for any given dimension m.

The expected value and the variance (3.7) can be expressed directly in terms of the
entries of the (m × m)-matrix S = T tT , since the power sums (3.8) are the traces

A1 =
m∑
i=1

Sii , A2 =
m∑

i, j=1

S2i j (3.18)

of the matrices S and S2, and can therefore be computed without recourse to the
singular values of T . Consider the (n × m)-matrix T assigned to an arbitrarily given
undirected graph with m vertices and n − m edges that maps the components xi of a
vector x ∈ R

m first to themselves and then to the n − m weighted differences1

xi − x j√
2

, i < j, (3.19)

assigned to the edges of the graph connecting the vertices i and j . In quantum physics,
matrices of the given kind can be associated with the interaction of particles. They
formed the original motivation for this work. In the given case, the matrix S has the
form S = I + L/2, where I is the identity matrix and L is the Laplacian matrix of
the graph. The off-diagonal entries of L are Li j = −1 if the vertices i and j are
connected by an edge and Li j = 0 otherwise. The diagonal entries Lii = di are the
vertex degrees, the numbers of edges that meet at the vertices i .

Lemma 3.5 For amatrix T of dimension n×m associated with a graphwithm vertices
and n − m edges, the expected value and the variance (3.7) are

E = 1, V =
(
d2 − 6

2

m

n
+ 3

)
1

n + 2
, (3.20)

where the quantity d2 is the mean value of the squares of the vertex degrees:

d2 = 1

m

m∑
i=1

d2i . (3.21)

Proof By (3.18), the constants (3.8) possess the representation

A1 = n, A2 = d2 − 6

4
m + 5

2
n

in the case considered here. The proposition therefore follows from (3.9). 
�

1 The square root is important. Why, is explained in Sect. 5.
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If the squares of the vertex degrees remain bounded in the mean, the variance
tends to zero inversely proportional to the total number of vertices and edges. The
matrices assigned to graphs whose vertices up to one are connected with a designated
central vertex, but not to each other, form the other extreme. For these matrices, the
variances decrease to a limit value greater than zero as the number of vertices increases.
However, such matrices are a very rare exception, not only with respect to the above
random matrices, but also in the context of matrices assigned to graphs. Consider the
random graphs with a fixed number m of vertices that are with a given probability p
connected by an edge, or those with a fixed number m of vertices and n −m of edges.
Sampling the variances assigned to a large number of graphs in such a class, one sees
that these variances exceed the value 2/(m + 1) with a very high probability at most
by a factor that is only slightly greater than one, if at all. If all vertices are connected
with each other, if their degree is di = m − 1 and the number of edges is therefore
n − m = m(m − 1)/2, the variance is

V = m2 + m − 2

m2 + m + 4

2

m + 1
. (3.22)

With the exception of a few extreme cases, it can be observed that the distribution
of the values ‖T tη‖2 for points η on the unit sphere of Rn more and more approaches
the normal distribution with the expected value and the variance (3.7) as the dimen-
sions increase, a fact that underlines the importance of these quantities. This can be
seen by evaluating the expression ‖T tη‖2 at a large number of independently cho-
sen, uniformly distributed points η on the unit sphere and comparing the frequency
distribution of the resulting values with the given Gauss function

1√
2πV

exp

(
− (x − E)2

2V

)
. (3.23)

Let thematrix T have the singular value decomposition T = QΣ Q̃t . The frequency
distribution of the values ‖Σ tη‖2 = ‖T t Qη‖2 on the unit sphere then coincides with
the distribution of the values ‖T tη‖2. Let Σ0 be the (m × m)-diagonal matrix that
is composed of the singular values. Given the above remarks about the generation of
uniformly distributed points on a unit sphere, sampling the values ‖T tη‖2 for a large
number of points η ∈ Sn−1 means to sample the ratio

‖Σ0x‖2
‖x‖2 + ‖y‖2 (3.24)

for a large number of vectors x ∈ R
m and y ∈ R

n−m with standard normally distributed
components. The values ‖y‖2 are then distributed according to the χ2-distribution
with n − m degrees of freedom. The direct calculation of ‖y‖2 can thus be replaced
by the calculation of a single scalar quantity following this distribution. The amount
of work then remains strictly proportional to the dimension m, no matter how large
the difference n − m of the dimensions is. Let T be the matrix assigned to the graph
associated with the C60-fullerene molecule, which consists of the ninety edges of a
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Fig. 1 The frequency distribution of the values ‖T tη‖2 for the matrix T associated with the C60-molecule

truncated icosahedron and its sixty corners as vertices. The degree of these vertices is
three and the assigned variance therefore V = 9/380. The frequency distribution of
the values ‖T tη‖2 for a million randomly chosen points η on the unit sphere and the
corresponding Gauss function (3.23) are shown in Fig. 1.

The singular values of the matrices T and T t , respectively, can in general only be
determined numerically. The matrices T assigned to complete graphs, in which all
vertices are connected with each other, are an exception. It is not difficult to see that
the associated matrices S = T t T have the eigenvalue one of multiplicity one and the
eigenvalue (m + 2)/2 of multiplicity m − 1 in terms of the number m of vertices. The
square roots of these eigenvalues are the singular values of T .

Orthogonal projections, matrices T t = P of dimension (m × n) with one as the
only singular value, are another important exception. The quantities (3.8) take the
value m in this case. The expected value and the variance are therefore

E = m

n
, V = m

n

(
1 − m

n

) 2

n + 2
, (3.25)

or after rescaling, that is, after multiplying P by the factor
√
n/m,

E = 1, V = n − m

n + 2

2

m
. (3.26)

Since ‖Σ0x‖2 = ‖x‖2 for orthogonal projections, for these matrices the quotient
(3.24) follows the beta distribution with the probability density function

f (t) = Γ (α + β)

Γ (α)Γ (β)
tα−1(1 − t)β−1 (3.27)

with parameters α = m/2 and β = (n−m)/2; see [1, Eq. 26.5.3]. In a context similar
to ours, this has already been observed in [9]. Orthogonal projections are accessible
to a complete analysis. The next section is therefore devoted to their study.
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4 Orthogonal projections andmeasure concentration

We begin with a simple, but very helpful corollary from Lemma 3.2.

Lemma 4.1 Let A be an arbitrary matrix of dimension m × n, m < n, with singular
value decomposition A = QΣ Q̃t . Then the probabilities

P
({
x

∣∣ ‖Ax‖2 ≤ δ‖A‖2‖x‖2}), P
({
x

∣∣ ‖Σx‖2 ≤ δ‖Σ‖2‖x‖2}) (4.1)

are equal and the first one depends only on the singular values of A.

Proof This follows from the invariance of these probabilities under orthogonal trans-
formations. Let χ(x) = 1 if ‖Ax‖2 ≤ δ‖A‖2‖x‖2 holds and χ(x) = 0 otherwise.
The transformed function, with the values χ(Q̃x), is then the characteristic function
of the set of all x for which ‖Σx‖2 ≤ δ‖Σ‖2‖x‖2 holds. 
�

The next theorem is an only slightly modified version of Theorem 2.4 in [20]. Its
proof is based on the observation that the probability (4.1) is equal to the volume of
the set of all x inside the unit ball for which ‖Ax‖2 ≤ δ‖A‖2‖x‖2 holds, up to the
division by the volume of the unit ball itself. This is an implication of Lemma 3.1 if
the characteristic function of the unit ball is chosen as the function W .

Theorem 4.1 Let the (m × n)-matrix P be an orthogonal projection. Then

P
({
x

∣∣ ‖Px‖2 ≤ δ‖x‖2}) = F(δ), 0 ≤ δ < 1, (4.2)

holds, where the function F(δ) = F(m, n; δ) is defined by the integral expression

F(δ) = Γ (α + β)

Γ (α)Γ (β)

∫ δ

0
tα−1(1 − t)β−1 dt (4.3)

and the two exponents α and β are given by

α = m

2
, β = n − m

2
. (4.4)

The function (4.2) tends to the limit value F(1) = 1 as δ goes to one.

Proof By Lemma 4.1, we can restrict ourselves to the matrix P , which extracts from
a vector in R

n its first m components. We split the vectors in R
n into a part x ∈ R

m

and a remaining part y ∈ R
n−m . The set whose volume has to be calculated according

to the above remark, then consists of the points in the unit ball for which

‖x‖2 ≤ δ
( ‖x‖2 + ‖y‖2 )

or, resolved for the norm of the component x ∈ R
m ,

‖x‖ ≤ ε ‖y‖, ε =
√

δ

1 − δ
,
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holds. This volume can be expressed as double integral

∫ (∫
H

(
ε‖y‖ − ‖x‖)χ(‖x‖2 + ‖y‖2) dx

)
dy,

where H(t) = 0 for t < 0, H(t) = 1 for t ≥ 0, χ(t) = 1 for t ≤ 1, and χ(t) = 0
for arguments t > 1. If δ tends to one and ε thus to infinity, the value of this double
integral tends, by the dominated convergence theorem, to the volume of the unit ball
and the expression (4.2) tends to one, as claimed. In terms of polar coordinates, that
is, according to (2.14), the double integral is given by

(n − m)νn−m

∫ ∞

0

(
mνm

∫ εs

0
χ

(
r2 + s2

)
rm−1 dr

)
sn−m−1 ds,

where νd is the volume of the unit ball in R
d . By substituting t = r/s in the inner

integral, the upper bound becomes independent of s and the integral simplifies to

(n − m)νn−m

∫ ∞

0

(
mνm sm

∫ ε

0
χ

(
s2(1 + t2)

)
tm−1 dt

)
sn−m−1 ds.

Interchanging the order of integration, it attains the value

(n − m)νn−m mνm

n

∫ ε

0

tm−1

(1 + t2)n/2 dt .

With ϕ(t) = t2/(1 + t2) and the constants α and β from (4.4), one obtains

∫ ε

0

tm−1

(1 + t2)n/2 dt = 1

2

∫ ε

0
ϕ(t)α−1(1 − ϕ(t))β−1ϕ′(t) dt

and, because of ϕ(0) = 0 and ϕ(ε) = δ, therefore the representation

∫ ε

0

tm−1

(1 + t2)n/2 dt = 1

2

∫ δ

0
tα−1(1 − t)β−1 dt

of the integral. Dividing the expression above by νn and recalling that

νd = 2

d

πd/2

Γ (d/2)
,

this completes the proof of the theorem. 
�
That is, for points x on the unit sphere, the values ‖Px‖2 follow the beta distribu-

tion mentioned at the end of the last section. For smaller dimensions, the frequency
distribution f (t) = F ′(t) and its approximation by the Gauss function (3.23) still
differ considerably, as can be seen in Fig. 2. This difference vanishes with increasing
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Fig. 2 The frequency distribution of the values ‖Px‖2 for the dimensions m = 30 and n = 165 together
with the exact distribution from Theorem 4.1 and its approximation by the Gauss function (3.23)

dimensions. In fact, it is common knowledge in statistics that beta distributions behave
in the limit of large parameters almost like normal distributions. If a random variable
X(ω) with expected value E and standard deviation σ follows a beta distribution with
parameters α and β, the distribution of the random variable

X(ω) − E

σ
(4.5)

differs the less from the standard normal distribution as α and β become larger. For
the sake of completeness, we prove this in the following. Let

B(α, β; x) = Γ (α + β)

Γ (α)Γ (β)

∫ x

0
tα−1(1 − t)β−1 dt (4.6)

be the distribution function of the beta distribution with parameters α and β, let E and
V be the assigned expected value and the assigned variance given by

E = α

α + β
, V = αβ

(α + β)2(α + β + 1)
, (4.7)

and let σ = √
V be the corresponding standard deviation. The function (4.6) is first

only defined for arguments 0 ≤ x ≤ 1. To avoid problemswith its domain of definition,
we extend it by the value zero for arguments x < 0 and the value one for arguments
x > 1. If α and β are greater than one, which is the only us interesting case, the
extended function is a continuously differentiable cumulative distribution function
with a density that vanishes outside the interval 0 < t < 1. Let

B̃(α, β; x) = B(α, β; σ x + E) (4.8)

be the accordingly rescaled distribution function.
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Theorem 4.2 The function (4.8) tends pointwise to the distribution function

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt . (4.9)

of the standard normal distribution as α and β go to infinity.

Proof Before we start with the proof itself, we recall that it suffices to show that the
assigned densities converge pointwise to the density of the normal distribution. This
may be surprising in view of the monotone or the dominated convergence theorem,
but is easily explained and is often utilized in stochastics. Let f1, f2, . . . be a sequence
of densities that converges pointwise to a density f . The nonnegative functions

hn(x) = inf
k≥n

fk(x)

then tend pointwise monotonously from below to f and it is

∫ x

−∞
hn(t) dt ≤

∫ x

−∞
fn(t) dt ≤ 1 −

∫ ∞

x
hn(t) dt,

where we have used that the integral of fn over R takes the value one. The two outer
integrals converge, by the monotone convergence theorem, to the limits

∫ x

−∞
f (t) dt,

∫ ∞

x
f (t) dt = 1 −

∫ x

−∞
f (t) dt .

This proves that the middle integral converges to the limit

lim
n→∞

∫ x

−∞
fn(t) dt =

∫ x

−∞
f (t) dt .

Pointwise convergence of the densities thus implies convergence in distribution.
Now let us fix an arbitrary finite interval and assume that the parameters α and β

are already so large that, for the points x in this interval, the quantities

(
σ

E
x

)2

= 1

α

βx2

α + β + 1
,

(
σ

1 − E
x

)2

= 1

β

αx2

α + β + 1

take values less than 9/100. On the given interval, the density of the distribution (4.8),
its derivative with respect to the variable x , can then be written as follows

Γ (α + β)(E + σ x)α−1(1 − E − σ x)β−1σ

Γ (α)Γ (β)
.

To proceed, we need Stirling’s formula (see [13, Eq. 5.6.1]), the representation

Γ (z) = √
2π zz−1/2e−z eμ(z), 0 < μ(z) <

1

12z
,
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of the gamma function for real arguments z > 0. Introducing the function

g(z) = ln(
√
2π) +

(
z − 1

2

)
ln(z) − z,

the logarithm of the density breaks down into the sum of the three terms

A = ln(σ ) + g(α + β) − g(α) − g(β) + (α − 1) ln(E) + (β − 1) ln(1 − E),

B = (α − 1) ln
(
1 + σ

E
x
)

+ (β − 1) ln
(
1 − σ

1 − E
x
)
,

C = μ(α + β) − μ(α) − μ(β).

The third term C tends by definition to zero as α and β go to infinity. The first of the
three terms can be easily calculated and reduces to the value

A = ln

(
1√
2π

)
+ 1

2
ln

(
α + β

α + β + 1

)
.

By means of the second-order Taylor expansion

ln(1 + t) = P(t) + R(t), P(t) = t − 1

2
t2,

of ln(1 + t) around t = 0, the second term splits into the polynomial part

B1 = (α − 1)P

(
σ

E
x

)
+ (β − 1)P

(
− σ

1 − E
x

)

and a remainder B2. The polynomial part possesses the representation

B1 = − 1 − a

2
x2 + bx,

with coefficients a and b that depend on the parameters α and β and are given by

a = 1

α

β

α + β + 1
+ 1

α + β + 1
+ 1

β

α

α + β + 1
,

b =
(
1

β

α

α + β + 1

)1/2

−
(
1

α

β

α + β + 1

)1/2

.

Because of |R(t)| ≤ |t |3 for |t | ≤ 3/10 and our assumption about the size of α and β

in dependence of the interval under consideration, the term B2 can be estimated as

|B2| ≤ (α − 1)

(
x2

α

)3/2

+ (β − 1)

(
x2

β

)3/2

.
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The logarithm of the density tends on the given interval therefore uniformly to

ln

(
1√
2π

)
− 1

2
x2

as α and β go to infinity. This implies locally uniform convergence of the densities
themselves and thus at least pointwise convergence of the distributions 
�

However, the key message of this section remains that the values ‖Px‖2 cluster, for
points x on the unit sphere, more and more around their expected value ξ = m/n as
the dimensions increase. Much better than by the previous theorem this is reflected by
the following result, which again is more or less taken from [20]. A similar technique,
based in the same way on the Markov inequality, was used in [8]. The following
estimates are expressed in terms of the function

φ(ϑ) = √
ϑ exp

(
1 − ϑ

2

)
. (4.10)

It increases strictly on the interval 0 ≤ ϑ ≤ 1, reaches its maximum value one at the
point ϑ = 1, and decreases strictly from there.

Theorem 4.3 Let the (m × n)-matrix P be an orthogonal projection and let ξ be ratio
of the two dimensions m and n. For 0 < δ < ξ , then

P
({
x

∣∣ ‖Px‖2 ≤ δ ‖x‖2}) ≤ φ

(
δ

ξ

)m

(4.11)

holds. For ξ < δ < 1, this estimate is complemented by the estimate

P
({
x

∣∣ ‖Px‖2 > δ ‖x‖2}) ≤ φ

(
δ

ξ

)m

. (4.12)

Proof As before, we can restrict ourselves to the matrix P that extracts from a vector
inRn its firstm components. The characteristic function χ of the set of all x for which
the estimate ‖Px‖2 ≤ δ ‖x‖2 holds satisfies, for all t > 0, the estimate

χ(x) ≤ exp
(
t
(
δ‖x‖2 − ‖Px‖2))

by a product of univariate functions. Choosing the normed weight function (3.5), the
left-hand side of (4.11) can, by Lemma 3.1, therefore be estimated by the integral

(
1√
π

)n∫
exp

(
t
(
δ‖x‖2 − ‖Px‖2)) exp ( − ‖x‖2) dx,
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which remains finite for all t in the interval 0 ≤ t < 1/δ. It splits into a product of
one-dimensional integrals and takes, for given t , the value

(
1

1 − δt + t

)m/2 (
1

1 − δt

)(n−m)/2

.

This expression attains its minimum on the interval 0 < t < 1/δ at

t = ξ − δ

(1 − δ)δ
.

At this point t it takes the value

((
δ

ξ

)1/2( 1 − δ

1 − ξ

)γ
)m

, γ = 1 − ξ

2ξ
.

With the abbreviation δ/ξ = ϑ and because of ϑξ < 1 and ξ < 1, the logarithm

ln

((
1 − δ

1 − ξ

)γ )
= 1 − ξ

ξ
ln

(
1 − ϑξ

1 − ξ

)

possesses the power series expansion

1 − ϑ

2
− 1

2

∞∑
k=1

(
1 − ϑk

k
− 1 − ϑk+1

k + 1

)
ξ k .

Because the series coefficients are for all ϑ ≥ 0 greater than or equal to zero and, by
the way, polynomial multiples of (1 − ϑ)2, the estimate (4.11) follows.

The proof of the second estimate is almost identical to the proof of the first. For
sufficiently small t > 0, the expression (4.12) can be estimated by the integral

(
1√
π

)n∫
exp

(
t
(‖Px‖2 − δ‖x‖2)) exp ( − ‖x‖2) dx .

This integral splits into a product of one-dimensional integrals and takes the value

(
1

1 + δt − t

)m/2 (
1

1 + δt

)(n−m)/2

,

which attains, for δ < 1, on the interval 0 < t < 1/(1 − δ) its minimum at

t = δ − ξ

(1 − δ)δ
.
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Fig. 3 The probability distributions (4.2) as function of 0 ≤ δ < 1 form = 2k , k = 1, . . . , 16, and n = 2m

At this point t it again takes the value

((
δ

ξ

)1/2( 1 − δ

1 − ξ

)γ
)m

, γ = 1 − ξ

2ξ
.

This leads, as above, to the estimate (4.12). 
�

If the dimension ratio ξ = m/n is fixed or only tends to a limit value δ0, then
the probability distributions (4.2) and the functions (4.3), respectively, tend to a step
function with jump discontinuity at δ0. Figure3 reflects this behavior. One can look
at the estimates from Theorem 4.3 also from a different perspective and consider the
rescaled counterparts P ′ = √

n/m P of the projections P . The distributions

P
({
x

∣∣ ‖P ′x‖2 ≤ δ‖x‖2}) (4.13)

assigned to them tend, outside every small neighborhood of δ0 = 1, exponentially to
a step function with jump discontinuity at δ0 = 1 as m goes to infinity, independent
of the ratio m/n of the two dimensions, no matter how small it may be.

5 The iterative procedure

Now we are ready to analyze the iterative method

U0 = 0, Uk+1 = Uk − (−Δ + μ)−1(LUk + μUk − F) (5.1)

presented in the introduction and its polynomially accelerated counterpart, respec-
tively, for the solution of the equation (2.9), the equation that has replaced the original
equation (1.1). The iteration error possesses the Fourier representation

(Û − Ûk)(ω) = Pk
(
α(ω)(‖T tω‖2 + μ)

)
Û (ω), (5.2)
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where U is the exact solution (2.10) of the equation (2.9), α(ω) is given by

α(ω) = 1

‖ω‖2 + μ
, (5.3)

and the functions Pk(λ) are polynomials of order k with value Pk(0) = 1. Throughout
this section, we assume that the expression ‖T tη‖2 possesses the expected value one.
We restrict ourselves to the analysis of this iteration in the spectral Barron spacesBs

equipped with the norm (2.16), or (2.15) in radial-angular representation. In a corre-
sponding sense, this analysis can be transferred to the Hilbert spaces Hs .

Theorem 5.1 If the solution U lies in the Barron spaceBs(R
n), s ≥ 0, this also holds

for the iterates Uk. For all coefficients μ ≥ 0, the norm (2.16) of the error, given by

‖U −Uk‖s =
∫ ∣∣Pk(α(ω)(‖T tω‖2 + μ)

)
Û (ω)

∣∣‖ω‖s dω, (5.4)

then tends to zero for suitably chosen polynomials Pk as k goes to infinity.

Proof Because the expression ‖T tη‖2 possesses the expected value one, the spectral
norm of the matrix T t attains a value ‖T t‖ ≥ 1. If one sets ϑ = 1/‖T t‖2,

0 ≤ 1 − ϑα(ω)(‖T tω‖2 + μ) < 1

therefore holds for allω outside the kernel of T t , as a subspace of a dimension less than
n a set of measure zero. Choosing Pk(λ) = (1 − ϑλ)k , the proposition thus follows
from the dominated convergence theorem. 
�

Of course, one would like to have more than just convergence. The next theorem
is a first step in this direction.

Theorem 5.2 Let 0 < ρ < 1, a = 1 − ρ, b = ‖T t‖2, and κ = b/a and let

Pk(λ) = Tk

(
b + a − 2λ

b − a

)/
Tk

(
b + a

b − a

)
(5.5)

be the to the interval α ≤ λ ≤ b transformed Chebyshev polynomial Tk of the first
kind of degree k. The norm (2.16) of the iteration error (5.2) then satisfies the estimate

‖Uk −U‖s ≤ 2rk

1 + 2r2k
‖U‖s + ‖U −Uρ‖s, r =

√
κ − 1√
κ + 1

, (5.6)

where Ûρ takes the same values as Û on the set of all ω for which

1 − ρ ≤ α(ω)(‖T tω‖2 + μ) (5.7)

holds and vanishes outside this set.
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Proof This follows from 0 ≤ α(ω)(‖T tω‖2 + μ) ≤ b for ω ∈ R
n and the estimates

|Pk(λ)| ≤ 1 for 0 ≤ λ ≤ a, |Pk(λ)| ≤ 2rk

1 + 2r2k
for a ≤ λ ≤ b

for the values of the Chebyshev polynomial (5.5) on the interval 0 ≤ λ ≤ b. 
�
Depending on the size of κ = ‖T t‖2/(1 − ρ), the norm of the error U − Uk soon

reaches the size of the norm of U − Uρ . The idea behind the estimate (5.6) is that
in high space dimensions the condition (5.7) is satisfied for nearly all ω and that the
part U − Uρ of U is therefore often negligible. The set on which the condition (5.7)
is violated is a subset of the sector

S(δ) = {
ω

∣∣‖T tω‖2 ≤ δ‖ω‖2} (5.8)

for δ = 1 − ρ. Let the expression ‖T tω‖2 possess the angular distribution

P(S(δ)) =
∫ δ

−∞
f (t) dt . (5.9)

Consider the solution U for a rotationally symmetric right-hand side F with finite
norm ‖F‖s , and let χ(t) = 1 for t ≤ δ and χ(t) = 0 for t > δ. Then

∫
S(δ)

|Û (ω)|‖ω‖s+2 dω ≤ 1

nνn

∫
Sn−1

χ
(‖T tη‖2)
‖T tη‖2 dη ‖F‖s (5.10)

holds, independent of μ and with equality for μ = 0. This follows from the radial-
angular representation of the involved integrals. By Lemma 2.2, the integral over the
unit sphere on the right-hand side has a finite value for dimensions m ≥ 3. In terms
of the distribution density from (5.9), it is given by

1

nνn

∫
Sn−1

χ
(‖T tη‖2)
‖T tη‖2 dη =

∫ δ

0

f (t)

t
dt (5.11)

and tends to zero as δ goes to zero, for higher dimensions usually very rapidly as the
example of the (rescaled) orthogonal projections from Theorem 4.1 shows.

The estimate (5.6) is extremely robust in many respects. First, it is based on a
pointwise estimate of the Fourier transform of the error. It is therefore equally valid
for other Fourier-based norms. Second, the function (5.3) can be replaced by any
approximation α̃(ω) for which an estimate

0 ≤ α̃(ω) ≤ (1 + ε)α(ω) (5.12)

on the entire frequency space and an inverse estimate

(1 − ε)α(ω) ≤ α̃(ω) (5.13)
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on a sufficiently large ball around the origin holdwithout losing toomuch. This applies
in particular to approximations by sums of Gauss functions.

Nevertheless, the estimate from Theorem 5.2 is rather pessimistic, because it only
takes into account the decay of the left tail of the distribution (5.9), but ignores the
fast decay of its right tail. To see what can be reached, we study the behavior of the
iteration in the limit μ = 0, the case where the underlying effects are most clearly
brought to light. Decomposing the vectors ω = rη into a radial part r ≥ 0 and an
angular part η ∈ Sn−1, the error (5.2) propagates frequency-wise as

(Û − Ûk)(rη) = Pk

(
r2‖T tη‖2 + μ

r2 + μ

)
Û (rη), (5.14)

and after the transition to the limit value μ = 0 as

(Û − Ûk)(rη) = Pk
(‖T tη‖2)Û (rη). (5.15)

In the limit case, therefore, the method acts only on the angular part of the error.
Nevertheless, by Theorem 5.1 the iterates converge to the solution. To clarify the
underlying effects, we prove this once again in a different form.

Theorem 5.3 If the solution U lies in the Barron spaceBs(R
n), s ≥ 0, this also holds

for the iterates Uk implicitly given by (5.15). The norm (2.15) of the iteration error
then tends to zero for suitably chosen polynomials Pk as k goes to infinity.

Proof In radial-angular representation, the iteration error is given by

‖U −Uk‖s = 1

nνn

∫
Sn−1

∣∣Pk(‖T tη‖2)∣∣φ(η) dη,

where the integrable function φ : Sn−1 → R is defined by the expression

φ(η) = nνn

∫ ∞

0
|Û (rη)| rs+n−1 dr .

To prove the convergence of the iterates Uk to the solution U , we again consider the
polynomials Pk(t) = (1 − ϑ t)k with ϑ = 1/‖T t‖2. For η ∈ Sn−1, it is

0 ≤ 1 − ϑ‖T tη‖2 ≤ 1,

where the value one is only attained on the intersection of the (n − m)-dimensional
kernel of the matrix T t with the unit sphere, that is, on a set of area measure zero. The
convergence again follows from the dominated convergence theorem. 
�

Under a seemingly harmless additional assumption, one gets a rather sharp, hardly
to improve estimate for the speed of convergence.
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Theorem 5.4 Under the assumption that the norm given by (2.17) of the solution U
takes a finite value, the iteration error can be estimated as

‖U −Uk‖2s ≤
∫ ∞

−∞
Pk(t)

2 f (t) dt |||U |||2s (5.16)

in terms of the density f of the distribution of the values ‖T tη‖2 on the unit sphere.
Proof The proof is based on the same error representation

‖U −Uk‖s = 1

nνn

∫
Sn−1

∣∣Pk(‖T tη‖2)∣∣φ(η) dη

as that in the proof of the previous theorem, but by assumption the function

φ(η) = nνn

∫ ∞

0
|Û (rη)| rs+n−1 dr

is now square integrable, not only integrable. Its correspondingly scaled L2-norm is
the norm |||U |||s of the solution. The Cauchy-Schwarz inequality thus leads to

‖U −Uk‖2s ≤ 1

nνn

∫
Sn−1

∣∣Pk(‖T tη‖2)∣∣2 dη |||U |||2s .

If one rewrites the integral still in terms of the distribution f , (5.16) follows. 
�
In sharp contrast to Theorem 5.1 and Theorem 5.2, this theorem strongly depends

on the involved norms. But of course one can hope that other error norms behave
similarly, especially for solutionswhose Fourier transform is not strongly concentrated
on a small sector around the kernel of T t . For rotationally symmetric solutions U ,

‖U −Uk‖2s ≤
∫ ∞

−∞
Pk(t)

2 f (t) dt ‖U‖2s (5.17)

holds as the norms given by (2.15) and (2.17) coincide in this case. This estimate can
in turn be transferred to the Hilbert spaces Hs , in which even equality holds.

Lemma 5.1 Let the rotationally symmetric function U lie in the Hilbert-space Hs

equipped with the seminorm | · |2,s . The iteration error, here given by

|U −Uk |22,s =
∫ ∞

−∞
Pk(t)

2 f (t) dt |U |22,s, (5.18)

then tends to zero for suitably chosen polynomials Pk as k goes to infinity.

Proof In this case, the iteration error possesses the radial-angular representation

|U −Uk |22,s = 1

nνn

∫
Sn−1

∣∣Pk(‖T tη‖2)∣∣2φ(η) dη,
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where the integrable function φ : Sn−1 → R is defined by the expression

φ(η) = nνn

∫ ∞

0
|Û (rη)|2r2s+n−1 dr .

Since the function φ takes the constant value |U |22,s in the given case, this proves the
error representation. Convergence is shown as in the proof of Theorem 5.3. 
�

This lemma may not be very interesting on its own, but once again shows that not
much is lost in the error estimate (5.16) and that the prefactors

∫ ∞

−∞
Pk(t)

2 f (t) dt (5.19)

cannot really be improved. Moreover, it shows that these prefactors tend to zero for
optimally or near optimally chosen polynomials Pk as k goes to infinity.

The task is therefore to find the polynomials Pk of order k that minimize the integral
(5.19) under the constraint Pk(0) = 1. These polynomials can be expressed in terms
of the orthogonal polynomials assigned to the density f as weight function. Under the
given circumstances, the expression

(p, q) =
∫ ∞

−∞
p(t)q(t) f (t) dt (5.20)

defines an inner product on the space of the polynomials. Let the polynomials pk of
order k satisfy the orthogonality condition (pk, p�) = δk�.

Lemma 5.2 In terms of the given orthogonal polynomials pk, the polynomial Pk of
order k that minimizes the integral (5.19) under the constraint Pk(0) = 1 is

Pk(t) = Mk

k∑
j=0

p j (0)p j (t),
1

Mk
=

k∑
j=0

p j (0)
2, (5.21)

and the integral itself takes the minimum value

∫ ∞

−∞
Pk(t)

2 f (t) dt = Mk . (5.22)

Proof We represent the optimum polynomial Pk as linear combination

Pk(t) =
k∑
j=0

x j p j (t).

The zeros of p j lie strictly between the zeros of p j+1, the interlacing property of the
zeros of orthogonal polynomials. The polynomials p0, p1, . . . , pk therefore cannot
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take the value zero at the same time. Introducing the vector x with the components x j ,
the vector p �= 0 with the components p j (0), and the vector a = p/‖p‖, we have to
minimize ‖x‖2 under the constraint at x = 1/‖p‖. Because of

‖x‖2 = (at x)2 + ‖x − (at x)a‖2,

the polynomial Pk minimizes the integral if and only if its coefficient vector x is a
scalar multiple of a or p that satisfies the constraint. 
�

This is the point where our considerations from the previous two sections apply.
We have seen that the values ‖T tω‖2 are approximately normally distributed, with a
variance V and a standard deviation σ = √

V that tend to zero in almost all cases
as the dimensions increase. This justifies replacing the actual distribution (5.9) by the
corresponding normal distribution with the density

f (t) = 1√
2π σ

exp

(
− (t − 1)2

2σ 2

)
. (5.23)

Then one ends up up with a classical case and can express the orthogonal polynomials
pk in terms of the Hermite polynomials He0(x) = 1, He1(x) = x , and

Hek+1(x) = x Hek(x) − k Hek−1(x), k ≥ 1, (5.24)

that satisfy the orthogonality condition

∫ ∞

−∞
Hek(x)He�(x)e

−x2/2 dx = √
2π k! δkl . (5.25)

In dependence of the standard deviation σ , in this case the pk are given by

pk(t) = 1√
k! Hek

(
t − 1

σ

)
. (5.26)

The first twelve Mk = Mk(σ ) assigned to the orthogonal polynomials (5.26) for the
standard deviations σ = 1/16, σ = 1/32, and σ = 1/64 are compiled in Table 1.
They give a good impression of the speed of convergence that can be expected and are
fully in line with our predictions.

The only matrices T t for which the distribution of the values ‖T tη‖2 is explicitly
known and available for comparison are the orthogonal projections studied in Sect. 4.
The densities of such distributions can be transformed to the weight functions asso-
ciated with Jacobi polynomials. The orthogonal polynomials assigned to the rescaled
variants of these matrices can therefore be expressed in terms of Jacobi polynomials.
Details can be found in the appendix. For smaller dimensions, the resulting values
(5.22) tend to zero much faster than the values that one obtains approximating the
actual density by the density of a normal distribution. Not surprisingly, the values
approach each other as the dimensions increase.
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Table 1 The reduction factors Mk (σ ) assigned to the approximate density (5.23) for the first 12 iterations

σ = 1/16 σ = 1/32 σ = 1/64

3.89105e−03 9.75610e−04 2.44081e−04

3.05162e−05 1.90734e−06 1.19209e−07

3.61818e−07 5.60431e−09 8.73754e−11

5.76547e−09 2.19991e−11 8.54318e−14

1.15764e−10 1.08156e−13 1.04465e−16

2.81207e−12 6.39348e−16 1.53362e−19

8.03519e−14 4.41803e−18 2.62800e−22

2.64591e−15 3.49602e−20 5.14916e−25

9.88479e−17 3.11842e−22 1.13557e−27

4.13835e−18 3.09685e−24 2.78394e−30

1.92237e−19 3.38976e−26 7.51127e−33

9.82752e−21 4.05580e−28 2.21192e−35

For the matrices T from Sect. 3 assigned to undirected interaction graphs, the
angular distribution of the values ‖T tω‖2 behaves very similarly to the case of the
rescaled orthogonal projections. In fact, it differs in almost all cases only very slightly
froma to the expectedvalue one rescaledbeta distribution.Recall that beta distributions
depend on two parameters α, β > 0 and possess the density

g(t) = Γ (α + β)

Γ (α)Γ (β)
tα−1(1 − t)β−1. (5.27)

The density of their to the expected value one rescaled counterpart is

f (t) = α

α + β
g

(
α t

α + β

)
(5.28)

on the interval 0 < t < (α + β)/α and zero otherwise.

Lemma 5.3 The variance V and the third-order central moment Z of the rescaled beta
distribution with the density (5.28) are connected to each other through

− 1 − V

2
<

Z

2V
< V . (5.29)

In terms of V and Z, the parameters α and β are given by

α = 2
Z + V (1 − V )

4V 2 − (1 − V )Z
, β = Vα(α + 1)

1 − Vα
. (5.30)

For any given V > 0 and Z that satisfy the condition (5.29), conversely there exists a
rescaled beta distribution with variance V and third-order central moment Z.
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Proof The variance and the third-order central moment of a rescaled beta distribution
with the density (5.28) possess the explicit representation

V = β

α(α + β + 1)
, Z = 2β(β − α)

α2(α + β + 1)(α + β + 2)
.

From the representation of the variance V

(1 − Vα)β = Vα(α + 1)

follows. As β and the right-hand side of this identity are positive, 1− Vα is positive,
too, and we obtain the given representation of β in terms of α and V . If one inserts
this into the representation of Z , one is led to the identity

2Vα − (1 − V )

α + 2 − Vα
= Z

2V

and finally to the representation of α. Because the left-hand of this identity grows as
function of α ≥ 0 strictly and 0 < α < 1/V holds, (5.29) follows. As one can reverse
the entire process, the proposition is proved. 
�

Let T be an (n × m)-matrix T with the singular values σ1, . . . , σm and let

A1 =
m∑
i=1

σ 2
i , A2 =

m∑
i=1

σ 4
i , A3 =

m∑
i=1

σ 6
i (5.31)

be the traces of thematrices S = T t T , S2, and S3. Then the variance and the third-order
central moment of the distribution of the values ‖T tω‖2 are given by

V = 2n A2 − 2A2
1

n2(n + 2)
, Z = 16A3

1 − 24n A1A2 + 8n2A3

n3(n + 2)(n + 4)
. (5.32)

For the matrices T assigned to interaction graphs, these quantities satisfy the condi-
tion (5.29) with very few exceptions, and the resulting densities (5.28) agree almost
perfectly with the actual densities. The values (5.22) assigned to these densities thus
reflect the convergence behavior presumably at least as well as the values resulting
from the given approximation by a simple Gauss function. In a sense, this reverses
the argumentation and emphasizes the role of the model problem analyzed in Sect. 4.
From this point of view, the beta distributions are at the beginning and the normal
distributions only the limit case for higher dimensions.

The matrices T assigned to interaction graphs still have another nice property. For
vectors e pointing into the direction of a coordinate axis, ‖T te‖ = ‖e‖ holds. The
expression α(ω)(‖T tω‖2 +μ) thus takes the value one on the coordinate axes, which
is the reason for the square root in the definition (3.19) of thesematrices. The described
effects become therefore particularly noticeable on the regions on which the Fourier
transforms of functions in hyperbolic cross spaces are concentrated. The functions
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that are well representable in tensor formats and in which we are first and foremost
interested in the present paper fall into this category.

We still need to approximate 1/r on intervals μ ≤ r ≤ Rμ with moderate relative
accuracy by sums of exponential functions, which then leads to the approximations
(1.4) of the kernel (5.3) by sums of Gauss functions. Relative, not absolute accuracy,
since these approximations are embedded in an iterative process; see the remarks
following Theorem 5.2. It suffices to restrict oneself to intervals 1 ≤ r ≤ R. If v(r)
approximates 1/r on this interval with a given relative accuracy, the function

r → 1

μ
v

(
r

μ

)
(5.33)

approximates the function r → 1/r on the original interval μ ≤ r ≤ Rμ with the
same relative accuracy. Good approximations of 1/r with astonishingly small relative
error are the at first sight rather harmless looking sums

v(r) = h
k2∑

k=k1

e−kh exp(−e−khr), (5.34)

a construction due to Beylkin and Monzón [4] based on an integral representation.
The parameter h determines the accuracy and the quantities k1h and k2h control the
approximation interval. The functions (5.34) possess the representation

v(r) = φ(ln r)

r
, φ(s) = h

k2∑
k=k1

ϕ(s − kh), (5.35)

in terms of the for s going to infinity rapidly decaying window function

ϕ(s) = exp(−es + s). (5.36)

To check with which relative error the function (5.34) approximates 1/r on a given
interval 1 ≤ r ≤ R, thus one has to check how well the function φ approximates the
constant 1 on the interval 0 ≤ s ≤ ln R.

For h = 1 and summation indices k ranging from −2 to 50, the relative error is, for
example, less than 0.0007 on almost the whole interval 1 ≤ r ≤ 1018, that is, in the per
mill range on an interval that spans eighteen orders of magnitude. Such an accuracy is
surely exaggerated in the given context, but the example underscores the outstanding
approximation properties of the functions (5.34). Figure4 depicts the corresponding
function φ. These observations are underpinned by the analysis of the approximation
properties of the corresponding infinite series in [14, Sect. 5]. It is shown there that
these series approximate 1/r with a relative error

∼ 4πh−1/2e−π2/h (5.37)
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Fig. 4 The rescaled function s → φ(s ln 10) approximating 1 for h = 1, k1 = −2, and k2 = 50

as h goes to zero. Moreover, the functions φ and their series counterparts almost
perfectly fulfill the equioscillation condition as approximations of the constant 1,
so that not much room for improvement remains. High relative accuracy over large
intervals r ≥ 1 is a much stronger requirement than high absolute accuracy, the case
that has been studied by Braess and Hackbusch in [5, 6], and [10].

The practical feasibility of the approach depends on the representation of the tensors
involved and the access to the Fourier transforms of the functions represented by
them. A central task not discussed here is the recompression of the data between
the iteration steps in order to keep the amount of work and storage under control, a
problem common to all tensor-oriented iterative methods. If one fixes the accuracy
in the single coordinate directions, the process reduces to an iteration on the space
of the functions defined on a given high-dimensional cubic grid, functions that are
stored in a compressed tensor format. There exist highly efficient, linear algebra-
based techniques for recompressing such data. A problem in the given context may
be that the in this framework naturally looking discrete �2-norm of the tensors does
not match the underlying norms of the continuous problem. Another open question is
the overall complexity of the process. A difficulty with our approach is that the given
operators do not split into sums of operators that act separately on a single variable or
a small group of variables, a fact that complicates the application of techniques such
as of those in [3] or [7]. For more information on tensor-oriented solution methods for
partial differential equations, see the monographs [11] and [12] of Hackbusch and of
Khoromskij and Bachmayr’s comprehensive survey article [2].
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Appendix: Beta distributions and Jacobi polynomials

Setting a = β − 1, b = α − 1, and introducing the constants

K (k, a, b) = 2a+b+1 Γ (k + a + 1)Γ (k + b + 1)

(2k + a + b + 1)Γ (k + 1)Γ (k + a + b + 1)
,

the density (5.28) can be rewritten in the form

f (t) = 2
b + 1

a + b + 2

(1 − x)a(1 + x)b

K (0, a, b)
, x = − 1 + 2

b + 1

a + b + 2
t .

The orthogonal polynomials pk from Lemma 5.2 assigned to this weight function f
can therefore be expressed in terms of the Jacobi polynomials

P(a,b)
k (x) = P(k, a, b; x).

The Jacobi polynomials satisfy the orthogonality relation

∫ 1

−1
P(k, a, b; x)P(�, a, b; x)(1 − x)a(1 + x)b dx = K (k, a, b)δk�.

The polynomials pk therefore possess the representation

pk(t) =
(
K (0, a, b)

K (k, a, b)

)1/2

P

(
k, a, b; −1 + 2

b + 1

a + b + 2
t

)
.

At x = −1, the Jacobi polynomials take the value

P(k, a, b; −1) = (−1)k
Γ (k + b + 1)

Γ (k + 1)Γ (b + 1)
,

see [1, Table 22.4] or [13, Table 18.6.1]. This leads to the closed representation

pk(0)
2 = (2k + a + b + 1)Γ (a + 1)Γ (k + b + 1)Γ (k + a + b + 1)

Γ (a + b + 2)Γ (b + 1)Γ (k + 1)Γ (k + a + 1)

of the values pk(0)2. Starting from p0(0)2 = 1, they can therefore be computed in a
numerically very stable way by the recursion

pk+1(0)
2 = (k + b + 1)(k + a + b + 1)(2k + a + b + 3)

(k + 1)(k + a + 1)(2k + a + b + 1)
pk(0)

2.
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